
Combinatorial Aspects of
Leaf-Labelled Trees

Peter J. Humphries

A thesis
submitted in partial fulfilment

of the requirements for the degree
of

Doctor of Philosophy
in

Mathematics

University of Canterbury
Department of Mathematics and Statistics

2008

Πάντα χωρει̃ καὶ oυ̇δὲν µένει.

Everything changes; nothing remains the same.

(from Plato’s Cratylus)

TABLE OF CONTENTS

Acknowledgements v

Abstract vi

1 Introduction 1

2 Mathematical Preliminaries 7

PART I: Supertrees 11

3 Definitive Quartet Sets 13
3.1 Introduction 13
3.2 Closure and Inference Rules 15
3.3 Covers of Trees 18
3.4 The Size of a Minimal Definitive Quartet Set 24

4 The Quartet Graph 28
4.1 Introduction 28
4.2 The Quartet Graph 29
4.3 Main Results 30
4.4 Chordal Graph Characterisations 35
4.5 Proofs of Theorems 4.3.2 and 4.3.3, and Corollary 4.3.5 37

5 Minimum Identifying Sets of Quartets 45
5.1 Introduction 45
5.2 Proof of Theorem 5.1.1 47
5.3 Characterisations of the Extremal Cases 57

iii

PART II: Subtrees 63

6 Disentangling Sets Of Trees 65
6.1 Introduction 65
6.2 The Disentangling Number 67
6.3 Further Ideas 74

7 Ramsey Theory and Leaf-Labelled Trees 75
7.1 Introduction 75
7.2 Common Subtrees 76
7.3 Numerical Bounds 80

PART III: Tree Rearrangement Operations 87

8 The TBR Unit Neighbourhood 89
8.1 Introduction 89
8.2 Neighbourhood Sizes 93
8.3 Characterisations of the Extremal Cases 96

9 Agreement Forests 106
9.1 Introduction 106
9.2 Agreement Forests 110
9.3 Main Results 113

References 120

Appendices 124

A Rota’s basis conjecture for paving matroids 125

B Nesting polynomials in infinite radicals 131

C Bounds on the size of the TBR unit-neighbourhood 138

Index 146

iv

ACKNOWLEDGEMENTS

This thesis is the culmination of several years of research that has proven

both rewarding and enriching for me on a personal level. Naturally, there

have also been many frustrating hours spent gazing blankly at a (sometimes

also blank) whiteboard, but this too has been character-building in its own

way. I am indebted to a number of people for their input during the last

three years.

First and foremost, I am grateful to my supervisor Charles Semple for

providing me with the opportunity to work alongside him and for his guidance

throughout my graduate studies, and to Mike Steel for his advice and support

in the capacity of co-supervisor.

Thank you to Stefan Grünewald and Taoyang Wu, two colleagues with

whom I have collaborated on various projects. I have learned much from

you both in the course of our discussions and work together. Additionally,

thanks to Stefan for inviting me to the PICB in Shanghai for a research visit.

Further thanks to Jim Geelen for hosting me at the University of Waterloo

as a visiting researcher.

I extend my fullest appreciation to the administrative and technical staff

in the Department of Mathematics and Statistics for taking care of those

things that I don’t understand, and to the University of Canterbury and the

New Zealand Marsden Fund for providing me with financial support.

Lastly, thank you to my friends and family for your patience and assis-

tance while I have been preparing this thesis for submission.

Johnny Humphries

v

ABSTRACT

Leaf-labelled trees are used commonly in computational biology and in

other disciplines, to depict the ancestral relationships and present-day simi-

larities between both extant and extinct species. Studying these trees from

a mathematical perspective provides a foundation for developing tools and

techniques that have practical applications.

We begin by examining some quartet problems, namely determining the

number of quartets that are required to infer the structure of a particular

supertree. The quartet graph is introduced as a tool for tackling quartet prob-

lems, and is subsequently used to give new characterisations of compatible,

definitive and identifying quartet sets.

We then turn to investigating some properties of the subtrees induced by a

collection of trees. This is motivated in part by the problem of reconstructing

two or more trees simultaneously from their combined collection of subtrees.

We also use some ideas drawn from Ramsey theory to show the existence of

arbitrarily large common subtrees.

Finally, we explore some extremal properties of the metric that is induced

by the tree bisection and reconnection operation. This includes finding new

(asymptotically) tight upper and lower bounds on both the size of the neigh-

bourhoods in the metric space and on the diameter of the corresponding

adjacency graph.

vi

To my parents, for your unfailing love and support.

Chapter 1

Introduction

The Greek philosopher Heraclitus is famous for his philosophy of παντα

ρει (panta rhei), that everything is in a constant state of change. This is

certainly true within the context of any living system, and is the central

driving force behind all forms of evolution.

By evolution, we are not necessarily limiting ourselves to the biological

concept. Rather, we consider all settings in which information reproduces

or is transferred to successive generations. Comparative linguistics, or com-

parative philology, studies the evolution of languages [4]. Stemmatology is

another branch of philology that deals primarily with the reconstruction of

original texts from surviving copies that may contain transmitted errors [38].

In the areas of anthropology and sociology, the development of material cul-

ture and culture in general provide further examples of evolutionary processes

[30].

Each of the above examples of evolution exhibits three key features,

namely reproduction, mutation and selection. Manuscripts and historical

texts that were hand-copied by scribes incurred errors that compounded over

successive copyings, with only some of these copies surviving to the present

day. Language is passed through generations, and may develop indepen-

dently in multiple locations depending on the dominant usage, resulting in

the divergence of distinct languages. In both cases, there are clearly identifi-

able reproduction, mutation and selection phases, each helping to guide the

overall behaviour of the evolving system.

The traditional approach to reconstructing an evolutionary history as-

sumes that evolution is tree-like, and thus attempts to build up the most

probable family tree to explain the available evidence. Figure 1.1 shows one

1

2

hypothesis of how the major modern Germanic languages1 may have evolved

[22]. The branches of the tree represent the lineages of each language since

Swedish

Danish

Norwegian

Faroese

Icelandic

English

Frisian

Vlamish

Dutch

Afrikaans

Yiddish

Low German

High German

Gothic

0 2000

Figure 1.1: One hypothesis of the evolution of the major Germanic languages
over the last two thousand years [22].

the emergence of the original Germanic tongue. Such trees allow us not only

to trace back through the linguistic history of modern languages, but also

to rebuild the vocabulary and grammar of extinct languages with no direct

attestation. For example, each of the fourteen languages in Fig. 1.1 is de-

rived from an extinct language known in linguistics as Proto-Germanic, the

structure of which has been inferred by studying comparative evidence from

its derivatives [20, 22].

Trees are not useful solely as a medium for depicting historical and

present-day interrelatedness between types, by which we mean the subjects

of the evolutionary process, and for piecing together proto-types. The mech-

anisms behind the mutation and selection phases of evolution can also be

1The Germanic languages are more broadly categorised as Indo-European [36].

3

better understood in the context of a reliable ancestral tree. Accurate dating

within the tree may help with identifying specific events or patterns that

precipitate change, which in turn facilitates projections of the likely future

pattern of divergence.

Because there is necessarily a temporal component integral to the unfold-

ing of an evolving population, the lengths of the branches within a tree are

often indicative of the discrepancy that exists between species. Removing

this dimension and ignoring the position of the root results in a tree that

illustrates the relative similarities between the extant types in the system

without making assumptions about which derive from a common ancestry.

Figure 1.2 shows the reduction of the family tree for Germanic languages to

this form.

�
�
�

Norwegian

!!!

Danish
b

b
b!!!Swedish

L
L
L

"
"

"``̀
Faroese

�
�

�
Icelandic

@
@@

�
�

�
Gothic

``̀
�
�
�

English

!!!
L
L
L
�

�
�

Yiddish

aaa"
"

"Low German

@
@@High German

�
��

``̀ Frisian
�
�
�

@
@@

Vlamish

!!!�
�
�

Dutch

``̀ Afrikaans

Figure 1.2: The unrooted tree underlying the hypothesised evolution of the
Germanic languages as shown in Fig. 1.1.

Both the rooted and the unrooted trees that are used to represent evo-

lution are essentially discrete mathematical objects and may be rigorously

defined as such. By exploiting this precise foundation, we are able to better

understand the structural properties of these objects. We can also convert

vague problems that may arise in a practical setting into well-defined mathe-

matical questions, the solutions to which may be applied back in the original

context. Both of these approaches have proven invaluable in the develop-

ment of analytical tools for studying the phenomenon of evolution across all

4

disciplines.

Contemporary computational and statistical techniques that are applied

in the context of evolutionary systems are to a large extent underpinned

by algebraic and combinatorial ideas. With regard to combinatorics, the

area of primary importance is undoubtedly graph theory. In this thesis,

we concentrate on deriving results that centre around unrooted leaf-labelled

trees2, with no regard for the length or weight of the edges. Whereas rooted

trees demonstrate an ancestral hierarchy that is inherent in a collection of

types, unrooted trees are representative of the similarities between the types.

Let us return to our example of the development of the Germanic lan-

guages. Starostin and Burlak recently proposed the tree in Fig. 1.3 (repro-

duced from [7]). The key point to note here is that the underlying unrooted

Swedish

Danish

Nynorsk

Icelandic

English

Dutch

High German

Gothic

0 2000

Figure 1.3: A second hypothesis of how the Germanic languages may have
evolved (Starostin and Burlak, cited in [7]).

tree is entirely consistent with that displayed in Fig. 1.2. While the exact

chronology between the trees differs, the shared ancestral relationships are

identical3. In fact, the appropriate time scale can be reintroduced in either

case by inserting a root on the branch that separates Gothic from the other

2In the context of evolutionary biology, these trees are often referred to as phylogenetic
or evolutionary trees. We will use the more inclusive terminology leaf-labelled trees to
emphasise their wider application in fields other than biology.

3Nynorsk is based on dialects of Norwegian that predate the Danish rule of Norway,
and is currently used by around 10% of the Norwegian population [4].

5

languages, and by dating the time of each divergence event. This hints at the

significance of unrooted trees in an algorithmic role, where they can serve as

an intermediate stage between raw empirical evidence and a rooted tree.

To conclude this introduction, we will give a brief synopsis of the main

body of the thesis. More detailed overviews of the individual chapters are

given prior to each of the three parts. As we have mentioned, we will be

concerned primarily with combinatorial problems that arise from unrooted

trees. The necessary background for understanding the mathematical content

of this thesis is presented in Chapter 2. We define any specific notation

and terminology that is used, although the reader should note that a basic

knowledge of graph theory is required.

One common and intuitive method of building leaf-labelled trees from

data is to begin by constructing smaller trees, and to then piece together

these partial trees into one comprehensive tree. In Part I, Supertrees, we

examine some specific problems related to these methods of reconstruction.

In particular, we consider how much information is required to conclusively

indicate the entire structure of the original tree. This amounts to distilling

a given tree down to its most primitive compositional units, from which the

tree can then be inferred with complete accuracy.

The two chapters making up Part II, Subtrees, approach a similar idea

from two opposing perspectives. Viewing trees as mathematical structures,

we can describe their substructures (predictably called subtrees) precisely. In

Chapter 6, we assume a set of trees is given, and look for a subtree that is as

small as possible and is different in each of the given trees. This corresponds

to finding a small collection of types that has evolved differently in each tree

from a hypothetical collection of trees. In Chapter 7 we turn this around.

Again assuming a given set of trees, we look for a subtree that is as large as

possible and is the same in each of the trees, or alternatively a large collection

of types that has evolved in the same manner in each tree.

The final part of the thesis (Part III, Tree Rearrangement Operations)

is centred around deformations that can be performed on unrooted trees.

Loosely speaking, these deformations (tree rearrangment operations) are a

way to transform one tree into another by altering the structure in some pre-

defined way. The specific problems that we are interested in are finding the

6

number of trees that can be obtained from a given tree by a single operation,

and also determining the minimum number of operations that separate two

trees.

In the appendices that follow the main body of this work are three aca-

demic papers that were written during the same period as this thesis. One

of these (Appendix C) is related to the work in Part III, while the other two

have no connection to the thesis other than the authorship.

The approach taken makes no prior assumption as to the origin of the

trees, merely treating them as abstract mathematical objects. Some of the

problems considered have been addressed previously by others, whether di-

rectly for unrooted trees or in the analogous rooted setting. Other topics of

investigation are to the best of our knowledge entirely original, at least in

the context of leaf-labelled trees. Unless explicitly noted otherwise, all the

results contained in this thesis are new and are the author’s own work.

The purpose of this research, then, is firstly to expand on some known

results, either by extending a partial solution, by generalising the problem in

some way or by providing an alternative proof. Secondly, some of the ideas

developed may be directly applicable in the design of efficient algorithms for

tackling the large volume of data that is generated on a daily basis in some

fields of research. Thirdly, the derivation of some extremal results and their

corresponding characterisations that may (tenuously) be of use in complex-

ity analysis. Fourthly, finally, and most importantly, is the satisfaction of

intellectual curiosity on a purely combinatorial level.

Chapter 2

Mathematical Preliminaries

This chapter is devoted to introducing the notation and terminology re-

quired for a complete understanding of the main body of this thesis. It is

assumed that the reader is familiar with the fundamentals of graph theory.

A comprehensive background to this area of discrete mathematics may be

found in Modern Graph Theory [10], or a similar introductory text.

Most of the general mathematical nomenclature we use follows accepted

convention, but there are some points that we wish to emphasise at this stage

to prevent confusion later. For a positive integer n, we employ the shorthand

[n] to represent the set {1, . . . , n} where convenient. The collection of subsets

of a set X is given by 2X , while we use
(

X
k

)
to represent the collection of k-

element subsets of X. We also make the distinction between ‘⊂’ and ‘⊆’,

with the former denoting strict containment.

A leaf-labelled tree is a tree, by which we specifically mean an unrooted

tree, that has no vertices of degree two and a unique label assigned to each

vertex of degree one. To be more precise, let T be a tree with vertex set V

such that the set {v ∈ V : d(v) = 2} is empty, where d(v) denotes the degree

of the vertex v. Further, let

φ : X → {v ∈ V : d(v) = 1}

be a bijective function for some set X. Then T = (T ; φ) is a leaf-labelled

tree. We refer to X as the leaf set of T , and write X = L(T). Further to

this, we use TX to denote the set of all leaf-labelled trees that have X as the

leaf set.

The degree one vertices of T are called the leaves of T , while all other

vertices are interior vertices. If an interior vertex of a tree T is adjacent to

7

8

exactly two distinct leaves x and y, then we call the set {x, y} a cherry of

T . An edge of T is an interior edge if both endpoints are interior vertices,

and similarly an interior path has two interior vertices as end points. All

non-interior edges of T are called pendant edges.

For a tree T ∈ TX , and a subset Y ⊆ X of the leaf set, we define T |Y to

be to be the minimal subgraph of T that that has the leaf set Y and has all

degree two vertices suppressed. We call T |Y the restriction of T to Y , and

say that T |Y is a subtree of T or alternatively, that T displays T |Y .

In the terms of graph minors, forming a subtree of a leaf-labelled tree

corresponds to deletion. Let e be an interior edge of T ∈ TX , and let

T ′ ∈ TX be the tree formed by contracting e. In this case, T is called a

refinement of T ′. However, it should be noted that T ′ is not considered a

subtree of T .

A leaf-labelled tree is binary if every interior vertex has degree three.

These are the trees which we are primarily interested in, and to this end

we define Tn to be the set of all binary leaf-labelled trees with the leaf

set {1, . . . , n}. Both Tn and TX will be referred to as tree spaces, with

appropriate clarification given if there is any possible ambiguity. It should

be noted (see [42] for details) that all binary trees with n leaves have exactly

n− 3 interior edges and n pendant edges, and that the size of Tn is precisely

(2n− 5)!! = 1× 3× · · · × (2n− 5).

One particular tree shape that appears frequently throughout this thesis

because of its nice properties is the caterpillar. A caterpillar is a binary leaf-

labelled tree that has at least four leaves and precisely two cherries. Since

any two cherries must by definition be disjoint, it follows that all the trees in

T4 and T5 are caterpillars. Extending our earlier notation for trees, we use

Cn ⊆ Tn to denote the set of caterpillars with the leaf set {1, . . . , n}.
Figure 2.1 shows a caterpillar C ∈ C8 with cherries {3, 4} and {5, 7}. The

label ordering of a caterpillar is a permutation of the leaf set in which the

leaves occur in the order they appear on the caterpillar. Thus C has the

label ordering [3, 4, 6, 2, 1, 8, 7, 5]. We note that as a consequence of graph

isomorphisms, a label ordering is not unique. Alternative label orderings may

9

��

@@ ��

@@

3

4 6 2 1 8 7

5

Figure 2.1: A caterpillar C ∈ C8.

be found by either transposing the first pair of elements in the permutation,

or by reversing the entire permutation, but we stress that each permutation

of a set X is a label ordering for a unique caterpillar.

A split of a tree T is a bipartition of its leaf set induced by deleting an

edge. The two blocks of the partition are the leaf sets of each of the two

components that result when the edge is deleted. In the example above (see

Fig. 2.1), if we let A = {3, 4, 6} and B = {1, 2, 5, 7, 8}, then the bipartiton

A, B of {1, . . . , 8} is a split of C. We use the notation A|B to represent this

split. The collection of all splits of a tree T is denoted by Σ(T).

Related to the idea of a split is that of a cluster. A subset Y ⊂ X is a

cluster of T ∈ TX if and only if Y |X − Y is a split of T . Clusters give rise

to a certain type of subtree. For a cluster Y of T , the subtree T |Y is known

as a pendant subtree.

If A|B is a split of a tree T , then for all A′ ⊆ A, B′ ⊆ B we call A′|B′

a partial split of T . A (partial) split A|B of a tree is non-trivial if both A

and B contain at least two elements. If both A and B contain exactly two

elements, then q = A|B is a quartet of T . Moreover, if A = {a1, a2} and

B = {b1, b2}, then provided no ambiguity arises the notation is simplified to

q = a1a2|b1b2. We use Q(T) to represent the set of all quartets of a tree T .

Paralleling the definition we gave for trees earlier, the leaf set of a partial

split σ = A|B is written L(σ), and is the union of A and B. Similarly, the leaf

set of the quartet q = a1a2|b1b2 is L(q) = {a1, a2, b1, b2}. It will frequently be

convenient to refer to the leaf set of a collection of partial splits, quartets or

trees. To do so, we simply extend the current notation so that the leaf set of

a collection is the union over the leaf sets of each member of the collection.

10

For example, for a set of quartets Q, the leaf set of Q is

L(Q) =
⋃
q∈Q

L(q).

