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Tip Motion—Sensor Signal Relation for
a Composite SPM/SPL Cantilever
Dennis Roeser, Stefanie Gutschmidt, Thomas Sattel, and Ivo W. Rangelow

Abstract— An array of microbeams is a promising approach
to increase the throughput of scanning probe microscopes and
lithography. This concept requires integrated sensors and actu-
ators which enable individual measurement and control. Thus,
existing models for single beams need to be reassessed in view
of its applicability for arrays, which involve additional physical
interactions and a varying geometry along the beam’s length. This
paper considers a single composite microbeam, which is excited
by a thermal actuator and its displacement is measured by a
piezoresistive sensor. We derive a model that incorporates the
beam’s composite structure, varying geometry along its length,
its thermal coupling for actuation, and thermoelastic damping.
Subsequently, the influence of the beam’s geometry on its
eigenmodes and frequencies is analyzed in far and close prox-
imity operation to a surface. We observe parametric excitation
phenomena of multiple integers of the fundamental excitation
frequency, which originates from the geometrical composition
of the beam. Furthermore, we observe that the so far constant
assumed factor to convert the sensor signal to the beam’s dis-
placement depends on the dissipated power within the actuator,
as well as on the dynamic behavior of the system, and thus is not
constant. [2015-0208]

Index Terms— Arrays, thermal actuation, piezoresistive
sensing, microelectromechanical systems (MEMS), thermome-
chanical coupling.

I. INTRODUCTION

SCANNING probe microscopy (SPM) has been studied for
the past few decades and has become a commercially

available tool for nanometer metrology. By optically measur-
ing the displacement of the free end of a microbeam, amplitude
shifts due to interaction forces can be detected. By controlling
the amplitude of oscillation, a positioning stage is used to
maintain a constant distance. The motion of this stage gives
the coordinates of the sample and the hight information. Using
a similar setup, manipulation and patterning of a sample
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can be done. For instance, the Fowler-Nordheim scanning
probe lithography (FN-SPL) is a very promising candidate
offering routinely resolutions below 10 nm, an overlay accu-
racy below 1 nm, and a relatively low equipment costs [1].
This technology employs very low number of electrons (low
exposure dose) with energies just suitable to provide highly
localized chemical reactions into the resist. Critical for this
process is to keep the distance between the microbeam’s
free end and the resist covered sample constant, due to the
dependency of the electron emission from the tip sample
distance. Similar to SPM, the beams free end is measured
and the distance is controlled by using a positioning stage.
Both methods, SPM and SPL, offer advantages with respect
to resolution, range of application (less demands on probe
preparation) and capital investment cost, thus, providing the
means for future desktop nanofabrication. However, a major
drawback of the scanning probe technologies is the limited
throughput, rendering the process slow and less applicable for
mass production/analysis.

One way to improve the throughput of SPL and SPM is the
use of microbeam arrays. Unlike conventional scanning probe
technology (where tip deflections are measured with respect
to an absolute reference frame), individual tip deflections in
the array configuration are measured with respect to a relative
reference frame (e.g. using piezoresistive sensors). Accurate
measurements and thus the quality of property predictions are
highly dependent on the knowledge of the dynamic behaviour
of individual resonators [2], [3] as well as their collective
dynamic behaviour. Additionally, the distance between tip and
sample is set individually per beam by means of an integrated
actuator and thus also yields the topographic information as
well as the distance to the sample. Typical approaches for
the tip motion estimation multiply the sensor signal with a
constant factor to gain the displacement of the tip [4]–[6].
A in-depth analysis regarding this estimation as well as a
noncontact SPM or SPL operation with a constant distance
of such an array has not been achieved to date.

Within this article, a single microbeam of an array is consid-
ered, which has a thermal actuator and a piezoresistive sensor,
as depicted in Figure 1. This microbeam and the corresponding
array have been subjected to intensive experimental inves-
tigations, regarding integrated circuit technology, SPM scan
process as well as SPL [4], [6]–[10]. To gain a deeper insight
in experimentally observed phenomena (e.g. coupling between
modes [11], coupling between beams in an array [12], [13]) as
well as to achieve a control scheme for maintaining a constant
distance for SPL and noncontact SPM processes, a model
sets the foundation. Demand for this model is a sufficient
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Fig. 1. SEM image of a single microbeam of an array, with integrated
thermal actuator and piezoresistive sensor.

prediction of the tip movement based on the mechanical stress
at the fixed end, by taking into account the composite structure
and thermal coupling of the microbeam. In order to derive
a mathematical model of the full array device (including all
salient field interactions) in the future, a systematic theoretical
investigation of a single microbeam with thermal actuator and
piezoresistive sensor (Figure 1) sets the basis of this work.

To date, various modeling approaches, that take into account
the coupled electro-thermo-mechanical problem, are based
on the static behavior of a bimorph actuator. For instance,
Bullen et al. [14] and Watanabe et al. [15] approach a ther-
mally actuated microbeam by means of a deflection curve of
a composite beam, including the heat conduction formulation
for the static case. Li et al. [16], in contrast, approach the
coupled electro-thermo-mechanical problem by means of a
nodal analysis, utilizing circuit simulation software to achieve
a less computational expensive model. Approaches in view of a
dynamical analysis of coupled thermo-mechanical fields focus
on the effects of thermal damping in microbeams [17]–[19].
As outlined in these articles, the thermo-elastic damping has
a significant influence on the dynamical behavior and depends
on the geometrical dimensions of the resonator [17], [18].
They also exhibit an influence in view of a shift in resonant
frequency, outnumbering the influence of air damping of the
order of 10−3 [17].

To face the challenges of predicting the motion of the
beam’s tip, explain the dynamics of beam as well as to set
the basis for an array model, we derived a coupled ther-
moelastic model, based on an Euler-Bernoulli beam, Fourier
heat conduction equation and a Lennard-Jones force potential
in Section II, summarized in Section II-C. Subsequently,
a modal analysis in Section III investigates the influence of
the beam’s geometry and the interaction forces on eigenmodes
and -frequency, with an emphasis on the sensor and tip
position. Section III also includes a dynamic analysis, in view
of different types of excitation and the prediction of the tip
movement based on the mechanical stress at the piezoresistive
bridge. Finally, the results are summarized and discussed
in Section IV.

