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ABSTRACT

Signal and image processing is important in a wide range of areas, including medical and as-

tronomical imaging, and speech and acoustic signal processing. There is often a need for the

reconstruction of these objects to be very fast, as they have some cost (perhaps a monetary

cost, although often it is a time cost) attached to them. This work considers the development

of algorithms that allow these signals and images to be reconstructed quickly and without

perceptual quality loss.

The main problem considered here is that of reducing the amount of time needed for images

to be reconstructed, by decreasing the amount of data necessary for a high quality image to

be produced. In addressing this problem two basic ideas are considered. The first is a subset

selection problem where the aim is to extract a subset of data, of a predetermined size, from

a much larger data set. To do this we first need some metric with which to measure how

‘good’ (or how close to ‘best’) a data subset is. Then, using this metric, we seek an algorithm

that selects an appropriate data subset from which an accurate image can be reconstructed.

Current algorithms use a criterion based upon the trace of a matrix. In this work we derive a

simpler criterion based upon the determinant of a matrix. We construct two new algorithms

based upon this new criterion and provide numerical results to demonstrate their accuracy

and efficiency. A row exchange strategy is also described, which takes a given subset and

performs interchanges to improve the quality of the selected subset.

The second idea is, given a reduced set of data, how can we quickly reconstruct an accurate

signal or image? Compressed sensing provides a mathematical framework that explains that

if a signal or image is known to be sparse relative to some basis, then it may be accurately

reconstructed from a reduced set of data measurements. The reconstruction process can be

posed as a convex optimization problem. We introduce an algorithm that aims to solve the

corresponding problem and accurately reconstruct the desired signal or image. The algorithm

is based upon the Barzilai-Borwein algorithm and tailored specifically to the compressed sens-

ing framework. Numerical experiments show that the algorithm is competitive with currently

used algorithms.

Following the success of compressed sensing for sparse signal reconstruction, we consider

whether it is possible to reconstruct other signals with certain structures from reduced data

sets. Specifically, signals that are a combination of a piecewise constant part and a sparse

component are considered. A reconstruction process for signals of this type is detailed and

numerical results are presented.
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NOTATION

Let A be a general matrix.
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AH Complex conjugate transpose
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I The (appropriately sized) identity matrix

1 A vector whose entries are all one

CHAPTER 2

ai A row of A
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CHAPTER 3
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CHAPTER 1

INTRODUCTION

1.1 SIGNALS AND IMAGES: THE DIGITAL AGE

We live in a world alive with images. Whether watching a DVD, downloading and streaming

images from the internet, or using web cameras and Skype to interact with one another, we

are constantly communicating electronically with digitised images. This use is not restricted

to our everyday lives and entertainment but is also an integral part of modern day science and

medicine. Examples include electron microscopes, satellite and aerial imagery, high powered

telescopes and all types of medical scanning devices.

We consider signals as being represented by discrete (and therefore digitised) data, collected

by some sampling process. For example, geological recording of seismological data for earth-

quake research, the collection of data from medical scanning machines and video surveillance

cameras.

An obvious tool for collecting data is the digital camera. Although a digital camera is capa-

ble of taking high resolution images, to be able to send the image electronically via email,

the amount of data must first be reduced or it will take up too much bandwidth and hence

time. In practice we use tools to considerably lower the quantity of data, whilst retaining the

integrity of the image to enable speedy and efficient transmission.

The digitization of signals and images requires computer technology to process the data. The

type of tasks involved include filtering, sharpening, deblurring, compressing, decompressing,

reconstruction and restoration. For example, current street surveillance cameras often record

data that is not detailed enough to produce high quality images and requires image enhance-

ment to identify subjects, particularly when the recording is in darkness and from a distance.

Another illustration is the restoration of historic, degraded paintings. Here the amount of

information is limited from faded, flaking or non-existent paintwork and the task is to restore

the image to its former glory.

In other instances it is simply not possible to collect high resolution information because it

is unrealistic in terms of time and resources. This occurs in astronomical imaging where the

collection and transmission of data from space is severely constrained. In medical scanning

we wish to minimize the time that patients are subjected to scanning devices, while obtaining

1



2

the desirable quality of image. In both of these instances we require reconstruction techniques.

Since biomedical imaging, image and video processing, neuroscience, and visualisation are all

areas of application exploiting sampling and reconstruction theory, it is apparent that inter-

action with mathematicians, electrical engineers, medical personnel and scientists is involved.

It can also be seen that this interdisciplinary area provides a large and ever expanding field

of research.

Since a digital image may be represented by a mathematical model, based on arrays of data,

it is not surprising that mathematics has a central role to play in this area. Mathematics is

the thread that ties these disciplines and ideas together. The area lends itself to high level

mathematics such as Fourier analysis and modern wavelet techniques in the development

of theory and the design of algorithms. There are many books that illustrate the strong

mathematical links in signal processing including [51, 52, 69, 85, 101].

1.1.1 SIGNALS, IMAGES AND MATHEMATICS

Because the work in this thesis is based upon signal and image processing, it is important

that we understand what these concepts mean mathematically. They are defined now.

A signal is a one-dimensional function f(x) that takes a continuous input and gives a con-

tinuous output. The independent variable x is often time, while the value f(x) is the height

of the signal at each instance. This work is concerned with discrete, digitised signals. These

are continuous signals that have been sampled evenly at a discrete number of points so that

f(x) is also discrete. In this way we think of a signal as a vector whose entries correspond to

the sampled values of f(x).

An image is usually defined as a two-dimensional function f(x, y) where x and y are the

plane coordinates and f(x, y) is the intensity or grey-scale value of the image at that point.

Again, we restrict our attention to digitised images where the quantities x, y and f(x, y) are

all discrete. An image is therefore written as a matrix whose dimensions dictate the size of

the image. Each element in the matrix (and therefore the image) is commonly known as a

picture element or pixel. By concatenating the columns (or rows) of the image matrix we form

a long vector and in this way we can think of images and signals as being essentially the same.

We can similarly describe higher-dimensional objects, for example videos, although in this

work we are primarily concerned with the 1D and 2D cases.

1.1.2 SIGNALS, IMAGES AND MODERN APPLICATIONS

We have already alluded to the fact that signal and image reconstruction is fundamental

to modern day living and occurs seamlessly in the background without many people even

noticing. We describe a few more reconstruction applications here.
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In mobile phone technology, the human voice is a sound wave that is sampled and digitised

by a chip in the phone before being transmitted to a receiving phone where the process is

reversed to produce an audio output. This all happens in real time.

Another application occurs in music. People enjoy listening to music and like to download

new songs (which can be thought of as digitised signals). With a slow internet connection this

can take a considerable amount of time but with careful compression techniques, for example

songs stored as MP3s, the size of the song can be significantly reduced and downloading will

therefore be much faster. The compressed version is not the same as the original but most

users cannot distinguish it from the original. This is because the data has been manipulated

in a compression algorithm to remove data that the user will not miss — data outside the

auditory resolution of the common user.

This idea of compression without loss is also at the heart of every digital camera. The new

JPEG2000 compression algorithm replaces the discrete cosine transform based compression

algorithm with a wavelet-based method. The algorithm samples the image and performs the

discrete wavelet transform. The largest coefficients are retained and stored while the remain-

der are discarded. The JPEG2000 standard uses lossless (and lossy) compression provided

by a reversible integer wavelet transform.

Signal and image processing is central to many of today’s technological advances. These

techniques are also widely applied in medical imaging, from x-ray to computed tomography,

from ultrasound to MRI. The original motivation for this work arises specifically in magnetic

resonance imaging. For this reason it is worthwhile describing MRI in slightly more detail.

1.1.3 MAGNETIC RESONANCE IMAGING

One of the most important medical applications currently employing image reconstruction

techniques is Magnetic Resonance Imaging (MRI). MRI is commonly used as a diagnostic

tool because it allows the internal physical and chemical characteristics of an object to be

observed, using externally measured nuclear magnetic resonance signals. Unlike computed

tomography, these signals do not expose the object to any ionising radiation. Clearly this

has great advantages in medicine, as diagnoses can be made without invasive procedures.

One feature that makes MRI so popular is that the images provide good soft tissue contrast,

while other imaging modalities cannot. This makes MRI particulary useful, for example, in

the diagnosis of tumours and the imaging of blood vessels (angiography).

One of the main disadvantages of MRI is that a scan can take a long time and the bulk of this

time is spent on the data collection process. Reducing the time required for data collection

has many benefits, several of which are described below.

1. The scanner itself is very expensive (currently it costs around US$1 million per tesla

with a hospital grade magnet ranging from 1–3 tesla). If scan time can be reduced, the

scanner itself is used more efficiently, which has the added benefit of reduced patient

waiting times.
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2. The patient being scanned must remain in the scanner until all images have been

produced, throughout which time they must remain perfectly still, otherwise the image

will suffer from motion artifacts. This can cause great discomfort and is particularly

difficult for young children and the elderly, so reducing the data collection time reduces

the discomfort for patients.

3. Reducing the data collection time widens the scope of imaging that may be done by the

scanner and it has the potential to allow for real-time imaging, for example, of cardiac

cycles. (Currently for these types of images, the data is gated into different time

windows so only a very small amount of data is available for image reconstruction).

The physics underpinning MRI is based on the fact that protons (Hydrogen atoms) are

abundant in the body. Particles spin on their own axis so a proton can be thought of as

a continuously rotating positive charge that creates its own tiny magnetic field. When a

proton is placed in a strong external magnetic field (as is the case in MRI), it attempts to

align itself with this field. Taking the vector sum of the individual protons gives net magne-

tization aligned with the external field. Applying a radiofrequency (RF) pulse at the Larmor

frequency (approximately 42.6MHz for protons, [92, p. 103]) causes resonance as the protons

are all precessing at this same frequency. It forces the protons to flip perpendicular to the

external magnetic field. Once the application of the RF pulse stops, the protons slowly relax

to align with the external field direction. During the relaxation period, the response within

the patient’s tissue is measured and recorded by the MRI machine. Different tissues have

different densities of protons so respond differently to the RF pulse, and therefore show up

in the MR image at different intensities (or brightness).

On a larger scale, a magnetic gradient is set up along the length of the patient (the z coordi-

nate direction). Applying an RF pulse causes resonance in a particular slice of the patient.

The specific frequency of the RF pulse isolates the corresponding slice along the body, while

the strength of the z gradient dictates the width of the slice. Each slice is an x, y plane. The

x direction corresponds to frequency encoding (FE) and the y direction corresponds to phase

encoding (PE).

The MR measurements (or samples) are made in the Fourier domain. This raw data space

is commonly known as k-space in the MR community. Samples are usually acquired on a

regular, rectangular grid around the origin and the sample spacing is dictated by the Nyquist

rate1. Subsequently, k-space is a matrix. The number of signals collected (echoes) determines

the number of rows of the k-space matrix (phase encoding direction) while the number of

sample points of each echo determines the number of columns in the k-space matrix (fre-

quency encoding direction). When a full Nyquist set has been selected (the k-space matrix

has been filled with data) an image can be produced using the fast Fourier transform (with

zero padding of the data if necessary).

1The Nyquist rate is twice the maximum frequency found in the signal. This will be described in Chapter

3 although further information can be found in [86].
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The k-space matrix is filled in the following way. A slice selective gradient (z direction) and

an RF pulse are applied to the object. Next, gradients in both the PE and FE directions are

applied, followed by data acquisition. The strength of the phase encoding gradient dictates

which row of k-space is being filled. Depending on the length of the RF pulse, and strength

of the FE gradient, a single entry or an entire row in the FE direction is filled. We therefore

have complete control over the order in which the elements of k-space are filled. For further

information on MRI, see for example [38, 67, 102].

1.2 MATHEMATICAL INTERPRETATION

In this section we provide a mathematical description of the MRI problem set up to show the

systems of equations that arise and to provide some motivation for the algorithms described

in later chapters.

Mathematically we have a system of linear equations

Fx = y. (1.1)

The matrix F is an n×n Fourier matrix and x is a length n vector representing the
√
n×√n

image to be reconstructed. (Recall from section 1.1.1 that we can reshape an image into

a vector, for example, by concatenating the columns of the matrix.) The vector y repre-

sents the observations to be acquired by the scanner and also has length n. Equation (1.1)

demonstrates that we are essentially acquiring the Fourier transform of the image, rather

than measuring the image directly. The quantities F , x and y are all complex.

The following two subsections describe two approaches to the MRI reduced data problem.

The main objectives are to investigate reducing image reconstruction time by reducing the

number of observations. The two main questions that must be addressed are:

1. How do we choose the data to observe, while ensuring a high quality signal or image is

reproducible?

2. How do we accurately reconstruct a signal, given a sub-sampled data set?

Approaches to questions 1 and 2 are found in each of the following two subsections respec-

tively. The approach to question 1 uses a priori knowledge of the image to formulate an

approach to the subset selection problem. The approach to question 2 in the second subsec-

tion assumes no knowledge about the image and focuses on reconstructing an image from a

reduced data set.

1.2.1 THE SUBSET SELECTION APPROACH

Often in MRI a so-called ‘scout image’ of the object is quickly computed before the actual

scan to define the Region of Interest (ROI). For example, in a brain scan the ROI will be

an oval shape just containing the brain. From this scout image we know that values of x

outside the ROI will be zero (corresponding to air). A binary mask can therefore be applied
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to x. That is, premultiplying the image vector by a diagonal matrix with binary entries,

ones corresponding to x inside the ROI and zeros elsewhere. This is in turn equivalent to

zeroing columns of the Fourier matrix. The zero columns of F and the zero entries in x

can be deleted without losing any information. Let m be the number of non-zeros in the

binary mask (corresponding to m pixels inside the ROI). Then define F̂ to be the resulting

n ×m partial Fourier matrix and define x̂ to be the resulting vector of m unknowns. The

corresponding system of equations F̂ x̂ = y, is now overdetermined. Furthermore, each of the

elements in the vector y represents a location in k-space. Selecting a reduced set of data is

equivalent to selecting a certain number of elements in the vector y to observe, which is the

same as selecting certain rows of the partial Fourier matrix F̂ .

The problem is, select a predetermined number of rows from the matrix F̂ that ensure an

accurate reconstruction of x̂ (and subsequently x) is possible. Once the rows of F̂ have been

chosen, the corresponding locations in k-space can be observed by the MRI machine and the

measured data stored in the vector y.

While this is a specific application that supplied the motivation for much of this work, a more

general form of this problem is considered in chapter 2 and based upon the following. From a

complex system of m× n (m > n) equations, Ax = b, select k rows of A (where n < k < m),

corresponding to k equations, that ensure x can be reconstructed accurately. This row-subset

selection problem is considered in more detail in Chapter 2.

1.2.2 THE RECONSTRUCTION APPROACH

Another way to approach the MRI problem assumes no a priori knowledge of the region

of support of the image. In MR, images can often be sparsely represented in a particular

basis, for example a Fourier or a wavelet basis. Other images, such as an angiogram (blood

vessel images), are already sparse in the pixel domain. The question arises: if we know that

few elements of the image are non-zero, is the full Nyquist data set required to accurately

recover the image? Because no assumptions are being made about the support of the image,

a random sampling scheme is recommended (this choice will be justified in chapter 3) and

few equations are needed to reconstruct x accurately. For this application we again have the

system of equations F̂ x = y, but this time F̂ is of size m× n where m≪ n and the rows of

F̂ are randomly chosen.

The relatively new mathematical theory that supports this approach is compressed sensing

(also known as compressive sensing or compressed sampling). This problem is the motivation

for Chapter 3, in which we propose a new reconstruction algorithm. However, as for the

preceding approach, we consider this problem in a more general form: from the (real) system

of m×n (m < n) equations Ax = b, find the solution that is most sparse. This can be posed

as a regularized least squares problem and the reconstruction of such signals is based upon

optimisation techniques.
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1.3 THESIS ORGANISATION

The work in this thesis is separated into three parts, each of which is described in a separate

chapter.

Chapter 2 discusses the idea of observation subset selection. The problem is, given some data

matrix, how do we choose the best size k row subset? When considering this problem we must

decide upon a measure of ‘best’. The first part of this chapter introduces a known subset

selection criterion that is based upon minimizing the trace of a matrix. It then introduces

two currently used algorithms that adopt the trace criterion. These algorithms perform well

but are suboptimal. The idea of a row exchange process is therefore considered to improve

the selected subset and a row exchange criterion based upon the trace is derived. We describe

a row exchange algorithm that uses the new row exchange criterion.

We introduce a new selection criterion that replaces the arithmetic mean (trace) with the

geometric mean (determinant). Two algorithms based on this new criterion are described,

followed by the derivation of a determinant-based row exchange criterion. A section contain-

ing numerical results is included to demonstrate the quality of the subset selection process.

Chapter 3 is concerned with the relatively new idea of compressed sensing. This concept also

deals with reconstruction of signals from only a small amount of data, but here we assume

that the reduced data set has already been collected and the focus is obtaining a high quality

signal reconstruction. In compressed sensing, the signal to be reconstructed is assumed to

be sparse. The underlying mathematical theory is introduced and the reconstruction process

is posed as a convex optimization problem. The remainder of the chapter is concerned with

deriving a new algorithm to solve the associated l1-regularized least squares problem formu-

lation. The algorithm uses the Barzilai-Borwein step lengths and we derive a result showing

that a constant step length is calculated if the measurement matrix has orthonormal rows.

We also derive an upper bound on the elements of the solution vector, allowing us to pose

the problem as a box-constrained quadratic programming problem. An algorithm tailored

to this problem is detailed and numerical results are presented to show that the algorithm is

accurate, robust and efficient.

Chapter 4 considers extending the ideas of compressed sensing to signals that have other

known structures. Piecewise constant signals can be reconstructed accurately from limited

data sets through use of a discrete derivative operation. We specifically consider the re-

construction of signals that are a combination of a piecewise constant part and a sparse

component. The reconstruction problem can be posed as an optimization problem in 2n un-

knowns. The reconstruction process involves separating the single optimization problem into

two optimization problems, each in n unknowns. The first optimization procedure locates

the position of the discontinuities in the piecewise constant signal. A projection step is then

applied and the sparse signal is reconstructed. The sparse and piecewise constant signals are

then recombined to give the unknown signal. The optimization problems are solved by the

algorithm described in Chapter 3 and numerical results are given.
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CHAPTER 2

OBSERVATION SUBSET SELECTION

2.1 PROBLEM BACKGROUND

Many problems in signal and image processing can be modeled by the linear equation

b = Ax+ w, (2.1)

where b is a vector of observations, A ∈ C
m×n is a measurement matrix (m > n and

rank(A) = n) and w is additive noise. Noise is essentially a component that is uncorre-

lated with the desired signal and we often assume it has certain properties, for example, it

is Gaussian. Determining the original, unknown signal (or image) is an inverse problem and

an efficient yet accurate method for reconstructing x is required.

Problem (2.1) represents an overdetermined system of equations and the standard way of

solving this kind of problem uses a least squares approach. The normal equations for (2.1)

are

AHAx̂ = AH(b− w).

If A has full column rank then x̂ is the unique solution for these equations and gives the

reconstruction that minimizes the noise w in the 2-norm sense. (There is a difficulty here as

w is unknown. This is addressed later in Section 2.2.3.)

Asm > n, the matrix A has linearly dependent rows. The question arises, “Can we accurately

reconstruct the vector x using a subset of the rows available from A?” That is, does the system

(2.1) contain redundant information? This is an important problem to consider because in

practical situations, for example medical imaging, the vector b may represent observations

that are costly to obtain. The problem becomes: given some a priori information about the

matrix A, select a subset of rows of A in such a way as to preserve the quality of the vector x

to be reconstructed. To select the ‘best’ subset of rows of a matrix is a combinatorial problem

and to take such an approach is computationally infeasible. The multiplicative formula for

the binomial coefficient tells us that there are

mCk =
m!

(m− k)! k!
combinations of k rows out of a total of m possible rows. Even for quite small values of

m and k, mCk is prohibitively large. (For example, if m = 30 and k = 20 there are over

30 million combinations.) Thus we need a criterion that allows us to decide which rows to

choose without looking at all possible combinations of rows.

9
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2.1.1 CHAPTER ORGANISATION

Chapter 2 is concerned with the formulation of an observation subset selection criterion and

the implementation of algorithms that select data according to that criterion. The aim is

to select a reduced set of data, thereby reducing data acquisition time, while preserving the

reconstruction quality.

In Section 2.2 a practical observation subset selection criterion is derived. Current algorithms

that use this selection criterion are discussed in Section 2.3, together with some of their

advantages and disadvantages and examples of practical applications. Section 2.4 derives

an extension to the existing algorithms. A new subset selection criterion is proposed in

Section 2.5 and this forms the basis of several new subset selection algorithms. Finally

Section 2.6 presents numerical experiments to compare the performance of the existing and

new algorithms.

2.2 DERIVATION OF A SUBSET SELECTION CRITERION

This section is concerned with deriving a practical observation subset selection criterion.

Several mathematical concepts used in the derivation of the criterion are presented, followed

by the criterion itself.

2.2.1 THE MOORE-PENROSE INVERSE

Consider the system of equations Ax = b where A ∈ C
m×n andm ≥ n. The normal equations

are

AHAx̂ = AHb. (2.2)

If A has full rank then AHA is nonsingular and (2.2) has a unique solution. We call the

matrix

A+ = (AHA)−1AH , (2.3)

the Moore-Penrose Inverse (also known as the generalised inverse or pseudoinverse) and

x = A+b is the solution to Ax = b that has smallest Euclidean norm.

Remarks:

1. If A has full rank with m < n then the Moore-Penrose Inverse is defined as

A+ = AH(AAH)−1.

2. If m = n and A−1 exists, then

A+ = (AHA)−1AH = A−1(A−HAH) = A−1.
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3. The pseudoinverse may also be defined as the unique Frobenius norm solution to the

problem

min
X∈Rn×m

‖AX − Im‖F ,

where the Frobenius norm is

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij |2.

For further details, see for example Golub and Van Loan [50, p.257] or Watkins [100, p.277].