We develop the notation for induced quartets in the same way. Thus, for a

(partial) split σ = A|B, the quartet q = a1a2|b1b2 is in Q(σ) if and only if

a1, a2 ∈ A and b1, b2 ∈ B.

The term quartet is also used to refer a binary tree with four leaves.

More specifically, the quartet q = a1a2|b1b2 can be seen as the leaf-labelled

tree with four leaves and the single non-trivial split q. When a tree displays

a quartet, that quartet distinguishes a unique interior path of T . That is, if

T displays q = a1a2|b1b2, then q distinguishes the minimal path v0, . . . , vk,

where v0 lies on the path from a1 to a2 and vk lies on the path from b1 to b2.

Distinguishing edges will be of more importance in this thesis than the more

general concept of distinguishing paths.

As the majority of the nomenclature used in this thesis is particular to

the individual chapters, we have chosen to exclude a list of commonly used

notation and trust that this does not hinder the reader in any way.

PART I

SUPERTREES

A fundamental way in which leaf-labelled trees are inferred is by amalga-

mating a collection P of smaller trees on overlapping subsets of species into

a single parent tree. Collectively, such amalgamation methods are known as

supertree methods and the resulting parent tree is called a supertree. The

popularity of supertree methods is highlighted in [5, 6].

If the amalgamating collection P contains no conflicting information, then

P is said to be compatible. Furthermore, P is definitive if P is compatible and

there is exactly one supertree that displays all of the ancestral relationships

displayed by the trees in P . Precise definitions of these concepts are given in

the ensuing chapters. Within the context of supertree methods, two natural

mathematical problems arise:

(i) is P compatible; and if so,

(ii) is P definitive?

As computational problems, (i) is known to be NP-complete [9, 45], while the

complexity of the second problem continues to remain open. Nevertheless,

there are attractive characterisations of these problems in terms of chordal

graphs [18, 34, 41, 45]. An overview these characterisations may also be

found in Section 4.4.

In practice, while a collection P of leaf-labelled trees might be compatible,

it is unlikely to be definitive. A closely related notion, and one that is

essentially as good, is the following: P identifies a supertree T if T displays

P and all other supertrees that display P are refinements of T . This means

11

12

that if P identifies a supertree, then the collection of supertrees that display

P is well understood. This gives rise to a third mathematical problem:

(iii) does P identify a supertree?

Like problems (i) and (ii), a characterisation of this problem has also been

given in terms of chordal graphs [13].

Each of problems (i), (ii), and (iii) are typically stated in terms of collec-

tions of quartets—that is, binary leaf-labelled trees with four leaves—rather

than an arbitrary collection of trees. The reason for this is that a leaf-labelled

tree is completely determined by its collection of induced quartets (see, for

example, [42]). Consequently, for the purposes of this thesis, we will view

the input to the problems specified above as collections of quartets.

In Chapter 3, we present some results on definitive quartet sets. Chap-

ters 4 and 5 are based on [24], which was written jointly with Stefan

Grünewald and Charles Semple. The first of these chapters introduces the

quartet graph, a new tool for approaching quartet-based problems, while the

second applies the quartet graph to finding the minimum size of an identify-

ing quartet set for an arbitrary leaf-labelled tree.

Chapter 3

Definitive Quartet Sets

3.1 Introduction

The ideal situation when reconstructing a leaf-labelled tree from empirical

data is for there to be a unique tree that fits the entire set of data perfectly.

In terms of quartet-based reconstruction methods, this means that every

quartet in the input is displayed by the output tree, and that there is no

other tree with this property.

Suppose that Q is a set of quartets on the leaf-set X = L(Q). We say that

Q is compatible if and only if some tree T ∈ TX displays every quartet in Q.

Equivalently, Q is compatible if and only if Q ⊆ Q(T) for some T ∈ TX . For

example, the quartet set Q = {12|34, 13|45} is displayed by the tree T ∈ T5

shown in Fig. 3.1, and hence Q is compatible. Obviously, compatibility is a

��

@@ ��

@@

1

2 3 4

5

Figure 3.1: A tree T ∈ T5 that displays the quartet set Q = {12|34, 13|45}.

desirable property for reconstructing a tree from quartet data. If we attempt

to construct a tree from an incompatible set, then some of the original data

will necessarily be contradicted.

The compatibility of splits is defined in the same way as for quartets.

That is, a collection Σ of partial splits of X is compatible if there is a leaf-

labelled tree that displays each of the splits in Σ. The following result due

13

14

to Buneman [17] shows that every leaf-labelled tree is determined by its

collection of non-trivial splits.

Theorem 3.1.1 (Splits-Equivalence Theorem). Let Σ be a non-trivial col-

lection of splits of a set X. Then the following statements are equivalent:

(i) there is a leaf-labelled tree T ∈ TX such that Σ is the set of non-trivial

splits of T ;

(ii) Σ is pairwise compatible;

(iii) for each pair A1|B1 and A2|B2 of splits in Σ, at least one of the sets

A1 ∩ A2, A1 ∩B2, B1 ∩ A2, and B1 ∩B2 is empty.

Moreover, if such a tree exists, then, up to isomorphism, T is unique.

A quartet set Q on the leaf-set X = L(Q) is definitive if and only if the

following two conditions hold:

(i) Q ⊆ Q(T) for some T ∈ TX ; and

(ii) Q * Q(T ′) for all T ′ ∈ TX − T .

In this case, we say that Q defines T . That is, T is the unique tree that

displays Q and has no extraneous leaves. It further follows that if Q defines

a tree T , then T is binary.

Again using the example from earlier, the quartet set Q = {12|34, 13|45}
defines the tree T in Fig. 3.1. To confirm this claim, it suffices to show that

no other tree in T5 displays Q. On the other hand, both T1 and T2 shown in

Fig. 3.2 display the set Q = {12|34, 12|35}, and so this is not a definitive set

of quartets.

It is well-known that if Q defines T , then Q distinguishes every interior

edge of T . Otherwise, suppose that some interior edge e of T is not dis-

tinguished by Q. Then we can contract e to form a tree T ′ that is distinct

from T but still displays Q. Moreover, there are definitive quartet sets that

contain precisely one quartet for each interior edge of the tree they define.

As a binary tree with n leaves has precisely n− 3 interior edges, we have the

following result (see, for example, [42, Corollary 6.3.10]).

15

��

@@ ��

@@ ��

@@ ��

@@
T1

1

2 3 4

5

T2

1

2 4 3

5

Figure 3.2: Two trees T1, T2 ∈ T5 which both display the quartet set Q =
{12|34, 12|35}.

Theorem 3.1.2. Let T ∈ Tn be a tree with n ≥ 4 leaves. Then there is a

set of n− 3 quartets that defines T .

A definitive quartet set Q is minimal if Q defines some tree T , but Q− q

does not define T for all q ∈ Q. That is, minimal definitive quartet sets

contain no redundant information. Using the same example as previously,

Q = {12|34, 13|45} is a minimal definitive quartet set for T shown in Fig. 3.1.

The remainder of the chapter is structured as follows. Section 3.2 intro-

duces the idea of closure, and develops some inference rules for quartets and,

more generally, partial splits. In Section 3.3, we use these rules to reprove

the result of Mossel and Steel’s [35] that a generous cover defines a tree, and

then show that a slightly weakened version of this theorem does not hold.

It has been informally conjectured [14] that the size of a minimal definitive

quartet set for T ∈ Tn is bounded by n + c for some fixed constant c. We

conclude in Section 3.4 by showing that a minimal definitive quartet set may

in fact be as large as 3
2
n for a tree with n leaves.

3.2 Closure and Inference Rules

Let us pose the following question. If we are given a set of quartets with

the knowledge that they are all displayed by some leaf-labelled tree, what

information can we deduce about the tree from the quartet set? Can we infer

any further quartets that must also be displayed by this tree? We remark at

this point that we have implicitly assumed compatibility of the quartet set,

for otherwise the tree we are looking for does not exist.

Consider the example from Fig. 3.1 in the previous section, where a set

16

of only two quartets defined a five-leafed tree. In terms of the question we

asked above, if some tree displays both 12|34 and 13|45, then that same tree

is also guaranteed to display the three quartets {12|35, 12|45, 23|45}.
On the other hand, the following example shows that at least two possible

trees display both of 12|34 and 12|35. In fact, a third distinct tree T3 ∈ T5

(see Fig. 3.3) also displays these two quartets. A quick check shows that T1,

��

@@ ��

@@

1

2 5 4

3

Figure 3.3: A third tree T3 ∈ T5 that displays the quartet set Q =
{12|34, 12|35}.

T2 and T3 share precisely the quartets 12|34, 12|35 and 12|45.

Using these ideas, we define the closure of a compatible quartet set Q to

be

cl(Q) =
⋂
T

Q(T),

where the intersection is taken over all trees T that display Q. From the

examples above, we deduce that

cl({12|34, 12|35}) = Q(T1) ∩Q(T2) ∩Q(T3)

= {12|34, 12|35, 12|45},

and

cl({12|34, 13|45}) = Q(T1).

For partial splits, we define the closure in much the same way. That is, if Σ is

a compatible collection of partial splits, then the closure of Σ is written cl(Σ),

and contains all the common partial splits across those trees that display Σ.

Closure operators appear throughout mathematics and share certain use-

17

ful properties. We refer the interested reader to [16, Chapter 3] for a more

detailed discussion of the closure operator for quartets than has been given

here.

We now turn our attention to inference rules for quartets. Suppose that,

for a compatible set of quartets Q and some quartet q, we have

q ∈ cl(Q).

That is, q ∈ Q(T) for every tree T that displays Q. Then we write

Q ` q,

and refer to this as a quartet rule. Returning to our somewhat overused

example, we find that

{12|34, 12|35} ` 12|45

is a valid quartet inference rule.

For completeness, we generalise the concept of inference rules to deal with

partial splits. If σ is a partial split in cl(Σ) for some compatible set of partial

splits Σ, then we write

Σ ` σ.

The statement Σ ` σ is called a partial split rule. While it has been demon-

strated that no information would be lost by reducing Σ to its set of induced

quartets, it is frequently more straightforward to deal directly with partial

splits than with quartets.

Let us restate the rule that we mentioned above in a more complete form

(see [19]):

{ab|cd, ab|ce} ` ab|cde. (3.1)

We will refer to (3.1) as the dyadic closure rule. A triadic closure rule is

introduced and used in Chapter 5. Our next rule says that, if A1|B1 and

18

A2|B2 are partial splits with A1 ∩ A2 6= ∅ and B1 ∩B2 6= ∅, then

{A1|B1, A2|B2} ` (A1 ∩ A2)|(B1 ∪B2). (3.2)

The rule (3.2) is Rule 1 in [34], and is known as the split closure rule. We

observe also that (3.1) is a special case of (3.2).

The next lemma is obtained by repeated application of (3.1). The proof

is routine and thus omitted.

Lemma 3.2.1. Let σ be a non-trivial partial split of a set X. Then

Q(σ) ` σ.

Suppose that we wish to prove that some partial split rule is valid. That

is, we wish to show that Σ ` σ holds for some choice of Σ and σ. Assuming

that Σ is a compatible set of partial splits, it suffices by Lemma 3.2.1 to

show that Σ ` q for all q ∈ Q(σ). This fact will come in useful in proving a

number of results throughout the first part of this thesis.

We conclude this section with a lemma that will be of more immediate

use in Section 3.3. This lemma is essentially a partial split rule, and the

proof requires several uses of the split-closure rule (3.2).

Lemma 3.2.2. Let A1, A2, B1, B2 be non-empty disjoint sets with ai ∈
Ai, bi ∈ Bi, and let A = A1 ∪ A2, B = B1 ∪B2. If

Σ = {A1|B, A2|B, A|B1, A|B2, a1a2|b1b2},

then Σ ` A|B.

Proof. Applying (3.2), we find that Σ ` {a1, a2}|B1∪b2, from which it follows

that Σ ` {a1, a2}|B. Two further applications of (3.2) complete the result.

3.3 Covers of Trees

We earlier stated a theorem (Theorem 3.1.2) which was underpinned by

the idea that it is possible to define any binary leaf-labelled tree T by choos-

19

ing, for each interior edge e of T , a single quartet that distinguishes that

edge. We also justified why distinguishing every interior edge of a tree is

necessary if we wish to define that tree. However, this same condition is not

sufficient as the example in Fig. 3.4 shows. Both trees T1 and T2 in Fig. 3.4

��

@@ ��

@@ ��

@@ ��

@@
T1

1

2 3 4 5

6

T2

1

4 5 2 3

6

Figure 3.4: Two trees T1, T2 ∈ T6 which both display the quartet set Q =
{12|36, 23|45, 14|56}.

display the set of quartets Q = {12|36, 23|45, 14|56}, and further Q distin-

guishes every interior edge of both of these trees. And yet, since they both

display Q, neither of them is defined by Q.

Let us instead take this idea to the other extreme. Suppose we choose,

for some binary leaf-labelled tree T , an arbitrary set of quartets Q ⊆ Q(T)

such that every interior path of T is distinguished by some element of Q.

The question we then ask is whether Q is guaranteed to define T , or whether

in fact we can still find a non-definitive example. To this end, we formalise

the concept we have just outlined.

Definition 3.3.1. Let T be a binary leaf-labelled tree. Then a set of quartets

Q is a generous cover for T if and only if

(i) Q ⊆ Q(T); and

(ii) every interior path of T is distinguished by some quartet q ∈ Q.

The notion of a generous cover was introduced by Mossel and Steel in

[35] for investigating tree reconstruction under a random cluster model. Let

us restate a key theorem from this paper here:

Theorem 3.3.2 (Theorem 2.4, [35]). Let T be a binary leaf-labelled tree,

and let the set of quartets Q be a generous cover for T . Then Q defines T .

20

This theorem answers the question we posed above in the affirmative.

That is, a single quartet for each interior path of T suffices to define T . We

note that the size of a generous cover for a tree with n leaves is at least
(

n−2
2

)
,

the number of distinct interior paths in the tree. It can be shown quite easily,

however, that a generous cover for a tree is not a minimal defining set. That

is, if Q is a generous cover for T , then there is some strict subset Q′ ⊂ Q
such that

cl(Q′) = cl(Q) = Q(T).

As a simple example to demonstrate this, consider the tree T1 ∈ T6 shown

in Fig. 3.4. If Q is a generous cover for T1, then there is some x ∈ {4, 5, 6}
such that 12|3x ∈ Q. If x = 4, then there is also some y ∈ {5, 6} such that

12|xy ∈ Q. We may assume without loss of generality that y = 5, in which

case from (3.1) we have 12|35 ∈ cl(Q). On the other hand, if x 6= 4, then we

may assume that x = 5. In either case, we have shown that 12|35 ∈ cl(Q).

By following the same logic, we may argue further that 23|56 is also in the

closure of Q. These last two quartets infer 12|56 by (3.1), but we know that

12|56 is in Q, since Q is a generous cover for T1. That is,

cl(Q− {12|56}) = cl(Q).

This argument may be extended quite easily to caterpillars of any length,

and from there to arbitrary binary trees.

The original proof of Theorem 3.3.2 given in [35] relies on the construc-

tion, at least theoretically, of an auxiliary graph. We will reprove the theorem

here by first distilling the notion of a generous cover from whole trees to clus-

ters within trees.

Definition 3.3.3. Let T ∈ TX be a binary tree, and let Y ⊂ X be some

cluster of T . For some y ∈ Y , let Q′ be a generous cover for T |(X − Y)∪ y.

Then a set of quartets Q is a subcover for Y in T if and only if Q ∪Q′ is a

generous cover for T .

Essentially, a subcover is a set of quartets that distinguishes each path

that has at least one endpoint within the relevant cluster. A straightforward

21

but useful result is that a subcover for some cluster Y is also a subcover for

all clusters Z, where Z ⊆ Y .

Lemma 3.3.4. Let T ∈ TX be a binary tree, and let Z ⊆ Y ⊆ X. If Q is a

subcover for Y in T , then Q is a subcover for Z in T .

Proof. Suppose that Q′ is a generous cover for T |(X − Y) ∪ y and that Q′′

is a generous cover for T |(X − Z) ∪ z, where y ∈ Y, z ∈ Z. Then the set

of interior paths of T that are distinguished by Q′ is contained in the set

distinguished by Q′′. Since Q∪Q′ distinguishes every interior path of T , the

same can be said for Q∪Q′′, and hence Q is a subcover for Z in T .

Recall the closure rules discussed in Section 3.2. Using these, we can

obtain some elementary results about the closure of a subcover.

Lemma 3.3.5. Let T ∈ TX be a binary tree, and let Y ⊂ X be a cherry on

T . If Q is a subcover for Y in T , then Q ` Y |X − Y .

Proof. Let Z ⊆ X − Y be a cherry of T . Then Y |Z is the only quartet that

distinguishes the path between the two cherries Y, Z, and so Y |Z ∈ Q. Now,

suppose that Z ⊆ X − Y is a minimal cluster of T such that Q does not

infer the partial split Y |Z. Then there is a bipartition Z1, Z2 of Z such that

both Z1 and Z2 are clusters of T .

By the induction assumption, we know thatQ ` Y |Zi for i ∈ {1, 2}. From

the fact that Q is a subcover for Y in T , there is some quartet Y |z1z2 ∈ Q,

with zi ∈ Zi. It now follows from (3.2) that Q ` Y |Z, in contradiction to

our assumption.

The purpose of the preceeding lemma is so that we may proof the

analagous result for clusters in general.

Lemma 3.3.6. Let T ∈ TX be a binary tree, and let Y ⊂ X be a cluster of

T . If Q is a subcover for Y in T , then Q ` Y |X − Y .

Proof. By Lemma 3.3.5, this is true when |Y | = 2. Let Y be a minimal

cluster for which the lemma fails, and let Z ⊆ X − Y be a cherry of T .

There is also a bipartition Y1, Y2 of Y such that both Y1 and Y2 are clusters

of T . Note that Q is a subcover for each of Y1, Y2 by Lemma 3.3.4, and so

22

from our induction assumption we have Q ` Yi|Z for i ∈ {1, 2}. Since Q is

a subcover for Y in T , there is some quartet y1y2|Z ∈ Q where yi ∈ Yi. By

(3.2), we have Q ` Y |Z.

Now let Z ⊆ X−Y be a minimal cluster of T such that Y |Z is not inferred

by Q, and consider the bipartition Z1, Z2 of Z where Z1, Z2 are clusters of

T . Again, we have some quartet y1y2|z1z2 ∈ Q, where yi ∈ Yi, zi ∈ Zi. Our

induction assumption guarantees that Q ` {Yi|Z, Y |Zi} for i ∈ {1, 2}, and

so the result follows from Lemma 3.2.2.

