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Abstract

Network resiliency pertains to the vulnerabilitytefecommunication networks in the case of
failures and malicious attacks. With the increasiagacity catering of network for the
booming multi-services in Next Generation Netwofk&Ns), reducing recovery time and
improving capacity efficiency while providing highuality and resiliency of services has
become increasingly important for the future nekvdevelopment. Providing network
resiliency means to rapidly and accurately rerdbte traffic via diversely routed spare
capacity in the network when a failure takes doimkd or nodes in the working path.
Planning and optimization for NGNs require an édfit algorithm for spare capacity
allocation (SCA) that assures restorability with nanimum of total capacity. This
dissertation aims to understand and advance the sfaknowledge on spare capacity
allocation in network resiliency for telecommunioatcore networks.

Optimal network resiliency design for reatulity requires considering: network
topology, working and protection paths routing asmhre capacity allocation. Restorable
networks should be highly efficient in terms ofalotapacity required for restorability and be
able to support any target level of restorabiliijie SCA strategy is to decide how much
spare capacity should be reserved on links andeglan protection paths to protect traffic
from a set of failures. This optimal capacity a#lbon problem for survivable routing is
known as NP-complete. To expose the problem streictue propose a model of the SCA
problem using a matrix-based framework, named Disted Resilience Matrix (DRM) to
identify the dependencies between the working amdeption capacities associated with
each pair of links and also to capture the locplaciy usage information in a distributed
control environment. In addition, we introduce avelcant-based heuristic algorithm, called
Friend-or-Foe Resilient (FoF-R) ant-based routilggprdthm to find the optimal protection
cycle (i.e., two node-disjoint paths between a egutestination node pair) and explore the
sharing ability among protection paths using a ciypdneadroom-dependent attraction and
repulsion function. Simulation results based on @dNeT++ and AMPL/CPLEX tools
show that the FoF-R scheme with the DRM structsir@ promising approach to solving the
SCA problem for survivable routing and it givesaod trade off between solution optimality

and computation speed.



Furthermore, for the SCA studies of surkileanetworks, it is also important to be able
to differentiate between network topologies by nseaha robust numerical measure that
indicates the level of immunity of these topologtesfailures of their nodes and links.
Ideally, such a measure should be sensitive texrstence of nodes or links, which are more
important than others, for example, if their falucauses the network’s disintegration.
Another contribution in this dissertation is toroduce an algebraic connectivity metric,
adopted from the spectral graph theory, namely2themallest eigenvalue of the Laplacian
matrix of the network topology, instead of the ag® nodal degree, to characterize network
robustness in studies of the SCA problem. Extensiwaulation studies confirm that this
metric is a more informative parameter than theragye nodal degree for characterizing

network topologies in network resiliency studies.
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Chapter 1

Introduction

Due to the increasing social dependency on teleaomuation network facilities in the
ongoing “information era”, network resiliency hascbme a very critical research area.
Network resiliency gauges the ability of the netivéw support the committed Quality of
Services (QoS) to customers continuously, eveherpresence of various failures. Network
resilience mechanisms include a set of methodsdelan and utilize the network’s spare
resources to guarantee seamless communications fapore. Failures include fiber cuts,
because of construction work, natural disasterspamuerrors or hardware and software
breakdown as described e.g., in [1-3]. Most of ¢hésilures are hard to forecast and
eliminate, but it is possible to mitigate the impat a set of specific failure scenarios by

introducing network resilience techniques intoleévork design phase.

Traditional network resilience mechanism includes main aspects: survivable routing
and spare capacity allocation (SCA). These two gghase complementary to each other and
cooperate to achieve seamless communication sespieetion upon failure [4]. Survivable
routing refers to the incorporation of a diversatimy mechanism into the network design
phase, so as to reroute the traffic upon a seivehdailure scenarios. The SCA is a major
component in dimensioning a survivable network whigs network topology is given. It
ensures enough spare capacity for the physicalonktar the virtual network to recover
from a failure via traffic rerouting. An optimal $Cdesign procedure requires the efficient
capacity allocation both on working and protectgaths. It ensures that the working paths
are routed over relatively short routes as wedféisiently restorable by the protection paths.

It targets the achievement of maximal sharing antbegedundant resources in the network.



This dissertation focuses on the SCA problem fawigable routing. An in-depth
description of the SCA is provided and its Integémear Programming (ILP) model is
presented. We focus on tackling the SCA problemaby ant-based heuristic routing
algorithm and also on investigating a topologicaitme to quantify the network robustness
characteristic. Our novel solutions such as theriDiged Resilience Matrix (DRM), Friend-
or-Foe Resilient (FoF-R) ant-based routing algamitand the utility of an algebraic
connectivity metric in SCA have been developed &edfied by extensive simulation
results. We believe they are three valuable camiohs to the research area of network

resiliency.

1.1 Background

Modern telecommunication networks are equipped witra-high speed switches to meet
the dynamically changing traffic demands. In backbmetworks, connection requests are
launched dynamically from the upper layers, forchhiouting algorithms are used to derive
the corresponding capacity guaranteed tunnels et all the QoS requirements [5].
Offering a reliable communication platform withastg traffic engineering mechanisms and
QoS guarantee leads the carrier and its custormexsévenue-generating environment. The
long-term telecommunication survivors will be thosto can find the balance between
technological innovation, improved customer sewsjcend efficient allocation of network
resources. Therefore, network resiliency is becgnoine of the most important QoS issues,
and shared path protection scheme is recognizetha®f the best strategies to equip the
network with service resiliency by pre-planning tpgirotection [6-9]. With a disjoint
working-protection path pair, once the working pédhis unexpectedly, its working traffic

can be switched to the protection path and thusah@sponding services can be restored.

In recent years, we have seen great pregresetwork resilience technologies that
enable telecommunication systems to continue dpgravithout disruption, despite the
inevitable failure events. Key network resiliengetpcols have been studied for at least the
last two decades, and every year, the world’s ¢ehegunications journals and conferences
are filled with new efforts in this area. The rasbaresults presented in this dissertation aim
to contribute to that body of knowledge by offeringw network resilience techniques and

solutions to solve the SCA problem for survivaldetmg. In addition, a more informative



topological metric i.e., algebraic connectivity istroduced to measure the network

robustness with comparison to the popular averagalrdegree metric.

1.2 Motivation

Despite the extensive prior research on networligrsy, the current approaches still have
shortcomings due to the complex nature of SCA fowigable routing. Among different

mechanisms for SCA, the weakness of the fixed-nguaipproach is the need for keeping up-
to-date with the rapidly changing network stateerBfiore, the performance of the fixed-
routing based SCA technique is unacceptable intipeacOn the other hand, the existing
adaptive SCA algorithms that can provide optimahear optimal routing solutions, require

centralized and global routing information. Thigugement has two problems:

 The communication networks must be equipped withieey complex network
control layer which co-exists above the physicgétao continuously broadcast the
link-state information toward every network nodehisT kind of centralized and

global approach has fault-tolerance and scalalglibplems;

* The maintaining of such global routing informati@ither centralized at a command
and control node or distributed among network npdesy lead to an inaccurate
routing information condition that can terribly dade network performance when
adaptive SCA algorithms determine a routing soilutlmased on this inaccurate
information [10-11].

In order to overcome the above disadvantages, aappsoach for building a fully
distributed SCA algorithm is needed. It must bécefht in terms of capacity usage and also
be applicable to practical networks. Aiming at ttasget, we propose a novel Distributed
Resilience Matrix (DRM) as a possible solution, ethis inspired by the Spare Provision
Matrix (SPM) structure [12]. In addition, there lealveen numerous publications on network
routing with swarm intelligence since the first eslone paper, [13], in this area, but the ant-
based routing algorithm e.g., in [14] for data cammmation networks can not be applied
directly into the area of network resiliency. Italso notable that no results are available for
applying the ant-based approach to solve the S@Al@m. These observations motivate us
to extend this promising heuristic mechanism orew direction to solve the SCA problem
and also to use the mobile agents to implemenaipldating of capacity usage information in
the DRM structure.



Additionally, in our simulation studies &foF-R routing algorithm with the DRM
structure, the experimental results reveal thataberage nodal degree metric, which we
used to measure network connectivity, fails to adégly capture the network robustness
characteristic in SCA. This finding motivates usatork on the network topology aspect to
explore a more informative topological metric to amere network robustness. By
introducing the algebraic connectivity metric, ,i.the second smallest eigenvalue of the
Laplacian matrix of the network graph, our numdriesults show that this metric is more

accurate and informative than the average nodakdagetric.

1.3 Contributions

This dissertation focuses on investigating the $@gblem for survivable routing. Our first
contribution is a novel Distributed Resilience NtafDRM) framework, which is used to
model the dependence between the working and spaeities. This additional relationship
information is critical to explore the sharing putiel among protection paths in SCA

problem.

The second contribution is the Friend-or-Foe Resilant-based routing algorithm. It is
noted that the ant-based routing algorithms dewslogpo far by other researchers in the
communication area have concentrated on the cardin behaviour between ant agents.
We postulate that network resiliency can benefamr augmenting ants’ competitive
behaviour with detestation behaviour between ag@ihis enrichment enables the ant agents
to find disjoint routes from working paths, as aiegive good quality paths to reroute the
traffic upon failure and also to explore the capasharing potentials among their protection
paths. Therefore, we have introduced both coomerathd detestation behaviors to the ants,
adopting a “Friend or Foe” philosophy by using paxity headroom-dependent attraction
and repulsion function. The artificial ant is tharsned with ability for identifying who has
already deposited the pheromones on the routeghamit is a Friend or Foe. Then, an ant
agent can make movements and deposit pheromonbsdifierent strategies. Through
extensive simulations, we show that the FoF-R ased mobile agent approach can solve
the SCA problem in survivable routing. It can regltite connection setup delay for recovery

and improve significantly the network performanecedmparison with other algorithms.

Furthermore, in studies of network resiliency sitimportant to be able to differentiate

network topologies by means of a robust numericzdsuare that would indicate the levels of



immunity of these topologies to failures of theodes and links. Ideally, such a measure
should be sensitive to the existence of nodesnés livhich are more important than others,
for example, if their failures cause the networdlisintegration. Our third contribution is to
introduce an algebraic connectivity metric to qifgrthe network robustness other than the
average nodal degree metric, which is currentlyufopwithin the research community. The
concept of algebraic connectivity is adopted frdra spectral graph theory, and is tHé 2
smallest eigenvalue of the Laplacian matrix of\eeginetwork. Extensive simulation studies
confirm that this metric is more informative ancca@te than the average nodal degree for

characterizing the network topologies in studiesetfvork resiliency.

1.4 Thesis Outline

The objective of this dissertation is to study tI®CA problem for survivable
telecommunication networks. It focuses on backbpatvorks in a single link or node
failure scenario. The main task is to establismeations in the network such that there is an

efficient SCA strategy to survive existing traffiows upon any single failure in the network.

Chapter | Introduction and
motivation

L

Chapter 2 SCA problem and its ILP

models

Contribution 1 /

Chapter 3 Distribuied
Resihence Matrix (DEM)

Contribution

Chapter 5 Utility of algehraic
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Chapter 4 FoF-R ant-based
routing algorithm

\

Chapter & Conelusion and tfuture
work

Figure 1.1 Thesis outline



This dissertation’s structure is depictedrigure 1.1. The remainder of this dissertation
contains an introduction of relevant backgroundvidedge, followed by benchmarking
studies, and comprehensive analyses and discussitiimee key advances in the area of

network resiliency.

Chapter 2 gives an introduction to network resiliency andiees the current network
resilience techniques and protection categories.spare capacity allocation (SCA) problem
is described and the related ILP models correspgndd the benchmarking SCA
mechanisms such as Shared Backup Path Protec###P}Sand p-cycles are described and

discussed.

Chapter 3 introduces background knowledge on capacity spaifiimen the existing Spare
Provision Matrix (SPM) is described and the new rirdiased framework, named
Distributed Resilience Matrix (DRM), is proposeddapture the dependence between the
working and spare capacities in a distributed manHeis additional information is critical

for exploring the capacity sharing potential ampngtection paths.

Chapter 4 presents a novel ant-based routing algorithmedathe Friend-or-Foe Resilient
(FoF-R) ant-based routing algorithm, to impleménet distributed signaling for updating and
exchanging the capacity usage information in DRKkénkework. In addition, the FoF-R
survivable routing algorithm can find the optimabgection cycle (i.e., two node-disjoint
paths between a source-destination node pair) apibre the sharing ability among
protection paths using a capacity headroom-depénaiiraction and repulsion function.
Simulation results based on the OMNeT++ tool shioat the FOF-R scheme with the DRM
structure is a promising approach to solve SCA leralfor survivable routing and it gives a

good tradeoff between solution optimality and cotafian speed.

Chapter 5 develops deeper into network topology researchted|to network resiliency. It
focuses on introducing a new topological metric, iadgebraic connectivity to quantify the

network robustness and also to find its correlatmthe SCA. Instead of using the popular



average nodal degree metric to quantify the netwothustness, we introduce a more
informative metric i.e., algebraic connectivity, ot is the second smallest eigenvalue of
Laplacian matrix of a given network. We performharobugh comparison of topologies to
validate the new metric and extensive results ptegereveal that the average nodal degree
metric fails to capture the details of network retmess characteristic, whereas using

algebraic connectivity metric, the network robussproperties can be better characterized.

Chapter 6 summarizes the main contributions of this dissentatis well as explains the
limitations of the research work presented. We aisggest some possible directions for
future research such as extending the FoF-R roulggrithm’s capability to handle

arbitrary failure scenarios.

1.5 Published Papers

William Liu, Harsha Sirisena and Krzysztof Pawlikski “FoF-R Ant: Ant-Based
Survivable Routing Scheme for Shared Path Proteétion Proc. of Australian
Telecommunication Networks and Applications Coriess 2008. ATNAC 2008.

William Liu, Harsha Sirisena and Krzysztof Pawlikeli;, “FoF-R Ant-based Survivable
Routing Using Distributed Resilience Matrix,” inder of 21st International Teletraffic
Congress (ITC 21), Traffic and Performance IssueBletworks of the Future, September
15-17, 2009, Paris.

William Liu, Harsha Sirisena and Krzysztof Pawlikeki; “A Novel Resilience Matrix for
Survivable Routing in a Distributed Control Architare,” in Proc. of 15th Asia-Pacific
Conference on Communications (APCC2009), OctokHp,52009, Shanghai.

William Liu, Harsha Sirisena and Krzysztof Pawlikeki; “Efficacy of Fiedler Value versus
Nodal Degree in Spare Capacity Allocation,” in Rrot 15th Asia-Pacific Conference on
Communications (APCC2009), October 5-10, 2009, §han



William Liu, Harsha Sirisena and Krzysztof Pawlikekiy “Weighted Algebraic
Connectivity Metric for Non-Uniform Traffic in Redble Network Design,” in Proc. of
International Workshop on Reliable Networks Desagiad Modeling (RNDM2009), October
12-14, 2009, St. Petersburg.

William Liu, Harsha Sirisena and Krzysztof Pawlikela “Utility of Algebraic Connectivity
Metric in Topology Design of Survivable Network&y'Proc. of 7th International Workshop
on the Design of Reliable Communication NetworksR@N 2009), Washington DC,
October 25-28, 2009.

William Liu, Harsha Sirisena and Krzysztof Pawlikeli; “A Novel Distributed Resilience
Matrix for Arbitrary Failures in Spare Capacity édlation,” in Proc. of 7th International
Conference on Information, Communications and SigReocessing (ICICS 2009),
December 7-10, 2009, Macau.



Chapter 2
Spare Capacity Allocation for

Survivable Routing

In this chapter, we briefly discuss the fundamentdlnetwork resiliency and then describe
the spare capacity allocation (SCA) problem forvisable routing. Designing a low cost and
survivable telecommunication network is an extrgimamplicated process and there is a
growing consensus that mathematical programmingnigsl in the network designer’'s

toolkit. The mathematical modeling coupled withiofitation solvers has greatly reduced
the burden of implementation of mathematical progréng theory into the practice of

network design. For benchmarking our proposed #lgor we first present some Integer

Linear Programming (ILP) models developed for saiihe SCA problem.

The remainder of this chapter is organized as \ald=irst, we give some background
knowledge on network resiliency and then the dasdion of protection schemes is
introduced. The mathematical modeling for the SQAbfem is presented and the ILP
models for link protection, shared backup pathegution (SBPP) and p-Cycles schemes are
developed. Finally, critical information on the éepence between working and spare

capacity in SCA for survivable routing is described

2.1 Background on Network Resiliency

Network resiliency is the ability of the network poovide and maintain an acceptable level
of service in the case of various failures of ndrimeration. It reflects the ability of a
network to continue to function during and aftetui@s. The following are key aspects of

network resiliency that we need to consider insiudies.
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2.1.1 Restoration and Protection

Throughout the preceding discussions on the SCAleno, we have used the terms
restoration and protection to refer to various mekwesilience mechanisms and actions
interchangeably. However, in general, the term tgrtion” is used for schemes where the
switching actions required after failure are prérie and spare capacity is often dedicated
[15] to cover a specific set of failure scenarimsa pure protection mechanism, even cross-
connection is unnecessary when the signal is sedt¢b the protection path; the protection
paths are pre-configured into a pre-tested andyramdse state. However, the term
protection is also used to refer to schemes sucbhased Backup Path Protection (SBPP)
where the protection route is known ahead of timg, the capacity allocation and cross-

connection remain to be accomplished in real tifter &ailure has occurred.

Restoration, on the other hand, generally refetheéomechanisms where backup paths
do not need to be pre-defined and a network-widecation of spare capacity is not
dedicated to any specific failure but it is configd as needed to restore affected carrier
signals after a failure has occurred [16]. In thpurest form, restoration mechanisms
determine backup paths, allocate spare capacityfam the appropriate cross-connections
all in real time as a response to a failure, eitteough a centralized mechanism or a
distributed protocol. However, depending on thecdjeimplementation, some restoration
mechanisms can carry out pre-planning operatioms] even some amount of pre-
configuration is possible. Restoration by its veagure is adaptive to unexpected changes in
the network state, and as such, will typically &ithbetter availability than protection

mechanisms.

2.1.2 Centralized vs. Distributed Protection

According to the decision making and availabilifyimformation, we can divide protection
schemes into two main categories: centralized aistrimited. Centralized protection
schemes use a centralized management system twrpdife protection functions, such as
failure detection, selection of backup route andireetion of flows to the established
alternative path. A centralized scheme has the radga of always getting all network
information available, including topology and lickpacity availability, even during failure,
so it is capable of finding an optimal configuratisuch as minimizing the total amount of

capacity allocated. However, a centralized appro&cjuires the central database to be
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continually updated, and there exists a singletpoaf failure of the central
collection/management point. In addition, the rexgvspeed is relatively slow with the
centralized scheme due to the communication deddyd®en the centralized controller and
other nodes, and the concentration of processiamdm the centralized controller.

To alleviate the negative impact of the centraliz=azhtrol for protection, some
proposals [17-18] consider distributed protectiontool. In a distributed protection scheme,
each node in the network is capable of handlinyrkeé and making re-routing decisions.
The distributed protection is more robust becausgoes not need a global view of the
network state and thus is not vulnerable to a sipgint of failure, but it will not necessarily
find an optimal configuration after a failure. Alsmany network operators are ware of

trusting their networks to such a distributed sefanizing process.

2.1.3 Link vs. Path Protection

We can further categorize protection mechanism ifferdntiating between localized and
end-to-end path protection [19]. Localized protattis when backup paths are established
between the end nodes of the failure link, wheread-to-end schemes restore affected
demands by constructing backup paths betweenittiduidual source and destination nodes.
The backup paths should be completely disjoint ftbenpre-failure working paths. End-to-
end protection schemes are typically able to ma&eerefficient use of network resources,

and so it tends to require less spare capacitylttatized protection schemes.

/ ove

(a) Link protection (b) Path protection

Figure 2.1 Link protection vs. Path protection

As shown in Figure 2.1, the most common form ofal@ed protection is link

protection, where a centralized or self-organizirgtrouting mechanism deploys a
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collectively coordinated set of backup paths betwdee end nodes of the failed link and
effectively avoids the failure. Spare capacityliscated at the time that the failure happens
only, and will otherwise remain available for useraquired to route protection paths for any
failure scenario or carrying preemptible unprotdcteaffic. For working capacity on the
failed link, one protection path must be establishetween the end nodes of the failed link,
and so long as spare capacity is available to acmmate them. Link protection thus
provides a logical detour comprised of a set okbpgpath segments around the break that
disrupts working paths, without the consideration the ultimate source-destination nodes

of each working path being restored.