2.2.2 THE SINGULAR VALUE DECOMPOSITION

An important mathematical technique is the singular value decomposition (SVD). In the

mentioned signal and imaging applications, the aim is to reduce the amount of data to be

acquired, without losing any essential information. An image is generally made up of different

parts, some containing a large amount of detail such as a person’s face, and other parts with

less detail, for example the sky in the background of a photograph. The singular values

correspond to image detail. The largest singular values contribute most of the information

needed for reconstruction, while the smaller singular values contain only a small amount of

detail. Formally, the singular value decomposition of an m× n matrix A is

A = UΣV H , (2.4)

where U ∈ C
m×m and V ∈ C

n×n are both unitary matrices and Σ is a diagonal matrix. Let

r = rank(A). Then Σ ∈ C
m×n is the diagonal matrix with elements

σ1 ≥ · · · ≥ σr > 0, σr+1 = · · · = σmin(m,n) = 0,

and σ1, . . . , σr are called the singular values of A. The r singular values of A and the non-zero

eigenvalues (λj) of both A
HA and AAH are linked by the formula σ2j = λj. For a full-rank

matrix (A ∈ Cm×n and m ≥ n) all the singular values are strictly positive.

We can write the SVD of A in outer product form:

A =

r
∑

j=1

σjujv
H
j = σ1u1v

H
1 + · · ·+ σrurv

H
r ,

where uj and vj are the jth columns of U and V respectively. For compression purposes

we can truncate this sum to get rid of the smaller singular values, which contribute only

minimally to the image reconstruction. Thus we have the approximation

A ≈
p
∑

j=1

σjujv
H
j = σ1u1v

H
1 + · · ·+ σpupv

H
p , p ≤ r. (2.5)
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The pseudoinverse of a full-rank matrix can also be defined in terms of the SVD. Recall

equations (2.3) and (2.4) and that U and V are unitary matrices. Note also that, for a

unitary matrix, (V −1)H = (V H)H = V . Then

A+ = (AHA)−1AH ,

= (V ΣHUHUΣV H)−1V ΣHUH ,

= (V ΣHΣV H)−1V ΣHUH ,

= V −H(ΣHΣ)−1ΣHUH ,

= V Σ+UH , (2.6)

where

Σ+ =







1
σ1

. . . 0
1
σn






. (2.7)

When A is rank-deficient with rank r (< n ≤ m), U and V can be decomposed and the SVD

can be expressed as follows (see for example [34]):

A =
(

U1 | U2

)

(

Σ1 0

0 0

)

(

V1 | V2

)H
= U1Σ1V

H
1 ,

where Σ1 = diag
(

1
σ1
, . . . , 1

σr

)

is a diagonal matrix. This means that the pseudoinverse is still

defined for a rank-deficient matrix through

A+ = V1Σ
+
1 U

H
1 .

For the remainder of this chapter, A is assumed to have full column rank. The SVD and the

Moore-Penrose inverse (2.6) can also be used to define the following expression, which will

be useful in the next subsection:

(A+)H(A+) = U
(

(Σ+)H(Σ+)
)

UH . (2.8)

Let

D =
(

(Σ+)HΣ+
)

, (2.9)

so, from (2.7), D is anm×m diagonal matrix with diagonal elements dj = 1/σ2j for j = 1 . . . n,

and dj = 0 for j = n+ 1 . . . m. Then (2.8) becomes

(A+)H(A+) = UDUH . (2.10)

Now we have the tools to describe the solution of (2.1) in terms of the SVD. In the noiseless

case (w = 0),

x = A+b = V Σ+UHb =
n
∑

j=1

1

σj
(uHj b) vj .
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However when noise is present,

x =

n
∑

j=1

1

σj
(uHj b) vj +

n
∑

j=1

1

σj
(uHj w) vi. (2.11)

Clearly, the second term of (2.11) can be very large for small values of σj. That is, small

singular values tend to amplify noise. This supports the idea of using a truncated sum

(2.5) and eliminating small singular values. So, one way to approach the observation subset

selection problem is to compute the singular value decomposition of A and choose a set of k

rows from the observation matrix with this in mind. Unfortunately, computing the singular

values of a matrix is computationally expensive and therefore selecting the subset of rows

of A using a reduced set of the singular values is not a viable method in practice. Thus we

would like a selection criterion that does not rely on prior knowledge of the singular values.

2.2.3 A SUBSET SELECTION CRITERION

Let x be the solution to the noiseless linear system

Ax = b ⇒ x = A+b. (2.12)

When noise w is present, let

x̂ = A+(b+ w). (2.13)

Substituting (2.12) into (2.13) gives

x̂ = x+A+w. (2.14)

Rearranging (2.14) and taking norms gives

‖x̂− x‖22 = ‖A+w‖22 ,
which means that the error in the reconstruction of x is proportional to the noise in the

observations. We wish to minimize the error ‖x̂ − x‖22. However the problem is not well

posed because we do not know x or x̂.

We also do not know w but because the noise is assumed to be random we consider expected

values. Using equation (2.10)

E{‖A+w‖2} = E{wH(A+)H(A+)w},
= E{wHUDUHw}.

Let y = UHw. Then

E{‖A+w‖2} = E {yHDy},

= E

{ n
∑

j=1

|yj|2dj
}

, as D is a diagonal matrix (2.9)

=

n
∑

j=1

dj E{|yj|2}, by linearity of expected value

=
n
∑

j=1

1

σ2j
E{|yj|2}.
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The variance is defined as

var(X) = E((X − E(X))2),

= E(X2)− (E(X))2.

It is usually assumed that the yi’s are i.i.d. with mean 0 and variance σ2. (In this case,

E{yj} = 0, so E{|yj |2} = σ2). Therefore,

E{‖A+w‖2} = σ2





n
∑

j=1

1

σ2j



 . (2.15)

But the sum in (2.15) is simply the trace of (AHA)−1, so

E{‖A+w‖2} = σ2 trace(AHA)−1. (2.16)

Equation (2.16) explains that the expected value of the noise in the reconstruction is propor-

tional to trace(AHA)−1. This means that to minimize the noise in the reconstructed signal

we should maximize the sum of the eigenvalues of AHA. Obviously trace(AHA)−1 is fixed

for a fixed matrix so what this means in the context of the subset selection problem is that

the rows of A should be chosen in such a way as to maximize the sum of the singular values

of the resulting submatrix.

Let B represent a subset of row indices corresponding to the rows of A that are selected in

the subset selection process. That is B ⊆ {1, 2, . . . ,m}. Then AB is a submatrix of A whose

rows are indexed by B. The subset selection criterion now becomes:

min
B

trace(AH
B AB)

−1. (2.17)

Now that we have a means of deciding on suitable rows to select, we need an algorithm

to optimize this criterion. The next section discusses algorithms that aim to solve problem

(2.17).

2.3 EXISTING ALGORITHMS

Reeves and Heck [78, 79] have considered the observation subset selection problem and have

formulated it in the following way. Begin with an m × n matrix A (m > n). Choose an

integer k (n < k < m), where k is the number of observations allowed. Select k rows from A

to obtain a k × n submatrix AB, in such a way as to find

min
B

trace(AH
B AB)

−1.

Now that we have a mathematical formulation for the subset selection problem, we consider

two currently used algorithms that approximately solve expression (2.17).

In these algorithms, at each iteration one index is added to, or deleted from, the index set B.
The algorithms terminate when |B| = k.

In the remainder of this chapter we follow the notation in [79] and denote the jth row of the

matrix A by the row vector aj . We also assume, without loss of generality, that A has full

column rank.
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2.3.1 THE SEQUENTIAL BACKWARD SELECTION ALGORITHM

The Sequential Backward Selection (SBS) algorithm sequentially eliminates rows from the

original matrix A until k rows remain. Initially B = {1, 2, . . . ,m} and at each iteration the

cardinality of B reduces by one. To determine which row aj (for j ∈ B) to delete from AB,

the rank-1 update (AH
B AB−aHj aj)−1 is evaluated. The Sherman-Morrison-Woodbury matrix

inversion formula [5, p. 67] for a non-singular matrix M and column vectors x and y is

(M + xyH)−1 =M−1 − M−1xyHM−1

(1 + yHM−1x)
. (2.18)

Applying (2.18) to (AH
B AB − aHj aj)−1 and taking the trace gives

trace(AH
B AB − aHj aj)−1 = trace(AH

B AB)
−1 +

aj(A
H
B AB)

−2aHj

1− aj(AH
B AB)−1aHj

. (2.19)

For expression (2.19) we note that the trace is unchanged under cyclic permutations of the

matrices, i.e., trace(CDE) = trace(DEC) [74, p. 5]. As trace(AH
B AB)

−1 is independent of

row j, the optimisation criterion that the SBS algorithm uses is

min
j

aj(A
H
B AB)

−2aHj

1− aj(AH
B AB)−1aHj

. (2.20)

Therefore the row deleted at each iteration of the SBS algorithm is the row that minimizes

(2.20). If row aj is deleted then B ← B \ {j}.

Before we describe the implementation of the SBS algorithm we first describe the QR de-

composition, along with the economy QR decomposition, as these are used throughout the

remainder of this chapter.

THE QR DECOMPOSITION

Formally, the QR decomposition (or factorisation) can be defined as follows [50, p. 223].

Definition 2.3.1. The QR factorisation of a complex m× n matrix A (m ≥ n) is given by

A = QR̂,

where Q ∈ C
m×m is unitary and R̂ ∈ C

m×n is upper triangular.

Note that if A has full column rank then the first n columns of Q form an orthonormal basis

for range(A). The matrix Q can be decomposed to give

A = QR̂ =
[

Y Z
]

[

R

0

]

= Y R,

where Y ∈ C
m×n, Z ∈ C

m×(m−n), R ∈ C
n×n, and 0 is an (m − n) × n matrix of all zeros.

We therefore have the following definition.
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Definition 2.3.2. The economy QR decomposition of a complex m×n matrix A (m ≥ n) is

A = Y R,

where Y ∈ C
m×n has orthonormal columns and R ∈ C

n×n is upper triangular.

We again note that if A has full column rank then the columns of Y form an orthonormal

basis for range(A).

IMPLEMENTING THE SBS ALGORITHM

The SBS algorithm was implemented using the QR factorisation because of its numerical sta-

bility. We predominantly use the economy QR factors (which we call Y and R, and sometimes

refer to as the YR factors) as these are cheaper to compute than the full QR factorisation,

especially if m≫ n.

The SBS algorithm begins with the entire matrix A and at each iteration, one row is deleted

until only k remain (where n < k < m is a user-defined parameter chosen before the algorithm

begins). The row to be deleted at each iteration is the row that minimizes (2.20). Criterion

(2.20) must be efficiently calculated at each iteration and this is the focus of the remainder

of this subsection.

Initially, the index set for the SBS algorithm is B = {1, . . . ,m} so that AB = A. Recall

Definition 2.3.2 and let AB = Y R. Then

AH
B AB = RHY HY R = RHR,

because Y HY = I, so (AH
B AB)

−1 = R−1R−H , whereR−H ≡ (RH)−1. Consider the numerator

of (2.20) and let C = (AH
B AB)

−1. As C is Hermitian,

ajC
2aHj = (ajC)(ajC)H = ‖ajC‖22. (2.21)

In order to determine the numerator of (2.20) we only need to calculate ajC. In terms of the

YR factors, this is

ajC = ajR
−1R−H . (2.22)

Rather than calculating (2.22) for each row of A separately, we can compute it for all rows

of AB at once. As aj is a row of AB:

ABC = ABR
−1R−H = Y (RR−1)R−H = Y R−H .

Define

V = ABC = Y R−H . (2.23)

Then each row vector ajC corresponds to a row of V . The SBS algorithm was implemented

in Matlab so V in (2.23) can be found easily using Matlab’s forward-slash command.
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The values ‖ajC‖2, for j = 1, . . . , |B| in (2.21) are the Euclidean norms of the rows of the

matrix V . To give the values ‖ajC‖2 in a single vector, simply compute V.∗V (where .∗ is

element-wise multiplication) and then sum along the rows of the resulting matrix.

A similar process is used to determine the denominator of (2.20) and proceeds as follows.

The denominator is 1− ajCaHj , where

ajCa
H
j = aj(R

HR)−1aHj = (ajR
−1)(ajR

−1)H .

To calculate the value ajCa
H
j for all rows of AB at once, compute

ABCA
H
B = ABR

−1R−HAH
B ,

= (ABR
−1)(ABR

−1)H ,

= Y Y H . (2.24)

(Note that Y Y H 6= I). The diagonal entries of the |B| × |B| matrix Y Y H , correspond to

the values ajCa
H
j (while the off-diagonals are redundant). Rather than computing this large

matrix and using only the diagonal entries, we instead compute the smaller (|B| × n) matrix

Y.∗Y , and sum along the rows to give the vector whose elements are the values ajCa
H
j .

Using (2.23) and (2.24), we see that the row to discard at each iteration of the SBS algorithm

corresponds to

min
j

( |B|
∑

i=1

(V.∗V )ji

)

./

(

1−
|B|
∑

i=1

(Y.∗Y )ji

)

,

where 1 is a vector of ones and ./ is element-wise division. Hence we can evaluate (2.20)

efficiently using the economy QR factors.

The pseudocode for the SBS algorithm is given below.

ALGORITHM: SBS

1. Input: A, k and initialize B = {1, . . . ,m}

2. for l = 1 to (m− k) do

3. j⋆ ← min
j

aj(A
H
B AB)

−2aHj

1− aj(AH
B AB)−1aHj

.

4. B ← B \ {j⋆}

5. endfor
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Remark: At each iteration of the SBS algorithm the economy QR factors of AB are required.

The submatrix AB is large, so determining the economy QR factors is an expensive process

and the SBS algorithm could therefore benefit from an updating scheme. Currently Matlab

has a built-in command to perform a rank-1 update to the QR factors but not to the economy

QR factors. Therefore in the SBS algorithm an economy QR rank-1 ‘down dating’ scheme

was also implemented, although the details are not described here. See, for example, [33], or

a more recent discussion in [91].

2.3.2 THE SEQUENTIAL FORWARD SELECTION ALGORITHM

An alternative to the SBS algorithm is the Sequential Forward Selection (SFS) algorithm,

which starts with an empty matrix and sequentially adds rows ai from the matrix A until the

submatrix AB has k rows. Let AB be the matrix that is being grown. Recall that ai is a row

vector. The Sherman-Morrison-Woodbury matrix inversion formula (2.18) gives the rank-1

update,

trace(AH
B AB + aHi ai)

−1 = trace(AH
B AB)

−1 − ai(A
H
B AB)

−2aHi
1 + ai(A

H
B AB)−1aHi

. (2.25)

Again trace(AH
B AB)

−1 is independent of row ai, so to minimize expression (2.25) the SFS

algorithm uses the criterion,

max
i

ai(A
H
B AB)

−2aHi
1 + ai(AH

B AB)−1aHi
. (2.26)

Therefore, the row to be added to AB at each iteration of the SFS algorithm is the row that

maximizes criterion (2.26). If ai is the row to be added then the index set is updated to

B ← B ∪ {i}.

There is a difficulty here because (AH
B AB)

−1 is not defined unless AB has at least n rows.

The question arises: “how do we select the first n rows?” A simple approach is to randomly

select the first n rows from A to form AB, where |B| = n. Then equation (2.25) is valid, and

(2.26) can be used as the submatrix grows from n to k rows.

A better alternative is to note that when AB has n rows, trace(ABA
H
B )−1 = trace(AH

B AB)
−1

and that (ABA
H
B )−1 is defined when AB has fewer than n rows. Since the matrices AH

B AB

and ABA
H
B have the same non-zero eigenvalues, the expression (2.25) can be modified, as

in [45]. In this case, the modified criterion is used to select the first n rows to add to the

submatrix AB, and the original criterion (2.26) is used as the submatrix grows from n to k

rows. We derive the modified criterion now.

Suppose that |B| < n. Adding the row ai to the matrix AB, leads to

(ABA
H
B )+ =

[

AB

ai

]

[

AH
B aHi

]

=

[

ABA
H
B ABa

H
i

aiA
H
B aia

H
i

]

.
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Furthermore, the matrix inverse is (see for example [5, p.67])

(ABA
H
B )−1

+ =
1

△

[

(

△I + (ABA
H
B )−1(ABa

H
i aiA

H
B )
)

(ABA
H
B )−1 −(ABA

H
B )−1ABa

H
i

−aiAH
B (ABA

H
B )−1 1

]

,

where

△ = aia
H
i − aiAH

B (ABA
H
B )−1ABa

H
i .

The modified criterion relies on determining the trace of (ABA
H
B )−1

+ . Recall that the trace

of a scalar is the scalar itself and that the trace is invariant under cyclic permutations of

matrices. Then

trace(ABA
H
B )−1

+ = trace

(

(ABA
H
B )−1 +

1

△(ABA
H
B )−1(ABa

H
i aiA

H
B )(ABA

H
B )−1

)

+
1

△

= trace(ABA
H
B )−1 +

1

△trace
(

(ABA
H
B )−1(ABa

H
i aiA

H
B )(ABA

H
B )−1

)

+
1

△

= trace(ABA
H
B )−1 +

1

△trace
(

(ABa
H
i aiA

H
B )(ABA

H
B )−2

)

+
1

△ .

By noticing that

(ABa
H
i aiA

H
B )(ABA

H
B )−2 = (ABa

H
i )(aiA

H
B (ABA

H
B )−2)

is an outer product, and using the identity (for column vectors x and y)

trace(xyH) = xHy,

we can further simplify to

trace(ABA
H
B )−1

+ = trace(ABA
H
B )−1 +

1

△trace
(

aiA
H
B (ABA

H
B )−2ABa

H
i

)

+
1

△

= trace(ABA
H
B )−1 +

1

△
(

1 + aiA
H
B (ABA

H
B )−2ABa

H
i

)

.

Therefore, the modified criterion for the SFS algorithm when the submatrix AB has fewer

than n rows is

trace(ABA
H
B )−1

+ = trace(ABA
H
B )−1 +

1 + aiA
H
B (ABA

H
B )−2ABa

H
i

aia
H
i − aiAH

B (ABA
H
B )−1ABa

H
i

. (2.27)

The row ai is chosen to minimize

min
i

1 + aiA
H
B (ABA

H
B )−2ABa

H
i

aiaHi − aiAH
B (ABAH

B )−1ABaHi
. (2.28)

The SFS algorithm is therefore split into two optimization phases: phase 1 employs the

modified formula (2.28) and runs until AB is square. Phase 2 uses the original formula (2.26)

and the algorithm proceeds until k rows have been selected.



20

IMPLEMENTING THE SFS ALGORITHM

The SFS algorithm begins with an empty matrix AB and at each iteration, one row of A

is added to the submatrix AB until it contains k rows. If the submatrix AB contains fewer

than n rows, then the row to be added to the submatrix AB at each iteration is the row

that minimizes (2.28). If the submatrix has at least n rows, then the row to be added to the

submatrix AB at each iteration is the row that maximises (2.26).

The SFS algorithm requires two index sets. Let B denote the set of indices corresponding to

the rows of A that have been selected and let N denote the set of row indices correspond-

ing to the rows of A that have not been selected. Note that B ∪ N = {1, 2, . . . ,m} and

B∩N = {∅}. Initially B = {∅} and N = {1, 2, . . . ,m}. Define the matrices AB and AN to be

submatrices of A whose rows correspond to the index sets B and N respectively. Note that

at each iteration, the row to be added to the submatrix AB is selected from the submatrix AN .

There is a slight difficulty here because B (and AB) is initially empty, so that (2.28) is

undefined at the first iteration. Hence equation (2.27) becomes

min
i

trace(aia
H
i )−1.

Because aia
H
i is a scalar, the problem is reposed as

max
i

aia
H
i ≡ max

i
‖ai‖2 . (2.29)

Expression (2.29) provides a way of selecting the initial row of the submatrix — it is chosen

as the row of A with maximum Euclidean norm.

Now that (2.28) is initialised, we enter phase 1 of the SFS algorithm to choose a further n−1

rows to add to submatrix AB according to (2.28). (That is, phase 1 runs until AB is square.)

As for the SBS algorithm, economy QR factors are used throughout the SFS algorithm. Let

AH
B = Y R so that

(ABA
H
B )−1 = (RHR)−1.

The denominator of (2.28) is

aia
H
i − aiAH

B (ABA
H
B )−1ABa

H
i . (2.30)

The scalar value aia
H
i for i ∈ N is required at each of the first n iterations of the SFS algo-

rithm. Fortunately, this value has already been computed for every row of A before starting

phase 1 (see (2.29)), so these values can be stored in a vector aN say, and need not be com-

puted again.

Now consider the product term in (2.30). The factors AH
B = Y R give

aiA
H
B (ABA

H
B )−1ABa

H
i = aiY R(R

HR)−1RHY HaHi

= aiY RR
−1R−HRHY HaHi

= (aiY )(aiY )H .
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Note that ai is a row of AN and define V = ANY . The rows of the matrix V correspond to

the row vectors aiY (for i = 1 to |N |). Following the same process as for the SBS algorithm,

we can sum along the rows of the matrix V.∗V to obtain a vector whose entries are the values

aiA
H
B (ABA

H
B )−1ABa

H
i .

Consider now the product term in the numerator of fraction (2.28):

aiA
H
B (ABA

H
B )−2ABa

H
i = ‖aiAH

B (ABA
H
B )−1‖22.

The term aiA
H
B (ABA

H
B )−1 can be computed for all rows of AN at once via

ANA
H
B (ABA

H
B )−1 = ANY R(R

HR)−1 = ANY R
−H = V R−H .

Define W = V R−H , which is computed using the forwardslash ‘/’ command in Matlab.

Recall that aN is the vector (of length |N |) whose entries are the values aiaHi for i ∈ N . The

row to be added to the submatrix AB at each of the first n−1 iterations of the SFS algorithm

is the row that minimizes

min
i



1+

|N |
∑

j=1

(W.∗W )ij



 ./



aN −
|N |
∑

j=1

(V.∗V )ij



 .

