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ABSTRACT 

Over time, the extraction and reinjection of geothermal fluid 

to generate electricity results in a decrease in the overall 

pressure of a geothermal reservoir. This results in the 

precipitation of minerals that cause blockages in the power 

station equipment and the rock fractures in the reservoir; as 

well as a lower flow rate available for electricity generation. 

A better understanding of fluid flow in a fracture network is 

required to better predict the performance of the reservoir 

over time. This paper aims to determine a relationship for the 

pressure loss of flow through the intersection of two rock 

fractures connected end-to-end in a simplification attempt of 

a broader fracture network model. Computational Fluid 

Dynamic (CFD) simulations were carried out for various 

aspect ratios, Reynolds numbers and the angle of orientation 

of the two fractures. Using data fitting methods, a general 

expression was found linking the pressure loss, Reynolds 

number, and angle of orientation, given a specific aspect 

ratio. The model was able to predict three fractures in series 

within 14% accuracy. 

1. INTRODUCTION 

Geothermal systems play an important role in supplying 

renewable energy in a world that is gradually shifting away 

from using unsustainable fossil fuels. Approximately 13% of 

New Zealand’s electricity is generated from geothermal 

sources (NZGA, 2016), with this set to increase as 

investment in geothermal energy grows to meet the target of 

90% renewable electricity generation by 2025 (MED, 2011). 

Most geothermal energy comes from the superheated 

hydrothermal fluid within the Earth’s crust. As the fluid 

permeates into fractured rock, it serves as a conduit for fluid 

flow and a geothermal reservoir is formed. 

An Enhanced Geothermal System (EGS) is defined as an 

engineered geothermal reservoir that is used to extract heat 

from the subsurface by drilling a production well into the 

reservoir. The extracted superheated fluid undergoes a 

thermal cycle before being reinjected back into the reservoir 

through an injection well. This creates a closed loop system 

that maintains the pressure gradient through the reservoir 

(MIT, 2016), which becomes the main driver for fluid flow 

through the fracture network. Over time, the pressure 

decreases in the reservoir as fluid is extracted much faster 

than the time it takes for the reinjected fluid to make its way 

through the fracture network and reheat (Grant & Bixley, 

2011). Thus, an understanding of the overall performance of 

a reservoir is required in the design of a geothermal power 

plant (Ogino & Yamamura, 1996). 

Fracture properties can change during the operation of 

reservoir due to fluid pressure changes, thermal cooling, and 

precipitation of minerals (NRC, 1996). Geothermal fluids 

contain dissolved minerals, such as silica, that do not 

precipitate out at the high temperatures and pressures in the 

reservoir. Due to the decrease in pressure as the fluid makes 

its way to the surface, these minerals start to precipitate, 

causing blockages in the power plant equipment. 

Precipitation also occurs in the fractures themselves (due to 

the decrease in the overall pressure of the reservoir), 

restricting the flow in the rock fractures (Grant & Bixley, 

2011). This results in a decrease in the fluid flow rates over 

the useable lifespan of the reservoir. Therefore, it is of 

interest to model the fluid flow through a geothermal fracture 

network to gain a better understanding of the flow properties 

in a fracture network. 

Understanding the fracture network through modelling has 

been rigorously studied (Witherspoon, 1980; Zhao et al., 

2011; Frampton and Cvetkovic, 2007; Sarkar, 2002; 

Kristinof et al., 2010; Kissling et al., 2015; Doe et al., 2014; 

Liu et al. 2016). Common methods of fracture network 

modelling, such as discreet fracture network (DFN), 

continuum model, Voronoi diagram, Hele-Shaw 

approximations, and percolation theory (NRC, 1996), are 

often used to simplify the quantification and analysis of the 

transport phenomenon. The flow characteristics, which are 

often simplified to the ‘cubic law’ (Witherspoon, 1980) were 

investigated with regards to the fluid properties and fracture 

geometries. 

This research aims to determine a relationship for the 

pressure loss of the flow through the intersection of two 

fractures connected end to end. This will allow for a 

simplification in fracture network models as the pressure 

losses due to fracture intersections can be easily calculated. 

Previous studies on pressure perturbation caused by fractures 

have been carried out in a two dimensional (2D) settings. 

