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Abstract

Shortest path problems can be solved very efficiently when a directed graph is nearly
acyclic. Earlier results defined a graph decomposition, now called the 1-dominator
set, which consists of a unique collection of acyclic structures with each single acyclic
structure dominated by a single associated trigger vertex. In this framework, a spe-
cialised shortest path algorithm only spends delete-min operations on trigger ver-
tices, thereby making the computation of shortest paths through non-trigger vertices
easier. A previously presented algorithm computed the 1-dominator set in O(mn)
worst-case time, which allowed it to be integrated as part of an O(mn + nr log r)
time all-pairs algorithm. Here m and n respectively denote the number of edges
and vertices in the graph, while r denotes the number of trigger vertices. A new
algorithm presented in this paper computes the 1-dominator set in just O(m) time.
This can be integrated as part of the O(m+r log r) time spent solving single-source,
improving on the value of r obtained by the earlier tree-decomposition single-source
algorithm. In addition, a new bi-directional form of 1-dominator set is presented,
which further improves the value of r by defining acyclic structures in both di-
rections over edges in the graph. The bi-directional 1-dominator set can similarly
be computed in O(m) time and included as part of the O(m + r log r) time spent
computing single-source. This paper also presents a new all-pairs algorithm under
the more general framework where r is defined as the size of any predetermined
feedback vertex set of the graph, improving the previous all-pairs time complexity
from O(mn + nr2) to O(mn + r3).
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1 Introduction

A directed graph G = (V, E) consists of a set of vertices V , and a set of directed
edges E. Each edge e ∈ E provides a connection between two vertices in V ,
and has an associated cost c(e). Any path connecting a pair of vertices has an
associated distance which corresponds to the sum of the costs of edges that
make up the path. The existence of alternative paths between a pair of vertices
provides the possibility of some paths being shorter than others in terms of
their associated distance. This results in the problem of determining which
paths are the shortest.

Dijkstra’s algorithm [3] solves the single source shortest path problem on a
non-negatively weighted directed graph in O(m+n log n) worst-case time when
applied in conjunction with a Fibonacci heap [4] or 2-3 heap [10], where m
accounts for distance updates from edges, and n accounts for delete-min op-
erations in the heap. Here m denotes the number of edges and n denotes the
number of vertices in the graph. The time complexity provided by Dijkstra’s
algorithm applies to any non-negatively weighted directed graph in general.
However, for some classes of directed graphs, such as limited edge cost graphs,
planar graphs, and nearly acyclic graphs, it is possible to improve upon the
time complexity offered by Dijkstra’s algorithm by using a specialised short-
est path algorithm. Applying Dijkstra’s algorithm from all n possible source
vertices solves the all-pairs problem in O(mn + n2 log n) worst-case time for
a graph in general. However, as in the case of single-source, it is possible to
achieve a lower time complexity when solving all-pairs on special-case graphs
by using specialised algorithms on such graphs.

This paper deals with shortest path algorithms that are suited to a special
class of directed graphs called nearly acyclic graphs. Nearly acyclic graphs
contain very few cycles relative to the number of vertices they contain. This
results in large underlying acyclic subgraphs, within which shortest paths can
be computed efficiently. Several previous shortest path algorithms for nearly
acyclic directed graphs have been seen. Abuaiadh and Kingston [1] presented
a single-source algorithm which uses a heuristic to allow the easy traversal of
vertices as acyclic regions of the graph are encountered. In such ‘easy’ traver-
sal, only distance updates are involved and no delete-min operations. Used
in conjunction with a modified Fibonacci heap data structure, they showed
that this achieves a worst-case time complexity of O(m + n log t) where the
parameter t is a reduced number of delete-min operations. Takaoka [9], using
a different approach provided an algorithm with O(m+n log k) time complex-
ity. Here k is defined as the size of the largest strongly connected component
in the graph, and is expected to be small for nearly acyclic graphs. For a
more complete description of strongly connected components and other graph
theory terms related to algorithms, refer to Gibbons [5]. The Ph.D. thesis of
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Diab Abuaiadh [2] developed a general framework for solving shortest paths by
graph decomposition. This framework can be applied to nearly acyclic graphs
by decomposing a graph into acyclic structures. However, the time complexity
of this method is undefined without specifying the exact acyclic decomposition
method to be used. Abuaiadh’s thesis describes one form of acyclic decompo-
sition that can be used. More recently, Saunders and Takaoka [7] published
other specialised shortest path algorithms that make use of graph decompo-
sitions. The new algorithms in [7] introduced the concept of trigger vertices,
from which shortest paths can be computed efficiently through underlying
acyclic regions in a graph. A graph decomposition, which is now called the 1-
dominator set, was devised for specifying such acyclic regions. A 1-dominator
set divides a graph into a unique collection of acyclic subgraphs such that any
single acyclic subgraph is dominated by a single associated trigger vertex. This
provided an all-pairs algorithm with a time complexity of O(nm + nr log r),
where r is defined as the number of trigger vertices in the 1-dominator set.
Here the equivalent single-source time complexity of O(m+r log r) is only ap-
plicable if we exclude the O(mn) time required to compute the 1-dominator set
by assuming it is pre-computed. If r is small, then the graph is regarded as be-
ing nearly acyclic. Saunders and Takaoka also gave a more general framework
for the use of trigger vertices. This defines trigger vertices more generally as
feedback vertices, and provides an all-pairs algorithm with a time complexity
of O(mn + nr2) where r is the number of such trigger vertices. Such a defini-
tion for trigger vertices is able to encompass a wide range of acyclic structures
within a graph.

Extending upon the previous publication by Saunders and Takaoka, this pa-
per introduces new algorithms for providing efficient computation of shortest
paths on nearly acyclic graphs. The previous algorithm used by Saunders and
Takaoka for computing the 1-dominator set of a graph spent O(mn) worst-case
time, which limited its usefulness to the all-pairs problem. This paper presents
an improved decomposition algorithm for computing the 1-dominator set in
O(m) worst-case time. This is within the time complexity required to com-
pute single-source. Furthermore, a bi-directional variant of the 1-dominator
set is presented, which recognises acyclic structures in both directions from
trigger vertices, while still maintaining the property of being set-wise unique
for a given graph. The forward, backward, and bi-directional 1-dominator set
variants are all encompassed by the same general definition. It is shown that
the bi-directional 1-dominator set can be computed in O(m) worst-case time
by merging the forward and backward 1-dominator sets. All 1-dominator set
variations allow single-source to be solved within the previously published
O(m + r log r) worst-case time complexity, where r is the resulting number of
trigger vertices. The value of r that results from a bi-directional 1-dominator
set is never larger than that for the mono-directional 1-dominator set, and is
potentially smaller where a graphs structure favours this. In addition, this pa-
per provides a new algorithm for solving all-pairs in O(mn+r2 log r) worst-case
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time, where r denotes the number of trigger vertices in a 1-dominator set. This
all-pairs time complexity is a marked improvement on the O(mn + nr log r)
time complexity that is required when using the more modest approach of
solving single-source from each source vertex in the graph independently. The
new all-pairs algorithm is also applicable with r is defined as the number
of vertices in a precomputed feedback vertex set. Using this definition for r,
all-pairs is solved in a worst-case time complexity of O(mn+r3). This is a sig-
nificant improvement on the previously presented feedback vertex set all-pairs
algorithm, which had a worst-case time complexity of O(mn + nr2).