After each iteration, B ← B ∪ {i} and N ← N \{i}. Note that the set B must be updated

before the set N . Phase 1 of the SFS algorithm continues until AB has n rows.

Phase 2 of the SFS algorithm then commences and the criterion to be optimized is (2.26).

Note that at the start of phase 2, the matrixAB has n rows so trace(ABA
H
B )−1 = trace(AH

B AB)
−1.

Using economy QR factors,

AB = Y R, (2.31)

so

(AH
B AB)

−1 = (RHR)−1.

The product term in the denominator of (2.26) is

ai(A
H
B AB)

−1aHi = ‖aiR−1‖22.

Now define V = ANR
−1. We sum across the rows of V.∗V to get the values ai(A

H
B AB)

−1aHi
in a single vector.

From (2.31) the numerator of (2.26) is

ai(A
H
B AB)

−2aHi = ‖aiR−1R−H‖22.

Recall that V = ANR
−1 and let W = V R−H . Summing across the rows of W.∗W gives a

vector whose entries are the values ai(A
H
B AB)

−2aHi .
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The row to be added to the submatrix AB at each iteration of (phase 2 of) the SFS algorithm

is the row that maximizes

max
i

( |N |
∑

j=1

(W.∗W )ij

)

./

(

1+

|N |
∑

j=1

(V.∗V )ij

)

.

The index sets B and N are updated in the same way as for Phase 1: B ← B ∪ {i} and

N ← N \ {i}. The algorithm terminates when the submatrix AB has k rows.

The pseudocode for the SFS algorithm is as follows.

ALGORITHM: SFS

1. Input: A, k and initialise N = {1, . . . ,m}

2. Find i⋆ ← max
i
‖ai‖22

3. B = {i⋆}

4. N ← {1, . . . ,m} \ {i⋆}

5. for l = 2 to n do

6. i⋆ ← min
i

1 + aiA
H
B (ABA

H
B )−2ABa

H
i

aia
H
i − aiAH

B (ABA
H
B )−1ABa

H
i

7. B ← B ∪ {i⋆}

8. N ← N \ {i⋆}

9. endfor

10. for l = n+ 1 to k do

11. i⋆ ← max
i

ai(A
H
B AB)

−2aHi
1 + ai(AH

B AB)−1aHi

12. B ← B ∪ {i⋆}

13. N ← N \ {i⋆}

14. endfor



23

Remarks:

1. The economy QR factors of AH
B are used for phase 1 of the SFS algorithm. As previously

mentioned, Matlab does not have a built-in code for updating the economy QR factors.

In our implementation of the SFS algorithm we have included an updating process,

although the details are omitted. See [33].

2. In phase 2 of the SFS algorithm, only R from the economy QR factors of AB is actually

used. Therefore, rather than using the economy QR factors, we could use the Cholesky

factors in the computation of each row selection criterion instead. The advantage is that

Matlab has a built-in code for the computation of a rank-1 update to the Cholesky

factors. Also, the work is significantly less, and adding rows is stable without Q or Y .

3. At step 2 of the pseudocode for the SFS algorithm, if all the rows have the same length,

then max
i
‖ai‖22 is not unique. In this case the programming language’s built-in sorting

algorithm will decide the choice. (Note that Matlab chooses the first instance.)

2.3.3 APPLICATIONS

Both the SBS and SFS algorithms are currently being used for a wide range of applica-

tions. Many medical applications make use of the SBS and SFS algorithms, in particular,

magnetic resonance imaging (MRI). Using the sequential algorithms we determine a lim-

ited set of information to observe so that data collection times, and therefore overall scan

times, can be significantly reduced. This is the basis of much current research; for example

[46, 47, 48, 105, 106].

The algorithms are also used for feature selection in areas such as mammography [66, 97],

malignancy in brain glioma [63], and the classification of uterine myoma [107]. Non-medical

applications include the selection of samples acquired by a color digital camera [73] and sensor

array configurations for optimal image reconstruction [87].

2.3.4 COMPARISON OF THE SBS AND SFS ALGORITHMS

Although the SBS and SFS algorithms are generally suboptimal, they both provide good

practical results and they avoid the combinatorial problem.

The SBS algorithm has two drawbacks. First, it requires a higher computational effort than

the SFS algorithm. This is simply because SBS operates on the full data matrix whereas

SFS starts with the empty matrix. This means that the matrix factorizations are much more

expensive for SBS than for SFS. In fact, for the SFS algorithm, at the first iteration when the

submatrix AB contains a single row, the YR factors are very simple. We have Y = AH
B /‖AB‖2

and R = ‖AB‖2.

Second, in many imaging applications, for example MRI, it is highly desirable for the data

collection process to run in parallel with the selection process. The SBS algorithm must run

to completion so that the entire observation set is known, before data acquisition can begin.
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On the other hand, if the SFS algorithm is used, once a row of A has been selected and added

to the candidate set AB, the corresponding data point (in b) can immediately be acquired by

the actual scanning device. This allows data processing to begin as the candidate matrix is

still being grown, so the SFS algorithm has that practical advantage.

Neither algorithm is optimal although both generally perform well. (Upper bounds on the

‘worst-case’ trace value can be found in [80, 81].) In most cases the SBS algorithm returns a

lower trace value corresponding to a ‘better’ set of candidate rows, while the SFS algorithm

is faster. There is a trade-off between efficiency of the algorithm and accuracy of the solution.

2.4 EXTENDING THE EXISTING ALGORITHMS

One issue with the SBS and SFS algorithms that has been highlighted in [6, 84] is that there

is no opportunity to improve the selected row subset, because any row deleted (SBS) or added

(SFS) is not considered again. With this in mind, we consider how we could implement a

row-exchange system so that a better row subset is selected.

2.4.1 A ROW-EXCHANGE CRITERION

Suppose we have selected a sub-matrix AB ∈ C
k×n (where k ≥ n). Let M = AH

B AB, which is

square and has full rank. The aim is to improve the selected row subset AB by exchanging a

row from AB with a row from AN . (That is, a row in AB is replaced by a row from AN so

that the resulting submatrix AB′ gives a lower trace value.)

We consider how trace(AH
B AB)

−1 changes when a row a is deleted from AB and a row b from

AN is inserted. (The row b replaces the row a.) We are working toward an expression for the

rank-2 update trace(AH
B AB − aHa+ bHb)−1. The matrix involved is

(M − aHa+ bHb)−1 = (M +XHY )−1, (2.32)

where

XH =
[

aH | bH
]

∈ C
n×2 and Y =

[

−a
b

]

∈ C
2×n.

The Sherman-Morrison-Woodbury formula [5, p.67] gives

(M +XHY )−1 =M−1 −M−1XH(I + YM−1XH)−1YM−1. (2.33)

Let C =M−1. Taking the trace of (2.33) and using trace(CDE) = trace(DEC) gives

trace(M +XHY )−1 = trace(C)− trace
(

(I + Y CXH)−1(Y C2XH)
)

.

Expressions for the matrices (I + Y CXH)−1 and (Y C2XH) are now derived. We begin with

the matrix (I + Y CXH), which can be expanded as

I + Y CXH = I +

[

−a
b

]

[

CaH CbH
]

=

[

1− aCaH −aCbH
bCaH 1 + bCbH

]

.
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Because (I + Y CXH) is a 2 × 2 matrix, using the formula for the inverse of a 2 × 2 matrix

gives

(I + Y CXH)−1 =
1

∆

[

1 + bCbH aCbH

−bCaH 1− aCaH

]

,

where

∆ = (1− aCaH)(1 + bCbH) + (aCbH)(bCaH). (2.34)

Now consider the matrix Y C2XH , which can be expanded as

Y C2XH =

[

−a
b

]

[

C2aH C2bH
]

=

[

−aC2aH −aC2bH

bC2aH bC2bH

]

.

The matrix multiplication (I + Y CXH)−1(Y C2XH) is

1

∆

[

−(1 + bCbH)(aC2aH) + aCbHbC2aH −(1 + bCbH)(aC2bH) + aCbHbC2bH

bCaHaC2aH + (1− aCaH)bC2aH bCaHaC2bH + (1− aCaH)bC2bH

]

,

and taking the trace gives the rank-2 update:

trace(M − aHa+ bHb)−1 = trace(C)− (2.35)

(aCbH)(bC2aH)− (1 + bCbH)(aC2aH) + (1− aCaH)(bC2bH) + (bCaH)(aC2bH)

∆
.

Therefore the criterion used to determine the rows to exchange is

max
a,b

(1− aCaH)(bC2bH)− (1 + bCbH)(aC2aH) + 2|(aCbH)(bC2aH)|
∆

. (2.36)

Remark: Note that substituting a = 0 and b = ai in (2.36) gives the criterion for the SFS

algorithm (2.26). Similarly substituting b = 0 and a = aj in (2.36) gives (2.19), the criterion

for the SBS algorithm.

2.4.2 THE SEQUENTIAL HYBRID SELECTION ALGORITHM

The row subset selected by either the SBS or the SFS algorithm is likely to be suboptimal.

The Sequential Hybrid Selection (SHS) algorithm aims to improve the selected subset by

including a row-exchange process.

There are many ways in which a row-exchange process based upon (2.35) can be implemented.

We discuss one option here. The SFS algorithm is employed to grow the sub-matrix AB until

it has a predetermined number of k rows. Next, row exchanges are implemented according to

(2.36) to improve the subset of selected rows. A row exchange should only take place when

(2.36) is positive, thus reducing the trace. Therefore the algorithm terminates when all row
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combinations give (2.36) ≤ 0.

There are two sub-matrices involved in this problem, one each for the forward and backward

selection choices. Let the initial matrix be A ∈ Cm×n and AB be the sub-matrix formed after

k iterations of the SFS algorithm. At this point row interchanges are used. The row to be

deleted from AB is chosen from a sub-matrix with k rows. The row being added to AB is

selected from the sub-matrix AN , which has (m − k) rows. Overall this gives k × (m − k)
possible row combinations. So the benefits of the SHS algorithm do come with an associated

computational cost.

In the following pseudocode for the SHS algorithm, a is a row of AB with associated row

index j and b is a row of AN with associated index i. Note that at each iteration of the SHS

algorithm, the index set B should be updated before the index set N .

Algorithm: SHS

1. Input: A, k and initialize B = {∅}, N = {1, . . . ,m}

2. until |B| = k do

3. SFS algorithm

4. enduntil

5. i⋆, j⋆ ← max
a,b

(2.36)

6. while (2.36) > 0 do

7. B ← B ∪ {i⋆}

8. N ← N ∪ {j⋆}

9. N ← N \ {i⋆}

10. B ← B \ {j⋆}

11. endwhile

Remark: For each of the sequential algorithms, if every row in the matrix A has the same

length then the initial choice of row is not unique. This situation arises, for example, if A is a

Fourier matrix. The sorting algorithm will instead determine the initial row. A row exchange

process using the SHS algorithm can help in this situation because the SHS algorithm can

exchange the original row for a better one, if required.
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2.5 A NEW SELECTION CRITERION

The subset selection process is to determine the ‘best’ submatrix, of a predetermined size,

from the available data, by minimising the trace expression (2.17). Because the trace of a

matrix is the sum of its eigenvalues, minimising (2.17) is equivalent to minimising the arith-

metic mean of the eigenvalues of the matrix (AHA)−1. If instead, we consider minimising

the geometric mean, this leads to minimising the product of the eigenvalues, or equivalently

minimising the determinant of (AH
B AB)

−1. This is in turn, equivalent to maximising the

determinant of the matrix (AH
B AB).

Thus we propose the following alternative problem:

max
B

det(AH
B AB) (2.37)

over all index sets B containing k indices.

From problem (2.37), two new subset selection algorithms naturally arise from the question:

“What happens to the determinant if a row is added to, or deleted from, the submatrix AB?”

The remainder of this section concentrates on this question, and describes two new sequential

algorithms that aim to optimize (2.37).

2.5.1 THE SEQUENTIAL DETERMINANT BACKWARD

SELECTION ALGORITHM

A Sequential Backward Selection Algorithm based upon the determinant maximization prob-

lem (2.37) is now discussed. The idea is the same as for the SBS algorithm, where we begin

with a matrix A and then sequentially delete rows until only k remain. Let AB be the

submatrix of A from which we are deleting rows. The problem is

max
j

det(AH
B AB − aHj aj) . (2.38)

Let M = AH
B AB. Then, using the identity det(I + xHy) = (1 + xyH) [5, p. 66], we have

det(AH
B AB − aHj aj) = det(M(I −M−1aHj aj))

= (detM)(det(I − (M−1aHj )aj))

= (detM)(1 − ajM−1aHj ) . (2.39)

As detM is independent of the choice of row aj , the row to discard is the row which solves

min
j

aj(A
H
B AB)

−1aHj . (2.40)

Remarks:

1. Note that to maximize the term (1 − aj(AH
B AB)

−1aHj ) in (2.39) we must subtract as

little as possible so problem (2.40) is a minimization problem.

2. Note also that the expression (1− aj(AH
B AB)

−1aHj ) is equivalent to the denominator of

(2.20).
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We call the algorithm that optimizes (2.40) the Sequential Determinant Backward Selection

(SDBS) algorithm.

IMPLEMENTING THE SDBS ALGORITHM

The SDBS algorithm begins with the full original matrix A and at each iteration, a row is

deleted from the submatrix AB until only k remain. The row that is deleted at each iteration

is the row that minimizes (2.40).

As for the SBS algorithm, the economy QR factors were used to implement SDBS algorithm.

Initially B = {1, 2, . . . ,m}. Let AB = Y R. Then

aj(A
H
B AB)

−1aHj = aj(R
HR)−1aHj = ‖ajR−1‖22.

Because aj is a row of AB we can compute ajR
−1 for all rows of AB through,

(ABR
−1)(ABR

−1)H = Y Y H . (2.41)

Recall that Y Y H 6= I. We are only interested in the diagonal terms of the matrix Y Y H be-

cause these correspond to the values aj(A
H
B AB)

−1aHj . (The off-diagonal elements correspond

to the terms ai(A
H
B AB)

−1aHj , which are not relevant here.) Therefore, instead of forming

the matrix Y Y H and taking the diagonal elements, we form the product Y.∗Y and take the

sum along the rows to give the values aj(A
H
B AB)

−1aHj for j ∈ B in a single vector. (This is

equivalent to computing the row norms of the matrix Y .)

At each iteration of the SDBS algorithm, the expression

min
j

|B|
∑

i=1

(Y.∗Y )ji

is computed to determine which row to delete from the submatrix AB.

The pseudocode for the SDBS algorithm is given below.

Algorithm: SDBS

1. Input: A, k and initialize B = {1, . . . ,m}

2. for l = 1 to (m− k) do

3. j⋆ ← min
j

aj(A
H
B AB)

−1aHj

4. B ← B \ {j⋆}

5. endfor
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SOME RESULTS ON THE SDBS ALGORITHM

In this section we are interested in studying the growth of the determinant and trace as the

SDBS algorithm progresses. Recall that the algorithm terminates when the submatrix AB

has size k × n where k > n. We assume the original matrix A has full rank.

Theorem 2.5.1. If the original matrix A ∈ C
m×n has full rank then at each iteration of the

SDBS algorithm, the submatrix AB ∈ C
|B|×n has full rank.

Proof. Suppose at the lth iteration of the SDBS algorithm, the matrix AB ∈ C
|B|×n with

n < k < |B| has rank n. Choose a set S of indices corresponding to n linearly independent

rows of AB. Note that S ⊂ B and |S| < |B|. The SDBS algorithm now selects a row to delete

from the index set B while optimising (2.38). Suppose the SDBS algorithm selects a row aj
where j 6∈ S. Let B′ = B \ {j}. Then AB′ still has n linearly independent rows and therefore

has rank n. In this case

det(AH
B′AB′) = det(AH

B AB − aHi ai) > 0 .

Since the SDBS algorithm aims to maximize criterion (2.38), it will never select a row for

which det(AH
B′AB′) = 0. But

det(AH
B′AB′) = 0 ⇔ rank(AB′) < n .

Therefore, at each iteration of the SDBS algorithm, the submatrix AB has full rank.

Lemma 2.5.1. The sequence of determinant values found at each iteration of the SDBS

algorithm is positive and strictly decreasing.

Proof. From the previous Theorem, when the algorithm terminates, AB has full rank so

at each iteration of the SDBS algorithm, det(AH
B AB) > 0. Subsequently we have that

det(AH
B AB−aHj aj) > 0. The matrix AH

B AB is positive definite so (AH
B AB)

−1 exists. Therefore

aj(A
H
B AB)

−1aHj > 0. Using det(I −DE) = det(I − ED) (which is Sylvester’s Determinant

identity [5, p.66]) gives

det(AH
B AB − aHj aj) = det(AH

B AB)(1− aj(AH
B AB)

−1aHj ) < det(AH
B AB).

As a consequence of the previous Lemma we also have the following.

Lemma 2.5.2. If aj is a row of AB then 0 < aj(A
H
B AB)

−1aHj < 1.

Proof. This follows from (2.41),

aj(A
H
B AB)

−1aHj = ‖ajR−1‖22 = ‖yj‖22,

where yj is a row of Y (part of a unitary matrix).
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2.5.2 THE SEQUENTIAL DETERMINANT FORWARD

SELECTION ALGORITHM

We now introduce a variation of the SFS algorithm that uses the determinant criterion (2.37).

We call this the Sequential Determinant Forward Selection (SDFS) algorithm. As for the SFS

algorithm, the SDFS algorithm begins with an empty submatrix and sequentially adds a row

at each iteration until a total of k rows have been chosen.

There are two index sets for this algorithm, B and N . The set B corresponds to the row

indices of A that have been selected, while the set N corresponds to the set of row indices

not yet selected. Define AB and AN to be the submatrices of A whose rows correspond to

the index sets B and N respectively. Note that AB is the submatrix being grown, while AN

is the submatrix containing the remaining row choices.

To determine a selection criterion for the SDFS algorithm we investigate what happens to

the determinant when a new row is added to AB. Consider the following derivation (which

is similar to that in (2.39)):

det(AH
B AB + aHi ai) = det(M(I +M−1aHi ai))

= (detM) det(I + (M−1aHi )ai)

= (detM)(1 + aiM
−1aHi ). (2.42)

The term det(AH
B AB) is independent of the choice of row ai, so the expression to be optimized

at each iteration of the SDFS algorithm is

max
i

ai(A
H
B AB)

−1aHi . (2.43)

This forms the basis of the Sequential Determinant Forward Selection algorithm.

As for the SFS algorithm, (2.43) is invalid when AB has fewer than n rows because AH
B AB

is singular. For this reason we modify the determinant criterion to give a selection criterion

that holds when |B| < n. We use the same approach as for the SFS algorithm and consider

a rank-1 update to det(ABA
H
B ) as AB grows from 0 to n rows.

A modified determinant forward selection criterion is derived now. A row ai of AN is to be

added to the sub-matrix AB to give

(ABA
H
B )+ =

[

AB

ai

]

[

AH
B aHi

]

=

[

ABA
H
B ABa

H
i

aiA
H
B aia

H
i

]

. (2.44)

The determinant of (2.44) [5, p. 67] is

det(ABA
H
B )+ = det(ABA

H
B )(aia

H
i − aiAH

B (ABA
H
B )−1ABa

H
i ). (2.45)

Note that the term det(ABA
H
B ) is independent of row i so the expression to be optimised at

each of the first n iterations of the SDFS algorithm is

max
i

aia
H
i − aiAH

B (ABA
H
B )−1ABa

H
i . (2.46)
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For the first n iterations of the SDFS algorithm the modified criterion (2.46) is used to grow

the submatrix AB until it has n rows. When AB is square, det(AH
B AB) = det(ABA

H
B ). Then,

the original criterion (2.43) is used as the submatrix AB grows from n to k rows.

Remarks:

1. Notice that the term 1 + ai(A
H
B AB)

−1aHi in (2.42) is equivalent to the denominator of

the SFS criterion (2.26).

2. Notice that the term aia
H
i −aiAH

B (ABA
H
B )−1ABa

H
i in (2.46) is equivalent to the denom-

inator of the SFS modified criterion (2.28).

IMPLEMENTING THE SDFS ALGORITHM

The SDFS algorithm requires two index sets. Let B denote the set of indices corresponding

to the rows of A selected by the SDFS algorithm. Let N denote the set of row indices corre-

sponding to the rows of A that have not been selected. Note that B ∪N = {1, 2, . . . ,m} and
B ∩ N = {∅}. Initially B = {∅} and N = {1, 2, . . . ,m}. Define the matrices AB and AN to

be submatrices of A whose rows correspond to the index sets B and N respectively.

There is a slight difficulty here because B (and subsequently AB) is initially empty, so the

(2.46) is initially undefined. In this case (2.46) becomes

max
i

det(aia
H
i ) ≡ max

i
aia

H
i

(because aia
H
i is a scalar). This provides a way of selecting the initial row for the submatrix—

it is chosen as the row of A with maximum Euclidean norm. Let aN denote the vector whose

ith entry corresponds to the Euclidean norm of the ith row of the matrix A—the value aia
H
i .

When |B| < n, the SDFS modified criterion (2.46) can be efficiently calculated by making

use of the YR factors. Let AH
B = Y R. The product term in the modified criterion (2.45)

becomes

aiA
H
B (ABA

H
B )−1ABa

H
i = aiA

H
B (RHR)−1ABa

H
i

= (aiA
H
B R

−1)(aiA
H
B R

−1)H

= (aiY )(aiY )H . (2.47)

The term (2.47) can be calculated for each row ai of AN simultaneously. Let V = ANY .

Then criterion (2.46) becomes

max
i

aN −
|B|
∑

j=1

(V.∗V )ij . (2.48)

The row to be added to the submatrix AB at each iteration of the SDFS algorithm is the row

that minimizes (2.48). After each iteration, B ← B ∪ {i} and N ← N \ {i}. The index set B
should be updated before the set N in practice. Phase 1 of the SDFS algorithm continues as
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AB grows from 0 to n rows.

