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ABSTRACT. A new dimension function on countable-dimensional algebras (over a field) was 

introduced in the first paper I, by means of certain infinite matrix representations. Here we show that its 

dimension values for finitely generated algebras exactly fill the unit interval (0, 1]. This suggests that the 

dimension is somewhat smoother than G J( -dimension. 

Dedicated to the memory of Pere Mena/ 

0. INTRODUCTION

A new concept of bandwidth dimension of countable-dimensional algebras (over a field) 

was introduced in [3] and [4] by means of certain infinite matrix representations. Bandwidth 

dimension provides a new measure of the growth of an algebra, which appears to be quite 

different from that given by the Gelfand-Kirillov dimension (GK-dimension). For instance, the 

free algebra F { x, y} has the smallest possible bandwidth dimension ( 0), reflecting zero growth in 

terms of matrices, but the largest possible G !{-dimension ( +oo ), reflecting exponential growth 

in terms of generators. The possible range of values for the GK-dimension of finitely generated 

algebras is known to be 

O, 1, 2, any real r > 2, and + oo . 

(These were determined by W. Borho and H. Kraft in 1976 (for r > 2) and G. Bergman in 1978 

(the initial values). See [2].) Our present paper is devoted to completely describing the possible 

range of values for the bandwidth dimension of finitely generated algebras. It culminates in the 

following theorem (announced in [3]), which suggests that bandwidth dimension is somewhat 

"smoother" than G !{-dimension. 

THEOREM 0.1. (The Principal Result) For any field F, the bandwidth dimensions of finitely 

generated algebras over F exactly fill the unit interval [O, 1]. 

Let us now briefly recall the ideas and results in [4] which lead to the concept of bandwidth 

dimension. After that, in section 1, we will outline our strategy for proving Theorem 0.1. The 

rest of the paper is then devoted almost entirely to the proof. 

1991 Mathematics Subject Classification. Primary 16P90, 16S50; Secondary 16Sl5, 16099. 
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Firstly, by an algebra we shall always mean an associative algebra over a field, with 

an identity element. For any field F, the algebra of all w x w matrices over F which are 

simultaneously row-finite and column-finite is denoted by B(F). For an element x E B(F) we 

say that a function g : N -+ R + is a growth curve for x if for each n E N 

x(n, i) = 0 = x(i, n) 

for all i > n + g(n). In other words, g(n) gives a bound on the "bandwidth" of x at the (n,n) 

position, if we interpret bandwidth as in the figure below. 

n 

n 

We say that x E B(F) has order at most g(n) growth (or that x has O(g(n)) growth) if there 

is a constant c > 0 such that the function cg( n) is a growth curve for x. If A is a subalgebra of 

B(F) and every x EA has O(g(n)) growth, then we say that the algebra A itself has O(g(n)) 

growth (but notice that the constant c in cg( n) will depend on the particular x E A). To say 

A has linear growth means A has 0( n) growth. 

The inspiration for looking at this type of matrix representation came from the result of 

Goodearl, Menal, and Moncasi [l, Proposition 2.1] that every countable-dimensional algebra A

over a field F can be embedded in B(F). In [4, Theorem 2.1] this was refined to say that A can 

be embedded in B(F) as a �ubalgebra of linear growth. Thus A embeds in the algebra G(l), 

where for a real number r E [O, 1], G(r) is the subalgebra of B(F) given by 

G(r) = {x E B(F) I x has O(nr) growth} . 

It is then natural to look at the "least" r for which A embeds in G(r), and call this the bandwidth 

dimension of A. Thus the bandwidth dimension of any countable-dimensional algebra A is 

defined to be 

inf {r ER, r � 0 I A embeds in G(r)} 
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or, equivalently, 

inf {r ER, r;::: 0 I A embeds in B(F) with O(nr) growth} . 

Notice that by [4, Theorem 2.1] the bandwidth dimension of A is always in [O, 1]. However, no 

examples were given in [ 4] where this dimension was other than O or 1. In our proof of Theorem 

0.1 we will construct for each real number r E (0, 1), a very explicit 8-generator subalgebra A

of G ( r) of bandwidth dimension precisely r. 

It is too early to say whether the bandwidth dimension of a general algebra A is easier or 

harder to compute than its G ](-dimension. It seems likely that "most", if not all, algebras of 

finite G ](-dimension will have zero bandwidth dimension. In that case, of course, bandwidth 

dimension may be the easier to compute when G K-dirnension is finite, but the harder of the two 

when GK-dimension is infinite. We remark that the 8-generator algebra A above, of prescribed 

bandwidth dimension r E (0, 1), does have infinite GK-dimension. 

Finally a word about our terminology. All rings and algebras are associative with an identity 

element, and all ring maps preserve the identity. The ground ring for our algebras is a field F.

The ring of all �o x �o column-finite matrices over F, with the rows and columns ordered in 

the standard way according to w, is denoted by Mw(F). 

Throughout the paper, frequent use is made of the "big oh" notation: given two functions 

f, g : N -+ R +, to say f ( n) is O(g( n)) means that there is a positive constant c such that 

J(n) :s; cg(n) for all n EN. In this situation we say "f(n) has order at most g(n)". 

1. THE STRATEGY

Let r be a real number in [O, 1]. We wish to construct a finitely generated algebra A of 

bandwidth dimension r. The case r = 0 is trivial. By [4, Theorem 3.3], the case r = 1 is 

taken care of by any "purely infinite" A, that is, A � A EB A as right A-modules. Therefore 

we can assume O < r < 1. 