In path protection, the reaction to a fialtakes place from an end-to-end viewpoint for
each service path affected by the failure. Pathepton schemes have several advantages.
One is that they are more amenable to customel deverol and visibility. Link protection
is rather inherently a function of the transportwuek itself, whereas path level protection
can be a function that is put in the users’ conolunder the control of a service layer node
such as a router. For example, in SBPP schems,dtsb possible for the users to know
ahead of time, and even control, exactly wherer thegivice will be rerouted upon a failure.
This is sometimes said to be important to custoniaraddition, path protection spreads the
overall rerouting problem more widely over the whaletwork and it is usually more
capacity efficient than link protection, althoudtetdifference depend on network topology.
In addition, path oriented protection schemes oaefjuire fault detection at the end nodes of
the path, and this can be attractive for transgamertranslucent optical networks where
signal monitoring may not be available at intermaéglinodes. On the other hand, path
protection schemes are generally not as fast @slitileoriented counterpart due the greater
distances and numbers of nodes involved in recoqwergedure signaling. Availability issues

can also arise when working and protection pataé$ath long.

2.1.4 Protection Techniques

All types of network resilience techniques involvetwork spare resources allocation to the
rerouting mechanisms. Based on the availabilitynefwork resources [20], protection

mechanisms can be classified into the following foajor types:
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» 1+1 Protection: A dedicated backup path is predefiand the traffic is sent over
both working and backup paths simultaneously. Teeeiwver has some local
algorithms to choose the best signal;

» 1:1 Protection: A dedicated backup path is preaefjrthe traffic is rerouted to the
backup path only after the failure has occurred;

» 1:N Protection: A dedicated backup path is predefiteegrotect a number dfl
working paths. The traffic will be switched to thackup path, if any of the working
paths fail, but after that, the remainiNgl1 paths are unprotected;

* M:N protection: The number &fl dedicated backup paths are predefined to protect
N> 1 working paths, wherd& [J[1,N].

The dedicated 1+1 protection is the fastest, astihific is being simultaneously
transmitted over working and protection paths. Heeve compared to an unprotected
system, it requires twice the amount of networkoveses, i.e., 100% redundancy. This
technique has been widely used in Automatic PrimecBwitching (APC) of premium or
high availability services. It should be noted thath 1:1 and 1N protections are actually
special cases dfl: N protection technique. INM: N protection, thevl backup paths are used
to protect theN working paths. This provides a better utilizatiohresources than 1+1
protection, since backup paths are used by multigeking paths. Also, the idle backup
resources can be used by low priority traffic thamce further network resource utilization.
However, this improved resource utilization Mt N is obtained at the cost of additional
signaling and increased protection switching timmbich will increase the overall recovery

time of the network against faults.

2.1.5 Shared Risk Link Groups

Most of the previous protection mechanisms aregdesi for protection against failure of an
individual or a diverse set of links, which may albave failure correlation to other
components in a network. There exists a much broeaecept known as Shared Risk Link
Groups (SRLGs) for the design of survivable networkn SRLG is a group of network
links that share a common physical resource eafplec conduit or node, whose failure will
cause the failure of all links of the group. Thalslinks in the SRLGs have a shared risk of
failure. SRLGs have been proposed as a fundameoakept for failure management in the
Generalized Multi-Protocol Label Switching (GMPLSpntrol plane. In general, the

information on SRLGs is obtained manually by themeek operator with the knowledge of
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the physical fiber plant of the network. This disaton is limited to focus on single link or
node protection and it does not include the comatd® for the network protection with
SRLGs. Extension of protection schemes involvind-GR is discussed in [21], see also

references there.

2.1.6 P-cycle

The concept of Preconfigured Protection Cycle (geywas introduced by Grover in [22-
23]. P-cycles can be characterized as preconfigoretction cycles in a mesh network and
it combines the speed of ring networks with theaci#y efficiency of mesh networks [24-
25]. P-cycles are ring-like pre-configured struetiof spare capacity used to protect against
failure of on-cycle links i.e., those links thaeaa part of the p-cycle, and straddling links
i.e., those links whose end nodes are both on-thele, but which are not actually a part of
the p-cycle itself. Upon failure of a protectedklirthe p-cycle is “broken into” by the
protection mechanism to re-route the traffic arothmel failure. The fundamental difference
between p-cycles and rings, and the cause of msydhcreased efficiency, is in the
protection of straddling link failures. A unit-sz€ing can only protect against the failure of
a single wavelength on each link on the ring itskelit a unit-sized p-cycle can protect the
failure of a wavelength on each on-cycle link adl e two wavelengths on each straddling
link, for the same amount of spare capacity. Tlasoa of a p-cycle can protect two units of
working capacity on each straddling link is becaufsthe straddling link fails, one unit can
be restored in the clockwise direction around tyae; and the other can be restored in the

counter-clockwise direction.

Figure 2.2 An example of p-cycle protection
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An example of p-cycle protection in a netkvaith 6 nodes is illustrated in Figure 2.2.
The p-cycle is as shown in Figure 2.2(a). For failaf an on-cycle link in Figure 2.2(b), the
working capacity on the failed link is re-routedand the p-cycle. For failure of a straddling
link in Figure 2.2(c), the working capacity on tfeled link can be re-routed in either
direction around the p-cycle. If there are two sinif working capacity on the failed
straddling link, then one unit can be restoredachedirection.

While it is not quite as capacity efficiead other mesh protection schemes e.g., link
protection and SBPP, the p-cycles provides the sanerapid protection as rings because
they are pre-connected prior to failure. P-cycles significantly more efficient than rings
because of their ability to protect straddling §nld simple comparison of a ring and a p-
cycle will easily demonstrate how important thetpation of straddling links is to p-cycle
efficiency. P-cycles have another key benefit oiregs, in that working paths can be shortest
path routed through the network; they are not camstd by the p-cycle systems used to
protect them. In a ring network, on the other havatking path routing must follow the ring
structures and inter-ring transitions. In fact, king paths on a straddling link do not even
need to be routed within any p-cycle at all to betgrted as long as each link crossed is a
straddling link. Because of the advantages assatiaith p-cycle protection, we use it as
one of benchmarking SCA mechanisms to our prop@dgdrithm. In addition, we use
Shared Backup Path Protection (SBPP) as anothehivemking SCA mechanism, which is

introduced in the following section.

2.1.7 Shared Backup Path Protection

The shared backup path protection (SBPP) scherfevased for optical networking and

Multi-protocol Label Switching (MPLS) applicatiofi26-27]. It is a path-oriented protection
scheme with a particular combination of operatiasiadplicity, speed, and efficiency that
makes it of special interest for IP-centric opticgitwork and MPLS layer contexts. The
Open Shortest Path First - Traffic Engineering (BSE) and Constraint-based Label
Distribution Protocol (CRLDP) type protocols enalsiervice layer applications to set up
their own SBPP path arrangements on demand. IrtiaadSBPP is a failure independent
path oriented scheme where the protection rouigeigtified in advance, but spare capacity
has to be cross-connected on the backup routeaintiree. In other words, SBPP is an
intermediate scheme between pure restoration amd ptotection. It is perhaps best

described as a preplanned restoration scheme. aihye that affects the working path
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causes a switchover to the predefined backup rautecross-connection to form a backup
path. One can equivalently think of SBPP as a fofri+1 APS dedicated path protection,
while the capacity used to form the protection patshared over failure of disjoint working

paths.

Moreover, it might be difficult to know immediatelyhere the failure has occurred. The
failure condition may only be known at the end reodéthe paths affected. In this case, the
SBPP scheme can decide in advance upon a set dbesmtl backup paths that are fully
disjoint from each working path protected. The adage is that it allows activation of the
switchover by the end nodes without any other keodgé about the failure. For efficiency,
the spare capacity is shared among backup pathsh#éive disjoint working routes. For
coordination of this capacity sharing, the glolmdbrmation on the relationship between the

working and protection paths is required.

2.2 Spare Capacity Allocation Problem

Compared to the restoration schemes which havepaoe scapacity pre-allocated before
failure, in SBPP scheme, the pre-planning spar@aagpmechanism not only guarantees
service, but also minimizes the recovery time aanthe of the failure impact. This sort of
service guarantees are especially important in giamkitching networks because backlog
traffic accumulated during the failure recovery htigntroduce significant congestion [28-
29] and it can be somehow mitigated by the prefptanspare capacity mechanism. On the
other hand, to reserve additional spare capacity cause increased usage on network
resources and degrade the network capacity for tneffic requirements under normal
conditions. Thus, how to efficiently utilize sparapacity resources is becoming a more and
more critical issue in network resilience design.

The SCA design can take the form of eithéwo -step or a single-step problem. In the
two-step problem, working paths are routed firstdmyne method and usually follow the
shortest path routing, and then a spare capacitcation (SCA) procedure optimally
determines the restoration routing in the netwdmkthe single step SCA design problem,
working and protection paths routing, and subsegusarking and spare capacity
determination are performed jointly, so that thaltoetwork capacity cost is optimized. This

joint optimization method is generally called JoBdpacity Allocation (JCA). This allows
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working paths to be routed in other than a shogatt manner, so that in conjunction with
the spare capacity needed for protection, the tatadcity requirement is minimized.

There are various methods for implemen&@A and JCA design problems, and the
exact model used will depend on the specific ptaircmechanism employed within the
network. For instance, the SCA design problem ftinla protection network is generally a
form of non-simultaneous single-commodity capagcitiocation problem [30] and early
work on similar problems was to support time-vagyimetwork flow patterns. The main
difference in applying that work to link protectitsthat we delete one link of the network
for each of the non-simultaneous flow requiremetisreby simulating link failures. Other
work that was done specifically for transport netweestoration started with a proposed
Linear Programming (LP) representation of the S@&da on a min-cut max-flow model
[31]. Here, spare capacity is allocated so thatefmch possible link failure, the minimum
spare capacity cutset on the surviving links iicight for full protection of the failed link’s
working capacity. In this context, they have dedfire cutset as any set of links whose
removal from the network would result in the endle® of the failed link being in two
disconnected components of the network. The miningpare capacity cutset is the one
whose links carry the minimum total spare capaaitg it is shown that the maximum flow
possible between any two nodes in a network isvedgt to the minimum spare capacity
cutset. One technical challenge with this apprdac¢hat the number of possible cutsets in a
network isO (2), whereL is the number of links, and so enumerating alsetst becomes
computationally infeasible. Thus, finding a suitabiall subset of cutset that fully constrain
the solution and also permit an optimal (or nedirog@l) capacity design is difficult.
Enhancements in [32] use an efficient algorithndiszover relevant new cutsets and a “path
table” data structure to allow for fast restorapitesting. For more information on the min-
cut max-flow solution methods for the SCA problesfer to [26, 31, 32].

In addition, a link-path LP model for th€/& problem in a link protection network was
proposed in [33-34]. Here the network topology irstfpre-processed to find all distinct
logical routes that are feasible for use in thegoresion of each failure scenario. Spare
capacity values on each link are sized to suppmtlargest assignment of simultaneous
restoration flows over the feasible protection esutrossing each link in the network over all
non-simultaneous failure scenarios such that thal &pare capacity is minimized. The
number of distinct routes possibleds(2"), but the complexity of the problem can be greatly

reduced in practice by reducing the number of fdasioutes provided to the problem,
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through the use of route hop-limits to restrictteolengths with little or no loss of solution

quality. This approach also gives a detailed ekptipecification of restoration routes and
flows, while the min-cut max-flow approach does.n@hother practical advantage of the
link-path method is that restoration route propsrtian be controlled to limit such properties
as length, hop count, signal loss, etc., for eaihre scenario, while the min-cut max-flow
approach does not. The SCA design problem canbasexpressed in the form of a set of
transshipment or network flow LP problems [35].aimetwork flow problem, supply nodes
and demand nodes act as sources and destinatiansoofimodity (i.e., a path demand), and
transshipment nodes simply act as intermediarias ghss along any of the commodity it
receives to other nodes. Like the link-path modet, network flow model can explicitly

specify the amount of flow over restoration routast it does not allow for easy control of

restoration route properties.

The network SCA design methods used indlssertation follow the link-path type of
model. The exact structure of the models differpeteling on the survivable routing
mechanism we are using, but in general, all suctietlsaequire an explicit enumeration of a

set of feasible restoration routes and in the cgaint designs, working routes as well.

2.3 ILP models for SCA

In this section, we shall discuss ILP models fast@ction schemes based on the abstract
graph representation of the network. The degreeradde is the number of links incident to
the node. A network is said to be 2-connected aéfdahare at least two node-disjoint paths
between any pair of nodes. The survivable netwotstnbe at least 2-connected. The
problem of selecting a minimum cost set of linkesure that a network is 2-connected is a
fundamental problem in SCA design. We have modifieed link-path models for link
protection, SBPP and p-cycle SCA mechanisms basesbme previous work [26, 36-38],
which will be used to benchmark the SCA mechansour proposed heuristic solution and

also to find the correlation between the topoldgnatric and the total capacity allocated.

2.3.1 Link Protection

The basic link-path model of the SCA problem inirk Iprotection network uses the

following notation:
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Sets:
L, the set of links in the network, and is typicallyléxed byi when referring to a

failure link andj when referring to a corresponding protection link;

+ P, the set of all distinct feasible routes availablearry restoration flow for failure

of link i, and is typically indexed by.

Input parameters,

* ¢, the cost of each unit of capacity (working orrspan linkj;
* W, the amount of working capacity to be protectedirai;
« 5 0{0,1, a parameter that encodes the protection routés. 1, the routep is

used for protection of linkand it traverses link If d]f’j =0, the routep is used for

protection of linki but it does not traverse lik

Decision variables;

c §2 0, the amount of spare capacity that is allocatelingrj;

« {20, the amount of protection flow assigned to rqufer failure of linki.

The ILP model for the link protection SCAthen expressed as follow,

iniize > ¢, (3 (2.1)
Ojoc
Subjectd f,P=w, Oi0L (2.2)
OpCR
D o0 <ss O, jOL #] (2.3)

OpCR
The objective function in equation (2.1)nimizes the total cost of spare capacity
allocation in the network. We usually associatewith the length of the link i.e., the
Euclidean distance between the end-nodes of the &nd in general, this cost can be
regarded as representing the actual costs of filadéte etc. The constraints in equation (2.2)
ensure that the total capacity assigned to alifeaprotection routes for failure of linkis

sufficient to fully protect whole working capaciign the failed linki. Equation (2.3)

guarantees enough spare capacity on each protéetionto accommodate all restoration

flows traversing it to protect failed link for anyi. In other words, eacls; quantity in

equation (2.3) is determined by the largest sursirofiltaneously imposed protection flows
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on link j, over all non-simultaneous failure scenarios mebiving link j itself as a failed
component. Thus, the spare capacity assigned toliekqg could arise from any of a number
of different finite-flow sub-problems, there is sua sub-problem for each link failure
scenario. Each individual failure scenario, takenisolation, is similar to a two terminal
minimum cost network flow problem, but the modebwad couples them all together under
the objective of minimum spare capacity. It is tois reason that the constraints in equation
(2.3) are not strict equalities; the spare capaeitpired on link for one particular failure
scenario may exceed that required for anotherréikcenario. The overall result of the
model is a minimum sum of link-based maximum gua#iof the protection flows assigned
to each link.

In case of a WDM optical network where at wf capacity represents an individual
wavelength, the SCA problem could be solved asra fitP, with all s; and f.Pvariables
taking on strictly integer values only. The SCAlgeon can be solved as an LP for runtime
considerations i.e., ILPs are much more difficdt dolve than LPs, and rounding and

variable adjustments were used to approximate phienal integer solution. This can usually

be done with only minor loss of optimality, as dissed in [39-40], as long as the capacity
variables §;) are integer, the integrality requirement on theerlying flow variables "
can be relaxed without affecting optimality or fibdgy.

The SCA problem for a link protection netlwean easily be modified and formulated

as the JCA problem in order to perform joint wotkemd spare capacity optimization. To do

so, the priorw input parameters become output variables, we teeatbdify the objective

function, and add two new constraints to ensure rthging of working demands and
adequate working capacity to support them. Let:

* D, the set of working path demands, and is typidaliiexed byr.
« Q' the set of all feasible routes available to caroyking path for demand and is

typically indexed byg.

In addition, we introduce the following n@wput parameters as

o d", the number of traffic demand units for demand
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«  §70{0,1), a parameter that encodes working routeg; ff = 1, the working route

g is used for demandthat crosses link If Ejr’q = 0, the working route is used for

demand and it does not cross link

New decision variables are:
« g"9=0, the amount of working flow assigned to workingitexq used for demand
r.

c w2 0, the amount of working capacity that is allocaiedink j (this was formerly

an input parameter).

All previous notations used in equationsl2o (2.3) of the link protection network
problem remain. In order to consider working capiesiin addition to spare capacity, we
make the following change to the objective function

Miriza " ¢, [{s + W) (2.4)
gjoc

Finally, we add two new constraint setéodlews:

> g¥=d 0OrdD (2.5)
OqoQ”
DY i =w O0L (2.6)

OrOD OqOQ"

Equation (2.5) is the working path routimguivalent to the protection-related
constraints in equation (2.2). It ensures thatttiial working flow assigned to all feasible
working routes for demandis sufficient to fully route it. Equation (2.6)zsis the working
capacities on each link in much the same way thaation (2.3) does for spare capacity. The
main structural difference between those two candtrsets is that in equation (2.6), the
working flow for each demand is applied to eackk lat the same time, hence the double
summation. When sizing spare capacity in equato8)(on the other hand, the protection
flow is applied separately for each link failureesario. Also, we use equality here, rather
than an inequality as in equation (2.3). This isduse the total working capacity is strictly
equivalent to that required to carry all workingttpadlemands, which are all routed
simultaneously. While spare capacity in equatioB)(% sized to accommodate individual
failure scenarios separately, some of which mayiregmore or less spare capacity than
others on any particular link. Besides the chaonghe objective function and the addition of

the two new constraint sets, the constraints iraggus (2.2) and (2.3) remain a part of the
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JCA model. While the link protection SCA problemmaidso be solved using the JCA model,
by simply providing only a single feasible workingute e.g., the shortest for each demand,
it is typically solved using the separate modeljated earlier.

Many variations of these optimization peyhk are possible. The model with capacity
only is one such version where the goal is to mirénthe amount of working and/or spare

capacity required, rather than the cost of sucla@gp It can be modeled in two ways, either

by simply setting alic; capacity cost values to the same valop:a,Dj 0L is typical), or

removing the capacity cost parametgrfrom the objective function. In the latter case,

equations (2.1) and (2.4) are replaced by equaflbi$ and (2.8), respectively:

Minimize s, (2.7)
gjoc

D w +s (2.8)

gjoc

Another common variation of the problem dee where the network does not

necessarily have to provide full (i.e., 100%) petiten for each failure scenario. By
introducing a new input parametef)< a, <1, which represents the proportion factor of
working capacity on link that must be protected in the event of failuretfat link, we can
replace equation (2.2) with equation (2.9) as belbe right hand side of this new equation

now effectively requires sufficient protection flomwer all protection routes to restore a

specified proportion of the failed link's workingugacity. If integrality is strictly asserted on
the flow variablef.”, then it may also be necessary to change theiggirequation (2.9)

to a weak inequality i.e.,£”, since a fractional amount of required workingaeity to be

protected may result.

> i

OpOR

wie , Oi0L (2.9)

In equation (2.3), the spare capacity nexpénts are calculated as the summation of the
products of protection flow and a {0, 1} binary pareter encoding whether a particular
route is crossing a particular link, and similafty equation (2.6) on calculating working

capacity requirements. However, we can also eneduether a route crosses a link by

declaring an additional settq U L, which is the set of links in routg and it is just as

easily generated as thi¥, and 9. Then, >’ OF [f* is equivalent to > f.” .and
CpOP OpRI 0L,
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> > &9y is equivalent o). > g™ . We can then replace equations (2.3)

Or0D 0o’ Orib 0qoQ' | jOs,

and (2.6) with equations (2.10) and (2.11), respelgtas below,

fP<s O, jOL| #] (2.10)
OpOR| jOL,
> > gf=w oL (2.12)
rib 0qoQ' | jog,

2.3.2 Shared Backup Path Protection

In the above models for link protection, only oe¢ af feasible protection routes needs to be
considered for any given failure scenario, sindg arsingle link fails at any given time, and
only one commodity requires rerouting. The model 38PP, on the other hand, needs to
provide for rerouting of multiple commodities sitarieously and this requires significant
structural differences in the SBPP mathematical ehadmpared to the link protection

model. In addition to the notation from above, e ¢e following new sets:

« Q' , the set of all feasible routes that can be wstar for working or protection

path routing of demand It is typically indexed by if we consider it for working

path routing ob if we consider it for protection path routing.