Phase 2 commences once |B| = n and we now consider how the economy QR factors of AB

can be used to efficiently compute (2.43). Note that ai is a row of AN and let AB = Y R. The

term ai(A
H
B AB)

−1aHi in equation (2.43) can be computed for all rows of AN simultaneously

through

AN (AH
B AB)

−1AH
N = (ANR

−1)(ANR
−1)H .

Let V = ANR
−1. The diagonal elements in the matrix V V H correspond to the values

ai(A
H
B AB)

−1aHi so we compute

max
i

|B|
∑

j=1

(V.∗V )ij . (2.49)

The pseudocode for the SDFS algorithm is given below.

Algorithm: SDFS

1. Input: A, k and initialize N = {1, . . . ,m}

2. Find i⋆ ← max
i

aia
H
i

3. B = {i⋆}

4. N ← {1, . . . ,m} \ {i}

5. for l = 2 to n do

6. i⋆ ← max
i

aia
H
i − aiAH

B (ABA
H
B )−1ABa

H
i

7. B ← B ∪ {i⋆}

8. N ← N \ {i⋆}

9. endfor

10. for l = n+ 1 to k do

11. i⋆ ← max
i

ai(A
H
B AB)

−1aHi

12. B ← B ∪ {i⋆}

13. N ← N \ {i⋆}

14. endfor

Remark: As for the SFS algorithm, the ‘Y ’ of the YR factors is not needed for the compu-

tation of the expression (2.49). Alternately, we could use the Cholesky decomposition of the

matrix AH
B AB, rather than computing the YR decomposition of AB.
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SOME RESULTS ON THE SDFS ALGORITHM

In this section we are interested in studying the growth of the determinant and trace as the

SDFS algorithm progresses. We initially consider the case |B| ≥ n before turning our atten-

tion to the case |B| < n.

The following two results assume that |B| ≥ n and that the corresponding matrix AB (and

the original matrix A) have full column rank. Recall that the algorithm terminates when the

submatrix AB has size k × n where k > n.

Lemma 2.5.3. The sequence of determinant values found at each iteration of the SDFS al-

gorithm using criterion (2.43) form a positive and increasing sequence.

Proof. Because AH
B AB is a positive definite matrix det(AH

B AB) > 0, (AH
B AB)

−1 exists and is

also positive definite. For any row ai of A, ai(A
H
B AB)

−1aHi > 0 and

det(AH
B AB + aHi ai) > (detAH

B AB)(1 + ai(A
H
B AB)

−1aHi ) = det(AH
B AB).

We also have the following result, which shows the growth of the trace using the determinant

based selection criterion.

Lemma 2.5.4. The sequence of trace values found at each iteration of the SDFS algorithm

using criterion (2.43) form a positive and decreasing sequence.

Proof. Let ai 6= 0 be a row of A. From the previous result, 1 + ai(A
H
B AB)

−1aHi > 0. Fur-

thermore, if B is a symmetric positive definite matrix, then so too is B2, which implies that

‖(AH
B AB)

−1aHi ‖22 > 0. This gives

ai(A
H
B AB)

−2aHi
1 + ai(A

H
B AB)−1aHi

> 0 .

Therefore

trace(AH
B AB)

−1 > trace(AH
B AB)

−1 − ai(A
H
B AB)

−2aHi
1 + ai(A

H
B AB)−1aHi

= trace(AH
B AB + aHi ai)

−1 .

This means that the sequence of trace values found at each iteration of the SDFS algo-

rithm form a decreasing sequence. Furthermore, if B = {1, 2, . . . ,m}, then AB = A and

trace(AHA)−1 > 0 because A has full rank, so the sequence of trace values generated is

positive.

This is an interesting result because even though we are selecting rows according to a criterion

based upon the determinant, the original trace criterion is still being decreased.
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We now derive similar results for the SDFS algorithm using the modified criterion (2.45),

used when the submatrix AB has fewer than n rows (|B| < n).

We first show that at each of the first n iterations of the SDFS algorithm, the rank of the

submatrix AB increases.

Theorem 2.5.2. At each of the first n iterations of the SDFS algorithm using the modified

determinant criterion (2.46), rank(AB) = |B|.

Proof. The proof follows by induction. Suppose |B| = 1, then rank(AB) = 1 = |B| so the

result holds. Assume that at the (i − 1)th iteration of the SDFS algorithm, the submatrix

AB has rank(AB) = |B| = i − 1 (where 1 ≤ (i − 1) ≤ n). Now at the ith iteration, the

determinant modified criterion is

det(ABA
H
B )+ = det(ABA

H
B )(aia

H
i − aiAH

B (ABA
H
B )−1ABa

H
i ) .

Let P = AH
B (ABA

H
B )−1AB. Then P = PH and P 2 = P so P is a projection matrix. Let ai

be a row of the matrix A to be added to the submatrix AB. We have two cases.

1. Suppose that ai is a linear combination of the rows of AB. Then

‖aiP‖ = ‖ai‖ ⇒ ‖aiP‖2 = ‖ai‖2 ,

and

aia
H
i − aiAH

B (ABA
H
B )−1ABa

H
i = aia

H
i − (aiP )(aiP )

H = 0.

so det(ABA
H
B )+ = 0.

2. Suppose that ai is not a linear combination of the rows of AB. Then

‖aiP‖2 < ‖ai‖2 ⇒ aia
H
i − (aiP )(aiP )

H > 0.

so det(ABA
H
B )+ > 0.

Because A has rank n, there is always at least one row ai that is independent of the rows of

AB (because |B| < n). The SDFS algorithm will select such a row because it is maximising

det(ABA
H
B )+ and any independent row will give det(ABA

H
B )+ > 0 while a dependent row

would give 0. The index set B is updated as B ← B∪{i} and therefore rank(AB) = |B| = i.

We can also show how the trace evolves using the modified determinant criterion (again

|B| < n). Recall that (ABA
H
B )+ denotes the submatrix AB with the row ai added to it.

Lemma 2.5.5. Let AB denote the matrix with rank(AB) < n, formed by selecting rows of the

observation matrix A according to the modified selection criterion (2.45). Then the values

of the trace found at each iteration of the SDFS algorithm using the criterion (2.45) form a

positive, increasing sequence.
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Proof. Because ABA
H
B is a positive definite matrix, 0 < trace(ABA

H
B )−1. Similarly, 0 <

trace(ABA
H
B )−1

+ . By previous arguments, aia
H
i − aiAH

B (ABA
H
B )−1ABa

H
i > 0 and (ABA

H
B )−2

is a positive definite matrix, so

trace(ABA
H
B )−1 < trace(ABA

H
B )−1 +

1 + aiA
H
B (ABA

H
B )−2ABa

H
i

aiaHi − aiAH
B (ABAH

B )−1ABaHi

= trace(ABA
H
B )−1

+ .

Remark: In fact, Lemmas 2.5.1 to 2.5.5 can also be proven as a consequence of Cauchy’s

interlace theorem for eigenvalues of symmetric matrices. See for example [50, p. 396].

2.5.3 A DETERMINANT ROW-EXCHANGE CRITERION

As for the trace criterion, we can derive a determinant row-exchange criterion. Suppose

|B| > n. Let M = AH
B AB, C =M−1 and with the notation of Section 2.4,

det(M − aHa+ bHb) = det(M +XHY ) = det(I +XHYM−1) detM.

Since also det(I +DE) = det(I + ED) [5], we have

det(M − aHa+ bHb) = det(I + Y CXH) detM = ∆detM, (2.50)

where ∆ is defined in (2.34). Expression (2.50) is the rank-2 update to the determinant.

Hence, the determinant row-exchange criterion is

max
a,b

∆ = max
a,b

(1− aCaH)(1 + bCbH) + (aCbH)(bCaH). (2.51)

The rows a and b are chosen to maximize ∆. A row exchange should only take place if ∆ > 1,

thus increasing the determinant.

A special case of equation (2.50) occurs when the sub-matrix AB is square (k = n) and is

therefore nonsingular. Because a is a row of AB it follows that aA−1
B is a row of the identity

matrix and hence aCaH = 1. The expression for ∆ now simplifies to

∆′ = (aCbH)(bCaH) =
∣

∣aCbH
∣

∣

2
. (2.52)

In this case we have

det(M − aHa+ bHb) = (detM)
∣

∣aCbH
∣

∣

2
,

so the determinant row-exchange criterion, when the submatrix AB is square, is

max
a,b

∣

∣aCbH
∣

∣

2
. (2.53)

The rows a and b are chosen to maximize (2.53) and a row exchange will take place if the

value ∆′ > 1.
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2.5.4 THE SEQUENTIAL DETERMINANT HYBRID

SELECTION ALGORITHM

The Sequential Determinant Forward Selection algorithm can be combined with the de-

terminant row-exchange criterion (2.50) to give a Sequential Determinant Hybrid Selection

algorithm. This is also a row-exchange system but is much simpler than that described in

Section 2.4 as we are only computing the denominator of expression (2.36), namely ∆.

A row-exchange algorithm based upon the determinant-exchange criterion proceeds as fol-

lows: the SDFS algorithm is used to grow the sub-matrix from 0 to k rows to give a submatrix

AB of size k × n. At this point row interchanges are implemented to maximize (2.50). The

row-exchange process continues until ∆ ≤ 1, at which point further exchanges do not increase

the determinant and the algorithm terminates.

In the following pseudocode for the SDHS algorithm, let a be a row of AB that is being

deleted (with associated row index j) and let b be a row of AN that is being added to the

submatrix AB (with associated row index i).

ALGORITHM: SDHS

1. Input: A, k and initialize B = {∅}, N = {1, . . . ,m}

2. until |B| = k do

3. SDFS algorithm

4. i⋆, j⋆ ← max
a,b

(2.50)

5. while (2.50) > 1 do

6. B ← B ∪ {i⋆}

7. N ← N ∪ {j⋆}

8. N ← N \ {i⋆}

9. B ← B \ {j⋆}

10. endwhile

2.5.5 COMPARISON OF THE TRACE AND DETERMINANT

FORMULATIONS

There are surprising parallels between the trace and determinant formulations. The observa-

tion subset criteria based upon the determinant are the denominators of the corresponding

trace based criteria. For example, (2.51) is the denominator of (2.36).
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We also see that the exchange criteria become the regular forward and backward selection

criteria when either ai = 0 or aj = 0 respectively.

The determinant criteria are simpler expressions than the corresponding trace expressions

because the maximization process does not rely so heavily on knowledge of the matrix inverse.

Because of this the formulae can be computed more quickly, thereby leading to faster subset

selection algorithms.

2.6 NUMERICAL EXPERIMENTS

In this section we present numerical results obtained using the algorithms described in this

chapter. All algorithms were coded in Matlab and the numerical examples were tested on

an Intel Xeon 3.2GHz processor with 4GB of memory, under Linux.

The first experiment we present is that described in Reeves and Heck [79] and aims to show

that our implementation of the algorithms are working as demonstrated in that paper. The

problem is analogous to an MRI reconstruction where region of support information is avail-

able. Consider a 28-point 1D signal with a region of support given by the entries of the

vector nl = [0, 1, . . . , 9, 20, . . . , 24]. Let A be the 28 × 15 partial Fourier matrix with entries

described by ak,l = exp(−i2πknl/28). A plot of the results is shown in Figure 2.1.
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Figure 2.1: A comparison of the algorithms tested on data described by Reeves and Heck [79].

All the algorithms are performing as expected.

For this experiment Figure 2.1 presents results for subsets of size |B| = n = 16 to |B| = m = 28

because the Sequential Backward Selection Criterion (for both the SBS and SDBS algorithms)

is undefined for fewer than n rows. The SFS and SDFS algorithms ran as usual (from |B| = 0

to |B| = m) using the appropriate modified selection criterion, although the trace values for

subsets smaller than n are not displayed in the figure.
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The results show that each algorithm is performing as demonstrated in [79], so we have

confidence that the results presented in this section are fair. Note that in [79] they refer to the

Mean Square Error (MSE). By equation (2.16) this is equivalent to the value trace(AH
B AB)

−1,

which is in turn equivalent to the value of ‘tmetric’ in [7, 8].

2.6.1 TRACE (MSE) COMPARISONS

In this subsection we run the algorithms on Complex and Fourier submatrix examples, to

consider how the trace changes as rows are selected, and added, to the submatrix AB. Note

that the Backward Selection Criterion is undefined for fewer than n rows. For the SHS

algorithm, the SFS algorithm selects the new row to be added to the submatrix at each

iteration, and a maximum of two row-exchanges are allowed at each iteration.

A RANDOM COMPLEX MATRIX EXAMPLE

The algorithms were tested on a 1000 × 200 matrix with randomly generated (complex) en-

tries. The results are shown in Figure 2.2.
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Figure 2.2: This figure shows the evolution of the trace as more rows are added to the submatrix

AB. (a) shows the trace as the submatrix is grown from 0 to 1000 rows. (b) shows rows 190 to

210, around the peak in part (a). This is when the submatrix is square. (c) is zoomed in when

the submatrix is larger than square (overdetermined).

Figure 2.2 shows the evolution of the trace as more rows are added to the submatrix. We

see that when fewer rows than columns have been selected, the trace value increases until

it peaks when the submatrix is square. (Note that the SBS criterion is not defined for a
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submatrix with fewer than n rows, which is why that plot is only shown for more than 200

rows.) Then, as expected, the value of the trace reduces monotonically. The algorithms are

behaving similarly and converging to the same value of the trace as more rows are added to

the submatrix.

We also see that even though the subset of n rows chosen by the SDFS algorithm has a

higher trace value, as more rows are added to the submatrix the SDFS algorithm chooses a

better subset than the SFS algorithm. This is interesting because it shows that even if one

algorithm chooses a better size n row subset, this is not an indicator that it will from then

on continue to have a lower trace value. Figure 2.2 also shows that the SDFS algorithm is

performing at least as well as the SFS algorithm, which is somewhat surprising because the

SDFS algorithm is choosing rows based on the determinant criterion yet it still also gives as

good a value of the trace-based criterion.

A FOURIER MATRIX EXAMPLE

A Discrete Fourier Transform matrix of size 1000 × 1000 was constructed and 200 columns

were randomly selected to form a partial Fourier matrix. The results of the experiment are

shown in Figure 2.3.
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Figure 2.3: Evolution of the trace on a partial Fourier matrix. Plot (a) shows the trace as the

submatrix is grown from 0 to 1000 rows. (b) shows rows 190 to 210, around the peak in part

(a) when the submatrix is square. (c) is zoomed in when the submatrix is larger than square

(overdetermined).
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We see that the SHS algorithm gives the submatrix with the lowest trace value over almost

all row subsets. The SDFS algorithm also performs very well, competing favourably with the

SFS algorithms, and the SDFS is also the fastest of all four algorithms. The SBS algorithm

only works for subsets of at least n rows otherwise criterion (2.20) is undefined. We expect the

SBS algorithm to select a better subset than the other algorithms, although in this instance

the SBS algorithm selects a subset of size n that has a much higher trace value, so is not

performing as well as the competing algorithms.

2.6.2 ALGORITHM RUN-TIME COMPARISON

Another numerical experiment was performed to compare the running times of the SDFS

and SFS algorithms. Ten Fourier submatrices of size 1024× 128 were formed and the SDFS

and SFS algorithms ran until they had chosen k = 256 rows of the submatrix. The same

experiment was also performed on ten 1000× 100 random matrices with the SDFS and SFS

algorithms choosing k = 250 rows to form the submatrix AB. The average times over the ten

runs are displayed in the Table 2.1.

Table 2.1: The average cputime in seconds (over 10 runs) of the SDFS and SFS algorithms on

both Fourier and Random matrices.

Fourier Matrix Random matrix

SDFS 2.053 0.306

SFS 6.781 1.097

We see that the SDFS algorithm is significantly faster than the SFS algorithm — it requires

less than 1/3 the computation time. Figures 2.2 and 2.3 and Table 2.1 show that the SDFS

algorithm is performing as accurately as the SFS algorithm and is significantly faster. Clearly

the SDFS algorithm is a significant improvement upon the standard SFS algorithm.

2.6.3 IMAGE RECONSTRUCTION EXPERIMENTS

We consider two image-reconstruction experiments. The first is performed on the Shepp-

Logan phantom, while the second is performed on a small MRI data set.

For the Shepp-Logan Phantom, the pixel matrix measures 512× 373. The 2D Fourier Trans-

form of the pixel matrix was computed to imitate a k-space data set (recall Section 1.1.3).

The SDFS and SFS algorithms were run until they had selected 350 rows of the ‘k-space’

data set. The results are shown in Figure 2.4.

The SDFS algorithm selects a sub-matrix from the original data set which leads to an excellent

image reconstruction. The SFS image reconstruction is poor and suffers from severe artifacts.

This is because the SFS algorithm has not selected enough data from the center of the k-space

matrix. (Around the bright white spot in the center of the images on the left.) The center of

k-space contains most of the high frequency information, which corresponds to image detail,

so it is important that enough of this data is selected. The SDFS algorithm selects enough

of the high frequency data to allow a high quality image reconstruction.



41

k-SPACE DATA PHANTOM

SDFS IMAGE

SFS DATA SFS IMAGE

SDFS DATA

Figure 2.4: Top row: Full k-space matrix and Phantom. Middle Row: The data sub-matrix

chosen by the SFS algorithm and corresponding phantom reconstruction. The reconstruction

suffers from artifacts. Bottom row: The data sub-matrix chosen by the SDFS algorithm and

corresponding phantom reconstruction. The reconstructed image is of high quality.
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k-SPACE DATA ORIGINAL 

SDFS DATA SDFS IMAGE

SFS DATA SFS IMAGE

Figure 2.5: Top row: k-space data (Fourier matrix of size 256 × 128) and the original MRI

image. Middle row: The 135 rows of k-space data chosen by the SFS algorithm and corresponding

image reconstruction. The reconstructed image is blurry. Bottom row: The 135 rows of k-space

data selected by the SDFS algorithm and the corresponding image reconstruction. Again, the

reconstruction is very good.
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The second experiment is an image-reconstruction experiment performed on an MRI data

set. The k-space data matrix has size 256 × 128. The SDFS and SFS algorithms selected

k = 135 rows from the matrix (just over half) and the results are shown in Figure 2.5.

Again we see that the SDFS algorithm does an excellent job with the image reconstruction

process. There is very little difference between the original image and the SDFS reconstruc-

tion. The SFS fails to produce a usable image with so little data. Again the SFS data matrix

is missing rows through the middle of k-space, which results in the poor quality image.

2.6.4 HYBRID SELECTION EXPERIMENT

The results in Section 2.6.3 show that the SFS algorithm is choosing data subsets that do

not allow for a quality image to be reconstructed. This is where the SHS algorithm is useful.

This experiment uses the data set chosen by the SFS algorithm on the MRI reconstruction

described in Section 2.6.3. The SHS algorithm improved this data subset by performing

row-exchanges according to criterion (2.35). The results are shown in Figure 2.6.

SFS DATA SFS IMAGE

SFS/SHS DATA SFS/SHS IMAGE

Figure 2.6: Top row: The data chosen by the SFS algorithm and corresponding image recon-

struction. Bottom row: The data set chosen by the SFS algorithm with row exchanges by the SHS

algorithm and the corresponding image reconstruction. The image reconstructed using the subset

chosen by the SHS algorithm is much better than that using the SFS algorithm alone.
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We see that the SFS algorithm coupled with the SHS algorithm leads to a high quality image

that is now comparable with that produced by the SDFS algorithm. This is a vast improve-

ment over the SFS algorithm alone. The SHS algorithm swaps rows from the outside of the

k-space matrix with those closer to the center which means enough of the high frequency in-

formation has been selected to allow for this good reconstruction. The SHS algorithm needed

only 10 row exchanges for this large improvement. (We stress here that the SFS/SHS data

set still has only 135 out of the 256 possible rows.)

As previously mentioned, the SFS algorithm needed to select 180 rows of the original data

matrix for a quality image to be produced. Here we compare the time needed to select these

180 rows, versus the time taken for the SFS/SHS algorithm to select the improved 135 rows.

The results are shown in Table 2.2.

Table 2.2: An experiment comparing the CPU time taken by the SFS algorithm to select 135

rows, the CPU time taken by the SFS algorithm to select 135 rows and for the SHS algorithm to

perform row exchanges to improve the quality of the selected subset, and the CPU time taken by

the SFS algorithm to select 180 rows.

SFS (135 Rows) SFS/SHS SFS (180 Rows)

Times (s) 0.54 0.63 0.87

Table 2.2 shows that it is much faster to use a row-exchange process than to continue selecting

rows until the image is of high quality.

2.6.5 COMPARISON WITH RANDOM SELECTION

In this experiment we demonstrate the difference between the sequential algorithms and a

randomly selected subset. The SFS, SDFS and SBS algorithms were run as normal on a

partial Fourier matrix of size 100 × 20. A vector p containing a random permutation of the

numbers 1 to 100 was then generated. The index set B was extended so that at the lth it-

eration, B = {p(1), . . . , p(l)}, and the trace value of the corresponding submatrix was found.

The results are shown in Figure 2.7.

The superiority of the sequential algorithms is clear. The trace value of the randomly chosen

subset can be very large, particularly when the chosen submatrix has n rows. Although it

is difficult to see in the plot, the randomly chosen subset has a much higher trace value

throughout the selection process, even as the subset grows.
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Figure 2.7: Plot showing the sequential algorithms versus a randomly chosen subset. The plot

shows that all of the sequential algorithms result in submatrices with a significantly lower trace

value than the submatrices formed via a random selection approach.

2.7 CONCLUSION

Observation subset selection is a very important problem that arises in a wide range of areas.

In this chapter we have devised a new criterion for choosing a subset of observations based

upon the determinant of a matrix. This determinant criterion is simpler than the existing

trace criterion and is therefore less expensive to compute. We have also described an al-

gorithm based upon the determinant criterion, called the Sequential Determinant Forward

Selection (SDFS) algorithm. Numerical results show that this algorithm is faster than the

SFS algorithm, and as accurate. This new algorithm shows great potential, specifically in

the field of Magnetic Resonance Imaging where the SFS and SBS algorithms are currently

being used.