The idea is to construct A as a "fat" subalgebra of G(r ). Being a subalgebra of G(r) will 

certainly ensure that A has bandwidth dimension at most r. What we need to avoid is A being 

embeddable in G(s) for some s < r. In particular we can't have A � G(s) for any s < r. 

If we drop, for the moment, the requirement that A be finitely generated or even countable­

dimensional, then we already have in [4] examples of algebras with this latter property, namely 

certain spines of G(r). Recall from [4, section l] that the spine determined by an increasing 
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sequence n1,n2, ... ,nk,··· of positive integers is the natural copy S of rrr:1Mn,.(F) inside

B(F), that is, S consists of all the block-diagonal matrices of the form 

0 

. . 
•

• 

• .

0 

Lett = 1-:_r. By [4, Proposition 1.5], the spine S determined by the sequence nk = [kt] fits 

inside G( r) but not in any smaller G( s ). (Here [ ] denotes the integer part.) Even though 

S is not countable-dimensional, we can still talk of its bandwidth dimension (as an abstract 

algebra). Although at first sight this looks like it ought to be r, in fact the bandwidth dimension 

is O because S can be embedded in G( s) for any O < s < r, simply by "stretching" out the 

above representation and repeating blocks often enough (see [ 4, Corollary 6.5]). It can be shown 

that the algebra B generated by S and the standard 1-dimensional infinite shifts a, b E B(F) 

is sufficiently "rigid" to have bandwidth dimension exactly r. The importance of the shifts is 

that they link successive blocks of the spine S - primitive idempotents of one block become 

equivalent to those of the following block. 

So how can we incorporate these features of B in a finitely generated algebra A (after all, B 

is uncountable-dimensional)? Although we can never have all of the spine S inside A, we can at 

least arrange for all its diagonal blocks Jk to be inside A. Then, as a measure of how "fat" A is, 

we can take the number of products of the generators of A that are needed to obtain each of the 

standard matrix units of J k. It turns out that getting the matrix units in better than polynomial · 

time (in k) is the key - our construction does it in 0( (log k )2) products. (Throughout, logarithms 

are to base 2.) To keep A sufficiently rigid, we again need to ensure that A possesses appropriate 

links (cross-elements) from each block of the spine to the following block. 

Our algebra A will be generated by 8 elements of G(r): 

a,b, u,v,w, x,y,z. 
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The generators a and b are just the standard !-dimensional infinite shift matrices 

a= 

0 0 1 
1 

1 
1 b= 

1 

1 

Their principal role is to provide the links between successive blocks of the spine. The generators 
u, v, and w are designed to move one matrix unit of h to another very rapidly. The matrix u
is a block diagonal matrix of strategically placed 2m x 2m "binary search" matrices for various 
m, while v and ware certain "fast shift" matrices in G(r). The generators x,y, and z are all in 
G(O), and their role is to get some matrix unit of each Jk in sub-polynomial time. 

Although we could work with the spine above, determined by nk = [kt], it is more convenient 
to choose another spine of G( r) whose block sizes are all powers of 2; it makes the bookkeeping 
easier when working with binary search matrices. The spine we use is described in the following 
proposition. 

PROPOSITION 1.1. (Choice of the spine S) Let O < r < 1 and let t = 1_:.r. The sequence

nk = 2[tlogk] for k = 1,2,3, ...

has the following properties: 

(1) The spine S of B(F) determined by n1, n2, ... is a spine for G(r) but not for any
smaller G(s). 

(2) Each nk = 2m" where mk = O(log k ).

(3) nk has ( at least) polynomial growth of kt.

(4) For each m E NU {0}, let am be the number of blocks of size 2m x 2m in the spine
S. Then there is a constant d E N such that am :::; 2dm for all m. For all large m, we also
have m :::; am ,

Proof. Note that nk is simply the largest integer power of 2 which is less than or equal to 
kt . We know from [ 4, Proposition 1.5] that the spine determined by the sequence { [kt] H0

=1 is
a spine for G(r) but not for G( s) for any s < r. Since nk :::; [kt] :::; 2nk, the same is true for 
the spine S in (1). It is C'lear that (2) and (3) hold. 

Let m E NU {O}. If nk = 2m, then kt 
< 2m+l and therefore k < 2(m+l)/t, It is now

obvious that there are at most 2(m+l)/t positive integers k such that nk = 2m. Hence the
existence of the constant d in (4) is clear. 

5 



Let A(x) = 2x/t and B(x) = 2(x+l)/t for all x ER+. We have
B(x) - A(x) (21/t - 1)2x/t 

= -+ +oo as x -+ +oox x 
because t > 0. Hence B( x) - A( x) 2:'.: 2x for all large x. In particular 

2(m+l)/t _ 2m/t 2:'.: 2m

for all large integers m. Therefore, for all large m, there are (by arguing very crudely!) at least 
m positive integers k satisfying 

2m/t � k < 2(m+l)/t

that is, nk = 2m . Hence m � am for all large positive integers m. This establishes (4). D 

2. BINARY SEARCH MATRICES

The classical method of binary searching a sequential list of n items is based on "halving 
the search" at each step. It requires a search time of O(log n ). The method suggests a matrix 
analogue. Let n = 2m for some m E N. In this section we define m "binary search" matrices 
in Mn(F), which we show can be used to "find" any of the standard matrix units of Mn(F) 
from any given one using 0( m) = O(log n) multiplications. In the following section, one of 
the generators of our algebra A will be constructed as an infinite block diagonal matrix, where 
the blocks are strategically placed 2m x 2m binary search matrices for various m. 