As an introduction to the new material presented in this paper, Section 2
provides an overview of existing algorithms for solving the shortest path prob-
lem. Section 3 provides a mathematical definition for 1-dominator sets. A new
algorithm for computing the 1-dominator set of a graph in O(m) worst-case
time is then presented in Section 4, followed by an algorithm that computes
the bi-directional 1-dominator set by merging the forward and backward 1-
dominator sets. The presentation of the new shortest path algorithms begins
in Section 5. This extends upon the reduced-graph approach previously used
by Saunders and Takaoka. It is demonstrated that the reduced graph frame-
work now supports single-source algorithms with time complexities of the form
O(m + r log r) where r is the number of trigger vertices in a 1-dominator de-
composition of the graph. A new all-pairs algorithm is then presented which
achieves a time complexity of O(mn+ r2 log r) using the 1-dominator set, and
O(mn + r3) using any general feedback vertex set. Concluding remarks are
given in Section 6.

2 An Overview of Existing Shortest Path Algorithms

This section covers some necessary background information, that will ease the
introduction of the new shortest path algorithms presented in later sections. As
a starting point, Dijkstra’s algorithm will be described. Dijkstra’s algorithm
forms the basis for many specialised forms of shortest path algorithms, such
as the algorithms presented in this paper.

Dijkstra’s algorithm solves the single-source problem on any directed graph
G = (V, E), where V is the set of vertices and E is the set of edges in the graph.
When computing shortest paths, Dijkstra’s algorithm maintains a distance
value d[v] corresponding to the distance of the currently shortest known path
to each vertex v. A solution set S holds vertices for which d[v] is final, while a
frontier set F holds vertices for which d[v] is tentative. Unexplored vertices are
neither in S nor F . Dijkstra’s algorithm begins by placing the starting vertex
s in S with an initial distance of d[s] = 0. Vertices v on edges s→ v are placed
in F , with an initial distance value of d[v] = c(s, v), where c(s, v) denotes the
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cost of edge s → v. Dijkstra’s algorithm progresses by selecting the vertex u
in F for which d[u] is minimum. This distance value d[u] cannot be improved
further via edges from other vertices in F , and already reflects the shortest
distance of paths from vertices in S. Therefore the value of d[u] is known to be
final, allowing vertex u to be moved to S. On moving this minimum vertex u
from F to S, Dijkstra’s algorithm performs a relax operation on u to update
the tentative distance of vertices v on outgoing edges u→ v according to the
formula d[v] = min(d[v], d[u]+ c(u, v)) where c(u, v) is the cost of edge u→ v.
In cases where such a vertex v is visited for the first time, v is simply added
to F with a distance value of d[v] = d[u] + c(u, v). By repeatedly moving the
minimum vertex u from F to S and relaxing u, Dijkstra’s algorithm eventually
computes the shortest path from s to all vertices v that are reachable from
s. The trivial shortest path distance of d[v] = ∞ holds for any vertex that is
unreachable. The actual path tree can be constructed by maintaining values
p[v] to specify the preceding vertex on the shortest known path to a vertex v.

The time complexity of Dijkstra’s algorithm depends on the data structure
that is used for determining the minimum vertex in F . Currently, the most
efficient data structure for this purpose is the Fibonacci heap [4], and equiva-
lents such as the 2-3 heap [10] and trinomial heap [11]. These heaps support
the insert and decrease-key operations in O(1) amortised or worst-case time,
allowing efficient insertion of vertices into F , and updating of distance val-
ues. Furthermore, their support for O(log n) amortised time for delete-min
allows the minimum vertex to be determined efficiently, according to n be-
ing the maximum number of vertices that will be placed in F . With at most
n insertions, n delete-mins, and m decrease-keys, the total time required by
Dijkstra’s algorithm when using a Fibonacci heap is at worst O(m + n log n).

The single-source shortest path problem, with a single initial distance of
d[s] = 0, is a special case of a more general situation. In the more general
situation, many vertices can have finite initial distances, which originate from
a hypothetical sources via hypothetical edges carrying shortest path distances
computed outside of the given graph. This more general situation is referred
to as the generalised single-source (GSS) problem. The GSS problem appears
in Takaoka’s algorithm [9] where separate GSS problems are solved on each
strongly connected (SC) component in a graph. The SC components that
Takaoka’s algorithm works with are first computed in O(m) time by applying
Tarjan’s algorithm [12] for SC components. The edges of the graph that link
together SC components form an outer acyclic structure. Tarjan’s algorithm
produces a topological ordering of these SC components as a by-product. Con-
sidering the SC components in topological order, Takaoka’s algorithm initially
solves GSS on the first SC component. Shortest path distances from this SC
component are extended through outgoing edges and induce initial distances
onto vertices contained in downstream SC components of the topological or-
dering. The computation continues with GSS being solved on the next SC
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component in the topological order, which in turn induces further initial dis-
tances onto vertices of downstream SC components. This process is repeated
until GSS has been solved on all SC components; at which point the single-
source problem on the graph will have been computed, with initial distances
having been propagated downstream from the SC component that contained
the first initial distance of d[s] = 0. If the size of the largest SC component is
k, then the size of the corresponding frontier set is never greater than k ver-
tices for any single GSS problem. As a result, Takaoka’s algorithm provides a
worst-case time complexity of O(m+n log k), where k is the size of the largest
SC component in the graph. For nearly acyclic graphs that contain many small
SC components, linked together by a large outer acyclic structure, the value
of k is expected to be small, allowing Takaoka’s algorithm to perform with
near O(m) worst-case processing time.

The benefit of using Takaoka’s algorithm is seen on the kind of nearly acyclic
graphs that do not contain large SC components. Takaoka’s algorithm can
also be used in conjunction with any GSS-capable single-source algorithm.
Thus, if SC components themselves contain acyclic structures, then Takaoka’s
algorithm can be used in conjunction with a suitable GSS algorithm to achieve
the benefits offered by both. Such hybrid algorithms are of potential benefit
to a wider range of nearly acyclic graphs than their respective component
algorithms alone.

A single-source algorithm presented by Abuaiadh and Kingston [1] provides
an alternative method for computing shortest paths on nearly acyclic graphs.
Their algorithm works by identifying ‘easy’ vertices during the process of com-
puting shortest paths. A vertex is identified as ‘easy’ if all its incoming edges
lie in S. For such a vertex v, all possible shortest paths to v have been ex-
plored, allowing the vertex to be removed from F without the need for a
delete-min operation. By making use of a modified Fibonacci heap, referred
to as a relaxed heap, which supports O(1) amortised time for delete operations,
easy vertices can be removed from F efficiently. This reduces the number of
delete-min operations required to compute single-source. The resulting time
complexity for computing single-source thus becomes O(m+n log t) where t is
the number of delete-min operations that were needed. Nearly acyclic graphs
typically result in small values for t, thus allowing the algorithm to approach
O(m) worst-case running time. Although flexible, this approach has the disad-
vantage that the resulting number of easy vertices is dependent on the order
in which vertices are removed from S. As such, the parameter t which, defines
the performance of the algorithm, will depend on factors such as initial dis-
tances and edge costs. This makes the performance of this approach less well
defined than other approaches which are able to determine their performance
parameter directly from the graph structure alone, before shortest paths are
computed.

6



The shortest path algorithms presented by Saunders and Takaoka [7] define
their performance parameter in terms of the number of trigger vertices, where
trigger vertices are defined in terms of a graph’s structure. In these approaches,
only trigger vertices need to be considered in delete-min operations, thus re-
ducing the time complexity required to solve a single source problem. All non-
trigger vertices in the graph are involved in acyclic regions, through which
shortest paths can be computed without the need for delete-min operations.
Two definitions for trigger vertices were previously presented. One definition
was restricted to acyclic structures that were dominated by a single-trigger
vertex. After performing delete-min on a trigger vertex, shortest paths to the
associated acyclic structure’s non-trigger vertices were finalised and the dis-
tance of neighbouring trigger vertices updated. With delete-min operations
only ever occurring on trigger vertices, this process resulted in a worst-case
time complexity of O(m + r log r) for solving single-source. However, with
O(mn) worst-case time being required to compute the acyclic structures, the
algorithm’s application was limited mainly to solving either repeated single-
source problems or the all-pairs problem. Another algorithm presented by
Saunders and Takaoka defined trigger vertices more generally as any feedback
vertex set. This allowed the all-pairs problem to be solved in O(mn + nr2)
worst-case time where r is the number of feedback vertices in a precomputed
feedback vertex set for the graph. Nearly acyclic graphs typically have a small
set of feedback vertices relative to their total number of vertices, with all non-
feedback vertices forming one large monolithic acyclic region through which
shortest paths can be computed efficiently. The flexibility offered by feedback
vertex sets allows any kind of acyclic region within the graph to be identified,
provided that an appropriate feedback vertex set can be computed beforehand.
As such, this all-pairs algorithm is of potential benefit to a much wider range
of nearly acyclic graphs compared to other algorithms which use more restric-
tive definitions for trigger vertices. Currently, the use of feedback vertices for
computing shortest paths only produces an efficient all-pairs algorithm.