II. MODEL

The governing equations of motion of the composite
structure are based on the thermoelastic constitutive law and

Fig. 2. Sketches of (a) the cantilever and (b) the tip-sample kinematics.

the Euler-Bernoulli beam theory for transverse vibrations.
The actuation mechanism is modelled by the Fourier
heat conduction equation. The composite structure
of the beam is composed of three layers (index i ,
c.f. Figure 2a): Silicon (i = 1), Silicon Dioxide (i = 2)
and Aluminum (i = 3). The Aluminum layer is the thermal
actuator and determines the varying cross sections along
the beam’s length. Accordingly, the beam is divided into
three sections (index j ), with a length l j for j = 1, 2, 3
(see Figure 2a). The origin of the body fixed coordinate
system is at the fixed end of the cantilever (see Figure 2a):

0 ≤ x̃ ≤ L, − B

2
≤ y ≤ B

2
, − H

2
≤ z ≤ H

2
. (1)

Next to the global coordinate system, additional coordinate
systems are introduced for the second and third section,
where their origins are shifted with respect to x̃ by l1 and
l1 + l2, respectively. The overall thickness and length of the
beam are given by H = ∑

i hi and L = ∑
j l j . Variables

denoted by tilde are rescaled and made nondimensional
in Section II-C, [20]. The cross-sectional area is given by

A ji =
{

hi B, j = 1, 2, 3 ∧ i = 1, 2;
hi bH j N j , j = 1, 2, 3 ∧ i = 3; (2)

where the beam’s width is B , the width of one actuator wire
is bH j and the number of wires per section is N j . The beam’s
displacement w̃

(
x̃, t̃

)
is positive toward the sample surface

and is given by:

w̃
(
x̃, t̃

) =

⎧
⎪⎨

⎪⎩

w̃1
(
x̃, t̃

)
, 0 ≤ x̃ < l1;

w̃2
(
x̃, t̃

)
, l1 ≤ x̃ < l1 + l2;

w̃3
(
x̃, t̃

)
, l1 + l2 ≤ x̃ < L .

(3)

The time varying gap between sample and tip is

ξ
(
w̃, z ps

) = D − ht − w̃
(
L − lt , t̃

) − z ps
(
t̃
)
, (4)
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with ht , lt and z ps being the tip height, distance to tip from
the beam’s free end and the displacement of the piezoelectric
positioning stage, respectively. The initial distance between
origin of coordinates and the sample in z direction is D
(c.f. Figure 2b).

A. Mechanical System

Derivations concerning the physics of the mechanical
structure are based on Newton’s second law and
the Duhamel-Neuman law, which is a generalization of
Hooke’s law to account for the influence of heating [21].
In any arbitrary section j and layer i , the mechanical stress
for pure bending is given by σx̃ j i = Eiε j − Eiαi θ̃ j , with the
strain ε j = (

z − z0 j
)
/κ j , the curvature of the beam κ−1

j ,
the coefficient of thermal expansion αi and the temperature
difference θ̃ j

(
x̃ j , t̃

) = Tj
(
x̃ j , t̃

) − T0, wherein Tj is the
absolute temperature and T0 represents the initial temperature.
The distance to the neutral fibre z0 j in (5) is derived from
the equilibrium of forces in x̃ direction, for the case of pure
bending. Together with the strain ε j , z0 j and the equilibrium
of the moments about the y axis yield the corresponding
moment M j in (6) (see also [22], [23]).

z0 j = Ā−1
j

(
κ−1

j S̄y j − Aα j θ̃ j

)
κ j , (5)

M j = E1

(
Īy j − Ā−1

j S̄2
y j

)
κ−1

j

+ E1

(
Ā−1

j S̄y j Aα j − Syα j

)
θ̃ j , (6)

with the constants

ni = Ei

E1
, Ā j =

∑

i

ni A j i ,

Aα j =
∑

i

niαi A j i , S̄y j =
∑

i

ni Sy j i ,

Syα j =
∑

i

niαi Sy j i , Īy j =
∑

i

ni Iy j i .

Young’s modulus, weighting factor and the cross sectional area
are given by Ei , ni and A ji , respectively. The first moment of
area is Syj i = zCGi A j i and the distance to each layer’s center
of gravity zCGi as well as the second moment of area Iy j i are
given by

zCGi = hi

2
− H

2
+

i−1∑

ī=1

hī , (7)

Iy j i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
h3

i

12
+ z2

CGi hi

)

B, i = 1, 2;
(

h3
i

12
+ z2

CGi hi

)

bH j N j , i = 3.

(8)

The governing equation for an infinitesimal beam element
is derived using Newton’s second law under Bernoulli
assumptions. An approximation for the curvature of the

beam κ−1
j ≈ −w̃ j,x̃ x̃ , is assumed, with w̃ j,x̃ � 1 [24]:

μ j w̃ j,t̃ t̃ = E1

(
Ā−1

j S̄y j Aα j − Syα j

)
θ̃ j,x̃ x̃

︸ ︷︷ ︸
thermal coupling and excitation

− d j w̃ j,t̃ − E1

(
Īy j − Ā−1

j S̄2
y j

)
w̃ j,x̃ x̃ x̃ x̃

︸ ︷︷ ︸
viscous damping and elastic restoring force

+ Ā−1
j FTS

(
w̃ j

)

︸ ︷︷ ︸
interaction forces

. (9)

Partial derivatives with respect to spatial coordinate and time
are denoted with (),x̃ and (),t̃ , respectively. The mass per unit
length is given by μ j = ∑

i ρ j i A j i and FT S is the tip sample
interaction force. Accordingly, the associated boundary and
continuity conditions (for j = 1, 2) are

w̃1
(
0, t̃

) = 0, w̃ j
(
l j , t̃

) = w̃ j+1
(
0, t̃

)
, (10a)

w̃1,x̃
(
0, t̃

) = 0, w̃ j,x̃
(
l j , t̃

) = w̃ j+1,x̃
(
0, t̃

)
, (10b)

M3
(
L, t̃

) = 0, M j
(
l j , t̃

) = M j+1
(
0, t̃

)
, (10c)

M3,x̃
(
L, t̃

) = 0, M j,x̃
(
l j , t̃

) = M j+1,x̃
(
0, t̃

)
. (10d)

Boundary (right column) and continuity conditions
(left column) in (10) from top to bottom represent the
conditions of the beam at either end with respect to its
displacement, angle, moment and shear force, respectively.