DEFINITION 2.1. Let m E N. 
as follows: 

u1 = [� �] 
0 I 0 0 
I 0 0 0 

u2 0 0 0 I 

0 0 I 0 

0 I 

I 0

0 I 

Ui - I 0 

We define the 2m x 2m binary search matrices u 1, ... , Um

O I 

I O

in terms of 2m-l 
X 2m-l blocks

in terms of 2m-2 X 2m-2 blocks

in terms of 2m-i x 2m-i identity blocks 
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0 1 

1 0 

0 1 

1 0 

0 1 

1 0 

in terms of 2° x 2° blocks·

D 

PROPOSITION 2.2. Let n = 2m for some m EN. Let e, f E Mn(F) be standard matrix

units. Then f can be obtained from e by left and right multiplications by the n x n binary 

search matrices u1, ... , um and involving only O(logn) multiplications (in fact at most 2m 
multiplications). 

Proof. Observe that left (resp. right) multiplication of a matrix I by Ui swaps blocks of 

2m-i rows (resp. columns) of I in pairs. Hence starting withe, a left and/or right multiplication
by u1 produces a matrix unit whose nonzero entry 1 lies in the same 2m-l x 2m-l block as 

that off. (Of course, if e and f already have their 1 's in the same 2m-l x 2m-l block, then 

no multiplications by u1 are required.) Now a left and/or right multiplication by u2 produces 
a matrix unit with a 1 in the same 2m-2 x 2m-2 block as that off, and so on. For example,

if n = 23, e = e42 and f = e67, then 

I+ 

0 
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3. SCHEME I MATRICES AND THE DEFINITIONS
OF THE GENERATORS u, v, w 

Recall from section 1 that r is a fixed real number in (0, 1), t = 1.'.:.r, nk = 2[tlogk] for
each k EN, and Sis the spine of G(r) determined by n1, n2, ... . Also for each m EN 

am = number of blocks in S of size 2m x 2m . 

By a scheme I matrix we shall mean any block tridiagonal matrix in B(F) determined by the 
spine S. Thus for such a matrix, its diagonal blocks appear in sequence as 

1 x 1 
2x2 

blocks 
blocks 

blocks 

Notice that all scheme I matrices lie in G(r) because S � G(r) (Proposition 1.1). 

DEFINITION 3.1. We define u E G(r) to be the element of the spine S whose 1 x 1 blocks are

all 1, and whose 2m x 2m blocks for each m E N with am > 0 consist of the 2m x 2m binary

search matrices u1, ... , um in groups of m, repeated as necessary to fill out all am blocks. The

last group need not be a complete set. D 

The important property of u is that for any_ large m, and any 2m x 2m block position of S,

there is some complete set of 2m x 2m binary search matrices "not far away" on the diagonal 
of u. This is because am 2: m for large m (Proposition 1.1). 

Next we define the generators v and w. They are the subdiagonal (respectively, superdiag­
onal) scheme I matrices displayed below. Essentially v and w are the "fast shift" analogues 
of the I-dimensional shifts a and b, except that now v and w are not infinite shifts but rather 
"products of increasingly large finite shifts". 

DEFINITION 3.2. Let v and w in G(r) be the scheme I matrices
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v = 

and 

w 

. • 

• • 
2m 

0 2m

I 0 2
m 

I 0 

10 I

2
m 0 I 

2m 0 

2m+l

2m

0 2m+l

I 0 

I 

0 I 

2m+l 0 

2m+l

• • 

I 

• • •

Of course, for some small m, it is possible that a
m = 0, in which case we don't include any 

2m x 2m blocks for those m. D 

The generators v and w will enable us to move the 2m x 2m binary search blocks of u 
rapidly back and forth along its diagonal. The shifts a and b, on the other hand, will be used 
more for "fine tuning". 
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4. SCHEME II MATRICES AND THE DEFINITIONS
OF THE GENERATORS x, y, z 

Let f3m = am2m for all m E NU {O}. A scheme II matrix is any block diagonal matrix 
in B(F) whose block sizes (in sequence) are 

/3o, /31, /32, · · ·, f3m, · · · · 

The generators x, y, and z are certain scheme II matrices in G(O)-in fact x and y have bandwidth 
1 and z has bandwidth O (diagonal). (Actually u, v, and ware also scheme II matrices, but there 
is no advantage for the moment in viewing them as such.) Recall from Proposition 1.1 that there 
is a constant d E N such that am :::; 2dm for all m, while for all large m we also have m :S am. 
To cover this, and also a requirement later in the definition of z, we quantify "large" m. 

NOTATION 4.1. Let mo be a fixed positive integer such that the following hold for all integers

m 2: mo: 

(1) 

(2) 

m < a < 2dm
- m -

dm + 1 + m :S 2m

NOTATION 4.2. For each integer m ;::: mo, we choose am distinct words

Wml, Wm2,, , , , Wmcxm 

of degree dm in two free variables. Note that this is possible because am :S 2dm ,

D 

D 

In order to define x and y, we require the following result which, in essence, is the 
construction used in [4] to get the free algebra F{x,y} inside G(O). 