However, the pressure losses due to the  intersections of 

fractures have not been studied. The pressure loss through 

each individual fracture due to frictional effects, as well as 

that for the intersection, can be thought of as being similar to 

that of an electrical resistor network. A fracture network can 

consist of fractures in series and parallel, while the 

intersection of two fractures is in series with the fractures 

themselves, as shown in Figure 1. This analogy can be used 

to create a network of fractures and fracture intersections, of 

which the total pressure loss can be calculated by adding up 

the individual pressure loss for each fracture and fracture 

intersection. 

2. MODELLING METHODOLOGY  

This paper focuses on the intersection of two rectangular 

fractures connected end to end and orientated at some angle 

α to each other, as shown in Figure 1. 

In Figure 1, a1, a2, w1, w2, L1 and L2 are the apertures, widths 

and lengths of the upstream and downstream fractures 

respectively. The aspect ratio of the fracture geometry is 

defined as: 

AR =
w

a
 

(1) 
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For this study, the aperture and width of both the upstream 

and downstream fractures are assumed to be equal, so: 

𝑎1 = 𝑎2 = 𝑎 

𝑤1 = 𝑤2 = 𝑤 

𝐴𝑅1 = 𝐴𝑅2 = 𝐴𝑅 

The values of L1 and L2 were different for each model 

simulated and determined by the entrance length required for 

the flow to become fully developed in each fracture. 

The flow through two fractures connected end to end can be 

represented by flow in rectangular ducts and modelled by the 

Navier-Stokes (NS) equations. As the scale of fracture 

networks can be in the order of kilometres, it would be more 

suitable to use smaller scale models to keep the size of the 

computational model as small as possible. Therefore, the 

non-dimensional NS equations are required so that the flow 

can be modelled for any scale of fracture geometries and 

flow properties while keeping the computational time down. 

A steady, incompressible flow can be modelled by the NS 

and continuity equations: 

ρ𝐕 ∙ ∇𝐕 = −∇p + μ∇2𝐕 + ρ𝐠 

∇ ∙ (ρ𝐕) = 0 

Where V is the flow velocity vector, p is the pressure, μ is 

the dynamic viscosity, ρ is the density and g is the gravity 

vector. The steady, incompressible dimensionless NS 

equations are represented in dimensionless form by: 

∇𝐕∗ = −∇p∗ +
1

Re
∇2𝐕∗ +

1

Fr2
𝐠∗ 

(2) 

Where * denotes a dimensionless quantity, Re is the 

Reynolds number and Fr the Froude number. The 

dimensionless quantities are defined as:  

p∗ =
p

ρV0
2 

𝐕∗ =
𝐕

V0
 

𝐠∗ =
𝐠

g0
 

Re =
ρdh

μ
 

Fr =
V0

√g0dh

 

The subscript zero denotes the characteristic dimensional 

scale, and, dh is the hydraulic diameter (characteristic length 

scale).  

Initially, a physical domain was created by choosing values 

for a and w to give a certain aspect ratio. To convert the 

physical domain to the dimensionless domain, a and w 

needed to be divided by the characteristic length. For ducted 

flow, the characteristic length is the hydraulic diameter, dh; 

which was calculated in the physical domain and used to find 

the values of a and w in the dimensionless domain (aD and 

wD respectively).  

To carry out flow simulations in the dimensionless domain, 

a computational domain was created as dimensionless 

numbers cannot be used in Computational Fluid Dynamics 

(CFD) software, where dimensional values are required. For 

this model, the computational domain consisted of matching 

the coefficients of the dimensionless NS equations to the 

coefficients of the dimensional NS equations, allowing for 

use of dimensionless values in the CFD software. The 

dimensionless flow inlet velocity (U) and density (ρ) both 

had values of unity, while the μ had a value of the inverse of 

Re as per Equation 2. Therefore, in the computational 

domain, they were held constant at 1 ms-1 and 1 kgm-3 

Figure 1: Fracture Geometry used in Models along with Electrical Resistor Network Analogy. 
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respectively, while μ varies as Re was changed. The lengths 

L1 and L2 were set in the computational domain, rather than 

the physical domain, as the length for the flow to become 

fully developed depends on the quantities used in the 

computational domain. 