Equation (9) describes the motion of the composite
microbeam shown in Figure 2a. The elastic restoring term
also depends on the first moment of area Sy , since the beam
axis and the axis of the center of gravity along the beams
length are not identically in each section. Note that a different
prestress for each layer can easily be included through the
stress/strain relation stated at the beginning of this section.
Even though a prestress is induced in each layer due to the
fabrication process, it mainly affects the systems behavior with
a constant offset in displacement and sensor signal and is thus
not considered in this article. The interaction force in (9) is
derived from a Lennard Jones potential for a spherical tip and
a flat sample pair and is given by

FTS
(
w̃, zps

) = − Ah Rtσ
6

180ξ
(
w̃, zps

)8 δ (x̃3 + l3 − lt )

+ Ah Rt

6ξ
(
w̃, zps

)2 δ (x̃3 + l3 − lt ), (11)

wherein σ is a typical atomic diameter for a sphere tip
and flat sample, Ah is the Hamaker constant and Rt is
the radius of the tip [25], [26]. This force is included into
the equation of motion (9) by means of the Dirac delta
function δ (x̃3 + l3 − lt ), and spatially limited to act only at
the beam’s tip. The thermal coupling term represents the
actuation of the beam by means of Joule heating and the
bimetal effect. Additionally, the coupling to the thermal system
leads to an intrinsic thermal damping, as can be seen in the
next Section II-B.

B. Thermal System and Actuation

The thermal system is based on the first and second law of
thermodynamics as well as on Fourier’s one dimensional heat
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conduction equation in x̃ direction, for an isotropic material
with temperature independent mechanical material properties.
Due to the large volume of the chip to which the cantilever
is attached, the fixed end of the beam is assumed to be
isothermal. Considering the small cross-sectional area and
low pressure conditions, we further assume the free end to
be adiabatic. With a temperature difference θ j being small
compared to the initial temperature T0, the governing equation
can be written as (see [21], [27])
(

cvρ A j + T0 E1 Aα
2
j Ā−1

j

)
θ̃ j,t̃

= kt A j θ̃ j,x̃ x̃
︸ ︷︷ ︸

heat flux

− T0 E1

(
Ā−1

j S̄y j Aα j − Syα j

)
w̃ j,x̃ x̃ t̃

︸ ︷︷ ︸
mechanical coupling, thermal damping

+ Ā j
(
ga j (i) + gs j

(
Us

(
t̃
)))

︸ ︷︷ ︸
internal heat generation

, (12)

and the coefficients are

kt A j =
∑

i

kt j i A j i , cvρ A j =
∑

i

cv j iρ j i A j i .

The thermal boundary (left) and continuity (right) conditions
(for j = 1, 2) are given by

θ̃1
(
0, t̃

) = 0, θ̃ j
(
l j , t̃

) = θ̃ j+1
(
0, t̃

)
, (13a)

θ̃3,x̃
(
L, t̃

) = 0, kt j θ̃ j,x̃
(
l j , t̃

) = kt j+1θ̃ j+1,x̃
(
0, t̃

)
, (13b)

where (13a) are the temperature and (13b) the heat flux
boundary and continuity conditions.

Equation (12) describes the heat transfer within the com-
posite beam, of each section j . The mechanical coupling
represents an internal damping mechanism of the mechanical
system, wherein the beam motion leads to a heat generation.
As outlined by Guo and Rogerson [17], this thermal damping
is of a similar order than that of the viscous damping in air
and is the dominant damping mechanism in vacuum operation.
An internal heat is generated by two volumetric sources, the
power supply of the sensor gs j

(
t̃
)

and the power from the
excitation signal ga j

(
i
(
t̃
))

, given by

gsj
(
t̃
) = Us

(
t̃
)2

RsVs
, j = 1;

ga j
(
t̃
) = ρe

A2
j3

(
1 + αeθ̃

)
i
(
t̃
)2

, j = 1, 2. (14)

In which Us
(
t̃
)

is the sensor bridge supply Voltage, Rs and Vs
are the constant assumed overall resistance and volume of the
piezoresistive sensor elements, respectively. The thermal actu-
ator (resistivity ρe, temperature coefficient of the resistivity αe)
dissipates heat within the first two sections as well as within
the third layer (j = 1, 2; i = 3), with an applied current of

i
(
t̃
) = idc

(
t̃
) + iac sin

(

t̃

)
, (15)

where idc
(
t̃
)

is the direct current, iac the alternating current
and 
 the excitation frequency. Equation (14) includes a tem-
perature dependant resistivity, which leads to a time dependent
and periodic coefficient in (12). In case of a idc

(
t̃
)

used as a
control factor, this coefficient can also be aperiodic.

C. Coupled System

In the following, derived models of Section (II-A) and (II-B)
will be discretized in view of the analysis in Section III.
Together with governing coupled equations of motion of the
microbeam the output signal of the pirzoresistive sensor is
presented. To rescale (9) and (12), the following parameters
are introduced:

x j = x̃ j

L
, w j = w̃ j

H
, t = ωs1 t̃, θ j = θ̃ j

θ0
,

ω2
s =

(
Īy1 Ā − S̄2

y,1

)
E1

L4μ1 Ā1
. (16)

The reference temperature difference θ0 = TR − T0 is based
on a reference temperature TR of 303.15 K. For the spatial
discretization, the following mixed Ritz approach is applied
to (9) and (12)

w j
(
x j , t

) =
N∑

n=1

�w j n
(
x j

)
qw j n (t) = ΦT

wqw, (17)

θ j
(
x j , t

) =
N∑

n=1

�θ j n
(
x j

)
qθ j n (t) = ΦT

θ qθ , (18)

where Φw j n and Φθ j n are comparison functions, qw j n and qθ j n

are time varying amplitudes for the n-th mode of the mechan-
ical and thermal system, respectively. Bold symbols represent
a vector or matrix, where the vectors Φw/θ and qw/θ are
column vectors containing the summands from (17) and (29)
from n = 1 until N . The comparison functions are based on
the undamped and homogeneous equations (9) and (12), with
FTS = 0 (see Appendix A). To discretize the equations of
motion, approach (17) and (29) are introduced to (9) and (12)
and a Galerkin method is applied, with multiplying mechanical
and thermal equation with Φw and Φθ , respectively, and
integrate both equations with respect to the x direction.
Accordingly, the equations of motion of the coupled system
can be written to

