Subtree Transfer Operations and their Induced Metrics on

 Evolutionary TreesA thesis
submitted in partial fulfilment of the requirements for the degree
of
Master of Science in Mathematics
in the
University of Canterbury

by
Benjamin L. Allen

University of Canterbury
1998

In Memory of Madge Copus Allen

Contents

Abstract 1
1 Introduction 2
1.1 Definitions 4
1.1.1 Graph Theoretic Definitions 4
1.1.2 Properties of Trees 5
2 Subtree Transfer Operations 9
2.1 Nearest Neighbour Interchange 9
2.2 Subtree Prune and Regraft 10
2.3 Tree Bisection and Reconnection 13
2.4 Tree Distance Results 13
2.4.1 The Relationship between SPR and TBR 13
2.4.2 Induced Subtree Distances 14
2.5 Metric Tree Spaces 15
2.6 Diameters of Metric Tree Spaces 16
2.6.1 Nearest Neighbour Interchange Diameter 16
2.6.2 Subtree Prune and Regraft Diameter 16
2.6.3 Tree Bisection and Reconnection Diameter 19
2.7 Maximum Agreement Forests 19
2.8 TBR Distance and MAF Size 21
2.9 Applicafions to Evolutionary Biology 22
2.9.1 Horizontal Gené Transfer 22
2.9.2 Recombination 24
3 Complexity of Computing Tree Distances 29
3.1 Tree Distance Problems 29
3.2 Tree Distance Problems and Class NP 29
3.3 Conventional Complexity of Tree Metric Problems 30
3.3.1 The NNI distance Problem 30
3.3.2 The SPR Distance Problem 31
3.3.3 The TBR Distance Problem 32
3.4 Fixed Parameter Tractability for Tree Metrics 32
3.4.1 Tree Reduction Rules 33
3.4.2 Bounded Size of Maximally Reduced Trees 38
3.4.3 Complexity of the Parameterized TBR-distance 47
3.4.4 Complexity of the Parameterized SPR-distance 47
A Table of Notation 49
B Acknowledgements 51

Abstract

Leaf-labelled trees are widely used to describe evolutionary relationships, particularly in biology. In this setting, extant species label the leaves of the tree, while the internal vertices correspond to ancestral species. Various techniques exist for reconstructing these evolutionary trees from data, and an important problem is to determint how "far apart" two such reconstructed trees are from each other, or indeed from the true historical tree. To investigate this question requires tree metrics, and these can be induced by operations that rearrange trees locally. Here we investigate three such operations, nearest neighbour interchanges (or NNI), subtree prune and regrafts (SPR), and tree bisection and reconnections (TBR). The SPR operation is of particular interest as it can be used to model biological processes such as horizontal gene transfer and recombination. We count the number of unrooted binary trees one SPR from any given unrooted binary tree, as well as providing new upper and lower bounds for the diameter of the adjacency graph of trees under SPR and TBR. We also show that the problem of computing the minimum number of TBR operations required to transform one tree to another can be kernalized to a problem whose size is a function just of the distance between the trees (and not of the size of the two trees), and thereby establish that the problem is fixed-parameter tractable. We conjecture that the SPR equivalent of this problem is also fixed-parameter tractable.

Chapter 1

Introduction

Leaf-labelled trees are widely used to represent evolutionary relationships, particularly in biology, but also in other areas of classification (including linguistics and philology). Typically a set S of extant (present day) species label the leaves and the remaining vertices represent ancestral species.

Tree Metrics

Given data (such as aligned DNA sequences), numerous methods exist for reconstructing a tree (see [21]) that hopefully approximates the true historical tree of descent of the species under study. However, different data sets and different, methods often lead to different trees being reconstructed for the same set of species. Thus it becomes imperative to determine how "close" two reconstructed trees are. This requires the introduction of metrics on trees. Several such metrics have been considered (see [15]). A particularly natural choice is to say that two trees are "close together" if one can be obtained from the other by a small number of "local" operations. Typically three types of local rearrangements have been studied and we will consider these in detail in the next chapter. However, little is known about how pairs of trees are distributed according to these metrics, or even how to efficiently calculate them. In this thesis we investigate both questions. In particular, in Chapter 2 we:

- define three tree metrics, the nearest neighbour interchange (or NNI), the subtree prune and regraft (SPR), and finally the tree bisection and reconnection (TBR) (Sections 2.1-2.3);
- establish new results on the diameter and density of the adjacency graph of unrooted trees under the subtree prune and regraft and tree bisection and reconnection operations, thereby correcting an oversight in [18], (Sections 2.4-2.6);
- establish a relationship between the number of tree bisection and reconnection operations required to transform on tree into another and the size of the maximum agreement forest for the two trees, thereby correcting an error in [10] (Sections 2.7-2.8).

In Chapter 3 we turn our attention to computing the distances between evolutionary trees with respect to each tree metric. We:

- investigate the complexity in the conventional sense of the NNI, SPR and TBR Distance Problems, and point out that the TBR-Distance Problem is $N P$-hard, while the complexity of the remaining two is unresolved (Sections 3.1-3.3);
- show that, for the tree bisection and reconnection operation, the question of whether a given unrooted binary tree can be transformed to another given unrooted tree by at most k operations is fixed-parameter tractable (Sections 3.4);
- conjecture that the Parameterized SPR-Distance Problem is FPT as well (Subsection 3.4.4).

Horizontal Gene Trañsfer and recombination

In the past morphological data has been used to construct trees, such as the presence or absence of wings, number of eyes, and so on. Nowadays trees are constructed using genomic information. Instead of looking for wings, skeletal structure, etc. trees are based on genes that species have in common, the locality and order of genes upon chromosomes, or the sequences that make up genes. However there are circumstances when fitting genomic data to a tree is not appropriate or when genomic data can be fitted to several different trees, with no one tree being "better" than any other. Two causes can be the presence of a horizontal gene transfer or recombination.

In the conventional sense of evolution genes from the father and the mother are merged together in their offspring. This type of evolution, known as vertical evolution, can be described using phylogenetic trees. Recombination or horizontal gene transfer causes genes from a different site either within the genome, in the case of a recombination, or from a different species in the case of a horizontal gene transfer, to become part of a organism's genome. This type of genetic event can not be described using conventional phylogenetic methods. However a subtree transfer operation, and in particular, the subtree prune and regraft operation, can be used to model the effect of these types of events on phytogenies. The use of the SPR to model these two events is described further in Section 2.9.

Tree Search Heuristics

A third motivation fos studying subtree transfer operations is that they are frequently used in optimization heuristics. In searching for the true evolutionary tree for a set of n species, often a characteristic such as the parsimony score will be taken as a parameter to optimize. Searching all trees on n leaves is a hopelessly intractable task for realistic values of n, and so optimization heuristics are routinely used. One common heuristic, used by software packages such as PAUP and PHYLIP, is to start with an initial approximation to the true tree, that has been constructed in polynomial time. Subtree transfer operations are then applied as part of a hill-climbing search strategy.

1.1 Definitions

Before we continue it will be important to set down some definitions. Much of the language of phylogenetic trees is based on ideas from Graph Theory. For the remainder of this chapter we will review some important results on graphs and, more importantly, on trees.

1.1.1 Graph Theoretic Definitions

Definition 1.1.1 A graph $G=(V, E)$ is made up of a set of vertices V and a set of edges $E \subseteq$ $\{\{u, v\} \mid u, v \in V\}$ that connect the vertices. If the edge $e=\{u, v\} \in E$ for $u, v \in V$ then u and v are said to be adjacent, while e is said to be incident to u and v. Figure 1.1 provides an example of a graph.

Figure 1.1: Graph G is a graph on seven vertices $\left\{v_{1}, \ldots, v_{7}\right\}$ and six edges $\left\{e_{1}, \ldots, e_{6}\right\}$. To illustrate Definition 1.1.1, v_{6} and v_{7} are adjacent while e_{1} is incident to v_{1} and v_{2}. Note also that G has two "disconnected" subgraphs.

Definition 1.1.2 The degree of a vertex, $u \in V$, in a graph is the number of edges incident with u.

Definition 1.1.3 A graph is said to be regular if all vertices have the same degree.

Definition 1.1.4 For a graph $G=(V, E)$, an edge $e=\{u, v\}$ where $u, v \in V$ is said to be subdivided, when a new vertex w is added to V, the edge e is deleted from E, and two new edges $\{u, w\}$ and $\{v, w\}$ are added to E. Note that a new leaf, pendant to w may also be added.

Two important concepts for classification of graphs are that of a path and connectedness. These two properties allow us to define what we mean by a tree.

Definition 1.1.5 A walk is a traversal of a subset of vertices along edges connecting the vertices such that any edge may only be traversed once. A path is a walk such that each vertex is visited only once.

Definition 1.1.6_A graph is said to be acyclic if all walks are paths.

Definition 1.1.7 A graph $G=(V, E)$ is said to be connected if, for all $u, v \in V$, there is a path from u to v.

Definition 1.1.8 An acyclic, connected graph is called a tree.

1.1.2 Properties of Trees

An important result for trees is that we are able to relate the sum of the degrees of all vertices to the number of vertices in the tree.

Lemma 1.1 For a tree $T=(V, E)$,

1. $|E|=|V|-1 ;$ and
2. $\Sigma_{v \in V} \operatorname{deg}(v)=2|E|=2|V|-2$.

Proof (1) is established by induction on the number of vertices. Clearly a tree with one vertex has no edge. Assume (1) is true for a tree with k vertices, and let T be a tree with $k+1$ vertices. Let T^{\prime} be a tree obtained by removing a leaf and its pendant edge from T, then T^{t} has $k-1$ edges and hence T has k edges. Thus the hypothesis is true for all k.

For the first equality in(2), since all edges are incident with two vertices, the sum of the degrees of all vertices is twice the number of edges. This result is true for any graph. The second equality follows immediately from (1).

Definition 1.1.9 The vertices of degree one in a tree are called the leaves or terminal vertices, while vertices of degree greater than one are called internal vertices. A tree may also have one vertex labelled as the root. An edge incident to a leaf is called a pendant edge, while edges incident to internal vertices only are internal edges. For our purposes only the leaves and the root (if present) will be tabelled, such trees are known as (rooted) leaf-labelled trees.

Definition 1.1.10 The topology or shape of a tree is the tree without any labels on the leaves.

The majority_ofegolutionary relationships can be described by the binary trees.

Definition 1.1.11 A tree is said to be binary if all internal vertices, with the exception of the root if present, have degree three. If the tree is rooted, then the root must have degree two.

Primarily we will be interested in unrooted binary trees as these are normally the end product of biological data analysis. If data is presented in the form of a rooted tree then we can transform it to an unrooted tree by adding in a leaf corresponding to a species known to have diverged much early
than those being studied. For instance we may unroot a rooted binary tree of monkeys, apes and other advanced primates with an early primate such as a tree shrew, in this case the tree shrew is called an outgroup.

Definition 1.1.12 Let $U B(n)$ represent the space of all labelled unrooted binary trees on n leaves, and $|U B(n)|$ be the number of members in this space.

Schröder [20] originally showed, the now well-know result that;

$$
|U B(n)|=(2 n-5)!!=\frac{(2 n-4)!}{2^{n-2}(n-2)!}
$$

Definition 1.1.13 The distance, with respect to a specific tree operation Θ, between two trees, T_{1}, T_{2} in $U B(n)$, written $d_{\Theta}\left(T_{1}, T_{2}\right)$, is the minimum number of Θ operations required to transform T_{1} to T_{2}.

We wish to investigate the distances between trees for various subtree transfer operations that will be defined in Chapter 2. However, before we can do so we will first define certain parts of a tree.

Definition 1.1.14 A subtree is any connected subgraph of a tree.

Definition 1.1.15 A pendant subtree is a subtree that can be disconnected from the rest of the tree by removing exactly one edge. Conversely an internal subtree is a subtree that is not pendant.

Definition 1.1.16 Let $\mathcal{L}(T)$ denote the leaf set of tree T, that is, the set of labels of the leaves of T. Let $|\mathcal{L}(T)|$ be the number of leaves of T.

Occasionally we may wish to delete a leaf (or leaves) or a pendant subtree(s) from a binary tree, along with corresponding incident edges. This will generally introduce vertices of degree two in the resulting trees. Following Hein ([8], [9] and [10]) we introduce the notion of a forced contraction.

Definition 1.1.17 When we apply a forced contraction, we delete a vertex v of degree two and replace the two edges incident to v with a single edge. This process is continued until all degree two vertices have been eliminated, thereby producing a binary tree. Suppose we have a set $U \subseteq \mathcal{L}(T)$ for some binary tree T, then we let $T(U)$ denote the minimal subtree of T connecting leaves from U, and let $T_{\mid U}$ denote the tree obtained from $T(U)$ by applying forced contractions.

A common entity used in induction proofs on binary trees is a cherry.

Definition 1.1.18 A cherry is a subtree t of a tree T consisting of a single internal vertex adjacent to two pendant edges, as well as both pendant edges and leaves.

Lemma 1.2 For all $T \in U B(n)$, where $n \geq 4, T$ has at least two cherries.
Proof Suppose that $T \in U B(n)$, where $n \geq 4$, and that T contains less than two cherries. Then, all, but at most one, internal vertices are adjacent to at most one leaf. This implies either the presence of a cycle, or internal edges of degree two, both contradicting the definition of a binary tree.