Using ANSYS CFX simulation software, the geometry in 

Figure 1 was created for the required values of aD, wD, L1, 

and L2 to give a particular AR. A structured hexahedral mesh 

was used to discretise the geometry. The element size on the 

two intersecting faces was set to 50 mm, while for fractures 

one and two, the element size was set to 250 mm and 100 

mm respectively. The element size in the upstream fracture 

was larger than that of the downstream fracture because 

vortices exist due to the sudden expansion; therefore, a finer 

mesh was required to fully capture the flow. Overall, the 

geometries in the computational domain were large in scale, 

with fracture lengths ranging from 12 to 70 m, and widths 

ranging from 3 m to 13 m. Therefore, the element sizes used 

are quite small relative to the size of the overall geometry. 

The number of elements used depended on the aspect ratio 

being modelled, and ranged from 8x105 to 25x105 for those 

modelled in this study. Mesh convergence was carried out 

for the different geometries used, however, it was found that 

there was, at most, a 5% difference in the calculated pressure 

drop from the inlet to outlet when using around 9x105 

elements compared to around 8.5x105 elements. Therefore, 

to keep the calculation time to a minimum, the smaller 

number of elements was used. Figure 2 shows a mesh 

convergence study for a model with an AR of 25 and Re of 

150. As Figure 2 shows, there is about a 20 Pa difference 

between the minimum number of elements and the maximum 

number of elements. This is likely to be due to the smaller 

mesh more accurately capturing the actual flow properties 

near the fracture intersection. 

The boundary conditions for the model consisted of an inlet 

velocity of one, outlet reference pressure of zero, and 

smooth, no-slip walls. Figure 3 shows the locations of the 

boundary conditions on the geometry. As the Re was an 

independent variable in the model, an input parameter was 

created so that an expression for calculating the μ could be 

set up in ANSYS CFX-Pre. A custom fluid was created so 

that the dimensionless fluid properties could be included in 

the computational domain (ρ=1 kgm-3, μ as calculated from 

Re). 

An assumption of this model was that the flow was laminar. 

As the fracture intersection has the smallest area that the fluid 

can flow through, the velocity is greatest due to mass 

conservation. This means that the Re at the intersection 

cannot exceed 2060 (Hanks & Ruo, 1966) if the flow is to 

remain laminar. Using the maximum AR of 25 in this study, 

the Re at the inlet was calculated to be 150 for a Re of 2000 

at the intersection. Therefore, the maximum value of Re is 

150 in this study. 

ANSYS CFX finite volume code was used to solve the 

governing flow equations. Residuals of 10-4 were used to 

determine convergence, which occurred after approximately 

45 iterations. For some simulations, the residuals started to 

increase before the convergence criteria was met, thus 

increasing the solve time. To keep the solve time to a 

minimum, an upper limit of 50 iterations was set, with the 

difference between this result and the result calculated when 

convergence criteria was met being less than 0.2 Pa. 

The pressure loss due to the fracture intersection was 

calculated by first obtaining the change in pressure at the 

inlet compared to the outlet. During post-processing of the 

results, an expression that calculated the average pressure at 

the inlet and subtracted the average pressure at the outlet was 

used to calculate the pressure loss across the whole model. 

The head loss, hf, and hence pressure loss, ΔPf, in a non-

circular duct was calculated by: 

hf = f
LV2

2Dhg
 

∆Pf = ρghf 

Where f =
64

Re
 for laminar flow, L is the length of the fracture, 

V is the inlet velocity and g is the acceleration due to gravity 

(White, 2011). ΔPf due to wall friction in the upstream and 

downstream fractures was subtracted from the pressure loss 

results. Therefore, the remaining pressure loss is a result of 

the fracture intersection. 

The pressure loss, ΔP, through the intersection of two 

horizontal fractures connected end-to-end is a function of the 

following parameters: 

∆P = f(𝑎, w, L1, L2, ρ, U, α) 

Figure 2: Mesh Convergence for Geometry with AR=25 and Re=150. 
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As the pressure loss due to the fracture intersections is of 

interest only, the pressure loss due to the length of each 

fracture is subtracted from the results of the model. 