Proof of Theorem 3.3.2. If Q is a generous cover for T and Y is a cluster

of T , then Q is a subcover for Y in T . By Lemma 3.3.6 then, every split

Y |X − Y of T is inferred by Q. Thus Q defines T by the Splits-Equivalence

Theorem (Theorem 3.1.1).

We demonstrated earlier that a generous cover has an element of redun-

dancy to it. To this end, we wish to briefly explore a weakening of the notion

of a generous cover. Instead of distinguishing every interior path within a

tree, we are interested in quartet sets that distinguish all interior paths that

do not exceed some given length.

Definition 3.3.7. Let T be a binary tree, and k ≥ 1 be some positive

integer. Then a set of quartets Q is a k-cover for T if and only if

(i) Q ⊆ Q(T); and

(ii) every interior path of T that is of length l ≤ k is distinguished by some

quartet q ∈ Q.

We can rephrase some ideas from earlier in terms of 1-covers. For example,

if Q defines a binary tree T , then Q contains a 1-cover for T . Further to

this, Theorem 3.1.2 follows from the assertion that, for a given binary tree

T , there is a definitive set of quartets Q for T that is precisely a 1-cover for

T . However, the next lemma may be used to show that there is no fixed

positive integer k such that every k-cover for an arbitrary tree is definitive.

Lemma 3.3.8. For some positive integer k ≥ 1, let C ∈ Cn be a caterpillar

with n = 2k +4 leaves. Then there exists a k-cover for C that does not define

C.

23

Proof. Let C1 ∈ Cn be a caterpillar with n = 2k+4 leaves for some k ≥ 1. We

may assume that C1 has the canonical caterpillar labelling shown in Fig. 3.5.

To prove the lemma, we will explicitly construct a k-cover Q for C1 such that

��

@@ ��

@@

1

2 k + 2 k + 3 2k + 3

2k + 4

Figure 3.5: The caterpillar C1 ∈ Cn in the proof of Lemma 3.3.8.

each q ∈ Q is also displayed by another tree T ∈ Tn.

Let C2 ∈ Cn be the caterpillar shown in Fig. 3.6, and let a, b be a pair of

��

@@ ��

@@

1

k + 3 2k + 3 2 k + 2

2k + 4

Figure 3.6: The caterpillar C2 ∈ Cn in the proof of Lemma 3.3.8.

leaves of C1 such that 2 ≤ a < b ≤ 2k + 3 and b− a ≤ k. If either b ≤ k + 2

or a ≥ k + 3, then we let q = 1a|bn. Otherwise we have a > 2 and b < n− 1,

and we let q = 2a|b(n − 1). In either case, the quartet q distinguishes the

path from the vertex adjacent to a to the vertex adjacent to b. Moreover, q

is displayed by C2, completing the proof.

To illustrate Lemma 3.3.8, suppose that k = 2. Then n = 8, and

Q = {12|38, 13|48, 24|57, 15|68, 16|78, 12|48, 23|57, 24|67, 15|78}

is a 2-cover for the caterpillar C1 ∈ C8 shown in Fig. 3.7. However, Q is also

displayed by the caterpillar C2 ∈ C8, and so does not define C1.

24

��

@@ ��

@@

��

@@ ��

@@

C1

1

2 3 4 5 6 7

8

C2

1

5 6 7 2 3 4

8

Figure 3.7: Caterpillars C1, C2 ∈ C8 that illustrate Lemma 3.3.8.

Lemma 3.3.8 can be extended quite naturally to trees in general. As a

corollary to either this lemma or Theorem 3.3.9, we have our earlier statement

that there is a non-definitive k-cover for all positive integers k.

Theorem 3.3.9. For some positive integer k ≥ 1, let T be a binary leaf-

labelled tree with some interior path of length n = 2k + 1. Then there exists

a k-cover for T that does not define T .

Corollary 3.3.10. There exist non-definitive k-covers for all positive inte-

gers k ≥ 1.

We omit the proofs of both the theorem and the corollary above.

The proof of the former follows much the same reasoning as the proof of

Lemma 3.3.8, while the proof of Corollary 3.3.10 is a trivial consequence of

either Lemma 3.3.8 or Theorem 3.3.9.

3.4 The Size of a Minimal Definitive Quartet Set

Up until now, we have made only passing mention of minimal definitive

quartet sets. These sets may be thought of as the most basic sets of infor-

mation that can be used to build up a unique tree. It is still unknown how

large a such a set may be as a function of n, where n is the size of the leaf-set

25

under scrutiny. What is known is, that if Q is a minimal definitive set of

quartets, and |L(Q)| = n, then |Q| ≥ n− 3.

Let M(n) be the greatest positive integer such that there exists a minimal

definitive set of quartets Q of size M(n), where n = |L(Q)|. It is trivial to

show that M(n) is well-defined, since the size of Q(T) is finite for any finite

leaf-labelled tree. Ultimately, we would like to find a tight upper bound

on the function M(n), although this has as yet proved beyond reach. We

mentioned earlier an anonymous conjecture that M(n) = n+c for some fixed

constant c. In the remainder of this chapter, we prove Theorem 3.4.1 stated

below, immediately invalidating the conjecture.

Theorem 3.4.1. Let n ≥ 4 be some positive integer. Then

M(n) ≥ 3

2
(n− 4).

To prove this result, we will use the following two theorems about amalga-

mating compatible collections of trees that have at least one leaf in common.

Theorem 3.4.2 (Theorem 6.8.8, [42]). Let P be a collection of leaf-labelled

trees and suppose that
⋂
T ∈P L(T) 6= ∅. Then P defines a binary leaf-labelled

tree T if and only if T displays P and each interior edge of T is distinguished

by an interior edge of at least one tree in P.

Theorem 3.4.3 (Corollary 6.8.9, [42]). Let T1, T2 be binary leaf-labelled trees,

and let Y = L(T1) ∩ L(T2). Then T1 and T2 are compatible if and only if

T1|Y = T2|Y .

As a special case of Theorem 3.4.2, we get the following closure rule. We

have already used this rule implicitly in Section 3.1, when stating that the

tree T shown in Fig. 3.1 is defined by Q = {12|34, 13|45}.

{ab|cd, ac|de} ` ab|ce (3.3)

This is sometimes referred to as the semi-dyadic closure rule (see, for exam-

ple, [42]).

The basic example which we will take as our starting point for proving

Theorem 3.4.1 is due to Bordewich and Semple [14], and consists of a set of

26

six quartets that defines a seven-leafed tree.

Lemma 3.4.4. The set of quartets

Q = {12|35, 13|46, 24|57, 35|67, 12|46, 34|67}

is a minimal definitive quartet set.

Proof. Let us begin by showing a tree that displays Q, namely the caterpillar

��

@@ ��

@@

1

2 3 4 5 6

7

Figure 3.8: A tree T ∈ T7 that displays the quartet set Q from Lemma 3.4.4.

T ∈ T7 shown in Fig. 3.8. It suffices to show that Q defines T , and that any

strict subset of Q is displayed by some other tree T ′ ∈ T7 distinct from T .

Using (3.1), we have {12|46, 13|46} ` 23|46 and {34|67, 35|67} ` 45|67,

so both 23|46 and 45|67 are in the closure of Q. Further, by (3.3) we can

make the inference {24|57, 45|67} ` 25|67. Thus we have

{12|35, 23|46, 24|57, 25|67} ⊆ cl(Q).

The quartets in this subset all contain a common leaf, and further they

collectively distinguish each interior edge of T . Hence Q defines T by The-

orem 3.4.2.

Suppose now that there is some q ∈ Q such that cl(Q−q) = Q(T). Then

in fact q ∈ {12|46, 34|67}, since the other four quartets in Q distinguish

distinct interior edges of T . However, the trees T1, T2 in Fig. 3.9 respectively

display Q − 12|46 and Q − 34|67. It follows that Q is indeed a minimal

definitive set, completing the lemma.

The proof of Theorem 3.4.1 now follows relatively easily from Lemma 3.4.4

and Theorem 3.4.2.

27

��

@@

�� @@

��

@@
T1

3

5 1
2 4

6

7

��

@@ ��

@@
T2

3

5 1 7 2 4

6

Figure 3.9: Trees T1, T2 ∈ T7 which respectively display Q − 12|46 and
Q− 34|67, for Q as given in Lemma 3.4.4.

Proof of Theorem 3.4.1. The result certainly holds for n ≤ 6 from the ob-

servation that M(n) ≥ n − 3, and for n = 7 from Lemma 3.4.4. Suppose

instead that n ≥ 8, and that T ∈ Tn is the caterpillar shown in Fig. 3.10. Let

��

@@ ��

@@

1

2 3 n− 2 n− 1

n

Figure 3.10: The tree T ∈ Tn in the proof of Theorem 3.4.1.

X1 = {1, . . . , n− 4} and X2 = {n− 6, . . . , n}. By the induction hypothesis,

there is some set Q1 containing at least 3
2
(n − 8) quartets that minimally

defines T |X1, and by Lemma 3.4.4 there is some set Q2 containing exactly

six quartets that minimally defines T |X2. Hence, using Theorem 3.4.2, the

set Q = Q1 ∪Q2 defines T .

Suppose now that q ∈ Q1. Then there is some tree T ′ ∈ TX1 that is

distinct from T |X1 but that displays Q1 − q. Since |X1 ∩X2| = 3, the trees

T ′ and T |X2 are compatible by Theorem 3.4.3, and hence Q − q does not

define T . A similar argument holds for all q ∈ Q2, and so Q in fact minimally

defines T . Moreover, since |X1 ∩X2| = 3, the intersection Q1 ∩Q2 is empty.

It now follows that

|Q| ≥ 3

2
(n− 8) + 6

=
3

2
(n− 4),

completing the proof.

Chapter 4

The Quartet Graph

4.1 Introduction

We earlier proposed three fundamental questions that arise when dealing

with combining the data from a collection of trees F . These are

(i) is F compatible;

(ii) does F define some leaf-labelled tree; and

(iii) does F identify some leaf-labelled tree.

In this chapter, we introduce the quartet graph and show that, in addition

to the chordal graph characterisations ([18, 34, 41, 45]), these problems can

also be characterised in terms of edge colourings via this graph. One of the

main motivations for the quartet graph is that it may provide new insights

into not only the complexity of (ii), but also other quartet-based problems

that may arise in studying leaf-labelled trees. Indeed, in Chapter 5, we make

use of the quartet graph and its associated concepts to determine, for a given

tree T , the size of a minimum-sized set of quartets that identifies T . The

resulting theorem corrects a previously published result [42].

The remainder of the chapter is organised as follows. The next section

consists of preliminaries and formal statements of the main results. For

completeness, Section 4.4 contains the chordal graph characterisations of

problems (i)-(iii). Section 4.5 contains the proofs of the characterisations of

(i)-(iii) in terms of quartet graphs. The proof of the compatibility character-

isation is algorithmic and thus provides a leaf-labelled tree that displays the

original collection of quartets if this collection is compatible.

28

29

4.2 The Quartet Graph

For a collection Q of quartets with leaf set X, we define the quartet graph

of Q, denoted GQ, as follows. The vertex set of GQ is the set of singletons of

X and, for each q = ab|cd ∈ Q, there is an edge joining {a} and {b}, and an

edge joining {c} and {d} each of which is labelled q. Apart from these edges,

GQ has no other edges. Note that if q1 = ab|cd, q2 = ab|ce ∈ Q, then GQ

has edges {a, b} and {c, d} labelled q1, and separate edges {a, b} and {c, e}
labelled q2. For purposes later in the paper, in reference to q, we sometimes

use {a, b}q and {c, d}q to denote the two parts of q.

As an example, consider the set of quartets Q = {12|45, 23|56, 34|16}.
The quartet graph of Q is shown in Fig. 4.1, where, instead of labelling

the edges with the appropriate element of Q, we have used solid, dashed,

and dotted lines to represent the edges arising from 12|45, 23|56 and 34|16

respectively.

u{1} �
�
�
u{2} u{3}p p p p p p p p p p pu{4}

�
�

�u
{5}

u
{6}

pppppppp
ppp

Figure 4.1: The quartet graph for Q = {12|45, 23|56, 34|16}.

Each edge of GQ has a partner, namely, the one which is labelled by the

same quartet. Another way we could have indicated this is by assigning a

distinct colour to each quartet in Q, and then assigning this colour to each

of the two edges corresponding to this quartet. In doing this, we observe

that the resulting edge colouring of GQ is a proper edge colouring. From this

viewpoint, we say that an edge is q-coloured if it is labelled q. Recall that

an edge colouring of a graph G is an assignment of colours to the edges of

G. An edge colouring is proper if no two edges incident with the same vertex

have the same colour.

Central to this chapter is a particular graphical operation that unifies

vertices. Let X be a non-empty finite set, and let G be an arbitrary graph

30

with no loops and whose vertex set V is a partition of X, where no part is

the empty set. In other words, X is the disjoint union of the vertices of G.

Furthermore, suppose that G is properly edge-coloured. Let U be a subset

of V with the property that if e and f are distinct edges of G with the same

colour, then at most one of these edges is incident with a vertex in U . The

unification of the vertices in U is the graph obtained from G by

(i) replacing the vertices in U together with every edge for which both end-

vertices are in U by a single new vertex such that if an edge is incident

with exactly one vertex in U , then it is incident with the resulting new

vertex;

(ii) labelling the new vertex as the union of the elements in U ; and

(iii) for each edge that joins two vertices in U , delete all other edges with

the same colour.

Observe that, at the end of (ii), the resulting graph remains properly edge-

coloured.

4.3 Main Results

Let Q be a collection of quartets on X. The quartet graph GQ satisfies

the properties of being loopless and properly edge-coloured, and so we can

apply unification operations to this graph. Let G0 = GQ, G1, . . . , Gk be a

sequence S of graphs, where Gi is obtained from Gi−1 by a unification for

all i ∈ {1, . . . , k}. We will call such a sequence a unification sequence of

GQ. If Gk has no edges, then S is said to be complete. As a matter of

convenience, for all i ∈ {1, . . . , k} we denote by Si the unification sequence

G0 = GQ, G1, . . . , Gi.

Example 4.3.1. Consider the quartet graph GQ shown in Fig. 4.1. Fig-

ure 4.2 illustrates a unification sequence of GQ beginning with GQ on the

top left and ending with the graph G3 consisting of three isolated vertices

on the bottom right. Initially, we unify the vertices {2} and {3} to get G1.

The third graph, G2, is obtained by unifying {1} and {6} in G1, while G3 is

31

u{1} �
�
�
u{2} u{3}p p p p p p p p p p pu{4}

�
�

�u
{5}

u
{6}

pppppppp
ppp

G0 = GQ

u{1},
,

,,
u{2, 3}p p p p p p p p p p pu{4}

�
�

�u
{5}

u
{6}

pppppppp
ppp

G1

u
{1, 6}

u{2, 3}

u{4}
�

�
�u
{5}

G2

u{1, 2, 3, 6} u{4}
u
{5}

G3

Figure 4.2: A complete unification sequence of the quartet graph in Fig. 4.1.

obtained from G2 by unifying {1, 6} and {2, 3}. Since this last graph has no

edges, this unification sequence is complete.

The following theorem characterises the compatibility of a collection of

quartets in terms of quartet graphs.

Theorem 4.3.2. Let Q be a set of quartets. Then Q is compatible if and

only if there is a complete unification sequence of GQ.

As an illustration of Theorem 4.3.2, the set Q = {12|45, 23|56, 34|16} is

compatible since there is a complete unification sequence of GQ (see Fig. 4.2).

Indeed, the tree T shown in Fig. 4.3 displays Q.

bb
2

""
3

""bb
1

6

bb

5

""
4

Figure 4.3: A tree T that displays Q = {12|45, 23|56, 34|16}.

32

We have not yet provided a formal definition of an identifying quartet

set. A set of quartets Q with X = L(Q) identifies a tree T ∈ TX if and only

if

(i) T displays Q; and

(ii) if T ′ ∈ TX displays Q, then Σ(T) ⊆ Σ(T ′).

The second condition here is equivalent to requiring that all trees T ′ ∈ TX

displaying Q are refinements of T .

To describe our characterisations of when a set of quartets identifies and

defines a leaf-labelled tree, we require some further definitions. The first of

these generalises the notion of distinguishing an edge of a binary tree to an

analogous concept for arbitrary leaf-labelled trees.

Let T ∈ TX be a tree that displays a collection Q of quartets on X, and

let e = uv be an interior edge of T . We define GQ(u,v) to be the graph that has

the neighbours of v except u as its vertex set, and where two vertices wi, wj

are joined by an edge precisely if there is a quartet in Q that distinguishes

e and is of the form wiwj|xy for some x, y ∈ X. A set Q of quartets on X

specially distinguishes a tree T ∈ TX if T displays Q and, for every interior

edge e = uv of T , both GQ(u,v) and GQ(v,u) are connected.

Let Q be a collection of quartets on X, and let G0 = GQ, G1, . . . , Gk be a

unification sequence S of GQ. For all i, let Ui denote the subset of vertices of

Gi−1 that are unified to obtain Gi and let Ai denote the union of the elements

of Ui. We will call U1, . . . , Uk the sequence of unifying sets associated with

S. Observe that, for all i and j with i < j, either Ai ⊆ Aj or Ai ∩ Aj = ∅.
This observation will be used throughout the paper. Furthermore, we call

ΣS = {Ai|(X − Ai) : i ∈ {1, . . . , k}}

the set of splits induced by S.

Now let q = ab|cd be an element of Q. If, for some j, either {a, b} or {c, d}
is a subset of Aj, but neither {a, b} ⊆ Ai nor {c, d} ⊆ Ai for all i < j, then

we say that q has been collected by Uj or, more generally, by S. Moreover,

if {a, b} ⊆ Aj and, for all i < j, neither {a, b} ⊆ Ai nor {c, d} ⊆ Ai, we say

that Aj or, again more generally, S merged {a, b}q. For a subset Q′ of Q, we

33

denote the set

{{a, b}q : q = ab|cd ∈ Q′ and S merged {a, b}q}

by M(Q′)S .

Lastly, if S is complete, then S is said to be minimal if there is no other

complete unification sequence S ′ with U ′
1, . . . , U

′
l as its sequence of unifying

sets such that {A′
j : j ∈ {1, . . . , l}} is a proper subset of {Ai : i ∈ {1, . . . , k}},

where A′
j is the union of the elements in U ′

j for all j.

Theorem 4.3.3. Let Q be a set of quartets on X. Then Q identifies a

leaf-labelled tree if and only if both of the following conditions hold:

(i) There exists a leaf-labelled tree T ∈ TX that displays Q and is specially

distinguished by Q.

(ii) Let Q′ be a minimal subset of Q that specially distinguishes T and let

q = A|B ∈ Q′. Let S and S ′ be minimal complete unification sequences

of GQ such that, amongst the quartets in Q′, the quartet q is collected

(joint) last and A is merged. Then M(Q′)S = M(Q′)S′.