Lemma 1.3 Let T be in $U B(n)$, where $n \geq 3$. Then the number of pendant edges in T is n and the number of internal edges is $n-3$.

Proof We use induction on the number of leaves. There is only one tree topology for an unrooted binary tree on three leaves. Since there are three leaves, only three pendant edges exist, and furthermore, they all must be incident to a single internal vertex. Therefore no internal edges exist, and so the hypothesis holds. Now suppose that the hypothesis is valid for all trees in $U B(k)$ and let T be in $U B(k+1)$. By Lemma $1.2 T$ must contain at least two cherries. Distinguish one cherry in T and let T^{\prime} be the tree obtained from T by removing the two pendant edges and leaves of the distinguished cherry. Hence $T^{\prime} \in U B(k)$ and hence has k pendant edges and $k-3$ internal edges. Hence T has $k+1$ pendant edges and $k-2$ internal edges. Thus the hypothesis is valid for all $n \geq 3$. See Figure 1.2 for illustration.

Figure 1.2: T_{3} is the only tree topology for an unrooted binary tree on 3 leaves. T is an unrooted binary tree with a distinguished cherry indicated by the dashed region. T^{\prime} is the tree that results when the cherry is removed as in the proof of Lemma 1.3. This is an example of the induction step in the proof of Lemma 1.3.

Chapter 2

Subtree Transfer Operations

2.1 Nearest Neighbour Interchange

Of branch swapping techniques, the most restrictive is the nearest neighbour interchange or NNI.

Definition 2.1.1 Any internal edge of a unrooted binary tree has four subtrees attached to it. A nearest neighbour interchange occurs when one subtree on one side of an internal edge is swapped with a subtree on the other side of the edge, as illustrated in Figure 2.1.

Figure 2.1: Examples of NNI transformations. The two trees T_{2} and T_{3} result from the two possible NNI's about edge e in T_{1}

NNI's were independently introduced by Robinson [19] in 1971 and Moore et al. [16] in 1973. Problems involving NNI's have received considerable attention since then (Page [18]), however some of the claimed results have contained serious flaws. [13] summarises many of the flaws.

Lemma 2.1 For any internal edge e in an unrooted binary tree, there are precisely two new distinct trees possible after all NNI's have been carried out about e.

Proof A NNI swaps two of the subtrees incident to the edge e. Suppose that the four subtrees are labelled A, B, C and D, where A and B form a cherry, as do C and D. Then there are four possibilities.

1. A is swapped with C,
2. A is swapped with D,
3. B is swapped with C, or
4. B is swapped with D.

However these only result in two distinguishable trees, as swapping A with C makes A and D a cherry and B and C a cherry, as does swapping B and D. Similarly swapping A and D is equivalent to swapping B and C.

From our definition of distance, the NNI-distance, denoted $d_{N N I}\left(T_{1}, T_{2}\right)$, between two trees $T_{1}, T_{2} \in$ $U B(n)$ is the minimum number of NNI needed to transform T_{1} to T_{2}.

Lemma 2.2 The number of trees at a distance of one NNI from any given tree $T \in U B(n)$ is $2 n-6$.
Proof By Lemma 2.1 there are two new distinct trees possible for all NNI's about an internal edge. It thus remains to show that no two NNI's about different edges on $T \in U B(n)$ can result in the same tree. Suppose that T^{\prime} results from an NNI about edge e or from an NNI about edge e^{\prime}. Since an NNI swaps subtrees at either end of an edge, it follows that $e=e^{\prime}$.

Lemma 2.2 was first given in [19], but without formal proof.

2.2 Subtree Prune and Regraft

Definition 2.2.1 Asubtree prune and regraft or SPR on an unrooted binary tree T is defined as cutting any edge and thereby pruning a subtree, t, and then regrafting the subtree by the same cut edge to a new vertex obtained by subdividing a pre-existing edge in $T-t$. We also apply a forced contraction to maintain the binary property of the resulting tree.

The SPR operation can also be defined for rooted binary trees, but with the added restriction of not allowing the root to occur in the subtree.

Definition 2.2.2 A subtree prune and regraft on a rooted binary tree T is defined as cutting any edge, thereby pruning a subtree t, such that the root of T can not be in t. The subtree is then regrafted by the same cut edge to a new vertex obtained by subdividing a pre-existing edge in $T-t$. We also apply a forced contraction to maintain the rooted binary property of the resulting tree.

Figure 2.2: Example of \bar{a} SPR. The subtree with leaf set $\{1,2,3\}$ in tree T has been pruned and reattached to the pendant edge of leaf 6 to give tree T^{\prime}.

In the Section headed Comparing NNI, SPR and TBR (pp 204-208) of [18] the author claims that, the number of trees one SPR from a given tree is dependent on topology. This is false as the next new theorem shows.

Theorem 2.1 The number of trees in $U B(n)$ at a distance of one SPR from a given $T \in U B(n)$ is $2(n-3)(2 n-7)$.

Proof When a subtree is pruned and regrafted we cut an edge and then re-attach it to a different edge. The number of edges we can choose to cut is $2 n-3$ and the number we can re-attach to is $2 n-4$. Hence the total number of possible subtree prune and regrafts is $(2 n-3)(2 n-4)$. However not all of these subtree prune and regrafts produce distinct trees, or even different trees to T. We can eliminate over-counts by separating subtree prune and regrafts into three disjoint cases.
(i) The edge to which the subtree will be regrafted is adjacent to the cut edge. This results in no change to the tree's topology. Furthermore we have six such subtree prune and regrafts associated with each internal vertex, hence a total of $6(n-2)$.

(ii) The edge to which the subtree will be regrafted is separated by exactly one edge from the edge to be cut. -

In this case we have 8 possibilities for each internal edge, giving a total of $8(n-3)$. However, only two distinct trees are possible, hence $2(n-3)$ distinct trees result. c.f. an NNI.
(iii) Finally, we consider the case where the subtree regrafted is separated by more than one edge from the edge which was originally cut.

Subtrees A and D can become adjacent to the same vertex in two ways only. Firstly if A is pruned and regrafted to the D's incident edge.

Or secondly, if D is pruned and regrafted to A's incident edge.

Since both resulting trees are different, we conclude that any such prune and regraft will create a tree that can not be obtained by any other single subtree prune and regraft. The number of such subtree prune and regrafts is the remainder of those not considered in Cases (i) or (ii), that is;

$$
(2 n-3)(2 n-4)-6(n-2)-8(n-3)=4(n-3)(n-4)
$$

Hence the total number of trees at a distance of one subtree prune and regraft is;

$$
\begin{equation*}
4(n-3)(n-4)+2(n-3)=2(n-3)(2 n-7) \tag{2.1}
\end{equation*}
$$

Theorem 2.1 demonstrates that the number of trees at an SPR-distance of one from any given tree, T say, is independent of the topology of the tree T. Consider the case of rooted binary trees. The placement of the root does affect the number of trees within one SPR of any given tree T, hence the topology of the tree will influence the number of trees at one SPR in distance from a given rooted binary tree. See Figure 2.3 for an example.

2.3 Tree Bisection and Reconnection

Definition 2.3.1 A tree bisection and reconnection (TBR) on an unrooted binary tree T is defined as removing any edge, giving two new subtrees, t_{1} and t_{2}, which are then reconnected by creating a new edge between the midpoint of any edge in t_{1} and any edge in t_{2}. Again forced contractions are applied to ensure the resulting tree is binary. In the case that one of the subtrees is a single leaf, then the edge connecting t_{1} and t_{2} is incident to the leaf. See Figure 2.4 for an example of a TBR.

When we considered SPR's in Section 2.2 we found that the number of trees in $U B(n)$ one SPR from a tree T was independent of the topology of T. However, the number of unrooted trees one TBR from T does depend on the topology of T. See Figure 2.5 for an example.

2.4 Tree Distance Results

2.4.1 The Relationship between SPR and TBR

We can draw generalised diagrams of the unrooted SPR and TBR operations. An SPR has the form;

While a TBR has the form;

From the diagrafs above it is clear that an SPR is a special case of a TBR. However TBR represents only a limited generalisation over SPR as the following result shows.

Lemma 2.3 Any $T^{\prime} \in U B(n)$ obtained from $T \in U B(n)$ by a single $T B R$ operation can also be obtained by at most two SPR operations.

Proof Consider the TBR of following general form above. We can also obtain the same tree after two SPR's. Firstly the Z component subtree is pruned and regrafted to the correct edge. Then the Z
component is joined to the correct vertex. This is achieved by treating the rest of the tree as a subtree to be pruned and regrafted to the correct vertex in the Z component. See Figure 2.6.

Thus we obtain exactly the same binary tree as that obtained from the tree bisection and reconnection.

By Definition 1.1.13, $\operatorname{disPR}_{S P}\left(T_{1}, T_{2}\right)$ is the minimum number of SPR's required to transform T_{1} to T_{2}. Similarly $d_{T B R}\left(T_{1}, T_{2}\right)$ is the minimum number of TBR's required. Since an SPR is just a special case of a TBR it follows by Lemma 2.3 that we have the following inequality:

$$
\begin{equation*}
d_{T B R}\left(T_{1}, T_{2}\right) \leq d_{S P R}\left(T_{1}, T_{2}\right) \leq 2 d_{T B R}\left(T_{1}, T_{2}\right) \tag{2.2}
\end{equation*}
$$

Theorem 2.2 The number of trees in $U B(n)$ one $T B R$ in distance from $T \in U B(n)$ is bounded above by $(2 n-3)(n-3)^{2}$.

Proof By Definition 2.3.1 there is an injection from the set of TBR's on T to the set of ordered pairs ($e,\{a, b\}$) where e is an edge of T, and where, if $\{A, B\}$ is the bi-partition of the leaf set induced about e, a is edge from subtree $T_{\mid A}$, or $a=T_{\mid A}$ if $T_{\mid A}$ is a single vertex, and b is an edge from subtree $T_{\mid B}$, or $b=T_{\mid B}$ if $T_{\mid B}$ is a single vertex. By Lemma 1.3 there are $2 n-3$ choices for $e,|2| A|-3|$ choices for a and $|2| B|-3|$ choices for b. Thus, there are at most $(2 n-3)|(2|A|-3)(2|B|-3)|$ trees, and furthermore $|A|+|B|=n$. For $x+y=n,(2 x-3)(2 y-3)$ attains its constrained maximum at $x=y=n / 2$. Hence the number of trees one TBR from T is at most $(2 n-3)(n-3)^{2}$.

2.4.2 Induced Subtree Distances

Theorem 2.3 Suppose we have $T, T^{\prime} \in U B(n)$. Let $S \subseteq \mathcal{L}(T)$. Then $d_{\Theta}\left(T_{\mid S}, T_{\mid S}^{\prime}\right) \leq d_{\Theta}\left(\underline{T}, T^{\prime}\right)$ for $\Theta \in\{N N I, S P R, T B R\}$.

Proof First note that a Θ operation on T induces a Θ operation on $T_{\mid S}$ (provided we also allow the identity operation which leaves T unchanged to count as a Θ operation).

Next we establishtheresult in the case $d_{\Theta}\left(T, T^{\prime}\right)=1$. We will suppose first that $\Theta=S P R$. Assume that two trees one SPR apart have the following form;

(i) If either $S \subset \mathcal{L}(B)=\emptyset$ or $S \cap \mathcal{L}(Z)=\emptyset$ then $d_{S P R}\left(T_{1 \mid S}, T_{2 \mid S}\right)=0$.
(ii) If $S \cap \mathcal{L}(C)=\emptyset$, or $S \cap \mathcal{L}(A)=\emptyset$ and B is a pendant subtree, then there is there is no change in the two trees, since there is one central vertex from which Z is pruned and then reconnected to. Hence $d_{S P R}\left(T_{1 \mid S}, T_{2 \mid S}\right)=0$. T_{1} below illustrates this case with T_{1} for when $S \cap \mathcal{L}(A)=\emptyset$ and B is pendant, and T_{2} for when $S \cap \mathcal{L}(C)=\emptyset$.

(iii) Finally if none of the above cases are true then there must be at least one internal vertex that distinguishes the placement of the $Z_{\mid S}$ subtree. Hence $d_{S P R}\left(T_{1 \mid S}, T_{2 \mid S}\right)=1$, as $Z_{\mid S}$ can be moved in one SPR.

The NNI and TBR cases are similar. Now, if $d_{\Theta}\left(T, T^{\prime}\right)=k>1$, there are trees $T^{0}, T^{1}, \ldots, T^{k}$ such that $T^{0}=T, T^{k}=T^{\prime}$ and $d_{\Theta}\left(T^{l}, T^{l+1}\right)=1$ for all $l \in\{0,1, \ldots, k-1\}$. Let $t^{l}=T_{\mid U}^{l}$ for all $l \in\{0,1, \ldots, k-1\}$. Then from the particular case above, $d_{\Theta}\left(t^{l}, t^{l+1}\right) \leq 1$ for all $l \in\{0,1, \ldots, k-1\}$. Thus, the trees t^{1}, \ldots, t^{k} define a series of at most $k \Theta$ operations that transform T to T^{\prime}, as required.

2.5 Metric Tree Spaces

A space of trees is sometimes referred to as a Baumraum (German for tree space). The Baumraum that we will examine is $U B(n)$; recall that this is the space of unrooted binary trees on n leaves and that $|U B(n)|=(2 n-5)!!$.

Definition 2.5.1 A metric space (X, d) is a set of points X and a metric d.