J1q̈w = −J2q̇w − J3qw + J4qθ + FTS, (19a)

J5q̇θ =
(

J6 + J7i2
)

qθ − J8q̇w + J9i2 + J10U2
s . (19b)

Jk are constants in (19) and can be found in Appendix B.
The system of ordinary differential equations (19) represents
the motion of the microbeam with a composite structure and
thermal actuation. The coupling between mechanical and ther-
mal system is mainly defined by J4 and J8, which represent
the thermal actuation and thermal damping of the system. The
current i (see (15)) is the excitation signal, which also leads to
time dependent coefficients and thus an additional parametric
excitation for the thermal subsystem. The bridge circuit of the
piezoresistive sensor elements (see Figure 2a with the piezo
marked in red) is introduced with a constant supply voltage Us
and the following voltage drop as an output signal [10]:

Ub = 2
�R

R
Us,

�R

R
= πl L

ls

∫ ls2/L

ls1/L
σ j i dx, (20)

wherein πl is the longitudinal piezoresistive coefficients,
�R/R the relative resistance change, ls = ls2 − ls1 the length
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of the piezoresistor and the mechanical stress σ j i in x̃ direction
of the beam, given by

σ j i =
(

Ei Syj A
−1
j − Ei zk

)
Hl−2ΦT

w,x xqw

+ (
Ei Aα j − Ei A jαi

)
A jθ0Φ

T
θ qθ . (21)

The nondimensional tip-sample force acting at the beam’s tip
in (19) is given by

FTS = −χ7

(
ξ0 − H Φ̂

T
wqw − z ps

)−8

+χ8

(
ξ0 − H Φ̂

T
w − zps

)−2
, (22)

with ξ0 = D − ht , as depicted in the kinematic sketch
in Figure 2b. The shape functions Φ̂

T
w in (22) rep-

resents the beam’s displacement at the tip position

(Φ̂
T
w = ΦT

w (1 − lt/L)).
Thus, the coupled thermo-mechanical system (19) describes

the motions of a composite beam depicted in Figure 1 and
Figure 2, with a varying cross section, thermal excitation
through resistive heating and the bimetal effect. It is applicable
to an AFM noncontact operation in a low pressure environ-
ment, for small angles w̃ j,x̃ � 1 as well as in case of
isotropic layers, with no convection at the free end and an
isothermal fixed end. Additionally, the temperature change
is assumed to be small compared to the the surrounding
temperature, θ̃ � T0. Note that the sign of the curvature
due to a temperature difference needs to be determined for
each section based on the sign of the thermal coupling and
excitation term in (9).

III. ANALYSIS

The analysis presented in this section is focused on special
sets of properties of the considered system, including the
varying geometry, the thermal actuation as well as the sensing
mechanism and its relation to the displacement of the beam’s
free end. These aspects are viewed in terms of their influence
on the eigenmodes and eigenfrequencies, their implications
on possible internal resonances and the equilibrium solution
as well as on the prediction of the tip displacement, based on
the mechanical stress at the clamped end for different types
of excitation.

A. Modal Analysis

In this section the influence of different cross-sectional
areas along the beam’s length and composition of layers
on the eigenmodes and -frequencies is analysed. Therefore,
an isotropic Euler-Bernoulli beam (using volume weighted
parameters) and a constant cross section is compared to the
proposed model (see Section II).

Figure 3 shows the first three eigenfunctions �Bn of a
Euler-Bernoulli model for an isotropic beam over the dimen-
sionless coordinate x (line style: solid �B1; dotted �B2;
dashed �B3). The shaded area represents the deviation
between the comparison functions �wn of the composite,
sectional model compared to the eigenfunctions �Bn of the
Euler-Bernoulli beam model for a variation of the geometry
of the thermal actuator. Varied parameters are the length of
section two (l2; j = 2) as well as the height of the aluminum

Fig. 3. Eigenfunctions �Bn for a variation of l2, b2 and h3 at FT S = 0;
solid lines �B1; dotted lines �B2; dashed lines �B3; shaded regions: deviation
between �Bn and �wn (parameter range according to Table I).

layer (h3; j = 1, 2; i = 3), according to the parameters
in Table II and Table I in Appendix C. The overall length L
and height H of the the beam are held constant. The hatched
area represents the position of the piezoresistive sensor. As can
be seen in Figure 3, the influence of a varied stiffness increases
with higher eigenmodes and manifests itself in a shift of the
nodes as well as a shift of the local maxima and minima of
the eigenmode. These effects mainly occur in regions of varied
stiffness values, at the location of the actuator. Note that the
eigenmode at the free end of the beam has a larger deviation
compared to that of the sensor position, which is increasing
for higher modes. The similarity between eigenfunctions �Bn

and comparison functions �wn in Figure 3 is high for the
parameters used (see Appendix C), but strongly depend on
the overall geometry of the beam (L, B , H ) and the position
of the actuator. Considering different parameters can lead to
an increased deviation, especially in the areas stated above.

In an SPL/SPM operation with arrays, it is important to set
and measure the actual displacement of the beam’s free end.
For instance, a possible array control scheme for SPM based
on the work of Ivanova et al. [9] could work in the following
way: Each beam is excited at a fixed frequency 
̂ with a
constant amplitude iac (which is set in close proximity to a
surface). A change in distance to the sample surface D leads
to a change in oscillation amplitude, which is measured by the
integrated sensor and compensated by a static displacement of
the beam induced by changing idc to restore the initial distance
D0. The feedback for the amplitude control is measured from
the bridge signal Ub. Information regarding the topography of
the sample is included in the evolution of idc during the scan
as well as from the sensor signal Ub. Focusing on the latter,
one approach to gain a quantitative displacement is to multiply
the sensor voltage with a constant conversion factor [5], [6].
This conversion factor (κwn) can be derived from the static
response of the discretized equation of motion (19):

w̃sr
(
lt , t̃

) = J3
−1J4

(
J6 + J7i2

)−1
J9i2;

κwn = w̃sr
(
lt , t̃

)

Ub
. (23)
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Fig. 4. Conversion factor κwu vs beam stiffness cbeam for a displacement
according to �w1 (black line) and �w2 (gray line) for a variation of h3
from h3 = 0.05H (dotted line) to h3 = 0.2H (dashed line); arrow indicates
increase of l2 from l2 = 0.2L to l2 = 0.8L .