Provided (i) holds in Theorem 4.3.3, we remark here that there is al-

ways at least one minimal complete unification sequence that satisfies the

assumption conditions in (ii) (see Lemma 4.5.5).

bb""1

2

""

3

bb 4

""
6

bb
5

Figure 4.4: A second tree T ′ that also displays Q = {12|45, 23|56, 34|16}.

Example 4.3.4. To illustrate Theorem 4.3.3, again consider the set of quar-

tets Q = {12|45, 23|56, 34|16}. As well as the tree T shown in Fig. 4.3, the

tree T ′ shown in Fig. 4.4 also displays Q. Since Q specially distinguishes T ,

34

and the second tree T ′ is not a refinement of T , the set Q does not identify

any leaf-labelled tree. This fact is realised by Theorem 4.3.3 as follows.

In addition to the complete unification sequence S1 shown in Fig. 4.2,

Fig. 4.5 shows a second complete unification sequence S2 of GQ. Now, Q
specially distinguishes T . In both S1 and S2, the quartet 12|45 is the last

quartet of Q that is collected and {1, 2} is merged. Consider the quartet

23|56 ∈ Q. In S1, we have that {2, 3} is merged, while, in S2, we have that

{5, 6} is merged. Thus M(Q)S1 6= M(Q)S2 . It now follows by Theorem 4.3.3

that Q does not identify a leaf-labelled tree.

u{1} �
�
�
u{2} u{3}p p p p p p p p p p pu{4}

�
�

�u
{5}

u
{6}

pppppppp
ppp

G0 = GQ

u{1} �
�
�
u{2} u{3}p p p p p p p p p p pu{4}

,
,

,,u
{5, 6}

pppppppp
ppp

G′
1

u{1} �
�
�
u{2} u{3, 4}

u

{5, 6}
G′

2

u{1, 2} u{3, 4}

u
{5, 6}
G′

3

Figure 4.5: Another complete unification sequence of the quartet graph in
Fig. 4.1.

We remark here that the quartet set Q used in Example 4.3.4 shows that

condition (i) by itself in Theorem 4.3.3 is not sufficient for a collection of

quartets to identify a leaf-labelled tree, as Q specially distinguishes the tree

shown in Fig. 4.3.

As a consequence of Theorem 4.3.3, we have the following corollary.

Corollary 4.3.5. Let Q be a set of quartets on X. Then Q defines a leaf-

labelled tree if and only if both of the following conditions hold:

35

(i) There exists a binary tree T ∈ TX that displays Q and is distinguished

by Q.

(ii) Let Q′ be a minimum-sized subset of Q that distinguishes T and let

q ∈ Q′. Let S and S ′ be minimal complete unification sequences of GQ

such that, amongst the quartets in Q′, the quartet q is collected last.

Then M(Q′ − q)S = M(Q′ − q)S′.

A one-split leaf-labelled tree is a leaf-labelled tree with exactly one interior

edge. For example, a quartet is a one-split tree with four leaves. If the

single non-trivial split of this tree is {a1, . . . , ar}|{b1, . . . , bs}, then we will

denote this tree by a1 · · · ar|b1 · · · bs or A|B, where A = {a1, . . . , ar} and

B = {b1, . . . , bs}.

4.4 Chordal Graph Characterisations

In this section, we state the chordal graph analogues of Theorems 4.3.2

and 4.3.3, and Corollary 4.3.5. This section is independent of the rest of the

chapter and so the reader may wish to initially skip it.

The partition intersection graph of a collection Q of quartets, denoted

int(Q), is the vertex-coloured graph that has vertex set⋃
q=A|B∈Q

{
(q, A), (q, B)

}
,

and an edge joining (q′, B′) and (q′′, B′′) precisely if B′ ∩ B′′ is non-empty.

Here two vertices are the same colour if they share the same first coordinate.

A graph is chordal if none of its vertex-induced subgraphs is isomorphic to

a cycle with at least four vertices. A graph G is a restricted chordal completion

of int(Q) if G is a chordal graph that can be obtained from int(Q) by only

adding edges between vertices whose first coordinates are distinct. Note that

this maintains the property of a proper vertex colouring. Theorem 4.4.1, the

chordal graph analogue of Theorem 4.3.2, was indicated by Buneman [18]

and Meacham [34], and formally proved by Steel [45].

Theorem 4.4.1. Let Q be a set of quartets. Then Q is compatible if and

only if there is a restricted chordal completion of int(Q).

36

A restricted chordal completion G of int(Q) is minimal if, for every non-

empty subset F of edges of E(G)−E(int(Q)), the graph G\F is not chordal.

The next theorem is due to Semple and Steel [41].

Theorem 4.4.2. Let Q be a set of quartets on X. Then there is a unique

leaf-labelled tree T ∈ TX that displays Q if and only if the following two

conditions hold:

(i) there is a binary leaf-labelled tree that displays Q and is distinguished

by Q; and

(ii) there is a unique minimal restricted chordal completion of int(Q).

To describe the chordal graph analogue of Theorem 4.3.3 requires some

further definitions. Let T ∈ TX be a tree and let e = u1u2 be an edge of

T . Then e is strongly distinguished by a one-split tree A1|A2 if, for each

i ∈ {1, 2}, the following hold:

(i) Ai is a subset of the vertex set of the component of T \e containing ui;

and

(ii) the vertex set of each component of T\ui, except for the one containing

the other end vertex of e, contains an element of Ai.

For a collection Q of quartets on X, let G(Q) denote the collection of

graphs

{G : there is a leaf-labelled tree T displaying Q with G = int(Q, T)},

where int(Q, T) is the graph that has the same vertex set as int(Q), and an

edge joining two vertices (q, A) and (q′, A′) if the vertex sets of the minimal

subtrees of T connecting the elements in A and A′ have a non-empty inter-

section. Note that if G is a graph in G(Q), then G is a restricted chordal

completion of int(Q). There is a partial order ≤ on G(Q) which is obtained

by setting G1 ≤ G2 for all G1, G2 ∈ G(Q) if the edge set of G1 is a subset

of the edge set of G2. Lastly, a compatible collection Q of quartets infers

a one-split tree if every leaf-labelled tree that displays Q also displays this

one-split tree. Theorem 4.4.3 was established by Bordewich et al. [13].

37

Theorem 4.4.3. Let Q be a set of quartets on X. Then Q identifies a

leaf-labelled tree if and only if the following conditions hold:

(i) there is a leaf-labelled tree that displays Q and, for every edge e of this

tree, there is a one-split leaf-labelled tree inferred by Q that strongly

distinguishes e; and

(ii) there is a unique maximal element in G(Q).

Note that if Q is a collection of quartets, then int(Q) is the line graph of

the quartet graph GQ where, for a graph G, the line graph of G has vertex set

E(G) and two vertices joined by an edge precisely if they are incident with

a common vertex in G. The vertex colouring of the partition intersection

graph corresponds to the edge colouring of the quartet graph. However, the

characterisations of defining and identifying quartet sets described in this

section and those derived in this chapter are quite different and we do not

use the duality between the partition intersection graph and the quartet

graph to prove the new results.

We also point out that the results stated in this section were originally

proved for general characters (that is, partitions of X) rather than for quar-

tets. The concept of the quartet graph can be extended to this more general

setup but then hypergraphs must be considered. On the other hand, the

information contained in characters can be expressed in terms of quartets

thus no generality is lost in restricting our attention to quartets here (see

[42, Proposition 6.3.11]).

4.5 Proofs of Theorems 4.3.2 and 4.3.3, and Corol-

lary 4.3.5

The proof of Theorem 4.3.2 is an immediate consequence of the next two

lemmas.

Lemma 4.5.1. Let Q be a set of quartets on X, and let S be a unification

sequence of GQ. Then the set ΣS of splits induced by S is compatible. More-

over, if Q′ denotes the subset of Q collected by S, then the leaf-labelled tree

38

whose set of non-trivial splits is ΣS displays each of the quartets in Q′, but

no quartet in Q−Q′.

Proof. Suppose that S is the sequence G0 = GQ, G1, . . . , Gk with unifying

sequence U1, . . . , Uk. For all i, let Ai denote the union of the elements of Ui.

The proof of the proposition is by induction on k. If k = 0, the result holds

trivially. Now suppose that the result holds for all unification sequences

of GQ of smaller length, in particular, the result holds for the unification

sequence G0 = GQ, G1, . . . , Gk−1. Denote this last sequence by S ′.
Consider the split Ak|(X −Ak), and note that, by the induction assump-

tion, ΣS′ is compatible. Let Ai|(X−Ai) ∈ ΣS′ . Since Ai is a subset of a vertex

of Gk−1, either Ai ⊆ Ak, in which case Ai∩ (X−Ak) = ∅, or Ai∩Ak = ∅. In

either case, by the Splits-Equivalence Theorem (Theorem 3.1.1), Ai|(X−Ai)

and Ak|(X−Ak) are compatible. It follows by the induction assumption and

the Splits-Equivalence Theorem (Theorem 3.1.1) that ΣS is compatible.

Let T denote the leaf-labelled tree whose set of non-trivial splits is ΣS ,

and let T ′ denote the leaf-labelled tree whose set of non-trivial splits is ΣS′ .

By the induction assumption, T ′ displays each of the quartets collected by

S ′, but no other quartet in Q. Assume that ab|cd is a quartet collected by

Uk. Then either a, b ∈ Ak and c, d ∈ X −Ak, or c, d ∈ Ak and a, b ∈ X −Ak,

and so T displays ab|cd. Since T is a refinement of T ′, it follows that T
displays each of the quartets collected by S. Moreover, if wx|yz is a quartet

of Q not collected by S, then, for all i ∈ {1, . . . , k},

{w, x, y, z} ∩ Ai 6∈ {{w, x}, {y, z}},

and so wx|yz is not displayed by T .

Given Lemma 4.5.1, we call the tree T whose set of non-trivial splits is

equal to the set of splits induced by a unification sequence S the leaf-labelled

tree induced by S.

Lemma 4.5.1 provides one direction of the proof of Theorem 4.3.2. The

next lemma gives the other direction.

Let Q be a set of quartets on X and let T ∈ TX be a tree that displays Q.

Let v be an interior vertex of T . Order the elements A1|(X−A1), . . . , Ak|(X−

39

Ak) of Σ(T) as follows:

(i) If ei is the edge of T that induces Ai|(X − Ai), then Ai is the subset

of the vertex set of the component that does not contain v in T \ei.

(ii) If i < j, then either Ai ⊆ Aj or Ai ∩ Aj = ∅.

It is easily checked that such an ordering is possible. Now let Sv denote the

sequence of graphs G0 = GQ, G1, . . . , Gk, where, for all i, the graph Gi is

obtained from Gi−1 by unifying the vertices whose disjoint union is Ai. It

is easily seen that Sv is well-defined. The next lemma shows that Sv is a

complete unification sequence of GQ.

Lemma 4.5.2. Let Q be a set of quartets on X and let T ∈ TX be a tree

that displays Q. Let v be an interior vertex of T . Then Sv (as described

above) is a complete unification sequence of GQ.

Proof. Suppose that Sv is not such a sequence and let j denote the smallest

index for which Gj is not a unification of Gj−1. Since Gj is not a unification

of Gj−1, there is a quartet, ab|cd say, in Q not yet collected by Sv such

that |{a, b, c, d} ∩ Aj| ≥ 2, where, in the case |{a, b, c, d} ∩ Aj| = 2, we have

{a, b, c, d} ∩ Aj 6∈ {{a, b}, {c, d}}. If |{a, b, c, d} ∩ Aj| = 2, then, by the

construction of Sv, the tree T does not display ab|cd; a contradiction. So

we may assume that |{a, b, c, d} ∩ Aj| ≥ 3. But then by our choice of q, Uj

contains three distinct vertices each having a non-empty intersection with

{a, b, c, d}. This implies that no split of T displays q; a contradiction. Hence

Sv is a unification sequence of GQ. To see that Sv is complete, note that T
displays Q and so, for each quartet, ab|cd in Q, there exists some i with the

property that either a, b ∈ Ai or c, d ∈ Ai. This establishes the lemma.

Proof of Theorem 4.3.2. This is now an immediate consequence of Lem-

mas 4.5.1 and 4.5.2.

We begin the proof of Theorem 4.3.3 with three lemmas.

Lemma 4.5.3. Let Q be a collection of quartets on X. If Q identifies a

leaf-labelled tree T , then Q specially distinguishes T .

40

Proof. Suppose that Q identifies T , but does not specially distinguish T .

Then there exists an interior edge, uv say, of T such that GQ(u,v) contains

k > 1 components C1, . . . , Ck. We next construct a leaf-labelled tree T ′ from

T that displays Q but is not a refinement of T .

Recalling the definition of GQ(u,v), delete v and all its incident edges from

T . For each i ∈ {1, . . . , k}, either add a new edge joining u and the vertex of

Ci if Ci contains exactly one vertex, or adjoin a new vertex vi to u via a new

edge and, for each vertex w of Ci, add a new edge joining vi and w. It is now

easily seen that the resulting tree T ′ displays Q. But T ′ is not a refinement

of T . It now follows that Q specially distinguishes T .

A leaf-labelled tree is minimally refined with respect to displaying a set

Q of quartets if it is not a proper refinement of another tree that displays Q.

Lemma 4.5.4. Let Q be a compatible set of quartets on X. If S is a minimal

complete unification sequence of GQ, then the leaf-labelled tree whose set of

non-trivial splits is ΣS is minimally refined with respect to displaying Q.

Proof. Suppose that S is the sequence G0 = GQ, G1, . . . , Gk with unifying

sequence U1, . . . , Uk, and let T be the leaf-labelled tree whose set of non-

trivial splits is ΣS . If T is not minimally refined with respect to displaying

Q, then there is an edge e of T whose contraction results in another tree, T ′

say, that displays Q. Let Ae|(X − Ae) denote the split of T induced by e,

where, for some i, Ae is the union of the elements of Ui.

Let S ′ be the sequence that is obtained from S by replacing the sequence

of unifying sets associated with S with U1, . . . , Ui−1, U
′
i+1, . . . , U

′
k, where, for

all j ∈ {i + 1, . . . , k},

U ′
j =

(Uj − Ae) ∪ Ui, if Ae is an element of Uj;

Uj, otherwise.

Note that if, for some j, U ′
j 6= Uj, then there is exactly one such j. To prove

the lemma, it suffices to show that S ′ is a complete unification sequence of

GQ.

Clearly, Si−1 is a unification sequence of GQ. Consider G′
i+1. If

U ′
i+1 = Ui+1, then it is easily seen that G0 = GQ, G1, . . . , Gi−1, G

′
i+1 is

41

a unification sequence of GQ. Therefore assume that U ′
i+1 6= Ui+1. If

G0 = GQ, G1, . . . , Gi−1, G
′
i+1 is not a unification sequence, then there is a

quartet, q say, in Q such that the two q-coloured edges are both incident

with vertices in U ′
i+1. Since Si+1 is a unification sequence of GQ, this implies

that one of these q-coloured edges, ab say, is incident with two vertices in Ui,

while the other q-coloured edge, cd say, is incident with at least one vertex

in Ui+1 −Ae. It now follows that Ae|(X −Ae) is the unique split in ΣS that

displays q. In turn, this implies that T ′ does not display Q; a contradiction.

Thus G0 = GQ, G1, . . . , Gi−1, G
′
i+1 is a unification sequence of GQ. Moreover,

G′
i+1 = Gi+1 and, for all j ∈ {i + 2, . . . , k}, we have U ′

j = Uj. It now follows

that in this case S ′ is a complete unification sequence of GQ.

Considering, in turn, each of the graphs G′
i+2, . . . , G

′
k and repeatedly using

the same argument as that in the previous paragraph, we eventually deduce

that either S ′ is a complete unification sequence of GQ or S ′ is a unification

sequence but not complete. In the latter case, there is a q′ ∈ Q such that

G′
k contains two q′-coloured edges. By Lemma 4.5.1, the leaf-labelled tree

whose set of non-trivial splits is ΣS′ does not display q′. But, as S ′ is not

complete, U ′
j = Uj for all j and so ΣS′ = ΣS − Ae|(X − Ae). But ΣS′ is the

set of non-trivial splits of T ′ and so T ′ does not display q′; a contradiction.

This completes the proof of the lemma.

Lemma 4.5.5. Let Q be a set of quartets on X and let T ∈ TX be a tree

that displays Q and is distinguished by Q. Let q = A|B be a quartet in Q
that distinguishes an edge e = uv of T . Then there is a minimal complete

unification sequence of GQ such that, amongst the quartets in Q, the quartet

q is collected (joint) last and A is merged. In particular, by choosing v to

be the vertex of T such that the elements in A are in a different component

of T \e from v, the sequence Sv described prior to Lemma 4.5.2 is such a

sequence.

Proof. Suppose that q distinguishes the edge e = uv of T , and let Ae|(X−Ae)

denote the split of T induced by e. Without loss of generality, we may assume

that the elements in A are in the same component of T \e as u. Let Sv be the

complete unification sequence of GQ as described prior to Lemma 4.5.2 with

the additional proviso that Ae|(X − Ae) is last in the associated ordering

42

of the non-trivial splits induced by the edges of T . It is easily seen using

Lemma 4.5.2 that such an ordering and sequence is possible.

To complete the proof of the lemma, we show that Sv is minimal. If

not, then there is a complete unification sequence S of GQ such that ΣS is a

proper subset of Sv. But then T is a proper refinement of the tree whose set

of non-trivial splits is ΣS . Since this last tree also displays Q, we contradict

the fact that Q distinguishes T . Thus Sv is minimal.

Proof of Theorem 4.3.3. First suppose that Q identifies a leaf-labelled tree

T . Then, by Lemma 4.5.3, (i) holds for T . We next show that (ii) holds for

T . Let Q′ be a minimal subset of Q that specially distinguishes T and let

q = A|B ∈ Q′. Let S and S ′ be two minimal complete unification sequences

of GQ such that amongst the quartets in Q′, the quartet q is collected (joint)

last and A is merged. Let q′ = A′|B′ ∈ Q′ and suppose that, in S, the set A′

is merged, while, in S ′, the set B′ is merged. Furthermore, suppose that Ai

merged A′ and Aj merged A in S, and that Ai′ merged B′ and Aj′ merged

A in S ′.
Since Q identifies T , it follows by Lemma 4.5.4 that the leaf-labelled

trees whose sets of non-trivial splits are ΣS and ΣS′ are both isomorphic to

T , in particular, ΣS = ΣS′ . Since Q′ is a minimal subset of Q that specially

distinguishes T , both q and q′ distinguish edges of T , and so exactly one

split of ΣS displays q and exactly one split of ΣS displays q′. This implies

that Ai = (X − Ai′) (so Ai′ = (X − Ai)) and Aj = Aj′ . Up to symmetry,

there are two cases to consider:

(I) Ai ⊆ Aj and Ai′ ⊆ Aj′ ; and

(II) Ai ⊆ Aj and Ai′ ∩ Aj′ = ∅.