We have also devised a hybrid scheme for observation subset selection and have derived a

row-exchange criterion based upon the trace of matrix. A simpler determinant row-exchange

criterion was also described. Row exchanges are a means of improving the observation subset,

and the numerical results shown in this chapter (and in [14]) are very promising.
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CHAPTER 3

COMPRESSED SENSING

In the previous chapter we considered the problem of reconstructing signals (or images) when

there is an overdetermined, system of linear equations. This chapter also models the image

reconstruction problem as

b = Ax+ w, (3.1)

but now we consider (3.1) for an underdetermined system of equations. In (3.1), A ∈ R
m×n

is a measurement matrix (where m < n), b ∈ R
m is a vector of observations, x ∈ R

n is the

vector of unknowns and w is noise. The aim is to determine x, so (3.1) is an inverse problem.

This problem is ill-posed because there are infinitely many solutions.

Chapter 3 discusses compressed sensing—a relatively new mathematical framework that al-

lows signals to be reconstructed accurately from few observations or measurements.

Section 3.1 provides an introduction to compressed sensing. The basic mathematical prin-

ciples are discussed and the important concepts, including sparsity and incoherence, are

described. Section 3.2 describes how the mathematical theory underlying compressed sens-

ing is put into practice using optimization algorithms. It also describes some of the problem

formulations and currently used algorithms. In Section 3.3 a new algorithm for compressed

sensing called the Box-Constrained Gradient Projection (BCGP) algorithm is presented. Sec-

tion 3.4 details numerical experiments using the new algorithm, and in Section 3.5 we provide

some concluding remarks.

3.1 AN INTRODUCTION TO COMPRESSED SENSING

Until recently, almost all signal acquisition protocols follow the celebrated Shannon sampling

theorem [86], which explains that to ensure accurate signal reconstruction, the sampling rate

must be twice the maximum frequency present in the signal (the so-called Nyquist rate).

Compressed Sensing is a new and novel sampling paradigm that goes against this common

wisdom. The following section gives an introduction to compressed sensing and explains why

it may be possible to reconstruct signals and images from very little data.
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3.1.1 SPARSITY

Consider a discrete signal f ∈ R
n. (Usually such a signal is time-dependent (f(t)) but

for simplicity we will only consider an instance of the time-dependent signal in this work.)

There is no loss of generality in assuming that f is a signal (vector) because if f is a higher-

dimensional object, for example an image, then the object can be reshaped into a single

long vector using some specified ordering. Any signal can be represented in an orthonormal

basis. Furthermore, many signals can be represented ‘concisely’ in a particular orthonormal

basis. By concisely we mean that many of the transform coefficients are zero and we say

that f has a sparse representation in that basis. Suppose we have such an orthonormal basis

Ψ = [ψ1, ψ2, . . . , ψn] (often referred to as the representation basis) and a sparse coefficient

sequence for f : xj = 〈f, ψj〉. It is convenient to express this in matrix form as

f = Ψx. (3.2)

Usually we would have to sample all n of the transform coefficients xj to ensure accurate

reconstruction of f , but because we know that the coefficient vector is sparse, one may

hope that we could sample fewer of the coefficients and still get an accurate reconstruction.

Consider xs, the vector x with all but the largest s coefficients set to zero. By definition,

fs = Ψxs and we say that xs is s-sparse. Because Ψ is an orthonormal basis we have the

relation

‖f − fs‖2 = ‖x− xs‖2 , (3.3)

which explains that if x is s-sparse or can be well represented by a sparse vector xs then the

error in the reconstructed signal fs is small.

In general, to recover f accurately, all n of the coefficients of x must be sampled. However,

in many real-world situations, acquiring a complete set of data is so costly as to make it

impractical. Suppose we take m < n measurements of the signal f using the basis Φ (often

referred to as the sampling or sensing basis), giving

b = Φf, (3.4)

where Φ is m× n with m < n. Combining equations (3.2) and (3.4) we have

b = Φf = ΦΨx.

Letting A = ΦΨ gives b = Ax, which is equation (3.1) in the noiseless case (w = 0). There

are infinitely many candidate signals x̂ that satisfy Ax̂ = b, so the problem is ill-posed. The

chance of choosing the x̂ that correctly recovers f seems very small, which is why sparsity

is so important. If we know that the signal f is sparse in some basis then the problem be-

comes: of all the candidate signals x̂ satisfying Ax̂ = b, choose the one that is the most sparse.

This seems a very nice idea in theory. However, to make compressed sensing viable in practice

there must also be an efficient way to recover the signal. One may wish to use the “l0-norm”,
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which simply counts the number of non-zeros in a given vector, and pose the signal recovery

problem as

min
x
‖x‖0 subject to Ax = b.

However, the l0-norm is not a true norm and to determine the signal that has the fewest

non-zero elements is a combinatorial problem with nCs possibilities. As we saw in Chapter

2, combinatorial problems can be computationally intractable and we prefer to avoid them

when possible.

One may naturally consider whether another norm might be more appropriate. Mathemati-

cally, a norm is defined for p ≥ 1 by the relation

‖x‖p =
(

n
∑

i=1

|xi|p
)

1

p

.

The signal recovery problem may be posed as

min
x
‖x‖p subject to Ax = b. (3.5)

For p ≥ 1, (3.5) is a more computationally tractable problem, because norm minimization

subject to linear equality constraints is a convex optimization problem. This has nice prop-

erties; for example, a local minimizer is a global minimizer.

The three most commonly used norms are for p = 1, p = 2, and p = ∞. We consider

the associated norm balls to decide the norm that would be most appropriate for use in

compressed sensing. The norm balls and the line aTx− b (corresponding to a hyperplane in

the n-dimensional case) are shown in Figure 3.1, where the p-norm ball has been blown up

until it first meets the line.

b
x∗

x

y

(a) The l1-norm ball

bx∗

x

y

(b) The l2-norm ball

b
x∗

x

y

(c) The l∞-norm ball

Figure 3.1: The 1, 2, and ∞ norm balls have been ‘blown up’ until they meet with the line

aTx− b. The point x∗ indicates the solution to problem (3.5) for the corresponding p-norm.
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The points x∗ in Figure 3.1 (a), (b), and (c) correspond to the solution of problem (3.5) for the

corresponding p-norm. For the two and infinity norms, the x and y coordinates corresponding

to the contact point x∗ are both non-zero. However for the 1-norm, the contact point occurs

across the y-axis and therefore has one zero and one non-zero coordinate. In general (n-

dimensions), the 1-norm will give a sparse solution to (3.5) while the 2- and ∞-norm will

not. This intuitively leads us to choose the 1-norm for compressed sensing problems as we

are seeking a sparse solution. We pose the signal recovery problem as

min
x
‖x‖1 subject to Ax = b. (3.6)

Indeed the use of the 1-norm as a sparsity-inducing tool goes back some time, for example

[28, 62]. More recently came work on the Least Absolute Shrinkage and Selection Operator

(LASSO) [94], and on the Basis Pursuit (BP) and Basis Pursuit Denoising (BPDN) problems

[26], which both aim to solve systems of equations for which a sparse solution is sought.

While we prefer to solve problem (3.5) for p = 1 (giving formulation (3.6)), others have pre-

ferred to use p < 1. The problem is no longer convex and as mentioned, ‖ · ‖p for p < 1 is not

a true norm. However, positive results have been reported. We will not comment further on

these non-convex problems, but further information can be found, for example, in [23, 24, 88].

Remark: We have explained that compressed sensing is based upon the idea that a signal

may be sparse in some basis. A signal is said to be s-sparse if all but s of its entries are zero.

However, this idea also works when the signal is not sparse but compressible. Compressibility

is the notion that, subject to a reordering, a signal has a finite region of support, outside of

which the coefficients decay rapidly. If a signal is compressible, it can be well represented by

an s-sparse signal, in which case (3.3) holds and the error in the reconstruction of f is small.

3.1.2 INCOHERENT SAMPLING

So far we have seen that if a signal is sparse in some basis, then accurate reconstruction from

few measurements should be possible. However, for a given representation basis Ψ, we cannot

choose just any sensing basis Φ and hope to reconstruct the signal. This is demonstrated by

the following example. Suppose that the sensing basis is the same as the representation basis.

In this case we have ΨHΨ = I. All n coefficients must be sampled or guaranteed recovery

of f is impossible. This example leads to the notion of incoherence, which is an important

concept for compressed sensing.

Definition 3.1.1 ([21]). The coherence between the sensing system Φ and the representation

system Ψ is defined as

µ(Φ,Ψ) =
√
n · max

1≤j,k≤n
|〈ϕj , ψk〉|.

The value of µ(Φ,Ψ) lies in the interval [1,
√
n]. The upper bound occurs because the inner

product between two unit vectors is at most one, and the lower bound is a consequence of
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Parseval’s identity [58, p. 8–16].

Up to this point we have not quantified how sparse a signal must be, or how few observations

can be made while ensuring accurate signal reconstruction. The following theorem offers

bounds on how few measurements are required for accurate reconstruction, and the bound is

dependent on the sparsity level of the signal.

Theorem 3.1.1 ([18]). Fix f ∈ R
n and suppose that the coefficient sequence x of f in the

basis Ψ is s-sparse. Select m measurements in the Φ domain uniformly at random. Then if

m ≥ c · µ2(Φ,Ψ) · s · log n ,

for some positive constant c, the solution to the convex optimization problem (3.6) is exact

with overwhelming probability.

(In fact, the probability of success exceeds 1− δ if m ≥ c · µ2(Φ,Ψ) · s · log(n/δ).)

This theorem makes it clear why incoherence is so important: the smaller the value of µ(Φ,Ψ),

the smaller the number of measurements m that are required for exact signal recovery. For

the earlier example when Ψ was chosen as both the representation and sensing basis, we

get maximal coherence and Theorem 3.1.1 supports the earlier conclusion that we cannot

undersample the data.

Fortunately there are sensing/representation matrix pairs for which we get low or even optimal

µ(Φ,Ψ) = 1 coherence. We discuss a few examples here that are presented in more detail in

[21].

1. Suppose the sensing basis is a spike basis ϕk(t) = δ(t− k) and the representation basis

is a Fourier basis ψj(t) = n−1/2ei2πjt/n. Then we have µ(Φ,Ψ) = 1, which is maximal

incoherence.

2. A random matrix usually displays low coherence with any fixed basis Ψ. If n vectors of

unit length are sampled independently and then orthonormalised, with high probability

the coherence between this Φ and a fixed Ψ is approximately
√
2 log n.

3. Many signals are sparse in a wavelet basis, and a sensing basis that is largely incoherent

with a wavelet basis is a noiselet basis [29]. The coherence between a noiselet sensing

basis and a Haar wavelet representation basis is
√
2. Noiselets have the advantage that

they have very fast transforms and the basis does not need to be stored to be applied

to a vector. We say that noiselets form a fast operator.

3.1.3 THE RESTRICTED ISOMETRY PROPERTY

So far we have discussed the important roles sparsity and incoherence play in compressed

sensing. However, we have not discussed which kinds of matrices will enable exact recon-

struction, and this brings into play the Restricted Isometry Property (RIP). The RIP is a
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measure of how well a given matrix preserves Euclidean length, and we have the following

relation:

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22.

The constant δs is called the restricted isometry constant. If δs is close to zero then the

matrix approximately preserves Euclidean length. Recall that A = ΦΨ. The RIP is needed

for the following result, which shows that if a matrix satisfies the restricted isometry property

of ‘order s’ (where s is the number of non-zeros in the signal) then the reconstruction via l1
minimization is accurate.

Theorem 3.1.2 ([20]). Assume that A is defined above and has the RIP property such that

δ2s <
√
2− 1. Then the solution x̂ to (3.6) satisfies

‖x̂− x‖2 ≤
c√
s
· ‖xs − x‖1 (3.7)

for some scalar c depending upon the instance, where xs is as defined previously.

3.1.4 NOISY MEASUREMENTS

The results described so far have been based on a noise-free model with w = 0 in equation

(3.1). However, many of the results in compressed sensing have been extended to the case

when noise is present in the linear model. The optimization problem

min
x
‖x‖1 subject to ‖Ax− b‖2 ≤ σ , (3.8)

may then be preferred over (3.6), where σ is proportional to the noise in the measured data.

Theorem 3.1.2 is now extended as follows.

Theorem 3.1.3 ([19]). Assume that δ2s <
√
2− 1. Then the solution x̂ to (3.8) obeys

‖x̂− x‖2 ≤
c0√
s
· ‖xs − x‖1 + c1σ ,

for some scalars c0 and c1.

Theorem 3.1.3 places a bound on the error in the reconstructed signal when there is noise

present in the measured data.

Many other results in compressed sensing can also be extended to the case when noise is

present in the measured data, although we will not go into further detail here. Instead we

suggest [19, 36].

3.2 CURRENT ALGORITHMS

The previous sections show that there has been much research on the theory underlying

compressed sensing and there is now a solid mathematical framework within which to work.

This section demonstrates that there has also been a great deal of research on algorithms

to solve the associated optimization problems. Several current algorithms for compressed

sensing are described in this section.
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3.2.1 BASIS PURSUIT

We have already seen the convex optimization problem formulation (3.6):

min
x
‖x‖1 subject to Ax = b,

which falls into the Basis Pursuit (BP) category [25, 26]. Theorem 3.1.1 explains that if

there are enough observations, signal recovery using this optimization formulation is exact

with very high probability. Problem (3.6) can be recast as the linear programming problem

min
x,u

n
∑

j=1

uj subject to − uj ≤ xj ≤ uj ,

Ax = b,

or as

min
u,v

n
∑

j=1

uj + vj subject to A(u− v) = b,

uj , vj ≥ 0

Linear programming is a well studied area of optimization and many robust algorithms exist.

Compressed sensing has brought linear programming back into the spotlight. One of the

first algorithms specifically designed to solve problems from compressed sensing was the l1-

magic algorithm by Candès and Romberg [17]. They wrote a suite of Matlab programmes,

all generally referred to as l1-magic, to solve problem (3.6) and its various relaxations, for

example, (3.8). The Matlab code for l1-magic is freely available at http://www.l1magic.

org. These were the first programmes to show that the compressed sensing theory could

be realised in practice via optimization algorithms. Since l1-magic, there has been a flurry

of activity to find ever-more efficient algorithms to solve the optimization problems from

compressed sensing. The Rice University webpage is a frequently updated site that contains

a wealth of information on this topic: http://dsp.rice.edu/cs [53]. There are also several

excellent review articles, including [21, 82, 110].

3.2.2 QUADRATIC PROGRAMMING

Another approach to solving the signal recovery problems from compressed sensing is to use

the unconstrained convex optimization formulation

min
x
‖Ax− b‖22 + λ‖x‖1 , (3.9)

which is the l1-regularized least-squares approach (BPDN). The scalar λ is a regularization

parameter that determines the balance between the quadratic loss term and the sparsifying

l1 term. The parameter λ is usually small and in [60] it is shown that λ must satisfy

λ < 2 ‖AT b‖∞ , (3.10)

otherwise the solution to (3.9) is the zero vector. Problem (3.9) can be reformulated as a

quadratic programme with linear inequality constraints as follows:

min
u,x

‖Ax− b‖22 + λ
n
∑

j=1

uj subject to − uj ≤ xj ≤ uj . (3.11)
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In [59, 60] Kim et al. describe a truncated Newton interior point method to solve problem

(3.11). The algorithm is called l1-ls and the associated Matlab code is freely available at

http://www.stanford.edu/~boyd/l1_ls/.

In [25, 26, 40], problem (3.9) is reformulated via the substitution x = u − v, to obtain the

differentiable problem

min
u,v

1

2
‖A(u− v)− b‖22 + τ

n
∑

j=1

(uj + vj) , (3.12)

subject to uj, vj ≥ 0 ,

where the regularization parameter τ is related to the previous regularization parameter

(3.10) through λ = 2τ . At the solution of problem (3.12) we have uj = 0 or vj = 0. Problems

(3.9) and (3.12), although different, share a common minimizer.

3.2.3 OTHER ALGORITHMS

Many other algorithms exist with applications to compressed sensing and the associated sig-

nal and image processing problems. For example, the SpaRSA (Sparse Reconstruction by

Separable Approximation) algorithm [103, 104] and the FISTA (Fast Iterative Shrinkage-

Thresholding) algorithm [4]. Other current algorithms include a projected Barzilai-Borwein-

type algorithm with applications in computed tomography [98], the Gradient Projection (GP)

algorithm (along with the Steplength Selection for Gradient Projection (GPSS) variant [64]).

There is also a gradient descent algorithm that uses a thresholding step to encourage sparsity

[49] and in [96] a range of problems that arise in compressed sensing are discussed.

Greedy algorithms have also proved popular for compressed sensing problems. These algo-

rithms include Orthogonal Matching Pursuit (OMP) [95], Stagewise Orthogonal Matching

Pursuit (StOMP) [35] and Compressed Sampling via Matching Pursuit (CoSaMP) [70].

In the remaining part of this chapter we focus on creating a new algorithm for compressed

sensing. This algorithm should be able to solve the convex optimization problems arising in

compressed sensing, accurately and efficiently.

3.3 A NEW ALGORITHM FOR COMPRESSED SENSING

In this section we propose a new algorithm that can be applied to problems in compressed

sensing. The algorithm uses a new formulation of the optimization problem (3.9), employs

the Barzilai-Borwein step lengths (which are described in the following subsection), a projec-

tion operator, and a non-traditional backtracking line search loop based on recent work by

Dai and Fletcher [30].

Our approach uses two levels of iteration (or nested loops), an outer loop defining a search

direction and new candidate point x, and an inner backtracking line search loop. The back-
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tracking line search is included as a safeguard and was suggested in [30] to prevent iterates

cycling and to ensure convergence of the algorithm. The algorithm only enters the backtrack-

ing line search loop under certain conditions that in practice rarely arise.

The approach only requires matrix-vector products involving A and AT . At each iteration

there is one vector multiplication with A and one with AT , unless the inner loop is required,

in which case there is an additional multiplication with A in the backtracking line search.

The computational effort is therefore low in each iteration.

In the remainder of this section, we introduce the different features of our algorithm, which

is described in detail in Section 3.3.9.

3.3.1 THE BARZILAI–BORWEIN ALGORITHM

In 1988 Barzilai and Borwein [3] devised a novel gradient method for unconstrained opti-

mization problems, based on a two-point approximation to the Secant method [3]. Their

algorithm has the unusual property that at some iterates the function value increases. De-

spite this property, the algorithm performs very well in practice. In fact, forcing a monotonic

decrease in the function value at each iteration can seriously impair the practical performance

of the algorithm [30].

In [3] the algorithm is proven to converge in the unconstrained, 2-dimensional, positive defi-

nite, quadratic case. This was extended to the n-dimensional, strictly convex quadratic case

[75], and in [44] the convergence of the algorithm in the unconstrained, quadratic case when

the Hessian is positive semi-definite is proved.

The Barzilai-Borwein algorithm is a steepest-descent-type algorithm. For an objective func-

tion f(x), the steepest-descent method updates the candidate point at each iteration via

xk+1 = xk − αk∇f(xk).

That is, from the point xk, a step of size αk is taken in the direction of the negative gradient.

The step length αk is chosen such that the objective function at the new point xk+1 is lower

than the function value at the current point xk. The Barzilai-Borwein algorithm has two

specific formulae for calculating αk and these do not necessarily result in a reduced objective

function value at the next iterate. The two formulae for the step lengths are derived in the

following subsection.

There has been much interest in this algorithm more recently: the implementation of dynam-

ical retards [65], a Cauchy Barzilai-Borwein method [77], analysis of convergence properties

[32] and the introduction of a cyclic Barzilai-Borwein variant [31]. (See also the review by

Fletcher [43].)
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3.3.2 THE STEP LENGTH FORMULAE

The Barzilai-Borwein algorithm is designed to solve a general unconstrained optimization

problem. Let f(x) be the objective function and denote the gradient vector by gk = ∇f(xk),
and the Hessian matrix by Hk = H(xk) = ∇2f(xk). Define yk and sk as follows:

yk = gk − gk−1 (the change in gradient) (3.13)

sk = xk − xk−1 (the change in position). (3.14)

At the kth iteration we have the approximation

yk ≈ Hksk, (3.15)

and if f(x) is a quadratic function, then the Hessian is constant and (3.15) holds with equality.

To find the first Barzilai-Borwein step length we approximate the Hessian by a multiple of

the identity matrix (Hk ≈ α−1
k I, where αk > 0), and solve

αBB1

k = argmin
α
‖yk −

1

α
sk‖22 =

sTk sk

sTk yk
. (3.16)

Similarly the second Barzilai-Borwein step length is found using αkI to approximate H−1
k

and solving

αBB2

k = argmin
α
‖αyk − sk‖2 =

sTk yk

yTk yk
. (3.17)

Formulae (3.16) and (3.17) are the two step lengths used in the Barzilai-Borwein algorithm

and the step lengths used in the algorithm we propose. Note that αk > 0 if and only if

sTk yk > 0. The case sTk yk < 0 cannot occur in the quadratic case when the constant Hessian

is positive semi-definite, but sTk yk = 0 is possible in this case so we need extra safeguards

that are described later.

Because we are using the given step lengths it is possible that f(xk+1) > f(xk)! That is,

the function value may increase with either choice of step length. To force a decrease in the

objective function at each iteration essentially reduces the Barzilai-Borwein method to the

steepest-descent method.

A SPECIAL CASE

We now consider the following constrained optimization problem, where the objective is a

quadratic function subject to non-negativity bounds on the variables and the constant Hessian

is positive semi-definite. The problem is a re-scaled version of (3.12):

min
u,v

‖A(u− v)− b‖22 + λ
n
∑

j=1

(uj + vj) , (3.18)

subject to uj, vj ≥ 0.
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Formulation (3.18) is differentiable and the associated gradient is

g =

[

2AT (A(u − v)− b) + λ1

−2AT (A(u − v)− b) + λ1

]

, (3.19)

(where 1 is a vector of ones) and the Hessian is

H = 2

[

ATA −ATA

−ATA ATA

]

. (3.20)

For the function (3.18) we have derived the following result for the step length formula (3.17).

