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ABSTRACT 

This paper reports on the development of a cheap and simple grid connected inverters. It 

is intended for an integration of a small power photo-voltaic or wind turbine to a grid at 

low cost. The proposed inverter uses the single cycle control technique, which reduces 

switching complexity and forces the current waveform to match the voltage waveform. 

The control circuit operation for unity power factor output is explained. The method is 

simulated on PSCAD program for single phase system. The simulation output exhibits 

excellent performance with few components. The paper only considers the current 

wave-shaping control of the inverters and does not discuss other aspects of control such 

as maximum power point tracking. The simulations are compared with the prototype 

waveforms.  

INTRODUCTION 

The purpose of a grid connected inverter (GCI) is to transfer energy to the utility. 

Various single stage and multi-stage GCI are used. The single stage inverter offers 

simple structure and low cost but suffers from limited input voltage range, while the 

multi stage inverters are complex, expensive and less efficient (Xue et al. 2004). The 

GCI mostly utilizes complex circuitry to improve the power quality. Often it requires a 

DSP or FPGA for the control system and synchronization with the utility (Shaffer et al. 

2003). Continuous research and development on GCIs have already established efficient 

and rugged inverters in the market. When the power level goes down to a couple of 

hundred Watts, the cost of the inverter becomes the dominant factor. In case of the grid 

connected photo voltaic (PV) systems the GCI system carries the significant percentage 

of cost for its investment (Khaouzam, 1997). It is challenging to make a cheap GCI with 

unity power factor, high efficiency, high reliability and simple circuitry etc.   

For developing countries like Nepal, large scale power generation requires huge 

investment and the transmission cost is very expensive due to its mountainous 

topography. The alternative is to accommodate smaller grid systems in rural areas, 

powered with freely available renewable sources. Nepal has tremendous potential for 

small hydro, solar and wind generation at most of the remote places. The average solar 
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insolation is around 4.5KWh/m
2
/day, almost evenly distributed in Nepal (Adhikari, 

1998).  Cheaply available GCIs will increase the utilization of resources in such places. 

But this GCI is more suitable for a strong grid where the voltage waveform is generally 

good quality and the source impedance is small. 

This paper explains the development of a cheap directly coupled GCI for low power 

level using a single cycle control technique (SCC). The shape of the output current is 

controlled by controlling the converter’s switching pulse duration such that its average 

value is proportional to the current reference in each switching cycle (Smedley, 1991). A 

prototype inverter has been built in the laboratory. Detailed design considerations and 

simulated results are presented. The inverter operates in buck mode during unity power 

factor operation, which requires the DC side voltage to be greater than the peak of the 

AC voltage. The converter current magnitude can be varied by changing the signal at the 

input of the integrator. The maximum power point tracking, control and protection of 

requirements for grid connected application are not included in this paper. Finally the 

scaled experimental results for unity power factor output are presented to verify the 

simulation.  

 

 

Fig. 1: GCI block diagram 
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DESCRIPTION 

The GCI can be divided into three functional blocks; the controller, power-bridge and 

the filter.  The GCI block circuit diagram is shown in Fig. 1. 

Controller 

The single cycle controller (SCC) is used to control the power switches. The controller 

is very effective for grid connection applications. It forces the output current to match 

the voltage waveform, hence fulfils the most desirable characteristic of unity power 

factor. The controller comprises a constant frequency oscillator, resettable integrator, 

voltage adder, comparator and a flip-flop switch.  The flip-flop sets the constant 

switching frequency for the converter. The duty cycle depends on the integrator voltage 

slope and the output current flowing through the inductor at the given power level.  

As shown in Fig. 2, X is the steady signal applied at 

the input of the resettable integrator. This defines the 

rms current level being injected into the AC system. 

The integrator output falls with a negative voltage, 

the slope depends upon the magnitude of X. The 

switching frequency is much higher than the utility 

frequency. The output is added to K.Vo(t) which is 

the reference voltage waveform taken from the 

utility to shape the output current. The result y(t)  is compared with the inductor current 

Io(t) with multiplying factor current sensing resistance Rs. The logic output drives the 

flip flop. The converter current rises while y(t) is greater than the Rs.Io(t), and when 

they are equal the integrator is reset and the converter current falls. Equation (1) 

describes the switching condition for a switching period Ts. 