LEMMA 4.3. Let m E N, m 2: mo. For each i = 1, 2, ... , am there are matrices

Xmi, Ymi E Mdm+1(F) of bandwidth 1 which satisfy:

(1) 

(2) 

(3) 

0 1 

Wmi(Xmi, Ymi) -

0 0 

v(Xmi, Ymi) 
than dm. 

0 

0 0 

for j # i. 

O for any word v in two free variables and of degree greater 

Proof. This follows immediately from [4, Lemma 5.1] applied to the word Wmi· D 
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DEFINITION 4.4. Let x and y be the scheme II matrices 

xo YO 
Yl 

X= 
Xm 

y= 

where for all m < mo 

Xm = Ym = the zero f3m x f3m matrix, 

while for each m ~ mo, Xm and Ym are the f3m x f3m matrices 

x = m 

0 

0 

0 

Ym= 

Ym 

0 

D 
The definition of z is more straightforward. It is here that we use the condition (2) of 4.1 

in full. 

DEFINITION 4.5. Let z be the scheme II matrix 

zo 
Zl 

Z= 
Zm 

where Zm is the zero f3m x f3m matrix for all m < mo, while for each m 2: mo it is the f3m x f3m 

matrix 
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• 
• 

in which the single nonzero entry 1 in each 2m 
x 2m diagonal block occurs at the dm + 1 + m 

diagonal position within that block. The significance of this positioning is that it is exactly m 
positions down from the corresponding Xmi and Ymi blocks of x and y (see figure). 

dm+J t 0 Xmi 

ml 
0 0 

2m . . 

. . 

1 
0 

D 

5. OBTAINING THE MATRIX UNITS OF Jk IN LOGARITHMIC TIME

For each positive integer k, recall that Jk is the kth diagonal block of the spine S of G( r) 
which we chose in section 1. In particular Jk '.::::'. Mn,.(F) for nk = 2[tlogk], Our main objective

in this section is to establish the following key property of our generators a, b, u, v, w, x, y, and 

z of A. 

PROPOSITION 5.1. (The Key Property) The algebra A contains each Jk> and the number of 
products of generators needed to obtain each of the standard matrix units in J k grows essentially 
logarithmically in k - in fact we can get by with 0( (log k )2) products. 

As a first step towards the proof of 5.1, we have: 

LEMMA 5.2. For each positive integer k, we can obtain some standard matrix unit of Jk in 
O(log k) products of the generators a, b, x, y, and z. 
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Proof. Fix k E N. Then nk = 2m for some m E NU {O} with m = O(log k ). There 
is no problem obtaining (albeit inefficiently) the general (i,j) matrix unit eij of Mw(F) from 

just a and b, because eij = ai-lbi-1 - aibi. Therefore to establish 5.2, we can ignore some

small values of k and suppose m � mo (see 4.1). Suppose Jk occurs as the ith 2m x 2m block 
of S where 1 s i s am, and let w = Wmi be the corresponding word in two free variables 
of degree dm (see 4.2). 

Claim: w(x, y)bmzam is the (1, dm + 1) matrix unit of Jk ,

Let q = w(x,y)bm zam. To establish the claim, we shall view w(x,y), bmzam , and q

as scheme II matrices, that is, block diagonal with block sizes /3o, /31, ... , f3n, .... Notice that 

bm zam is just the diagonal matrix which results from z upon shifting its diagonal entries m 

places backwards. 

For n < m, the f3n x f3n block of w(x, y) is zero because Xn = Yn = 0 for n < mo, and 

for mo S n < m 

for j = 1, ... , an , The latter is a consequence of 4.3 ( 3) and the fact that that dm > dn. Thus 

q has a zero f3n x f3n block for all n < m. This is also true for all n > m because on the 

typical l11 2n x 2n diagonal sub-block, q is

0 dn+l 

0 • 

•

• 1 
f n-m 

0 

It remains to consider the f3m x f3m block of q. This comprises am diagonal 2m x 2m blocks. 

On the typical j th such block for j # i, we see that q = 0 because 

by 4.3 ( 2). However for j = i, the corresponding 2m x 2m block is 
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0 • • • 1 0, 0 • • • 1 
. 

. 
. 

. 

dm+l 

= 

0 1 0 

0 0 0 

because of 4.3 ( 1). Thus q is the (1, dm + 1) matrix unit of Jk as claimed. 

Finally, since w has degree dm, the product w(x, y)bm zam involves 

dm + m + 1 + m = (d + 2)m + 1 = O(m) = O(k) 

occurrences of the generators a, b, x, y, and z. D 

Proof of 5.1. Fix k E N. Again (as in 5.2) there is no loss of generality in assuming 

nk = 2m where m � mo. Our proof of 5.1 uses the generators u, v, and w for the first (and 

only) time. Their function is to position (efficiently) the 2m x 2m binary search matrices into 

the k th diagonal position of the spine S.

Claim: given any one of the 2m x 2m binary search matrices u1, ... , Um, there is an integer 

j with 1 � j � m - 1 such that the matrix 

or 

as a member of the spine S, has the given binary search matrix as its kth block. 