. er 0Q", the set of all feasible routes that can be usdurefor working or

protection path routing of demangwhich traverses link

« L 0L ,the setoflinks in roug]Q", as described above.

In addition, we have the following decision varebl

« % 0{0,1}, a variable that encodes the assignment of piotecoutes. Ifx; =1,

then protection routb is used to protect demandif X, = 0, then protection route
is not assigned to protect demand
. y; [1{0,1} , a variable that encodes the assignment of workinges. If y; =1,
. . . : P ,
then working routep is assigned for routing of demandlif y = 0, then working

routep is not assigned for routing of demand



24

. z;’b [1{0,1} , a variable that jointly encodes the assignmergrofection routes and

working routes, and acts as a variable that encbeegroduct ofx, andy, . If z,,
=1, then working routp and protection routle are both assigned for use by demand
r. If Z;Yb = 0, then at least one of working royieand protection rout® is not
assigned for use by demand If ZL,b did not exist as a separate variable, then

equation (2.19) below would need to contain a pcodaf two variables, which

would make this model non-linear.

Therefore, the SBPP JCA model can be ezpceas follows:

Minimize )" ¢, [{s + W) (2.12)
Ojoc
Subject to: > yi=1 0rOD (2.13)
Op0qQf
DYy =w Oj0L (2.14)
OrtD OpOQ)
> % =10r0D (2.15)
ObOQ"
X, +y,<10r0D, OgOQ" (2.16)
X +Y,< Z,+10r0D, Op,b0OQ" (2.17)
> %=y 00L,00D,pOQ (2.18)

ObOQ" i0gG,
> > oz, <sOj0Lli#] (2.19)
Or0D 0bOQ, ORI |£, n 4, =0
The objective function (2.12) minimizes tindal cost of working and spare capacity

needed to provide working and protection pathsimgudf all demands, which is the same
objective function as that for the link protectid@A model in equation (2.4). The constraints
set in equation (2.13) force that there is exaothg working route for each demand
Equation (2.14) determines the amount of workingac#ty required on each link to
accommodate the working path routing; the workiagazity on a link is equivalent to the
sum of the number of working demand units of eaemahdr, whose working route

crosses the link. Equation (2.15) ensures thaetigeexactly one protection route assigned
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for each demand In equation (2.16), any given rouwecan only be assigned as the working
route or the protection route for a demaur(dr neither), but not both. While this constramt
not strictly required because later constraintd aiisure link disjointedness between any

working and protection routes, this added-valuestraint helps to more directly confine the

feasible solution space of the ILP. Equation (2.48%igns values to thz{,]b variables,
which are used in the constraints set that foIIdqu; =0 and y; =0, i.e., neither routgs
nor b are assigned as the working and protection roespectively, for demand then er’b

will be allowed to equal 0, and Sil’\%’b = 0 can only ever decrease spare capacity costs via

the combination of other constraints in the motlen that is the value it will take. On the

other hand, ifxg =1 and /ory;) =1, i.e., at least one of routpsor b are assigned as the
working and protection route, respectively, for dewahr, then Z;waill have to equal 1 for

the constraint to be satisfied. Effectively, thisequivalent taz, , = %, [y, but since that is

a non-linear equation, then we must express itebave; its purpose will become apparent
in the discussion of equation (2.19), below. Thestaints in equation (2.18) ensure that for

each route for demand that crosses failed link if that route is assigned as the working

route (i.e.,y;) = 1), then that demand must be assigned a pimtexuteb that does not

cross the failed link (i.ei,J£, ). Finally, in equation (2.19), sufficient sparapecity is

assigned to each surviving linkto accommodate all protection route assignmeras th
simultaneously cross that link for each failurensceo. More specifically, the spare capacity
on protection ling must equal or exceed the sum of the number ofyaith of all demand

that are assigned protection robtevhich crosses link, and working route which crosses

failed link i, thus routep andb are disjoint, i.e.,Ep n L, =0 . If routep is not assigned as

the working route for demandand/or routeb is not assigned as the protection route, then

from equation (2.17)2;’,): 0, and so the only combination of working andt@cton routes
that will contribute to the spare capacity of ljnk the pair that is actually assigned.

As in the link protection problem, we cdmoaenforce integrality on they, working
capacity ands; spare capacity variables to correspond to WDMcaptietworking where a

unit of capacity represents an individual waveland¥e must also enforce integrality on
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thex, , Y, and z, , variables since they must strictly be either eajeint to 0 or 1 in order to

have any meaning. Since there are no other ougpiahtes in this model, we must therefore
solve the SBPP JCA design problem as a pure ILPadnh the same way that the link-
protection SCA design problem could be solved bggithe link-protection JCA model, we
can solve the SBPP SCA design problem with onlyrgle modification to the SBPP JCA

model. To do so, values for tr}ép variables encoding whether an roptis a working route
for demandr or not are assigned as inputs so m:@tl, for example, the shortest royte

assigned to be the working route for demanaind y; = 0 for all other routes for demand

Equation (2.13) becomes redundant but still holds] all other constraint sets remain
unaffected.

In these circumstances, it would also beevid ensure that route sets provided for each
demand contain only those routes that are linloitisffrom the working route, so as not to
unnecessarily add to the complexity of the problbyn including routes and all the
accompanying parameters, variables, and constrdiatscould not possibly be chosen as
protection routes. Under the same objective of mizing working and spare capacity costs,
the model determines which pair of routes each dema assigned for working and
protection paths routing, subject to the same alet®nstraints above. In other words, there
is only a single working and protection route pemdnd, and spare capacity is sufficient to
accommodate all simultaneously required protectmutes for each link failure scenario.

More details on this design model can be foun@6j.[

2.3.3 P-Cycles

Another ILP model for SCA for survivable routingathhas been developed here is p-cycle
protection. The p-cycle design problem differs ctmally from the link protection and
SBPP schemes in one key fashion: the optimizatsom ithe form of a choice between
feasible cycles rather than a choice between fleasiites. As such, we need to introduce
new notation to properly encode cycles and to iflestraddling links and on-cycle links. In

addition to the notation used in previous modeks add the following new sets:

* C, the set of feasible cycles that can be used twigwop-cycle protection for

working links in the network and is indexed [y
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We also have the following parameters:

D [1{0,1,2}, a parameter equivalent to the number of protectaationships

provided by a unit-sized copy of p-cygdor working links on linkj. Recalling that

a p-cycle provides protection for one working liok an on-cycle link and two
working links on a straddling link. Thu,, ;=1 if link j is an on-cycle link for cycle
P, X, ;=2 if link j is a straddling link for cycl@, X, =0, if link j is neither an on-

cycle or straddling link for cyclp.

Also, a new decision variable is added:

* N, >0, the number of unit-sized copies of p-cyelelaced in the network.

Therefore, the full ILP model of the joinapacity allocation of p-cycle protection

design is as follows:

Mirize Y’ ¢, [s + w) (2.20)
gjoc
Subject to > g“=d OrdD (2.21)
OqOQ
> Y gv=whioc (2.22)
Or0D Og0Q" | jO4,
dox, hyzw 0OL (2.23)
OpOC
> n,=s 0OC (2.24)
OplClx, ;=1

Equations (2.20), (2.21), and (2.22) arentdtal to prior equations seen in link-
protection JCA design and SBPP JCA design. EquéBd0) minimizes the cost of working
and spare capacity required in the network, whijgiations (2.21) and (2.22) ensure
sufficient working flows to carry all demands, acalculate the working capacity required to
accommodate those working flows, respectively. Toastraint set in equation (2.23)
ensures that for the failure of any linkthe p-cycles placed in the network provide enough

protection relationships to fully reroute all ofetlworking capacity on the failed link. Note

that if X, ;= 1, then p-cycle will provide protection for one of the working ks on linki
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per copy of the p-cycle, ik, =2, then p-cyclep will provide protection for two of the

working links on linki per copy of the p-cycle, and X, ;= O, then p-cyclep will not

provide any protection for working links on linkEquation (2.24) determines the amount of
spare capacity on each lifilas a result of the p-cycles placed in equation3j2ti2at cross
that link. The only spare capacity optimizationsien of the above problem can be easily

modeled by simply removing the constraint setsgoagion (2.21) and (2.22), turning the

W, decision variables into input parameters with valeeg., the shortest path routing of

demands, and also removimg from the objective function.

2.4 Feasible Routes Enumeration in ILP models

All of the ILP models developed in Section 2.3 aw limited to any particular network.
They are applicable to any network by using appab@rpre-processing methods to fully
express the design problems with the proper sdisasfble routes and/or cycles required. In
order to obtain the strictly optimal solution toeoaf the design problems, the feasible route
and/or cycle sets need to contain all distincteswind/or cycles in network. However, for
even moderately sized networks, such route setcyrid sets are very large. A common
and practical approach to deal with this issueoisdt a hop limit, denoted &§ on the
feasible routes, such that only those routes hwee fewer links are considered as feasible
routes. The thinking is that since using shortertes will require less capacity than using
longer routes, then providing the problem with oshort routes should allow a relatively
efficient design. However, it is clear thattdss increased, more sharing-efficient patterns of
re-routing are permitted, which is demonstratefB34]. This allows for a fairly good trade-
off between problem complexity and solution qualidylargeH provides a greater number
of routing options for the problem to choose frdrareby reducing overall design costs but
increasing the complexity of the problem i.e., treater the number of feasible working
and/or protection routes, the greater the numbecoofstraints and variables in a design
problem. A smalleH, on the other hand, restricts the number of rgutiptions available.
Although the complexity of the problem may be gseaé¢duced, but it is forced to select
slightly less efficient and possibly more capaeifyl be allocated. As also shown in [34],
there is some threshold hop limig*, at which the theoretical minimum of capacity

requirements is reached. In other words, the swiutbtained when using no hop limit at all
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is not better than that obtained when using a o of H*. We note that the exact value of
H* is dependent on a variety of factors, including tletwork topology, demands, and link
costs, and cannot be pre-determined analyticaliigeOoptions for restricting the number of
feasible routes is to use distance limits, costtdiror even optical path loss limits, all of
which will provide trade-offs similar to that praléd by a strict hop limit. One practical
problem comes when a network contains sparselyamed regions with long chains and/or
low nodal degree as well as other more richly coteteregions with higher nodal degree. In
this case, a hop limit afl = 10, for example, may be necessary to provider evsingle
feasible protection route for some links in a splgrsonnected region, while using that same
hop limit might produce many thousands of feasp@&ection routes in a richly connected
region of the same network.

In this dissertation, we use a relatedtestpa that is both effective and practical at
representing and solving the design models, aradksatly improves the scalability of the
problem to permit solution of quite large networsn problems with a variety of richly
and sparsely connected regions. The idea is nptesume a specific network-wide hop or
length limit and attempt to generate all distinatites up to that limit, but rather to use a
procedure that results in a specified number of ghertest distinct feasible routes at
whatever hop or length limit is required indeperieof one another. So for instance, if we
specify that at least 10 feasible protection rodibeseach demand, then the procedure is to

enumerate the 10 shortest distinct protection sofateit separately.

2.5 Capacity Sharing Information in SCA

All of the above models are assumed to applyindgrakred preplanning routing. In addition,
routing method that picks the shortest backup pathalso provide an approximate solution.
Such methods have been extensively used for netdasign problems including SCA. The
advantage for this algorithm is the fast solutipeesd but optimality is sacrificed and further
adjustment are required for solution improvemendghaswyn in [41]. The major bottleneck for
routing based SCA algorithm is whether the spapacity is shared among different failures,
since such sharing can significantly reduce netwedundancy, which has been extensively

studied recently.
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The Sharing with Partial routing Informatti¢SPI) and Sharing with Complete routing
Information (SCI) were introduced by [42]. In SBHe backup path routing is based on the
shortest path algorithm while the resource minitndrais approximated by using modified
link costs in routing. Although SPI is simple amadtf as shown in their numerical results, the
redundancy obtained by SPI is not very close toofitémal results. While for a centralized
SCI scheme, per-flow based information is necestarynd optimal results. Some other
research efforts on this sort of routing-based ritlym for allocating spare capacity and
backup paths can be found in [43-45]. The onlirgodthm introduced in [43] uses the
shortest path algorithm to route a backup patheach flow sequentially. One of its
differences from other routing based algorithmthét the routing link metrics are based on
so called buckets. Each bucket of a link mainténesmaximum spare capacity required on
this link when one of the other links fails. Thekimetric is calculated based on a non-linear
function of these buckets. Moreover, the DistriduBartial Information Management (DPIM)

scheme [46-47] was proposed, in order to reducesthe information complexity from
O(L?) of the spare provision matrix down @(L)with a trade-off in solution optimality.

The proposed information collection process onlgdseto collect partial information for the

spare capacity sharing in order to have less cotitple

The centralized SCA algorithms will resultslow restoration response times due to the
network state information collecting and dispatghiprocess. The distributed algorithms
introduced so far, encounter scalability problemsffow numbers and network sizes and
therefore still cannot achieve high resource adficy. An efficient and fast spare capacity
allocation (SCA) algorithm which can be implementeda distributed fashion is needed.
This strongly motives us to seek a new solutiorheaeferred as the Distributed Resilience
Matrix (DRM) framework to tackle the above diffitiels.

2.6 Summary

In this chapter, we gave an overview of networllieee techniques and then described the
spare capacity allocation (SCA) problem for surbiearouting. An in-depth description of
the spare capacity allocation (SCA) problem wasvided and the ILP models for link
protection, p-cycles and SBPP mechanisms were acleee@l and discussed. Essential

information on the dependence between working gvates capacity in SCA, which is
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essential for exploring the sharing potentials agnprotection paths for survivable routing,

was also introduced.
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Chapter 3

Distributed Resilience Matrix

Fast recovery from failures, including efficienioahtion of capacity in a network for
guaranteeing seamless communication services, ésptimary goal of spare capacity
allocation (SCA) design in survivable routing. Tleel of capacity sharing that can be
achieved for a given network depends on how detadethe capacity usage information
available at the source nodes, which is used tatifgethe dependencies between the
working and protection capacities associated wabhepair of links. In this chapter, we
investigate such dependencies based on a new S@ktuse, called the Distributed

Resilience Matrix (DRM) under a distributed contealvironment.

The remainder of this chapter is organized as Vi@dloFirst, we introduce some
background knowledge on capacity sharing. The SPaowision Matrix (SPM), which
gracefully models the dependencies between wor&imdy protection capacity is introduced
and then the novel Distributed Resilience MatriR{) is presented. We also compare the
DRM with the SPM to show its advantages for capginetwork capacity usage information
in a distributed manner. Finally, the essentiahalimg functions to update and exchange

capacity usage information in DRM are described.

3.1 Information on Capacity Sharing

In the SBPP mechanism, the amount of capacity rsfpdhiat can be achieved among the
protection paths depends on the capacity usageniafon available at the source nodes.
There are three scenarios of available informatiobe considered. They can be categorized

as the cases of minimal, partial and complete im&tion in [48]. In the Sharing with
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Minimal Information (SMI), the only information thahe source node has is the residual
capacity on each link. Therefore, it is not possitd do any sharing among the protection
paths since the information for setting up sharathgis not available. In the Sharing with
Partial Information (SPI), the source node has sst@ more information. Namely, it knows
the total amount of capacity used by the working protection paths, respectively. The SPI
is fairly modest in terms of the amount of inforfoatto be maintained, and because only
aggregate information is needed, it is easy to tagnt in a distributed fashion. In the last
and ideal scenario, i.e., Sharing with Completeorimiation (SCI), the source node has
complete information and it knows the route dettolsall the current traffic flows. While
this sort of routing needs to be implemented ireatralized manner and it would be very
difficult to disseminate complete routing infornwatito all the nodes as the network size
grows significantly. Among these three scenari@3, (8omises the best sharing of resources
but implies a large overhead and it features poalability for large networks. Therefore, we
propose the Distributed Resilience Matrix (DRM)itgplement the SCI under a distributed

control environment.

3.1.1 Background on Capacity Sharing

Given a network topology and traffic flows, the etfjve of the SCA mechanism is to
optimize the total cost of network capacity all@chtThe decision variables include where to
route working and protection paths, and how mudresgapacity should be reserved. The
protection paths can share the capacity among confimis if their corresponding working
paths are not subject to the same failure. Thigtiaddl information on the relationship
between working and protection paths is criticaldrploring the capacity sharing potentials

in the network.

Figure 3.1 An example of capacity sharing in a $arm@twork with 6 nodes
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An example of capacity sharing in a simpdéwork with 6 nodes is shown in Figure 3.1
above. We assume that there are two traffic floatsvben nodes “aénd“e” with capacity
requirementdy, andb, by using two disjoint working paths (WPs) i.e., ¥WP(1, 5) and
WP2= (2, 7, 10), respectively. Under the singléufai scenario, the two WPs cannot fail at
the same time. Accordingly, their correspondingtgetion paths will not to be used at the
same time. Therefore, their two corresponding ptae paths (PPs), i.e., PP1 and PP2 can
all use path (3, 8) and they can share the protedapacity on link 3 and link 8 without
affecting the survivability of either connectionhd total reserved protection capacity that
needs be allocated on links 3 and 8 for the two WPRsax {, by} rather tharb,+ b,.

In the case of a new incoming flowses linki in its protection path, the capacity along

link i can be categorized into three types as shown ur&ig.2 below.

sharable spare capacity
S;’r
Free Capacity non—sharabii capacity
i
spare Capacity with dependence info.
3 between WPs and PPs

Wotking Capacity
Wi

Figure 3.2 An illustration of capacity categoriadink i

* Free capacity, denoted a$, which is the link capacity that can be allocatedeither
working or spare capacity;
* Working capacity, denoted asi , which is the capacity occupied by the existent

working paths and cannot be taken for any otherwmi the corresponding working

paths are torn down.
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* Spare capacity, denoted as , which is the link capacity reserved by the eRrigti

protection paths. With knowledge of the relatiopsetween the working and protection
paths, the spare capacity in linkan be further categorized into the following tiypes

according to the new coming flow
% Sharable spare capacity, denoted ag , which is the link capacity that has been

occupied by some other protection paths, but stiié sharable to traffic flowr,

because their working paths are disjoint.
+* Non-sharable spare capacity, denoted as” , Which is the link capacity that has

been occupied by some protection paths and it tssharable to traffic flowr

because their working paths overlap somewhere.

The information about the relationship betweenwtloeking and protection paths in the
SCA structure has been investigated by a numbersefarchers. The fault management table
(FMT) method is the foundation for the Resource reggtion Fault Tolerant (RAFT)
scheme [49].It provides a local data structuretéoesthe spare capacity sharing information
among different flows. It is very difficult to ushe FMT to share this information globally
since such information is per-flow based and hahtenot scalable with network size and
number of flows. In addition, a two-dimensionalagribetween failed link and link with
spare capacity is proposed in [50] and the spgpaaty can be also found using this array.
Then the routing algorithm can use part of thermiation to build routing metrics to route
protection paths. The “channel dependency grapls’im@aoduced in [51] to analyze network
fault tolerance when failure protection routes exisa parallel computing system. Though it
concentrates on the question of how many faults ahfault tolerant routing function can
deal with, the dependency relation between linksvorking and protection paths is shown

through a dual graph.

In addition, the backup load distributioatnix (BLDM) was introduced in [52], which
can capture the partial network state and greatiyeces the amount of routing information
maintained and exchanged. The spare provisionxn@RM) has been proposed and further
developed in [53-56], which is a milestone struetdhat allows concise modeling of
dependencies between working and protection cagmtiased on a matrix form. In addition,

an improvement to the link-state information disg&tion process, called Sharing with
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Reduced Information (SRI) [57-58] was introducediakes the advantage of the Singular
Value Decomposition (SVD) technique [59] performad each node for increasing the
precision of SPM reconstruction. Their study hasashmuch improvement in the precision

of SPM reconstruction.

From the above discussion, we can see that the iIS@GAchallenging combinatorial
optimization problem and its structure is still endtudy [60]. Therefore, instead of using
the estimation method or the complex SVD transftionato reconstruct the SPM or its
similar structure BLDM in a distributed way, we pose a new Distributed Resilience
Matrix (DRM) structure to decompose the SPM inte liical dependency table for each link
radiating from individual nodes. It significantlyitigates problems related to the difficulty of

precise estimation of sharable spare capacity.