If (I) holds, then Aj contains X − Ai. But Aj contains Ai, and so Aj

contains X; a contradiction. Consider (II). Since Ai′ ∩ Aj′ = ∅, we have

(X − Ai) ∩ Aj = ∅. But Ai ⊆ Aj, so Ai = Aj. Therefore, as q is collected

(joint) last amongst the quartets in Q′ in S, i = j. Thus, as Ai = Aj = Aj′ ,

we have Ai′ = (X − Aj′). But i′ ≤ j′, and so S ′ merges B; a contradiction.

Hence (II) does not hold. It now follows that (ii) does indeed hold.

43

To prove the converse, suppose that, in the size of its leaf set, Q is a

minimal collection of quartets that satisfies (i) and (ii), but does not identify

a tree. Since T is specially distinguished by Q, it follows that T is minimally

refined with respect to displaying Q. Let T ′ ∈ TX be another tree that is

minimally refined with respect to displaying Q.

We will show that every split of T is also a split of T ′, contradicting the

assumption that T ′ is minimally refined and different from T . Assume not.

Let Q′ be a minimal subset of Q that specially distinguishes T , and let q =

ab|cd be a quartet in Q′ such that the subset of splits in Σ(T ′) that display

q is minimal and does not contain any split of T . Such a quartet exists,

since every quartet in Q′ distinguishes an edge of T and thus is displayed by

exactly one split of T . Therefore, a quartet that is displayed by a split in

Σ(T)−Σ(T ′) is not displayed by any split in Σ(T)∩Σ(T ′). Let A|B be the

split of T that displays q. Without loss of generality, we may assume that

a, b ∈ A. Let H be the graph that has vertex set X and an edge joining two

vertices g and h precisely if {g, h} ∈ M(Q′)S , where S is a minimal complete

unification sequence of GQ that collects q (joint) last amongst the quartets

in Q′ and merges {a, b}.
We claim that the vertex set of the connected component of H that

contains a and b also contains A. Assume the claim is wrong and choose

A′|B′ ∈ Σ(T) such that A′ is minimal with the property that A′ ⊆ A and

that there is no component of H whose vertex set contains A′. Let L1, . . . , Lk

be the (pairwise different) maximal proper subsets of A′ such that, for all

i ∈ {1, . . . , k}, the bipartition Li|(X −Li) is a split of T . For all i, it follows

from the minimality of A′ that there is a component of H that contains Li.

Let H ′ be the graph that has vertex set L1, . . . , Lk and an edge joining to

vertices Li and Lj precisely if there is a quartet gg′|hh′ ∈ Q′ with g ∈ Li,

g′ ∈ Lj, and h, h′ ∈ B′. Since Q′ specially distinguishes T the graph H ′

is connected. It now follows by Lemma 4.5.5 and the fact that (ii) holds

for T that, for all such gg′|hh′, we have {g, g′} ∈ M(Q′)S . Hence there is

a connected component of H whose vertex set contains A′; a contradiction.

This establishes the claim.

By Lemma 4.5.5, there is a minimal complete unification sequence S ′ of

GQ that collects q (joint) last amongst the quartets in Q′ and merges {a, b}

44

such that T ′ is the leaf-labelled tree induced by S ′. Noting that M(Q′)S′ =

M(Q′)S , it is easily seen that, as there is a connected component of H whose

vertex set contains A, the graph obtained from T ′ by deleting all edges

corresponding to the splits that display q has a connected component whose

vertex set contains A. By repeating the above argument using {c, d} instead

of {a, b}, the same graph also has a connected component whose vertex set

contains B. Hence A|B ∈ Σ(T ′). This completes the proof of the converse

and thus the theorem.

Proof of Corollary 4.3.5. Suppose thatQ defines a leaf-labelled tree T . Then

it is clear that (i) holds for T . To show that (ii) holds for T , let Q′ be a

minimum-sized subset of Q that distinguishes T . First note that, for distinct

q, q′ ∈ Q′, the quartets q and q′ distinguish different edges of T . Let q =

A|B ∈ Q′. Let S and S ′ be two minimal complete unification sequences of

GQ so that amongst the quartets in Q′, the quartet q is collected last. If both

S and S ′ merge A, or both S and S ′ merge B, then, by Theorem 4.3.3, (ii)

holds. Furthermore, making use of the note, the argument for the case that

one of the sequences, S say, merges A and the other sequence, S ′ say, merges

B is similar to that used in the analogous part in the proof of Theorem 4.3.3.

We omit the straightforward details.

Now suppose that (i) and (ii) hold. Then, by Theorem 4.3.3, Q identifies a

leaf-labelled tree. Since T is a binary tree that displaysQ and is distinguished

by Q, we deduce that Q defines T . This completes the proof of the corollary.

Chapter 5

Minimum Identifying Sets of

Quartets

5.1 Introduction

In Chapter 3, we were interested in sets of quartets that defined a given

binary leaf-labelled tree. We turn our attention now instead to the analogous

notion for non-binary trees. That is, identifying a tree. Recall that a set of

quartets Q on the set X identifies a leaf-labelled tree if and only if all trees

in TX that display Q are refinements of T .

As an example, consider the tree T in Fig. 5.1, with the single

split 12|3456. Using (3.2), we can easily verify that the quartet set

{12|34, 12|45, 12|56} identifies T . It is not possible, however, to identify T

��

@@ �
�

��
HHA
A

T

1

2 3
4

5
6

��

@@ ��

@@ ��

@@ ��

@@
T1

6

1 2 3 4

5

T2

3

4 1 2 5

6

Figure 5.1: The tree T that is identified by {12|34, 12|45, 12|56}, and trees
T1 and T2 that display {12|34, 12|45} and {12|34, 12|56} respectively.

with any fewer than three quartets. To see this, assume that such a quartet

set Q contains exactly two quartets. Without loss of generality, we either

have Q = {12|34, 12|45} or Q = {12|34, 12|56}. Examples of trees T1 and T2

45

46

that display the aforementioned quartet sets but that are not refinements of

T are shown in Fig. 5.1.

We are interested in determining the minimum size of quartet set Q re-

quired to identify an arbitrary tree. If Q identifies a binary leaf-labelled tree

T , then Q in fact defines T . We already know that any binary tree may be

defined by a set of only n−3 quartets, but it turns out that in general, n−3

quartets are insufficient to identify a tree.

The main result of this chapter is Theorem 5.1.1. This corrects [42, The-

orem 6.3.9] which incorrectly states that for any tree T with n leaves, there is

a set of at most n−3 quartets that identifies T . As a counterexample to this,

consider the tree T shown in Fig. 5.2. Suppose that Q is a set of quartets

��

@@
�

�
A
A

��

@@
T

1

2 3 4 5

6

Figure 5.2: A tree T with n = 6 leaves that cannot be identified by a set of
n− 3 quartets.

that identifies this tree. Then Q must contain the quartet 12|34. To see this,

the tree T1 in Fig. 5.3 displays all the quartets in Q(T) − {12|34}. Further

to this, Q must contain one of {12|35, 12|36, 12|45, 12|46}, for otherwise the

tree T2 in Fig. 5.3 displays Q. By symmetry then, Q also contains 34|56

and one of {13|56, 14|56, 23|56, 24|56}. Thus an identifying quartet set for T
contains at least four distinct quartets.

��

@@ ��

@@ ��

@@ ��

@@
T1

1

4 2 3 5

6

T2

3

4 1 2 5

6

Figure 5.3: Trees T1 and T2 which demonstrate that T from Fig. 5.2 cannot
be identified by fewer than four quartets.

47

We will use E̊(T) to denote the set of interior edges of T , and remind

the reader that d(v) denotes the degree of a vertex v of T . Let q(T) denote

the size of a minimum-sized set of quartets that identifies T .

The main theorem of this chapter is the following:

Theorem 5.1.1. Let T be a leaf-labelled tree and let Q be a collection of

quartets that identifies T . Then, for each interior edge e = uv of T with

d(u) ≤ d(v), the collection Q contains at least q(d(u)− 1, d(v)− 1) quartets

that distinguish e, where

q(r, s) =

⌈
r(s− 1)

2

⌉
for all r, s ≥ 2. In particular,

|Q| ≥
∑

uv∈E̊(T)

q(d(u)− 1, d(v)− 1).

Moreover, there exists a collection of quartets that identifies T and has size

q(T) =
∑

uv∈E̊(T)

q(d(u)− 1, d(v)− 1).

Restricting Theorem 5.1.1 to binary trees, we obtain the well-known result

that n− 3 quartets are necessary to define a binary tree with n leaves. See,

for example, [42, Corollary 6.3.10].

Section 5.2 contains the proof of Theorem 5.1.1. The proof of this theorem

requires extensive use of closure rules to show the special case where the tree

of interest in a one-split tree. For this reason, we begin the following section

by developing some inference rules for partial splits. The final section of this

chapter characterises the trees that respectively maximise and minimise the

size of q(T).

5.2 Proof of Theorem 5.1.1

Closure rules for quartet sets and more generally, splits, were discussed

in Section 3.2. Let us introduce another rule that we will use repeatedly in

48

proving Theorem 5.1.1. This triadic closure rule can be found in [19].

{ab|de, ac|df, bc|ef} ` abc|def (5.1)

We remarked earlier that the dyadic closure rule (3.1) is a special case of the

split closure rule (3.2). Lemma 5.2.1 generalises (5.1) in a similar manner.

Lemma 5.2.1. Let Σ = {A1|B1, A2|B2, A3|B3} be a set of partial splits of

X such that Ai ∩ Aj 6= ∅, Bi ∩Bj 6= ∅ for all i 6= j. Then

Σ `
⋃
i6=j

(Ai ∩ Aj)|
⋃
i6=j

(Bi ∩Bj).

Proof. By Lemma 3.2.1, it suffices to show that every q = xy|wz, where

x, y ∈
⋃

i6=j(Ai ∩ Aj) and w, z ∈
⋃

i6=j(Bi ∩ Bj), is inferred by Σ. Clearly,

this holds if x, y ∈ Ai and w, z ∈ Bi for some i. Therefore assume that

this does not happen. Then, without loss of generality, we may assume that

x ∈ A1 ∩ A2, y ∈ A1 ∩ A3, and z ∈ B2 ∩ B3. By symmetry, there are two

cases to consider depending on whether w ∈ B1 ∩B2 or w ∈ B2 ∩B3.

Let a ∈ A2 ∩ A3 and b ∈ B1 ∩ B3. If w ∈ B1 ∩ B2, then, as xy|wb ∈
Q(A1|B1), xa|wz ∈ Q(A2|B2), and ya|zb ∈ Q(A3|B3), it follows by (5.1) that

{xy|wb, xa|wz, ya|zb} ` xya|wzb.

Hence, in this case, q is inferred by Σ.

If w ∈ B2 ∩ B3, then xa|wz ∈ Q(A2|B2) and ya|wz ∈ Q(A3|B3). There-

fore, by (3.1), Σ infers xya|wz which in turn infers q. This completes the

proof of the lemma.

Analogously to a collection of trees, a collection Σ of partial splits on

X identifies a tree T ∈ TX if T displays Σ and all other trees in TX that

display Σ are refinements of T .

Lemma 5.2.2. Let T be a one-split leaf-labelled tree in which the unique

non-trivial split is A|B with A = {a1, . . . , ar} and B = {b1, . . . , bs}. Then,

for positive integers m and n with r ≤ 2m− 1 and s ≤ 2n− 1, the 2-element

49

collection

Σ =
{
a1 · · · am|b1 · · · bn, ar−m+1 · · · ar|bs−n+1 · · · bs

}
of partial splits together with the collection

Q =
{
aiam+i|bjbn+j : 1 ≤ i ≤ r −m, 1 ≤ j ≤ s− n

}
of quartets identifies T .

Proof. Let

A′ = {a1, . . . , am} ∩ {ar−m+1, . . . , ar}

and

B′ = {b1, . . . , bn} ∩ {bs−n+1, . . . , bs}.

Since r ≤ 2m − 1 and s ≤ 2n − 1, it follows that both A′ and B′ are non-

empty. Therefore, by Lemma 5.2.1, the two partial splits in Σ together with

the quartet aiam+i|bjbn+j infer the partial split

(A′ ∪ {ai, am+i})|(B′ ∪ {bj, bn+j}) (5.2)

for all i and j. Furthermore, by repeated applications of (3.2), the partial

splits of the form (5.2) infer (A′ ∪ {ai, am+i})|B for all i. Repeatedly using

(3.2) again, these last partial splits infer A|B. It now follows that the partial

splits in Σ together with the quartets in Q identify T .

For a one-split tree T whose non-trivial split is A|B with |A| ≤ |B|,
the size of a minimum-sized set of quartets that identifies T is given by

q(|A|, |B|). Much of the work in proving Theorem 5.1.1 goes into proving the

next lemma, a special case of that theorem.

Lemma 5.2.3. Let T be a one-split leaf-labelled tree in which the only non-

trivial split is A|B with |A| = r and |B| = s, where 2 ≤ r ≤ s. Then

q(T) = q(r, s) =

⌈
r(s− 1)

2

⌉
.

50

Proof. Throughout the proof, we will assume that A = {a1, . . . , ar} and

B = {b1, . . . , bs}. We first show that q(r, s) ≥ d r(s−1)
2

e.
Suppose that Q is a set of quartets that identifies T with |Q| < r(s−1)

2
,

and consider the quartet graph GQ. Since Q identifies T , no edge in GQ joins

a singleton of A to a singleton of B, and, in view of Lemma 4.5.3, GQ consists

of two components whose vertex sets are the set of singletons of A and the

set of singletons of B. Furthermore, if q ∈ Q, then there is a q-coloured

edge joining a pair of singletons of A and a q-coloured edge joining a pair of

singletons of B. Since |Q| < r(s−1)
2

and r ≤ s, there is a vertex {a} ⊂ A that

is incident with at most s− 2 differently coloured edges.

Let Ga be the subgraph of GQ that is obtained by deleting all of the

singletons of A and deleting all edges whose colour is not that of any coloured

edge incident with {a} in GQ. Hence, Ga has s vertices and at most s−2 edges

and is therefore disconnected. Let C1, . . . , Ck be the connected components of

Ga containing at least two vertices. As Q specially distinguishes T , we have

k ≥ 1. Now consider the unification sequence S of GQ = G0, G1, . . . , Gk+1 in

which we make the following unifications:

(i) For 1 ≤ i ≤ k, unify the vertices in Ci of Gi−1 to obtain Gi;

(ii) unify {a} together with the set of vertices whose union is B to obtain

Gk+1.

It is easily checked that S is a complete-unification sequence of GQ. By

Lemma 4.5.1, the tree T ′ whose set of non-trivial splits is ΣS displays Q.

But A|B is not a split of T ′, and so T ′ is not a refinement of T , contradicting

that Q identifies T . We conclude that q(r, s) ≥ d r(s−1)
2

e.
We next show that q(r, s) ≤ d r(s−1)

2
e for all r and s. We begin with the

case r = 2.

5.2.3.1. For all s, we have q(2, s) ≤ d2(s−1)
2

e = s− 1.

Proof. Here A|B = {a1, a2}|{b1, . . . , bs} and it follows by repeated applica-

tions of (3.2) that the collection

Q =
{
a1a2|b1bi : i ∈ {2, . . . , s}

}

51

of quartets identifies T . As |Q| = s− 1, the inequality holds for r = 2.

5.2.3.2. For all r, we have q(r, r) ≤ r(r−1)
2

.

Proof. Let Qr be the collection {aiaj|bibj : 1 ≤ i < j ≤ r} of quartets. Then

|Qr| =
(

r
2

)
= r(r−1)

2
. The proof is by induction on r. Clearly, the result holds

for r = 2. Now suppose that r ≥ 3 and that the result holds for all smaller

values of r. Then the partial split a1 · · · ar−1|b1 · · · br−1 can be identified by

Qr−1. By (5.1), the quartets in Qr−1 and Qr −Qr−1 infer each of the partial

splits in

{aiajar|bibjbr : 1 ≤ i < j < r}.

Moreover, by repeatedly applying (3.2), we deduce that the elements in this

set infer a1 · · · ar|b1 · · · br.

5.2.3.3. For all r and all s with r ≤ s ≤ 2r− 2, we have q(r, s) ≤ d r(s−1)
2

e.

Proof. The proof is by induction on r. If r = 2, then the result holds by

(5.2.3.1). Now suppose that r ≥ 3, and that the result holds for all smaller

values of r. There are five cases to consider.

Case 1. s = 2l − 1 for some integer l ≥ 2.

By Lemma 5.2.2, the 2-element collection

Σ1 =
{
a1 · · · al|b1 · · · bl, ar−l+1 · · · ar|bl · · · bs

}
of partial splits together with the collection

Q1 =
{
aial+i|bjbl+j : 1 ≤ i ≤ r − l, 1 ≤ j ≤ l − 1

}
of quartets identify T . By the induction assumption, each partial split in Σ1

can be identified by a collection of l(l−1)
2

quartets. Furthermore, Q1 contains

(r − l)(l − 1) quartets. Thus

q(r, s) ≤ l(l − 1) + (r − l)(l − 1)

=
r(s− 1)

2
.

52

Case 2. r = 2k and s = 2l for some integers k ≥ 2 and l ≥ 3, where either

k is odd or l is even.

By Lemma 5.2.2, the 2-element collection

Σ2 =
{
a1 · · · ak+1|b1 · · · bl+1, ak · · · ar|bl · · · bs

}
of partial splits together with the collection

Q2 =
{
aiak+i+1|bjbl+j+1 : 1 ≤ i ≤ k − 1, 1 ≤ j ≤ l − 1

}
of quartets identify T . By the induction assumption, each partial split in Σ2

can be identified by a collection of (k+1)l
2

quartets. Without loss of generality,

we may assume that these last collections share the quartet akak+1|blbl+1.

Furthermore, Q2 contains (k − 1)(l − 1) quartets. Thus

q(r, s) ≤ (k + 1)l − 1 + (k − 1)(l − 1)

=
r(s− 1)

2
.

Case 3. r = 2k − 1 and s = 2l for some integers k ≥ 2 and l ≥ 2, where

either k is odd or l is even.