This approach is similar to a calibration routine, in which the
beam is displaced by a constant current idc0, the displacement
w̃sr

(
lt , t̃

)
is measured by means of an optical sensor and is

related to the measured sensor voltage to gain the conversion
factor κwn . Thus, w̃est

(
t̃
) = κuwUb represents the sensor based

displacement estimate.
Figure 4 shows the evolution of the sensitivity factor κwn

for a variation of the actuator’s length l2 and height h3. Note
that the inverse of the conversion factor is the sensitivity of
the sensor, indicating that a small conversion factor is related
to a high sensitivity. Especially the first mode shows a strong
influence of l2 on κwn , yielding different sensitivities for a
beam with a constant stiffness cbeam. The influence of the
actuator’s height h3 decreases for an increased length l2. The
second eigenmode of the beam shows a higher sensitivity
compared to the first mode and is also less affected by
geometrical variations. Thus, for a tip motion estimation in
multi frequency SPM different factors for the modes apply.
In contrast to a bulk Euler-Bernoulli beam model, the ratio
between the sensitivity factors of the two modes is not
constant.

Figure 5 illustrates the dependency of the ratio of the second
to the first eigenfrequency on the actuator geometry (b2, l2
and h3). The line style represents different heights of the
aluminum layer (solid lines b2 = 0.5B , dashed lines b2 = B ,
dotted lines b2 = 1.5B). The corresponding eigenvalues have
been obtained solving the eigenvalue problem of (38), based
on an isochronic approach (see Appendix A). Numerically,
a root finding algorithm based on the bisection and secant
method as well as on an inverse quadratic interpolation has
been used [28]. In all cases, an increasing thickness of the
aluminum layers leads to an increasing influence of a variation
of the length of the second section (actuator meander) on the
ratio of eigenfrequencies. This dependency is also observed
experimentally, with ω2/ω1 ≈ 6.44, [11] (circle in Figure 5).
Note that a bulk model has a constant frequency ration
of ω2/ω1 ≈ 6.27 (black solid line).

Fig. 5. Frequency ratio fw2/ fw1 for variation of l2 , h3 and b2; thick solid
line: Bulk Euler-Bernoulli beam; solid line: b2 = .5B; dashed lines b2 = B;
dotted lines b2 = 1.5B; shaded regions: composite model for varied h3;
black color: h3 = 0.05H ; gray color: h3 = 0.2H . The circle indicates
experimental results [11].

In addition, the geometric composition of the beam can lead
to internal resonances. For values of b2 = 0.5B and b2 = 1.5B
seven-to-one and five-to-one internal resonances occur, respec-
tively. As already shown by Hacker and Gottlieb [29], by
considering a nonideal fixed boundary, a geometry variation
along the beam’s length can also lead to two-to-one internal
resonances. These internal resonances can cause unwanted
distortion, especially when using multi modes simultaneously.
On the other hand, a combined two frequency operation
utilizing internal resonance can also lead to an increased speed
or sensitivity Hacker and Gottlieb [29].

B. Equilibrium Analysis

In order to draw conclusions on the occurrence of internal
resonances due to the varying stiffness along the beam’s length
in conjunction with the interaction potential, the system is
further analyzed in close proximity to a sample surface. Thus,
assuming all time derivatives of qw and qθ as well as all time
varying terms to be equal to zero, the fixed point equation is
given by (constants are shown in Appendix B)

F
(
qw, ξ0

) = −J3qw − J4

(
J6 + J7i2

dc

)−1
J9i2

dc

+χ7

(
ξ0 − H Φ̂

T
wqw − z ps

)−8

−χ8

(
ξ0 − H Φ̂

T
wqw − z ps

)−2
. (24)

A Moore-Penrose continuation algorithm [30] is applied to
calculated fix points depicted in Figure 6. Here, the line
style corresponds to different stiffnesses of the beam, from
low stiffness (solid lines, 3.7 N/m) to high stiffness (dashed
line 23.8 N/m). Figure 6 shows different bifurcation points,
depending on the stiffness of the beam. For a low stiff-
ness beam, two saddle node bifurcations occur (indicated
with a circle), with a stable solution above the surface
(black circle, lower branch), a stable solution in contact
(gray circle, upper branch) and an unstable branch in between.
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Fig. 6. Equilibrium solutions of (24) in case of beams with varying
stiffness; solid line: 3.7 N/m; dotted line: 7.2 N/m; dash dotted line: 10 N/m;
dashed line: 23.8 N/m; circles and arrays instancing bifurcation points and
jump direction for approach (black) and retreat (gray) to/from a surface in
case of a stiffness of 3.7 N/m.

Fig. 7. Comparison functions �wn for a variation of the tip sample
interaction force, varying FT S ; b2, l2, h3 being constant; solid lines �w1;
dotted lines �w2; dashed lines �w3; shaded regions: deviation between the
comparison function �wn for FTS = 0 and FTS �= 0 (parameter range
according to Table I).

This behavior also reassembles the hysteresis observed in
SPL/SPM operation when approaching (jump to contact,
upward arrow) and retracting (snap of contact, downward
arrow) a surface. In contrast, only stable solutions are present
for a high stiffness beam, without any bifurcations.

Approaching a surface the interaction forces change from
attractive to repulsive. Figure 7 illustrates changes induced
to the eigenmode for such an approach. The interaction
potential is linearized for each point and the eigenfunctions are
calculated with a mixed Ritz approach and a numerical root
finding algorithm [28] (see Appendix A). Similar to Figure 3,
the line style represents the mode and the shaded area around
each line is the deviation from the model with interaction
forces compared to the non perturbed model. As can be seen,
the forces mainly affect the eigenfunctions for x > 0.2,

Fig. 8. Conversion factor κwu over the beam stiffness cbeam for a
displacement according to �w1 (black line) and �w2 (gray line) for a
variation of h3 from h3 = 0.05H (dotted line) to h3 = 0.2H (dashed line);
arrow indicates increase of l2 from l2 = 0.2L to l2 = 0.8L; shaded area
indicate variation of tip-sample separation from D = 10 nm (dash dotted line)
to D = 0.1 nm (solid line).

whereas the effect decreases for higher modes. Considering
the sensor position at the beam’s fixed end (hatched area
in Figure 7) the deviation is negligible. Note that the deviation
shown also depend on the overall geometry of the beam as well
as the tip-sample interaction pair.