Theorem 3.3.1. For the function (3.18), if A ∈ R
m×n (m < n) has orthonormal rows, and

for yk 6= 0, then the Barzilai-Borwein step length (3.17) satisfies

αBB2

k =
1

4
.

Proof. Let xk = uk − vk, ũ = uk − uk−1 and let ṽ = vk − vk−1. Then from (3.19),

yk = g(xk)− g(xk−1) =

[

2ATA(ũ− ṽ)
−2ATA(ũ− ṽ)

]

,

so

yTk yk = 8(ũ− ṽ)TATAATA(ũ− ṽ) ,
= 8(ũ− ṽ)TATA(ũ− ṽ) ,

as AAT = I. The objective function in (3.18) is quadratic so yk = Hsk where H is the

Hessian matrix (3.20). Therefore sTk yk = sTkHsk, so

sTkHsk = 2
[

ũT ṽT
]

[

ATA −ATA

−ATA ATA

][

ũ

ṽ

]

= 2(ũ− ṽ)TATA(ũ− ṽ).

Thus

αBB2

k =
sTk yk

yTk yk
=

2(ũ− ṽ)TATA(ũ− ṽ)
8(ũ− ṽ)TATA(ũ− ṽ) =

1

4
.

Remarks:

1. If the function (3.12) is used instead of the function (3.18), then αBB2

k = 1
2 .

2. The Barzilai-Borwein algorithm is a variant of steepest descent. The literature on the

BB algorithm recommends that a strategy that alternates between the two step length

formulae works best in practice; however, steepest descent is infamous for performing

poorly when a constant step length is used. Theorem 3.3.1 suggests that the BB step

length formula (3.17) should not be used when the sensing matrix is known to have

orthonormal rows. This explains why in [40], no improvement is reported when the

step lengths alternate between (3.16) and (3.17) and they instead use only (3.16) even

though the literature would discourage this.
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3.3.3 UPPER BOUNDS ON THE SOLUTION VECTOR

At the unique minimizer x∗ to the BPDN problem (3.9) we have

f(x∗) ≤ f(x) = ‖Ax− b‖22 + λ‖x‖1
for any x. Setting x = 0 gives,

λ‖x∗‖1 ≤ ‖Ax∗ − b‖22 + λ‖x∗‖1 ≤ bT b .

This implies that

‖x∗‖1 ≤
bT b

λ
,

and thus

|x∗j | ≤
bT b

λ
for j = 1, . . . , n. (3.21)

Expression (3.21) is an a priori upper bound on the components of x∗ and hence an a pri-

ori upper bound on the components of both u and v. It is possible to improve this bound

dynamically but numerical trials suggest this is not worthwhile and we do not expect this

bound to be active at the solution.

There are other ways of deriving upper bounds on the elements of x∗. For example, let x̂

minimize ‖Ax− b‖22. If A has full rank, min
x
‖Ax− b‖22 = 0 and x̂ = AT (AAT )−1b, so

λ‖x∗‖1 ≤ ‖Ax̂− b‖22 + λ‖x̂‖1 = λ‖AT (AAT )−1b‖1.
This means that

‖x∗‖1 ≤ ‖AT (AAT )−1b‖1
and

|x∗j | ≤ ‖AT (AAT )−1b‖1 for j = 1, . . . , n.

In practice we would not compute (AAT )−1, but if A has orthonormal rows then AAT = I

and in this case,

‖x∗‖1 ≤ ‖AT b‖1.
Recall that the value ‖AT b‖∞ gives an appropriate value for the regularization parameter λ

(3.10). From the property that [5, p. 366],

‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞ ,

we have

‖x∗‖1 ≤ n‖AT b‖∞ ,

so

|x∗j | ≤ n‖AT b‖∞ . (3.22)

As ‖AT b‖∞ has already been calculated, this second upper bound on the elements x∗j is also

very cheap to compute if A has orthonormal rows. This upper bound can also be changed

dynamically if desired.
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3.3.4 A BOX CONSTRAINED QUADRATIC PROGRAMME

Now that we have established upper bounds on the solution vector, problem (3.18) can be

reformulated as a box-constrained quadratic programme

min
u,v

‖A(u − v)− b‖22 + λ

n
∑

j=1

uj + λ

n
∑

j=1

vj (3.23)

subject to 0 ≤ uj, vj ≤ ub,

where ub is an upper bound defined by either (3.21) or (3.22). We prefer this new problem

formulation because it is a convex, differentiable, quadratic programming problem for which

an efficient algorithm can be created. The gradient and Hessian are as for problem (3.18),

which we re-state here for convenience. The gradient is

g =

[

2AT (A(u− v)− b) + λ1

−2AT (A(u− v)− b) + λ1

]

(where 1 is a vector of ones) and the associated Hessian is

H = 2

[

ATA −ATA

−ATA ATA

]

.

3.3.5 UPPER BOUND ON THE STEP LENGTH

The step length formula (3.16) is related to the eigenvalues of the Hessian H through the

following expression:

αBB1

k =
sTk sk

sTk yk
=

sTk sk

sTkHsk
, (3.24)

where yk and sk are defined in (3.13) and (3.14) respectively. The right-hand term in (3.24) is

the reciprocal of the Rayleigh quotient so the step length (3.16) is proportional to the recip-

rocal of eigenvalues of the Hessian. Moreover, the eigenvalues and eigenvectors of the Hessian

correspond to the magnitude and direction of curvature of the objective function respectively.

In the strictly convex, quadratic, unconstrained case, the step lengths are automatically

bounded by the reciprocal of the smallest eigenvalue of the Hessian [75] because the smallest

eigenvalue is strictly greater than zero. In our case the objective function (3.23) has a positive

semi -definite Hessian (3.20) so the smallest eigenvalue is zero. This means that the reciprocal

is infinite and the corresponding step length is unbounded. In [76] the use of an upper bound

on the step length, αmax = 1030, is discussed as a safeguard, which is implemented if the

algorithm finds a direction of zero (or near zero) curvature at any iterate. The step length

αmax = 1030 is still extremely large and could destroy numerical precision if encountered. For

this reason it seems prudent to include a more reasonable upper bound on the step length.
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We can determine the nature of the eigenvalues of the objective function (3.23) by writing

the Hessian as the Kronecker product

H = ATA⊗
[

2 −2
−2 2

]

.

From the properties of the eigenvalues of a Kronecker product (see for example [5]), H has

2n−m zero eigenvalues corresponding to 2n−m directions of zero curvature. The remaining

m positive eigenvalues of H are given by the positive eigenvalues of 4(ATA). In the simple

case when A has orthonormal rows, the positive eigenvalues of ATA are all 1 so the positive

eigenvalues of the Hessian are all 4.

The dimension of the subspace of directions of zero curvature is large; thus there is an in-

creased probability of encountering search directions for which the change in gradient would

be tiny, resulting in very large values of αk for the next iteration. For this reason it is impor-

tant to have a reasonable estimate for αmax so that numerical precision is retained throughout

the algorithm.

Based on arguments from Section 3.3.3, we have an upper bound on each element of the

vector x. Furthermore, we have both upper and lower (simple) bounds on the vectors u and

v. Because u and v live inside a box (feasible region) we can also place a more realistic bound

on the maximum allowable step length rather than resorting to αmax = 1030. This step length

is the distance from the origin to the furthermost corner of the box, (the point bT b
λ 1). Let p

be the search direction. The maximum step length is

αmax = ub ×
√
n

‖p‖ =
bT b

λ

√
n

‖p‖ . (3.25)

Alternatively, the upper bound (3.22) may be used in place of (3.21) to determine αmax if

the rows of A are known to be orthonormal. Using (3.25) as the maximum step length en-

sures that numerical precision is likely to be maintained if a direction of zero (or near zero)

curvature is encountered.

Remarks:

1. Finding a direction of zero curvature is not an indication that xk is near the solution.

Most often the direction will simply be tangential to the contours.

2. If a direction of zero curvature is located, taking a large step in this direction is not a

good idea. The problem is that with the BB formula, the step length will be infinite,

which destroys numerical precision. A more realistic upper bound on the step length is

essential.

3.3.6 THE PROJECTION OPERATOR

Another key feature of the algorithm we propose is the projection operator. Because we have

a constrained optimization problem (3.23), once a search direction and step length have been
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determined the projection operator ensures that the new candidate point is feasible. If we

define the feasible set of (3.23) to be

F = {x : lb ≤ xj ≤ ub} ,

where lb and ub are lower and upper bounds respectively, then the projection operator onto

F is

PF (x) = mid(lb, x,ub). (3.26)

Here mid(lb,x,ub) is the vector whose jth component is the median of the set {lb, xj ,ub}.
This operator ensures that any x is kept within the feasible region.

Figure 3.2 provides a 2-dimensional example to illustrate how the projection operator works,

assuming lb= 0.

b

b

b

b

−gkpk

xk

x̂k

xk+1

xc

x

y

F

(0, 0) ub

ub

Figure 3.2: A diagram depicting the feasible region (shaded) and how the projection operator

determines the new point, xk+1.

Figure 3.2 can be further described as follows. At the kth iterate, evaluate x̂k = xk − αgk,

where αk is found using (3.16) or (3.17). Suppose the point x̂k lies outside the feasible region

as shown in Figure 3.2. The point xk+1 is found by projecting x̂k onto the feasible region

using (3.26). This essentially means we have used the search direction pk rather than the

negative gradient.

There are also algorithms that use the so-called “chopped” gradient. These proceed by taking

a step in the direction of the negative gradient and if the resulting point is outside the feasible

region, then the gradient is essentially ‘chopped off’ when it hits a bound. This is also shown

in Figure 3.2. Starting at the point xk, we again evaluate x̂k = xk − αgk. Rather than

accepting x̂k as the new candidate point, we move back to the point along the negative

gradient that lies on the boundary of the feasible region. In Figure 3.2 this is the point xc,

which becomes the new candidate point xk+1.



62

3.3.7 AN ADAPTIVE NON-MONOTONE LINE SEARCH

Many optimization algorithms employ a backtracking line-search loop to enforce reduction of

the objective function value at each iteration. A key property of the Barzilai-Borwein algo-

rithm is that a reduction in function value at every iteration is not required, so a traditional

backtracking line-search loop is not appropriate. However, the algorithm is not guaranteed

to converge in the box-constrained case without a line search, and [30] provides an exam-

ple demonstrating that in the constrained case, the algorithm can in fact cycle, even for a

quadratic with a positive definite Hessian.

Dai and Fletcher [30] have devised a so-called “adaptive non-monotone line search” loop that

does not rely on the standard “sufficient descent property” [42], yet it ensures that global

convergence can be proven. This non-traditional loop is employed in the algorithm we pro-

pose and does not appear to have been implemented in previous algorithms for Compressed

Sensing. The following description of the so-called “adaptive non-monotone line-search” em-

bedded in our algorithm is taken directly from [30]. For a function f(x), set a reference value

fr, a candidate value fc and the lowest objective value encountered so far fbest. (These are

usually all initialized as fr = fc = fbest = ∞.) The update strategy is described by the

following pseudo-code.

Procedure: Reference Value Updating Scheme

1. Initialize: fbest = fr = fc =∞, l = 0, L = 4

2. if f(xk) < fbest do

3. fbest = f(xk), fc = f(xk), l = 0

4. else

5. fc = max(fc, f(xk)), l = l + 1

6. if l = L do

7. fr = fc, fc = f(xk), l = 0

8. end

9. end

This code resets the reference function value fr to the candidate function value fc if fbest has

not been improved upon after L iterations. This is enough to enforce convergence while still

allowing non-monotone behaviour.

The choice of parameter L is important. It represents the number of iterations allowed before

a function decrease is enforced. For example, L = 1 implies that the function value must be
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decreased at each iteration (a monotonic decrease in the objective function). As mentioned

in Section 3.3.1, forcing a decrease in the objective function at each iteration can impair the

practical performance of the Barzilai-Borwein algorithm. It is suggested in [30] that suitable

choices are L = 4 or L = 10. Initial testing showed little difference between the two choices

so in the numerical results presented in Section 3.4, L = 4 is used.

THE INTRODUCTION OF A SHIFT

Suppose a shift ∆ is introduced. Then u and v become u ← u + ∆ and v ← v + ∆, and x

remains unchanged as

x = (u+∆)− (v +∆) = u− v.

The gradient (3.19) is also independent of this shift although the objective function value

(3.23) increases because

λ

n
∑

i=1

((ui +∆) + (vi +∆)) = λ

n
∑

i=1

((ui + vi) + 2λ∆ .

Therefore in the algorithm presented in Section 3.3.9, the convergence test evaluates (3.9),

rather than (3.23), because (3.9) gives a lower value of the objective function.

However, we must be careful that the values fc, fbest and fr are updated by using the larger

objective value computed using u and v. Otherwise it is possible for the reference value fr
to increase, which affects the convergence of the algorithm.

3.3.8 STOPPING CRITERION

An appropriate stopping criterion for any optimization algorithm is paramount to ensure

that an accurate solution is located. A standard approach is to terminate when the norm

of the projected gradient is sufficiently small, indicating a stationary point has been found.

However Kim et al. [60] discuss the use of the duality gap as a stopping criterion. We discuss

this in more detail here.

In [60] problem (3.9) is re-written as

min
z,x

zT z + λ‖x‖1 , (3.27)

subject to z = Ax− b . (3.28)

The Lagrangian associated with this problem is

L(z, x, ν) = zT z + λ
n
∑

i=1

|xi|+ νT (z −Ax+ b) . (3.29)

The dual function is the infimum of the Lagrangian. To find the infimum of (3.29) we first

differentiate with respect to z:

∇z L(z, x, ν) = 2z + ν ,
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which is zero at z = −1
2ν. Substituting this into (3.29) gives

L
(

−1

2
ν, x, ν

)

=
1

4
νTν + λ

n
∑

i=1

|xi|+ νT
(

−1

2
ν −Ax+ b

)

= −1

4
νT ν + νT b+ λ

n
∑

i=1

|xi| − νTAx

We now consider the terms involving x. Consider the subproblem

inf
xi

(

λ|xi| − xi(AT ν)i
)

(3.30)

If xi is negative then (3.30) is bounded below by zero. However if xi is positive then (3.30)

is unbounded below unless ‖AT ν‖∞ ≤ λ. This means that the Lagrange dual function is

inf
x,z
L(z, x, ν) =

{

−1
4 ν

T ν + νT b, if ‖AT ν‖∞ ≤ λ,
−∞, otherwise.

The Lagrange dual problem of (3.27) is therefore

max
ν

G(ν) = −1
4 νTν + νT b (3.31)

s.t. |(AT ν)i| ≤ λ.

For more on duality see [12, 42, 72]. A dual feasible point ν allows a lower bound on the

optimal value of the primal problem to be calculated. Furthermore, as (3.9) satisfies Slater’s

condition, the optimal value of the primal objective is equal to the optimal objective of the

dual. Thus we define the duality gap to be

η = ‖Ax− b‖22 + λ‖x‖1 −G(ν). (3.32)

When the duality gap is sufficiently small, it indicates a solution has been located and as

such, the duality gap can be used as a stopping criterion. Usually we use the relative change

in the duality gap, which we define to be

η

f(x)
< ǫ (3.33)

where f(x) is given by (3.9) and ǫ is some user defined tolerance.

3.3.9 A BOX-CONSTRAINEDGRADIENTPROJECTIONALGORITHM

Here we propose an algorithm for solving problem (3.23) using the ideas in the previous

sections. We refer to this algorithm as the Box-Constrained Gradient Projection (BCGP)

algorithm. The algorithm has been tailored to problem (3.23) with novel bounds on the ele-

ments of the solution vector and allowable step lengths, as well as a non-monotone line-search

to ensure algorithm convergence.
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Algorithm: Box Constrained Gradient Projection (BCGP)

1. Initialize all parameters: λ = 0.01‖AT b‖∞, lb= 0, ub= bT b/λ, initial point x0 = 0,

αmax =ub
√
n, α0 = 1/4, l = 0, fr = fc = fbest =∞, tolerance ǫ, iteration k = 0.

2. Compute gradient and step length. Let

zk =

[

uk
vk

]

where uk = max(xk, 0), vk = −min(xk, 0).

Compute the gradient gk using (3.19) and the step-length αk using (3.16) for even k

and (3.17) for odd k. From the point zk, take the step

ẑ = zk − αkgk , (3.34)

3. Projection Operator. Project ẑ on the feasible region using the projection operator

(3.26):

zP =

[

uP
vP

]

= PF (ẑ) = mid(lb, ẑ,ub).

4. Perform convergence test. Compute the primal objective value f , using

f = ‖A(uP − vP )− b‖22 + λ‖uP − vP ‖1 .

Calculate the duality gap (3.32) and check whether the relative gap is less than ǫ. If

so, exit the algorithm, otherwise continue with the following steps.

5. Adaptive non-monotone line search. If f < fr go to the next step. Otherwise for

the search direction pk = zP − zk, and perform a backtracking line-search,

z+ = zk + βpk ,

(where β = 1
2 ,

1
4 ,

1
8 , . . . ), until f(z

+) < fr.

6. Update the reference values l, fr, fc and fbest according to the pseudo-code described

in Section 3.3.7. Rename: zk+1 = z+.

7. End of Loop. Update: k ← k + 1, zk ← z+, xk ← uP − vP . Return to step 2.

3.4 NUMERICAL EXPERIMENTS

In this section we present numerical results obtained using the algorithm outlined in Section

3.3.9. These results illustrate the performance of the BCGP algorithm and how it compares

with other recent algorithms, namely GPSR [40], SpaRSA [104] and FPC-BB [55] algorithms.

Each of the algorithms compared in this section was coded in Matlab, and all experiments

were conducted on an Intel Xeon 3.2GHz processor with 4GB of memory, under Linux.
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3.4.1 A SIMPLE SIGNAL RECONSTRUCTION PROBLEM

The first numerical example is a sparse signal recovery problem. A signal x ∈ R
4096 consisting

of 160 randomly placed spikes of amplitude ±1 was generated. A measurement matrix A ∈
R
1024×4096 (representing 1024 observations of the signal x) was constructed with Gaussian

N (0, 1) entries, and then the rows were orthonormalized (as in [17, 60]). The observation

vector b was formed according to (3.1), where w was drawn from a Gaussian distribution

with zero mean and variance σ2 = 10−4. The regularization parameter λ was chosen to be

λ = 0.01‖AT b‖∞.

As discussed in Section 3.3.7, the value L = 4 was used along with a tolerance of ǫ = 10−6

on the relative duality gap. The algorithm was initialized at the origin: x0 = 0. Figure 3.3

shows the signal reconstruction results. The top plot shows the original signal. The middle

plot shows the signal reconstructed using the BCGP algorithm which does an excellent job

of finding the positions of the non-zero components in the signal. The bottom plot shows the

minimum energy solution x = AT b. Figure 3.3 also gives the mean squared error, MSE, for

both signal reconstructions. Here we follow [40] and define

MSE =
1

n
‖x− x̂‖22 ,

where x is the original signal and x̂ is the reconstructed signal. The BCGP algorithm finds

a solution with a low MSE, indicating an accurate reconstruction.
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(a) ORIGINAL SIGNAL 

(b) RECONSTRUCTED SIGNAL  (MSE = 5.3e-05)

(c) LEAST SQUARES SOLUTION  (MSE = 0.652)

Figure 3.3: Sparse signal reconstruction. From top to bottom: the original signal; the recon-

struction from noisy observations; the minimum energy solution x = AT b.
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3.4.2 δ–ρ PHASE PLOTS

Phase plots are a way of demonstrating how accurately the BCGP algorithm is able to recon-

struct signals as the number of observations, and the sparsity level, varies. To create phase

plots for the BCGP algorithm the following problem set-up was used. The length of the

signal was set to n = 400 and a ρ = s/m by δ = m/n grid was created. (Here n is the signal

length, m is the number of observations and s is the number of spikes in the signal.) For each

of the (ρ, δ) coordinates on the grid, the BCGP algorithm solved 40 signal reconstruction

problems. We follow the approach in [55] in choosing error thresholds: in the noiseless case

each element in the signal must be reconstructed to 10−4 accuracy, while in the noisy case

the condition ‖x − xs‖2/‖xs‖2 < 10−2 is used. The colour on the grid represents the accu-

racy of the BCGP signal reconstruction, where darker shades represent poorer reconstruction.

The phase plots are shown in Figure 3.4. The first row ((a) and (b)) represents experiments

on randomly generated matrices with Gaussian entries, while the second row ((c) and (d))

represents experiments on partial Discrete Cosine transform (partial DCT) matrices. In the

first column ((a) and (c)) the results in the noiseless case are given, while in the second

column ((b) and (d)) the reconstruction from noisy measurements is given.
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Figure 3.4: Phase plot of the BCGP algorithm being tested on (a) A Gaussian matrix with no

noise; (b) A Gaussian matrix with noise σ = 10−3; (c) A Partial DCT matrix in the noiseless case;

(d) A Partial DCT matrix with noise σ = 10−3.
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The white regions in Figure 3.4 show parameter ranges where 100% of the reconstruction at-

tempts were successful (x satisfied the error bounds). Black regions show that reconstruction

was not possible. Middle shades show varying success percentages.

Figure 3.4 shows that the BCGP algorithm accurately reconstructs signals over a wide range

of parameter space, demonstrating the robustness of the algorithm.

3.4.3 THE REGULARIZATION PARAMETER

Here we present an example to demonstrate the sensitivity of the BCGP algorithm as the

regularization parameter λ varies.