To see this, first observe that because m � mo, the generator u contains strings of complete 

sets of the 2m x 2m binary search matrices u1, ... , Um along its diagonal (see section 3). In fact 

we can find a copy of each Ui at most m - 1 blocks away from .Jk 's position. Note that v8w 

and w8v are in S for all 8 E S, so certainly vjuwj and wjuvj are in S for any j E N. Next 

observe what happens to a 2m x 2m diagonal block, of u when we form vjuwj. Provided, is 

at least j positions from the end 2m x 2m block of u, then , gets shifted j blocks forward along 

the diagonal. A similar statement applies to wj uvj, where , gets shifted j blocks backward. It 

is now evident that we can choose an integer j with the properties of the claim. 

Using Lemma 5.2 we can obtain some standard matrix unit e of Jk in O(log k) products 

of generators of A. By Proposition 2.2 we know that, working inside Jk, we can obtain any 

other standard matrix unit f of Jk from e using O(m) multiplications by the binary search 

matrices of Jk, But from the above claim, the effect of multiplying an element of Jk by a binary 

search matrix of Jk is the same as multiplying the element by a suitable vjuwj or wjuvj where 
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1 ::::; j ::::; m - 1. (Just view the product inside the spine S .) So each of the 0( m) multiplications 

is replaced by another 0( m) multiplications by generators of A. Therefore we can reach f in 

O(m2) = O((logk)2) products of the generators a,b,u,v,w,x,y, and z. This completes the 

proof. D 

Despite its importance, the property in Proposition 5.1 on its own is not enough to prevent 

A being "stretched" under an embedding in B(F). For although the generators a and b are 

not scheme II matrices, their role so far in 5.1 could equally well have been done by scheme 

II matrices (by dropping off the linking 1 's between successive f3n x f3n blocks). Then all the 

generators of A would be scheme II, whence A would naturally sit inside IIM,an(F) and so would 

have bandwidth dimension 0. To avoid any stretching of A, we need to ensure that there is an 

appropriate link between successive Jk · The following concept turns out to be the link required. 

DEFINITION 5.3. For a general ring T and elements a, f3 E T, we coin the term a cross­

element from /3T to aT to mean any, ET such that ,T = aT and T, = T/3. D 

Notice that if a and /3 are idempotents of T with f3T C:::! aT, then any , E aT/3 which 

induces this isomorphism under left multiplication is a cross-element. In particular the standard 

matrix unit eij of a ring T = Mn( R) provides a cross-element from ejjT to eiiT (herein lies the 

importance of matrix units to us). Notice too that a cross-element from f3T to aT is automatically 

a cross-element from f3U to aU for any overring U of T. In situations where the parent ring is 

not important, we sometimes speak of , simply as a cross-element from f3 to a. 

The next proposition formalizes the linking we require (later) between Jk and Jk+l· 

PROPOSITION 5.4. Let k EN and let f and g be any standard primitive idempotents of Jk 

and Jk+l respectively. Then A contains a cross-element from f A to gA which can be obtained 

in 0( (log k )2) products of the generators of A. 

Proof For each i, j E N let eij be the standard matrix unit of Mw ( F) with a ' 1' in the 

( i, j) position. Then J = eii and g = ejj for some positive integers i and j. Let n be the 

row index of the last row of Jk (that is, n = n1 + n2 + · · · + nk), By Proposition 5.1, we can 

obtain eni E Jk in O((log k )2) products of generators of A, and we can get ej,n+l E Jk+l also 

in 0( (log( k + 1) )2 ) = 0( (log k )2) products. Since aeni = en+l,i we have 

By symmetry, eij E A also. Now g = ejieij, eji = geji, f = eijeji, and eji = eid imply 

gA = ejiA and Af = Aeji· Thus eji is a cross-element from f A to gA which can be expressed

in 0( (log k )2) products of the generators of A. D 
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6. GROWTH CURVES OF ORTHOGONAL

IDEMPOTENTS AND CROSS-ELEMENTS IN B(F) 

We leave our algebra A in this section to establish two general results in B(F), which will 
play a crucial role in the proof of Theorem 0.1. They concern upper bounds, using growth 
curves, of two types. The first bound (Proposition 6.1) is on how far apart the first nonzero rows 
of two elements a, f3 E B(F) can be, given that a, (3, and some cross-element I from f3 to a all 
have a common growth curve f(n) which is increasing. The second bound (Proposition 6.3) is 
on the number of orthogonal idempotents of B( F) which can have a common increasing growth 
curve f ( n ), and which each have some nonzero row within some specified range of rows. 

PROPOSITION 6.1. Let Q = Mw(F) and let a, f3 E B(F) be nonzero. Suppose I is a cross­
element from f3Q to aQ such that a, (3, and I all have a common growth curve f(n) which is 
increasing. Let £ (respectively m) be the row index of the first nonzero row of a (respectively 
/3). If m 2: £ then 

m - £ < !(£) + !(£ + [!(£)]) 

while if m ::; f, then 

f - m 5 J(m) + f(m + [f(m)]) . 