By Lemma 5.2.2, the 2-element collection

Σ3 =
{
a1 · · · ak+1|b1 · · · bl+1, ak−1 · · · ar|bl · · · bs

}
of partial splits together with the collection

Q3 =
{
aiak+i+1|bjbl+j+1 : 1 ≤ i ≤ k − 2, 1 ≤ j ≤ l − 1

}
of quartets identify T . By the induction assumption, each partial split in Σ3

can be identified by a collection of (k+1)l
2

quartets. Without loss of generality,

we may assume that these last collections share the quartet akak+1|blbl+1.

53

Furthermore, Q3 contains (k − 2)(l − 1) quartets. Thus

q(r, s) ≤ (k + 1)l − 1 + (k − 2)(l − 1)

=

⌈
r(s− 1)

2

⌉
.

Case 4. r = 4k and s = 4l − 2 for integers k ≥ 1 and l ≥ 2.

This case includes an anomaly, in particular when k = 1 and l = 2; that

is, (r, s) = (4, 6). We will prove this subcase first before proving Case 4 in

general.

Let

Q′
1 =

{
a1a2|b1b2, a1a3|b1b3, a2a3|b2b3

}
,

Q′
2 =

{
a2a3|b4b5, a2a4|b4b6, a3a4|b5b6

}
,

and

Q′
3 =

{
a1a2|b3b4, a3a4|b3b4, a1a4|b1b5, a1a4|b2b6

}
.

By (5.1), Q′
1 and Q′

2 infer the partial splits a1a2a3|b1b2b3 and a2a3a4|b4b5b6,

respectively. Furthermore, together with Q′
3, these partial splits infer

a1a2|b1b2b3b4 and a3a4|b3b4b5b6 by (3.2). By (5.1), the partial splits a1a2|b1b4,

a2a4|b4b5 a1a4|b1b5 infer a1a2a4|b1b4b5. Similarly, by (5.1), we infer

a1a2a4|b2b4b6, a1a3a4|b1b3b5, a1a3a4|b2b3b6.

In turn, again using (5.1), we infer

a1a2a3|b3b4b5, a1a2a3|b3b4b6, a2a3a4|b1b3b4, a2a3a4|b2b3b4.

The last eight partial splits now infer a1a2|B, a2a3|B, and a3a4|B which, by

(3.2), infers A|B. Thus q(4, 6) ≤ 10 = 4(6−1)
2

.

Now assume that k ≥ 2 and l ≥ 3. By Lemma 5.2.2, the 2-element

collection

Σ4 =
{
a1 · · · a2k+2|b1 · · · b2l+1, a2k−1 · · · ar|b2l−2 · · · bs

}

54

of partial splits together with the collection

Q4 =
{
aia2k+i+2|bjb2l+j+1 : 1 ≤ i ≤ 2k − 2, 1 ≤ j ≤ 2l − 3

}
of quartets identifies T . By the induction assumption, each partial split in

Σ4 can be identified by a collection of (2k + 2)l quartets. Consider one of

these partial splits, say a1 · · · a2k+2|b1 · · · b2l+1. Since the size of the larger

side is 2l +1 ≥ 7 and odd, we may make up the set of (2k +2)l quartets that

identify this partial split as in Case 1, where, by (5.2.3.2), we may assume

that this set contains

{a2k−1a2k|b2l−2b2l−1, a2k−1a2k+1|b2l−2b2l, a2ka2k+1|b2l−1b2l,

a2k−1a2k+2|b2l−2b2l+1, a2ka2k+2|b2l−1b2l+1, a2k+1a2k+2|b2lb2l+1}.

Similarly, we may assume the set of (2k + 2)l quartets that identifies the

other partial split in Σ4 also contains the six quartets in this set. Since Q4

contains (2k − 2)(2l − 3) quartets, it now follows that

q(r, s) ≤ 2(2k + 2)l − 6 + (2k − 2)(2l − 3)

=
r(s− 1)

2
.

Case 5. r = 4k − 1 and s = 4l − 2 for some integers k ≥ 1 and l ≥ 2.

By Lemma 5.2.2, the 2-element collection

Σ5 =
{
a1 · · · a2k|b1 · · · b2l, a2k · · · ar|b2l−1 · · · bs

}
of partial splits together with the collection

Q5 =
{
aia2k+i|bjb2l+j : 1 ≤ i ≤ 2k − 1, 1 ≤ j ≤ 2l − 2

}
of quartets identifies T . By the induction assumption, each partial split in

Σ5 can be identified by a collection of k(2l − 1) quartets. Furthermore, Q5

55

contains (2k − 1)(2l − 2) quartets. Thus

q(r, s) ≤ 2k(2l − 1) + (2k − 1)(2l − 2)

=

⌈
r(s− 1)

2

⌉
.

Combining Cases 1-5, we conclude that q(r, s) ≤ d r(s−1)
2

e whenever r ≤
s ≤ 2r − 2.

We complete the proof of Lemma 5.2.3 by showing that, for any fixed r,

the result holds for all s with r ≤ s. By (5.2.3.3), the result holds whenever

s ≤ 2r − 2. Now assume that s > 2r − 2 and that the result holds for all

smaller values of s.

Consider the 2-element collection

Σ =
{
a1 · · · ar|b1 · · · br, a1 · · · ar|br · · · bs

}
of partial splits. Observe that, as s > 2r − 2, we have |{a1, . . . , ar}| ≤
|{br, . . . , bs}|. By a single application of (3.2), Σ infers the full split A|B.

Furthermore, by (5.2.3.2), the first partial split in Σ can be identified by a

collection of r(r−1)
2

quartets and, by the induction assumption, the second

partial split in Σ can be identified by a collection of d r(s−r)
2

e quartets. Hence

q(r, s) ≤ r(r − 1)

2
+

⌈
r(s− r)

2

⌉
=

⌈
r(s− 1)

2

⌉
.

Running over all values of r, we deduce that

q(r, s) ≤
⌈

r(s− 1)

2

⌉
for all r and all s with 2 ≤ r ≤ s. This completes the proof of the lemma.

The next lemma is an immediate consequence of the definition of identi-

fying quartet sets.

56

Lemma 5.2.4. Let T ∈ TX be a one-split tree in which the only non-trivial

split is A|B, and suppose that T displays a collection Q of quartets. If Q
does not identify T , then there is another tree T ′ ∈ TX that displays Q, but

for which A|B /∈ Σ(T ′).

Before proving Theorem 5.1.1, we require one further definition. An in-

terior vertex of a tree that is adjacent to exactly k leaves is called a k-bud,

or more generally a bud.

Proof of Theorem 5.1.1. First suppose that for some interior edge e = uv of

T , the subset Qe of Q containing exactly the quartets that distinguish e has

the property that

|Qe| < q(d(u)− 1, d(v)− 1).

Suppose the neighbours of u that are not v are U = {u1, . . . , ur} and the

neighbours of v that are not u are V = {v1, . . . , vs}. Let Te denote the

leaf-labelled tree that is the minimal subtree of T containing the vertices in

U ∪ V . Furthermore, let Pe be the collection of quartets obtained from Qe

by replacing each quartet, aa′|bb′ say, with uiuj|vkvl, where ui is on the path

from u to a, uj is on the path from u to a′, vk is on the path from v to b, and

vl is on the path from v to b′. Since T displays Qe, it follows that Te displays

Pe. However, because of the cardinality of Qe, it follows by Lemma 5.2.3

that Pe does not identify Te.

By Lemma 5.2.4, there is a leaf-labelled tree T ′
e with leaf set U ∪ V that

displays Pe but does not contain the split U |V . Let T ′ ∈ TX be the tree

that is obtained by adjoining, for all w ∈ U ∪ V , the maximal subtree of T
that contains w and neither u nor v to T ′

e by identifying the common vertices

denoted by w. Clearly, T ′ displays Qe. Moreover, it is easily seen by the

construction of T ′ that every quartet in Q−Qe is also displayed by T ′. Since

T ′ does not contain the split of T induced by e, we deduce that Q does not

identify T . This contradiction means that, for every interior edge e = uv,

the collection Q contains q(r, s) quartets that distinguish e. Thus

|Q| ≥
∑
e∈E̊

q(d(u)− 1, d(v)− 1).

57

We prove the second part of the theorem by induction on the number m

of interior edges of T . If m = 1 and the unique interior edge is uv, then, by

Lemma 5.2.3, there exists a collection of quartets of size q(d(u)− 1, d(v)− 1)

that identifies T . Now assume that m ≥ 2 and that the result holds for every

tree with m− 1 interior edges.

Let e = uv be an interior edge of T such that u is a bud of T . First

assume that d(u) ≤ d(v). Let r = d(u) − 1 and s = d(v) − 1. Furthermore,

let a1, · · · , ar be the leaves of T adjacent to u, and let b1, · · · , bs be leaves of

T such that, for all distinct i and j, the path from bi to bj contains v, but

not u. Let T ′ = T |(X − {a2, · · · , ar}). Now T ′ is a leaf-labelled tree with

precisely m − 1 interior edges, and so by our induction assumption T ′ can

be identified by a collection Q′ of quartets of size q(T ′).

Let Qe be a minimum-sized set of quartets that identifies the one-split

leaf-labelled tree whose non-trivial split is a1 · · · ar|b1 · · · bs. By Lemma 5.2.3,

|Qe| = q(r, s). Consider Qe ∪ Q′. Clearly, T displays Qe ∪ Q′. Let T ′′ be

a leaf-labelled tree that displays Qe ∪ Q′. Since Q′ identifies T ′, we have

that T ′′|(X − {a2, . . . , ar}) is a refinement of T ′. Using this fact and the

fact that T ′′ displays Qe, it is easily seen that T ′′ displays the partial split

a1 · · · ar|b1 · · · bs. It now follows that Qe ∪Q′ identifies T . Moreover,

|Qe ∪Q′| = q(d(u)− 1, d(v)− 1) + q(T ′) = q(T).

The same argument holds if d(v) < d(u). This completes the proof of the

theorem.

5.3 Characterisations of the Extremal Cases

Recall that q(T) denotes the size of a minimum-sized set of quartets that

identifies a leaf-labelled tree T . We end this chapter with two results that

determine, for all n, those trees T with n leaves for which q(T) is minimised

and maximised.

Theorem 5.3.1. Let T be a leaf-labelled tree with n leaves and at least one

interior edge. Then q(T) ≥ n− 3. Moreover, q(T) = n− 3 if and only if

(i) T has exactly one interior edge and contains a 2-bud or two 3-buds; or

58

(ii) T has at least two interior edges and every vertex with degree at least

four is a bud.

As the proof will show, part (i) of the above theorem follows as a reason-

ably simple consequence of Lemma 5.2.3. We can justify part (ii) intuitively

by noting that non-binary interior vertices increase the number of quartets

required to specially distinguish any incident interior edges. That is, to min-

imise q(T), we require any non-binary interior vertex of T to be incident with

at most one interior edge. To illustrate this, both six-leafed trees in Fig. 5.4

have two interior vertices of degree three and one of degree four. However,

whereas T1 can be identified by a set of three quartets, by Theorem 5.1.1 (and

as demonstrated earlier in Section 5.1), we require at least four quartets to

identify T2.

��

@@ ��

@@
T1

1

2 3 4

5

6

��

@@
�

�
A
A

��

@@
T2

1

2 3 4 5

6

Figure 5.4: Two six-leafed trees which illustrate part (ii) of Theorem 5.3.1.

Proof of Theorem 5.3.1. First suppose that T has exactly one interior edge

uv. Let r = d(u) − 1 ≥ 2 and s = d(v) − 1 ≥ 2. Without loss of generality,

we may assume that r ≤ s. Then, by Theorem 5.1.1,

q(T) = q(r, s) =

⌈
r(s− 1)

2

⌉
.

It is easily checked that q(T) ≥ r + s− 3. Furthermore, a routine check also

shows that q(T) = r+s−3 if and only if r = 2 or s = 3. As r+s−3 = n−3,

the proposition holds over all leaf-labelled trees with exactly one interior edge.

Next we show that the proposition holds in general. The proof is by

induction on n. Clearly, the result holds if n = 4. Let T be a leaf-labelled

tree with n leaves, where n ≥ 5, and suppose that q(T) is of minimum

size. Suppose that the proposition holds for all trees T ′ with fewer leaves for

59

which q(T ′) is of minimum size. Since we already know that the result holds

if T has exactly one interior edge, we may assume that T has at least two

interior edges. Since every binary leaf-labelled tree with n leaves is defined

by n − 3 quartets (see, for example, [42]), q(T) ≤ n − 3. Let w be a bud

of T of maximum size. Let j be the size of this bud, let x1, . . . , xj denote

the leaves adjacent to w, let v be the non-leaf vertex adjacent to w, and

let T ′ be the restriction of T to X − {xj}. By the induction assumption,

q(T ′) ≥ (n − 1) − 3 = n − 4. We consider the two cases j ≥ 3 and j = 2

separately.

Suppose firstly that j ≥ 3. If d(w) ≤ d(v), then, by Theorem 5.1.1,

q(T)− q(T ′) = q(j, d(v)− 1)− q(j − 1, d(v)− 1)

=

⌈
j(d(v)− 2)

2

⌉
−
⌈

(j − 1)(d(v)− 2)

2

⌉
≥ 1.

Therefore

q(T) ≥ q(T ′) + 1 ≥ n− 4 + 1 = n− 3. (5.3)

Since q(T) ≤ n − 3, it follows that equality holds throughout (5.3) and so

q(T) = n− 3 and q(T ′) = n− 4. Since T has at least two interior edges and

k ≥ 3, the tree T ′ has at least two interior edges and so, by the induction

assumption, (ii) holds for T ′. Hence (ii) holds for T . A similar argument

also shows that (ii) holds for T if d(w) > d(v).

Now suppose that j = 2. Here every bud of T has size two. Note that,

in this case, d(w) ≤ d(v). By Theorem 5.1.1,

q(T)− q(T ′) = q(2, d(v)− 1) = d(v)− 2 ≥ 1.

Arguing as in (i), we now deduce that q(T) = n− 3 and q(T ′) = n− 4. This

implies that d(v) − 2 = 1 and so d(v) = 3. If T ′ has at least two interior

edges, then (ii) holds for T ′ and so (ii) holds for T . Furthermore, if T ′ has

exactly one interior edge, then T ′ is a quartet and again it follows that (ii)

holds for T . This completes the proof of the theorem.

60

For two non-negative integers k and l with k+l ≥ 3, we will denote by T 2l
k

the leaf-labelled tree with k + 2l leaves that has an interior vertex adjacent

to k leaves while all other l neighbours are 2-buds. As an example, Fig. 5.5

shows the shape of the tree T 6
2 .

�� @@

HHH��
A

A
@@ ��

���HH
�
�

Figure 5.5: The tree shape for T 6
2 .

Theorem 5.3.2. Let T be a leaf-labelled tree with n leaves. Then q(T) ≤⌊(
n
2
− 1
)2⌋

. Moreover, q(T) =
⌊(

n
2
− 1
)2⌋

if and only if T is isomorphic to

(i) T n−2
2 if n is even; or

(ii) T n−1
1 or T n−3

3 if n is odd.

Proof. First note that, for 1 ≤ k ≤ 3, a routine check using Theorem 5.1.1

shows that q(T n−k
k) =

⌊(
n
2
− 1
)2⌋

. In other words, q(T n−2
2) =

(
n
2
− 1
)2

if

n is even and q(T n−1
1) = q(T n−3

3) = (n−1)(n−3)
4

if n is odd. The proof is by

induction on n. A simple check shows that the result holds if n ∈ {4, 5}. Let

T be a leaf-labelled tree with n leaves, where n ≥ 6, and suppose that q(T)

is of maximum size. Note that

q(T) ≥
⌊(n

2
− 1
)2
⌋

. (5.4)

Suppose that the theorem holds for all trees T ′ with fewer leaves for which

q(T ′) is of minimum size. Say T has exactly one interior edge. Then one of

the interior vertices is a j-bud with j ≤ n
2

and the other interior vertex is an

(n− j)-bud. Consequently, by Theorem 5.1.1,

q(T) =
1

2
j(n− j − 1) ≤ 1

2

(
n− 1

2

)2

<

⌊(n

2
− 1
)2
⌋

61

as n ≥ 6. It now follows that T has at least two interior edges, which also

means that T has no adjacent buds.

Let w be a bud of T of maximum size and let k be the size of this bud.

Let x1, . . . , xk denote the leaves adjacent to w, let v be the non-leaf vertex

adjacent to w, and let T ′ be the restriction of T to X − {xk}. By the

induction assumption, q(T ′) ≤
⌊(

n−1
2
− 1
)2⌋

. Combining this with (5.4), we

deduce that

q(T)− q(T ′) ≥
⌈

n− 3

2

⌉
. (5.5)

First suppose k ≥ 3. Then, by Theorem 5.1.1, q(T)− q(T ′) = q(k, d(v)−
1) − q(k − 1, d(v) − 1) and a routine check shows that q(T) − q(T ′) ≤ d(v)

2
.

Together with (5.5), this implies that d(v) ≥ n−2 if n is even and d(v) ≥ n−3

if n is odd. Since T has at least two interior edges and w is adjacent to k ≥ 3

leaves, this is only possible if n is odd, k = 3, and v is adjacent to n − 5

leaves and a 2-bud. Assuming n is odd, n ≥ 7 and so, by Theorem 5.1.1,

q(T) = q(2, n− 4) + q(3, n− 4) =
5

2
(n− 5) <

(n− 1)(n− 3)

4
;

a contradiction.

Now suppose that k = 2. By Theorem 5.1.1, q(T)− q(T ′) = q(2, d(v)−
1) = d(v)−2. Therefore, by (5.5), d(v) ≥ n+1

2
. Assume that T has an interior

vertex v′ 6= v such that v′ is adjacent to a bud. Then, as v is adjacent to a

bud, there are at least d(v) ≥ n+1
2

leaves ` of T for which v′ is not contained

in the path from ` to v. Interchanging v and v′ in this argument, we also

deduce that there are at least d(v) ≥ n+1
2

leaves ` of T for which v is not

contained in the path from ` to v′. Hence T has at least n + 1 leaves; a

contradiction.

It follows from the above arguments that T has exactly one interior vertex

that is not a bud and all buds are 2-buds. Thus, for some k, we have that T

62

is isomorphic to T n−k
k . Now

q(T n−k
k) =

n− k

2
· q
(

2,
n + k

2
− 1

)
=

n− k

2

(
n + k

2
− 2

)
=

1

4
(n− 2 + (k − 2))(n− 2− (k − 2))

and, since k and n must have the same parity, q(T n−k
k) is maximum for k = 2

if n is even and for k ∈ {1, 3} if n is odd. This completes the proof of the

theorem.