In our case, Whe points are unrooted binary trees on n leaves. The next theorem shows three metrics that can defined on $\overrightarrow{U B}(n)$.

Theorem 2.4 The NNI, SPR and TBR operations all induce metrics on $U B(n)$

Proof Robinson [19] first established that the $\left(U B(n), d_{N N I}\right)$ is a metric space. Now let d be either $d_{S P R}$ or $d_{T B R}$ and suppose that $T_{1}, T_{2}, T_{3} \in U B(n)$. In order for d to be a metric on $U B(n)$ the following three properties must hold;

1. $d\left(T_{1}, T_{2}\right) \geq 0$ and $d\left(T_{1}, T_{2}\right)=0 \Longleftrightarrow T_{1}=T_{2}$.
2. $d\left(T_{1}, T_{2}\right)=d\left(T_{2}, T_{1}\right)$
3. $d\left(T_{1}, T_{2}\right)+d\left(T_{2}, T_{3}\right) \geq d\left(T_{1}, T_{3}\right)$

Properties 1 and 2 hold trivially in both cases. Property 3, the triangle inequality, is also easily resolved. Let $d\left(T_{1}, T_{2}\right)=i$ and $d\left(T_{2}, T_{3}\right)=j$. Hence there are i trees traversed on the path from T_{1} to T_{2} and, similarly, j trees traversed on the path from T_{2} to T_{3}. Hence there is a path from T_{1} to T_{3} that traverses $i+j$ trees and as such $d\left(T_{1}, T_{3}\right) \leq i+j$.

2.6 Diameters of Metric Tree Spaces

Definition 2.6.1 The Θ-adjacency graph $G_{\Theta}(n)=(V, E)$ is the graph with $V=U B(n)$ and $\left\{t_{u}, t_{v}\right\} \in$ $E \Longleftrightarrow d_{\Theta}\left(t_{u}, t_{v}\right)=1$ for $d_{\Theta} \in\{N N I, S P R, T B R\}$.

Definition 2.6.2 The diameter of a graph $G=(V, E)$, denoted $\Delta(G)$, is

$$
\max _{u, v \in V}\{\min \{k: \text { where } k \text { is the number of edges in a path from } u \text { to } v\}\} .
$$

From the definition of distance, we immediately have;

$$
\begin{equation*}
\Delta\left(G_{\Theta}(n)\right)=\max _{T_{1}, T_{2}}\left\{d_{\Theta}\left(T_{1}, T_{2}\right)\right\}, \text { where } \Theta \in\{N N I ; S P R, T B R\} \tag{2.3}
\end{equation*}
$$

2.6.1 Nearest Neighbour Interchange Diameter

Consider the adjacency graph $G_{N N I}(n)$.

Lemma 2.4 $G_{N N I}(n)$ is connected and regular with degree $2 n-6$.
This was established by Robinson [19]. Li et al. [13] published a tight asymptotic bound on $\Delta\left(G_{N N I}(n)\right)$:

$$
\begin{equation*}
\left.((n-2) / 4) \log _{2}[2(n-2) \sqrt{(} 2 / 3 e)\right] \leq \Delta\left(G_{N N I}(n)\right) \leq n \log _{2} n+\mathcal{O}(n) \tag{2.4}
\end{equation*}
$$

2.6.2 Subtree Prune and Regraft Diameter

Consider now the-adjacency graph $G_{S P R}(n)$.

Lemma 2.5 If $d_{N N I}\left(T_{1}, T_{2}\right)=\tilde{k}$, then $d_{S P R}\left(T_{1}, T_{2}\right) \leq k$.
Proof An NNI can be regarded as a SPR in which a pruned subtree is regrafted to an edge one edge away. Hence $d_{N N I}\left(T_{1}, T_{2}\right) \leq d_{S P R}\left(T_{1}, T_{2}\right)$.

As mentioned in the proof of Theorem 2.1 NNI's only make up some of the trees at SPR-distance one, hence the inequality of Lemma 2.5 can be strict. We also have similar results for the SPR case as those found for $G_{N N I}(n)$ in Section 2.6.1.

Lemma 2.6 For the SPR Baumraum:

1. $G_{S P R}(n)$ is connected.
2. $\operatorname{deg}(v)=2(n-3) \underset{\sim}{-}(2 \bar{n}-7) \forall v \in V$
3. $\Delta\left(G_{S P R}(n)\right) \leq n \log _{2} n+\mathcal{O}(n)$

Proof Since an NNI is a special case of an SPR, (1) and (3) follow immediately from Lemma 2.4 and Equation 2.4. (2) follows from Theorem 2.1.

Lernma $2.6(3)$ is the upper bound for the NNI instance found in [13] and so can potentially be improved upon, especially if one considers Lemma 2.5. From a more intuitive perspective, the NNI-distance could be much greater than the SPR-distance, suppose a subtree has to be moved from one end of a long, narrow tree to the other. In the worst case a subtree might have to be moved across all $n-3$ internal edges in the NNI instance, while requiring only one SPR. We improve the upper bound by considering the following new theorem.

Theorem 2.5 For $T_{1}, T_{2} \in U B(n), T_{1}$ can be transformed to T_{2} by at most $n-3 S P R$.
Proof We use induction on the number of leaves. There are three binary trees on feur leaves, all of which are at distance one SPR from each other. So the hypothesis holds for $n=4$. Assume now that the hypothesis is true for any pairs of trees in $U B(k)$, and suppose $T_{1}, T_{2} \in U B(k+1)$. Considering the cherries of T_{1} and T_{2} there are two cases.

$$
\cdots=4
$$

(i) There is a cherry that occurs in both T_{1} and T_{2}. Replace this cherry in both trees by a single leaf to get T_{1}^{\prime} and T_{2}^{\prime}, both on k leaves. Hence T_{1}^{\prime} can be transformed to T_{2}^{\prime} in at most $k-3$ operations and therefore, so too for T_{1} and T_{2}. Hence the hypothesis is valid for $n=k+1$ in this case.
(ii) If there is no cherry that occurs in both trees, then distinguish a cherry in T_{2}. Let T_{1}^{\prime} be the tree obtained from T_{1} after one of the leaves of the distinguished cherry in T_{2} has been pruned from T_{1} and regrafted so that the distinguished cherry occurs in T_{1}^{\prime} as well. Now apply case (i) to get that
T_{1}^{\prime} can be converted to T_{2} in at most $k-3 \mathrm{SPR}$. Hence T_{1} can be converted to T_{2} in at most $k-2$ ways, hence the hypothesis is valid in this case for $n=k+1$ as well.

Since cases (i) and (ii) cover all problem instances, the hypothesis is valid for all n by induction.

It immediately follows from Theorem 2.5 that

$$
\begin{equation*}
\Delta\left(G_{S P R}(n)\right) \leq n-3 \tag{2.5}
\end{equation*}
$$

The next new theorem provides an asymptotic lower bound for the diameter of $G_{S P R}(n)$.

Theorem $2.6 \Delta\left(G_{S P R}(n)\right)^{-} \geq \bar{n} / 2-o(n)$.
Proof Recalling from Theorem 2.1 that in $U B(n)$ the number of trees one SPR from a given tree is $2(n-3)(2 n-7)$, and that the number of unrooted binary trees is $(2 n-5)!!$. Thus if $d=\Delta\left(G_{S P R}(n)\right)$, then

$$
\begin{align*}
{[2(n-3)(2 n-7)]^{d} } & \geq(2 n-5)!! \\
& =\frac{(2 n-4)!}{2^{(n-2)}(n-2)!} \tag{2.6}
\end{align*}
$$

By Stirling's factorial approximation,

$$
\begin{equation*}
k!=\sqrt{2 \pi k}\left(\frac{k}{e}\right)^{k} e^{\left(\frac{\theta}{12 k}\right)}, 0<\theta<1 \tag{2.7}
\end{equation*}
$$

Thus by Equation 2.6 and Equation 2.7,

$$
\begin{align*}
{[2(n-3)(2 n-7)]^{d} } & \geq \frac{\sqrt{2 \pi(2 n-4)}(2 n-4)^{(2 n-4)} e^{-(2 n-4)}}{2^{(n-2)} \sqrt{2 \pi(n-2)}(n-2)^{(n-2)} e^{-(n-2)} e^{1 /(12(n-2))}} \\
& =\sqrt{2} 2^{(n-2)}(n-2)^{(n-2)} e^{-(n-2)} e^{-1 /(12(n-2))} \tag{2.8}
\end{align*}
$$

Taking natural logarithms of both sides gives:

$$
\begin{equation*}
d[\log (4)+\log (n-3)(n-7 / 2)] \geq(n-2)[\log 2+\log (n-2)-1]+\frac{1}{2} \log 2-\frac{1}{12(n-2)} \tag{2.9}
\end{equation*}
$$

Now for $n \geq 4$, we have that $\frac{1}{12(n-2)} \leq \frac{1}{2} \log 2$, so

$$
\begin{equation*}
d[\log (4)+\log (n-3)(n-7 / 2)] \geq(n-2)[\log 2+\log (n-2)-1] \tag{2.10}
\end{equation*}
$$

and if we let $n \rightarrow \infty$ we get

$$
\begin{equation*}
\frac{d}{n-2}=\frac{\log 2+\log (n-2)-1}{\log (4)+\log (n-3)(n-7 / 2)} \rightarrow \frac{1}{2} \tag{2.11}
\end{equation*}
$$

2.6.3 Tree Bisection and Reconnection Diameter

The established link between the SPR and TBR operations, in particular Equation 2.2, allows us to analyse the adjacency graph $G_{T B R}(n)$.

Lemma 2.7 $G_{T B R}(n)$ is connected.
Proof This follows immediately as a result of Lemma 2.6(1) and Equation 2.2.
$G_{T B R}(n)$ is not regular as the number of trees one TBR from any given unrooted binary tree is dependent on topology, as shown in Figure 2.5.

Theorem $2.7 n / 4-o(n) \leq \Delta\left(G_{T B R}(n)\right) \leq n-3$
Proof For the second inequality, Equation 2.2 and Equation 2.5 immediately give that $\Delta\left(G_{T B R}(n)\right) \leq$ $n-3$. For the first inequality we will use proof by contradiction. Suppose that $\Delta\left(G_{T B R}(n)\right)<n / 4-o(n)$. Then by Lemma 2.3, we are able to construct a path between any two trees from $U B(n)$ in $G_{S P R}(n)$ with length less than $n / 2-o(n)$. This contradicts Theorem 2.6.

2.7 Maximum Agreement Forests

Definition 2.7.1 Sưppose we have two binary trees T_{1} and T_{2} with $\mathcal{L}\left(T_{1}\right)=\mathcal{L}\left(T_{2}\right)=\mathcal{L}$.

- An agreement forest (AF) for T_{1}, T_{2} is a collection $\mathcal{F}=\left\{t_{1}, \ldots, t_{k}\right\}$ of binary trees such that, if we let $\mathcal{L}_{j}:=\mathcal{L}\left(t_{j}\right)$ for $j \in\{1, \ldots, k\}$, then the following are satisfied:

1. $t_{j}=T_{1 \mid \mathcal{L}_{j}}=T_{2 \mid \mathcal{L}_{j}}$ for all $j \in\{1, \ldots, k\}$; and
2. for both $i=1$ and $i=2$ the trees $\left\{T_{i}\left(\mathcal{L}_{j}\right): j=1, \ldots, k\right\}$ are vertex-disjoint subtrees of T_{i}.

- A maximum agreement forest (MAF) for T_{1}, T_{2} is an agreement forest for which k is minimal. Let $m\left(T_{1}, T_{2}\right)$ denote the value of $(k-1)$ for the minimal k.

Informally, $m\left(T_{1}, T_{2}\right)$ is the smallest number of edges that need to be cut from each of T_{1} and T_{2} so that the resulting forests agree, once unlabelled vertices of degree less than three are removed (by forced contraction).

Counting the edges cut, rather than the components, in a MAF may seem intuitive at first. The complicating factor, that may not be apparent upon first glance, is that internal vertices may be present in T_{1} or T_{2} which do not appear in any component. Consider the following:

T_{1}

Obviously, we can cut two edges in T_{1} to construct the forest with trees A, B, and C. We also only need to cut two edges in T_{2}. If we simply cut the edge incident with tree B and then applying forced contractions to the resulting forest we cause any the internal vertex to be removed. Now we simply have to cut the edge between trees A and C, again applying a forced contraction.

Lemma 2.8 For $T_{1}, T_{2} \in U B(n)$, the same number of edges must be cut in both T_{1} and T_{2} to construct their MAF.

Proof As hinted at, any_potential difficulty lies with internal vertices of T_{1} or T_{2} that are not in any component. Since these vertices are internal, they have degree three. As we prune any component from such a vertex we apply a forced contraction that removes the resulting vertex of degree two and joins the two incident edges.

This lemma justifies our definition of m. The next lemma shows that there may be several possible MAF's for a given-pair of binary trees.

Lemma 2.9 A MAF for $T_{1}, T_{2} \in U B(n)$ need not be unique.
Proof Let T_{1}, T_{2} be two different unrooted binary trees on four leaves. Since they are on four leaves, by removing the same leaf from both trees we obtain a MAF, however there are four possible leaves that we can remove.