Proof Suppose m 2: f. Since I is a cross-element from f3Q to aQ we have ,Q = aQ,
and so I and a .have nonzero rows in the same positions. Hence f, is also the row index of the 
first nonzero row of 1. We now estimate how big m can be in terms off,, 

Notice firstly that we also have Q, = Q/3 and so I and f3 have nonzero columns in the 
same positions. Since f ( n) is a growth curve for I the nonzero entries in the gth row of I must 
occur among the j th columns where j ::; f, + [J(f)]. See the figure below. Hence /3 must have a 
nonzero jth column for some j::; f, + [J(t)]. But f(n) is also a growth curve for /3, and so for 
any j the nonzero entries in the jth column of f3 must occur in an ith row where i ::; j + f(j). 
Since the m th row is the first nonzero row of f3 we thus have 

as required. 

m < max{j + f(j) : j 5 f + J(f)} 

< £ + !(£) + f(f + [!(£)])

A similar proof works for the case m ::; £, where we would need the fact that f ( n) is a 
growth curve for a. D
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l l+f(l) j 

y 

REMARK. Notice that the proof of Proposition 6.1 uses both the upper and lower bounds 

provided by the growth curve (the upper curve is being used in the diagram for ,, while the 

lower curve is used in the diagram for (3). D 

LEMMA 6.2. Let m and n be positive integers and let Z be some fixed m x n rectangular 

block within Q = Mw( F), that is, Z consists of all matrices whose nonzero entries are within 

the shaded area: 

0 
n 

0 

(Notice that we do not , any special placement of the rectangle.) Let {gi} iEI be any set 

of orthogonal idempotents of Q. Then at most n of the 9i can have some nonzero row entirely 

within z.

Proof. Note that Z is a (unitary) left module over B = Mm (F) of uniform (Goldie) 

dimension n. Suppose (after relabelling) that 91, 92, ... , 9n+l each have a nonzero row entirely 

within Z, say 

17 



for a suitable (standard) primitive idempotent hi E Q. Then the B hi9i are nonzero independent 

left B-submodules of Z for i = 1, ... , n + 1, which is impossible because BZ has uniform 

dimension n. D 

PROPOSITION 6.3. Let g1, ... ,9k E B(F) be orthogonal idempotents and suppose f(n) is 

an increasing growth curve for these idempotents. Suppose £ and m are positive integers with 

l � m and such that each 9i has some nonzero row between the gth and mth (inclusive). Then

k � 2f(m) + m - £ + 1 . 

Proof. By the very nature of a growth curve, all the 9i have some nonzero row entirely 

within the shaded area of the figure below. 

m 

Since f ( n) is increasing, this rectangular block has 

width :S f(£) + (m - .e + 1) + f(m) < 2f(m) + m - £ + 1 . 

Hence by Lemma 6.2, we have k � 2f ( m) + m - .e + 1 . D 

REMARK. The above argument again utilizes the fact that f ( n) is both an upper and a lower 

growth curve. 
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7. PROOF OF THEOREM 0.1

Let O < r < 1, t = l�r' and nk = 2[tlogkJ, all as before. To complete the proof that our
8-generator algebra A has bandwidth dimension r, it suffices to show that if B : A --t G( s) is
an algebra embedding for some O < s ::; r, then s = r. Note that we have used the fact that
A � G(r) to infer that the bandwidth dimension of A is at most r. The only other properties
of A we shall use for the remainder of the proof are the properties in Propositions 5.1 and 5.4.
(Thus we no longer need to keep track of the exact nature of the generators of A.)

So let B : A --t G( s) be given. We shall show that r ::; s in a series of steps. Firstly we 
recall from [ 4] the definition of the subspaces Ws( c) of G( s ). For each c � 0 

W8 ( c) = { x E B ( F) I en 8 is a growth curve for x}

Notice that G( s) is the union of these subspaces. It turns out that, because s < 1, the powers 
of W8(c) grow "polynomially" (cf. the powers of W1(c), which grow exponentially ). More 
precisely, by [4, Corollary 1.7] we have: 

Step 1. Let c E R +. Then there is a positive constant d such that 

for all positive integers m.

Our second step uses the Key Property of A in 5.1, and its companion 5.4. For each k EN,

let 
Fk = the set of standard primitive idempotents of J k . 

Note that IFk l = nk because Jk '.::::'. Mn,.(F). 

Step 2. There exist increasing Ck E R+ for k = 1, 2, 3 ... such that 

(1) ckn8 is a growth curve for all elements in B(Fk),for a cross-element between each pair,
and also for a cross-element from any element of B(Fk) to any one of B(Fk+l), 

(2) Ck = O((log k )211-8).

Proof. Choose c E R + such that Ws( c) contains the images (under B) of the eight generators 
of A. This is possible because B(A) � G(s) = UW8(c) and the W8(c) form a chain. Let k EN.

Let e, f E Fk and g E Fk+l· By Propositions 5.1 and 5.4, we can obtain e, f, a cross-element 
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from e to f, and a cross-element from f to g, all in 0( (log k )2) products of generators of A. 
Their images under () therefore all lie in (Ws ( c) lk where dk = 0( (log k )2). By Step 1 

where ck = O(di/l-s) = O((log k)211-s). This choice of ck clearly satisfies (1) and (2). D

Our strategy now is to chase the first nonzero rows of the images of the idempotents in Fk , 
and obtain opposing constraints on their positions. On the one hand they have to be fairly close 
together to ensure that some cross-element from ()(Fk) to ()(Fk+l) can lie in Ws(ck) (Step 3). 
On the other hand, having the nk images of the equivalent orthogonal idempotents from Fk all 
inside W8 (ck) forces these nonzero rows to become increasingly scattered (Step 4). 

For each k E N, we choose an idempotent f k E Fk such that ()(jk ) has its first nonzero row 
at least as far down as for the images of any of the other nk -1 idempotents in Fk . We then set 

Pk = row index of the first nonzero row of ()(jk ) . 

Step 3. 