)(..)(. tIoRsDTsXtVoK =−                                                                                          (1) 

The single cycle controller governing equation (2) is developed by (Smedley et al., 

2003). Vo is the utility voltage and Io is the inverter current. 

VmVoKIoRs −= ..                                                                                                         (2) 

Where K is a constant and Vm is the voltage fall before the integrator is reset. This is 

implemented as shown in Fig. 2. As shown in Fig. 3, Vmax is the maximum voltage that 

can fall during each cycle. Hence Vm from equation (2) is described by equation 3. 

DTstDVVm ≤−= for .max                                                                                         (3) 

DTstVm ≥= for  0  

The converter current magnitude can be controlled by controlling the signal X at the 

input of the integrator. By increasing the signal X the integrator output falls more 

quickly, increasing the slope and eventually decreasing the average output current. 

Depending upon the type of source, X can be controlled for maximum power point 

tracking operation. 

 

Fig. 2: SCC signal flow block 
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Power bridge 

A simple H-bridge type inverter as shown in Fig. 1 is implemented in the circuit which 

allows for four quadrant (4Q) operations. Reversible active and reactive power control 

is achievable in the 4Q operation. The SCC compares the falling edge of the integrator 

voltage with the rising edge of the inductor current to terminate the switching signals. 

The hybrid pulse width modulation (HPWM) switching strategy is used. It is named 

HPWM because only two of the four switches are operate at high frequency and the 

other two are operate at the line frequency (Lai & Ngo, 1994).  

The HPWM strategy has an identical inverter output voltage shape to the conventional 

unipolar pulse width modulation (UPWM), though it loses the frequency doubling 

effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The prospective inverter output voltages for HPWM switching strategy are tabulated in 

Tab. 1. 

Tab. 1: Inverter voltage for HPWM switching strategy 

High Side Switches Low Side Switches 

Q1 Q3 Q2 Q4 

Converter Voltage 

ON OFF OFF ON +Vdc 

OFF OFF ON ON 0 

OFF ON ON OFF -Vdc 

 

Fig. 3: Controller operation waveform 
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ON ON OFF OFF 0 

  

The HPWM offers low switching losses and switching strategies for two quadrant and 

four quadrant operation of the H-bridge inverter. For least current distortion during zero- 

crossings the following switching strategy is chosen.   

In the inverter as shown in Fig. 4, 

1. During Positive half cycle: 

The switch Q1 operates at PWM switching frequency, Q4 ON and Q3 and Q2 are 

OFF. 

2. During Negative half cycle: 

The switch Q3 operates at PWM switching frequency, Q2 ON and Q1 and Q4 are 

OFF. 

When the switches Q1 and 

Q4 are ON rising current 

flows through the switch 

Q1, inductor and Q4 until 

the current meets the 

adder output voltage y(t) 

as shown in Fig 2. When 

the switch Q1 goes OFF 

the inductor current 

reduces through the switch 

Q4 and the diode D2 until 

next switching cycle 

starts. Similarly switches 

Q2, Q3 and the diode D4 

will activate during 

negative half cycle. 

Filter  

The purpose of filter is to 

reduce the high frequency 

harmonic content of the line current due to the switching operation of the inverter. The 

series inductor is used as a filter. The inverter is directly coupled to the mains through 

the filter. The SCC compares the inductor current with the integrated voltage at each 

switching cycle. The converter operates in continuous conduction at 5KHz.  The fixed 

frequency oscillator ensures the integrator starts integrating at the right time. The 

inductor is such that the current ripple is small. The integrator time constant is shorter 

than the time of one switching cycle to ensure that the integration is completed within 

one switching period and the controller resets it to zero to prepare for the next cycle.  

 

Fig. 4: Switching logic for Q1, Q2, Q3 and Q4 
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The current shape should match the 

voltage waveform to get unity power 

factor, but the current rise and fall 

through the inductor has a limitation 

during zero crossing periods. The 

current rise 
dt

risedIon,
 is fast because 

the inductor voltage is high during ON 

period around zero crossings and the 

current fall 
dt

falldIoff ,
 is slow. The 

slow falling of current creates a distortion around the AC voltage zero crossings as 

shown in Fig. 5. The RS flip-flip gets a high signal at both R and S input pins at this 

stage which gives an unknown output due to undefined state of the flip-flop. It may reset 

the integrator or turn ON/OFF a IGBT at the wrong time and violate the SCC control 

principle which would give distorted current waveform. In order to minimise this 

waveform distortion, an additional logic circuit as shown in Fig. 6 is added in the 

controller to avoid the undefined states. The truth table after modification is given in 

Tab.2, where R and SW1 are applied at the reset and set pins of the flip-flop, and SW1 

and SW2 are intermediate stages of the logic circuit as shown in Fig. 6. 