2.8 TBR Distance and MAF Size

Theorem 2.8 Suppose we have two binary trees T, T^{\prime} with $\mathcal{L}(T)=\mathcal{L}\left(T^{\prime}\right)=\mathcal{L}$. Then,

$$
d_{T B R}\left(T, T^{\prime}\right)=m\left(T, T^{\prime}\right)
$$

In particular, m is a metric.
Proof We first show that $m\left(T, T^{\prime}\right) \leq d_{T B R}\left(T, T^{\prime}\right)$ by using induction on $k=d_{T B R}\left(T, T^{\prime}\right)$. If $k=1$, then only one edge needs to be cut in each of T and T^{\prime} in order to construct a MAF, hence the hypothesis holds.

Now, suppose that the hypothesis holds for pairs of trees with a TBR-distance of $k \geq 1$ and suppose $d_{T B R}\left(T, T^{\prime}\right)=k+1$. Then there is a tree $T^{\prime \prime}$ such that $d_{T B R}\left(T, T^{\prime \prime}\right)=k$ and $d_{T B R}\left(T^{\prime \prime}, T^{\prime}\right)=1$. Thus, by the inductive hypothesis, there exists a partition $\pi=\left\{A_{1}, \ldots, A_{k}\right\}$ of \mathcal{L} such that $\left\{T_{\mid A_{i}}^{\prime \prime}: i=1, \ldots, k\right\}$ is a MAF for $\left(T, T^{\prime \prime}\right)$, and a bipartition $\pi^{\prime}=\{A, B\}$ of \mathcal{L} such that $\left\{T_{\mid A}^{\prime \prime}, T_{\mid B}^{\prime \prime}\right\}$ is a MAF for $\left(T^{\prime \prime}, T^{\prime}\right)$. Now, by considering the subtrees $\left\{T^{\prime \prime}\left(A_{i}\right): i=1, \ldots, k\right\}$ of $T^{\prime \prime}$, we see that π^{\prime} either splits no set in π (case (i)), or π^{\prime} splits precisely one set in π - say A_{j} (case (ii)). Thus, if we set $\pi^{\prime \prime}$ equal to π in case (i), or equal to $\left\{\pi-\left\{A_{j}\right\}\right\} \cup\left\{A_{j} \cap A, A_{j} \cap B\right\}$ in case (ii), we have that $\left\{T_{\mid U}^{\prime \prime}: U \in \pi^{\prime \prime}\right\}$ forms an agreement forest for $\left(T, T^{\prime \prime}\right)$ and for $\left(T^{\prime \prime}, T^{\prime}\right)$ and thereby for $\left(T, T^{\prime}\right)$. Thus, $m\left(T, T^{\prime}\right) \leq k+1$, which completes the induction step.

To show that $m\left(T, T^{\prime}\right) \geq d_{T B R}\left(T, T^{\prime}\right)$, we again use induction, this time on $m=m\left(T, T^{\prime}\right)$. For $m=1$, the MAF is obtained by deleting a single edge from each of T and T^{\prime}, hence $d_{T B R}\left(T, T^{\prime}\right)=1$. Now suppose the inductive hypothesis holds for $m \leq k-1$ and that $m(T, T)=k$. Let $\left\{t_{1}, \ldots, t_{k+1}\right\}$ be a MAF for T, T^{\prime}. Fer at least one $i \in\{1, \ldots, k+1\}$, the subtree $T\left(\mathcal{L}_{i}\right)$ of T can be pruned from the rest of T by deleting one edge only. In T^{\prime} there exists at least one $j \in\{1, \ldots, k+1\}$ such that $T^{\prime}\left(\mathcal{L}_{i}\right)$ is joined to $T^{\prime}\left(\mathcal{L}_{j}\right)$ by a path that does not include any vertices in $U_{m \neq i, j} T^{\prime}\left(\mathcal{L}_{m}\right)$. Note that this last sentence could not also be true with T^{\prime} replaced by T, else we could construct a smaller MAF for T, T^{\prime} by amalgamating \mathcal{L}_{i} and \mathcal{L}_{j}. Now, we can cut the single edge of T incident with $T\left(\mathcal{L}_{i}\right)$ and then re-attach $T\left(\mathcal{L}_{i}\right)$ to $T\left(\mathcal{L}_{j}\right)$ in such a way that $T_{\mid \mathcal{L}_{i} \cup \mathcal{L}_{j}}=T_{\mid \mathcal{L}_{i} \cup \mathcal{L}_{j}}^{\prime}$ We call this new tree $T^{\prime \prime}$ and note that it must differ from T by exactly one TBR. $T^{\prime \prime}$ and T^{\prime} now have an AF of size k, and so $m\left(T^{\prime \prime}, T^{\prime}\right) \leq k-1$. Thus, by the inductive
hypothesis, $d_{T B R}\left(T^{\prime \prime}, T^{\prime}\right) \leq k-1$. Thus $d_{T B R}\left(T, T^{\prime}\right) \leq d_{T B R}\left(T, T^{\prime \prime}\right)+d_{T B R}\left(T^{\prime \prime}, T^{\prime}\right) \leq k$ as required to establish the induction step.

We conclude that $d_{T B R}\left(T, T^{\prime}\right)=m\left(T, T^{\prime}\right)$.

By Equation 2.2 and the first inequality of Theorem 2.8 we have

$$
\begin{equation*}
d_{S P R}\left(T_{1}, T_{2}\right) \geq m\left(T_{1}, T_{2}\right) \tag{2.12}
\end{equation*}
$$

Thus, the SPR-distance is greater than or equal to the number of edges that are cut to create the maximum agreement forest. This means that the number of components in a MAF for any two unrooted binary trees is at most onemore than the SPR-distance between the two trees. The counterexamples of Section 3.3 .2 demonstrate that the inequality can be strict.

2.9 Applications to Evolutionary Biology

The basis for most tree reconstruction of the "true" evolutionary tree for a set of n species is a set of n pre-aligned sequences of DNA. DNA sequences can be regarded as long strings made up of the letters A, G, C, and T. These represent the four base nucleotides; adenine, guanine cytosine and thymine. For simplicity most authors simply use their first letter.

Subtree transfer operations are useful in describing certain evolutionary events, in particular SPR's can be used to model two evolutionary events, horizontal gene transfer and recombinations, both of which cause can cause significant change to DNA.

2.9.1 Horizontal Gene Transfer

Definition 2.9.1 A horizontal gene transfer or HGT is the transfer of genetic information from one genome to another, specifically between two species [14].

Horizontal gene transfer differs from normal vertical gene transfer, that sees genetic information passed from the parental generation to the progeny. Instead genetic information is passed from one species to another, usually by viruses.

Retroviruses are common mechanisms for HGT, as they are able to transport genetic material and have the molecular machinery for inserting foreign DNA in to a host genome. However, not every HGT will result in changes to a genome. In fact, a gene transferred horizontally is less likely to retain its functionality than-a gene transfered from another genomic location with the same species [14].

The frequency of HGT in the biosphere is undetermined. Indeed, there is no actual way to prove that it has occurred. Nevertheless, several well known examples make the case for the presence of HGT highly probable. Two such examples, taken from Graur and Li [14], involve cats and monkeys, and fruit-flies.

Cats and Monkeys

A certain type C virogene is found in Baboons, and homologous sequences have been found in Old World monkeys. This similarity between the sequences and the taxological relationship is consistent with vertical evolution, and the virogene is believed to have been present for approximately 30 million years. The virogene is also found in six species of cat that are closely related to the domestic cat, but it is not present in any other Felidae, such as lions or tigers, nor is it believed to be found in any other carnivores. Thus there is a high probability that the gene has been transferred horizontally from a recent ancestor of the baboon to cats. This is believed to have been about $5-10$ million years ago. See Figure 2.7.

Fruit-flies and P Elements

The second exhibit in the case for HGT involves the P elements in the fruit-fly Drosophila melanogaster, which has rapidly spread throughout natural populations in the last 100 years. None of the closely related species D. mauritania, D. séchellia or D. simulans have P sequences. However the distantly related D. saltans contains P-like sequences very similar to those found in D. melanogaster, while D. willistoni also has P elements that differ by one base substitution from those of D. melanogaster.

The Building Blocks of Life

Some biologists conjecture that life originally evolved through HGT. Early autotrophic prokaryotes were able to photosynthesize and, as they did not depend on organic nutrients, began to proliferate. As they did, the byproduct of their photosynthesis, oxygen, gradually built up in the environment and formed the Ozone layer, enabling life to move on to the land. The eukaryotes were also developing around this time, however they could not photosynthesize, at least until they began engulfing autotrophicproparyotes in a process known as primary endosymbiosis. The absorbed prokaryote gradually donated a large part of its genome to it eukaryote host, the endosymbiont. Plants and algae have evolved from this process of primary endosymbiosis and more complicated cellular organisms have evolved by a process known as secondary endosymbiosis.- This-eccurs when the endosymbiont becomes absorbed. Gilson and McFadden [7] review secondary endosymbiosis further.

Application of the SPR

An SPR can be used to model the process of HGT. Suppose that a proposed evolutionary tree for a set of species S has been constructed from genetic information known not to contain any HGT (or any other factor causing discrepancy between the true tree and the proposed tree). Now suppose that a second
proposed evolutionary tree is produced for S, in which the genetic information is known to contain a single HGT. Then an important question is how far apart can the two proposed trees be. The answer to this is at most one SPR. The two trees may not differ if the HGT causes a subtree to be pruned and then regrafted to an adjacent edge.

If several HGT are present in the data for a species set S, then two different evolutionary trees T_{1}, T_{2} could be constructed from different genetic data sets. The SPR distance between the two trees then gives a lower bound on the number of HGT in the set, assuming that HGT's are the only source of changes in the genetic information. SPR's can also be masked if the same gene undergoes HGT twice, effectively hiding the first SPR.

In practise HGT are only one (unlikely) cause of discrepancies between proposed evolutionary trees and the true species tree. We have also assumed that the analysis of the genomic data returns the "correct" tree for that data, this again can not be taken for granted.

2.9.2 Recombination

Definition 2.9.2 A recombination occurs when two sub-sequences from two different sequences join to create a new sequence. The point where the two sub-sequences meet in the new sequence is called the recombination point [10].

Recombinations are sometimes referred to as cross overs, however we will not use this terminology, as an NNI is also referred to as a cross over by some authors. Figure 2.8 provides an example of a recombination.

The conventional model of evolution fails for recombinations because there are two sequences ancestral to the new sequence. In general the sub-sequence to the left of the recombination point has a different evolutionary history to the sub-sequence to the right of the recombination point, and hence we can not use a tree to describe the evolutionary history of the new sequence. Instead we need to use a tree to describe the history of the left sub-sequence and a different tree to describe the history of the right.

Tree reconstruction methods, such as Maximum Parsimony or Neighbour Joining, do not allow for recombinations, thus when sequences are analysed that contain recombinations erroneous trees are reconstructed, see [8] and [9].

If we were to arralye the left sub-sequences and the right sub-sequences and assuming that the reconstruction method returned the correct trees for both sides, then the question is how different can the two trees be. Assume that the reconstruction has occurred and the two recovered trees that describe the evolutionary history of the left and right sub-sequences are T_{l} and T_{r}. If exactly one recombination is present in the data then $d_{S P R}\left(T_{l}, T_{r}\right) \leq 1$. If several recombinations are present in the data, then we recover several evolutionary trees that are at most one SPR apart, where each one corresponds to a recombination.

In general, we can not guarantee that from a set of sequences, all recombination can be identified. For example, a first recombination may occur at a recombination point and then a second recombination might occur at the same point in the sequences, which will effectively mask the first recombination. Similarly recombination may occur that do not change the topology of the evolutionary tree [9].

Given two evolutionary trees for a set of sequences, say T_{1} and T_{2}, then $k=d_{S P R}\left(T_{1}, T_{2}\right)$ is a lower bound on the number of recombinations present in the data, again under the assumption that only recombinations are causing the differences in the two trees.

coses)

Figure 2.3: An example that tree topology does affect the number of trees within one SPR from a rooted binary tree. The tree T_{1} has twelve other trees at distance one SPR, while T_{2} has only eight.

Figure 2.4: Example of a TBR. The tree T_{1} has been split into two subtrees, one with leaf set $\{1,2,3\}$ and the other with leaf set $\{4,5,6,7\}$. A new edge has then been created between the two subtrees to reconnect them giving T_{2}.

Figure 2.5: An example that tree topology does affect the number of trees within one TBR from an unrooted binary tree. In the tree T_{1} no edge can be cut to obtain a subtree with three leaves. Thus any TBR involves subtrees with four and two leaves, or with five and one. In either case a subtree with one or two leaves can only be reconnected in one way, hence any TBR is also an SPR. However we can cut the central edge of T_{2} to obtain two subtrees of 3 leaves each. Now we can reconnect these two subtrees in such a way that the resulting tree is at SPR-distance two, but TBR distance one. Hence T_{2} will have more trees one TBR from it than T_{1}.

Figure 2.6: Illustration of the Proof of Lemma 2.3.

Figure 2.7: A virogene contained in Old World Monkeys is believed to have been horizontally transferred to some members of the Felidae family about 5-10 Million years ago. The dashed lines indicate histories of species not containing the virogene and the solid lines indicate histories of species that do contain the virogene. (Diagram based on that found in [14])

Figure 2.8: Example of a recombination. The left sub-sequence of sequence S_{1} and the right sub-sequence of sequence S_{2} recombine to form the new sequence S_{3}.

Chapter 3

Complexity of Computing Distances Between Evolutionary Trees

A fundamental problem is determining the distance between two given trees from $U B(n)$ with respect to some tree metric. Before we dive in the deep end we will formalise our problem nomenclature.