3.1.2 The SPM structure

The previous studies on dynamic survivable routiogsidered that, under the sharing with
the complete information scenario (SCI), the knalgke of all the existing working and
protection paths in the network can be conciselyleted using the spare provision matrix
(SPM) introduced in [53]. In the SPM structure, ework is represented by an undirected

graph withN nodesL links andR flows. A traffic flowr, 1<r <R, is specified by its source

and destination node pafo(r),d(r)) and traffic demand, here we assume only 1 unit of

traffic demand for each flow, sh =1for allr.

Figure 3.3 An example network of 6 nodes and 1Kslin
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Working Path Matrix (P Protection Path Matrix (Q
Flowr|o | d 1234956?8“5‘10 123456?8[;10
1 a2 [1]ololololololololal [ofo[1][1]ololololo]o
1 lalc| [oft]o]ololololololo] [olol1lalol1]o]o]0]0
3 lald| |oflolt]ololololololo] [olalolaolal1]o]o]0]0
4 lale| [t]o]olol1lololololo] [ololalolololol1]0]0
s [al7] [ololtololololol1To] [oftolaololo1]olo]0
6 & 1c| [1{t]ofololololololo] [ololol1lal1]o]o]0]0
7 |&la| [ololol1]olololololal [1]{o1]olololololo]o
8 [&]e| |ofololol1]ololololo] [ololol1lololo]1]0]0
9 [a 7] [olololol1]olalolol1] [ofolol1]olalolol1]0
10 |c|q]| [olololololt]{olololol| [ofololololol1]ol1]0
1 e |e]| [ololololol1]{o1]aolal [ofololololol1lo]o]1
12 [ |7 [olololololal1]ololo] [olalololol1]o]o]1]0
13 |4 |e]| [ololololololol1]olal| [ofo]olololololol1]1
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As shown in Figures 3.3 and 3.4, in an SfMcture, the working and protection paths
of flow r are represented by twbxL binary row vectorsp, ={ p,} and g, ={q,} ,

respectively. Thd-th element in one of the vectors equals “1” if amuly if (iff) the

corresponding path uses lihkThe path-link incidence matrices for working grdtection

paths are the collections of these vectors, forntwg Rx L matrices P ={p,} and

Q ={q,} respectively. LetD = Diag({d} »,) denote the diagonal matrix representing the

demands of flows. If the protection level of floigsunder 100%, the elementsincan be

Figure 3.4 An example of SPM structure: matrieeendQ

adjusted to reserve partial spare capacities adeqion paths.

G=Q"DP

s=max G

row

(3.1)

(3.2)
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Figure 3.5 An example of Spare Provision Matrix ¢8R5 andcolumn vectors
As shown in Figure 3.5, given the protection pattegrix Q, demand matriD, and
working paths matriP, the spare provision matri@ can be determined by equation (3.1).
Here it usesG ={g|k} L denote the SPM whose elemergg are the minimum spare
capacity required on linkwhen single linkk failed. The minimum spare capacity required
on each link is denoted by the column vecsar{s}  ,, which is calculated in equation

(3.2). The functioomaxin equation (3.2) asserts that any element irspfaee capacity vector
s is equal to the maximum number in the correspandaw of G. The row max operation
guarantees that spare capacitg ia large enough to cover the capacity requirediffgrent
failures. In this way, the minimum spare capacityaolink is always equal to the maximum

spare capacity required by any single link failure.

While another way to calculaBinstead of the SPM structure is to aggregate Iper-f

based information of working and protection pafftse contribution of a traffic flow to G

is given byG' :{ glj(}LxL , where p. and g, are the row vectors. Thus, the spare provision

matrix G can be also calculated in an aggregated version: fr

G'=d (g p), Orl<r<R (3.3)

6= 4p
r=1
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3.2 Proposed DRM structure

In the SPM structure introduced above, the miningpare capacity reserved on a link is
always equal to the maximum spare capacity requiedny single link failure and the
maximum extent of spare resource sharing is actlibyeassuming that each node must have
per-flow information to acquire the matfixandQ. In this SCI scheme, each node needs to
broadcast information about its engagement in démh. This yields a dissemination
complexity ORL), making this scheme impractical in a distributeatrol environment. To
tackle this problem, we propose a new structure eshiistributed Resilience Matrix
(DRM), which bears the same complete dependenaynmidtion to obtain the vectar In
addition, it is done only by using simplified addé operations, instead of the multiplicative
operations needed for SPM, and the complexity efittiormation exchange decreases to
Oo(L).

In DRM structure, we 1€l =D-(P-Q) denote the complete DRM. Its negative entries
represent protection capacity, while positive @strinean working capacity. In each row, we
can identify the capacity used and the links tresdiby the WP (if it is positive) and PP (if it
is negative) for each row associated with its gpomding flow. In each column, the sum of
positive entries represents the total amount okingrcapacity used by traffic flows in that
link and the sum of negative entries representsdpacity reserved as protection capacity in

each link by other WPs. An example of the compleiillustrated in Figure 3.6 below.

12 (3|4|5|6|7(8|9 |10
1jo0f-1|-1jofofojofa]on0
oj1(-1|jofo|-1|lofof0|0
oj-1{1|jofo|-1|lofof0|0
1jof-1|aj1|{ofaj-1{a]nd
oj-1{1|jofo|of-1{of1]0

L. 11 |o|-1jof|-1{0ojofo]|n0D
I.)l-stl‘lhlltetl Tlol-1lilololololo o
Resilience Matrx clololtl1lolol-1lolo
T=DiP-Q) olojol-1{1]ofolof-1]1
ojofojofol1|-1{of-1]0
olofojofal1|-1{1|0]-1
ojofojofol-1f1|(of-1]0
ojofojojo|lolof1|-1]-1
olofojofal-1(-1{af1|0
ojofojojolofof-1{-1]1

Figure 3.6 Example of compléte
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Such a matriX captures the complete per-flow information. Forregbe, at node “a”,
it has three adjacent links: links 1, 2 and 3. THe 2 and 3' columns ofT record the
traffic flows which traverse them and the capacitage status. Negative values in a given
row indicate the links used by the PP, and posiiateies indicate links used by WP of a
given flow. We can further decompose the complefato DRM of individual nodes. For
example, the local DRM in node a, denotedlallode a only needs to record the capacity

usage information related to links 1, 2 and 3,(h@ghlighted in ‘blue’), see Figure 3.7.

1/12(3(4|5|6(7|8(9]10
TOf-1-1{o(0oj0o(o|0a
o 1y-1{ojo)-1(ojof0o0
Ol-1y 1{ojo)-1(oj0f00 IBONERRENDT
1o 1ol 1]olol1] o]0 s
Top-1f-1y0jo0j0f00
O[T/ 1J0[0]0]-1O]1]0] decompose - -
oo o Tolo o Distbaed L1 0[0]-1]0] o]0 ]
Distributed T 1'10'00000 RﬂliSll‘lu;:I( ol lolo oo oo To
Resilience Matrx - . esthence Matrx - -
e 0 [ |1 1[0 [0[-1[0]0] ———| Toodea HolOlILOl0LT0]C
*0 olaololalilolololal Of-1] T(ofofo]-1jof110
alolololol1]-1lol-1]0 101 0-110(0(00
ololololol1]1l1]0] SHoy-rpropofojofalo
glojofaja-1f1{of-10
glofolojojololt]-14-1
glojofajo)-1(-1yof1y0
plojofopoofo)-1-11

Figure 3.7 The necessary informatiorTirfor links 1-3 at node “a”

Furthermore, the matrix Node a can be further decomposed into three matrice$, eac
for one of its three adjacent links, as seen iruf€g3.8, i.e.,T_Link 1, T Link 2 and
T _Link 3. The mapping rules between each node’s matrixitaratijacent links’ matrix can

be specified as follows:

» If flow r traverses link in its working path, thei_Link_| [n, []>0, wheren denotes
the number of flows that use linkeither in their working path or protection path,

andn=0; n:=n+1 as a new flow uses link;

« |If flow r traverses the linkin its protection path, theh Link_| [n, m..]J<0, where
m...indicates all links traversed in the working pattlow r, and n=0; n:=n+1 as a

new flowr uses link.
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For example, flow 1 uses link 1 in its wiok path, so im_Link_1:
n=0+1 andT_Link 1[1, 1]=1

Also, flow 1 uses link 3 in its protectipath, so inl_Link_3:
n=0+1 andT_Link 3[1, 1]=-1

In addition, flow 2 uses link 2 in its wamg path, so ifmT_Link_2:
n=0+1andT_Link_2[1, 2] =1

Flow 2 also uses link 3 in its protection,isT_Link_3:
=In+1 andT_Link_3[2, 2] =-1

Following the above mapping, the resultihgee T_Link_| matrices for linkl, I=1, 2
and 3 adjacent to node “a” is shown in Figure 2.

1{2|3|4|5|6|7|8]|9 |10
1lol-1(-1|ofo|ojo|lo]|0
Distributed 0]1]-110/0]-1]0]0]0]0
. of-1{1|ajo|-1]ola]0l0
Resilience Matrx
T Node a 1 Stfofrjofa)-1fon
- - of-1{1jajo)o]-1{o]1]0
1111 f-1fof-1|ojo|lo|o0
o1t oofalolo
decompose
l1l2]al4ls5]6]7]8]9[w 1lz2]alals]lal7][8]9 |10
AfoJoTolo]eloTo a0
Ljojojofaojofaojofno]an pjajojojojojajo|o|d
. 1]ofojololololaolo]o ] oloft]ofofo]ololo]o
TLimk I ST ToTo o o o]0o]0]0 Tlak 3 FroTololalo]olalo]0
olofolaloloololo]n ololtJofofofo o oo
N"dtmmsmsoaJnuunuu olofolafolofolalolo
a Colwn Suwm|-2] 1020 1foolofolo
ol1Jofololololoo]o
rrokz L0l0l-lofololofofo]o
== TololaToeToTe oo a o
nlijojojojojajolaln
Column Sum | 0 | 2|-2|0|0|0]0]01]0

Figure 3.8 Locall_Link_I,1=1, 2and 3in node a
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The other resulting_Link_| matrices stored at nodes from “b” to “f” are shown

Figures 3.9 - 3.13 below.
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Figure 3.13 Local_Link_I,1=7, 9, and10n node f

After all the mappings, the summation otre@olumn in eachil_Link_| matrix is
performed to obtain a row vector, for example inkIi, we gef_Link_1[5, ...]=[3, 0, 0, -1,
0, 0, 0, 0, 0, O]. The negative numberTinLink_1[5, 4] represents the minimum spare
capacity required on link 1 when link 4 failed. frdhis row vector, the capacity usage
information for link 1 can be obtained as (3, \jich means 3 units of working capacity
are allocated and at least 1 unit of protectioracép needs to be reserved for any single link
failure. This capacity usage information i.e., litwf spare capacity, obtained from our
DRM structure is exactly the first value in vectdf the SPM structure is used. In addition,

we can obtain extra information of working capacisage in the DRM.

The main advantage of the DRM structure is thaait be implemented locally, but still
bear the same information on dependencies as fisaciated with the centralized SPM
structure. In addition, although eag@hLink_| matrix for link | is flow-based, but it only
needs to record the flow information related ta vk, which largely reduces the storage
space complexity. For example, there is a tothll5oflows in the prior case, but even the
‘busiest’ link 6 is associated with 7 flows, whilee most idle link 5 is only associated with 3
flows. In addition, with the flow-based informatiothe DRM can efficiently eliminate the
bandwidth release ambiguity occurring during taffiemand teardown. For example, as
shown in Figure 3.8, if node “a” finishes flow JAmsmission, it can immediately tear down
its working path, but, in the general case, degidihout termination of its protection path is

problematic. Namely, the source node “a” faces guity on deciding how much capacity
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should be released on links 3 and 4. When flow & set up, it had reserved 1 unit of spare
capacity which is now also shared by other pravecgiaths. However, if no flow 1- related
knowledge is stored at node “a” and “b”, it doed koow that other protection path are
sharing this in links 3 and 4 too. In this casajeta” cannot release the correct amount of
capacity without additional knowledge. This limitat results from using only partial
network state information for path routing. In BBM structure, the flow based information
is specified in its related_Link_| matrices, which can avoid the ambiguity problemthe
teardown process, the node “a” only needs to séflohal release’ message to other nodes,
and the related nodes can easily delete the spaeity only contributed by flow 1 in the

T_Link_| matrices.

Finally, let us take a closer look at thedl T_Link_| matrix of link| and investigate
how the DRM structure allows the distributed conapion of capacity usage when a new
traffic requestr,., , say of 1 unit, is to be sent between nodes “a” ‘@idas shown in
Figure 3.14.

Figure 3.14 The WP and candidate PPs for the nquestr,
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Figure 3.15 Updated_Link_| for each link according to the new reques;

In Figure 3.14, we have selected WP16 5)As the working path, and PP16= (3, 8) or
PP16 = (2, 7, 9) are under consideration as candidatei$s protection path. ThE Link_|
is updated, as depicted in Figure 3.15. All thengea values are highlighted in colours: the
changed values of working capacity are highlightetblue’ , and the values highlighted in

‘red” and ‘green’ are the changed spare capaciterwiselecting PP16 and PP16’,
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respectively. The updated information about thekimg and spare capacity should be sent
to the source node by each ingress node of thiat kor example with link 8, updated
information of (2, -3) , is which interpreted as ugits of working capacity and 3 unit of
spare capacity, is sent to node “a” by node “d’s&hon the capacity usage information
collected from all the other nodes, the source rfaddean decide to use PP16’ instead of
PP16 as the protection path for WP16, since itasentapacity efficient than PP16 and no
extra units of spare capacity are needed if PRl&€lected: O units in link 2, 7 and 9; while
2 extra units are needed if PP16 is chosen: 1amlink 3 and 1 unit on link 8. Here, it is
only a simple example of how the local capacitygesanformation is exchanged in DRM
structure. In a practical case, this informatioowstl be translated into link metrics, which
are needed in the routing algorithm to decide tleitmof a potential path. In the later
Chapter 4, we give more details of how this cagacsiage information is used in the FoF-R

ant-based routing algorithm.

3.3 Extension of DRM for Multiple failures

The DRM structure described above can only hanalfesangle link failure in the network. It
can also be generalized to handle multiple failaethe SPM structure does. The novel idea
of failure scenario matrif={f}xx:= {fc}xx Was introduced in [53] to improve the SPM to
characterizeK failure scenarios. Herd, is the total number of links and the elem&nof

row vectorf, in F equals “1” if linkl fails in scenarid. In this way, each failure scenario can
include a set of links that will fail simultaneoysin the scenario. Therefore, the SPM
structure is generalized a@zQT D ‘U, where U=POF'. Note that, the binary matrix
multiplication operation ®” is used here to modify ordinary addition 1+1=2Roolean

addition 1+1=1.

To illustrate how the extension of our DRMucture can handle multiple failures like
SPM by borrowing their failure scenario matfix we shall still use the prior example
network of six-node, as shown in Figure 3.16. Ttmge, we only assume there are three
traffic flows between nodes “a” and “f’ with traéfidemands of 10, 8 and 12 units,
respectively. The corresponding WPs, FRQ, D andF matrices are illustrated in Figures
3.16 -3.19 as below.



Figure 3.17 Example of protection paths

Flow| Origin Destination Working Path (P) Protection Path (Q)
rlo d |L{2|3)4]5(6|7|8[9(10](1]|2{3[4|5]6]7|8|9
1| a £ L 00O {L 0000 L{{0[0{1]0{0]0f0]0]1{0
1] a £ 0 0 L0000 0{L]0}{1{0[0]0{L]0(0|0]0]!L
1] a £ Joft]ojojojo[t{ojoja|[o]jo]t{ojo]oj0]o[L]D
10 0 0
D= 0 B 0
0 0 12

Figure 3.18 Matricesf P, Q andD
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Figure 3.19 Failure scenario matfx

As shown in Figure 3.19, tRematrix covers all the four single node failures,ite c, d
and e, excluding the source destination nodesrid™#. Then, we can calculate the SFM

by matrix operation&=Q" D ‘U and the resultin is shown in Figure 3.20 below.

Failure Scenario

112]3]4]s
;"__- 1 0lo|s|o|s
= 2 0lolo|o]o
3 |10/12| 0 10[12
4 0lolo|o]o
| 5 olo|s|o]s
6 0lolo|o]o
7 ololo]o]o
3 0lolo|o]o
o |10[12]0 [1012
10 |olo|s|o]s

Figure 3.205pare Provision Matrig andcolumn vectoss

The minimum spare capacity required on dimhin case of any single node failure in
the k scenario can be obtained lsgmax G, which s denotes a vector specifying the

maximum element of the corresponding row&of

While in our DRM structure, we first [&=D-(P-Q). The complete DRM matrix is

illustrated in Figure 3.21 below.
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Links
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Figure 3.21 Example of completein the DRM structure

We can further decompose the compleieto DRM matrices of individual nodes. For
example, the local DRM in node “a”, denotedladlode_a only needs to record the capacity

usage information related to links 1, 2 and 3,eensn Figure 3.22.

Links
= 1[273[a]s5][6][7[8][9]10
s [[11]10] 0]-10] |10 10
= HEE 8
3(0([12]1-12 12

Figure 3.22 The necessary informationTinNode afor links 1-3

Following the same mapping rules introdugethe previous section, we can finally
map theT_Node a into threeT_link_| matrices, one for each adjacent link to node “&, i

T link_1, T_link_2 andT_link_3.

Links
123 |4 |5|6 |78 |92|10
511'3
2| -8 8 3
3|0
lmapping
1|2]3(4|s]a6]|7]8]92]1w0
T Link I mjojo(ojojofjajo)ao|o0
== olole]olo]ololols]o
glojof(ojojojojojo]ad
ColumnSum (10| 0 [ B[ofofololols] o

Figure 3.23 Mapping betwed@h Node ato T_link_1
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For example, as shown in Figure 3.23, flouses link 1 in its working path, so
T link_1[1,1]=10, while for the flow 2, link 1 is used s protection path and links 3 and 9
are used in its working path, sb link_1[2, 3] =-8,T_link_1[2, 9] = -8. The resulting

T_link_| matrix for each link is shown in Figure 3.24.
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Figure 3.24 ocal T_link_1,,1=1,2,...10

After all the mappings, column summatiocaesiducted in each_link | to obtain row
vectors e.g.,T_link_1=110,0, -8, 0, 0, 0, O, 0, -8, 0]. The negatiuanbers here represent

the minimum spare capacity required on link 1 whek | fails. We can see that link 1 is
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requires 10 units of working capacity and at léasinits of protection capacity i.e., “-8" is
reserved for any single link failure. Based on thiscedure, we now can generalize our
DRM structure to handle multiple failures using thdure scenario matri¥. We also use
the Boolean additior® operation such asT _link | OF' to derive the information on
minimum spare capacity required in each link fdr sahgle node failure scenarios. For
example, in link 1, we can obtain that [10, 0, GBafter performingT_link_| ®FT, which
informs us that at least 8 units of protection catyaare needed in link 1 when node “d” fails,
but any other failure at nodes b, c, e have no ainpa link 1. This is exactly the information
that can be derived from thé fow of vectorsin G of SPM in Figure 3.20.

Additionally, we investigate how tfelink_| in DRM structure allows the distributed
computation on capacity usage when a new traffjaestr,.,, is arriving between nodes “a”
and “f” with 10 unit of capacity requirement. Wevieaselected WP4 = (3, 9) as the working
path, PP4= (1, 5, 10) and PP4’' = (2, 7) are undesideration as the candidate for its

protection path, as seen in Figure 3.25 below.