 

Fig. 6 Additional logic to avoid RS flip flop in unknown states 

 

Tab. 2: Truth table for modified logic circuit 

R SW SW1 SW2 

0 0 1 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

 

SIMULATION RESULTS 

PSCAD software is used to simulate the GCI. The absolute value of y(t) and Io(t) are 

compared as shown in Fig. 7(1). At the zero crossing it is noticed that the current signal 

is higher than the voltage. The reset pin of flip flop as shown in Fig 7(2) is high during 

that period after the addition of logic circuit as shown in Fig. 6. As mentioned in power 

bridge section, the switch Q4 ON for whole positive half cycle, hence current keeps 

flowing through Q4, diode D2 and inductor until the next cycle starts. The prospective 

inverter output voltage during that period is zero as shown in fig. 7 (3).  

 

Fig. 5: Output Current and AC voltage 

near zero crossing 
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A single phase 230VAC, 50Hz line is considered as a grid. The input DC voltage is at 

400V. A single phase full bridge inverter is used and power switches are IGBT 

switches.  The switching frequency is at 5KHz. The inverter output is directly coupled 

to the utility using a 40mH Inductor and a 0.01 Ohm series resistor. The reference 

voltage and current comparison, integrator reset signal, inverter output voltage and 

output current and the line voltage are shown in Fig. 7 for 500W single phase system.  

 

Fig. 7: Simulated results for (1). Integrated Voltage and current comparison (2). 

Integrator reset (3). Inverter output voltage (4). Output voltage and current waveform 

 

EXPERIMENTAL RESULTS 

A prototype inverter is built at the laboratory. The peak power rating for the inverter is 

1KW. A HCPL 788j is used for the current sensing. A simple 555 timer is used as an 

oscillator to generate the fixed switching frequency. A combination of CMOS logic 

gates are used to operate the bridge in the HPWM switching mode. The IGBT Hi and 

Low side driver IR2112 is used to drive the IGBT in the power bridge. The experimental 

measurements of output current and line voltage reference are shown in Figure 8 at 1:10 

scaled utility and DC side voltage level.  
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The controller forces the output current to be the same shape and phase angle as the line 

voltage, as shown in the experimental results Fig. 8. The DC side voltage of the inverter 

contains 100Hz ripple during experimental measurement which distorted the integrator 

output voltage in each cycle. The experimental output current waveform is distorted 

during zero crossings as found in simulation as shown in Fig. 7(4). The output current 

has high frequency ripple as observed in the simulation. The experimental results verify 

the simulation results for unity power factor operation. The significantly more distorted 

waveform is likely to be due to noise on the measured waveforms affecting the control 

strategy. 

 

 

Fig. 8: Scaled Line voltage  taken as a reference waveform (upper), Output current (lower) 

Voltage scale 1:1,1V/div, Current scale 100mV/A, 50mV/div  

(Experimental results for GCI at unity power factor) 

FUTURE DEVELOPMENT 

The ability to connect small scale generation to weak grids is especially important. The 

SCC control technique as presented cannot provide reactive power, so is less flexible for 

grid support than more complex controllers. Further to this, as the current is controlled 

to follow the voltage wave shape, existing voltage distortion will not be reduced.  

Each of these can be addressed by generating a suitable voltage reference waveform that 

can efficiently allow a different current phase angle and/ or wave shape to flow. To 

allow this, the switching strategy also must be extended. A cheap implementation of this 

is currently being investigated. 
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CONCLUSION 

This paper reports on the development of cheap single stage directly coupled grid 

connected inverter for low power generator. The SCC control technique reduces its 

complexity and makes it cheap with a unity power factor output. The HPWM switching 

strategy is used which offers low switching losses across the power switches. The 

simulations results are verified by experiment and the work is in progress for the 

performance improvement of the simple GCI. 
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