3.1 Tree Distance Problems

In this section, we briefly define the main problems, each whose complexity will later be examined.
The Θ-Distance Problem
Instance: Two trees, T_{1} and T_{2}, from $U B(n)$.
Question: What is $d_{\Theta}\left(T_{1}, T_{2}\right)$, where $\Theta \in\{N N I, S P R, T B R\}$?

This "three-in-one" problem is an optimization problem and as such will not fit in with the definition of NP-completeness. Thus we also introduce a new "three-in-one" decision problem.

The Parameterized Θ-Distance Problem

Instance: Two trees, T_{1} and T_{2}, from $U B(n)$ and a parameter $k \in \mathbb{N}$.
Question: Is $\left.d_{\Theta}\left(T_{1}, T_{2}\right)\right) \leq k$, where $\left.\Theta \in N N I, S P R, T B R\right\}$?

3.2 Tree Distance Problems and Class NP

The first step in analysing the complexity of the Θ-Distance Problem for $\Theta \in\{N N I, S P R, T B R\}$, is to show that the Parameterized Θ-Distance Problem is in the class NP. This class is defined formally in Garey and Johnson [6], however for our purposes the following loose definition will suffice.

Definition 3.2.1 NP is the class of all decision problems Π that under reasonable encoding schemes can be solved by polynomial time nondeterministic algorithms.

Theorem 3.1 The Parameterized Θ-Distance Problem is in $N P$ for $\Theta \in\{N N I, S P R, T B R\}$.
Proof These three problems can all be solved by a non-deterministic algorithm, as they are equivalent to searching for a path between two vertices of $G_{\Theta}(n)$ of length not more than k.

Definition 3.2.2 A problem L is in the class $N P$-complete if it is in $N P$ and every problem in $N P$ can be transformed to L in polynomial time.

This definition informally says that it is at least as difficult to solve a $N P$-complete problem as it is to solve any problem in NP. However, optimisation problems, such as trying to find the minimum distance between two trees from $U B(n)$ are not in $N P$ and hence cannot be $N P$-complete.

Definition 3.2.3 A problem L is said to be $N P$-hard if there is a problem L^{\prime} which is $N P$-complete and if L^{\prime} Turing reduces L in polynomial time.

Note see [6] for further details of complexity theory.

If we can show that the problem of determining whether $d_{\Theta}\left(T_{1}, T_{2}\right) \leq k$, for $T_{1}, T_{2} \in U B(n)$, is $N P$-complete, then the problem of determining the distance between the two trees is $N P$-hard.

3.3 Conventional Complexity of Tree Metric Problems

In this section, we examine the complexity of the tree metric problems for the NNI, SPR and TBR operations.

3.3.1 The NNI distance Problem

The NNI-distance between two trees from $U B(n)$ can be computed using a brute force method. Start with T_{1} and construct all the trees at NNI-distance one and check if any of these are T_{2}, if so then stop, otherwise construct all trees one NNI from those trees constructed previously and check these trees, stopping if one is \bar{T}_{2}, and so on recursively until a match it made. At any one stage we are constructing $2 n-6$ trees, and then another $2 n-6$ trees from those trees. In fact it is not hard to see that if $d_{N N I}\left(T_{1}, T_{2}\right)=k$ then we have to check $\mathcal{O}\left((2 n)^{k}\right)$ trees. This will lead to the problem size quickly growing to computationally intractable levels. In a realistic example with say 100 species and two trees say five NNI apart, then the number of trees to check is of 10^{11} in magnitude. This calculation is intractable and hence of no practical use.

The first to try and reduce the computational complexity of computing $d_{N N I}$ were Waterman and Smith [22] in 1978. They suggested an algorithm based on the decomposability of two trees about any shared split, or bi-partition of the leaf set, occurring in both trees. The authors suggested that this algorithm could be calculated efficiently, and conjectured that this might be an practical method for computing the the NNI distance. However, their algorithm has been shown to be ill-defined for two trees not sharing a split and the distance preserving quality of the decomposition has also been shown to be incorrect, leaving the question of $N P$-completeness still unresolved. Suspicions were raised by Jarvis et al. [12] in 1983 who showed Theorem 3 of [22] was incorrect along with Theorem 5. Jarvis et al. [11] also concluded that the status of Theorem 4 of [22] was also incorrect. Since then, many authors including Page [18] and Li et al. [13], among many, have all come up with counterproofs and counterexamples to the claims in [22] but the complexity still remains undecided, although most would expect the problem to be $N P$-complete - that_is intractable.
\because

3.3.2 The SPR Distance Problem

Seemingly the only paper to address the complexity of the SPR-problem is [10] in 1996. However the authors base their treatment on Lemma 7 of [10] that states that "The size of a MAF of T_{1} and T_{2} is one more than their subtree-transfer distance". The size of a MAF is taken to mean the number of component trees in the forest and the subtree-transfer distance refers to the subtree prune and regraft distance. However the lemma is incorrect as the counterexamples in Figure 3.1 show.

Figure 3.1: Counterexamples to Lemma 7 of [10]. In the first (resp. second) box there are two unrooted (resp. rooted) binary trees that are more than one SPR apart, yet their MAF requires just one edge deletion.

Because Lemma 7 of [10] is necessary in Theorem 8 of [10], the latter stating that it is $N P$-hard to compute the SPR distance between two binary trees, we must conclude that the theorem and hence the complexity of the SPR distance problem remains unresolved.

3.3.3 The TBR Distance Problem

Theorem 3.2 For any two unrooted binary trees on n leaves, T_{1} and T_{2}, computing $d_{T B R}\left(T_{1}, T_{2}\right)$ is NP-hard.

Proof If we replace Lemma 7 of [10] by Theorem 2.8 of this thesis, then the amended proof of Theorem 8 of [10] shows that computing the TBR-distance is $N P$-hard.

3.4 Fixed Parameter Tractability for Tree Metrics

Often when a problem is shown to be $N P$-complete, further investigation of the complexity is abandoned. Such problems are deemed to grow exponentially, making them intractable for large instances, and thus further investigation is pointless. However, many researchers working with $N P$-complete, and supposedly intractable, problems have come across ways of solving these problems that do not grow exponentially with the size of the problem instance.

The ideas used to reduced the computational complexity of such problems are almost always relevant to a single problem only and solutions for some problems do not seem to exist. One of the observations made of problems with better than expected complexity is that some parameter of the problem is bounded and small. This introduces the idea of Parameterised computational complexity.

By investigating problems, and in particular, searching for parameters of a problem with naturally low bounds, classification of problems can be made according to their complexity in a manner much more practical than traditional classifications. For a formal treatment see [3], [4] or [5].

Following [3], the basic framework of parameterised complexity is fixed-parameter tractability, a concept we now outline.

Definition 3.4.1 A problem $P=(x, k)$ is fixed-parameter tractable if it can be determined in time $f(k) n^{\alpha}$, where x is the problem input, k is a parameter, $|x|=n, \alpha$ is a constant independent of both n and k, and f is some arbitrary function. The family of fixed-parameter tractable problems is denoted FPT.

It is shown in [2] that the definition of $F P T$ is unchanged if $f(k) n^{\alpha}$ is replaced by $f(k)+n^{\beta}$, where α, β are independent of both n and k.

Showing that a problem classed as $N P$-hard is in $F P T$ means that it may not be intractable for large problem instances. There are many such problems that are able to be solved when the problem becomes huge, for others the improvement is only slight. Nevertheless, once a problem is classed as $F P T$ it could potentially have it complexity greatly improved.

Our goal for the remainder of this chapter will be to show that the problem of calculating the TBRdistance between two unrooted binary trees on n leaves in FPT. But first we begin with the well examined Vertex Cover Problem to illustrate the notion of FPT.

The Vertex Cover Problem (Parameterised)

Given a graph $G=(V, E)$, where $|V|=n$, and a natural number k, the Vertex Cover Problem consists of determining whether G has a vertex cover of size k. That is, determining if a subset $V^{\prime} \subseteq V$ exists with $\left|V^{\prime}\right| \leq k$ such that for every edge $\{u, v\} \in E$, either $u \in V^{\prime}$ or $v \in V^{\prime}$. This problem is shown to $N P$-hard by Papadimitriou and Yannakakis [17].

This problem can be parameterized very naturally, by treating k as the parameter. One method of solving this problem would then be to exhaustively search all subsets of size k (k-subsets), requiring $\mathcal{O}\left(n^{k+1}\right)$ time. However-we can do much better when n is large, provided k is small.

To show that the Vertex Cover Problem is in FPT we have to show that it can be solved in time $\mathcal{O}\left(f(k) n^{\alpha}\right)$. Papadimitriou and Yannakakis [17] have shown that this problem can be solved in $\mathcal{O}\left(3^{k} n\right)$, while Balasubramanian et al. [1] have improved this to $\mathcal{O}\left((53 / 40)^{k} k^{2}+n k\right)$ (recall this is an equivalent form of the complexity). Hence the tractability of the Vertex Cover Problem is determined by the size of the vertex cover and not the number of vertices. If we are only interested in finding small vertex covers, say of maximum size ten, then we can find them or determine that they do not exist very quickly, even when n is large. Currently the best solution to the vertex problem is that of Downey, Fellows and Stege [5] and is $\mathcal{O}\left(r^{k} k^{2}+n k\right)$ where $r=4^{1 / 5}$.

Vertex Cover is a very encouraging problem, as its complexity has fallen significantly since it was originally classed as FPT. In fact once a problem is shown to be FPT it encourages investigation and therefore bounds will often improve.

3.4.1 Tree Reduction Rules

Despite the fact that the TBR-distance problem is NP-hard and the suspicion that so too is the SPRdistance problem, our aim is to show that both these problems are not as bad as the " $N P$-hard" tag makes them appear. We show that the Parameterized TBR-distance problem is FPT, while we conjecture that so too is the Parameterized SPR-distance problem.

The first step of a typical FPT problem is to kernelize the problem, that is, the size of the problem is reduced in such a way that the answer to the reduced problem is the same as the answer to the original problem and that the size of the reduced problem is some function of the parameter k, i.e. it does not involve n. In our case we wish to kernelize the problem by reducing the size of the two given trees, while still maintaining the SPR or TBR distance between them. We propose two ways to do this:

- Rule 1 Replace any pendant subtree that occurs identically in both trees by a single leaf with a new label.
- Rule 2 Replace any chain of pendant subtrees that occur identically in both trees by three new leaves with new labels correctly oriented to preserve the direction of the chain.

Figure 3.2 and Figure 3.3 illustrate Rule 1 and Rule 2 respectively, whilst Figure 3.4 provides an example of why three leaves are required for Rule 2.

Lemma 3.1 For $T_{1}, T_{2} \in U B(n)$ Rule 1 and Rule 2 can be repeatedly applied to reduce T_{1} and T_{2}, until they can be reduced no further, in polynomial time.

Lemma 3.1 is easily demonstrated. We will not attempt to do so here, nor quantify the time required. Useful further work might involve finding a fast implementation.

Preservation of TBR Distance

Definition 3.4.2 An $a b c \frac{\bar{t} \bar{r} \bar{e}}{}-$ is a binary tree T whose leaf set includes three leaves a, b, c with the following property; if v_{a}, v_{b}, v_{c} are the three vertices of T adjacent to a, b, c (resp.) then $\left\{v_{a}, v_{b}\right\}$ and $\left\{v_{b}, v_{c}\right\}$ are edges of T. See Figure 3.4.1.

Lemma 3.2 (The abc lemma) If $T, T^{\prime} \in U B(n)$ are two abc trees with $\mathcal{L}(T)=\mathcal{L}\left(T^{\prime}\right)$, then there exists a MAF \mathcal{F} for T, T^{\prime} in which a, b, c are contained in the leaf set of one of the trees in \mathcal{F}.

Proof Suppose \mathcal{F} is a MAF for T, T^{\prime}. Let L_{a} (resp. L_{c}) be the set of leaves connected to a (resp. c) once edge $\left\{v_{a}, v_{b}\right\}$ (resp. $\left\{v_{b}, v_{c}\right\}$) is deleted from T. Let $L_{a}^{\prime}=L_{a}-\{a\} ; L_{c}^{\prime}=L_{c}-\{c\}$. We now distinguish two cases:

1. There exists a tree $t \in \mathcal{F}$ with leaves from both L_{a}^{\prime} and L_{c}^{\prime}.
2. No tree in \mathcal{F} contains leaves from both L_{a}^{\prime} and L_{c}^{\prime}.

In case (1), let $t_{a}=t_{\mid L_{a}^{\prime}}$ and $t_{c}=t_{\mid L_{\mathrm{c}}^{\prime}}$, and let $I:=|\mathcal{L}(t) \cap\{a, b, c\}|$. If $I=0$ then each of a, b and c must be isolated point in \mathcal{F} (by property (2) in the definition of an AF). Let $\mathcal{F}^{\prime}:=(\mathcal{F}-\{a, b, c, t\}) \cup\left\{t_{a}, t_{c}, t_{a b c}\right\}$ (where $t_{a b c}$ is the tree with the three leaves a, b, c). Then \mathcal{F}^{\prime} is an agreement forest for $T, \overline{\mathcal{F}^{\prime}}$ with fewer trees than \mathcal{F}, contradicting the minimality of \mathcal{F} - thus this case does not arise.