The new shortest path algorithms presented in this paper improve upon the
earlier algorithms that were presented by Saunders and Takaoka. Firstly, the
time required to compute the set-wise unique acyclic decomposition of a graph
has been improved from O(mn) to O(m). As such, the acyclic decomposition
can be computed as part of the time required for computing single-source ef-
ficiently on nearly acyclic graphs. Secondly, a more advanced form of set-wise
unique acyclic decomposition is presented, in which acyclic structures are de-
fined over both the incoming and outgoing edges of vertices. This bidirectional
acyclic decomposition provides for a reduced number of trigger vertices, and
can also be computed within O(m) worst-case time. Finally, improvements
are made to the time complexity that is required to solve all-pairs. The previ-
ous worst-case time complexity for solving all-pairs by acyclic decomposition
is reduced from O(mn + nr log r) to O(mn + r2 log r). Similarly, the previous
worst-case time complexity for solving all-pairs by feedback vertices is reduced
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from O(mn+nr2) to O(mn+r3). This improved algorithm allows the compu-
tation of all-pairs shortest paths in O(mn) worst-case time where a feedback
vertex set of O( 3

√
mn) or fewer vertices can be determined. Such a feedback

vertex set does not necessarily have to be minimum. 1 Any existing or future
algorithm capable of determining a suitably sized feedback vertex set within
the O(mn) time needed for computing all-pairs will prove quite useful with
this approach.

3 A Mathematical Definition for Acyclic Decomposition

This section reviews the acyclic decomposition method previously presented
by Saunders and Takaoka [7]. The earlier work only provided an algorithmic
definition for the decomposition. Now, a more precise mathematical defini-
tion is presented. Additionally, the acyclic decomposition is extended to allow
acyclic structures defined in both the incoming and outgoing directions from
vertices.

Acyclic structures can be defined as either partial or complete. The definition of
complete acyclic structures follows from the definition of partial acyclic struc-
tures which will be given first. To distinguish the two forms, partial acyclic
structures are denoted using a primed notation, as in A′

u. Acyclic structures
can be defined over either the outgoing or incoming edges of vertices, resulting
in forward and backward acyclic structures respectively. The definition for for-
ward acyclic structures will be given first. A forward partial acyclic structure
A′

v can be defined in the forward direction from any vertex v in the graph,
with vertex v ‘dominating’ all vertices of A′

v. Such an acyclic structure satisfies
the following mathematical properties:

• v ∈ A′
v

• A′
v−{v} is acyclic; that is, the vertices in A′

v−{v} induce an acyclic graph.
• All w ∈ A′

v − {v} satisfy IN (w) ⊆ A′
v and IN (w) 6= ∅.

Here the notation IN (w) is used to denote the set of vertices that are adjacent
to w via incoming edges of w. Intuitively speaking, A′

v may contain vertices
w such that every path originating from vertices outside of A′

v to w passes
through vertex v. In this sense, v dominates all other vertices w ∈ A′

v. Fur-
thermore, if w is in A′

v, then A′
v must also contain all vertices that participate

in acyclic paths from v to w. A partial acyclic structure A′
v is not necessarily

complete. The complete acyclic structure Av defined in the forward direction
from a vertex v must satisfy the additional requirement:

1 Finding a minimum feedback vertex set would require too much effort anyway
since that is an NP-complete problem.
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• w ∈ Av for all w that satisfy IN (w) ⊆ Av.

This rule ensures that a complete acyclic structure Av contains all vertices
that are ‘dominated’ by vertex v.

The definition for backward acyclic structures is symmetric to that for forward
acyclic structures. A partial backward acyclic structure B′

v defined on a vertex
v satisfies the requirements:

• B′
v − {v} is acyclic.

• v ∈ B′
v

• All w ∈ B′
v − {v} satisfy OUT (w) ⊆ B′

v and OUT (w) 6= ∅.

Similarly, the respective additional rule for a complete backward acyclic struc-
ture Bv is:

• w ∈ Bv for all w that satisfy OUT (w) ⊆ Bv.

In general, let a complete acyclic structure defined on a dominating vertex v
be denoted as Φv. If only monodirectional acyclic structures are being consid-
ered then, depending on whether forward or backward acyclic structures are
being used, Φv can be defined as either Φv ≡ Av or Φv ≡ Bv. In the case of
bidirectional acyclic structures, Φv takes the definition Φv ≡ Av ∪Bv.

With any vertex v in the graph having a corresponding complete acyclic struc-
ture, there will be some complete acyclic structures that are contained as sub-
sets of other complete acyclic structures. The following theorems describe this
property.

Theorem 1 If v ∈ Au then Av ⊆ Au.

PROOF. An acyclic structure Av can be constructed by starting from a
partial acyclic structure A′

v = {v} and applying the iterative equation A′
v ←

A′
v + {w} while there exists some vertex w /∈ A′

v that satisfies IN (w) ⊆ A′
v.

The following proof by induction shows that any such vertex w must belong
to Au on the basis that v ∈ Au.

Induction Basis: A′
v = {v} satisfies A′

v ⊆ Au.

Induction Step: Assume by previous induction that A′
v ⊆ Au. Any vertex w

that is added to A′
v must satisfy IN (w) ⊆ A′

v. With A′
v ⊆ Au, such a vertex w

must also satisfy IN (w) ⊆ Au. By definition of Au, this means that w ∈ Au.
Thus, the condition A′

v ⊆ Au is retained after A′
v ← A′

v + {w}. Hence, by
induction, and the eventual condition A′

v = Av, it holds that Av ⊆ Au. 2

Theorem 2 If v ∈ Bu, then Av ⊆ Au ∪Bu.
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PROOF. First, it is shown by induction that, provided u /∈ A′
v, any vertex

w added to A′
v must belong to Bu on the basis that v ∈ Bu.

Induction Basis: A′
v = {v} satisfies A′

v ⊆ Bu.

Induction Step: Assume by previous induction that A′
v ⊆ Bu. Any vertex w

that is added to Av must satisfy IN (w) ⊆ A′
v. With A′

v ⊆ Bu, such a vertex w
must also satisfy IN (w) ⊆ Bu. Thus, any vertex w′ ∈ IN (w) satisfies w′ ∈ Bu.
If u /∈ A′

v, then w′ 6= u. By definition of Bu, any such w′ 6= u must satisfy
OUT (w′) ⊆ Bu. This is only possible if w ∈ Bu. Thus, provided that u /∈ Av,
the condition A′

v ⊆ Bu is retained after A′
v ← A′

v + {w}. Hence, by induction,
and the eventual condition A′

v = Av, it holds that Av ⊆ Bu if u /∈ Av.

Next, the proof is completed by allowing for the situation u ∈ A′
v. Suppose

that u ∈ A′
v. Then, following a proof similar to that of Theorem 1, any further

vertices w added to A′
v belong to Au. Therefore, the general condition Av ⊂

Au ∪Bu is satisfied. 2

Theorem 3 If v ∈ Φu then Φv ⊆ Φu.