Figure 3.25 The WP and candidate PPs for a nemesiGe,



54

1]2(ala]s]6]7][8]o]10 12al4]s5(6]7]8]0]
wloJoJoJofofo]o]o]o oJoJoJoJofofofo]o]o
T Link 1 olslolololofolslo] o0 g o lofofofofofolo]o
- olofofofofofofofo] =" o lofofofolofolo]o
10 10
Column Sum [10] 0 18] 0 0]0]of18] 0 [cotummSum| 000 o o]ofo o o]0
OF" 10,0,-18,0 arFf 0,0,0,0
ofoJoJoJofofo]o]o]o oJoJoJoJofofofo]o]o
sk 2 00 ololofololololo}, ., [0]ofofo]o]o o oo
== ozl ofofofololoo o] =" [olo ofololo[12[o]o]0n
10 10 0 10
Column Sum | 0 [12[-10] 0 [0 [0 [0 0] 10] 0 [Colunmm Swm| o[ o [10[0 [0 0[12] 0100
OF 0,12,-10,0 OF" 0,12,-10,0
a0fo oo [t0]oJao]o]o 10 o[oJoJoJofofo]o]o]a
ooy Lololelofofolololola] .0 g lofolololofofo]o]a]e
== e e[ fo Jofofazlaofo] =" [ofofofolalalo]olo]o

10
Column Sum |-10(-12{18 | 0 [-10{ 0 |-12| 0| 0 [-10|Column Sum | 0 |0 (O (D |0 (0| DO |0 O

eF -10,-12,18,-10 eF" 0,0,0,0
oJoJofoJoJofaJoJoTo wloJo]owolo]o]o [0

rage g (2000 lolololofo]o] ;00 o [0]0]0]0]0 ooz

S o lolofolofofoloolo] T Jolazlofo]alofazlalo]0

10
Column Sum [0 [0 |0 (0| 0|0(0|0)0|0 |ColumnSum|-10)-12| 0 | 0 |-10j 0 |-12/ 0 [18]-10

OF 0,0,0,0 oFf -10,-12,18,-10
o{ofofJoJwla]ofofo]n ofofofofJoJa]aJaow
rrmes Lololslofolololofsfol, .. ;o lololslofolololo]s[0
S oo (oo oo oaafo | - (oo o]o]o]a]afafoo
10 10 10 10
Column Sum | 0 | 0 |-18| 0 10| 0 | 0] 0 |-18] 0 | ColumnSwm | 0 | 0 |18/ 0 |0 | 0|0 0]-18/10
OF 10,0,-18,10 OF" 0,0,-18,10

Figure 3.26 Updated_link_| for each link according to a new reques,

TheT_link | is updated, as seen in Figure 3.26. Here, all tienged values are
highlighted in colour, where ‘red’ is used for sgieg PP4 and ‘blue’ is used for selecting
PP4'. After the local re-calculation, it can bersdieat, using the PP& more efficient than
PP4, since only 20 extra units of capacity are edetl0 units in link 2 and 10 units in link 7,
while 30 units are needed if PP4 is chosen: 1Gwdth on links 1, 5 and 10. Therefore, it
shows that the DRM structure work well in its ex@@ms to deal with multiple failure
scenarios.

In conclusion, it can be seen that, theacdp usage in each link and the information
about the relationship between working and pratectiapacity can be well captured by the
DRM framework in a distributed manner. We highlighat, in the DRM, the essential

information on the links traversed by the workingttp for a traffic demand needs to be
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known by its protection links. Therefore, for affimdemand between specific source and
destination nodes, a route searching message meademorize the links traversed in its
working path, and then delivers this informatiorupmate the local_Link_| matrix entries

of each link in its corresponding protection pashveell as uploading the updated capacity
usage information for exchange. This sort of distied signaling needs to be implemented
by a special distributed control mechanism. Inritbet chapter, we propose a Friend-or- Foe
Resilient (FoF-R) ant-based routing algorithm tglement it and also can jointly optimize
the working and protection paths routing problene $#all describe how the heuristic FoF-
R ant algorithm with the DRM structure can find tbptimal protection cycles and also

explore the capacity sharing potential among ptate@aths in the network.

3.4 Summary

In this chapter, we developed a novel and compehendistributed framework, called
DRM, to capture the dependency between the workimdj protection capacity. We have
specified the information to be maintained as vesl how it is updated and exchanged
through distributed signaling. We highlighted that, the DRM structure, the essential
information on the links traversed by the corresiog working path needs to be known to
the links in its protection path. This informatiemchange needs to be implemented by a

special distributed signaling mechanism.
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Chapter 4
FoF-R Ant-based Routing

Algorithm

Telecommunication networks should be designed tadbeist and to meet the capacity
allocation related resilience requirements, socaprbvide uninterrupted communication
services in the case of failures. Moreover, praxgdhigh resiliency and maintaining QoS
attributes is very costly in terms of the extrauiegd transmission, switching and routing
facilities. Hence, it is critical that the resilmn(or hence cost) of a network, be tailored to
meet strict budget requirements. In this chapter, abjective is to develop a survivable
routing algorithm to satisfy the requirements oftwwk robustness, adaptability, and
distributiveness while implementing the DistributBésilience Matrix (DRM) framework
introduced in Chapter 3 by an ant-based algoritfitnis kind of heuristic approach is
commonly known as emergent systems, swarm inteltigeor biologically inspired systems.
The ant-based heuristic is specially introducede hty tackle the constrained multi-
commodity, multi-criteria SCA optimization problefor survivable routing. Different from
the traditional ant algorithm, our novel Friendkae Resilient (FOF-R) ant-based routing
algorithm with DRM framework is proposed to findetloptimal protection cycle (i.e., two
node disjoint paths between a source-destinatiate nmair) and exploring the capacity
sharing ability among protection paths using a ciypdneadroom-dependent attraction and
repulsion function.

The remainder of this chapter is organizedelow. First, we introduce the basics of
swarm intelligence and ant colony optimization (AC®he previous successful ant-based

algorithms for routing and load balancing e.g., Mett and Multiple Ant Colony



58

Optimizations (MACO) are also reviewed. The FoF-R-laased routing algorithm is
presented. Simulation results based on the OMNd®ekshow that the FOF-R scheme with
the DRM is a promising approach to solve the SCébfam for survivable routing and it
gives a good tradeoff between a solution’s optityadind the time needed for finding a

solution.

4.1 Introduction on Ant Colony Optimization

Research in ethnology suggests that self-organizas an important component of many
collective phenomena in a society of insects [6]Ll-BBe theory of self-organization was
developed originally in the context of physics amgmistry, and can be extended to social
insects to show that complex collective behavioaynemerge from interactions among
individuals that exhibit simple behavior. A swarmtelligence system defined in [66] is
based on the algorithms or distributed problemisghdevices inspired by the collective
behaviour of social insect colonies or other anisaieties. It is generally understood to be
the result of overall behaviour generated by mampke behaviors interacting in some way.
Emergent behaviour is not easily deductible fromescription of the simple behaviors
generating it. For example, ant-colonies, a typsadial insect society, can be considered as
a distributed system and in spite of the simpliatyeach individual, ant-colonies present a
highly structured self-organization. Ant-coloniemcaccomplish complex tasks that in some
cases far exceed the individual capacity of a siragit. An illustration of the collective
foraging behaviour of many ant species is the figdshortest path experiment [64, 67] as
shown in Figure 4.1 below.

Food

: Obstacle

Figure 4.1 Finding the shortest path around aragchest



59

Figure 4.1 illustrates how ants can rerautiail around an obstacle which suddenly

appears and find a shorter path to the food souncéhis experiment, a food source is

separated from the nest by a sudden obstacle di.egne). It is observed that in most

experiments, the shorter path (up one) is selebiedhe colony if the down path is

sufficiently longer. This is because these antehavrail-following behavior: an individual

ant lays a chemical substance, called a pheromdmeh attracts other ants. The ants which

took the shorter path (i.e., up one) returninghe hest will be faster, and influence the

outgoing ants toward that shorter path, which bexmarked more and more strong.

Therefore, this ant’'s foraging behaviour is ablefitwl the optimal shortest path. Four

fundamental processes operated in this biologimabased system are:

A large number of antstry simultaneously and asynchronously to move seves
from the nest to the food source;

Communication is indirect between the ants, i.e. they leave chemical tiafils
messages i.e., pheromones on the ground. All aats smell each others’
pheromone;

A stochastic process can be used to model the navigational behavioanadnt. By
combining information about the neighbourhood, plgcement of a nearby obstacle
like the cone, and the distribution of pheromonetlo& ground, ant movement is
ruled by a probability distribution. A selectionofn the distribution produces a
directional vector, which controls the ant's fordlamovement. The higher
pheromone intensities associate with higher prdibabi of selection on specific
path, thus the likelihood of following a trail usdy many ants is higher than
exploring a new route;

The search is iterative. Ants move along the same or similar trail agaid again,

which are continuously updating the pheromone &walthe ground.

From the ant foraging experiment descrilzdabve, we can extract three main

properties, which are relevant to the network rsily context and thus inspire us to develop

the new FoF-R ant-based survivable routing algorith

Adaptiveness. The simple behaviour typically handles unexpectsponses from

interactions with the environment. Such mechanigfiesn include a stochastic
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component, i.e. by a random choice, a responsecisledd in one of a set of possible
ways;

» Robustness: Weak inter-component dependencies reduce theapilitly of system
breakdown due to individual component failures. sThé ensured by lack of
synchronized hierarchical control and use of asygmobus indirect communication
by changing the environment. Redundancy furthencesd the probability of system
breakdown due to individual component failures.

» Efficiency: When encountered with complex problems, e.g. [prob of the NP
classes, emergent systems tend to find near optiatations with great efficiency.
Reasons for this efficiency can be traced to therfphay of positive and negative

feedback mechanisms and the stochastic (adaptieehamisms mentioned.

4.1.1 Ant Colony Optimization

Inspired by intelligence obtained from the ant ogle foraging behavior, the Ant Colony
Optimization (ACO), a new meta-heuristic for optation has been proposed in [68-69].
This meta-heuristic has been applied to classipfinization problems, such as the traveling
salesman problem [70], the quadratic assignmerlgmo [71] and the job-shop scheduling
problem with great success. This method, as a gkmeuristic, can be compared with
simulated annealing [72]. Some ant-based optinunatnethods extended from the original
method have been applied to the vehicle routinglpro [73], graph colouring problem [74]
and search of continuous spaces [75].

In ACO algorithms, a finite size colony artificial ants collectively searches for good
guality solutions to the optimization problem. Eamtt builds a solution, or a component of
it, starting from an initial state selected accogdio the problem dependent criteria. When
building its own solution, each ant collects infation on the problem characteristics and on
its own performance, and uses this information talifiy the representation of the problem,
as seen by the other ants. Ants act concurrentty @se indirect communication. An
incremental constructive approach is used by the #nsearch for a feasible solution. A
solution is expressed as a minimum cost (or shipnpesh through the states of the problem
in accordance with the problem’s constraints. Tomexity of each ant is such that even a
single ant is able to find a (probably poor qualgglution. High quality solutions are only
found as the emergent result of the global coojperatmong all the agents of the colony

concurrently building different solutions. Each dmiilds a solution by moving through a
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(finite) sequence of neighbour states. Movemerassatected by applying stochastic local
search policy directed by:

e antindividual information (the ant internal state memory);

* publicly available pheromone trail

e a priori problem-specific local information.

Moreover, the releasing of pheromone depemdthe characteristics of the problem.
Ants can release pheromone while building the smiutor after a solution has been built,
moving back to all the visited states. The autdgsi® plays an important role in ACO
algorithms: the more ants choose a move, the moeentove is rewarded by adding
pheromone and thus more attractive it becomeshiomext ant. In general, the amount of
pheromone deposited is made proportional to theligess of the solution an ant has built or
is building. In this way, if a move contributed generate a high-quality solution, its
goodness will be increased proportionally to itatdbution. A functional composition of the
locally available pheromone and heuristic valuedinde ant decision tables, that is,
probabilistic tables used by the ants’ decisiorigyaio direct their search towards the most
attractive regions of the search space. The stoche@mmponent of the movement choice
decision policy and the pheromone evaporation nréshraavoid a rapid drift of all the ants
toward the same part of the search space. Oncatdraa accomplished its task, consisting
of building a solution and depositing pheromoneiinfation, the ant dies and it will be

deleted from the system.

The ACO algorithms, as a consequence df tancurrent and adaptive nature, are
particularly suitable for distributed stochastiolgiems where the presence of exogenous
sources determines a non-stationary in the probegresentation in terms of costs and/or
environment. More details about the ACO meta-héarias well as of the class of problems

to which it can be applied, can be found in [76].

4.1.2 ACO Algorithms for Network Routing

Research shows that current network routing algmst are not adequate to tackle the
increasing complexity of modern wide-area netwofkg]. Centralized algorithms have
scalability problems; static algorithms have treuladn keeping up-to-date with network
changes; and other distributed and dynamic algostthave oscillations and stability

problems. Mobile agents are a promising technigquenttwork routing and management



62

[78-79] as well as a novel way of building distfibd software systems [80]. Unlike
traditional stationary algorithms, mobile agents amall packets that can move themselves
from node to node, cooperate with others to perfoomplex tasks in a distributed manner.
These agents explore and collaborate in a netvoadlect routing information and update
nodes’ routing tables, such as a routing path eatiebermined for data transmission.

A number of ant-based routing algorithmgehbeen proposed. The most celebrated one
is AntNet [81, 90], an adaptive agent-based rouailggrithm that has outperformed the best-
known routing algorithms on several packet-switcbeshmunication networks. It was given
another interesting example using a variation airswrouting based on Bellman’s principle
of dynamic routing in [82]. In addition, there aaenumber of ant-based routing algorithms
for mobile and ad hoc networks e.g., in [83-88]tdfsive results of ant-based routing in
communication networks have shown that this apgraacvery flexible and can achieve

good performance in comparison with conventionating methods.

In [89] Schoonderwoerd et al have develogedant-based system for call routing in
telecommunication networks which mimics, to somegree, the biological systems
described above. Ants are implemented as mobiletagead pheromones as probabilities in

matrices. A separate matrix is generated for eatdvant source and destination pair, e.g.
the matrix pt°d in Figure 4.2 represents pheromones “pointingirfrthe nest ¢” towards

the food sourced.”

Food

<— Nest Source —=

ij 1 2 3 4
1 0 07030

= 2
sz"ﬂ— 0O 0 0 1
3 0O 0 0 1
41 0 0 0 1

Figure 4.2 Probability matrix at tintdrom the obstacle scenario
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The probability matrix is relevant for ageat moving from the nest1 towards the
food sourcal=4 at timet, which is applying the resulting probability ma#$ as the routing
table for packets (or connections) routing in awoek. Symmetric traffic conditions are
assumed, i.e. delays experienced by agents mootagfd must be representative for the
traffic flowing in the opposite direction.

The AntNet [90] has been introduced to harabsymmetric traffic conditions. In this
new system, an ant-like agent performs a searcla foath in two phases. During the first
phase, the forward phase, the agent only readsapililes (i.e., smells pheromones) and
navigates according to the processes describeccalidlren reaching the destination node,
the path quality is calculated and a reinforcemaltie r estimated. During the second

phase, agent backtracks along the path found tedtece node. When moving from ngde

to nodei, the probabilityp°d of matrix pfd pointing forwards from source node “towards

tij
destination noded” of the path is updated in the same manner asibdedcabove. They
also show that their AntNet system can produceamgutbles of high quality. When packets
in a packet switched network are routed stochdstiaaing the probability tables generated
by AntNet, efficient load balancing and low delays achievable. Fast route reconfiguration
is also provided when network topology changes occu

In the AntNet algorithm, routing is determad by means of interactions of forward and
backward network exploration agents (i.e., antse idea of using two-way agents is that
the backward ants utilize the useful informatiothgeed by the forward ants on their trip
from source to destination. Based on this pringipke node routing updates are performed
by the forward ants. Their only purpose in lifetasreport network delay conditions to the
backward ants, in the form of trip times betweenhenetwork node. The backward ants
inherit this raw data and use it to update theimgutable of the nodes. The entries of the
routing table are probabilities, and as such, reust to 1 for each row of the network. These

probabilities serve a dual purpose:

» the exploration agents of the network use them éocid® the next hop to a
destination, randomly selecting among all candgldiased on the routing table

probabilities for a specific destination;

» the data packets deterministically select the path the highest probability for the

next hop.
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The AntNet algorithm works as follows:
» Each network node launches forward ants to alimkg#bns in regular time intervals;
* The ant finds a path to the destination randomgetaon the current routing tables;

* The forward ant creates a stack, pushing in tries for every node as that node is

reached;
* When the destination is reached, the backwardndetits the stack;
* The backward ant pops the stack entries and foltbepath in reverse;
» The node tables of each visited node are updatestlan the trip times.

All of the ant-based algorithm introducdabee have addressed the problem of routing
but not load balancing. Only one probabilistic megttable is maintained in each node.
Consequently, if there is more than one optimalh piiiten it will be more likely for all data
traffics to be directed into only one of the optimaths. One of the possible solutions is to
maintain multiple probabilistic routing tables imade. An ongoing work has addressed this
issue under the topic of multiple ant colony optiations [91-94]. In these studies, more
than one colony of ants is used to search for @tpaths, and each colony of ants deposits a
different type of pheromone represented by a difiecolour. Although ants in each colony
respond to pheromone from its own colony, it israegted with a repulsion mechanism that

prevents ants associated with different coloniesifchoosing the same optimal path.

Some research work in [93] has adopted A€®6olve problems in virtual wavelength
path routing and wavelength allocations. The digtishing feature of the three variants of
their ACO algorithms is that ants are not onlyaatted by the pheromones of other ants in
their own colonies, but they are also repelled oy pheromones of other colonies. The
motivation of their work stems from the fact thattwal wavelength paths can only carry a
limited number of different wavelengths becausetadhnological limitations and cost
implications. In the virtual wavelength path rogtinhe problem is to allocate the minimum
number of wavelengths for each link by evenly distiing the wavelength requirements
over different links, while at the same time kegpihe path lengths short (e.g., in terms of
hop numbers). While pheromone attraction is useth@& similar sense as other routing
applications of ACO, pheromone repulsion enhanbeschance of distributing different

wavelengths over different links.
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4.2 FoF-R Ant-based Survivable Routing Algorithm

As mentioned above, the ant-based routing algostteveloped so far have concentrated on
the coordination behaviour between agents, ane thas been little work put on exploring it
for the SCA problem for survivable routing. Compet behaviour for disjoint path finding
was developed in [95-96]. The former introducedatmration and competition strategy,
known as Multiple Ants Colony Optimization SystemMACO), by using ants with different
types of pheromones: ants cooperate with othgphefomone is of the same type as their
own, or they compete if pheromone is of a differgygpe. In [96], a distributed routing
algorithm based on the cross-entropy method isqaeg These studies only concentrated
on disjoint path finding, and do not target the ase of spare capacity allocation
optimization for survivable routing.

Inspired by these prior works, the sharath protection scheme in survivable routing
could benefit significantly from a certain level oépulsive behaviour between agents.
Therefore, we propose the Friend-or-Foe ResiliémtF(R) ant-based routing algorithm,
which is armed with an attraction and repulsioratiehship function. Compared with the
traditional ant algorithm, the FoF-R ant algoritheguires an ant agent that has an ability to
identify the relationship to a previously laid pberone, so as to decide what action to take:
“friend” (i.e., attraction) or “foe” (i.e., repulsn). If “friend” is recognized, the idea is vivid:
friends are attractive to each other to traversestime protection path (PP) to maximize the
capacity sharing. On the other hand, the recognitib“foe” makes the ants detest each
other, which means they need to follow disjointtesuand thereby avoid overloading the
protection path. The capacity headroom-dependenttitn (CHF) is introduced to model

the Friend and Foe relationships.

4.2.1 FoF-R Ant Agent

FoF-R ant agent is proposed to discover a set dé-uiisjoint cycles between every node
pair in the network, each cycle is composed of twde-disjoint paths. These cycles are
always available and updated before the conneotigmest arrives, thus we can easily select
the best cycle among them for connection setups Tethod can guarantee a small setup
delay because these cycles already exist by theedinconnection setup. Following the ant-
colony routing principle, the mobile agents canorépo each network node the cycles with

low cost to increase the network performance.
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In the FoF-R ant-based algorithm, the rauts determined by means of interactions of
network exploration agents i.e., ants. The cora wfeusing ant agents to find a cycle which
is formed by the node-disjoint working and protectpaths is that the ants can deliver the
essential information e.g., the link traversed aagacity usage in its working path from
source to destination, to the links in its protectpath from destination to source. This is
quite different from the previous AntNet algorithm, which the backward ant is actually
tracking back to its working path only. Based ois finding cycle principle, the updating on
the localT_link_I matrix for link| at each node and the exchanging of the esseapakiy
usage information between nodes in the DRM strectescribed in Chapter 3, can be

implemented through these smart FoF-R moving ants.