Therefore, pressure loss is now only a function of five 

variables: 

∆P = f(𝑎, w, ρ, U, α) 

Using ρ, U and a as repeating variables, the Buckingham Pi 

method can be used to create four dimensionless Π groups: 

Π1 =
∆P

ρU2
 

Π2 =
μ

ρU𝑎
 

Π3 = α 

Π4 =
𝑤

𝑎
 

As the values of density and velocity are one, an expression 

for the pressure loss in terms of the other Π groups is: 

∆P = f (
μ

a
, α,

𝑤

𝑎
) 

Given that the μ was previously defined as the inverse of the 

Re, and the AR defined as the width divided by aperture, then 

the pressure loss resulting from the fracture intersection is a 

function of the Re, α and the AR. It was assumed here that 

the fractures are horizontal, hence the effect of gravity was 

negligible. However, the effect of gravity will be 

investigated later.  

For this paper, seven different AR ranging from 6.25 to 25 

were defined, resulting in seven different fracture 

geometries. For each AR, a parametric study in ANSYS 

Workbench was carried out for 10 different Re ranging from 

10 to 150. For each Re, the α was increased from 0 to 88° in 

increments of 2°. This resulted in 3150 individual 

simulations being carried out. 

Once the simulations were completed for one AR, the four Π 

groups were created. Using MATLAB curve fitting toolbox, 

a surface was fitted to the data. This resulted in a polynomial 

equation for a surface, for each different AR. 

3. RESULTS AND DISCUSSION 

For each geometry, a visual check of the flow was carried 

out before commencing the parametric study to ensure that 

the model was working correctly. This was achieved in post-

processing by plotting the velocity streamlines through the 

fracture geometry. The flow through the fracture intersection 

is essentially a sudden contraction followed by a sudden 

expansion. At low Re, two regions of separation occur above 

and below the intersection in the downstream fracture as the 

flow suddenly expands (Durst, Pereira, & Tropea, 1993). 

Therefore, by plotting the velocity streamlines, one can 

check for the two regions of separation and vortices in the 

downstream fracture. Figure 4 shows the flow through the 

fracture geometry for an aspect ratio of 25 and Re of 150. As 

can be seen in Figure 4, there are two vortices in the 

downstream fracture that result from the region of separation 

caused by the flow’s sudden expansion into the fracture. 

After creating the four Π groups from the resulting data, Π2 

and Π3 were each plotted against Π1 for each aspect ratio to 

determine any individual relationships. As can be seen in 

Figure 5, there is a linear relationship between Π1 and Π2, 

while in Figure 6, there is a trigonometric relationship 

between Π1 and Π3, which is expected due to the presence of 

the α in Π3. The trigonometric relationship in Figure 6 

represents that of a cosine function. Taking the cosine of Π3 

and plotting against Π1 shows a quadratic relationship, as 

shown in Figure 7. As there is a quadratic relationship, 

creating a surface between the three Π groups is much easier 

as a polynomial fit can be used. 

Using the values of Π2, cos(Π3) and Π1 as the x, y and z co-

ordinates respectively in the MATLAB curve fitting toolbox, 

a polynomial fit was applied to create an equation for the 

surface that fits the data for a specific AR. The polynomial 

Figure 3: Location of Model Boundary Conditions. 
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fit was degree one for Π2 and degree two for cos(Π3) due to 

the linear and quadratic relationships with Π1 respectively.  

 

 

 

 

 

 

 

Figure 6: Trigonometric Relationship between Π1 

and Π3 Shown for the Case of AR=25, Re=150. 

Figure 7: Quadratic Relationship Between Π1 and cos(Π3) 

Shown for the Case of AR=25, Re=150. 

Figure 5: Linear Relationship between Π1 and Π2 Shown 

for the Case of AR=25, Re=150 and α=0°. 

Figure 4: Flow Velocity Streamlines for Geometry with AR=25, Re=150. 
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From the curve fitting process, the coefficients can be 

determined for the general equation: 

Π1 = C1 + C2Π2 + C3 cos(Π3) + C4Π2cos (Π3)
+ C5(cos(Π3))2 

(3) 

Where C1, C2, C3, C4 and C5 are the coefficients given as an 

output by MATLAB.  