PROOF. By Theorem 1, the theorem is true for the definition Φv ≡ Av, and
symmetrically true for the definition Φv ≡ Bv. The theorem is also seen to
be true for the definition Φv ≡ Av ∪ Bv by considering Theorems 1 and 2 in
combination. 2

As a result of Theorem 3, there will exist some acyclic structures Φu that can
not be contained as a subset of any other acyclic structure. Such acyclic struc-
tures are referred to as maximal acyclic structures, and satisfy the following
additional requirement:

• Φu ⊂ Φv does not hold for any Φv.

Thus, among the collection of all complete acyclic structures within a graph,
there will exist acyclic structures that are maximal. The set of all such acyclic
structures is referred to as the 1-dominator set. The 1-dominator set is named
as such because of the fact that any single acyclic structure is dominated by
a single associated trigger vertex.

For the purpose of precisely defining the 1-dominator set, let the set Q be
defined as:

Q = { Φu | Φu is maximal }

Thus, the set Q contains all maximal acyclic structures. Some maximal acyclic
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structures may be duplicated in Q, corresponding to cases where Φv = Φu for
two different dominating vertices v and u. The 1-dominator set R contains all
the acyclic structures in Q, except for any duplicates. For the mono-directional
1-dominator set, R forms a disjoint set of acyclic structures covering the whole
graph, and thus is a decomposition. In the case of bi-directional 1-dominator
sets, the forward and backward parts of different acyclic structures may over-
lap.

The vertex u used for denoting a maximal acyclic structure Φu ∈ R is referred
to as a trigger vertex. Later, it will be seen that this vertex ‘triggers’ shortest
path distance updates through other vertices in Φu. In cases where there exists
a duplicate acyclic structure Φv = Φu for some Φv ∈ Q, the placement of Φu

in R determines u as the trigger instead of the alternative trigger vertex v.

The set Q, which contains all maximal acyclic structures, constitutes a unique
set of acyclic structures. The removal of duplicates from Q results in the unique
set R since duplicate maximal acyclic structures are indistinguishable in terms
of the vertices they contain. Thus, the 1-dominator set R is set-wise unique
for a given graph. Only the choice among alternative trigger vertices of an
acyclic structure is non-unique.

4 Acyclic Decomposition Algorithms

4.1 Computing Monodirectional 1-Dominator Sets

An algorithm for computing mono-directional 1-dominator sets in O(mn)
worst-case was previously presented by Saunders and Takaoka [7]. This section
presents an improved algorithm which spends just O(m) worst-case time.

For descriptive purposes, let acyclicSetA(u) denote a function which returns a
vertex set A containing the vertices of the acyclic structure Au. This function
can be implemented using the restricted depth first search approach previously
described by Saunders and Takaoka. A restricted depth first search maintains
a value inCount [v] for each vertex v, which is the number of untraversed in-
coming edges of v. If inCount [v] becomes zero, then v is said to be unlocked
and the search proceeds forward. The 1-dominator set is computed by mark-
ing vertices as either trigger , nontrigger , or undefined . Initially, all vertices
are marked as undefined , identifying themselves as untraversed. The acyclic
structures of the 1-dominator set are identified by maintaining reference val-
ues AC [v] which refer to the last acyclic set found to contain vertex v. After
calling acyclicSetA(u) from an untraversed vertex u, the value of AC [v] is
assigned to refer to the computed vertex set A for all vertices v ∈ A. Ad-
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ditionally, all vertices contained in A are marked as non-triggers, except for
vertex u, which is marked as a trigger. In order for all maximal acyclic struc-
tures to be computed, an algorithm must call acyclicSetA(u) from any vertex
u that remains untraversed, and mark the traversed vertices as triggers or
non-triggers accordingly. In this way, all non-maximal acyclic structures are
eventually erased, leaving just the maximal acyclic structures which represent
the 1-dominator set.

Following the previous approach, one can compute the 1-dominator set sim-
ply by considering untraversed vertices u in any arbitrary order for calling
acyclicSetA(u). However, this results in O(mn) worst-case time since each
call acyclicSetA(u), taking up to O(m) time, may re-traverse vertices tra-
versed during earlier calls. A more efficient approach is to only initiate calls
acyclicSetA(u) from vertices bordering previously computed acyclic struc-
tures.

Definition 4 A vertex v is a boundary vertex of an acyclic structure Au if
and only if v /∈ Au and there exists an edge w → v such that w ∈ Au. Such
vertices v are said to border Au.

Theorem 5 Aw is maximal for any vertex w bordering another maximal
acyclic structure Au.

PROOF. Since w is a boundary vertex of Au, it must hold that w ∈ Av for
some maximal acyclic structure Av, where Av ∩Au = ∅. If w ∈ Av, then either
w = v or IN (w) ⊆ Av by definition of Av. Since at least one vertex of IN (w)
is contained in Au, the condition IN (w) ⊆ Av cannot hold. Therefore w = v
must hold, in which case Aw is maximal. 2

By Theorem 5, if a maximal acyclic structure Au is computed by calling
acyclicSetA(u), then other maximal acyclic structures Aw can be computed
by calling acyclicSetA(w) from vertices w bordering Au, and so forth until all
reachable vertices have been traversed.

In order to support this more efficient approach, boundary vertices must be
computed along with acyclic structures. This is achieved using a modified
version of the function acyclicSetA(v), called boundedAcyclicSetA(v), which
returns the set of boundary vertices D, in addition to the computed acyclic
structure A. The complete function is shown as Algorithm 1. Any vertex vis-
ited by boundedAcyclicSetA(v) that is not included into the resulting acyclic
structure A, will be a boundary vertex of A. Thus, the set of boundary vertices
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D is easily computed as D ← L−A, where L is the set of all vertices visited.

Algorithm 1 Function for Computing Av and Boundary Vertices

1. function boundedAcyclicSetA(u) {
2. VertexSet A, L;
3. procedure rdfs(v) { /* v traversed */
4. A← A + {v};
5. for each w ∈ OUT (A) do {
6. if w /∈ L then L← L + {w}; /* w visited */
7. inCount [w]← inCount [w]− 1;
8. if inCount [w] = 0 then rdfs(w); /* w unlocked */
9. }

10. }
11. A← ∅;
12. L← {u};
13. inCount [u]← inCount [u] + 1; /* prevents re-traversal of u */
14. rdfs(u);
15. for each w ∈ L do inCount [w]← |IN (w)|;
16. VertexSet D ← L− A; /* boundary vertices */
17. return (A,D);
18. }

Theorem 6 At the start of any call rdfs(v), it holds that:

(1) each vertex in A has been traversed exactly once.
(2) the vertices in A−{u} induce an acyclic subgraph on their outgoing edges.
(3) each vertex w ∈ A− {u} satisfies both IN (w) ⊆ Au and IN (w) 6= ∅.
(4) v /∈ A.

PROOF. Induction Basis: The theorem is trivially true for the initial call
rdfs(u) where A is empty and all vertices are untraversed.

Induction Step: Let all four conditions hold by previous induction. Any vertex
that is traversed will have been added to A. Since vertex v is not in A, and
therefore untraversed, the condition that all vertices in A have been traversed
exactly once will continue to hold after vertex v is placed in A. Hence condition
1 is satisfied by induction.

Since it is known by previous induction that IN (w) ⊆ A for all w ∈ A, there
is no edge from vertex v, which lies outside of A, to a vertex w inside A.
Therefore adding v to A cannot create a cycle back to a vertex w ∈ A− {u}.
Hence condition 2 is satisfied by induction.