PART II

SUBTREES

Up until now, the problems we have addressed have all involved the recon-

struction or recognition of a single tree. There are various combinatorial and

practical reasons why we might also be interested in comparing the relative

structures of two or more trees. These include, but are not limited to, the

study of mixture models (see, for example, [32, 33]) and tree rearrangement

operations, which are covered in more depth in Part III. The remaining four

chapters of this thesis deal, in some way or another, with the differences and

similarities inherent in a collection of trees that have the same leaf set.

Given a collection of trees P ⊆ TX , the two general questions that we

ask are

(i) how do the trees in P agree; and

(ii) how do the trees in P disagree.

The first of these questions may be rephrased in terms of finding a subset of

X that has evolved identically on every element of P . The obvious extension

of this is to find as large as possible a subset of X for which this holds. The

converse of this is to find a minimum-sized subset of X that has evolved

distinctly on every tree in P . It should be immediately clear that P exhibits

both internal agreement and disagreement, albeit perhaps only on a trivial

level. Since we are dealing with unrooted trees, any three-element subset of

X can be displayed in only one way by any tree in TX . Moreover, all trees

in P are distinct, and so the entire set X is resolved differently by each tree.

63

64

Finding a solution to (ii) is not an end in itself. The origin of this lies in

determining whether a set of induced subtrees of P is displayed by another

collection of trees P ′, where P and P ′ have the same size. This concept,

termed disentangling by Matsen et al. [33], is explained more precisely in

Chapter 6. The relevance of (ii) to disentangling is that if there is a relatively

small subset of X that gives a distinct subtree on each tree in P , then this

effectively separates the induced subtrees of P into equivalence classes from

which each member of P can be reconstructed uniquely. The main result of

Chapter 6 gives a logarithmic lower bound and a linear upper bound on the

disentangling number.

The problem of finding a large common subtree1, as indicated by (i),

has a close connection to classical Ramsey Theory. In Chapter 7, we begin

by examining a simplification of the problem where all members of P are

caterpillars, and then extend this to a more general result for binary trees.

1This is also known as the maximum agreement subtree problem.

Chapter 6

Disentangling Sets Of Trees

6.1 Introduction

In Chapters 3 and 5, we considered problems centred around reconstruct-

ing a tree from incomplete information. That is, determining the structure

of a tree from some subset of its induced quartets or, more generally, par-

tial splits. It is well-known, for example, that the collection of all induced

quartets for a binary leaf-labelled tree defines that tree.

However, it is shown in [33] that a pair of trees cannot necessarily be

uniquely reconstructed from the union of their induced subtrees with five

leaves. We reproduce the key example from the aforementioned paper in

Fig. 6.1. It can easily be seen that, for any five-element subset Y ⊂ {1, . . . , 6},
the two sets {T1|Y, T2|Y } and {T ′

1 |Y, T ′
2 |Y } are the same. We remark further

��

@@ ��

@@ ��

@@ ��

@@
T1

1

2 3 4 5

6

T ′
1

1

2 3 5 4

6

��

@@ ��

@@ ��

@@ ��

@@
T2

1

3 2 5 4

6

T ′
2

1

3 2 4 5

6

Figure 6.1: Four trees in T6 for which {T1|Y, T2|Y } = {T ′
1 |Y, T ′

2 |Y } for all
subsets Y of size five.

65

66

that

Σ(T1) ∪ Σ(T2) = Σ(T ′
1) ∪ Σ(T ′

2),

and so an arbitrary pair of trees from Tn cannot in general be reconstructed

from their combined splits.

Let us define more strictly what we mean by simultaneously defining

collections of k trees on the same leaf-set.

Definition 6.1.1. For a collection of trees P ⊆ TX and Y ⊆ 2X , we write

the restriction of P to Y as

P|Y = {T |Y : T ∈ P , Y ∈ Y}.

Definition 6.1.2. Let P be a subset of 2TX for some X, and let Y be a

collection of subsets of X. We say that Y disentangles P if and only if

P|Y 6= P ′|Y

for all distinct P ,P ′ ∈ P.

We emphasise that while disentangling and defining are somewhat related,

they are certainly not interchangeable. If T |Y defines T for some Y , then T
has a unique restriction to Y . On the other hand, for Y to disentangle P we

require every element of P to have a unique restriction to Y . We illustrate

this with an example.

��

@@ ��

@@ ��

@@ ��

@@ ��

@@ ��

@@

T11

2 3 4

5 T21

3 2 4

5 T31

3 4 2

5

Figure 6.2: Three distinct trees in T5 that are not disentangled by Y =
{{1, 2, 3, 4}, {1, 3, 4, 5}}.

If we take Y = {{1, 2, 3, 4}, {1, 3, 4, 5}}, then T1 shown in Fig. 6.2 is

67

defined by T |Y . However, the set

P = {{T1}, {T2}, {T3}}

is not disentangled by Y , as T2|Y = T3|Y . In general, the property of disen-

tangling is a much stronger property than defining.

The term disentangle was introduced by Matsen et al. in [33], although

we remark that the above definition generalises their original concept to

disentangling arbitrary sets of trees. The original motivation for these ideas

has its roots in the study of mixture models. That is, combining data from

more than one data set according to some weighting scheme. It was shown in

[32] that a mixture model on a specified tree can, under the right conditions,

imitate an unmixed model on a different tree. We are interested purely in

the combinatorial aspects of the problem.

6.2 The Disentangling Number

In this section, we will consider the problem of disentangling the set

P =
(

Tn

k

)
for some k. That is, all possible k-element subsets of Tn. The

relevance of this is that if Y disentangles
(

Tn

k

)
, then the restriction of any

element P ∈
(

Tn

k

)
to Y acts as a fingerprint from which we can in some sense

recognise P .

It is clear that if Y contains all four-element subsets of [n], then Y dis-

entangles
(

Tn

1

)
, for otherwise there are two binary trees with precisely the

same set of quartets. On the other hand, all three-element subsets alone

clearly does not suffice, since there is a single leaf-labelled tree that displays

a given three-element leaf-set. This next lemma, however, shows that if Y
does disentangle

(
Tn

1

)
, then each three-element subset of [n] is contained in

some member of Y .

Lemma 6.2.1. For some n ≥ 4, let Y ⊆ 2[n]. If Y disentangles
(

Tn

1

)
, then

for all {a, b, c} ⊂ [n], there is some Y ∈ Y such that {a, b, c} ⊂ Y .

Proof. Suppose that for some {a, b, c} ⊂ [n], there is no Y ∈ Y that strictly

contains {a, b, c}. Choose some Ta ∈ Tn such that {b, c} is a cherry of Ta,

and {a, b, c}|[n]− {a, b, c} is a split of Ta. Then let Tb be identical to Ta but

68

with the leaves a and b swapped, and let Tc also be identical to Ta but with

the leaves a and c swapped. Figure 6.3 gives a general depiction of the three

trees.

��

@@ ��HH
��

@@ ��HH
��

@@ ��HH

Tab

c a

Tba

c b

Tcb

a c

Figure 6.3: The trees Ta, Tb, Tc from the proof of Lemma 6.2.1.

Now, since there is no Y ∈ Y containing {a, b, c}, the restrictions of each

of the three trees to Y are identical. Hence Y does not disentangle
(

Tn

1

)
.

The condition stated in Lemma 6.2.1 is necessary but not sufficient for

a set to disentangle
(

Tn

1

)
. A counter-example is shown in Fig. 6.4. If we

take Y to be all four-element subsets of {1, . . . , 8} that contain one of the

pairs {1, 2}, {3, 4}, {5, 6} and {7, 8}, then we can see that both trees have

the same restriction to Y , and yet all three-element subsets of {1, . . . , 8} are

present in Y .

��

@@ ��

@@

1

2 7

8

��

@@ ��

@@

1

2 7

8

3

4 5

6 5

6 3

4

Figure 6.4: Two trees that provide a counter-example to the converse of
Lemma 6.2.1.

From earlier, we know that
(
[n]
5

)
does not disentangle

(
Tn

2

)
, so the natural

question to ask is whether all six-element subsets will, and more generally,

for what j does Y =
(
[n]
j

)
disentangle

(
Tn

k

)
for all n ≥ j. Indeed, it is possibly

not obvious that such a j even exists. Theorem 18 in [33] answers the first

of these questions in the affirmative. We concentrate now on the second

question.

69

Definition 6.2.2. For k > 0, let j ≥ 4 be the least positive integer for which(
[n]
j

)
disentangles

(
Tn

k

)
for all n ≥ j. We call j = D(k) the k-th disentangling

number.

Lemma 6.2.3. The function D(k) is monotonic in k.

Proof. For some k > 0, n ≥ 4, let Y ⊂ 2[n] be a set that does not disentangle(
Tn

k

)
. That is, there are distinct k-element subsets P ,P ′ ⊂ Tn such that

P|Y = P ′|Y .

Let T be some tree in Tn− (P ∪P ′). We may assume that such a tree exists

by choosing n to be large enough. Then

(P ∪ T)|Y = P|Y ∪ T |Y

= (P ′ ∪ T)|Y .

That is, Y does not disentangle
(

Tn

k+1

)
and hence D(k) ≤ D(k+1), completing

the proof.

The first and second disentangling numbers are four and six respectively,

as set out previously. Since D(k) is monotonic, as shown in Lemma 6.2.3,

and D(1) = 4, the definition of the disentangling number remains consistent

for all k > 0.

Though it may not be immediately obvious, we shall see that the function

D(k) is well-defined. That is, for all k > 0, some j0 > 0 exists such that,

for all j0 < j ≤ n, the set
(
[n]
j

)
disentangles

(
Tn

k

)
. Let us first consider the

problem of, for some collection of trees, finding a reasonably small subset of

the leaf-set on which none of the trees agree.

Definition 6.2.4. Let P ⊆ Tn be a set of trees. We say that a non-empty

set Y ⊆ [n] separates P if

Ti|Y 6= Tj|Y

for all distinct Ti, Tj ∈ P .

70

The specification that a separating set is non-empty ensures that the

definition remains consistent when P contains only one tree.

Definition 6.2.5. For k > 0, let j > 0 be the smallest integer such that, for

all n ≥ 4, all x ∈ [n], and all P ∈
(

Tn

k

)
, there exists some Y ∈

(
[n]
j

)
containing

x that separates P . We write S(k) = j.

It is clear from Definition 6.2.5 that S(2) = 4. This follows from two

basic facts. Firstly, for all k ≥ 2, we must have S(k) > 3, and secondly any

two distinct trees must differ in at least one quartet.

Lemma 6.2.6. The function S(k) is monotonic in k.

Proof. For some k > 0, n ≥ 4, let Y ⊆ [n] be a set that does not separate

some P ⊂ Tn of size k. Clearly, Y will not separate any set containing P
either, and so S(k) ≤ S(k + 1).

The above lemma is included purely for completeness. We prove next

that S(k) exists for all k, and use this fact to obtain the parallel result for

the k-th disentangling number.

Lemma 6.2.7. The function S(k) is well-defined. Moreover,

S(k) ≤ 3k − 2.

Proof. The lemma is trivially true for k = 1, 2. Suppose now that k > 2, and

let T1, . . . , Tk be distinct trees from Tn for some n. For any x ∈ [n], there is

some Y ⊆ [n] containing x of size at most 3k− 5 that separates T1, . . . , Tk−1.

If Ti|Y 6= Tk for all 1 ≤ i < k, then Y separates T1, . . . , Tk, and we are done.

Otherwise, Ti|Y = Tk|Y for at most one i < k. Then there is a quartet

q ∈ Q(Ti) − Q(Tk) that contains x. Hence Y ∪ L(q) separates T1, . . . , Tk.

Since |Y | ≤ 3k − 2 the proof is complete.

Theorem 6.2.8. The function D(k) is well-defined. Moreover,

D(k) ≤ S(k) + 2

for all k ≥ 2.

71

Proof. For k ≥ 2, let P = {T1, . . . , Tk} be k distinct trees in Tn for some

n ≥ S(k)+2, and let Y =
(

[n]
S(k)+2

)
. We wish to show that P can be uniquely

reconstructed from P|Y .

If n = S(k) + 2, then P|Y = P , and so there is nothing to prove. We

may therefore assume that n > S(k) + 2. Suppose that Z is a subset of [n]

of size S(k) that separates P , and let YZ be the set

YZ = {Y ∈ Y : Z ⊂ Y }.

We can partition P|YZ into k disjoint sets S1, . . . ,Sk so that, for all i ∈
{1, . . . , k} and for each pair T , T ′ of distinct trees in Si,

T |Z = T ′|Z.

Each of the sets Si corresponds to some tree in P , and so we may assume

that Si = Ti|YZ for all i ∈ {1, . . . , k}.
It suffices now to show that for each three-element subset W of [n]−Z, the

tree Ti|(Z∪W) is uniquely determined by members of P|Y . Let W ∈
(
[n]−Z

3

)
,

and choose some w ∈ W . Then there is some z ∈ Z so that Z ′ = (Z− z)∪w

separates P . Let YZ′ be the set

YZ′ = {Y ∈ Y : Z ′ ⊂ Y }.

As before, P|YZ′ can be partitioned into k disjoint sets S ′1, . . . ,S ′k. Moreover,

as YZ and YZ′ have a non-empty intersection, and both Z and Z ′ separate

P , each Si has a non-empty intersection with exactly one S ′j. Thus, by

symmetry, we may assume without loss of generality that Si ∩ S ′i is non-

empty, and that

Si ∪ S ′i ⊆ Ti|Y .

For some x ∈ Z ∩ Z ′, we have

Q(Si) ∪Q(S ′i) ⊇ {q ∈ Q(Ti|(Z ∪W)) : |L(q) ∩ Z| ≥ 2 or |L(q) ∩ Z ′| ≥ 2}

= {q ∈ Q(Ti|(Z ∪W)) : x ∈ L(q)},

72

which defines Ti|Z∪W . By using this argument over all three-element subsets

W of [n] − Z, we can reconstruct each of the Ti uniquely, completing the

proof.

This last theorem raises some interesting questions. Most notably, are

either of the functions D(k) or S(k) bounded above by some fixed integer

N > 0, or can they grow arbitrarily large. Secondly, is D(k) always larger

than S(k)? We have seen that this is so when k = 2 (D(2) = 6, whereas

S(2) = 4). In fact, is it true perhaps that D(k) = S(k) + 2 for all k ≥ 2?

This next lemma demonstrates quite easily that S(k) is unbounded.

Lemma 6.2.9. For any positive integer m, there is some k0 > 0 such that

S(k) > m

for all k > k0.

Proof. Consider the set of trees Tm, and let k0 = |Tm|. Let P ⊆ Tn be a

collection of k distinct trees for some k > k0, and let Y ⊆ [n] separate P .

We may assume that Y = [m]. Since [m] now separates P , there must be at

least k distinct binary trees in Tm. This contradiction finishes the proof.

While Lemma 6.2.9 shows that S(k) is in fact unbounded, the lower bound

that we get by inverting

m ≤ S((2m− 5)!!)

grows extremely slowly. In the case of the disentangling number, we can

construct an explicit example that proves an asymptotically better lower

bound.

Lemma 6.2.10. If k is some positive integer, then

D(2k−1) ≥ 3k.

Proof. Let k be a positive integer, and let T ∈ Tk be some binary leaf-labelled

tree. Further, let A = α1, . . . , αk be a binary sequence with αi ∈ {0, 1} for

73

all i ∈ {1, . . . , k}. We construct the binary leaf-labelled tree TA from T by

replacing each leaf i by three new leaves ai, bi, ci so that, for all x /∈ {ai, bi, ci},

(i) if αi = 0, then aibi|cix ∈ Q(TA); and

(ii) if αi = 1, then xai|bici ∈ Q(TA).

We specify the weight w(A) of a sequence of zeroes and ones to be the

number of ones. That is, for A = α1, . . . , αk, where αi ∈ {0, 1},

w(A) =
k∑

i=1

αi.

Let the sets of trees T even and T odd be defined by

T even = {TA : w(A) is even},

T odd = {TA : w(A) is odd},

where A ranges over all binary sequences of length k. That is, both of T even

and T odd contain exactly 2k−1 trees.

It remains to show now that taking Y to be all 3k− 1-element subsets of

X yields

T even|Y = T odd|Y ,

thus proving the lemma. It suffices to show that, for any Y ∈ Y and any

T ′ ∈ T even, there is some T ′′ ∈ T odd so that

T ′|Y = T ′′|Y.

Due to symmetry, we may assume that T ′ = TA′ ∈ T even, where A′ consists

entirely of zeroes, and that Y = X − ck. If we let A′′ have αk = 1 as the

single non-zero entry, then the tree T ′′ = TA′′ satisfies our requirements, and

the proof is complete.

Corollary 6.2.11. For all k ≥ 2, there exists some c > 0 such that

c log k ≤ D(k) ≤ 3k.

74

Proof. The lower bound is a consequence of Lemma 6.2.10, while the upper

bound follows by combining Lemma 6.2.7 and Theorem 6.2.8.

6.3 Further Ideas

We conclude this chapter with two fairly general conjectures.

Conjecture 6.3.1. The following statements are equivalent:

(i) Y disentangles
(

Tn

k

)
;

(ii) Y disentangles
⋃

j≤k

(
Tn

j

)
.

The implication (ii)⇒(i) is trivial, but the other direction is not so obvi-

ous. A proof of Conjecture 6.3.1 would bring the results of this chapter in

line with the work in Matsen et al. ([33]). They denote the set of all binary

trees on X by B(X), and the subsets of B(X) of size at most k by B(X, k).

That is,

B(X, k) =
⋃
j≤k

(
B(X)

j

)
.

Theorem 18 from this paper states that B(X, 2) can be disentangled by the

subsets of X of size at most six, which is not quite the same as our assertion

that D(2) = 6. If the previous conjecture were shown to be true, then this

would make the two notions equivalent.

As a final comment, the following conjecture seems intuitive in some ways,

but again neither a proof nor a counterexample has as yet been found.

Conjecture 6.3.2. If
(
[n]
j

)
disentangles some P, and Y also disentangles

P, then {
Z ∈

(
Y

j

)
: Y ∈ Y

}
disentangles P.

The essence of this conjecture is that we need only consider sets Y in which

every member is of the same size; not only that, but every disentangling set

Y for a family P can be reduced to a minimal disentangling set.

Chapter 7

Ramsey Theory and

Leaf-Labelled Trees

7.1 Introduction

The essence of Ramsey theory ([37]) is that it is impossible to have com-

plete disorder within a structure. That is, as we increase the size of some

object of interest, the randomness of the object cannot prevent the appear-

ance of certain highly ordered substructures.

The following simple but deep theorem which first appeared in [23] illus-

trates a Ramsey-type result, and will come in useful for proving some of the

key results in this chapter.

Theorem 7.1.1 (Erdős-Szekeres Theorem). If A is a sequence of n2 + 1

distinct integers, then A contains a monotonic subsequence of length n +

1. Moreover, there is a sequence A of n2 distinct integers that contains no

monotonic subsequence of length n + 1.