An observation matrix was chosen to be a sub-matrix of a DCT matrix. The matrix had

dimensions 210 × 212. A sparse signal with 27 spikes of height ±1 was generated and the

observation vector b had noise added. A range of values of the regularization parameter λ

were tested according to λ = γ‖AT b‖∞ with γ = 0.1, 0.05, 0.01, 0.005, 0.001. The algorithms

tested in this experiment all use different stopping criteria. To ensure the experiment was

as fair as possible, the parameter values for each algorithm were chosen in such as way so

that when the algorithm terminated, the recovered signal x̂ gave the MSE≈ 10−5. Table

3.1 compares the runtimes of the Matlab implementation of our method and the existing

methods using the different γ values.

Table 3.1: Average CPU Times (in seconds) over 10 runs on the Partial DCT Matrix Experiment

with m = 210 and n = 212, using varying values of the regularization parameter λ.

γ = 0.1 γ = 0.05 γ = 0.01 γ = 0.005 γ = 0.001

BCGP 0.115 0.120 0.965 2.545 7.820

SpaRSA 0.120 0.140 0.867 2.606 8.980

GPSR 0.139 0.150 1.147 1.591 21.350

FPC-BB 0.353 0.290 1.488 3.622 5.750

l1-ls 2.090 2.170 8.391 15.694 28.290

The BCGP algorithm performs well using a range of γ values and produces an accurate signal

reconstruction even for small values. Clearly all algorithms perform more quickly with a large

γ (≈ 0.1) value.

3.4.4 SCALABILITY ASSESSMENT

The next experiment is a scalability assessment that considers the computational effort re-

quired as problem size increases. Several random sparse matrices are considered whose entries

are normally distributed. The dimensions of these matrices are m× n, where n ranges from

104 to 5 × 106 and m = 0.2n. The sparsity of A is controlled to have approximately 30n

nonzero elements. For each data set, x is also generated to be sparse with 0.01m randomly
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placed components of height ±1. The observed measurements y are formed using (3.1), and

are corrupted with Gaussian noise of variance σ2 = 10−4. For each data set the regulariza-

tion parameter used is λ = 0.1‖AT b‖∞. Note that from (3.9), λ = 2τ and for the FPC-BB

algorithm (http://www.caam.rice.edu/~optimization/L1/fpc/#soft), µ = 1/τ was used.

The algorithms BCGP, GPSR, SpaRSA, and FPC-BB were tested using this experiment

set-up. For each size n, twenty matrices were generated and the average CPU time for each

algorithm was found. The signal length vs average CPU time for each algorithm is shown

in Figure 3.5. We see that the BCGP algorithm is performing very competitively with the

other algorithms.
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Figure 3.5: A plot of the signal length versus CPU time (measured in seconds) for the BCGP,

GPSR, and SpaRSA algorithms. The BCGP algorithm is the fastest algorithm for this choice of

regularization parameter λ.

The data from the scalability assessment was also used to estimate the computational com-

plexity of each algorithm. That is, assume the computational cost is O(nα) and estimate α

based upon CPU times as n increases. Table 3.2 gives the empirical estimates of the exponent

α, and the average CPU time for each method when n = 5× 106.

Table 3.2: Empirical estimate of the exponent of each algorithm (over 20 runs) on the sparse

scalability assessment. The average CPU time is also given when n = 5× 106.

Algorithm α Value CPU Time

BCGP 1.300 257.74

GPSR 1.286 437.62

SpaRSA 1.257 711.68

FPC-BB 1.226 1442.30
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Table 3.2 shows that there is very little difference between the empirical computational com-

plexity of each algorithm, and that the BCGP algorithm is significantly faster than its com-

petitors for the given λ and n. An indirect comparison with other codes can be made by

referring to the numerical results sections in [104].

3.5 CONCLUSION

The problem of finding sparse solutions to large underdetermined linear systems in the pres-

ence of noise is an important one in signal and image processing. In this chapter we have

introduced a new algorithm called the Box-Constrained Gradient Projection (BCGP) algo-

rithm, which aims to solve the convex optimization problems arising in compressed sensing.

The algorithm uses the Barzilai-Borwein step lengths and employs novel upper bounds on the

solution vector. Because of this upper bound, the signal recovery problem can be formulated

as a box-constrained quadratic programme.

We derived a result that shows, for the compressed sensing problem (3.18), the step length

(3.17) is fixed if the observation matrix has orthonormal rows. This explains why a strategy

that uses the two Barzilai-Borwein step lengths in an alternating manner may not be appro-

priate in this special case.

The algorithm provides safeguards in the case where the Hessian is positive semi-definite.

These safeguards include the incorporation of an adaptive non-monotone line search, upper

bounds on the maximum step length, and uses a stopping criterion which provides a known

bound on the error in the primal objective value. The algorithm proposed has guaranteed

convergence properties because of the inclusion of the adaptive non-monotone line search.

The numerical results in Table 3.1 show that our algorithm is competitive with other existing

algorithms and noticeably faster when the problem size is small. These results are encour-

aging because the underlying algorithm does not include any continuation schemes, which

could potentially improve performance further.

As the scalability experiment shows, as the magnitude of the problem is increased our method

retains accuracy and efficiency, even for small values of the regularization parameter.

3.5.1 FUTURE RESEARCH

The area of compressed sensing is still growing at a rapid pace, so there is plenty of room for

further research in this area. Some possible ideas for future research include the introduction

of a continuation scheme (which varies the parameter λ through a range and then restarts)

to speed up the algorithm even further. Another idea is to investigate how the algorithm

may be adapted to account for complex signal reconstruction. This would mean that we

could use partial Fourier matrices as the measurement matrices, which is advantageous be-

cause matrix-vector products can be computed very quickly in this case. Algorithms that can

handle complex data can also be used in practical situations such as MRI, where the data is
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known to be complex.

Another possibility is to investigate the link between the observation subset selection problem

and compressed sensing. In particular, it would be interesting to see whether an observation

subset selection approach resulted in matrices which satisfy the RIP condition of compressed

sensing.
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CHAPTER 4

RECONSTRUCTION OF STRUCTURED

SIGNALS

Compressed sensing aims to find sparse solutions to underdetermined systems of equations.

One of the reasons for its popularity is that many real-world signals and images, for exam-

ple, Magnetic Resonance images, can be sparsely represented in some basis. This leads us

to consider other signals that may not be sparse in a particular basis but whose important

features can be represented in a concise way. In particular, piecewise constant signals are

not sparse, but if there are sufficiently few discontinuities in the signal, only a small amount

of information, namely the location and heights of the discontinuities, will allow the signal

to be reconstructed accurately. This idea can be extended to images that have piecewise

homogeneous regions; for example, in computed tomography [27, 61, 89, 109].

As for sparse signals, there has been a great deal of interest in reconstructing piecewise

constant signals that have been under-sampled [9, 57, 93]. The reconstruction problem is

again modeled by the system of equations

b = Ax+ w, (4.1)

where A ∈ R
m×n is a measurement matrix (m≪ n), b ∈ R

m is a vector of observations and

w ∈ R
m is additive noise. The aim is to determine the solution x ∈ R

n.

To be able to reconstruct general signals accurately, sampling at the Nyquist rate is es-

sential. Compressed sensing only allows us to reconstruct signals from under-sampled data

because the signal to be reconstructed has a particular known structure that is being ex-

ploited. Usually the structure is sparsity, but, as mentioned, piecewise constant signals may

also be reconstructed using the ideas of compressed sensing. The aim of this chapter is to

investigate how one might reconstruct signals with a particular structure, from a limited set

of observations.

Piecewise constant signals can be described using only a small amount of information. When

reconstructing these types of signals from underdetermined systems of equations, rather than

using an ℓ1 minimization or regularization approach, we instead use a total variation ap-

proach. The optimization problem is formulated as

min
x
‖x‖TV subject to Ax = b , (4.2)

73
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where the ‘TV-norm’ is defined (for a 1-dimensional signal) to be

‖x‖TV =

n−1
∑

i=1

|xi+1 − xi| . (4.3)

Note that this is not a true norm, although we follow the current literature and refer to it

as the TV-norm. The TV-norm searches for the solution that varies the least, and its use

in signal processing goes back some time (see for example [83]). Clearly this is particularly

useful for piecewise constant signals. As for compressed sensing, the optimization problem

(4.2) may similarly be posed as a regularized least squares problem

min
x
‖Ax− b‖22 + λ‖x‖TV , (4.4)

where λ > 0 is a regularization parameter.

A number of algorithms aim to solve problems (4.2) and (4.4) to reconstruct a piecewise

constant signal from a small number of observations. These methods include an interior

point method for nonconvex minimization problems when the image is known to be piece-

wise constant [71], and an Edge Guided Compressive Sensing (EdgeCS) algorithm that solves

a weighted TV-norm minimization problem [54, 99]. There is also an algorithm that uses

Toeplitz and Circulant matrices with an augmented Lagrangian and alternating direction

algorithm to reconstruct piecewise constant signals and images [108]. This algorithm can

detect dominant ‘directions’ in images. Another example is [2], which uses a total varia-

tion reconstruction and compares three algorithms that use difference approximations of the

nonlinearity.

4.1 STRUCTURED SIGNALS

The aim of this chapter is to reconstruct signals or images that are a combination of a signal

with certain known properties, and a sparse part. The added complication is that only m

(≪ n) observations of the signal are taken so the reconstruction falls under a compressed

sensing framework. The simplest example is when the signal of interest is the combination

of a signal of constant height, plus a sparse component. This can be written as

x = xs + α1, (4.5)

where α is the constant signal offset, 1 is a vector of ones and xs is a sparse signal. The signal

x is not sparse, in the sense that none of its components is likely to be zero. However after

an appropriate vertical shift, this signal becomes sparse. The added complication is that the

shift is not known.

Expression (4.5) can be written more generally as

x = xs + v, (4.6)

where again xs is sparse, but all we know about v is that it lies in some subspace M . (In

(4.5), M is the one-dimensional subspace spanned by the vector 1.)
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These types of problems, where the signal or image can be separated into a sparse part plus

a dense part, arise commonly in medical imaging. For example, when an image is split into

two parts for diagnosis, the dense part represents the ‘healthy’ part of the image while the

sparse part represents any pathology [16]. In this situation both parts of the reconstructed

signal are equally important. In other applications the dense part, or the sparse part of the

signal, may be more important. This situation arises in astronomical imaging, where the

dense signal may be of importance and the sparse part of the signal represents unwanted

bursts of radiation [11, 90].

The problem of signal reconstruction when the subspace M is unknown is often referred to

as ‘blind’ or ‘unsupervised’ reconstruction and is also the topic of much current research.

Examples include the reconstruction of multi-band signals that do not require the band

locations to be known in advance [68], the reconstruction of a blurred image when the blurring

function is unknown [22], and unsupervised segmentation for linear inverse problems [71].

4.1.1 CHAPTER OUTLINE

In this chapter we discuss three signal reconstruction problems of increasing difficulty. Section

4.2 considers the simplest problem of reconstructing a signal of the form (4.5) and determin-

ing the unknown offset α.

The method used in Section 4.2 is generalised in Section 4.3 to the case where the unknown

signal x is of the form (4.6), and the subspace in which v lies is known.

In Section 4.4 we consider the problem of signal reconstruction when the subspace M is un-

known but can be specified in terms of a number of parameters. This ‘blind’ reconstruction

case seems considerably more difficult and we restrict ourselves to signals that are piecewise

constant, but with unknown endpoints, which have to be determined. (In essence, these are

the parameters which describe M .)

Finally, Section 4.6 presents numerical examples that show reconstruction is possible to a

high level of accuracy in each of the above cases.

4.2 THE VERTICAL OFFSET PROBLEM

We start with the simplest problem so far described: to reconstruct a signal that is sparse rel-

ative to some unknown offset α. We are looking for a solution to (4.1) of the form x = xs+α1.

Following a standard compressed sensing procedure, the signal reconstruction problem can

be reformulated as an unconstrained, non-differentiable, convex optimization problem

min
xs,α

‖Axs + αA1− b‖22 + λ‖xs‖1. (4.7)

This problem has n + 1 unknowns, the elements of xs ∈ R
n and the value of α ∈ R, all of

which we would like to recover accurately.
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Remark: For this problem we assume that A1 6= 0, where 0 is the zero vector. (That is,

the row sums of A are not all 0.) This is an essential assumption because otherwise there is

no unique “best” solution to (4.7). To see this, suppose A1 = 0. Then

Ax = Axs + αA1 = b ,

so Axs = b, which is satisfied for any α. Thus α can only be uniquely determined if A1 6= 0.

Problem (4.7) can be split into

min
xs

{min
α

‖Axs + αA1− b‖22}+ λ‖xs‖1. (4.8)

This means that to solve problems of the form (4.7) we instead solve each of the two subprob-

lems described by (4.8) in turn. The first step is to eliminate α. The problem then becomes

one of recovering the sparse vector xs, which can be achieved using standard compressed

sensing techniques. Once xs has been determined, the second step is to recover α. For this

class of problems, the second step is very simple.

Consider the subproblem

min
α

‖Axs + αA1− b‖22 . (4.9)

Let c = A1 and d = b−Axs. Then (4.9) becomes

min
α

‖αc− d‖22 ,

where

‖αc− d‖22 = (αc − d)T (αc − d) = α2 cT c− 2α cTd+ dT d .

Differentiating with respect to α gives

∇α(α
2 cT c− 2α cT d+ dT d) = 2αcT c− 2cT d ,

which is zero when

α =
cTd

cT c
. (4.10)

Now the term αA1 can be written as

αA1 =

(

ccT

cT c

)

(b−Axs) . (4.11)

Substituting (4.11) into problem (4.7) gives

min
xs

‖P (Axs − b)‖22 + λ‖xs‖1,

where

P = I − ccT

cT c
.
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Notice that P = P T and P 2 = P and {c} is a linearly independent (and orthogonal) set, so P

is a projection matrix. The vector c can be thought of as an orthogonal basis for a subspace

of Rm. Let M = span{c}. Then M has an orthogonal complement M⊥ and projM⊥(c) = 0,

where 0 is the zero vector.

Taking this approach, the term αA1 has effectively been removed from the original problem

(4.7). The next step is to reconstruct the sparse signal xs. This can be achieved using a

compressed sensing set-up:

min
xs

‖PAxs − Pb‖22 + λ‖xs‖1 . (4.12)

Chapter 3 described an algorithm to accurately and efficiently solve problems of this form,

namely the BCGP algorithm [15], that was used in the numerical examples in Section 4.6.

After xs is determined, it is straightforward to recover α using (4.10). The signal x, of the

form (4.5), can then be reconstructed.

Remark: Solving the optimization problem (4.12) does not require significantly more compu-

tational effort compared with the standard compressed sensing problem. The matrix-vector

product Pb is computed once before the algorithm is initialized. The multiplication PAxs is

computed as two matrix-vector products — this means there is only one extra cheap matrix-

vector product per iteration in the BCGP algorithm.
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4.2.1 VERTICAL OFFSET EXAMPLES

The following example demonstrates the signal reconstruction process when the signal is of

the form x = xs + α1. This is a simplified example of the practical problem of spectrum

reconstruction arising in x-ray imaging [41]. In this application the primary photon energy

spectrum of the x-ray source should be reconstructed using information about the energy

deposition on the detector. The primary spectrum is somewhat similar to a bell curve with

distinctive spikes.

For this example, a partial DCT matrix A ∈ R1024×4096 and an observation vector b ∈ R1024

(measured in the presence of normally distributed random noise, σ = 10−3), were gener-

ated. The signal x = xs + α1 to be reconstructed was a combination of a sparse vector

xs ∈ R4096 with 128 spikes of height ±1, and a constant vector of (randomly generated)

height α = 0.70733. The results are shown in Figure 4.1.
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ORIGINAL SIGNAL x = x
s
+α1 (TRUE α=0.70733) 
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−1

0

1
SPARSE RECONSTRUCTION    (α=0.70781, MSE = 2.2933e−006) x

s

Figure 4.1: The top plot shows the original signal with offset α = 0.70733. The bottom plot

shows the sparse reconstruction xs and the offset estimate α = 0.70781. The algorithm accurately

locates the positions of the spikes in the signal xs, and the reconstruction x̂ = xs + α1 (although

not displayed here) leads to a small mean squared error (MSE).

Figure 4.1 shows the original signal x and the sparse part of the signal xs, which has been

reconstructed accurately. It also gives the offset α = 0.70781 (estimated using (4.10)), which

is close to the true value. Recall that the mean squared error, MSE, is a measure of the

accuracy of the reconstructed signal and is defined as MSE = 1
n‖x − x̂‖22 where x is the

original signal and x̂ is the reconstructed signal. The reconstructed signal x̂ = xs + α1

(although x̂ is not displayed in the figure) gives a value MSE= 2.3× 10−6.
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The next example considers signal reconstruction when the subspace M is spanned by a

single known vector v, but instead of a constant vector, the entries of v form an arithmetic

progression. In this case, the signal is modeled using x = xs + v, where the vector v has

entries of the form v1 = 0 and vj = vj−1 + 0.001 (j = 2, . . . , n) and xs is sparse. The matrix

A ∈ R
200×1000 is a partial DCT matrix and b ∈ R

200 is an observation vector measured in

the presence of normally distributed noise σ = 10−3. The sparse vector xs has 20 randomly

placed spikes of height ±1. The results are shown in Figure 4.2.
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s
 , (MSE = 2.7162e-006) 
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Figure 4.2: The first plot shows the original signal x = xs + v. The second plot is the sparse

reconstruction xs. The location and height of each spike in xs has been found accurately. The

reconstruction x̂ = xs + v (although not displayed here) has a small MSE, which verifies that the

reconstruction is accurate.

Figure 4.2 shows the original signal x and the reconstructed sparse part xs. In this experiment

it was assumed that v was known, so the reconstruction x̂ = xs + v has not been displayed,

although the reconstruction x̂ gave the MSE= 2.7× 10−6. The MSE is low, indicating a high

quality reconstruction. The high quality reconstruction is visible in the figure—the location

and height of each spike in xs has been reconstructed accurately.

4.3 A KNOWN SUBSPACE

This technique readily extends to the case where the component α1 of (4.7) is replaced by

a vector v in some known subspace that is spanned by more than one vector. Specifically,

if v is a fixed vector, v 6∈ null(A), and c = Av 6= 0, reconstruction of a signal of the form

x = xs + v is possible from a limited number of data measurements.
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In this section we specifically consider the reconstruction of signals that are a combination

of a piecewise constant part and a sparse signal. The added complication is that only m

(≪ n) observations of the signal are made. Mathematically we wish to determine a solution

to (4.1) of the form x = xs + v, where v is piecewise constant and xs is sparse. Because v is

a piecewise constant vector it may be decomposed as

v =

p
∑

l=1

αlul (p≪ n), (4.13)

where the vectors u1, . . . , up (made up of zeros and ones) represent the various flat areas of

the signal, while the parameters α1, . . . , αp represent the height of each flat region. We write

(4.13) in matrix form as v = Uα, where U ∈ R
n×p is the matrix whose lth column is ul and

α ∈ R
p is the vector whose lth element is αl.

To make this more concrete, consider the following example. Let v ∈ R
6 be

v =
[

2 2 2 4 4 4
]T
.

Then v has one discontinuity and two flat areas, so p = 2 and

u1 =
[

1 1 1 0 0 0
]T
, u2 =

[

0 0 0 1 1 1
]T
.

Here α1 = 2 and α2 = 4 so that v = α1u1 + α2u2.

The aim is to solve the system Ax = Axs + Av = Axs + AUα = b. Following a standard

compressed sensing procedure, the reconstruction problem can be reformulated as

min
xs,v
‖Axs +Av − b‖22 + λ‖xs‖1 , (4.14)

which is an unconstrained convex optimisation problem in 2n unknowns. We split problem

(4.14) into two subproblems in the following way:

min
xs

{min
v

‖Axs +Av − b‖22}+ λ‖xs‖1. (4.15)

To solve problems of the form (4.14) we can instead solve each of the two subproblems

described by (4.15) in turn. The first step is to try to eliminate v from (4.15) and this is

discussed further in the next subsection. Once v has been removed from the problem, the

sparse vector xs can be found and then v is straightforward to recover.

4.3.1 THE PROJECTION STEP

The aim of this section is to determine a way of removing v from problem (4.15) so that we

are solving a simpler optimization problem involving only xs.

If the vectors u1, . . . , up are known, then so too is the subspace M = span{Au1, . . . , Aup}.
(This does not mean that we know the vector v because we do not know α1, . . . , αp and these
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are not simple to determine.)

Following the procedure in Section 4.2, form the projection matrix P to project onto the

subspace M⊥ (the orthogonal complement of M). Let

cl = Aul for l = 1, . . . , p.

Then the projection matrix is of the form

P = I −
p
∑

l=1

clc
T
l

cTl cl
.

The vectors c1, . . . , cp must be orthogonal for P to be an appropriate projection matrix.

Therefore, define C to be the matrix whose columns are the vectors Au1, Au2, . . . , Aup, and

write C = Y R for its economy QR decomposition [50, p. 223]. (Note that the vectors

Au1, . . . , Aup must be linearly independent for R to be nonsingular.) The columns of the

matrix Y (denoted by y1, . . . , yp) represent an orthonormal basis for the subspace M . We

define the matrix

P = I −
p
∑

l=1

yly
T
l = I − Y Y T , (4.16)

which is the projection onto M⊥. Premultiplying expression (4.1) by P gives

Pb = PAxs + αPAv + Pw

= PAxs + w .

Using the projection matrix (4.16) we have essentially ‘removed’ αAv from problem (4.14)

so we have the familiar convex optimization formulation

min
xs

‖PAxs − Pb‖22 + λ‖xs‖1. (4.17)

Once problem (4.17) has been solved for xs, the vector v can be recovered as follows. Let α

denote the vector whose components are α1, . . . , αp. Then we have

d = b−Axs = Av = Cα. (4.18)

Problem (4.18) is an over-determined system of m equations in p unknowns so can be solved

using the normal equations. Alternatively, because the economy QR decomposition has

already been computed to determine the projection matrix P , back-substitution on the system

Rα = Y T (b−Axs) = Y Td , (4.19)

also gives the vector α. Once the vector α has been determined, v is recovered through (4.13),

and the underlying signal x = xs + v is reconstructed.
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4.3.2 KNOWN SUBSPACE EXAMPLES

The following examples consider signal reconstruction when the subspace M is known. In

this case, if the signal is made up of a piecewise constant part, then the location of its dis-

continuities are assumed to be known, and therefore, so too are the basis vectors u1, . . . , up
and the subspace M .