If $I=1$, let x denote the leaf in $\mathcal{L}(t) \cap\{a, b, c\}$ and y, z denote the other two leaves. Then, y, z must be isolated vertices in \mathcal{F} and so $\mathcal{F}^{\prime}:=(\mathcal{F}-\{y, z, t\}) \cup\left\{t_{a}, t_{c}, t_{a b c}\right\}$ is also an AF for T, T^{\prime} with the same number of trees as \mathcal{F}. Thus we can replace \mathcal{F} by \mathcal{F}^{\prime} to obtain a MAF in which a, b, c occur in a single component.

If $I=2$, then one of the leaves, $x \in\{a, b, c\}$ is an isolated vertex in \mathcal{F}. Let $t^{\prime}:=T_{\mid \mathcal{L}(t) \cup\{x\}}$. Then $\mathcal{F}^{\prime}=(\mathcal{F}-\{x, t\}) \cup\left\{t^{\prime}\right\}$ is also an AF forest for T, T^{\prime}, but with fewer trees than \mathcal{F}, a contradiction, so this case does not arise.

If $I=3, \mathcal{F}$ already satisfies the condition we want and we are done.
In case 2 , if \mathcal{F} eontains all three leaves a, b, c then we are done. Otherwise, we distinguish two subcases:

Figure 3.2: Reduction of two trees using Rule 1.

Figure 3.3: Reduction of two trees using Rule 2.

Figure 3.4: This figure gives an example of why at least three leaves are needed in the reduced chain. Initially $d_{T B R}\left(T_{1}, T_{2}\right)=2$, however if we reduced the identical chain to only two leaves then $d_{T B R}\left(T_{1}^{\prime}, T_{2}^{\prime}\right)=1$ (to achieve this prune off the vertex b in T_{1}^{\prime} and regraft it on the other side of vertex a.)

T_{1}

T_{2}

Figure 3.5: T_{1} is an example of an $a b c$ tree, however T_{2} is not, as there are more than three edges between b and c.
(i) at least one leaf $x \in\{a, b, c\}$ occurs as an isolated vertex in \mathcal{F}, or
(ii) leaves a, b are in one component $t_{1} \in \mathcal{F}$ and leaf c is in another $t_{2} \in \mathcal{F}$ (or leaves $b ; \bar{\sim} \overline{\operatorname{ran}}$ in one component, and leaf a is in another).

In subcase (i), delete a, b, c from any trees in \mathcal{F} and replace isolated leaf x by the tree $t_{a b c}$ to obtain an AF for T, T^{\prime} of the same size as \mathcal{F}. Since this contains a, b, c in one tree we are done.
 $\mathcal{F} ;$ a contradiction.

Theorem 3.3 Let $T_{1}, T_{2} \in U B(n)$ and $\operatorname{let} T_{1}^{\prime}$ and T_{2}^{\prime} be obtained from T_{1} and T_{2} respectively by applying Rule 1 or Rule-2.-Then $d_{T B R}\left(T_{1}, T_{2}\right)=d_{T B R}\left(T_{1}^{\prime}, T_{2}^{\prime}\right)$.

Proof Rule 2 Label the subtrees in the chain shared by T_{1} and T_{2} as t_{1}, \ldots, t_{r} where $r \geq 3$ (with this order). Suppose these are replaced by new leaves a, b, c under Rule 2 . Thus T_{1}^{\prime} and T_{2}^{\prime} are both $a b c$ trees, and so there exists a MAF \mathcal{F} for $T_{1}^{\prime}, T_{2}^{\prime}$ satisfying Lemma 3.2. Now, in these trees let us re-insert the trees t_{1}, \ldots, t_{r} in this order in each of $T_{1}^{\prime}, T_{2}^{\prime}$ to new vertices that subdivide the edge $\left\{v_{a}, v_{b}\right\}$ (where v_{a}, v_{b} are the vertices adjacent to a and b). Call the resulting trees $T_{1}^{\prime \prime}, T_{2}^{\prime \prime}$. Now, any MAF for $T_{1}^{\prime}, T_{2}^{\prime}$ which has leaves a, b, c in the same component t can be modified to produce an agreement forest for $T_{1}^{\prime \prime}, T_{2}^{\prime \prime}$ of the same size, by simply attaching the trees t_{1}, \ldots, t_{r} along the edge $\left\{v_{a}, v_{b}\right\}$ of t (or, in case $v_{a}=v_{b}$ in t, along the edge from a to v_{a}). Thus, by Theorem $2.8, d_{T B R}\left(T_{1}^{\prime \prime}, T_{2}^{\prime \prime}\right) \leq d_{T B R}\left(T_{1}^{\prime}, T_{2}^{\prime}\right)$. However, since T_{1}, T_{2} are both induced subtrees of $T_{1}^{\prime \prime}, T_{2}^{\prime \prime}$, Theorem 2.3 gives $d_{T B R}\left(T_{1}, T_{2}\right) \leq d_{T B R}\left(T_{1}^{\prime \prime}, T_{2}^{\prime \prime}\right)$ and thus $d_{T B R}\left(T_{1}, T_{2}\right) \leq d_{T B R}\left(T_{1}^{\prime}, T_{2}^{\prime}\right)$.

For the converse inequality, with t_{1}, \ldots, t_{r} as before, suppose we select a leaf $a \in \mathcal{L}\left(t_{1}\right), b \in \mathcal{L}\left(t_{2}\right), c \in$ $\mathcal{L}\left(t_{3}\right)$ and replace the chair t_{1}, \ldots, t_{r} in T_{1}, T_{2} by leaves a, b, c (correctly oriented) to obtain trees $T_{1}^{\prime}, T_{2}^{\prime}$. Let U denote the set of leaves of T_{1} that do not lie in the chain, together with a, b, c. Then, by Theorem $2.3, d_{T B R}\left(T_{1 \mid U}, T_{2 \mid U}\right) \leq d_{T B R}\left(T_{1}, T_{2}\right)$, and since $T_{i \mid U}=T_{i}^{\prime}$ for $i=1,2$ we obtain $d_{T B R}\left(T_{1}^{\prime}, T_{2}^{\prime}\right) \leq$ $d_{T B R}\left(T_{1}, T_{2}\right)$, as required.

Combining both inequalities we get $d_{T B R}\left(T_{1}^{\prime}, T_{2}^{\prime}\right)=d_{T B R}\left(T_{1}, T_{2}\right)$.
Rule 1 Similar to, but simpler than Rule 2.

Preservation of SPR Distance

Currently, we are only able to conjecture that Rule 2 is distance preserving for the SPR transformation.

Conjecture 3.4 Let $T_{1}, T_{2} \in U B(n)$ and let T_{1}^{\prime} and T_{2}^{\prime} be obtained from T_{1} and T_{2} by applying Rule 1 or Rule 2. Then $d_{S P R}\left(T_{1}, T_{2}\right)=d_{S P R}\left(T_{1}^{\prime}, T_{2}^{\prime}\right)$.

The proof that Rule 1 is distance preserving for the SPR operation is straight forwärd.

Preservation of NNI Distance

Despite the fact that. Rule 1 and Rule 2 are distance preserving for the TBR-distance, and conjectured to preserve SPR-distance, Rule 2 does not preserve NNI-distance.

Definition 3.4.3 Given a tree T and leaves $i, j \in \mathcal{L}(T)$, let $\Delta_{i, j}(T)$ be the number of edges between i and j.

Lemma 3.3 For two binary trees T and T^{\prime} on n leaves, such that $d_{N N I}\left(T, T^{\prime}\right)=1,\left|\Delta_{i, j}(T)-\Delta_{i, j}\left(T^{\prime}\right)\right| \leq$ 1.

Proof Suppose that we have T and T^{\prime} as above. Consider the four subtrees A, B, C, D that are rearranged by an NNI operation. The result follows immediately from considering cases where i and j occur in any of these subtrees.

Lemma 3.4 Rule 2 doess not preserve NNI-distance.
Proof By the triangle inequality and Lemma 3.3 if $\left|\Delta_{i, j}(T)-\Delta_{i, j}\left(T^{\prime}\right)\right|>k$, then $d_{N N I}\left(T, T^{\prime}\right)>k$. Now consider the four trees in Figure 3.6. Rule 2 reduces T_{1} (and T_{2} resp.) to $T_{1}^{\prime}\left(T_{2}^{\prime}\right)$ and $d_{N N I}\left(T_{1}^{\prime}, T_{2}^{\prime}\right)=3$. However $\Delta_{1,2}\left(T_{1}\right)=1$ and $\Delta_{1,2}\left(T_{2}\right)=n-2$, hence $\left|\Delta_{1,2}\left(T_{1}\right)-\Delta_{1,2}\left(T_{2}\right)\right|=n-3$, thus $d_{N N I}\left(T_{1}, T_{2}\right) \geq n-3$. Choosing $n=7$ gives $d_{N N I}\left(T_{1}, T_{2}\right)>d_{N N I}\left(T_{1}^{\prime}, T_{2}^{\prime}\right)$. Thus, Rule 2 does not preserve NNI-distance.

Figure 3.6: Consider the two trees T_{1} and T_{2}. When reduced using Rule 2 we get T_{1}^{\prime} and T_{2}^{\prime}. By Lemma $3.4 d_{N N I}\left(T_{1}, T_{2}\right)>d_{N N I}\left(T_{1}, T_{2}\right)=3$ for $n \geq 7$.

3.4.2 Bounded Size of Maximally Reduced Trees

Suppose that we are given $T_{1}, T_{2} \in U B(n)$ such that $d_{\Theta}\left(T_{1}, T_{2}\right)=k$ for $\Theta \in\{S P R, T B R\}$, $\overline{\text { and }}$ that T_{1} and T_{2} can be reduced no further by Rule 1 or Rule 2 . In this section, we show that the size of the leaf set of the two trees is bounded by some function f which depends only on k, ie $\left|\mathcal{L}\left(T_{i}\right)\right| \leq f(k)$, where $i \in\{1,2\}$. Our goal will be Theorem 3.5, but on the way we will need several new definitions and lemmas.

By Equation 2.12-there is a MAF for T_{1} and T_{2} with at most to $k+1$ components. Let $t_{1}, t_{2}, \ldots, t_{r}$ be the components of the MAF where $r \leq k+1$. To find an upper bound for the size of T_{1} and T_{2} we determine a bound on the size of each component.

If the size of the leaf set of a component t_{j} is one, then it is impossible to reduce the size of the component further, hence the upper bound for the size of the leaf set of this component is always one, and thus we do not need to consider this case. For this reason, all components will be assumed to have a leaf set of size greater than one.

To upper bound the size of the leaf set for the reduced components, we begin by introducing two new definitions.

Definition 3.4.4 Given $T_{1}, T_{2} \in U B(n)$ and their MAF with components $t_{1}, t_{2}, \ldots, t_{r}$, the edges in T_{1} or T_{2} that connect the components are the intercomponent edges. The number of intercomponent edges incident with componene \bullet_{j} in T_{i} is the component degree and shall be denoted $\operatorname{deg}^{i}\left(t_{j}\right)$. See Figure 3.7.

Figure 3.7: T_{1} and T_{2} are made up of the same components (large circles) and intercomponent edges. In the tree T_{1} component C has degree three while in T_{2} it has degree one. Note that vertices are present in both trees that are not in any component and that in T_{2} intercomponent edges exist that are not incident to any component.

Definition 3.4.5 In the trees T_{1} and T_{2} there may be vertices between components that disappear when the MAF is constructed. We shall call these vertices non-component vertices. Note also that no leaf of T_{i} can disappear under a forced contraction and so must be in a component. Thus, all non-component vertices are internal.

Definition 3.4 .5 allows us to sum the component degrees over all components in much the same way as one can sum degrees over all vertices in a tree.

Lemma 3.5 Let $t_{1}, t_{2}, \ldots, t_{r}$ be the trees in a MAF for T_{1} and T_{2} where $r \leq k+1$ and $i \in\{1,2\}$. Then $\sum_{j=1}^{r} \operatorname{deg}^{i}\left(t_{j}\right) \leq 2 k$ for $i=1,2$.

Proof Reduce eacheomponent to a vertex labelled with the label of that component. We shall call these vertices component-vertices, and note that we are now summing over the degree of these vertices instead of the component degrees of each component. However, the notation remains the same, so we continue to write $\Sigma_{j=1}^{r} \operatorname{deg}^{i}\left(t_{j}\right)$. Figure 3.8 illustrates this transformation.

For T_{i} reduced in this manner, we use induction on the number of non-component vertices. If T_{i} contains no non-component vertices, then the total number of vertices is r and hence $\Sigma_{j=1}^{r} \operatorname{deg}^{i}\left(t_{j}\right)=2 r-2$ by Lemma-1.1. Since $r \leq k+1$, we have $\Sigma_{j=1}^{r} \operatorname{deg}^{i}\left(t_{j}\right) \leq 2 k$. Hence the hypothesis holds.

Figure 3.8: T_{1} is made up of components (large circles) and three non-component vertices. T_{1} is transformed to T_{2} by replacing the components by component vertices (grey filled circles). The non-component vertices remain unchanged_Note that T_{2} need not be binary.