Figure 8 illustrates the conversion factor κwn over the
beam stiffness cbeam in case of a variation of the length l2,
the height h3 as well as the distance between tip and
sample D (see Figure 2b). The line styles and variation is
similar to Figure 4, with the additional shaded area indicating
the difference between different tip sample separations, with
D = 0.1 nm (dash dotted line) to D = 10 nm (solid line). The
effect of a variation of D on κwn is mainly present for the first
mode (�w1), and increases with a decrease of length l2. For
l2 ≈ 0.45L no variation of κwn is present for the first mode.
As can be seen, the second mode (�w2) shows no significant
change of κwn for a variation of D.

Corresponding to the fix point solutions in Figure 6, the
shift of the eigenvalues is shown in Figure 9, for different
distances and sectional compositions. The eigenvalues have
been calculated based on (38) in Appendix A, with a inter-
action force linearized at the corresponding fix point and a
numerical root finding algorithm [28]. For a beam with low
stiffness, the first eigenvalue has only a real part for the
unstable solution branch. Higher eigenvalues exhibit an oval
evolution between the two saddle node bifurcations. In case
of a high stiffness beam without bifurcations, only hardening
and softening can be observed. Figure 9 also illustrates the
change in sensitivity to changes in the distance between tip
and sample. In case of the first mode, the change in eigenvalue
over the distance is very steep close to the bifurcation points,
with a rapid decreasing slope for higher modes. The high
stiffness beam (dashed lines) already exhibits a lower sensi-
tivity for the first eigenvalue, reducing even further for higher
eigenvalues.
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Fig. 9. Eigenvalues kwn for a linearized system at the fix points of (24) in case
of beams with varying stiffness; solid line: 3.7 N/m; dashed line: 23.8 N/m.

Fig. 10. Ratio of the first two eigenvalues; dotted line: 7.2 N/m; dash dotted
line: 10 N/m; dashed line: 23.8 N/m.

Figure 10 shows the ratio of the first two eigenvalues.
All intersections of the curve with integer values of the
eigenvalue ratio indicate possible internal resonances. These
resonances are mainly located close to bifurcation points.
For an approach to the sample, internal resonances start with
seven-to-one, whereas in retreat two-to-one internal resonances
occur. Taking into account the influence of a variation of the
beam’s geometry, the values can be shifted to lower or higher
internal resonances (see Figure 5).

C. Dynamical Analysis

In an SPM operation, each beam’s amplitude is measured
with the integrated sensor and is kept constant by applying a
direct current idc to the actuator to set a static displacement and
thus maintain a constant distance D0 between each beam and
a surface (c.f. Section III-A). The estimation of the resulting
displacement as well as of the amplitude of oscillation for
different combinations of idc and iac defines the accuracy
and reliability of the process. To analyse the implications

Fig. 11. Relative error of estimation with constant conversion factor; with
(J7 �= 0, full color) and without (J7 = 0, light color) temperature dependent
resistivity as well as with an excitation at Ω = ω1 (full circle) and Ω = ω1/2
(half circle). (a) Static displacement, Ω = ω1. (b) Amplitude, Ω = ω1.

of the excitation on the systems behavior as well as on
the estimation of the tip motion based on the sensor signal,
(19) has been numerically integrated, using a variable order
solver based on numerical differentiation formulas [31], for a
variation of idc and iac. The integration has been done until
the system had reached steady state. Note that the system (19)
has periodic coefficients, therefore the stability of the solutions
has been investigated for the considered parameter domain by
means of the absolute value of the characteristic multipliers
(Floquet theory, [32]).

Figure 11 and Figure 12 show the resulting relative error of
amplitude estimation over the power P applied to the actuator,
for an excitation at the first (
 = ω1) and second (
 = ω2)
eigenfrequency of the system, respectively. The relative error
is given by

εwn = ŵestn
(
t̃
) − ŵn

(
lt , t̃

)

ŵn
(
lt , t̃

) , (25)

with the amplitude of the estimated displacement at the tip
position ŵestn = Ubκwn , the actual amplitude of displacement
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Fig. 12. Relative error of estimation with constant conversion factor; with
(J7 �= 0, full color) and without (J7 = 0, light color) temperature dependent
resistivity as well as with an excitation at Ω = ω2 (full circle) and Ω = ω2/2
(half circle). (a) Static displacement, Ω = ω2. (b) Amplitude, Ω = ω2.

of the beam ŵn and the conversion factor κwn (see (23)), each
of mode n. The currents idc and iac are varied according to the
parameters in Table I. The diameter of the markers in Figure 11
and Figure 12 represents the ratio between idc and iac. Markers
with a light color intensity have a temperature independent
resistivity of the actuator (J7 = 0), full color intensity is the
opposite (J7 �= 0), half filled markers represent an excitation
at half the resonance frequency (
 = ωn/2), full circles are
for an excitation at the resonance frequency (
 = ωn).

Figure 11 shows εw over P for the static deflection and
the amplitude at the first eigenfrequency. The relative error of
the static displacement is increasing for an increasing power
in case of an temperature dependent actuator. An excitation
at half eigenfrequency also leads to an increasing error. For
the amplitude at the first eigenfrequency, an excitation at half
the frequency shows only a slight influence of the dissipated
power. An excitation at the eigenfrequency exhibits an varying
error for a variation in power. This is due to the square of
the current in internal heat generation term (14), using half
the frequency results in an idc independent excitation at twice

the frequency, as can be seen in the following equation:

i2 = i2
dc + i2

ac

2︸ ︷︷ ︸
static excitation

+ 2idciac sin
(

̂t

)

︸ ︷︷ ︸

̂ excitation

− i2
ac

2
cos

(
2
̂t

)

︸ ︷︷ ︸
2
̂ excitation

. (26)

The linear appearing change in the relative error for the
Ω = ω1 excitation is due to the variation of idc, as can be
seen from the increasing diameter of the markers. The slight
increase of the error for an excitation at Ω = ω1/2 for a
temperature dependent resistivity can be linked to the dissi-
pated power within the actuator (14), since the temperature
dependence of the aluminum layer leads to a coupling between
excitation and temperature difference:

gaj
(
t̃
) = ρe0

A2
j3

i2

︸ ︷︷ ︸
regular

+ αeθ̃ i2
︸ ︷︷ ︸
coupling

, j = 1, 2 (27)

Thus, the coupling term in (27) implies that the direct
current idc also influences the response amplitude of the
motion of w (x, t) at 2
̂. The intensity of the coupling
is defined by the electrical temperature coefficient of the
aluminum layer as well as by the temperature difference itself.