Now, at the start of any call rdfs(v), where v 6= u, the precondition inCount [v] =
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0 must have been satisfied. By previous induction, all vertices in A have been
traversed only once, and with outgoing edge traversals initiated only once
per vertex, no edge will have been traversed more than once. Therefore, the
value of inCount [v], which starts from |IN (v)| for all v 6= u, reaches zero only
once all IN (v) incoming edges of v have been traversed. Thus, it holds that
IN (v) ⊆ A. Also, IN (v) 6= ∅ since v was reached via some incoming edge.
Consequently, the condition that all vertices w currently in A − {u} satisfy
both IN (w) ⊆ Au and IN (w) 6= ∅ will be maintained after adding v to A.
Hence condition 3 is satisfied by induction.

Before v is placed in A, it holds by previous induction that all vertices w ∈
A − {u} satisfy the condition IN (w) ⊆ Au and IN (w) 6= ∅. As a result,
all v′ ∈ OUT (v) satisfy v′ /∈ A − {u} since the condition IN (v′) ⊆ A is
violated by that fact that v ∈ IN (v′) and v /∈ A. Therefore, it holds that
v′ /∈ A − {u} for any recursive call rdfs(v′) that occurs. Such a recursive
call also has v′ 6= u since rdfs(u) never occurs. This is because the initial
value of inCount [u] = |IN (u)| + 1 prevents the necessary precondition of
inCount [u] = 0 from ever being reached, even if all IN (u) incoming edges of
u are traversed. Therefore, it holds that v′ /∈ A for any recursive call rdfs(v′)
that occurs. Thus, condition 4 of the theorem remains true for any recursive
call rdfs(v) as v ← v′. Hence, condition 4 is satisfied by induction. 2

Theorem 7 The function boundedAcyclicSetA(u) computes the complete acyclic
set Au.

PROOF. If the function boundedAcyclicSetA(u) computes the complete acyclic
set Au, then, to keep with the definition of Au, the following conditions need
to be satisfied.

(1) u ∈ Au.
(2) Au − {u} is acyclic.
(3) All w ∈ Au − {u} satisfy IN (w) ⊆ Au and IN (w) 6= ∅.
(4) w ∈ Au for all w that satisfy IN (w) ⊆ Au.

The initial call rdfs(u) adds vertex u to A, thereby satisfying condition 1. By
Theorem 6, conditions 2 and 3 always remain true as vertices w are added
to A by calls rdfs(w). Finally, condition 4 is satisfied because if there is any
vertex w with IN (w) ⊆ A, then it is known that inCount [w] will have reached
zero, causing rdfs(w) to be called and w added to A. 2

Algorithm 2 presents the overall algorithm, which calls boundedAcyclicSetA(v)
and explores the resulting boundary vertices. An array entry vertexType[v] is
used for the purpose of storing the marking of vertex v. The algorithm main-
tains a queue Q containing boundary vertices to be considered. Initially, an
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arbitrary starting vertex s is placed in Q, as no boundary vertices are known.
The algorithm proceeds by removing a vertex u from Q. If u has not already
been put in an acyclic structure, then the function boundedAcyclicSetA(u) is
called to determine the associated acyclic structure A and set of boundary
vertices D. The algorithm then assigns the appropriate values to AC [v] and
vertexType[v] for all vertices v contained in A. Then, each boundary vertex
v in D that has not already been put in an acyclic structure is placed in Q,
provided that v is not already in Q. This process continues until all located
boundary vertices have been exhausted from Q. At this point, all reachable
vertices in the graph will have been traversed, and the maximal acyclic struc-
tures defined on these vertices determined.

Algorithm 2 Computing the 1-Dominator Set

1. for all v ∈ V do inCount [v]← |IN (v)|;
2. for all v ∈ V do vertexType[v]← undefined ;
3. Choose an arbitrary starting vertex s.
4. Q← {s};
5. while Q 6= ∅ do {
6. Remove the next vertex u from Q;
7. if vertexType[u] = undefined then {
8. (A, D)← boundedAcyclicSetA(u);
9. for each v ∈ A do Let AC [v] refer to A;

10. for each v ∈ A do vertexType[v]← nontrigger ;
11. vertexType[u]← trigger ;
12. for each v ∈ D do {
13. if vertexType[v] = undefined and v /∈ Q then Add v to Q;
14. }
15. }
16. }

When the algorithm begins, it is unknown whether the starting vertex s is in-
fact a trigger. If s is a trigger vertex, then only maximal acyclic structures will
be computed. If s is a non-trigger vertex, then non-maximal acyclic structures
will be computed until a trigger vertex is hit. These non-maximal acyclic
structures will eventually be overwritten, meaning that some re-traversal of
vertices will occur. Theorems 8 and 9 describe the constraints of such re-
traversal.

Theorem 8 The only way for Algorithm 2 to re-traverse a vertex w is during
a call boundedAcyclicSetA(u) that re-traverses the starting vertex s.

PROOF. Algorithm 2 initially identifies all vertices v as untraversed and
sets vertexType[v] to undefined (see Line 2). The only traversal of vertices by
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Algorithm 2 occurs at Line 8 where the call boundedAcyclicSetA(u) traverses
all vertices belonging to the acyclic structure Au. Thereafter, any traversed
vertices become marked by setting vertexType[u] to trigger and vertexType[v]
to nontrigger for other vertices v in Au (Lines 10 and 11). Such a computation
of an acyclic structure Au only occurs if vertex u is untraversed as identified by
checking if vertexType[u] = undefined at Line 7. Now consider if, during this
computation of Au, some vertex w ∈ Au has already been traversed. Since
u was not traversed before, w must have been previously reached though
some path that does not involve vertex u. However, vertex u lies on all paths
that originate from vertices outside of Au and lead to vertices inside of Au.
Therefore, any previously traversed path to w would have to have originated
within Au, and this is only possible where the starting vertex s satisfies s ∈
Au. 2

Theorem 9 A non-trigger starting vertex s can be re-traversed only by a
single call boundedAcyclicSetA(u) that computes the maximal acyclic structure
Ax containing the starting vertex s, where u = x is the resulting trigger vertex.

PROOF. Consider a call boundedAcyclicSetA(u) that, while computing Au,
re-traverses a non-trigger starting vertex s. By the definition of Au, any cycle
passing through at least one vertex of Au must also pass through vertex u.
Therefore, with s ∈ Au, vertex u lies on any path that leads back to vertex s.
Now suppose that vertex s has already been re-traversed. If this were the case,
then vertex u would have been traversed previously and vertexType[u] set to
either trigger or nontrigger . This is in contradiction to the fact that the call
boundedAcyclicSetA(u) can only have occurred if vertexType[u] = undefined .
Therefore vertex s cannot have already been re-traversed. Hence the starting
vertex s is re-traversed only once. Since the maximal acyclic structure Ax

containing s must be computed, this single re-traversal of s must result from
a call boundedAcyclicSetA(u) that computes Ax with u = x as the resulting
trigger vertex. 2

Corollary 10 Combining Theorems 8 and 9, any vertex w that is re-traversed
is only re-traversed by the single call boundedAcyclicSetA(x) that computes the
maximal acyclic structure Ax containing vertex s.

Under this limited re-traversal, any non-maximal acyclic structure computed
will consume only untraversed vertices. Furthermore, all non-maximal acyclic
structures computed will belong to the same maximal acyclic structure Ax for
some vertex x. When running the algorithm on a strongly connected graph or
subgraph, this trigger vertex x must eventually be encountered. At that point,
such non-maximal acyclic structures will be erased by the computation of Ax.

Corollary 11 Since the computation of Ax is the only occurrence of re-traversal,
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no edge or vertex is traversed more than twice. Hence the worst-case running
time of Algorithm 2 is O(m).