Assume that if l non-component vertices are present in a tree $T_{i, l}$, then $\left[\Sigma_{j=1}^{r} \operatorname{deg}^{i}\left(t_{j}\right)\right]_{T_{i, l}} \leq 2 r-2$ and suppose that we are given a tree $T_{i, l+1}$ with $(l+1)$ non-component vertices. Then there must be at least one non-component vertex w adjacent to two component vertices. Suppose that the two component vertices are labelled t_{u} and t_{v}. If we now prune t_{v} and regraft it to t_{u} then $\operatorname{deg}\left(t_{v}\right)$ remains unchanged and $\operatorname{deg}\left(t_{u}\right)$ has increased by one. Finally w is removed as it has degree two and its two incident edges are amalgamated into a single edge. Call this new tree $T_{i, l+1}^{\prime}$, and note that it only contains l noncomponent vertices, but that its sum over the degrees of component vertices is one more than that of $T_{i, l+1}$. By the induction hypothesis $\left[\Sigma_{j=1}^{r} \operatorname{deg}^{i}\left(t_{j}\right)\right]_{T_{i, l+1}^{\prime}} \leq 2 r-2$, so $\left[\Sigma_{j=1}^{r} \operatorname{deg}^{i}\left(t_{j}\right)\right]_{T_{i, l+1}}<2 r-2 \leq 2 k$. Thus $\Sigma_{j=1}^{r} \operatorname{deg}^{i}\left(t_{j}\right) \leq 2 k$ until no more internal non-component vertices can be added (in which case all component vertices are leaves.) Figure 3.9 illustrates the induction step.

Consider $T_{1}, T_{2} \in U B(n)$ and a MAF with components $t_{1}, t_{2}, \ldots, t_{r}$. The component must be connected differently in each tree otherwise the MAF would not be maximal - this shows © $\overline{\text { essential }}$ differences between T_{1} and T_{2}. The way the components are linked will determine the size of the upper bound for each component, not the number of leaves in the component. If we want to examine the similarities and differences of a component in both trees we must include the intercomponent edges. Our goal will be to reduce therestical sections of t_{j}^{1} and t_{j}^{2} using Rule 1 and Rule 2 and thereby find a suitable reduction for t_{j}^{-}and so on for T_{1} and T_{2}.

We begin by putting $s_{j}=\operatorname{deg}^{1}\left(t_{j}\right)+\operatorname{deg}^{2}\left(t_{j}\right)$. Hence the component t_{j} has s_{j} edges incident with it in total. We then proceed to define four new trees, all based on component t_{j}.

Definition 3.4.6 Let t_{j}^{1} be the tree obtained from t_{j} by adding $\operatorname{deg}^{1}\left(t_{j}\right)$ new leaves, such that their pendant edges subdivide the same edges as the intercomponent edges in T_{1}. Let R_{j}^{1} be the leaf set of the

Figure 3.9: $T_{i, l+1}$ and $T_{i, l+1}^{\prime}$ are unrooted trees on n leaves (neither of which need be binary.) $T_{i, l+1}$ contains a non-component vertex w that shares edges with component vertices t_{u} and $t_{v} \cdot T_{i, l+1}^{\prime}$ is obtained from $T_{i, l+1}$ by pruning t_{u} from w and regrafting it to t_{v}.
newly added leaves.
We define t_{j}^{2} similarly, except we use T_{2} instead of T_{1} and so that that $R_{j}^{1} \cap R_{j}^{2}=\emptyset$. Let τ_{j} be t_{j} with s_{j} leaves added to t_{j} again so that their pendant edges subdivide the same edges as those subdivided by intercomponent edges in both T_{1} and T_{2}. Let $R_{j}=R_{j}^{1} \cup R_{j}^{2}$ and note that $R_{j} \cap \mathcal{L}\left(t_{j}\right)=\emptyset$. Finally note that $\tau_{j \mid R_{j}}$ is τ_{j} with leaf set restricted to R_{j}. Figure 3.10 illustrates this definition.

The trees τ_{j} and $\tau_{j \mid R_{j}}$ will be the main tools used to find the upper bound for the size of the component t_{j}. This will be done in Theorem 3.5, however before we can do so we need several lemmas.

It is quite conceivable that any one edge of t_{j} may be subdivided several times. In fact an edge may be subdivided by components in both T_{1} and T_{2}. The order in which the edge is subdivided is implicitly defined when constructing t_{j}^{1} and t_{j}^{2}, however when constructing τ_{j} it may be possible to subdivide an edge in several ways. Later we will consider the internal and pendant edges of $\tau_{j \mid R_{j}}$, and as the next lemma shows the order in which the edge is subdivided when constructing τ_{j} will not affect our analysis.

Lemma 3.6 The order in which an edge is subdivided does not affect whether or not $\overline{\bar{l}} \overline{\overline{\bar{e}}}$ an from $\mathcal{L}\left(t_{j}\right)$ are on pendant or internal edges of $\tau_{j \mid R_{j}}$ in τ_{j}.

Proof Suppose that we are given T_{1}, T_{2} and their MAF made up of components $t_{1}, t_{2}, \ldots, t_{r}$. Assume that component t_{j} has an edge e, that is subdivided in both T_{1} and T_{2} by an intercomponent edge. We can regard the edges of t_{j} as a bipartition of the $\mathcal{L}\left(t_{j}\right)$, and so when a new edge is added by subdividing a pre-existing edge the same partition of the original leaf set is still present. For this reason, the order in which the edge is subdivided will not affect whether or not the leaves from $\mathcal{L}\left(t_{j}\right)$ are on pendant edges or internal edges of $\tau_{j \mid R_{j}}$ in the tree τ_{j}.

As a consequence of Lemma $3.6 \tau_{j}$ may not be unique. This is because if there is an edge that is

t_{j}

t_{j}^{1}

$\tau_{j \mid R_{j}}$

τ_{j}

Figure 3.10: Suppose component t_{j} occurs in a MAF for T_{1} and T_{2} both in $U B(n)$. The trees t_{j}^{1}, t_{j}^{2}, τ_{j}, and $\tau_{j \mid R_{j}}$ are all constructed according to Definition 3.4.6. The tree τ_{j} can also be considered with pendant subtrees along the edges (thick lines) of $\tau_{j \mid R_{j}}$.
subdivided by intercomponent edges in both T_{1} and T_{2}, then changing the order in which the edge is subdivided when constructing τ_{j} will construct a different tree.

Lemma 3.7 Each of the trees $t_{j}^{1}, t_{j}^{2}, \tau_{j}$ and $\tau_{j \mid R_{j}}$ are binary for all $j \in\{1, \ldots, r\}$.
Proof Since t_{j} is binary and all new edges are introduced by subdividing existing edges, all internal vertices of $t_{j}^{1}, t_{j}^{2}, \tau_{j}$ and $\tau_{j \mid R_{j}}$ will have degree three and thus all of these trees will be binary.

Since $R_{j} \cap \mathcal{L}\left(t_{j}\right)=\emptyset$, no leaf from t_{j} appears in the tree $\tau_{j \mid R_{j}}$. Furthermore $\tau_{j \mid R_{j}}$ is binary with s_{j} leaves, and therefore will have s_{j} pendant edges and $s_{j}-3$ internal edges. Removing the leaf set restriction can be regarded as adding in pendant subtrees along these edges. We will prove that there can be at most three leaves on an internal edge of $\tau_{j \mid R_{j}}$ and at most five leaves on a-pendant edge of $\tau_{j \mid R_{j}}$. This will enable irs to bound the size of components.

Lemma 3.8 No cherry of $\tau_{j \mid R_{j}}$ can be a cherry of τ_{j}
Proof Suppose on the contrary, that there is a cherry $\{a, b\}$ of $\tau_{j \mid R_{j}}$ that is also a cherry of τ_{j}. Since the cherry is in $\tau_{j \mid R_{j}}$, it must be made up of two intercomponent edges. Therefore there must be a vertex in t_{j} with at least two intercomponent edges incident to it. However this can not happen as intercomponent edges can not subdivide other intercomponent edges, hence no two can be incident.

We are almost ready to state our theorem on the upper bound of the size of the leaf set of T_{1} and T_{2}. All that remains is to examine the maximum number of leaves that can be attached to an edge of $\tau_{j \mid R_{j}}$ in the tree τ_{j}. Let us assume for the purposes of Lemmas 3.9 and 3.10, that we have two trees $T_{1}, T_{2} \in U B(n)$ such that $d_{\Theta}\left(T_{1}, T_{2}\right)=k$ and a MAF t_{1}, \ldots, t_{r}, but as yet T_{1} and T_{2}, and hence their components, have not been reduced (if possible) by either Rule 1 or Rule 2.

Lemma 3.9 For a component t_{j} in the MAF, there can be at most three leaves in τ_{j} attached to an internal edge of $\tau_{j \mid R_{j}}$ in both t_{j}^{1} and t_{j}^{2}, after being reduced by Rule 1 or Rule 2.

Proof Suppose that for a given component t_{j} we have constructed τ_{j} and $\tau_{j \mid R_{j}}$. Suppose that $\tau_{j \mid R_{j}}$ has an internal edge, e_{i} to which a chain of subtrees is attached in τ_{j}. We denote the connected subtree of τ_{j} between the two vertices of $\tau_{j \mid R_{j}}$ adjacent to e_{i} be Γ. Let P_{j} be the set over all $u, v \in \mathcal{L}\left(t_{j}\right)$ of the path from u to v. By Lemma 3.8 there is at least one path in P_{j} that traverses e_{i}. Thus after the leaves from R_{j} have been removed at least one pendant leaf will occur at each end of Γ. This ensures that in both t_{j}^{1} and t_{j}^{2} there will always be at least one leaf at each end of Γ. Hence Γ can be reduced to at most three vertices using Rule 2. If Γ contains a single pendant subtree then Rule 1 can reduce it to a single vertex.

Lemma 3.10 For a component t_{j} in the MAF, any pendant subtrees in $\tau_{j \mid R_{j}}$ attached to a pendant edge of $\tau_{j \mid R_{j}}$ can be reduced to at most five vertices using Rule 1 and Rule 2 in both t_{j}^{1} and t_{j}^{2}.

Proof Suppose that for a given component t_{j} we have constructed τ_{j} and $\tau_{j \mid R_{j}}$ and that the component has edges that reduce down to a pendant edge, e_{p}, in $\tau_{j \mid R_{j}}$. Since $\tau_{j \mid R_{j}}$ is binary by Lemma 3.7 there are three cases to consider.
(i) e_{p} the only edge of $\tau_{j \mid R_{j}}$. This situation occurs if the component only has two intercomponent edges incident to it. In t_{j}^{1} only one intercomponent edge can be incident, and the second intercomponent edge must occur in t_{j}^{2}. We can regard all leaves in $\mathcal{L}\left(t_{j}\right)$ to be in a chain, Γ, off e_{p}, see Figure 3.11. In t_{j}^{1} (or t_{j}^{2} respectively) one end of Γ will not have an intercomponent edge, hence the two pendant subtrees at this end form a cherry that does not exist in the t_{j}^{2} (t_{j}^{1} resp.) This means that we must reduce one pendant subtree at this end of Γ to a leaf using Rule 1 . Similarly at the other end of Γ we have a cherry in one tree that is not present in the other which means that one subtree at this end of Γ must be reduced to a leaf. Thus we have one leaf at each end and smaller chain of pendant subtrees that occurs in both t_{j}^{1} and t_{j}^{2}, and hence can be replaced by at most three leaves using Rule 2. Hence we have a maximum of five leaves on e_{p} after reduction by Rules 1 and 2 .

Figure 3.11: Example of case (i). The tree τ_{j} is constructed from a component t_{j}, with two incident intercomponent edges consisting of several pendant subtrees $P_{1}, \ldots, P_{n} . \quad \tau_{j \mid R_{j}}$ merely consists of one pendant edge and two leaves, $r_{1}, r_{2} \in R_{j}$. When reduced, subtree P_{1} is reduced to vertex d, while P_{n} is reduced to vertex e (by_Rule 1), the remaining subtrees are reduced to three vertices (Rule 2) to give t_{j}^{\prime}
(ii) e_{p} is only adjacent to two pendant edges in $\tau_{j \mid R_{j}}$. Suppose that there are pendant subtrees are on e_{p}. By Lemma 3.8 no cherry in $\tau_{j \mid R_{j}}$ can be a cherry in τ_{j} also, hence if there is a chain of pendant subtrees along e_{p}, there must also be a leaf from $\mathcal{L}\left(t_{j}\right)$ on one of the other pendant edges. At the free end of e_{p} there must be a cherry made up of one pendant subtree from $\mathcal{L}\left(t_{j}\right)$ and a leaf from R_{j}. Thus in either t_{j}^{1} or t_{j}^{2}, this cherry will not appear, and thus the pendant subtree can only be
reduced using Rule 1 . All the remaining pendant subtrees can be reduced using Rule 2 , hence a maximum of four vertices is needed. See Figure 3.12 for an example of this case.