Figure 8 shows the data fitted to a polynomial surface, with 

an R2 value of 0.9995. This surface fitting process was 

conducted for all seven AR, with the resulting coefficients 

shown in Table 1. 

 

 

Table 1: Coefficients for Polynomial Equation for each Aspect Ratio 

Aspect Ratio C1 C2 C3 C4 C5 R2 

6.25 0.463 68.4 -8.03 70.2 33.9 0.998 

8.33 -0.979 148.3 -0.97 65.01 48.2 0.995 

10 -2.18 136.3 5.47 117.4 62.9 0.999 

12.5 -2.12 234.3 0.725 47.08 113.3 0.9998 

15 -6.94 242.8 31.5 150.7 131.1 0.998 

20 -12.5 377.8 63.1 144.7 231.3 0.9985 

25 -13.8 343.8 74.6 15.5 393.1 0.9995 

Overall, the model can be used for Re and AR up to 150 and 

25 respectively. Values higher than these means that the 

model is extrapolating beyond its upper bounds and further 

validation would be required. For Re greater than 150, the 

flow can become turbulent at the fracture intersection. When 

setting up the model, the assumption of laminar flow was 

made, so once the flow becomes turbulent, the model 

becomes invalid. Therefore, if the upper limits of the AR and 

Re are not exceeded, then the flow is laminar through the 

fracture intersection and the model remains valid. 

Three fractures in series were simulated to test the validity of 

the model in predicting the pressure loss in the two 

intersections (Figure 9). The angle of orientations were 30° 

and 20° with respect to the previous fracture. The AR and Re 

were set to 6.25 and 150 respectively. The simulation results 

in a pressure loss of 36.0 Pa for the two intersections. The 

correlation described in this paper estimates a pressure loss of 

41.0 Pa, which has an error of 14%. 

Figure 8: Polynomial Surface fitted to Data for AR=25. 
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In finding the source of error, the precision of the correlation 

was investigated. The fractures with AR = 6.25 all showed an 

error of less than 5% with some exceptions of those with 

angle of intersection greater than 76°. It was also possible that 

the flow in the second fracture was underdeveloped as it went 

to another intersection. Since the correlation was built with a 

developed flow, the predicted pressure loss would contain 

error. Further investigation is required to validate the model 

with more fractures in series. 

To determine the effect of gravity, the geometric model was 

modified to include a parameter for the angle, β, of the two 

fractures from the horizontal. The same process was carried 

out as with the original simulations, except gravity was now 

defined. By Bernoulli’s Equation, gravity will have an overall 

effect on the flow as a whole as there will be some head loss 

as the flow changes height (White, 2011). As only the 

pressure loss due to the fracture intersection is of interest, then 

the pressure loss due to the head loss will also be subtracted 

from the CFD simulation result; similar to that for the wall 

friction pressure loss. Therefore, it was expected that there 

would be little difference in the intersection pressure loss as 

β increased. As can be seen in Figure 10, this was what was 

found. 

Further work is required to determine how well the model is 

able to predict the pressure losses for a larger number of 

fractures in series, as well as fracture networks consisting of 

fractures both in series and parallel. Experimental tests could 

also be conducted to validate both CFD model and the 

mathematical model proposed. This could be carried out by 

creating a test rig that uses parallel plates to represent the 

fractures and measuring the pressure difference of the flow 

from the inlet to the outlet. 

CONCLUSION 

In calculating the pressure loss for flow passing through a 

fracture intersection, a series of CFD simulations were carried 

out for varying AR, Re and α. Using data fitting methods, a 

polynomial relationship was found for the pressure loss in 

terms of the Re and α for a specific AR. Interpolation between 

multiple polynomial surfaces allows for the prediction of the 

Figure 9: Three Fractures in Series. 

 

Figure 10: Pressure Loss when Considering Gravity for AR=6.25, Re=150 and a=0. 
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pressure loss for any Re, AR, and α.When using the model to 

determine the fracture intersection pressure losses for three 

fractures in series, there was a 14% difference in the pressure 

loss when compared to directly modelling the fractures in a 

CFD analysis. Further work is required to determine how the 

model performs for a larger number of fractures, as well as 

for networks of fractures both in series and parallel. 
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