4.2.2 Capacity Headroom-dependent Function
Let a traffic flowr be specified by its source-destination node pajrd{ with capacity

requiremend, . Let W, denote the set of working paths that use lisind P, is the set of
protection paths that use linkLet C, denotes the total capacity of IirhkC,W is the total

working capacity used an@,P is the spare capacity reserved in linkherefore, we have:

G'=> dandC” =max{d}, rOR, (4.1)

row
Where the values &" and C” can be easily obtained from the column summation i

T _link _I matrix for link I in DRM structure. Thus, the capacity headroomiik I,

denoted a$y, which is the ratio of the residual capacity te thtal capacity in link, can be

calculated as:

h =1—@,h 0[0,1] (4.2)

Therefore, the Capacity Headroom-depenéeniction (CHF), denoted & (h}), is

introduced to model the Friend and Foe relatiorsshgmn be calculated as below.

R(h)=-alh+ b= (4.3)

2
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Figure 4.3 An example oR (h)

Figure 4.3 shows an example curve of CREhQ), wherea = b= 1. The parameteks

b are positive constants, with representing the degree of attraction énthe degree of

repulsion. TheR (h) can model a trust degree from unbounded repulgien indefinite
link cost) as Foe relationship to a linear att@ciji.e., small link cost) as Friend relationship
when the capacity headrooty increases. In other words, tR(h)) is attractive i.e.,
—alh dominates for largh , or repulsive (i.e.p/ h|2 dominates) for smali , which is

consistent with inter-individual attraction and wégion phenomenon in biological swarms.

We can adjust thea( b) pair to specify the different trust degree irstiélationship function.
In addition, theR (h)is used as the heuristic information contributedthe next-hop

selection probability in routing table, which idgrimduced next.

4.2.3 FoF-R Ant Routing Table Structure

To support the dynamic route selection, in FoF-Rb@sed algorithm, a nodewith M
neighbours has a routing tab® =[7,,],,;, j ON, with N-1 rows and/\fi‘ columns.
HereN is the total number of network nodeA/; is the set of all the neighbour nodes of

nodei and‘./\fi‘ is the number of neighbour node of ndddeach row corresponds to a
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destination node and each column corresponds &ghlour node. The valug, expresses

the probability of selecting neighbour nodas the next hop when an ant moves toward its
destination nodel from nodei. For each destination, the sum of all neighboaedéction

probabilities must be 1 to satisfy the normalizeddition:

> 1, =1 dO[LN-1] (4.4)

o,

Neighbor
Destination | d C
b 0.7 0.z 0.1
C 0.1 0z 07
d 0.1 0.8 0.1
e 0.7 0.z 0.1
f 0.1 07 0z

Figure 4.4 An example of routing table at nodeita& simple network with 6 nodes

An example of the routing table is shown in Figdré. When a connection request occurs

between source node “a” and destination node dtoading to the selection probability in

the routing table, node “d” will be selected astie&t hop becausg, ,  >7, . >T ., ; -
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4.2.4 FoF-R Ant Routing Table Updating

Update routing table

Ant launched

O— 2 D@

Source \ Destination

Figure 4.5 FoF-R ant’s routing table updating

As shown in Figure 4.5, when an ant visits a nitdgpdates the entries in the routing table.
For example, an ant moves from the source nod¢o*destination noded” following the
route @,..., i, j,..., d), it updates the entries corresponding to the ceomode 6" in the
routing table of nodeas follows: the probability of selecting neighbgus increased while
the probabilities of selecting other neighbours @eereased. We assume that an ant visits

nodei at timet, so the values for routing entries in titdel in nodei are determined as the

following :
...+
ro (t+]) =l 4.5
|,],d( ) 1+5r ( )
For the other nodes that is different friva visited nodg:
T, 4 _

T (t+1])=—22 OkON k# 4.6
|,k,d( ) 1+5 i J ( )

r

Here,d, is the reinforcement parameter and is derived ftbendata collected by the

ant. In FoF-R ant-based routing algorithm, thisapaster is calculated as:

o =ald, +(1-a)ld, as<] 4.7)
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where5p is the amount of pheromone corresponding to tlile leagth andd, is the

amount of pheromone corresponding to the capaafge information. In addition, we

introduce a scalar parameter such that we can adjust the weight betwé‘grandé'C in

o, .

r

The factoré‘p is derived from the length of the path that theteas moved along. The

shorter the path length, the bigger tﬁ;avalue is, and vice versa. Note that the lerptf a

path between a source-destination node pair isyashgeeater than or equal to the length of

the shortest path between the source and the aegstindenoted byp,, hereafter, and as a

reinforcement parametea5,p must be small af < 5p <1. Thus, we comput@§p as follows:
J, =€”®, Ap= p- (4.8)

where S is a control parameter. Since the absolute valugath length varies
significantly in a large network, using the lengtifference instead of the absolute length in

determining the reinforcement parame&;renables the pheromone updating process for all
node pairs to be controlled by the same parangetdthe factord, is corresponding to the
capacity usage information. The link with more fregpacity has a larger value of.
Similar to d,,, d, should be a small value afitk 9, <1, we can calculaté, based on the

CHF R (h) as described previously:

wherey is another control parameter. Here5 and y are design parameters and can

be adjusted to tune the system performance. Theew@la weighs the importance of the
capacity usage value with respect to the path llewglue. An ant’s decisions are therefore
taken on the basis of a combination of a long-texanning process i.e., path length and an

instantaneous heuristic i.e., link capacity usage.

Moreover, as an ant moves from a sourca destination, its next hop is determined
stochastically: a neighbour is selected accordingst selection probabilities in the routing

table. This is the basic principle of ant colonytimzation followed by our FoF-R ant
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algorithm. As a result, FOF-R ant tends to discdher better path between a node pair in
terms of path length and capacity usage alongphibk. In our algorithm, an ant is killed
when it reaches its source node after a cyclerpgirocedure. An ant is also killed if its
lifetime exceeds a predefined value TTL (Time-Ted)i Ant-based algorithms usually
suffer from stagnation, in which an optimal pattidsnd by ants so the pheromone for this
path is recursively increased. In this case, toayrants concentrate on this optimal path,

which prevents them from discovering other betthg when the network state changes. To

avoid this “local optima” situation, a random exlion factorP, .. is introduced in our

noise

FoF-R algorithm: at each node; the FoF-R ant selést next hop randomly with an

exploiting probability P

noise

and selects its next hop according to the routaige with

probability 1-P

noise*

The using ofP

noise

allows ants to keep exploring for a better sohufior

a traffic request.

With support from the routing table and thet's foraging, path selection can be
performed in a straightforward manner as described other ant-based algorithms: when a

connection request arrives at the source nodendgkehop will be determined by the node

with the highest selection probability or a proliigbiof P, to choose a random node

oise

among all its neighbouring entries.

4.2.5 FoF-R Routing Procedure

WP zearching, update
routing table

Ant P

PP searching, update
local T Hink 1

Figure 4.6 FoF-R ant-based routing procedure
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The main behaviour of FOF-R ant agentlisitated in Figure 4.6 above. Here we use
Ant_W to denote FoF-R ant with working path seastdius, and Ant_P as FoF-R ant with

protection path search status. Each FoF-R ant rieextsry a memory stackA, , (i) of
data, where refer to theth visited node in its cyclic journey. Le¥/; be set of neighbouring
nodes outgoing from nodeand 7;,; be the probability that the ant jumps from notte node

j, JOWN, .The FoF-R ant-based distributed routing procedarebe described as follows:

START
{

Initialization of Routing table and T_link I: for each nodd, the routing table is
initialized with a uniform distribution and if6 _link _| for each adjacent linkis set as

a IXL matrix such as:

Tig :ﬁ, DjoA; andT _link _I [1][L] ={0}
DO (in parallel)
{

STEP 1: In regular time intervals, each nod& faunches a FoF-R ant to a randomly

chosen destinatiord", its mission status is set as Ant. W

DO (in parallel, as each Ant_W)

{
STEP 2: After visiting a nodg, Ant_W pushes in its stack1, , .(j) the

information about the previously traversed linland the time between its
launching to its arriving af. Ant W selects the next node to visit in the
following way:

It decides a movement based on the routing Bpte[7, 1, ;. jON,

or with a probability of P

noise

to choose a random node among its

neighbours

IF Aloop is found
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FoF-R ant pops from its stack all data for the lomgles to avoid
infinite loops
END IF

} WHILE jumping nodg #d

STEP 3: When arrives at the destinatidnFoF-R ant changes its mission status to
Ant P

DO (in parallel, as each Ant_P)
{

In its return journey, FoF-R ant delivers the traed links’ information into

T _link _| in its protection path. We can obtafi(h) to calculated, and

then 9, to update routing table and also according;tato select the next hgp

} WHILE (j # 0)

STEP 4: The source node evaluates the goodness associateceadth protection

cycle found by the FoF-R ant, by using the follogvadditive link cost function:

L(o,d) = Z R(h) (4.10)

1Ccycle( o, d)

STEP_5: Update the routing table of each node visited ie best cycle, i.e.,
increasing the pheromone probabilities of linkg theatle used and decrementing, by

normalization, the other links’ pheromones.

STEP 6: All the good protection cycles stored at the sourode, are constantly
updated, thus the source node can easily selecbdbe quality cycle for each
connection setup.

} END
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4.3 Implementation of FOF-R on OMNeT++

4.3.1 Introduction to OMNeT++

OMNeT++ stands for Objective Modular Network Testhe C++ in [97]. It is a discrete
event simulation tool designed to simulate compueworks, multi-processors and other
distributed systems associated with GUI simulatidmmary debugging and tracing. Its
applications can be extended to modeling otheresystas well. It has become a popular
network simulation tool in the scientific communag well as in industry over the years. A
model network consists of “nodes” connected byk8ih The nodes representing blocks,
entities, modules, etc, while the link representihgnnels, connections, etc. The structure of
how fixed elements (i.e. nodes) in a network arergonnected together is called the
topology. OMNeT++ uses the NEtwork Description (NEBnguage, thus allowing for a
more user friendly and accessible environment feation and editing. It has a human-
readable textual topology and also uses the sammafoas that of a graphical editor.
OMNeT++ allows for the creation of a driver entity build a network at run-time by
program. One of the most important factors in amufation is the programming language,
which is C/C++ based. Since it possesses advansagki is also freeware for the research

community, we have selected the OMNeT++ simulatarur simulation studies

4.3.2 FoF-R Ant Models

The internal structure of each FoF-R network nadplémented in OMNeT++ is illustrated

in Figure 4.7.

FoF_R_Mode

O
N

D -'I—!'--i—!'-

At Router
%
RoutingT able T_links

Figure 4.7 The FoF-R ant node structure
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* Router is responsible for traffics queuing modeling amdtching the FoF-R ant
message and data traffic to other routers.

» Data is the sub-module that generates and receives dtee tdhffic and collects
related statistical values.

» Ant is the sub-module to handle the FoF-R ant agegtsant generator and sink. It
processes the FOF-R ant messages such as upla@adirdglivering link information
and elapsed time into local node when an ant pgissin

* RoutingTable holds the routing information of the node. In atudy, the routing
information has the next hop probability values.

« T _link _lis the Distributed Resilience Matrix (DRM) databdse recording the

traversed links on the working and protection pdthiseach traffic flow, which is

used to calculate next hop selection probability.

4.3.3 FoF-R Ant Routing Parameter Setting

As other ant-based routing algorithms, the FoF-R-based routing algorithm has a

collection of parameters to be set. We need to ioethat, in any ant-based algorithms, the
space of possible parameter settings is huge. s common way for parameter setting is
resolved through experiments. The values useddrsiitmulations reported here were those
found to be best according to our experiments.

The way of setting the pheromone parametegs, y , a andb can affect the total
capacity performance of FoF-R routing algorithmréjes is the parameter to adjust the
weight of the path length on the amount of pherognionequation (4.8)y is the parameter

to adjust the emphasize the capacity usage omtbera of pheromone in equation (4.9) and
a is a scalar parameter to adjust the importangeatsf length versus capacity usage in the
amount of increased pheromone in equation (4.7).

The bigger value af is, the more emphasis on the path length and ennttreased

amount of pheromomi. On the other hand, the smaller valuegofis, the more emphasis

on the capacity usage weight and the increased rnobypheromoné, . For example, ifr

= 1, a path with a shorter length is considered &astter solution regardless of its capacity
usage. Ifa = 0, the path with lower capacity usage is consid@s a better routing solution

regardless of its length. Moreover, for two pathest have their lengths that are nearly equal,
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FoF-R solution will select the path with lower caipy usage. In our experiments, we

reported that the valug = 0.3-0.4 is a good range for scalar parameteffdé+R algorithm.

The selection of the valugs and )y also depends on the setting of vaduewhich is
the amount of adjusted pheromone. In fagtwill affect the performance and the stability
of the ant-based algorithm. With a high valuedpf the pheromone value of a route may

change too fast and thus cause an instability dioqeance, In contrast, a small value @f
make the pheromone value of a route change grgdbail we may need a large number of
ants to update and increase the value of pheromore good route so that this route will

become a good solution. Experiments show that #heevof d, should range between 0.05
and 0.2. The values ¢f and ) should be selected so that ranges between 0.05 and 0.2.
Becausedp and 9, are summed with the scale fac@rand 1« in equation (4.7), we will
select3 and y so thatd, and J, take a value of around 0.2. In addition, the fextoandb

used in Capacity Headroom-dependent FuncEo)) tune the degree of attraction force to

repulsion force, we found that-10b can give a good range to be used in FoF-R algorithm

However, determining an optimum set of paaters ¢, B, v, &, b) for FoF-R ant based
routing algorithm to achieve the best performarmeains an open problem, which deserves
further research effort.

In addition, the values for other genarsttbased parameters are set as below:
* At=0.2 second, it is time interval between two consge ant generations

e TTL=2*N, N is the number of nodes in the network, after whighant is removed

from the system

P

noise

= 5% or 6%, the exploration probability in the €as the ‘local optima’

condition

4.4 Simulation Results

The FoF-R ant routing algorithm with DRM structdrave been investigated by simulation
on a PC with Intel(R) Celeron(R) 1.70GHz, 504MBRAM, using the OMNeT++ discrete
event simulator. All ILP models used herein wergleamented in AMPL Mathematical
Programming Language version 11.1 [98] and sohghtiguthe CPLEX 11.1 Solver [99].
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Figure 4.8 COST266 topology scenarios
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Figure 4.9 JANOS-US-CA network

The simulations are carried out upon tweteranetwork topologies from the SNDIib
[100], one is the COST266 network with 28nodes 4hlihks and another is the JANOS-
US-CA network with 39 nodes and 61 link&/e have studied 12 versions of COST266
topologies and 16 versions of JANOS-US-CA netwéigure 4.8 depicts two limiting cases
considered in COST266 networks: the sparsest tggohth 31 links (upper case) and the
densest topology with 64 links (lower case). SinylaFigure 4.9 depicts two limiting cases
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in JANOS-US-CA networks: the sparsest topology wisHinks (upper case) and the densest
topology with 91 links (lower case). Without lost generality, we assume symmetrical
traffic flows, i.e., one unit of traffic demand b&ten any pair of nodes. The comparative
studies have been performed between our FoF-Ritdgowith other three benchmarking
mechanisms, i.e., SBPP, p-cycle and dedicated girate(DP), in terms of total capacity
requirements and calculation time. The ILP modetsSBPP and p-cycle were introduced in
Chapter 2. For the DP scheme, by its very natiirdpés not require optimization in the
strictest sense, and each result was obtainedubyngoeach demand via the shortest path and
the next shortest disjoint path, so that the prymeorking routing will be equivalent to the
SBPP design.

Table 4.1 Total capacity of four protection schemeSOST266 networks

Average
Links |node SBPP | FOF-R | P-Cyde DP

degree d
31 2.214 8264 8264 8372 13056
34 2,429 5584 5630 5987 8340
37 2.643 3362 5411 5717 7728
40 2.857 5029 5077 3316 7146
43 3.07 4787 4845 5063 6808
46 3.286 4641 4711 4814 6482
49 3.500 4482 4559 4676 6292
s52 3.714 4184 4276 4349 5034
55 3.929 3980 4076 4076 5715
58 4.143 3886 4011 3885 5468
61 4.357 3696 3826 3655 5178
64 4.571 3481 3628 3448 5066
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Figure 4.10 Total capacity usage comparison foSTZ56 networks

Table 4.1 and Figure 4.10 show the totaphcdy used by the four different protection

schemes versus the average nodal dei;ré%s the average nodal degree increases gradually
from 2.214 to 4.571, the total capacity requiredestablishing restorable connections for all
the requests decreases for all four protectionreebe The best total capacity allocation

comes from the SBPP scheme in sparse networkswiten the average node degree is

between 2.214 to 3.929, while p-cycle performs bedense networks in whictl is greater
than 4.143. The FoF-R scheme only uses 2% moreitaphan SBPP in sparse networks
and that of 5% more capacity than the p-cycle sehanmdense networks. DP provides no
spare capacity sharing ability. Consequently, itegi the highest total capacity usage,
generally exceeding the working capacity. It alsggests that the total capacity usage is
dependent on the topological connectivity. All #nefour schemes tend to require less
capacity when the network becoms denser. There twee possible reasons for the
algorithm’s sensitivity to network connectivity.rfi, as the network connectivity increases,
both the predetermined working and protection ppaiins become shorter, this leads to a
decrease in both working and protection capacigo8d, the potential for capacity sharing
among PPs is likely to increase as the network ectirity increases, which leads to a

decrease in protection capacity.
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Figure 4.11 Algorithm calculation time for COST26&tworks

Figure 4.11 shows that the calculation $irfar the different protection schemes. FOF-
R is significantly different from the other threehemes. We can see that SBPP, p-cycle and
DP find an optimal solution in hundreds of secowith p-cycle always taking a longer time
than SPBB, while FoF-R needs only in tens of sesdndfind the near optimal solution.
Thereby, it provides a good tradeoff between athori computation speed and capacity
efficiency, especially in low-connectivity networks

To validate our above findings, we condacsimilar comparative study based on a
family of 16 topologies derived from the master ZABUS-CA topology.

Table 4.2 Total capacity of four protection scheme3ANOS-US-CAnetworks

) Average
Links - SBPP | FoF-R |p-Cycle| DP
node degree

46 2,358 16738 17575 19250 26474
49 2513 15760 14420 16130 21094
52 2667 12552 13187 15040 15724
55 2.821 11635 12217 13818 158200
58 2 974 10873 11555 11783 15817
61 3128 10161 10700 11188 15020
64 3 282 10169 10789 10560 14642
&7 3436 2807 10415 10065 138%4
0 3.5% 9581 10156 9714 13312
73 3744 9310 2865 5446 13051
76 3097 2012 9372 59114 12814
I 4.051 8515 9111 8561 12366
82 4.205 a018 8579 al07 11815
83 4.35% a3l 8478 FEER 11737
8a 4.513 7303 8581 T30 11504
91 4 667 7837 8542 7533 11218
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Table 4.2 and Figure 4.12 show that thel totgpacity used by the four different
protection schemes versus the average nodal dagrea the larger JANOS-US-CA

topologies. As the average nodal degaeiecreases gradually from 2.359 to 4.667, the total
capacity required for establishing restorable cotiass for all the requests decreases for all

four protection schemes. The best total capadibgation still comes from the SBPP scheme
in sparse networks i.e., when the average nodeeeléga between 2.359 to 4.051, while p-

cycle performs best in dense networks in whithis greater than 4.205. The FoF-R scheme
is stable and continually approximates well therogk solutions by SBPP, under a gap of
5% to 9% at most. Therefore, it can be seen timt, RoF-R ant based algorithm can
approximate the optimal solution well. In termstbé calculation time, as seen in Figure
4.13, the FoF-R is significantly faster i.e., iretbcale of tens of seconds, compared to the
other three protections and the p-cycle schemethesnost sensitive relation between its
calculation time and network connectivity.