Proof. Let m E N. By Step 2 there is a cross-element I from ()(f m) to ()(f m+1) such 
that ()(fm), eum+l), and I all have f(n) = Cm+1n8 as a common growth curve. Hence by 
Proposition 6.1 

Pm+l -Pm < f(Pm) + f(Pm + [!(pm)]) 
< 2f(Pm + [!(pm)]) 
< 2cm+l(Pm + Cm+1p:n)8

< 2cm+1(l + Cm+1)8P:n since s :5 1. 

Therefore for all m E N we have 

(1) 

Let h : R + --+ R + be the function h( x) = x-s and notice that h is a decreasing function
since s > 0. By comparing the area under the graph of h(x) with the area of the appropriate 
rectangle, we see from elementary calculus that for all m E N 

Pm+l -Pm 2 h(x )dx. 
1Pm+l 

P:n Pm 

20 

(2)



Hence for all integers k � 2 we have 
k-1 

L 2cm+1(l + Cm+1)8
> 

m=l 

k-1 

L Pm+l-Pm 
m=l P";n 

from (1) 

> I: 1
Pm+< 

h(x)dx from (2)
m=l Pm 

- ,. h( x )dx = 

Pk -P1 
1p 

1-s 1-s

l-sPl 

From this we get 

k-1

Pk < (Pi-s 
+ 2(1 -8) L Cm+1(l + Cm+1)8)l /l-s

m=l 
< (Pi-s 

+ 2(1 -s )( k -1 )q(l + ck)8)1ll-s

since the cm are increasing. It is now clear that 

Step 4. 

_ O(k l/1-s l+s/1-s) Pk - ck 
, 

for all k. 

D 

Proof Fix a positive integer k. Let R, be the smallest row index of any nonzero row of 
any of the images e(g), as g ranges .over the idempotents in Fk , Suppose this smallest index
occurs for ()(gk)· Let m = Pk (� £). By Step 2 there is a cross-element, from B(fk) to ()(gk) 
such that ()(jk), ()(gk), and I all have f(n) = ckn8 as an increasing growth curve. Hence by 
Proposition 6.1 

m -£ < J(f) + J(R, + [!(£)]) 
< J(m) + J(m + [J(m)]) 

< 2J(m + [J(m)]). 

By definitions of .e and m, all the nk images ()(g) of the idempotents g E Fk have a nonzero 
row between the ,eth and mth. Therefore by Proposition 6.3 

nk < 2f(m)+m-f+l 

< 2/(m) + 2/(m + [f(m)]) + 1 (from above) 

< 5f(m + [J(m)]) 

< 5ck(Pk + CkPk )8

< 5ck(l + q)8p% (since s :S 1) 
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which implies (since O < s) that 

D 

By comparing the contrasting estimates for the growth of the Pk which we have found in 
Steps 3 and 4, we obtain: 

Step 5. _ O(ks/1-s l+s/1-s)• nk - ck 

Proof. From Step 3 there is a positive constant d such that 
< dkl/1-s l+s/1-s 

Pk - ck 

for all k E N. Comparing this with Step 4 we obtain 

which implies 

and in turn that 

1 ( nk ) 
l/s < < dkl/1-s

c
l+s/1-s 

(1 + ck) 5ck 
- Pk - k 

_ O(ks/1-s l+s/1-s) nk - ck 
•

From Steps 2 and 5, we have 

nk = O(ks/l-s(log k )q) 

D 

where q = 2(1 + s)/(1 -s)2. But by Proposition 1.1, nk has at least polynomial growth of k t . 
Since polynomial growth always outstrips log growth, we must therefore have 

t::;; s/1 - s.

Hence r/(1 - r) ::;; s/(1 -s) and so since r, s E (0, 1) we must haves � r. This completes the 
proof of Theorem 0.1. 0

REMARK. We can actually obtain a 2-generator algebra B of any prescribed bandwidth 
dimension r E [O, 1] by taking B = M10(A), where A is our 8-generator algebra of bandwidth 
dimension r. This is because Mn+2( C) is a 2-generator algebra for any n-generator algebra C 
(see [5, Lemma]), and forming a finite matrix algebra does not alter bandwidth dimension. 
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8. BANDWIDTH DIMENSION OF UNCOUNTABLE­
DIMENSIONAL ALGEBRAS AND DIRECTLY FINITE ALGEBRAS 

There are at least two approaches one can adopt to the bandwidth dimension of uncountable­
dimensional algebras A (see [4]). One way is simply to keep the definition 

inf{r ER, r � 0 I A can be embedded in G(r)}

but with the understanding that inf q? = oo. An alternative approach is to mimic G !{-dimension, 
and define the bandwidth dimension of A as the supremum of the bandwidth dimensions of its 
countable-dimensional subalgebras. In general these two definitions are inequivalent, but using 
either definition we have the following corollary to Theorem 0.1: 

COROLLARY 8.1. For each r E [O, 1) the algebra G(r) has bandwidth dimension r.