For a strongly connected graph, all vertices will be reachable from any arbi-
trary starting vertex s, and all maximal acyclic structures in the graph will
be computed in O(m) worst-case time. For other graphs, it is necessary to
repeatedly apply this process from each untraversed SC component in the
graph in topological order. This is summarised as Algorithm 3. The notation
cover(s) denotes exactly the same process used by lines 4 to 16 of Algorithm
2. A single call cover(s) will determine the maximal acyclic structures con-
tained within the current SC component and any reachable downstream SC
components that still remain untraversed. As cover(s) will be called for any
SC component remaining untraversed, the whole graph will be considered,
and all maximal acyclic structures in the graph will be computed. The com-
bined time of all calls cover(s) is at most O(m) since each call only traverses
vertices that were not encountered by previous calls. Furthermore, the SC
components of the graph, and their topological ordering can be determined in
O(m) worst-case time using Tarjan’s algorithm. Thus, the overall worst-case
time complexity to determine the 1-dominator set remains O(m).

Algorithm 3 Computing the 1-Dominator Set of Any Graph

1. for all v ∈ V do inCount [v]← |IN (v)|;
2. for all v ∈ V do vertexType[v]← undefined ;
3. for each SC component H in topological order do {
4. Choose an arbitrary starting vertex s from H;
5. if vertexType[s] = undefined then cover(s);
6. }

The respective algorithms for computing the backward 1-dominator set are
obtained by replacing the function acyclicSetA(v) with a symmetric function
acyclicSetB(v).

4.2 Computing Bidirectional 1-Dominator Sets

The O(mn) worst-case time approach for determining monodirectional 1-
dominator sets can be extended relatively easily to determine the bidirec-
tional 1-dominator set. This is achieved by calling both acyclicSetA(v) and
acyclicSetB(v) from each vertex v in the graph that remains to be traversed,
and marking the vertex type of vertices appropriately. Provided that both
acyclicSetA(v) and acyclicSetB(v) have been called from any vertex that is
left marked as a trigger, a set of trigger vertices denoting the bidirectional 1-
dominator set will be determined. The time complexity of such an algorithm is
easily kept within O(mn) worst-case time. However, an O(m) worst-case time
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algorithm for computing the bidirectional 1-dominator sets is not as easily de-
scribed as its equivalent monodirectional algorithms. A simpler approach is to
determine the forward and backward 1-dominator sets separately and merge
these to obtain the bidirectional 1-dominator set.

In order to describe the merging process, the set of trigger vertices from the
the forward 1-dominator set is denoted as TA, and the set of trigger vertices
resulting from the backward 1-dominator set is denoted as TB. Thus, a trigger
vertex u ∈ TA denotes a maximal acyclic structure Au in the 1-dominator
set. Similarly, a trigger vertex u ∈ TB denotes a maximal acyclic structure
Bu in the backward 1-dominator set. The result of merging is a set of trigger
vertices TC such that each vertex u ∈ TC uniquely denotes a maximal bidirec-
tional acyclic structure Au ∪ Bu. Bidirectional trigger vertices do have some
relationship to monodirectional trigger vertices, as described by the following
theorem.

Theorem 12 The set of trigger vertices TC, denoting maximal bidirectional
acyclic structures, can be assembled such that TC ⊆ TA.

PROOF. Consider any vertex v in the graph. This vertex must be contained
within some maximal acyclic structure Au denoted by a trigger vertex u ∈ TA.
With v ∈ Au, it holds by Theorem 3 that the bidirectional acyclic structure
Av ∪Bv cannot contain any vertex outside of Au∪Bu. Thus, for any vertex v,
it holds that Av∪Bv ⊆ Au∪Bu for some vertex u ∈ TA. As such, any maximal
bidirectional acyclic structure Av ∪ Bv can be denoted using a trigger vertex
u ∈ TA. Hence, the set of trigger vertices TC , denoting maximal bidirectional
acyclic structures, can be assembled such that TC ⊆ TA. 2

This theorem states that TC can be assembled using trigger vertices taken from
TA. Alternatively, a symmetric theorem allows TC to be assembled using trigger
vertices taken from TB. For the purpose of this description, the approach of
constructing TC from trigger vertices contained in TA will be used.

To support the merge process, each vertex v is assigned a value source[v] as
well as value dest [v]. The value of source[v] is determined from the forward
1-dominator set, and identifies the trigger vertex u of the maximal acyclic
structure Au containing v. Similarly, the value of dest [v] is determined from the
backward 1-dominator set, and identifies the trigger vertex u of the maximal
acyclic structure Bu containing v. Using source[v] and dest [v], the following
theorem describes how to identify maximal bi-directional acyclic structures:

Theorem 13 If u ∈ TA, then Au∪Bu is maximal if and only if source[dest [u]] =
u.
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PROOF. Let w = dest [u]. With u ∈ Bw, Theorem 3 implies that Au ∪Bu ⊆
Aw ∪Bw.

First, consider the case of source[dest [u]] = u; that is source[w] = u. With
w ∈ Au, Theorem 3 implies the additional condition of Aw ∪ Bw ⊆ Au ∪ Bu.
Combining this with the condition Au∪Bu ⊆ Aw∪Bw gives Au∪Bu = Aw∪Bw.
Now, if Au∪Bu were to be non-maximal, then there would need to exist some
vertex v /∈ Au∪Bu such that Au∪Bu ⊂ Av∪Bv and Aw∪Bw ⊂ Av∪Bv. Such
a situation requires either u ∈ Av and w ∈ Av, or u ∈ Bv and w ∈ Bv. This
implies that either Au ⊂ Av or Bw ⊂ Bv. However, neither condition can hold
since both Au and Bw are maximal. Consequently, Au ∪ Bu cannot be non-
maximal, and is therefore only maximal under the condition source[dest [u]] =
u.

Now consider the case of source[dest [u]] 6= u; that is, source[w] 6= u. Then
w /∈ Au. Additionally, w /∈ Bu since u ∈ Bw. Thus, it is impossible to have
Au∪Bu = Aw∪Bw. This reduces the original condition of Au∪Bu ⊆ Aw∪Bw

to Au ∪ Bu ⊂ Aw ∪ Bw. Thus, Au ∪ Bu is non-maximal under the condition
source[dest [u]] 6= u. Hence, Au∪Bu is maximal if and only if source[dest [u]] =
u. 2

Corollary 14 Combining Theorems 12 and 13 implies that TC contains all
and only those vertices u ∈ TA for which source[dest [u]] = u.

This precisely defines TC as follows:

TC = {u | u ∈ TA and source[dest [u]] = u}

Thus, by checking if source[dest [u]] = u for each u ∈ TA, a set of trigger
vertices TC denoting the bidirectional 1-dominator set acyclic structures can
be constructed. A symmetric definition, using vertices from TB, defines TC as
follows:

TC = {u | u ∈ TB and dest [source[u]] = u}

Algorithm 4 Computing Trigger Vertices of the Bidirectional 1-Dominator
Set

1. TC ← ∅;
2. for each u ∈ TA do {
3. if source[dest [u]] = u then TC ← TC + {u};
4. }

The merge process is summarised as Algorithm 4. This is based on using TA,

19



but the algorithm for using TB is similar.

Theorem 15 Algorithm 4 computes TC in O(r) worst-case time where r =
min(|TA|, |TB|).

PROOF. Line 3 of Algorithm 4 can easily be implemented to take just O(1)
time. Thus, the total time required for Algorithm 4 to compute TC is just O(r)
where r is the number of vertices in TA or TB, depending on which is being
used. Using the smaller of the two gives r = min(|TA|, |TB|). 2

After determining TC , the corresponding maximal bidirectional acyclic struc-
tures can easily be determined in O(m) time by calls acyclicSetA(u) and
acyclicSetB(u) for each vertex u ∈ TC . Note that during these calls, each
edge is traversed by at most one acyclicSetA(u) call since there is no overlap-
ping among forward acyclic structure parts computed as each one of these is
maximal. Similarly, each edge is traversed by at most one acyclicSetB(u) call.
Hence, with each edge traversed at most twice and |TC | < n < m, these calls
take O(m) total time. Thus, the overall process, from computing the forward
and backward 1-dominator sets, to merging these and computing the acyclic
structures of the bidirectional 1-dominator set, takes O(m) worst-case time.