Additionally, we have performed another pamative study only between SBPP and
the FOF-R algorithm based on 10 different topolsdrem SNDIib, as shown in Figure 4.14

below.
ATLANTA PoLska NOBEL-US NOBEL- N
GERMANY
i i "
F
" *
. ’ \1
Tal NEWYORK PDH DFX-BWIN DFN-GWIN

Figure 4.14 10 reference networks
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Table 4.3 Total capacity usage comparison for polamies

Network N L Average node Total capacity
degree i
SBPP | FoF-R
ATLANTA 15 22 2.93 907 1027
POLSKA 12 18 3.00 431 440
NOBEL-US 14 21 3.00 590 605
NOBEL-GERMANY | 17 26 3.06 1437 1494
SUN 27 51 3.78 3155 3313
TA1l 24 55 4.58 2265 2344
NEWYORK 16 49 6.13 578 595
PDH 11 34 6.18 213 230
DFN-GWIN 11 47 8.55 212 224
DFN-BWIN 10 | 45 9.00 148 148
3500 a
3000 *
£ 2500
'S 5
% 2000 + SBPF
; 1500 ’ m FoF-R
S 1000 .
500 - -
. | | Il | L

0.0o 2.00 4.00 B.00 §.00 10.00

Average nodal degree

Figure 4.15Total capacity usage vs. average nodal degreeftwdblogies

As shown in Table 4.3 and Figure 4.15,einmis of performance on total capacity, we
found that the FOF-R ant based algorithm approx@matell to the optimal solutions found
by SBPP. While, we found that the average nodaledegnetric does not work well to
guantify the network connectivity, since there @ apparent correlation between the total
capacity and average nodal degree. For example #ne around four significantly different
solutions with average nodal degree about 3,431,units in POLSKA network, 590 unit in
NOBEL-US network, 1437 unit in NOBEL-GERMANY netwoand even 997 units in the
ATLANTA network with the smallest average node degof 2.93. The reason for that is
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that the average nodal degree metric can only giveough indication of network
connectivity, without considering the shape and ¢ the network. Therefore, it is not
critical to use this metric as a topological metdeneasure network robustness. This finding
becomes a strong driving force for us to exploren@e accurate topological metric to
guantify the network robustness and thus resuls®ime novel findings presented in Chapter
5.

4.5 Summary

In this chapter, we proposed a novel FoF-R antébeasating algorithm to find the protection
cycles and to explore the sharing potential amorgieption paths by using a Capacity
Headroom Function (CHF), i.e., an attraction/repulsrelationship function. By using
proactive ant mobile agents to continuously ingedg the network capacity usage, and
updating the DRMs at each node under a distribaweatrol environment, our FoF-R
algorithm showed good performance in trading offnpatational speed against capacity

efficiency.
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Chapter 5
Utility of Algebraic

Connectivity Metric in SCA

Performance of survivable routing protocols, robass of the network under failures and
spare capacity allocation (SCA) depend cruciallyttos topology of the network. Network
robustness can be characterized by the networHdgigal connectivity, which expresses
how well nodes are connected in a network. Mogiutiflications in this area use the average
nodal degree to reflect the effect of network catingy in determining spare capacity
allocation. Despite the wide adoption of the averagdal degree metric in such studies, we
show that this metric is only a coarse indicatohoiv sparsely or densely connected a given
topology is, and thus carries insufficient inforioat on network topological structure.
Furthermore, employing the average nodal degreédscribing the network’s connectivity
may lead to misleading findings. We introduce a enamformative metric: algebraic
connectivity, which is defined as thé”amallest eigenvalue of the Laplacian matrix of a
given topology in SCA. It is a more sensitive me&asof network connectivity in a broader
spectrum of graphs. It has desirable propertied) as the larger the algebraic connectivity is,

the greater the number of node- and link-disjoathp to choose from.

The remainder of this chapter is structuaedollows. First, we review the methods to
guantify the network robustness and then introdheedefinition of algebraic connectivity

metric and its related properties. Extensive sitmastudies are presented next to compare



88

the algebraic connectivity metric with average natégree metric. Finally, conclusions are

drawn.

5.1 Topological Measures of Network Robustness

Knowledge of network topology is crucial for undargling and predicting the performance,
robustness, and scalability of network protocol®utihg and searching in networks,
robustness to random network failures and sparacigpallocation (SCA) strategies all
depend on the topological characteristics of neteioiThe robustness of a network can
usually be characterized by a topological meaduaréhis section, we shall elaborate on the
basic topological measures such as graph metricsarety of measures in both the
structural domain and the spectral domain have pegposed to capture different features of
a network topology as well as to classify graph® kfer to [101] for a quite extensive
survey of graph metrics. The structural measures te those measures such as node degree
and clustering coefficient that represent topolagigroperties more directly compared to

spectral measures, which always involve an eigeevedmputation.

5.1.1 Structural Measures

In general, topological measures are a functioth@hetwork topolog¢(N,L). The number
of nodesN and the number of linkks are mostly regarded as parameters of a netwotk, no

metrics. Many measures are highly correlated withgdize of the network and the number
of Links L. The degreel of a nodel in a network is the number of links that are iecid
upon the node. The node degree is an important characteriste mbde e.g., it reflects the
traffic capacity and the popularity of the node atidition, the node degree distribution of a

network, denoted d3r[D =k], expresses the fraction of nodes in the netwotk wode
degreek. In other words, it is the probability that a randy chosen node has degreekof
The average nodal degree, denotecaasis purely an average function of the number of

nodesN and the number of links.

- o o2
d=ED =) k[Pf D_li_W (5.1)
k=1

whered,_, is the maximum node degree in the network.
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The link density, denoted psis equal to the number of linksin the network divided

by the maximal possible number of links that maigteix a network:

__ 2L _ED)
PTN(N-T)  N-1

(5.2)

The hopcounH  of a shortest path is the number of links contaimethat path. The
hopcount distributionPr[H, =K] is the histogram of the hopcount between all ptssib

node pairs in the graph. The averdgeH, ] and the variancéar[H, ], sometimes can be

used to characterize the hopcount distribution. TEngest hopcount between any pair of
nodes is also referred to as the diameter of aorktwn addition, the node connectivity

v(G) and the link connectivity( G) are the minimal number of nodes and links that Have

be removed in order to disconnect a network. Thegnsnatural quantifiers for robustness,

but difficult to compute for large networks.

Among these structural metrics mentioneavabthe average nodal degm_ieis widely
adopted to reflect the effect of the network cotindg on determining the amount of
capacity allocation by most previous works [102{10%eir simulation results have always
shown how the total amount of working and spareactyp allocated to different network

topologies varies according to their different aggr nodal degrees.

5.1.2 Spectral Measures

One of the main goals in graph theory is to dedhbeeorincipal properties and structure of a
graph from its spectrum. The graph spectral amalgan be used to reveal the fundamental
properties of a graph through geometric analytt aigebraic techniques. It has been shown
that eigenvalues are closely related to almostnaljor invariants of a graph, linking one

property to another [106].
LetG (N, L)be a network andN = ‘J\f‘ is the number of nodes, whe is the set of

nodes; and. :|[,|, is the number of links, wher€ denotes the set of links in the network.

The networkG can be represented by its adjacency ma&(), which is theN x N matrix,
whose {, j)-th entry is “1” if nodé is connected to nodei.e., , j) U L , and 0 otherwise.
The diagonal entries &&(G), are defined to be 0. L&(G) be theN x N diagonal matrix
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with entriesD,; =d , whered, is the degree of theth node ofG. The Laplacian matrix,

Q(G), of the networlG is defined as:
Q(G) = D(G)- A(G) (5.3)
The set of eigenvalues of the Laplacianrim&(G) for a given graph is called as the

Laplacian spectrum o6. The second smallest eigenvallyeis known as the algebraic

connectivity or Fiedler value in [107-108], denotsiA, = a(G) for simplicity. In previous

works, the algebraic connectivity can be used taratterize network robustness regarding
the following two dynamic processes: synchronizatd dynamic processes at the nodes of
a network and random walks on graphs. A networkaha®ore robust synchronized state if
the algebraic connectivity of the network is biggeandom walks move and disseminate
efficiently in topologies with large algebraic cawtivity. In addition, the algebraic
connectivity is also widely studied in various a&eaf mathematics, mainly in discrete
mathematics and combinatorial optimization. In fibllowing, we shall present some related
mathematical results, which can reveal the topokdgimplications of the algebraic

connectivity and indicate the network robustnessatteristic.

5.2 The Algebraic Connectivity Metric a(G)

The algebraic connectivityg(G) can characterize the robustness with respect to the
topological connectivity of a network. It has besrown that the algebraic connectivity is
only equal to zero i6G is disconnected. In addition, the multiplicity zdro as an eigenvalue

of the Laplacian matrix)(G) is equal to the number of disconnected comporan® The
network properties such as connectivity and cutsate been studied in graph theory and a
commonly agreed metric to reflect these propeitighe algebraic connectivity. The higher
the algebraic connectivity is, the more difficultdan be to be broken up into separate

components.

5.2.1 The Derivation of Algebraic Connectivity

For the Laplacian matriQ(G), an N-dimensional VeCtoX is its eigenvector if there is a
scalar , such thaQ x=A x. We denotel is an eigenvalue d@(G ) corresponding to the

eigenvectog(. By its definition, theQ(G) is a real symmetric and positive semi-definite

matrix, thus all of itd\ eigenvalues are real and non-negative. Noticethigaall-ones vector
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is an eigenvector of any Laplacian mat@xand its associated eigenvalue is 0. We shall

focus on the second smallest eigenvaflyepf the Laplacian matrix and its associated

eigenvector;(. Fiedler [109] named this eigenvalde as the “algebraic connectivity of a

graph”, and therefore, the algebraic connectiviyis also known as the Fiedler value and

its associated eigenvector as the Fiedler vector.
The following properties of algebraic coatidty and its Fiedler vector play an

important role in quantifying network robustness.
* The algebraic connectivitg(G) of a network is greater than zero if and only i¢ th

network is connected.

« A Fiedler vectorx = (X,..., Xy )satisfies:
N
> % =0, (5.4)
i=1
Since all-ones vector is an eigenvectortld Laplacian matrixQ(G) and the
eigenvectors of a symmetric matrix are orthogoddle Laplacian matrixQ(G) has N

nonnegative real eigenvalues:
0=A<A4,=a(G)<N, (5.5)
It can be seen that, 0 is always an eigaevaf Q(G), and that 1= (1,1,...1) is the

corresponding eigenvector. SinQ¢G) is a symmetric matrixthen the Rayleigh quotient of

X with respect td)(G) [107] is:

-T -
x Q(C) x
— (5.6)
X X
Thus, the algebraic connectividy of the networlG satisfies:
A, =_min X ?T(?)X (5.7)
x0(1.1,..3)

In equation (5.7), the minimum valueAf occurrs only wherx is the Fiedler vector.

For any vectox 0 R, we have:

X0@x= Y (x-x) (5.8)

(i.j)nc
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We denote the standard norm of a vegtam Euclidean space l#&” =+/X x and the

algebraic connectivity metrit, can be calculated from the following lemma.

Lemma 5-1 Let G=(N,L) be a given network. Theh, the algebraic connectivity @, is

give by:

Z(i,j)mzuz_z
2
2l

—_— —_— N —_— —
Where the minimum is taken over the vec{oqs....)q\,} O R such thag)g =0,
i=1

A, =min

(5.9)

and theO denotes the all-zeros vector. The magnitude af tailuel, reflects how well

connected the overall netwoikis.

5.2.2 The Relations between a(G), e(G)and v(G)

We recall two traditional concepts in network coctity:
* link connectivitye( G) ,which is defined as the minimal number of linksost removal
would result in losing connectivity of the netwdBk
* node connectivity(G), which is defined as the minimal number of noaeggether with
adjacent links whose removal would result in losingnectivity of networlG.
The algebraic connectivita(G) is upper bounded by these two metrics and is

illustrated to be a better robustness measure enietfil08]. In an incomplete graph, they

have the following relations:
a(CG)sUQG=dQ= ¢, (G (5.10)

The algebraic connectivig(G) is a more useful robustness measure with respéiceto
network connectivity than the node and link conivéitgt Unlike the traditional connectivity,
the algebraic connectivity is dependent on the remolb nodes, as well as the way in which
nodes are connected. The node connectivi{s) is always no smaller than the link
connectivitye(G), since deleting one node incident on each linkioutset succeeds in
disconnecting the network. Of course, smaller naglgsets may be possible. The minimum

node degree in network, denoteddas(G), is an upper bound on both the link and node
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connectivity, since deleting all its neighbours.(ithe links to all its neighbours) disconnects

the network into one big and one single-node corapbn

5.2.3 Graph Partitioning
In addition to the relations to the intuitive nod&d link connectivity, the algebraic
connectivityd, of a network is also closely linked to the cutsemnf the aspect of graph

partitioning. It has been proved that networks vgthaller algebraic connectivity have a
better ratio cut [109-110]. A corollary of an ext@n of their work in [111] has

demonstrated that one can obtain a good ratio rom fany vector with small Rayleigh
quotient that is perpendicular to the all-ones’teecThus, the algebraic connectividy
tells how well we can cut a graph. A cut of a graph division of its nodes into two se8,
and S. We usually want to find that cut that has fewkéiras possible. We lef (S,E)

denote the set of links whose nodes lie on oppesies of the cut. We then define the ratio

of the cut to be:
RECE
min(g ‘ Sfr)
The best cut is the one of minimum ratiod &s quality is the isoperimetric number
@G) of a graph [107]:

«S) (5.11)

@G) = msin @(S) (5.12)

The Cheeger's inequality shows that thepésimnetric numberg(G) is intimately

related toA, as:

¢

>) > 5.13
p=24, oA (5.13)

whereA is an upper bound on the node degree in the nketBgrCheeger’s inequality,
A, gives an indication to how to quantify the netwodnnectivity. If A, is small, then it is
possible to cut the network into two pieces withoutting too many links. If4, is large,

then every cut of the network must cut many links.
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5.3 Properties of Algebraic Connectivity
In this section, we will introduce some linear pedges of the algebraic connectivig(G) ,

which is related to measure the network topologichlstness.

Lemma5-2If G, G,are link-disjoint networks with the same set of e®then:

a(G+G)< Gl G) (5.14)

Proof. We denoteX as the set of all column vectoss such thatx' x=1, since

QGIHG)=QQ@+ qG), thus:

a(G 0 G)=min(X AG) ¥ X QG ¥
>minx' Q(G)x+min X QG) = 4 G+ 49

Corollary, the functio@(G) is non-decreasing for networks with the same sebdgs,

and we have:
aG)<aG),if G UG, (5.15)
wherés, , G, have the same set of nodes.

Lemma 5-3 Let G be a given network, an@, arises fromG by removingk nodes fromG

and all adjacent links then:
aG)za G-k (5.16)

Proof. Let G haveN nodes and leG, arise fromG by removing one node, say, define a new

networkG' by completing inG all missing links from deleted node, then:

QG)+1, —eTJ

QG)= [_e, N

Let X be an eigenvector corresponding to the eigenvalue,

X

sinceQ(G')(;(J =[a(q) +1](0], thena(G) +1is an eigenvalue of(G) different from
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zero, i.e.,a(G") < &(G)+1.By equation (5.158(G") < a(G) , which implies equation

(5.16) fork=1. The general case follows by induction.

5.4 The Mean Distance
In [107], it has been shown that the algebraic ectinity A, is also closely related to some
other graph invariants. One of the most interestiagnections is its relation to the mean

distance,,?)(G) of graphs. The mean distance is equal to the agarfagll distances between

distinct nodes of the graph. In some sense, thisietean measure the size and shape of the

graph. In [112], some bounds on the mean distgﬁ(@) are derived. Its lower bound is:

(N —1),5(6)2/]3+ N-2 (5.17)
2
and its upper bound is:
— N A+ A 1
G)s—— ZIn(N-1) [+= 5.18
p(G) N_lﬂ o )1 2] (5.18)

HereG is a given network witiN nodesA, = a(G), is the algebraic connectivity of the

network, A = A(G) is the maximal node degree. This information preulidy the network

mean distancE(G), is very useful to be considered when we compadiffgrent network

topologies in our later simulation work.

According to the above properties of algabiconnectivity metric, we can use this
metric to measure the importance of a node or lg lorecause the larger the algebraic
connectivity of a network is, the more connectesl iletwork will be. Thus, the topological
connectivity of the remaining network can be quadiby the algebraic connectivity of the
network resulting from removing that particular eaghd all the links connected to that node
from the original network. In this way, the nodeliok that causes a more severe reduction
in the remaining algebraic network connectivity hagher importance and should need more
protection. In addition, we can also compare ttieces of algebraic connectivity metric vs.
average nodal degree metric, in terms of the pmdiace on the total capacity allocated for

different topologies. Therefore, we can proposeriaciple that both working and spare
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capacity allocations benefit mostly from adding soaonitical nodes and links to maximize

the algebraic connectivity of a current network.

5.5 Experimental Results

We have performed the following four experiments itwestigate the effects of the
topological metrics, i.e., algebraic connectivity. @verage nodal degree on spare capacity

allocation.

5.5.1 Successive Deletion of Nodes

Madrid

Figure 5.1 COST266 Network
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Figure 5.2 JANOS-US-CA Network

In the first experiment, two master netwtwgologies from the SNDIib are considered.
The first one is the COST266 network, see Figute Bhis network contains 28 nodes and
41 bidirectional links. The second network is JANOS-CA, as shown in Figure 5.2, which
is based on the North-American Network with 39 mo@ad 61 bidirectional links. The
SBPP ILP model is solved using AMPL/CPLEX 11.1 oP@ with Intel(R) Celeron(R)
1.70GHz, 504MB of RAM.

Firstly, we investigate how the importangie each node affects the total capacity
allocated. Simulations were conducted on two fasilbf network topologies derived from
the above two master networks by deleting one remth time, together with all of its
adjacent links. Afterwards, we calculate the algabconnectivity and average nodal degree
of the remaining network. The SBPP algorithm isdugeevaluate each topology alternative,
to find the optimal total capacity. Here, we ignes@me cases for which the SBPP cannot
find feasible solutions since no node-disjoint pagRist for a traffic demand after the critical
node has been deleted. For example, after delg¢tiag“Oslo” node in Figure 5.1, its
neighbouring nodes have only one adjacent link kdtthere is no solution for the SBPP
algorithm and it will be reported by the CPLEX smivThis is denoted as “impractical” in
Total Capacity.
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Table 5.1 Total capacity, algebraic connectivityd average nodal degree after deleting

specific nodes in COST266 reference network

Deleted Node Average Algebraic Total
Nodal Degree | Connectivity | Capacity
Berlin 2.6667 0.0707 impractical
Paris 2.6667 0.0954 impractical
Hamburg 2.8148 0.1125 5694
Milan 2.8148 0.1128 5814
Zurich 2.8148 0.1197 impractical
Amsterdam 2.7407 0.1206 impractical
Franldurt 2.7407 0.1297 5475
MMunich 2.7407 0.1314 5616
Lyon 2.8148 0.1320 impractical
Rome 2.8148 0.1458 impractical
Warsaw 2.8148 0.1544 impractical
Copenhagen 2.5889 0.1632 impractical
Strasbowrg 2.8148 0.1634 4685
Brussels 2.8148 0.1640 4724
Vienna 2.8148 0.1663 4853
Bordeaux 2_8889 0.1745 impractical
Prague 2.8148 0.1747 4572
Zagreb 2.8148 0.1761 4644
Barcelona 2.8889 0.1766 impractical
Athens 2.8889 0.1771 4671
London 2.8148 0.1773 impractical
Glasgow 2_8889 0.1774 impractical
Belgrade 2.8148 0.1787 impractical
Budapest 2.8148 0.1808 impractical
Dublin 2.5889 0.1822 impractical
Ozlo 2.8889 0.1831 impractical
Stoclkholm 28889 0.1844 impractical
Madrid 2_8889 0.1891 impractical
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Table 5.2 Total capacity, algebraic connectivityd average nodal degree after deleting

specific nodes in JANOS-US-CA reference network

Deleted Node Average Algebrfli!: Tota}
Nodal Degree | Connectivity | Capacity
Chicago 3.0000 0.0730 12160
Mimmeapolis 3.0526 0.0775 impractical
EI Pazo 3.0526 0.0818 12403
Denver 3.0526 0.0846 11618
Salt Lake City 2.9474 0.0848 12396
Detroit 3.0526 0.0853 impractical
Charlotte 3.0000 0.0868 11254
Phoenix 3.0526 0.0877 impractical
Winnipeg 3.1053 0.0883 impractical
Calgary 3.0526 0.0888 impractical
New Orleans 3.0000 0.0910 impractical
Philadelphia 3.0526 0.0939 impractical
Dallas 2.9474 0.0956 impractical
Houston 3.0526 0.0959 10342
Kansas City 3.0000 0.0961 impractical
St. Louis 3.0000 0.0965 impractical
Memphis 3.0000 0.0978 10285
St Louis 3.0000 0.0979 10313
Cincinnati 3.1053 0.1034 10523
Cleveland 3.0000 0.1042 impractical
Nashville 3.0000 0.1056 10255
Toronto 3.0526 0.1058 impractical
Atlanta 3.0000 0.1068 9730
New York 3.0000 0.1069 impractical
Miami 3.1053 0.1090 9588
Tampa 3.0526 0.1094 impractical
Olklahoma 3.1053 0.1107 9638
Vancouver 3.1053 0.1120 impractical
Las Vegas 3.0000 0.1127 10068
Philadelphia 3.1053 0.1132 9724
San Diego 3.1053 0.1133 9594
Potland 3.0526 0.1142 impractical
Sacramento 3.0526 0.1145 9625
Pittsburgh 3.1053 0.1148 9659
Los Angeles 3.0526 0.1155 impractical
Seattle 3.1053 0.1163 impractical
San Francisco 3.0526 0.1165 9768
Montreal 3.1053 0.1169 impractical
Boston 3.1053 0.1173 impractical
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Figure 5.3 Total capacity vs. average nodal degftee deleting specific nodes in COST266
reference network
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Figure 5.4 Total capacity vs algebraic connedgtigiter deleting specific nodes in COST266
reference network
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Figure 5.5 Total capacity vs. average nodal degftee deleting specific nodes in JANOS-
US-CA reference network
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Figure 5.6 Total capacity vs. algebraic connegtiaiter deleting specific nodes in JANOS-
US-CA reference network

It can be seen that, the results on thanapttotal capacity, average nodal degree and
algebraic connectivity of the remaining networkeaftieleting specific nodes in the two
reference networks are listed in Tables 5.1 and Bhi2se results have been depicted in
Figures 5.3 to 5.6 for showing how the total cafyacaries with the average nodal degree
and the algebraic connectivity, respectively. levédent that total capacity is more strongly
correlated with the algebraic connectivity thanhvitlie average nodal degree. There are two
possible reasons for the SBPP algorithm’s sentyittei network connectivity. Firstly, as the
network connectivity increases, both the predeteechiworking and protection path-pairs
become shorter. This leads to a decrease of batkingoand protection capacity. Secondly,
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the potential for capacity sharing among protecpiaths is likely to increase as the network

connectivity increases, and this leads to a furtdeerease of protection capacity

Looking at the results in detail, we car s#most linear dependence of the total

capacity on the algebraic connectivity. By contrastthe case of average nodal degree, its
dependence on average nodal deg_td{enot monotonic. For example, in Figure 5.3, there

are 7 different topologies witll =2.8148, while they have 7 different total capasiti
allocated ranging from 4572 to 5814 units. Thisvehthat using of average nodal degree as
a metric has a severe limitation as it is insevesito the total capacity of a given topology.
On the other hand, algebraic connectivity monothiaepends on total capacity of a given
topological structure. We also can see that, iftthffic demands are uniform, the nodes in
the core region e.g., Hamburg, Milan, Frankfurt &hhich, are more important than others,
because they are more frequently being used byctflmiws. If any of these nodes is deleted,
it will result in a severe reduction of algebraanoectivity. The similar phenomenon can be
observed in the results obtained for JANOS-US-C#wvnek: see Figures 5.5 and 5.6.