In these examples, the signal x is of the form x = xs+ v. In the first example v is a piecewise

constant signal, while in the second example v is a vector whose entries form an arithmetic

progression on piecewise regions. In both cases, the location of the discontinuities are known

(i.e., the matrix U , and therefore the subspace M , is known), although the heights (i.e., the

vector α) are unknown. In each case, a measurement matrix A ∈ R
200×1000 with orthogo-

nal rows and an observation vector b ∈ R
200 were set up, with b measured in the presence

of normally distributed Gaussian noise. In the first experiment the sparse signal xs has

20 randomly placed spikes of height ±1, while in the second experiment xs has 10 randomly

placed spikes of height ±1
2 . The signal reconstruction results are shown in Figures 4.3 and 4.4.
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Figure 4.3: From top to bottom: The original signal x = xs + v. The sparse reconstruction xs
found using the BCGP algorithm. The overall reconstruction x̂ = xs + v.

Figure 4.3 shows the reconstruction of a signal that is a combination of a piecewise constant

signal (v) and a sparse part (xs). The reconstruction of xs is accurate with all spikes located

accurately. The overall reconstruction x̂ = xs + v is also very good, and this shows that the

vector α has also been recovered accurately. The MSE≈ 10−7, and this supports our claim

of a high quality reconstruction.

Figure 4.4 shows the reconstruction of a signal that is a combination of a sparse part xs and

a vector that is piecewise linear. The sparse part xs and the overall signal are accurate.
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Figure 4.4: From top to bottom: The original signal x. The sparse reconstruction xs using the

BCGP algorithm. The reconstructed signal xs + v.

4.4 BLIND SIGNAL RECONSTRUCTION

The problem of signal reconstruction when the subspace M is unknown is often referred to

as ‘blind’ or ‘unsupervised’ reconstruction, and is the topic of much current research. So far

we have assumed that in the decomposition x = xs + v the component v was in a known

subspace. In the previous section, v was a piecewise constant function where the possible

discontinuities were in certain known positions.

In this section we consider the more difficult problem of finding v when the subspace M is

not known, but depends on some parameters that first have to be determined. Once they are

found, the problem is solved by the procedure in Section 4.3. A typical problem of this nature

occurs when v is a piecewise constant vector with jumps at unknown positions. These must

first be identified as they act as the ‘parameters’ of the subspace M . We concentrate on this

case for the remainder of this chapter. The signal x is decomposed as x = xs + v = xs +Uα,

where xs, the columns of U (ul), and α (containing the values αl), are all unknown.

At the beginning of the chapter, we introduced the total variation norm. Because we have

a piecewise constant signal, adjacent signal entries are usually the same. That is, often

vi − vi+1 = 0. Furthermore, if vi − vi+1 6= 0 a discontinuity has been located. We now

introduce the discrete derivative matrix D [56]:

D =













1 −1
. . .

. . .

1 −1
1













. (4.20)
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Left multiplication of a vector v by the matrix D yields a vector with entries vi− vi+1 (apart

from the last entry). So (assuming |vn| ≪ ‖v‖TV)

‖Dv‖1 =
n−1
∑

i=1

|vi − vi+1|+ |vn| = ‖v‖TV + |vn| ≈ ‖v‖TV .

If v is a piecewise constant vector then we define

z = Dv , (4.21)

where z is sparse and its non-zero entries correspond to the positions of the discontinuities

in v. (Note that z 6= xs).

The vector x is a combination of a piecewise constant vector plus a sparse component, and

therefore posing the problem using TV regularization alone is unlikely to yield an accurate

reconstruction. What we would like to do is break the blind reconstruction problem into two

parts. If the subspaceM can be determined, the method proceeds as in the previous section.

The subspace M depends on knowledge of the vectors u1, u2, . . . , up. If z from expression

(4.21) is know accurately, then the vectors ul for l = 1, . . . , p can be determined.

Because z is sparse and

Av = AD−1z ≈ b , (4.22)

then z is approximated by solving the familiar convex optimization problem

min
z
‖AD−1z − b‖22 + λ‖z‖1. (4.23)

After z has been found, the subspace M is determined in the following way. The location

of the spikes in the sparse vector z correspond to the location of the discontinuities in the

piecewise constant vector v. From this information, the vectors u1, u2, . . . , up can be deter-

mined. Then M = span{Au1, . . . , Aup}. (Note that as (4.22) is only an approximation, we

do not accurately know the values α1, . . . , αp and in turn, we do not accurately know v.)

Once the subspace M is approximated, we return to the problem described in Section 4.3.

That is, project out the subspace M (via (4.16)) and solve a second optimization problem

(4.17) to determine xs. Next the values α1, . . . , αp are found using (4.19), and x is recon-

structed.

Remarks:

1. Usually when dealing with matrices, we do not actually compute a matrix inverse

explicitly. The problems considered in this chapter need products of the form AD−1y1
and D−TAT y2 for various y1 and y2 and these products can be computed efficiently

using backward and forward substitution with D and DT respectively.

2. Noise is present in the observations b and problem (4.22) is an approximation. It is

therefore likely that there will be small non-zero elements in the vector z so that there
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may be more non-zeros than discontinuities in the piecewise constant vector v. We

can still accurately form the projection matrix if there are more ‘jumps’ because the

subspace M is still well approximated. However, we must be sure to locate all the

true discontinuities in v, otherwise the method fails because we are projecting onto the

wrong subspace.

4.5 THE GENERAL ALGORITHM

The following outlines a process for the reconstruction of signals that are a combination of a

piecewise constant signal and a sparse component, using a limited set of data.

SIGNAL RECONSTRUCTION PROCESS

1. Solve the optimization problem

min
z
‖AD−1z − b‖22 + λ‖z‖1

to estimate the parameters z that define the subspace M .

2. Form the matrix C = [Au1, . . . , Aup] and perform an economy QR decomposition (C =

Y R) to determine orthonormal vectors that span the subspace M .

3. Projection out the subspace M .

4. Solve the transformed problem min
xs

‖PAxs − Pb‖22 + λ‖xs‖1.

5. Determine the values α1, . . . , αp using Rα = Y T (b−Axs).

6. Recover

v =

p
∑

l=1

αlul, and x = xs + v.

In Chapter 3 a number of algorithms were proposed which aim to solve the l1-regularized least

squares problems which feature heavily in this chapter. In the numerical results presented

in Section 4.6, the BCGP algorithm is used to locate the discontinuities in the piecewise

constant signal and to recover the sparse part of the signal.

4.6 NUMERICAL EXPERIMENTS

This section presents numerical examples to illustrate the practical performance of the re-

construction process outlined in this chapter. All experiments were performed on an Intel

Xeon 3.2GHz processor with 4GB of memory, under Linux.
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4.6.1 THE UNKNOWN SUBSPACE PROBLEM

This example considers a signal composed of an underlying piecewise constant signal with

unknown discontinuities, and a sparse signal. A sensing matrix A of size 200 × 1000 was

constructed and a vector b ∈ R200 was observed. The observation vector was measured in

the presence of Gaussian noise. The sparse signal had 10 spikes while the piecewise constant

signal had 10 randomly located discontinuities of randomly generated heights. The results of

the reconstruction procedure are shown in Figure 4.5.
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Figure 4.5: Reconstruction of a signal when the subspaceM is unknown. (a) The original signal.

(b) The sparse vector z that approximates the discontinuities/‘jumps’ in v. (c) The approximation

using v = D−1z. (d) The sparse vector xs. (e) The overall reconstruction.

The reconstruction is excellent. The location and heights of the jumps in the piecewise

constant signal have been accurately determined. Even the smaller jumps have been re-

constructed accurately. For this example, the MSE was 1.8148 × 10−5, which confirms the

accuracy of the reconstruction. (Note that in Figure 4.5, the reconstruction in (c) is a

result of the approximation v = D−1z, while in (e), α has been accurately recovered via

Rα = Y T (b−Axs).)
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4.6.2 AN EXAMPLE FROM ASTRONOMY

Problems where a signal is a combination of a sparse part plus a piecewise constant part

arise in astronomy. For example, a signal arriving from space may be corrupted by bursts of

cosmic radiation. We can think of the piecewise constant part of the signal as the part that

we wish to recover, and the sparse part of the signal as noise. As this is another example

of unsupervised signal reconstruction we only know the sensing matrix A ∈ R103×104 and

the observation vector b ∈ R1000, which is measured in the presence of noise. Figure 4.6

illustrates this type of example.
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Figure 4.6: (a) The original signal; (b) the vector describing the location of the discontinuities

in the piecewise constant signal; (c) the reconstructed piecewise constant signal; (d) the sparse

reconstruction; (e) the final signal reconstruction.

The algorithm of Section 4.5 does an excellent job reconstructing the signal. This is a difficult

example because the ‘sparse’ part of the signal is not sparse enough to be accurately recon-

structed from so few measurements—because of the noise the signal actually has 410 spikes

and as we have only m = 1000 observations, it violates the compressed sensing threshold of

Theorem 3.1.1. Also, the bursts of radiation mask vital parts of the signal—the location of

jumps. Despite this, the piecewise constant part of the signal is accurately reconstructed and

although the sparse signal is very noisy, the location of the bursts are picked up accurately.
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4.6.3 IMAGE RECONSTRUCTION

This example considers the reconstruction of the Shepp-Logan phantom. The phantom size

is 50 × 50 pixels. The columns of the image are concatenated to represent the image as

a column vector x of length 2500. The vector has 1204 non-zero elements so this is not a

sparse image. However, Dx (where D is the matrix defined in (4.20)) is sparse with only 189

non-zero elements.

Recall Theorem 3.1.1 where s = 189 and n = 2500. Then A is the sensing matrix with

m = 1479 orthogonal rows of length 2500, and an observation vector b of length m was mea-

sured in the presence of noise.
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Figure 4.7: From top to bottom: (a) The signal representation of the Shepp-Logan Phantom;

(b) The location of discontinuities in the piecewise constant signal; (c) The piecewise constant

signal v = D−1z; (d) The sparse reconstruction; (e) The final signal reconstruction.

Figure 4.7 shows the signal evolution at various stages of the reconstruction process. Plot

(b) shows the location of discontinuities in the piecewise constant signal – that is, the vector

z from (4.23). The piecewise constant reconstruction (c) is not exact, although this signal
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has found the areas where there is a large contrast between neighbouring regions. This is the

vector v = D−1z. Next is the reconstructed sparse signal xs, which can be thought of as an

error correction step. It searches for finer detail that the first part of the algorithm may have

missed. We can see that there need not be a large difference in neighbouring regions for this

signal xs to be accurately determined. The final plot (e) is the overall signal reconstruction.

This is an excellent reconstruction. All fine detail is present. The MSE for this reconstruction

is 1.37 × 10−8 which confirms very high accuracy of the final signal.

(a) (b)

(c) (d)

Figure 4.8: (a) The Shepp-Logan Phantom; (b) The Piecewise constant reconstruction, (corre-

sponding to Figure 4.7(c)) with MSE = 0.0074619; (c) The Sparse reconstruction corresponding

Figure 4.7(d)) with MSE = 0.060604; (d) The final signal reconstruction with MSE = 1.3701×10−8.

Figure 4.8 shows the Shepp-Logan Phantom reconstruction. (The reconstructed length 2500

signal has been ‘reshaped’ into a 50× 50 pixel image.) The reconstructed phantom captures

all of the information of the original. Figure 4.8(b) is very stripey but provides information

about the shape of the object and the neighbouring areas with high contrast. Figure 4.8(c)
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provides the finer details of the object. During reconstruction of the sparse part of the signal,

the subspace in which the piecewise constant signal lies is known, which means that the sparse

signal can pick up areas that do not vary significantly from their neighbours. The background

in this image is a flat grey, which tells us that the signal has already been accurately found

in that region. This means we can be confident that the algorithm is working correctly.

The final Phantom reconstruction is excellent. There is virtually no difference between the

reconstruction and the original and this is supported by a very low MSE value.

4.6.4 TIME TRIAL

The average cputime (in seconds) over 10 runs for each of the examples in Section 4.6 are

shown in Table 4.1. The total time has been split into 3 parts: the time taken to compute z,

the time taken to compute the matrix C and its Y R decomposition, and the time taken to

compute xs.

Table 4.1: Average CPU times (in seconds) over 10 runs on each of the examples described in

Section 4.6.

z YR xs Total

General 66.20 0.06 4.90 71.16

Phantom 87.51 0.07 5.02 92.60

Astronomy 97.58 0.11 10.82 108.51

The first part of the reconstruction process takes up the bulk of total computation time. This

is to be expected as there are 4 matrix-vector products per iteration in the compressed sensing

algorithm for step (4.23) of the overall algorithm. It is extremely fast to compute the matrix

C and its YR decomposition. The final stage of the process is also fast although again there

are again 4 matrix-vector products per iteration for the solution of (4.17) compared with

only 2 matrix-vector products for the standard compressed sensing optimization problem.

Nonetheless, these problems can still be solved in couple of minutes which seems reasonable.

Future research will focus on speeding up the first part of the reconstruction process — for

example, using the SALSA [39] or cSALSA [1] algorithms. These are basis pursuit type

algorithms which have been shown to perform more quickly than l1-ls.

4.7 CONCLUSION

In this chapter we considered reconstructing signals with specific structures from small

amounts of data. We specifically considered signals that were a combination of a piece-

wise constant signal and a sparse component. The reconstruction process was posed as an

l1-regularized least squares problems in 2n unknowns. This can be separated into two opti-

mization problems of the same type, for which there are efficient and accurate algorithms.

We introduced a projection step that occurs between the two optimization problems, and

this allowed us to solve for the vectors xs and v independently.
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The numerical results presented in this Chapter and in [13] were promising and showed that

this process reconstructed signals accurately and efficiently.

4.7.1 FUTURE RESEARCH

The numerical experiments shown in this chapter were signal reconstruction problems. The

final experiment on the Shepp-Logan phantom was an image reconstruction (2D) example

that we solved using a 1D approach. Clearly, one area of future research is to extend to a

2D approach for images. The total variation norm can be extended to the 2D case using the

definition

‖x‖TV =

n−1
∑

i=1

n−1
∑

j=1

√

(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2 . (4.24)

The process described in this chapter could be adapted using this 2D definition.

Another area of future research is known as morphological component analysis (MCA) [10,

37]. For MCA, a signal that is known to be degraded (for example many of the pixels are

missing or there is a large amount of noise) is restored by decomposing it into the sum of

several underlying signals that are each sparse relative to some known bases. The sum of

these underlying signals gives the restored signal. This approach is slightly different from

ours as it depends on knowledge of the original signal while our approach attempted to

reconstruct the signal from data measurement. However, the two ideas seem closely related

and using ideas from MCA our approach could be extended to signals made up of more than

two components.



92



CHAPTER 5

CONCLUSION

Signals and images are all around us, and as technology advances, the need for innovative

ways to approach the associated processing and reconstruction problems becomes ever more

apparent. The solution of these problems requires expertise from many different disciplines,

and mathematics has a central role to play.

This thesis investigated the problem of fast signal and image reconstruction from given data.

Chapter 1 explains that the data collection process carries the highest cost, so reducing the

amount of data necessary for an accurate image to be reconstructed results in a significant

reduction in the overall processing time. Therefore, the idea of reconstruction from limited

data is the practical problem that forms the foundations for the work in this thesis.

The following key questions were investigated:

1. How do we choose which data to observe, to ensure that a high quality signal or image

is reproducible?

2. How do we accurately reconstruct a signal, given a sub-sampled data set?

Question 1 is the focus of Chapter 2. Mathematically this is a subset selection problem and

is combinatorial in nature. An existing criterion based upon the trace of a matrix provides a

measure of the error in the reconstruction and subsequently can be used to define the ‘good-

ness’ of a selected subset. While this selection criterion removes the combinatorial aspect of

the selection process, the associated algorithms are suboptimal. By swapping the arithmetic

mean of the eigenvalues (the trace) for the geometric mean (or determinant) we have derived

a much simpler, new selection criterion. Intuitively this new criterion would be expected to

perform similarly and provide comparable results to those found using the trace criterion.

Because the new criterion is simpler to compute, the algorithms that use the determinant

criterion are automatically faster than those based upon the trace. Somewhat surprisingly,

the selected determinant subsets are sometimes better than those found using the trace cri-

terion.

An inherent flaw of the sequential algorithms (regardless of the criterion used) occurs if the

rows of the observation matrix have equal length. In this case the initial row is selected via the

sorting algorithm of the programming language being used. In this work all algorithms were

coded in Matlab and the built-in sorting function selects the first occurrence. This situation

93
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has been successfully addressed by devising hybrid selection algorithms that implement a row

exchange procedure. Two row exchange criteria are derived in Chapter 2, one based upon

minimizing the trace of the submatrix, the other based upon maximizing the determinant

of the submatrix. As expected, the formulation based upon the determinant is simpler and

therefore faster to compute. Once a subset has been selected using any one of the sequential

algorithms, the hybrid selection algorithms further improve the quality of the subset, which in

turn leads to a better quality signal or image. An exchange only takes place if a reduction of

the trace, or increase in the determinant, is possible. The end result is therefore a locally op-

timal row subset. This is achievable in a fraction of the time required for an exhaustive search.

The second question is considered in Chapter 3 and the answer seems to lie in the rela-

tively new area of compressed sensing. This field remedies the wasteful process based on

the Nyquist condition that is usually used in signal processing, that of sampling an entire

signal, compressing it, and subsequently throwing away most of the information. It asks the

question, “why do we need that information in the first place if we are just going to throw

most of it away?” The mathematical background explains that if we have a signal that is

sparse in one basis, and we sample it in an incoherent basis, then the number of observations

needed to accurately reconstruct the signal depends on the number of non-zeros and the log

of the length of the signal. If the signal is sufficiently sparse, then the number of observations

required is significantly less than the Nyquist rate suggests.

The reason that compressed sensing is so popular is that there are extremely efficient optimi-

sation algorithms for putting this mathematical theory into practice. In chapter 3 we develop

an algorithm for solving an l1-regularized least squares problem arising in compressed sensing.

The algorithm uses the Barzilai-Borwein step lengths and we show that if the sensing matrix

has orthonormal rows, the step length is constant. We also provide upper bounds on the

solution vector and allowable step length, and can subsequently reformulate the problem as

a box-constrained quadratic programme. The algorithm is called the Box Constrained Gra-

dient Projection (BCGP) algorithm. The algorithm uses an unusual line search to guarantee

convergence of the algorithm. Another particularly useful feature of this algorithm is that

it uses only two matrix-vector products per iteration, which results in a dramatic saving of

computational costs and minimal storage requirements, particularly for large matrices. The

numerical results presented at the end of the chapter show that the BCGP algorithm is fast,

accurate, robust and competitive with currently used algorithms.

In Chapter 4 the ideas from compressed sensing are extended to signals that are not nec-

essarily sparse, but have some specific structure that can be exploited. This allows these

more complicated signals to be reconstructed from a limited amount of data. We specifically

consider the reconstruction of signals that could be decomposed as the sum of a piecewise con-

stant signal and a sparse component. The reconstruction process is posed as an l1-regularized

least squares optimization problem in more than n unknowns. The piecewise constant signal

spans a subspace M . If the subspace is known, then forming a matrix P , which projects

onto the orthogonal complement, reduces the number of unknowns to n, and the optimiza-

tion problem recovers the sparse component. Subsequently, the remaining unknowns can be
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recovered in a straightforward manner.

If the subspace M is unknown, the reconstruction problem is more difficult. An additional

optimization problem is solved to approximate the parameters required to determine the sub-

space. Once M has been approximated, the procedure continues as for the simpler problem.

The optimization problems were solved using the BCGP algorithm described in Chapter 2

and the numerical results seem very promising.

Signal and image processing is a large and ever-expanding field of research. The new and

exciting techniques in this area hold real promise for the advancement of society. It is hoped

that, in time, these techniques can be utilised in practical, real-world applications, particularly

in the area of medical imaging, because the potential benefits are significant.
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[102] D. Weishaupt, V. Köchli, and B. Marincek. How Does MRI Work? Springer, second

edition, 2006.

[103] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by sepa-

rable approximation. IEEE International Conference on Acoustics, Speech and Signal

Processing, pages 3373–3376, March 31 – April 4 2008.

[104] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by separable

approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, July 2009.

[105] B. Wu, R. P. Millane, R. Watts, and P. J. Bones. Improved 3D image plane par-

allel magnetic resonance imaging (pMRI) method. Proceedings of Image and Vision

Computing Conference, Hamilton, New Zealand, pages 311–316, December 2007.

[106] B. Wu, R. P. Millane, R. Watts, and P. J. Bones. Improved matrix inversion in image

plane parallel MRI. Magnetic Resonance in Imaging, 27:942–953, 2009.

[107] K. Wu, Y. Wang, Y. Pan, J. Zhang, B. Qian, and C. Chang. Classifying uterine myoma

and adenomyosis based on ultrasound image fractal and texture features. IEEE/NLM

Life Science Systems and Applications Workshop, pages 1–2, July 2006.

[108] W. Yin, S. Morgan, J. Yang, and Y. Zhang. Practical compressive sensing with Toeplitz

and circulant matrices. Technical Report TR10-01, Rice University, 2010.

[109] H. Yu and G. Wang. Compressed sensing based interior tomography. Physics in

Medicine and Biology, pages 2791–2805, 2009. DOI: 10.1088/0031-9155/54/9/014.

[110] M. Zibulevsky and M. Elad. L1-L2 optimization in signal and image processing. IEEE

Signal Processing Magazine, 27(3):76–88, May 2010.