Figure 12a and Figure 12b show the same cantilever beam
in case of an excitation at the second natural frequency. The
behavior of the static error is similar to the case with an
excitation at the first resonance frequency. An excitation at
Ω = ω1/2 shows a stronger dependency of the error on
the dissipated power. The amplitude error also exhibits an
increased variation of the error in case of an excitation at
Ω = ω1 and an insignificant variation with an excitation at
Ω = ω1/2. Compared to Figure 11 the error of the amplitude
estimation is over an order of magnitude higher. This differ-
ence is due to the variation in slope of the eigenfunction at
the sensor position. The conversion factor shows an increased
sensitivity according to Figure 4. Depending on the actual
geometry of the beam, the ratio between the conversion factor
of the first mode to the conversion factor of the second mode
varies between κw1/κw2 = 5..20.

IV. SUMMARY AND CONCLUSION

In this paper we have derived a nonlinear dynamical model
for a microbeam with an electrothermal actuator and a piezore-
sistive sensor. This beam is designed as an element of an array
of microbeams (see [33]), in which the single beams rely on
an integrated sensing and actuation. The model incorporates
the composite structure, a varying cross section as well as a
thermal actuation and damping, based on an Euler-Bernoulli
beam and Fourier heat conduction, respectively. It also yields
the relation for the mechanical stress at the piezoresistive
sensor elements, to analyse the voltage drop across a bridge
circuit. The analysis is focused on the special properties of
the microbeam (composite structure, varying cross section,
thermal actuation, integrated sensor) and how they effect the
modal, equilibria and dynamical behaviour of the system.
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Since the direct current is used for a distance control in
SPM and SPL arrays, conclusions on the tip motion based
on the integrated sensor are of special interest.

The modal analysis in Section III-A shows the depen-
dency of the first three eigenmodes on the actuator geometry.
Changes in eigenmode compared to an Euler-Bernoulli beam
with a bulk structure mainly occur for higher modes and are
located at the actuator position as well as at the free end
of the beam (Figure 3). Since the sensor position is almost
unaffected, the change in displacement between the modes
can not be accounted for considering a constant conversion
factor linking sensor voltage to tip displacement. Moreover,
higher eigenmodes exhibit a steeper slope at the sensor posi-
tion, leading to an increased mechanical stress. Thus, a tip
motion estimation based on the sensor signal multiplied with
a constant factor leads to an error when operating with higher
modes or with multiple modes (see Figure 4). This error is
due to the geometry of the beam and the sensor principle
and it can be accounted for with a frequency dependent
conversion factor. Due to an increased stress, the second
mode offers an increased sensitivity in view of bridge voltage
change due to a displacement of the microbeam. The modal
analysis in Section III-A also shows a dependency of the
ratio of two eigenfrequencies (e.g. ω2/ω1) on the geometrical
parameters. With this dependency, experimentally obtained
results presented in [11] can be linked to the composition of
layers and actuator properties. Additionally, possible internal
resonance can occur for specific configuration of the actuator.

The equilibrium analysis in Section III-B shows that internal
resonances can be triggered to appear while approaching a
sample surface. Depending on the composition of the beam
and its sectional stiffness, the above mentioned resonances
occur during an approach to a sample surface. To further shape
this ratio, a nonideal support as well as change in sectional
stiffness can be used (cf. [29]). Thus, a internal resonance
can be adjusted to a certain distance between tip and sample
and might be used for a control scheme or an additional
measure or in case of multi frequency SPM, in which different
properties are probed while scanning. Moreover, a variation of
the tip sample interaction forces also results in an increasing
deviation of the eigenmode, towards the free end of the beam.
The highest deviation occurs for the first eigenmode and
decreases for higher modes. The deviation of the eigenmode
at the sensor position is negligible. Thus, this variation results
in a conversion factor linking the displacement to sensor
voltage, which varies with the tip sample distance, as can
be seen in Figure 8. Especially for an array operation for
SPL and SPM, the sensor signal needs to be interpreted
correctly in order to set a defined distance as well as to gain
the topography. Looking at the change of eigenvalues over
tip sample distance (Figure 9) together with the increased
sensitivity of the second eigenmode (Figure 4) shows that
this increase is compensated by the decreased frequency to
distance sensitivity.

A first dynamical analysis of the presented microbeam
in Section III-C is focused on the estimation of the tip motion
based on the integrated sensor. Using a constant conversion
factor to gain the motion estimate from the sensor voltage,

the error increases in case of an increased power dissipated
within the actuator. Thus, changing the direct current leads
to a change in excitation amplitude as well as an error in
estimation of the tip motion, which leads to distortions and
artifacts in an SPM and SPL array operation. The change in
excitation amplitude due to a change in idc can also effect the
amplitude of the microbeam at twice the excitation frequency.
Cause for this effect is a temperature dependent resistivity
of the thermal actuator’s aluminum layer. Note that common
practice is to assume the response amplitude at twice the exci-
tation frequency to only depend on the alternating current iac.
Considering an excitation of the beam at its second resonance
frequency, the estimation error increases by more than one
order of magnitude. This effect can be linked to the different
mode shapes of the system. Figure 3 shows the difference
in slope at the sensor position for the first three modes and
the difference in sensitivity of the sensor signal to beam
displacement for the first two modes (Figure 4). Thus, the
relation between the tip and the sensor position changes
considering different modes for operation.

An application of the presented microbeam in array config-
uration to an SPM or SPL process leads to a misinterpretation
of the sensor signal, when using a constant conversion factor.
In contrast to an isotropic Euler Bernoulli beam model, the
presented model shows a nonconstant ration between the
conversion factor for the first two eigenmodes (κw2/κw1 �=
const). Thus, a calibration of the beams of an array only
using the first eigenfrequency is not sufficient. As a result,
a conversion factor for each mode should be used in order
to minimize the error for tip motion estimation and increase
the capability of the array to set constant distances for each
individual beam.