5 Shortest Path Algorithms Using Acyclic Decompositions

This section presents a general framework for using acyclic decompositions
to compute shortest paths efficiently. In general, an acyclic decomposition
consists of a set of trigger vertices T , and a set of vertices T = V −T that forms
a subgraph constituting a large acyclic region within G. This definition for
acyclic decomposition by trigger vertices is equivalent to that of the feedback
vertex set; that is, the graph is decomposed into a feedback vertex set T and
its associated acyclic region T . The shortest path algorithms presented in
this section are able to apply any precomputed feedback vertex set, including
the trigger vertices offered by 1-dominator sets, in order to provide efficient
computation of shortest paths.

5.1 Introducing the Reduced Graph Approach

To begin with, the vertices contained in the acyclic region T are topologically
sorted. A topological ordering of these vertices can easily be computed in
O(m) worst-case time. This topological ordering is used to achieve efficient

20



computation of shortest paths that involve vertices in T . In the case of the
1-dominator sets, this topological ordering will have been produced as a by-
product of computing acyclic structures.

In order to compute shortest paths efficiently, shortest paths between vertices
in T via only vertices in T are computed. These shortest paths become edges
in a reduced graph P , whose vertices correspond to vertices in T . The cost
c(u, v) of an edge u→ v in P is defined as the cost of the shortest path of the
form u  v for u ∈ T and v ∈ T . Here the notation u  v is used to denote
paths of the form u, v1, v2, . . . , vk, v, where k ≥ 0 and vi ∈ T for all 1 ≤ i ≤ k.
The case where k = 0 allows the possibility of u  v denoting a single edge
directly from u to v in the original graph. An edge u → v is created in P if
and only if there exists a path of the form u  v. The specific algorithm for
computing P will be described later.

An introduction to the use of P is given by the following review of the all-
pairs algorithm of Saunders and Takaoka [7]. Using the definition of  , any
path in the graph, from a source vertex s ∈ V to a target vertex v ∈ V ,
can be expressed in the form s  u1  u2  . . .  ul  v, where l ≥ 0
and ui ∈ T for all 1 ≤ i ≤ l. The process of computing single-source begins
with a distance of d[s] = 0 for the source vertex s, and d[v] = ∞ for all
other vertices. The first stage of the algorithm computes all shortest paths
of the form s  u1 for all possible u1. This is achieved by scanning the
vertices in T in topological order, and updating shortest path distances over
their outgoing edges. The process then continues by solving generalised single-
source (GSS) on the reduced graph P to compute shortest paths of the form
s u1  u2  . . . ul. In a GSS problem, each vertex v has some arbitrary,
possibly infinite, initial distance d[v] that must be reduced to its final shortest
path distance. Finally, these shortest path distances are pushed onto vertices
in T , and extended through the topological order of T to compute shortest
paths of the form s  u1  u2  . . .  ul  v. As such, all shortest paths
from s will have been computed. Hence the single-source problem is solved.

The time required to scan the topological ordering of vertices is at worst O(m).
The time required to solve GSS on P is O(m′+r log r) where r = |T | and m′ is
the number of edges in P . Thus, the overall time complexity for solving single-
source by this approach is O(m + m′ + r log r), excluding the time required to
compute the pseudo-graph P . This provides a corresponding worst-case time
complexity of O(mn + m′n + nr log r) for solving all-pairs.

For a general feedback vertex set, the value of m′ is bounded by r2, providing
an all-pairs time complexity of O(mn + nr2). Computing P from a general
feedback vertex set, as previously presented by Saunders and Takaoka [7],
requires a scan through T from each trigger. In total, O(mr) worst-case time
is needed when computing P from a general feedback vertex set. However,
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this is easily contained within the time complexity required to compute all-
pairs. For a mono-directional or bi-directional 1-dominator set, the value of m′

will not exceed the value of m, and the time complexity simplifies to O(m +
r log r) for single-source and O(mn + nr log r) for all-pairs. The time required
for computing P from the mono-directional or bi-directional 1-dominator is
at worst O(m) by scanning each acyclic structure exactly once, and can be
integrated as part of the time complexity required for computing single-source.

5.2 Computing the Reduced Graph

This section describes specific algorithms for computing P . Computing the
reduced graph from a feedback vertex set in general requires O(mn) worst-case
time. This lowers to O(m) worst-case time when using a feedback vertex set
computed from the 1-dominator set. Consider computing P from a forward
1-dominator set. The time taken for construction can be limited to O(m)
because each edge is scanned only once given the non-overlapping property of
the acyclic parts that are scanned from each trigger vertex. In the case of the
forward 1-dominator set, a pseudo-edge (u, w) is only created if there exists an
edge (v, w) where v ∈ Au. Such an edge does not relate to the creation of any
other pseudo-edge since it cannot participate in any acyclic part other than
Au, and can only have a single destination vertex. Thus, for any pseudo-edge
in P there exists a corresponding edge in G, which implies that m′ ≤ m for a
forward 1-dominator set.

The algorithm for computing P from a bi-directional 1-dominator set is also
O(m), but is slightly more complicated. This is presented as Algorithm 5.

Algorithm 5 Computing the Reduced Graph from the Bidirectional 1-
Dominator Set

/* Initialisation */
1. for all v do {
2. l[v] =∞;
3. d[v] =∞;
4. }
5. R = ∅; /* Holds entries of p that will be reset. */
6. for all u′ ∈ T do p[u′] = none;

/* Calculate destination distances. */
7. for each u ∈ T do {
8. for each v selected in reverse-topological order from Bu − u do {
9. for each w ∈ OUT (v) do l[v] = min(l[v], c(v, w) + l[w]);

10. }
11. for each v in Bu do dest [v] = u;
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12. }
/* Calculate pseudo-graph P . */

13. for each u ∈ T do {
14. for each v selected in topological order from Au do {
15. for each w ∈ OUT (v) do {
16. d[w] = min(d[w], d[v] + c(v, w));
17. if w /∈ Au then {
18. u′ = dest [w];
19. if p[u′] = none then {
20. create new pseudo edge e = (u, u′) in P ;
21. p[u′] = pointer to e;
22. c(e) = d[w] + l[w];
23. R = R + u′;
24. }
25. else {
26. let e be the pseudo-edge pointed to by p[u′];
27. c(e) = min(c(e), d[w] + l[w]);
28. }
29. }
30. }
31. }
32. for all u′ ∈ R do p[u′] = none;
33. }

The algorithm uses three one-dimensional arrays; d[v] holds distance calcu-
lations involving vertex v, l[v] holds the distance to the destination trigger
vertex dest [v] of vertex v, and p[u′] provides a pointer used to efficiently ac-
cess a pseudo-edge (u, u′).

For all destination trigger vertices u, the algorithm first computes distances
l[v] as the distance of the shortest path from v ∈ Bu to u via only vertices
in Bu. Additionally, the algorithm assigns dest [v] = u. Then for all source
trigger vertices u, the algorithm computes distances d[w] as the shortest path
from u to w via only vertices in Au. When w /∈ Au, it is known that w ∈ Bu′

where u′ = dest [w], in which case the cost c(e) of the pseudo-edge e = (u, u′) is
possibly updated using d[w]+ l[w]. Overall, each edge in the graph is traversed
at most twice after scanning backward acyclic structures and forward acyclic
structures. Furthermore, each update to a pseudo-edge distance is triggered
by an individual edge scan from a forward acyclic structure. Hence, the overall
time complexity is O(m).