5.5.2 Successive Deletion of Links

Further experiments have been carried out to aeathe properties of the algebraic
connectivity metric and average nodal degree takmg account only slightly modified
topological scenarios. We investigate how the inguare of each link affects the total
capacity allocated. Following the similar mechanisrantioned above, simulations were
conducted on two families of network topologiesiwknt from our two reference networks
by deleting one link at a time. Here, we ignoreesafor which the SBPP cannot find
practical solutions since no node-disjoint pathister for a given traffic demand after the
critical links have been deleted, e.qg., if the Ibétween Oslo and Stockholm is deleted, see

Figure 5.1. The simulation results are shown inld®b.3 to 5.4 and Figures 5.7 to 5.8.



specific links in COST266 reference network

Deleted Link Algebraic Total
Connectivity | Capacity
Hambwrg Berlin 0.1176 6110
Zurich Milan 0.1198 6015
Copenhagen | Hamburg 0.1258 impractical
Bordeaux Paris 0.1309 impractical
Amsterdam | Hamburg 0.1361 5402
Milan Rome 0.1364 5778
Barcelona Lyon 0.1401 impractical
Frankfurt Munich 0.1402 5680
Lyon Zurich 0.1449 impractical
Stockholm Warsaw 0.1527 impractical
Munich Vienna 0.1589 5545
Berlin Warsaw 0.1589 4969
Brussels Frankfurt 0.1591 4934
Glazsgow Amsterdam 0.1595 impractical
Oslo Copenhagen 0.1611 impractical
Franldurt Strasbourg 0.1635 5030
Paris Strasbourg 0.1639 4906
Berlin Munich 0.1646 5029
Rome Athens 0.1663 impractical
Paris Brussels 0.1680 4922
Madrid Bordeaux 0.1687 impractical
London Amsterdam 0.1689 4911
Berlin Prague 0.1707 4930
Madrid Barcelona 0.1709 impractical
Prague Budapest 0.1714 4909
Zagreb Rome 0.1719 4965
Munich Milan 0.1722 5091
Vienna Zagreb 0.1722 4939
Hambwurg Franldurt 0.1723 4855
Dublin London 0.1724 impractical
Zagreb Belgrade 0.1727 4828
Prague Vienna 0.1729 5095
Strasbourg Zurich 0.1733 4886
Dublin Glazsgow 0.1735 impractical
Belgrade Athens 0.1741 impractical
Budapest Belgrade 0.1747 5307
Amsterdam Brussels 0.1748 5026
Paris Lyon 0.1748 4918
London Paris 0.1748 impractical
Warsaw Budapest 0.1748 impractical
Oslo Stockholm 0.1750 impractical
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Table 5.3 Total capacity, algebraic connectivityd average nodal degree after deleting
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Table 5.4 Total capacity, algebraic connectivityd average nodal degree after deleting

specific links in JANOS-US-CA reference network

Deleted Link Algebraic Total
conmectivity capacity
Phoenix EI Paso 0.0821 13106
Winnieg Minneapolis 0.0826 impractical
Chicago Detroit 0.0828 12159
Salt Lake City Denver 0.0847 12162
Waghington D.C. Charlotte 0.0872 11901
Calgary Winnipeg 0.0880 impractical
MMinneapolis Chicago 0.0897 11604
Houston New Orleans 0.0970 11062
Indianapolis Cincinnati 0.0976 impractical
Dallas MMemphis 0.0995 10598
Detroit Toronto 0.0995 impractical
Kangasg City St. Louis 0.1006 10612
Wancouver Calgary 0.1016 impractical
Denver Kansas City 0.1019 10410
Cincinnati Cleveland 0.1032 impractical
EI Paso Houston 0.1035 10525
Philadelphia Waghington D.C. 0.1049 impractical
Memphis MNasghville 0.1055 10305
San Diego Phoenix 0.1058 impractical
Denver Dallas 0.1059 10312
New Orleans Atlanta 0.1065 10305
St. Louis Indianapolis 0.1066 10628
Cleveland New York 0.1067 10582
EI Paso Dallas 0.1068 10558
Portland Salt Lake City 0.1070 10470
Toronto Montreal 0.1070 impractical
New Orleans DLiami 0.1075 impractical
Pittsburgh Waghington D.C. 0.1076 impractical
Las Vegas Phoenix 0.1080 10331
Nashville Charlotte 0.1087 10624
Sacramento Salt Lake City 0.1090 10354
Chicago St. Louis 0.1090 10199
Tamypa DLiami 0.1090 impractical
Atlanta Charlotte 0.1091 10214
Wancouver Seattle 0.1092 impractical
Detroit Cleveland 0.1095 10206
Charlotte Tampa 0.1097 10348
Los Angeles Las Vegas 0.1100 10206
Las Vegas Salt Lake City 0.1100 10281
Los Angeles San Diego 0.1101 impractical
New York Philadelphia 0.1101 impractical
San Francisco Sacramento 0.1102 10359
Chicago Indianapolis 0.1102 10342
Seattle Potland 0.1102 impractical
Calgary Salt Lake City 0.1103 10621
Dallas Houston 0.1104 10093
St. Louis Memphis 0.1104 10291
Kansas City St. Louis 0.1104 impractical
Sacramento Las Vegas 0.1105 10409
Cleveland Pittgburgh 0.1105 impractical
Cleveland New York 0.1105 impractical
San Francisco Los Angeles 0.1106 10455
Minneapolis Kansas City 0.1106 10320
Memphis New Orleans 0.1106 10172
Indianapolis MNaghwville 0.1106 10232
Atlanta Tampa 0.11006 10358
Oklahoma Clity Dallag 0.1106 impractical
Portland San Francisco 0.1107 10348
Nashville Atlanta 0.1107 10377
Toronto New York 0.1107 10199
Montreal Boston 0.1107 impractical
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Figure 5.7 Total capacity vs algebraic connectigifter deleting specific links in COST266

reference network
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Figure 5.8 Total capacity vs algebraic connegtiaiter deleting specific links in JANOS-

US-CA reference network

From the above results, it can be seenthi@ativerage nodal degree in two families of
network topologies assumes constant value ©2.8571 in COST 266 topologies with 40

links, and the value off =3.0769 in JANOS-US-CA topologies with 60 linksspectively,

while the total capacity solutions are significgrdifferent. There are 25 solutions, with the
total capacity ranging from 4828 to 6110 units @¥T 266 scenarios, and 40 solutions with
the total capacity ranging from 10093 to 13106 wumit JANOS-US-CA scenarios. This

shows again that the average nodal degree hasemeskmitation as it is insensitive to
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changes in total capacity caused by removal ofleifigk. The algebraic connectivity
remains sensitive to such changes. In additionatit be seen that the links located in the
network’s core region are more important than thaigbe network boundaries since they are
more frequently used by the traffic flows. Thusletiag them can cause severe decreases in

network connectivity.

5.5.3 Repositioning of Links

Additionally, we investigated the impact of the etdgaic connectivity metric and average
nodal degree has on capacity allocation under 'linggositions scenario. Seven sample
networks derived from the COST266 reference netwmykplacing 4 links in different

positions have been studied, see Figures 5.9 olgtbw.
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Figure 5.9 COST266-1
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Figure 5.10 COST266-2

Figure 5.11 COST266-3
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Figure 5.12 COST266-4

Figure 5.13 COST266-5
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Figure 5.14 COST266-6

Figure 5.15 COST266-7
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Table 5.5 Total capacity vs. algebraic connectifatylink repositions in COST266 reference

network

TOPOIORY | Conmeeivity| Capacity
COST266-1 0.122 5794
COST266-2 0.126 5820
COST266-3 0.164 4951
COST266-4 0.175 4778
COST266-5 0.181 4925
COST266-6 0.187 4751
COST266-7 0.198 4571

7000

6000 - 5O

5000 L4 *

4000 -

3000 1

Total Capacity

2000

1000

0.100 0.120 0.140 0.160 0.180 0.200 0.220
Algebraic Connectivity

Figure 5.16 Total capacity vs algebraic connetstifar link repositions in COST266

reference network

As shown in Table 5.5 and Figure 5.16, whil the seven derived topologies have the

same average nodal degree, ice.=2.9286, the resulting total capacity values awndeq
different for each of them. Note that total capadiecreases as algebraic connectivity
increases. One can see that when four links ameglan the boundary of the network, see
e.g., Figure 5.10 and 5.11, the total capacityeisegally larger than deploying the links in
the core region of the network, cf. Figures 5.1d &ri5, because boundary links are less

used in the SBPP solutions.
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5.5.4 The Combined Metric )Iﬁ

2

In the previous three experiments, the comparaiudies have been performed among the
derived topologies from the same master topologythuos the topologies all look similar. In
this case, we do not need to consider the sizesaage of the topology and only the

algebraic connectivity metric seems sufficient. tms experiment, by introducing the
additional mean distance metr,i:_a; , which is also related to algebraic connectidity we

propose to compare different topologies, in teritheir size and shape. We also calculate
the exact mean distance as a reference to the bpped on the mean distance predicted in
equation (5.17) and (5.18). We have selected ROlogy instances from the SNDIib, as

shown in Figure 5.17 and their network informatietisted in Table 6.
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Figure 5.17 20 referenced network topologies
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Table 5.6 Network Information for 20 refeced networks

No. Network N L
1 ATLATTTA 15 22
2 COST266 28 41
3 DFI-BWIH 10 45
4 DEMN-GWIN 11 47
5 DI-FTTATT 11 42
[ FEAMCE 250 45
7 CGERIATIY S0 50 ]
8 GITTL=E% 34 26
9 JATTOE-TTS 26 24

10 JATOZ-TTE-CA 34 &1
11 WNEWYTORK 16 49
12 HOREL-ETT 37 7
13 NOBEL-GEEMATNT 17 26
14 HNOREL-TT= 14 21
15 MORWAY 27 51
16 DO 11 34
17 FIOEO40 40 29
18 FPOLIZEA 12 18
19 =1 27 a1
20 TAL 24 55

We also recall the lower and upper bourdmean distance in equation (5.17-18), such
that:

(/]—22+n%2)/(n—1)£ psni_lgAsz In(n—l)—‘+12j

Then we calculate the combined me{ﬁc to study its effects on the total capacity.
2

Here we use two mean distance related parameterss the exact mean distangg, .,
which can be calculated by the standard graph ¢aalio MATLAB and another is the

estimated upper bound on the mean distance
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Table 5.7Total capacity vs. algebraic connectivity, exacamdistance and upper bound of

mean distance for 20 reference networks

Average LA Total A A Working| Spare | Total
Node Degree| Peucs | Pt | Pop | Pugs capacity | capacity | capacity

Distance
152 2933 0426 | 4 | 526 2305 | 3RET 732 17279 | 526 | b7
284 2929 0175 | 5| 2682 | 3361 | 20348 | 25268 | 144389 | 2714 | 2083 4359
10 45 9,000 10000 | 9 9 1000 | 0100 | 1160 | 0116 40 8 148
1147 B.545 2000 P10 126 | LM5 ) 0573 | 3799 | 1800 126 i 212
42 7636 ST 9 136 | 123 | 0213 | LAIT | 027 136 i1 193
245 3.600 0354 | 10 155 | 2593 | 733 24233 | 68533 | 1566 1305 2
308 3520 0183 | 5| 9918 | 4043 | 22145 | 28148 |103.98D | 9924 | 3700 | 1364
908 4410 0377 | 8| 4540 | 3063 | 8117 20718 | 54896 | 40 | 148 6034
26 | 4 3231 0197 | 5| 2150 | 3308 | 16824 22121 (112520 | 2162 1582 3744
5

=
=

=
b=

o oo | | o e | = s e | e—
fa—
p—

10|35 61 3108 0.111 6232 4205 | 37987 (43089 389042 | 6282 | 4130 | 10412
11|16 49 6,123 1303 ) 10 412 (17T 142 | 6008 | 3988 | 418 160 518
1213797 3081 0162 | 5| 4964|3707 | 23033 | 29375 |1R1349 | 5038 | 3640 | 678
13117 % 3058 0302 ) 6 | 73 269G 81 15378 5095 | 780 687 1437
4 [ 14]2 3.000 0707 | 5 388 2132 3015 | 3574 | TREL | 3 200 590
1 [27] 3 430 0344 | 7| 2006 | 2838 | 8307 | 18038 | 52484 | 2006 | 804 2810
16 |11 6182 20300 B | 197 1427 0541 | 2553 | 0867 | 1M 54 213
17 [40] 8% | 4450 0219 | 5| 5170 | 3314 | 15154 | 22416 (102495 | 5170 | 2366 | 7536
18 1218 3.000 0713 | 5| 282 2136 2998 | aM3 | 730 | 282 143 43
19 127] 31 378 0286 | 6 | 209 3130 | 10959 |1RB610 | 65137 | 2200 | 993 3133
M| d 5| 4583 0472 |10 1278|2315 | 45805 |19.880 (42120 | 1278 | 987 2265
16000
14000 =
2 12000
2 10000 *
g &000 * -
E G000 +
[=] +
= 4000 *
»*
2000 = -
0 : g : :" o & & |
0.000 2.000 4.000 G.000 8.000 10.000

Average node degree

Figure 5.18Total capacity vs. average nodal degree
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Figure 5.19 Total capacity vs. Exact mean dista@bgebraic connectivity
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Figure 5.20 Total capacity vs. upper bound meatadce/algebraic connectivity

As shown in Table 5.7 and Figures 5.1805i2can be seen that, in Figure 5.18, there
is no clear correlation between the total capaeity average nodal degree metric. For
example, there are 7 network topologies have #nerage nodal degree about 3, but the
total capacity solutions are significantly diffeteand range from 431 units to 10412 units.
As shown in Figures 19-20, we can find a monotdhidacreasing trend between the total

capacity and mean distance related metric. In Eigu20, we found that, the total capacity
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increases as the value of the combined me@#ﬂ: increases. WheVI2 is fixed, the total
2

capacity increase as the,, increases, since as the mean distance becomes, langre
working and protection capacity need to be allatabe addition, aso,, is fixed, the total

capacity decreases as the algebraic connectiiipcreases, since a largdy indicates

denser connectivity and thus more capacity shartamgbe achieved. Moreover, we can see

that the combined metriéo—”p, which can be easily derived from the second sshll
2

eigenvalueA, , have a monotonic trend as similar as—%@ﬂ, where g, iS more
2

complex to be calculated. Therefore, we can corcthdt the algebraic connectivity metric,

A, , not only can indicate the network connectivityt also can be used to estimate the

mean distance of a network in a convenient way.

5.6 Summary

We introduced an algebraic connectivity metric, @dd from spectral graph theory, namely
the 2nd smallest eigenvalue of the Laplacian matfixthe network topology, as an
alternative to the average nodal degree, to claraetnetwork robustness in studies of the
SCA problem. Extensive simulation studies confirntieat this metric is a more informative
parameter than the average nodal degree for chawmayg network topologies in
survivability studies. In general, a larger algébraonnectivity means better network
connectivity i.e., more node- and link-disjoint lpato choose from between node pairs, thus

less network capacity would be allocated. Moreowsr, considering the network mean

distance characteristic, we can use a combinedi(ma%, to quantify different sizes of
2

topologies and find a monotonically increasing trdretween the total capacity and the
P

2

topological index.
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Chapter 6

Conclusion and Future work

6.1 Contributions

The main target of this dissertation was to provate in-depth understanding of the
fundamentals of the spare capacity allocation (S@plem for survivable routing and to
contribute new ideas and techniques to the areetwiork resiliency. There are three main
contributions in this dissertation:

Firstly, the relationship between workirgpacity and spare capacity in SCA problem
was addressed in Chapter 2. We introduced a madised structure, called the Distributed
Resilience Matrix (DRM) that can capture complatéimation on capacity usage in a
distributed manner.

Secondly, we proposed a novel FoF-R antdbasgorithm to find the protection cycles
and to explore the sharing potential among praiacpaths by introducing the Capacity
Headroom-dependent Function (CHF), an attractipodston relationship function. By
using the proactive ant mobile agents to continlyonsestigate the network capacity usage,
and update the protection cycle tables and DRMsaah node in the distributed control
environment, our FoF-R algorithm showed good perforce in trading off computational
speed against capacity efficiency.

Finally, the relationship between spareac#ty allocation and topological connectivity
metrics such as average nodal degree vs. algatanectivity was addressed in Chapter 5.
We showed that the average nodal degree of a rletisonot sufficient on its own for
guantifying the network robustness. We suggestedgua more informative metric: the

algebraic connectivity of the network, as it pra@sda better numerical characterization of a
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given topology and its dependence on key networknectivity properties. In general, a
larger algebraic connectivity means better netwanknectivity i.e., more node- and link-
disjoint paths exist that can be chosen from byspai communicating nodes, and so less
network capacity needs to be allocated. It was alsown that there is a power law

relationship between the total capacity and thelafgjc connectivity metric.

6.2 Future work

Considering the work covered in this dissertatind the development of the future network,

it would be useful to highlight some future areaswestigation.

The traffic scenario was assumed to beoumiffor simplicity, hence more complex

traffic scenarios should be used in future work.

Work on improving the effectiveness of thaationship function in the FoF-R
algorithm should be explored. The algorithm shdgdmproved or enhanced and verified in
various other topologies and traffic scenariosadidlition, extension of the FoF-R routing
algorithm to handle multiple failures and differi@téd resilience requirements in a multi-

service NGN environment would be a promising regedirection.

More extensive studies on how the algebecainectivity affects the amount of spare
capacity to be allocated in more complex topologiesneed, especially in different types of
topology. Furthermore, capacitated versions of odte need to be studied, taking into
account the fact that the network may have exidtigcapacities and/or link capacity limits
to be respected with different traffic scenarios.

Further research work involving networkdlmgy design can investigate the following
problems:

* Generation: can we efficiently generate ensembles of random fealistic
topologies by replicating a set of simple graphriog?
» Evolution: what are the forces driving the evolution (groptth the topology of a

given network?
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