APPENDIX A
EIGENMODES AND -VALUES

Within this sections the derivation of the comparison
functions �w j n and �θ j n is shown, which are used
in Section II-C for the discretization of (19). These comparison
functions satisfy all boundary and continuity conditions but
do not satisfy the differential equations of (19). First, the
following separation of variables has been introduced to the
nondimensional form of (9) and (12)

w j
(
x j , t

) = Φw j
(
x j

)
qw (t) , (28)

θ j
(
x j , t

) = Φθ j
(
x j

)
qθ (t) , (29)

where Φw j and Φθ j are spatial function and qw (t) and
qθ (t) are the corresponding time varying amplitudes. With
the following simplifications

�w (x) =

⎧
⎪⎨

⎪⎩

�w1; 0 ≤ x < l1,

�w2; l1 ≤ x < l2,

�w3; l2 ≤ x < L,

(30)

χ1..10 (x) =

⎧
⎪⎨

⎪⎩

χ1..101; 0 ≤ x < l1,

χ1..102; l1 ≤ x < l2,

χ1..103; l2 ≤ x < L .

(31)
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the resulting equations is

�wq̈w = −χ1�wq̇w − χ2�
′′′′
w qw

+χ3�
′′
θqθ + χ10 FTS, (32)

�θ q̇θ =
(
χ4�

′′
θ + χ6αeθ0�θ i2

)
qθ

− χ5�
′′
w q̇w + χ6i2

+ χ9U2
s . (33)

To approximate �w and �θ , the functions Uwk and Uθk are
used with the following Ritz approach

�w =
∞∑

k

awkUwk (x) = aT
wUw, (34)

�θ =
∞∑

k

aθkUθk (x) = aT
θ Uθ , (35)

where awk and aθk are weighting constants of mode k. The
functions Uwk and Uθk are eigenfunctions of a simplified
system, which is homogeneous, undamped and with the inter-
action force being FTS = 0. Thus, both equations satisfy
all boundary and continuity conditions as well as the differ-
ential equations of the simplified system. Rearranging both
equations (32) and (33) and multiply (32) with Uw and (33)
with Uθ as well as integrating both equations with respect to
x (Galerkin method) leads to the following set of ordinary
differential equations, that governs the coupled motion of the
microbeam.

J1awq̈w = −J2awq̇w − J3awqw

+ J4aθ qθ + FTS, (36)

J5aθ q̇θ =
(

J6 + J7i2
)

aθqθ

− J8aw q̇w + J9i2 + J10U2
s . (37)

The constants J1..10 are used in analogy to the notation
in Appendix B, whereas Φw and Φθ are exchanged by
Uw and Uθ , respectively. Introducing the isochronic approach
qw = Vweλt and qθ = Vθeλt into (36) and (37), with
āw = Vwaw and āθ = Vθaθ , leads to the eigenvalue problem
in case of FTS = 0

(
J1λ

2 + J2λ + J3 + J4āθ

)
āw = 0, (38)

āθ = − (J5λ − J6)
−1 J8āw. (39)

Equations (38) and (39) also yield an approximation to the
eigenfrequencies of (19) used in Section III-A as well as
in Section III-B. For the latter, the influence of the
interaction force has been included in (38) and (39) by
a Taylor series expansion, considering only linear terms.
Equations (34) and (35) set the basis for the analysis of the
eigenmodes in Section III-A and III-B, to show the influence
of a varied geometry and interaction forces on the modal
behavior. Since (34) and (35) are developed including the first
six terms, the functions �w and �θ are considered comparison
functions throughout the article.

TABLE I

PARAMETERS AND INTERVALS FOR VARIATION

TABLE II

MICRO-BEAM’s GEOMETRIC AND MATERIAL PARAMETER

APPENDIX B
COEFFICIENTS

The integrals of the discretization of (19)

J1 =
∫

(L)

∑

j

Φw j Φ
T
w j dx J2 =

∫

(L)

∑

j

χ1 jΦw jΦ
T
w j dx

J3 =
∫

(L)

∑

j

χ2 jΦw jΦ
′′′′T
w j dx J4 =

∫

(L)

∑

j

χ3 jΦw jΦ
′′T
θ j dx

J5 =
∫

(L)

∑

j

Φθ jΦ
T
θ j dx J6 =

∫

(L)

∑

j

χ4 jΦθ jΦ
′′T
θ j dx

J7 =
∫

(L)

∑

j

χ6 jαeθ0Φθ jΦ
T
θ j dx J8 =

∫

(L)

∑

j

χ5 jΦθ jΦ
′′T
w j dx

J9 =
∫

(L)

∑

j

χ6 jΦθ j dx J10 =
∫

(l1)
χ9 jΦθ dx

Φ̂w = [Φw31 (Lt ) . . . Φw3n (Lt )]T
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with the following coefficients:

χ j1 = d jn

μ jωs
χ2 j = E1χw2 j

μ j Ā j L4ωs

χ3 j = χw1 j E1θ0

Ā jμ jω2
s H L2

χw1 j = Aα j S̄y j − Syα j Ā j

χw2 j =
(

Īy j Ā − S̄2
y j

)
χ4 j = kt A j

χθ1 j L2ωs

χ5 j = T0 E1 Hχθ2 j

χθ1 j L2θ0
χ6 j = A jρe0

χθ1 jθ0ωs A2
j3

χθ1 j = cvρ A j + T0 E1 Aα
2
j A

−1
j χθ2 j = Syj Aα j A

−1
j − Syα j

χ7 = Ah Rt Φ̂wσ 6

180Hω2
sμL

χ8 = Ah Rt Φ̂w

6Hω2
s μL

χ9 j = A1

χθ1θ0ωs Rs Vs

χ10 j = 1

Ā jμ jω2
s H

χbc1 j = χw2 j
E1 H

A j L2
χbc2 j = χw1 j

E1θ0

A j

I = idc + iac sin
(
Ω̂ t

)
Ω̂ = Ω

ωs

lh j = l j N j P̃ = ρelh

A3 j

(
1 + αeθ0θ j

)
I 2

Lt = L − lt

L
ξ0 = D − ht

APPENDIX C
PARAMETERS USED FOR SIMULATIONS

See Tables I and II.
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