Proof. Certainly G(r) has bandwidth dimension at most r. By the proof of Theorem 0.1, 
G(r) contains a countable-dimensional subalgebra of bandwidth dimension r. Hence r is the 
supremum of the bandwidth dimensions of the countable-dimensional subalgebra of G( r ). On 
the other hand, if G(r) itself were to embed in G(s) for some s < r, this would imply that 
all the countable-dimensional subalgebras of G( r) have bandwidth dimension less than r. Thus 
with either definition, G(r) has bandwidth dimension precisely r. D 

It was claimed in section 1 that if we take the spine S determined by the sequence n k = [kt], 
where t = l�r and O < r < 1, and let B be the subalgebra of B(F) generated by Sand the two 
infinite shifts a and b, then B has bandwidth dimension r. (In fact we need only include the shift 
a.) Here we are using the first of the above definitions of bandwidth dimension. The proof of 
this claim is quite a bit simpler than the proof of Theorem 0.1, because it turns out that here we 
can choose all the ck in Step 2 of section 7 to be the same. The reason for this is that if R is any 
algebra isomorphic to II�1 Mn;( F) for some unbounded increasing sequence { ni} of positive 
integers, and fJ : R � G( s) is an algebra embedding, then the whole of the image fJ( R) is inside 
some fixed growth curve g( n) = cn8

• In turn, the proof of this hinges on the self-injectivity 
of R and the fact that all the nonzero singular R-modules have uncountable dimension over F.

(The author thanks K.R. Goodearl for supplying a proof of this last statement.)

In view of the fact that every countable-dimensional algebra has its bandwidth dimension in 
(0, l], the following is an immediate corollary of Theorem 0.1. 

COROLLARY 8.2. For any field F, the bandwidth dimensions of countable-dimensional alge­

bras over F exactly fill the unit interval [O, 1). 

Any countable-dimensional algebra A which is purely infinite, that is AA � A EB A, must 
have bandwidth dimension 1 by [ 4, Theorem 3.3]. Such algebras are, in particular, directly
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infinite - that is, they contain elements a, (3 with a/3 = 1 but (3a -:/:- 1, equivalently, AA is 

isomorphic to a proper direct summand of itself. For r E (0, 1), the countable-dimensional 

algebra A of bandwidth dimension r, which we constructed for the proof of Theorem 0.1, is 

also directly infinite because ba = 1 -:/:- ab. One might suspect, therefore, that having positive 

bandwidth dimension is somehow tied up with this type of skewness. However, our next result 

shows that this is not so. 

PROPOSITION 8.3. For any real nwnber r E (0, 1] there is  a countable-dimensional, directly 

finite algebra D of bandwidth dimension r. (By directly finite we mean all one-sided inverses · 

are two-sided.) 

Proof. The case r = 0 is trivial. Suppose O < r < 1. Let C be the subalgebra of G(r) 

generated by 

a, b1, u, v, w, x, y, z 

where a, u, v, w, x, y, z are the same generators as before but where b1 is the scheme II matrix 

obtained from b by dropping off the linking 1 's. That is, the f3m x f3m block of b1 is 

0 1 

1 

1 

1 

0 

Then, as remarked in section 5, the proof of 5.1 still works for the algebra C. The difficulty 

occurs in 5.4. For although the same proof shows that for f = eii E Jk and g = ejj E Jk+l> 
the element eji E C, we can't conclude that eji is a cross-element from JC to gC. It is true 

that eji is a cross-element from f to g in the larger ring B( F), but this might not be so for their 

images under an embedding B : C ---* G( s) (which is what is required in Step 2 in section 7). 

To get around this difficulty, let D be the subalgebra of G(r) generated by C and all the 

standard matrix units eij of Mw(F). Note that 

D = C + socle B(F) 

where socle B( F) consists of all w x w matrices with only finitely many nonzero entries. Now 5.1 

and 5.4 hold with A replaced by D, provided we interpret "generators" as the above generators 

of C. (D itself is not finitely generated although it is countable-dimensional.) The only use we 

make of the extra matrix units in D is to get the above eji (in logarithmic time) as a cross­

element from f D to gD; we have g = ejj = ejieij E ejiD and f = eii = eijeji E Deji so 
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gD = ejiD and D f = Deji· The proof in section 7 now carries over and shows that D has 
bandwidth dimension r.

It remains to show that D is directly finite. Observe that C is a subalgebra of the algebra 
L of all block lower triangular matrices relative to a scheme II diagonal. Since the diagonal 
blocks are all directly finite, it follows that L is directly finite. Suppose a, /3 E D with a/3 = 1. 
Since D = c+ socle B(F), we can write 

0 �1 0 

<X= � = 

�3 �2 

where the top left hand blocks are finite n x n for the same n, and where 

0 0 0 0 

EL 

0 0 �2 

Then a.1/31 = 1 and a.2/32 = 1, so by the direct finiteness of Mn(F) and L we have /310.1 = 1 
and /32a2 = 1. Hence a has zero right annihilator in D, whence from a(l - f3a) = 0 we infer 
that 1 - f3a = 0 and so f3a = 1. Therefore D is a directly finite, countable-dimensional algebra 
of bandwidth dimension r. 

For the case r = 1, we can replace the spine S of section 1 by the spine determined by 
the sequence 

21
, 22

, 22
, 23

, 23, 23, ... , 2m, 2m, ... , 2m ( m lots), ... 

and modify the generators accordingly. If the resulting algebra D = c+ socle B(F) embeds 
in G ( s) for some s < l, then Step 5 in section 7 shows that the k th term, n k, of the above 
sequence must have at most polynomial growth. This contradicts the fact that nk has exponential 
growth (nk � 2v'k). Thus D has bandwidth dimension l, and is directly finite and countable-
dimensional. D

REMARK. It seems likely that there are in fact finitely generated algebras which are directly 
finite and of any prescribed bandwidth dimension r E [O, 1]. 
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