Remark 16 Some redundant computation occurs where an edge contained in
both a forward and backward acyclic structure is scanned twice. This redun-
dancy is avoidable by instead scanning forward-only acyclic structures A∗

u,
rather than complete forward acyclic structures Au. A forward-only acyclic
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structure A∗
u contains all the vertices of Au except any non-trigger vertices

that are also contained in backward acyclic structures Bu′ for trigger vertices
u′ ∈ T ; that is:

A∗
u = Au − (L− {u}) where L =

⋃
u′∈T

Bu′

Another possibility is to use backward-only acyclic structures B∗
u, which can

be defined similarly.

Pointers to pseudo-edges from the current trigger u are available in the one-
dimensional array p. It would not be feasible to access pseudo-edges via a
two-dimensional array as this would require O(r2) time. By using array p,
each pseudo-edge can be accessed in O(1) time so that the algorithm will
not exceed the O(m) time complexity requirement. The algorithm uses the
set R to track which entries of p have been changed, so that entries of p can
be reset efficiently before moving on to the next source trigger vertex. This
avoids producing an O(r2) term in the time complexity; as would happen had
all r entries of p been reset each time a different source trigger vertex was
considered. Once again, the condition m′ < m holds which allows a single
source problem to be computed or recomputed in O(m + r log r) worst-case
time by this approach.

5.3 A New All-Pairs Algorithm

This section presents a new all-pairs algorithm for nearly acyclic graphs. In-
stead of solving GSS problems on P , the new algorithm solves a single all-pairs
problem on P and then spends just O(mn) time to complete the solution to
all-pairs on the whole graph, thereby achieving an overall time complexity of
O(mn + m′r + r2 log r) where r is the number of vertices in P and m′ is the
number of edges in P . This significantly improves on the O(mn+m′n+nr log r)
worst-case time complexity of the original algorithm.

The new approach is presented as Algorithm 6. First, all-pairs is solved on
P , and the result is represented in an all-pairs matrix M such that M [x, u]
denotes the shortest path from x to u for any pair of vertices x ∈ T and
u ∈ T . For descriptive purposes, let λ[v, u] be used to denote the hypothetical
shortest path distance from vertex v to vertex u. The goal of the algorithm
is to compute λ[v, u] for every pair of vertices u ∈ V and v ∈ V . To achieve
this, the algorithm first considers each vertex u ∈ T , and determines λ[v, u]
for all vertices v ∈ V . This is done by backtracking from u, first to other
trigger vertices x ∈ T by consulting array entries M [x, u], and then on to
vertices v ∈ T in reverse-topological order. Within this computation, M [x, u]
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specifies the shortest path distance λ[x, u] for vertices x ∈ T . The shortest
path distance λ[v, u] for vertices v ∈ T is computed by pulling shortest path
distances from vertices x ∈ T through the reverse topological order of T ; see
rpull(v). This process spends at most O(m + r) = O(m) time for each trigger
vertex u. Thus, this process spends O(mr) total time to determine λ[v, u] for
all v ∈ V and u ∈ T .

Algorithm 6 Using a Feedback Vertex Set to Solve All-pairs Efficiently

1. procedure pull(v) {
2. for each w ∈ IN (v) do d[v] = min(d[v], d[w] + c(w, v));
3. }
4. procedure rpull(v) { /* reverse pull */
5. for each w ∈ OUT (v) do d[v] = min(d[v], c(v, w) + d[w]);
6. }

/* Start of Algorithm */
7. Assume that T is a set of feedback vertices and T is the acyclic part;
8. Compute the reduced graph P ; /* O(mr) time */
9. Solve all-pairs on P such that M [v, u] denotes the shortest path from

any v ∈ T to any u ∈ T ; /* O(m′r + r2 log r) time */
10. Let D[v, u] =∞ for all v ∈ V and u ∈ V ;

/* Compute shortest paths to each trigger vertex u. (O(mr) time) */
11. for each u ∈ T do {
12. Let d[v] act as a reference to array entries D[v, u];
13. d[u] = 0;
14. for each x ∈ T do d[x] = M [x, u];
15. for each v ∈ T in reverse-topological order do rpull(v);
16. }

/* Finish shortest paths from all source vertices v0. (O(mn) time) */
17. for each v0 ∈ V do {
18. Let d[v] act as a reference to array entries D[v0, v];
19. d[v0] = 0;
20. for each v ∈ T in topological order do pull(v);
21. }

The final stage of Algorithm 6 completes the computation by determining
λ[v0, v] for all source vertices v0 ∈ V and all vertices v ∈ T . This is done by
considering each source vertex v0, and pulling distances λ[v0, u], which were
computed for trigger vertices u ∈ T , onto, and through, non-trigger vertices
v ∈ T in topological order; see pull(v). With this final stage completed, λ[v, u]
will have been determined for all pairs of vertices v ∈ V and u ∈ V .

Theorem 17 Algorithm 6 computes all-pairs in O(mn+m′r+r2 log r) worst-
case time.
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PROOF. Firstly, solving all-pairs on P takes O(m′r + r2 log r) worst-case
time where r and m′ respectively denote the number of vertices and edges in
P . This gives λ[v, u] for all v ∈ T and u ∈ T . Next, the process of computing
shortest paths to each trigger vertex gives λ[v, u] for all v ∈ T and u ∈ T and
takes O(m) time per trigger vertex, giving a total time of O(mr). Finally, the
process of computing shortest paths to all non-trigger vertices gives λ[v, u] for
all v ∈ V and u ∈ T in the graph takes O(m)time per vertex, giving a total
time of O(mn). At this point the computation of all-pairs on the whole graph
is complete, having given λ[v, u] for all v ∈ V and u ∈ V . Combining the worst-
case time complexities of each stage gives O(m′r+r2 log r)+O(mr)+O(mn) =
O(mn + m′r + r2 log r). 2

For a general feedback vertex set, the value of m′ is bounded by r2, and the
O(mn+m′r+r2 log r) time complexity of the algorithm becomes O(mn+r3). In
this case, it is sufficient to simply spend O(r3) time using Floyd’s algorithm to
solve the all-pairs problem on P , without affecting the overall time complexity.
For a feedback vertex set arising from the trigger vertices of the 1-dominator
set, the value of m′ is bounded by m, making the O(mn+m′r + r2 log r) time
complexity of the algorithm O(mn + r2 log r). This time complexity applies
for both the mono- and bi-directional 1-dominator set.

6 Concluding Remarks

This paper has provided a more efficient method for using reduced graphs to
compute shortest paths efficiently on nearly acyclic directed graphs. In general,
all-pairs can be solved in O(mn) worst-case time when a feedback vertex set of
size r ≤ 3

√
mn can be computed in advance. Recent results presented by Pettie

[6] allow the solving of all-pairs on real-weighted directed graphs in O(mn +
n2 log log n) worst-case time under the comparison-addition model. Applying
the reduced-graph framework in conjunction with this state-of-the-art result
provides a further improved all-pairs time complexity of O(mn + r2 log log r)
where r is the number of trigger vertices in the 1-dominator decomposition of
a graph.

The reduced graph approach may also be useful for solving shortest paths on
other types of graphs. Suppose that there is some graph property, say λ, which
allows shortest path to be computed efficiently. A shortest path algorithm for
nearly-λ graphs would use trigger vertices to separate a graph into a λ part,
thereby computing shortest paths more efficiently. For example, a shortest
path algorithm for nearly-planar graphs may be possible. Finally, the O(mn+
r3) worst-case time complexity required for solving all-pairs, where r is the size
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of any precomputed feedback vertex set, may be lowered to O(mn + r2 log r)
by some improved approach in the future.

A more complex form of dominator sets, called k-dominator sets, can be de-
fined, in which each acyclic structure is dominated by up to k vertices. The
k-dominator set definition is basically a generalisation of the 1 dominator set
definition, but is less relevant to computing shortest paths. A complete def-
inition for k-dominator sets appears in the Ph.D. thesis of Shane Saunders
[8].
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