Figure 3.12: Example of case (ii). Suppose we have a component t_{j} with corresponding τ_{j} above. The thick lines in τ_{j} represent edges in $\tau_{j \mid R_{j}}$ (also shown) while the thin lines are the remaining edges in τ_{j}. The existence of leaf $l \in \mathcal{L}\left(t_{j}\right)$ is guaranteed. Leaf $r_{1} \in \mathcal{L}\left(R_{j}\right)$ forms a cherry with a pendant subtree. When reduced, and restricted to the leaf set of t_{j}, the pendant subtree in the cherry becomes a single vertex, d, when the chain of pendant subtrees, Γ is replace by three vertices, a, b and c. The resulting tree is t_{j}^{\prime}. Note that edge e_{p} has contributed four vertices to the reduced tree.
(iii) e_{p} is adjacent to at least one internal edge in $\tau_{j \mid R_{j}}$. If e_{p} is adjacent to an internal edge then, by Lemma 3.7, there must be at least one leaf that is on the same side of e_{p} as the internal edge in $\tau_{j \mid R_{j}}$. More precisely there must be a path in τ_{j} from the vertex adjacent to both e_{p} and the internal edge, to a leaf from the leaf set $\mathcal{L}\left(t_{j}\right)$, which does not include the edge e_{p}. Thus if we have a chain of subtrees along e_{p} then when the leaves from leaf set R_{j} are pruned there will always be at least one leaf at one end of the chain. Hence in t_{j}^{1} and t_{j}^{2} there is at least one leaf at the end of the chain, so we do not have the situation as in case (i) where a cherry is present in one tree but not the other. At the other free end of the chain when the leaf from R_{j} is pruned from one of either t_{j}^{1} or t_{j}^{2}, two pendant subtrees will form a cherry. This means that one pendant subtree can only be reduced to a leaf using Rule 1. The remainder of the chain can be reduced using Rule 1 if a single pendant subtree remains, or Rule 2 , otherwise giving a maximum of three leaves and hence a maximum total of four. See Figure 3.13 for an example of this case.

Lemmas 3.9 and 3.10 are the driving force behind our result, all that remains to do is state the theorem and tie all the pieces together.

Figure 3.13: Example of case (iii). Suppose we have a component t_{j} with corresponding τ_{j} above. The thick lines represent edges in $\tau_{j \mid R_{j}}$ while the thin lines are the remaining edges in τ_{j}. The existence of leaf $l \in \mathcal{L}\left(t_{j}\right)$ is guaranteed. Edge e_{p} contributes at most four vertices to the reduced tree.

Theorem 3.5 Let T_{1}, T_{2} be two unrooted binary trees with $d_{\ominus}\left(T_{1}, T_{2}\right)=k$ and suppose that T_{1}, T_{2} are reduced as far as possible using Rule 1 and Rule 2. Then $\left|\mathcal{L}\left(T_{1}\right)\right|=\left|\mathcal{L}\left(T_{2}\right)\right| \leq 23 k-9$.

Proof By the hypothesis and Equation 2.12 a MAF for T_{1} and T_{2} has at most $k+1$ components. We assert that if T_{1}, T_{2} have been reduced as far as possible using Rule 1 and Rule 2, then the components must be reduced as far as possible as well. Construct the four trees, $t_{j}^{1}, t_{j}^{2}, \tau_{j}$ and $\tau_{j \mid R_{j}}$ defined earlier. Leaves either find themselves on a pendant edge of $\tau_{j \mid R_{j}}$ or on an internal edge of $\tau_{j \mid R_{j}}$, Lemma 3.9 ensures that at most three leaves can be on any internal edge of $\tau_{j \mid R_{j}}$, while at most five leaves can be on any pendant edge by Lemma 3.10. Hence to establish an upper bound on the number of leaves we can count the number of internal edges and pendant edges of $\tau_{j \mid R_{j}}$ for all j. The number of intercomponent edges incident to the component $\tau_{j \mid R_{j}}$ is s_{j} and, by Lemma 3.7, $\tau_{j \mid R_{j}}$ is binary for all j, hence by Lemma 1.3 the number of internal edges is $s_{j}-3$ and the number of pendant edges is s_{j}. In fact we need not calculate s_{j} for each component, we only need to sum over s_{j} for all j. This is equivalent to summing the number of edges incident to τ_{j} for all j or the number of edges incident to either t_{j}^{1} or t_{j}^{2}. Lemma 3.5 shows that $\Sigma_{j=1}^{k+1} \operatorname{deg}^{i}\left(t_{j}\right) \leq 2 k$ for $i=1,2$, which effectively establishes the result. Hence,

$$
\begin{aligned}
\left|\mathcal{L}\left(T_{1}\right)\right| & =\left|\mathcal{L}\left(T_{2}\right)\right| \\
& \leq \Sigma_{j=1}^{r}\left(5\left(s_{j}\right)+3\left(s_{j}-3\right)\right) \\
& =\Sigma_{j=1}^{r}\left(8 s_{j}-9\right) \\
& \leq 8 \times \Sigma_{j=1}^{r} s_{j}-9(k+1)
\end{aligned}
$$

$$
\begin{aligned}
& =8 \times \Sigma_{j=1}^{r}\left(\operatorname{deg}\left(t_{j}^{1}\right)+\operatorname{deg}\left(t_{j}^{2}\right)\right)-9(k+1) \\
& \leq 16 \times \max _{i=1,2}\left\{\Sigma_{j=1}^{r} \operatorname{deg}\left(t_{j}^{i}\right)\right\}-9(k+1) \\
& \leq 16(2 k)-9(k+1) \\
& =23 k-9
\end{aligned}
$$

3.4.3 Complexity of the Parameterized TBR-distance

Theorem 3.6 The Parameterized TBR-Distance Problem is fixed-parameter tractable.

Proof By Lemma 3.1, Rule 1 and Rule 2 can be applied to reduce any two trees from $U B(n)$ in polynomial time, furthermore Theorem 3.3 shows that the reduction preserves the TBR-Distance and Theorem 3.5 shows that the size of leaf set of the reduced trees is bounded by the distance between the trees and not the size of the leaf set of the original two trees. These are sufficient conditions for Parameterized TBR-Distance Problem to be in the class FPT.

The parameter k is the TBR-distance between any two trees from $U B(n)$. Theorem 3.6 shows that, provided the TBR-distance between two trees is sufficiently small we will be able to determine the exact distance in realistic time.

3.4.4 Complexity of the Parameterized SPR-distance

We suspect that the SPR-Distance Problem is $N P$-hard, however this is still unresolved. Furthermore, we can only conjecture that the Parameterized SPR-distance problem is distance preserving. If we could prove Conjecture 3.4, then Theorem 3.5 would give that the Parameterized SPR-Distance Problem is also in FPT.

Appendix A

Table of Notation

$\operatorname{deg}(v)$ The degree of $($ number of edges incident to) a vertex v in a graph. Definition 1.1.2.
$U B(n)$ The space of unrooted binary trees on n leaves. Definition 1.1.12.
$\mathcal{L}(T)$ The leaf set of tree T. Definition 1.1.16.
$\boldsymbol{T}(\boldsymbol{U})$ where $\mathcal{L}(U) \subset \mathcal{L}(T)$. A minimal subtree of T connecting all leaves from U. Definition 1.1.17.
$\boldsymbol{T}_{\mid U}$ where $\mathcal{L}(U) \subset \mathcal{L}(T)$. The tree obtained from $T(U)$ after forced contractions have been applied. Definition 1.1.17.

NNI Nearest Neighbour Interchange. Definition 2.1.1.

SPR Subtree Prune and Regraft. Definitions 2.2.1 and 2.2.2 .

TBR Tree Bisection and Reconnection. Definition 2.3.1.
$d_{\Theta}\left(\boldsymbol{T}_{1}, \boldsymbol{T}_{2}\right)$ where $\Theta \in\{N N I, S P R, T B R\}$. The minimum number of Θ subtree transfer operations required to transform T_{1} to T_{2}. Definition 1.1.13.
$n!!$ (n semi-factorial). Equivalent to $\prod_{i=0}^{i=\lfloor n / 2\rfloor}(n-2 i)$, ie $7!!=1 \times 3 \times 5 \times 7$.
$\boldsymbol{G}_{\Theta}(n)$ The adjacency graph. Definition 2.6.1
$\Delta(G)$ The diameter of graph G. Definition 2.6.2.
$\mathcal{O}\left(n^{d}\right) f(n)$ is $\mathcal{O}\left(n^{d}\right)$ if \exists constant c such that $|f(n)| \leq c \times n^{d} \forall n$.
$o\left(n^{d}\right) f(n)$ is $o\left(n^{d}\right)$ if

$$
\lim _{n \rightarrow \infty} f(n) / n^{d}=0
$$

AF Agreement Forest. Definition 2.7.1.

MAF Maximum Agreement Forest. Definition 2.7.1.
$m\left(T_{1}, T_{2}\right)$ The number of edges cut to construct a MAF for T_{1} and T_{2}. Definition 2.7.1.
HGT Horizontal Gene Transfer. Definition 2.9.1.
$N P$ The class of problems which can be solved in non-deterministic polynomial time. Definition 3.2.1 $N P$-complete The class of problems in NP that are at least as hard to solve as any other in $N P$. Definition 3.2.2.
$N P$-hard The class of problems that can be Turing reduced to $N P$-complete problems in polynomial time. Definition 3.2.3.

FPT Fixed-Parameter Tractible. Definition 3.4.1.

$$
\vdots
$$

$a b c$-tree A tree containing leaves a, b and c and respectively adjacent vertices v_{a}, v_{b} and v_{c} such that v_{a} and v_{b} are adjacent also, as are v_{b} and v_{c}. Definition 3.4.2.
$\operatorname{deg}^{i}\left(t_{j}\right)$ where t_{j} is a component in a MAF for $T_{1}, T_{2} \in U B(n)$. This is the number of inter-component edges incident to component t_{j} in the tree T_{i}. Definition 3.4.4.
$\boldsymbol{R}_{\boldsymbol{j}}$ The leaf set of new leaves added to component t_{j} in a MAF for $T_{1}, T_{2} \in U B(n)$.
$t_{j}^{1}, t_{j}^{2}, \tau_{j}, \tau_{j \mid R_{j}}$ Trees constructed from a component t_{j} in a MAF for $T_{1}, T_{2} \in U B(n)$. Definition 3.4.6.

Appendix B

Acknowledgements

I would like to thank Mike Steel for offering me this thesis topic, and for his helpful and enlightening supervision for my thesis. I would also like to acknowledge that this thesis is based on joint work of Mike and mine. I am very grateful to Mike for all the lengths that he has gone to in order to make this a successful (hopefully!) Master's thesis.

Thanks to Mike Fellows of the University of Victoria for help in deciding suitable tree reduction rules, and for introducing and demonstrating the class $F P T$.

Thank you to Charles Semple for useful comments and assistance with editting.
For biological background I thank Hazel Chapman and Jack Heineman of the Plant and Microbial Sciences department at the University of Canterbury.

This research was generously supported by the Marsden Fund (UOC516).

Bibliography

[1] R. Balasubramanian, M. R. Fellows, and V. Raman. An improved fixed-parameter algorithm for vertex cover. Information Processing Letters, 65:163-168, 1998.
[2] L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. Advice classes of parameterized tractability, Annals of Pure and Applied Logic, 84:119-138, 1997.
[3] R. G. Downey and M. R. Fellows. Concrete complexity analysis: A slice of the future. 1998.
[4] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer Verlag, 1998.
[5] R. G. Downey, M. R. Fellows, and U. Stege. Parameterized complexity: A framework for systematically confronting computational intractibility. 1998.
[6] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP. Completeness. W. H. Freeman, 1979.
[7] P. Gilson and G. McFadden. Something borrowed, something green: lateral transfer of chloroplasts by secondary endosymbiosis. TREE, 10:12-17, 1995.
[8] J. Hein. Reconstructing evolution of sequences subject to recombination using parsimony. Mathematical Biosciences, 98:185-200, 1990.
[9] J. Hein. A heuristic method to reconstruct the history of sequences subject to recombination. Journal of Molecular Evolution, 36:369-405, 1993.
[10] J. Hein, T.Jiäng, L. Wang, and K. Zhang. On the complexity of comparing evolutionary trees. Discrete Applied Mathematics, 71:153-169, 1996.
[11] J. P. Jarvis, J. K. Leudeman, and D. R. Shier. Counterexamples in measuring the distances between binary trees. Mathematical Social Sciences, 4:271-274, 1983.
[12] J. P. Jarvis, J. K. Luedeman, and D. R. Shier. Comments on computing the similarity of binary trees. Journal of Theoretical Biology, 100:427-433, 1983.
[13] M. Li, J. Tromp, and L. Zhang. On the nearest neighbour interchange distance between evolutionary trees. Journal of Theoretical Biology, 182:463-467, 1996.
[14] W. H. Li and D. Graur. Fundamentals of Molecular Evolution. Sinauer Associates, Inc., 1991.
[15] D. R. Maddison. The discovery and importance of multiple islands of most-parsimonious trees. Systematic Zoology, 43(3):315-328, 1991.
[16] G. W. Moore, M. Goodman, and J. Barnabas. An iterative approach from the standpoint of the additive hypothesis to the dendogram problem posed by molecular data sets. Journal of Theoretical Biology, 38:423-457, 1973.
[17] C. H. Padadimitriou and M. Yannakakis. Optimization, approximation and complexity classes. Journal of Computer and System Sciences, 43:425-440, 1991.
\vdots
[18] R. D. M. Page. On islands of trees and the efficacy of different methods of branch swapping in finding most-parsimonious trees. Systematic Biology, 42(2):200-210, 1993.
[19] D. F. Robinson. Comparison of labeled trees with valency three. Journal of Combinatorial Theory, 11:105-119, 1971.
[20] E. Schröder. Vier combinatorische probleme. Z. Math. Phys., 15:361-376, 1870.
[21] D. L. Swofford, G. J. Olsen, P. J. Waddell, and D. M. Hillis. Phylogenetic Inference in Molecular Systematics. Sinauer Associates, second edition, 1996.
[22] M. S. Waterman and T. F. Smith. On the similarity of dendrograms. Journal of Theoretical Biology, 73:789-800, 1978.