As an example, let the sequence A be some permutation of the first ten

positive integers. Then the Erdős-Szekeres Theorem (Theorem 7.1.1) tells

us that there are four elements of A that occur either in strictly increasing

order or in strictly decreasing order. However, if A is instead a permu-

tation of {1, . . . , 9}, then we can choose A so that the longest monotonic

subsequence contains at most three elements. One such example would be

3, 2, 1, 6, 5, 4, 9, 8, 7.

A key aspect of Ramsey theory is that while certain highly regular sub-

structures may be shown to exist, the proofs are often non-constructive. As a

75

76

result, large numbers and fast growing functions are a commonly encountered

phenomenon in this area of mathematics.

Given two or more leaf-labelled trees on overlapping leaf sets, a problem

of interest is to find the size of the largest common subtree. We will instead

approach this problem from a Ramsey theory perspective, with the goal being

to show that a collection of trees on X must have a common subtree on an

arbitrarily-sized leaf set provided X is chosen to be large enough. There is

some overlap between this chapter and results from [28, 44].

7.2 Common Subtrees

We begin with the simplest non-trivial case. Suppose that we have two

binary leaf-labelled trees on the same leaf-set of size n. If n is large enough,

can we guarantee that the trees have a common quartet? That is, is there

some n such that Q(T1)∩Q(T2) is non-empty for all pairs T1, T2 ∈ Tn? And

if so, how large does n need to be?

It turns out that n = 6 is enough to ensure that two members of Tn

share an induced quartet. To demonstrate this, set X = [n] and let Y1 ⊂ X

be a cherry of T1 and Y2 ⊂ X be a cherry of T2. If Y1 ∩ Y2 is empty, then

Y1|Y2 is a common quartet for the two trees. Hence if the trees do not share

a quartet then they must each have exactly two cherries and therefore both

are caterpillars. Now for i ∈ {1, 2}, there is some Zi ⊂ X of size three such

that Zi|X −Zi ∈ Σ(Ti). Without loss of generality, Z1 ∩Z2 contains at least

two elements, and so the non-trivial split Z1 ∩ Z2|X − (Z1 ∪ Z2) is common

to both trees, implying the existence of a common quartet.

Let us now define the notation that we will be using. The arrow notation

is borrowed from mainstream Ramsey theory, although we have adapted it

to fit the model we are working within.

Definition 7.2.1. For k,m > 0, we write

n → (m)k

if any set of k trees T1, . . . , Tk ∈ Tn share a common m-leafed subtree.

The following lemma, which we include for the sake of completeness with-

77

out formal proof, highlights a trivial consequence of Definition 7.2.1.

Lemma 7.2.2. Let k′ ≤ k,m′ ≤ m and n′ ≥ n be positive integers such that

n → (m)k. Then

n′ → (m′)k′ .

The arrow notation gives a compact way of expressing specific Ramsey

theoretic results. In general though, we are more interested in the behaviour

of the function that, for each k, m > 0, outputs the minimal value of n

for which n → (m)k. From Lemma 7.2.2, we know that this behaviour is

monotonic with respect both to k and m.

Definition 7.2.3. Let k,m > 0 be integers. The function τk(m) denotes the

smallest integer n such that

n → (m)k.

Our earlier argument shows that 6 → (4)2. It is easily verified (see

Fig. 7.1), that there are two trees in T5 that do not have a common quartet,

and so it follows that τ2(4) = 6.

��

@@ ��

@@ ��

@@ ��

@@

1

2 3 4

5 1

4 3 2

5

Figure 7.1: Two trees in T5 that have no quartet in common.

Theorem 7.2.4. The function τk(m) is well-defined, That is, for all integers

k,m > 0, there exists some N > 0 such that for all n ≥ N

n → (m)k.

Note that in Definition 7.2.1, we have already restricted ourselves to bi-

nary trees. If we were to allow trees that have vertices of arbitrary degree

78

then τk(m) would no longer be well-defined. To illustrate this, we point out

that for all n, the star tree on [n] and a fully resolved tree in Tn have no

four-leafed subtree in common. We do remark, however, that Theorem 7.2.4

may be upgraded to sets of leaf-labelled trees that have bounded degree.

In order to prove Theorem 7.2.4, we first consider the much simpler case

where the trees in question are all caterpillars. To this end, we require some

further definitions.

Definition 7.2.5. For k,m > 0, we write

n →
c

(m)k

if any set of k caterpillars C1, . . . , Ck ∈ Cn share a common m-leafed subtree.

Definition 7.2.6. Let k,m > 0 be integers. The function κk(m) denotes

the smallest integer n such that

n →
c

(m)k.

Lemma 7.2.7. κk(m) ≤ τk(m) for all k, m > 0.

The above lemma is an immediate consequence of the fact that Cn ⊆ Tn

for all positive n. The proof is straightforward and the details are therefore

omitted.

Theorem 7.2.8. The function κk(m) is well-defined, That is, for all integers

k,m > 0, there exists some N > 0 such that for all n ≥ N

n →
c

(m)k.

Proof. We begin with the case k = 2. Fix some m > 0 and let n ≥ (m −
1)2 + 1. We may assume that C1 ∈ Cn has the canonical labelling [1, . . . , n].

Since the labelling of C2 ∈ Cn is some permutation of [n], it suffices to show

that any such permutation has a monotonic subsequence of length m. This

is guaranteed by the Erdős-Szekeres Theorem (Theorem 7.1.1), and so

(m− 1)2 + 1 →
c

(m)2.

79

Now suppose that k > 2 and again fix some m > 0. Then there is some

n > 0 such that

n →
c

(κ2(m))k−1,

from which it follows that n →
c

(m)k, completing the proof.

Lemma 7.2.9. For all l > 0 there exists some n > 0 such that any tree

T ∈ Tn has a subtree with l leaves that is a caterpillar.

Proof of Theorem 7.2.4. By Lemma 7.2.9, for any l > 0 we can find some

n > 0 such that, for any T1, . . . , Tk ∈ Tn, there is a leaf set Y of size l so

that the restriction of Ti to Y is a caterpillar for all i ∈ {1, . . . , k}. If we take

l = κk(m) then the result follows by Theorem 7.2.8.

As mentioned previously, the non-constructive nature of many Ramsey

theoretic proofs can lead to bounds that are extremely fast growing functions.

Embedded in the proofs of Theorem 7.2.4 and the preceeding results leading

up to it, we have the following corollary. Note that Z+ denotes the set of

strictly positive integers.

Corollary 7.2.10. Define the functions f, g : Z+ → Z+ by

f(x) =

3 · 2x−4
2 + 1 if x is even,

2
x−1
2 + 1 if x is odd,

and

g(x) = x2 − 2x + 2.

For all k ≥ 2 and all m ≥ 4,

κk(m) ≤ gk−1(m), (7.1)

and

τk(m) ≤ fk ◦ gk−1(m). (7.2)

80

Proof. Suppose we have a binary leaf-labelled tree T with f(m) leaves. Then

there is a subtree of T on at least m leaves which is a caterpillar (see for

example [44, Lemma 3.3]). Suppose instead that C1, C2 ∈ Cn, where n ≥
g(m). Then C1 and C2 share a common subtree on at least m leaves. That

is,

κ2(m) ≤ g(m)

by the Erdős-Szekeres Theorem (Theorem 7.1.1), and

τ2(m) = f 2 ◦ g(m).

Let C1, . . . , Ck ∈ Cn be a collection of caterpillars, where n = gk−1(m)

leaves. Since κ2(m) ≤ g(m), we can find a common caterpillar for Ck−1, Ck

that has at least gk−2(m) leaves. Let C ′i be the restriction of Ci to the leaf-set

of this common caterpillar. Then there is some permutation of the leaves so

that C ′1, . . . , C ′k−1 ∈ Cn′ , where n′ ≥ gk−2(m), and so (7.1) holds by induction.

Let T1, . . . , Tk ∈ Tn be a collection of trees, where n = fk◦gk−1(m) leaves.

There is some subtree of T1 that is a caterpillar and has fk−1◦gk−1(m) leaves.

Let T ′
i be the restriction of Ti to the leaf-set of this caterpillar. We can

permute the leaves so that T ′
1 , . . . , T ′

k ∈ Tn′ , where n′ = fk−1 ◦ gk−1(m). By

iterating this over all i ∈ {1, . . . , k}, there is some leaf-set Y of size gk−1(m)

such that the restriction T ′′
i = Ti|Y is a caterpillar for all i ∈ {1, . . . , k}.

Using (7.1), we can now verify that (7.2) holds.

Calculating upper bounds on τ2(m) using Corollary 7.2.10 gives τ2(4) ≤
2049 and τ2(5) ≤ 9223372036854775809. Since we showed earlier that in fact

τ2(4) = 6, there is clearly much room for improvement and to this end we

conclude this section with a conjecture.

Conjecture 7.2.11. τk(m) = κk(m) for all k, m > 0.

7.3 Numerical Bounds

We turn our attention now to bounding the size of κ2(m), which as we

have already shown is well-defined and grows at most quadratically. An idea

81

that will come in useful through this section is that of pattern avoidance.

Roughly speaking, pattern avoidance is concerned with sequences that have

no subsequence isomorphic in some sense to another given sequence. Let us

formalise this.

Definition 7.3.1. For some n > 0, let p = p1, . . . , pn and q = q1, . . . , qn be

sequences of distinct positive integers. We say that p and q have the same

pattern if pi < pj implies qi < qj for all i 6= j.

Definition 7.3.2. For some n > m > 0, let p = p1, . . . , pn and q = q1, . . . , qm

be sequences of distinct positive integers. We say that p avoids q if no

subsequence of p has the same pattern as q.

As a simple example, if p avoids the pattern 1, 2, then p is necessarily

a monotonically decreasing sequence. Slightly more involved, if p avoids

both of the patterns 1, . . . , n and n, . . . , 1, then the length of p is at most

(n − 1)2. This second example is essentially a restatement of the Erdős-

Szekeres Theorem (Theorem 7.1.1).

The problem of finding how large two caterpillars may be so that don’t

share a common subtree of a given size can also be rephrased in terms of

pattern avoidance. Let T (m) be the set of all sequences t = t1, . . . , tm that

are permutations of [m] and satisfy either

(i) t1, t2 < t3 < · · · < tm−2 < tm−1, tm; or

(i) t1, t2 > t3 > · · · > tm−2 > tm−1, tm.

Thus the set T (m) is the set of label orderings of the caterpillars that are

isomorphic to the caterpillar labelled [1, . . . , n]. The proof of this next lemma

follows immediately from definitions that have already been given, and as

such we omit it.

Lemma 7.3.3. Let n > m ≥ 4. There is some permutation S of [n] that

avoids every pattern in T (m) if and only if there are two caterpillars C1, C2 ∈
Cn that share no common m-leafed subtree.

With this in mind, we may concentrate on permutations of [n] for some n

and disregard the underlying tree structure. For two sequences p = p1, . . . , pk

82

and q = q1, . . . , ql, the concatenation pq of p and q is the sequence

pq = p1, . . . , pk, q1, . . . , ql,

and the reverse r(p) of p is the sequence

r(p) = pk, . . . , p1.

We denote by c(i, j, k) the sequence that has i as the first element, and

that is the concatenation of k increasing sequences of j consecutive integers,

with the increasing sequences placed in decreasing order. Thus

c(i, j, k) =i, i + 1, . . . , i + j − 1,

i− j, i− j + 1, . . . , i− 1, . . . ,

i− (k − 1)j, i− (k − 1)j + 1, . . . , i− (k − 2)j − 1.

A simple example of this is c(5, 2, 3) = 5, 6, 3, 4, 1, 2. Slightly more compli-

cated, the central block of the pattern in Fig. 7.2 corresponds to the reverse

of c(i, m− 1, m− 5) for some i.

Using this notation, for all m ≥ 5 we define S(m) to be the sequence

S(m) =2m− 4, c(2m− 6, 2, m− 3), 1,

r(c(m2 − 5m + 4, m− 1, m− 5)),

m2 − 2m− 3, c(m2 − 2m− 5, 2, m− 3), m2 − 4m + 3.

Now, S(m) is a permutation of [m2−2m−3], and a depiction of this sequence

for m ≥ 5 is shown in Fig. 7.2. Using this illustration as an aid, we prove

the following lemma.

Lemma 7.3.4. For all m ≥ 5, the permutation S(m) of [m2−2m−3] avoids

every pattern in T (m).

Proof. Fix some m ≥ 5. We remind the reader that the general pattern of

S(m) is shown in Fig. 7.2. Suppose that S(m) does not avoid t = t1, . . . , tm

for some t ∈ T (m), and let S ′ = s′1, . . . , s
′
m be a subsequence of S(m) that

has the same pattern as t. Then s′2, . . . , s
′
m−1 is monotonic, and must either

83

v
v v

v v
v

v
v

v
v

v
v v

v v
v

p p p︸ ︷︷ ︸m− 3

p p p︸ ︷︷ ︸m− 3

p p p

p p p
︸ ︷︷ ︸m− 1

p p p

︸
︷︷

︸
m− 5

Figure 7.2: The pattern generated by S for m ≥ 5.

be contained in one of the decreasing segments of S(m), or contain at most

one element from each of the decreasing segments. However, in neither case

can we extend s′2, . . . , s
′
m−1 to some subsequence of S(m) that has the same

pattern as any member of T (m), contradicting our assumption.

Applying Lemma 7.3.3 yields a lower bound on κ2(m).

Theorem 7.3.5. κ2(m) > m2 − 2m− 3 for all m ≥ 4.

Proof. For m = 4, the result follows from κ2(4) = 6, while for m ≥ 5 we

combine Lemmas 7.3.3 and 7.3.4.

We remark here that, combining Corollary 7.2.10 and Theorem 7.3.5 gives

m2 − 2m− 3 < κ2(m) ≤ m2 − 2m + 2,

with the upper bound being precisely the sharp bound found in the Erdős-

Szekeres Theorem (Theorem 7.1.1). This disproves Conjecture 1 in [28],

84

which may be phrased in our notation as

κ2(m) ≤ m2 − 4m + 6.

Intuitively we would expect the real value of κ2(m) to be strictly smaller

than m2 − 2m + 1, given we have slightly stronger constraints on patterns

to avoid when dealing with trees as opposed to sequences. This is certainly

true for m = 4.

We continue by finding an exact value for κ2(5).

Theorem 7.3.6. κ2(5) = 13.

Proof. Let C1 be the caterpillar labelled [1, . . . , n]. Consider some permuta-

tion σ of [n], and suppose that this is the label ordering for some caterpillar

C2. For each x ∈ [n] we define the following quantities:

la(x) = |{y < x : σ−1(y) < σ−1(x)}|

lb(x) = |{y > x : σ−1(y) < σ−1(x)}|

ra(x) = |{y < x : σ−1(y) > σ−1(x)}|

rb(x) = |{y > x : σ−1(y) > σ−1(x)}|

The first of these, la(x), represents the number of elements in [n] that

are smaller than x and also appear before x in σ. The remaining quantities

may be described similarly. We can find some simple but useful relationships

between these:

lb(x) = σ−1(x)− la(x)− 1

lb(x) = n− x− rb(x)

ra(x) = x− la(x)− 1

ra(x) = n− σ−1(x)− rb(x)

Assume that C1, C2 do not share a five-leafed subtree, and suppose that

for some x ∈ [n], we have la(x) ≥ 2 and rb(x) ≥ 2. Then we can find a

85

common five-leafed subtree for C1, C2 having x as the leaf not appearing in a

cherry. Hence one of la(x), rb(x) is at most one. Similarly, one of lb(x) and

ra(x) is at most one.

Now suppose that la(x) ≤ 1. Then since min (lb(x), ra(x)) ≤ 1, we have

either x ≤ 3 or σ−1(x) ≤ 3. There are at most six choices for x that will

satisfy one of these conditions, and hence at most six different x for which

la(x) ≤ 1.

Suppose instead that rb(x) ≤ 1. Then using the same reasoning as above

we have either x ≥ n− 2 or σ−1(x) ≥ n− 2. Again, there are at most six x

that can satisfy this. That is, 13 →
c

(5).

To complete the proof, it suffices to give a permutation of [12] so that C1

and C2 don’t share a five-leafed subtree. An example of such a permutation

is [6, 4, 5, 2, 3, 1, 12, 10, 11, 8, 9, 7], and hence κ2(5) = 13.

This result can be used to start the induction for a more general con-

struction.

Lemma 7.3.7. κ2(m) ≤ m2 −m− 7 for all m ≥ 5.

Proof. Let S = s1, . . . , sn be a permutation of [n] where n > 4. For all i ∈ [n],

let αi be the length of the longest monotonically increasing subsequence

a1, . . . , ar of S such that

(i) a1 = si;

(ii) there exist j, k < i such that sj, sk < si; and

(iii) if ar = sl, then there exist j, k > l such that sj, sk > sl.

We define βi similarly for decreasing subsequences. That is, for i ∈ [n], we

set βi to be the length of the longest monotonically decreasing subsequence

b1, . . . , br of S such that

(i) b1 = si;

(ii) there exist j, k < i such that sj, sk > si; and

(iii) if br = sl, then there exist j, k > l such that sj, sk < sl.

86

Suppose that, for some i < j, we have αi = αj > 0. Then si > sj,

for otherwise αi ≥ αj + 1. That is, for all c > 0 the subsequence Sα
c of S

consisting of all elements si such that αi = c is monotonically decreasing.

Similarly, if the subsequence Sβ
c of S included only those elements si of S

such that βi = c, then Sβ
c is monotonically increasing.

Now, choose some m ≥ 6 and assume that the theorem holds for all

smaller values of m. Suppose that C1, C2 ∈ Cn, where n = m2 −m − 7, are

two caterpillars that share no m-leafed subtree. We can assume that C1 has

the canonical labelling [1, . . . , n] and that C2 has the labelling [s1, . . . , sn].

For all i ∈ [n], we have αi, βi < m − 4, for otherwise there is a common

subtree with m leaves.

Let I ⊆ [n] be a set of size κ2(m−1). Then for some i ∈ I, either αi or βi

is at least m−5. That is, there are at least n−κ2(m−1)+1 ≥ 2m−1 distinct

i ∈ [n] for which either αi = m − 5 or βi = m − 5. So by the pigeonhole

principle, one of the subsequences Sα
m−5, S

β
m−5 has length m. However, this

means that we have a monotonic sequence of length m in S, and hence C1, C2

share a common subtree with m leaves.

This last result is an improvement on Corollary 7.2.10 only for m < 9,

while for m > 9 the corollary remains the best known bound. The table

below provides a summary of the results from this section.

m κ2(m)
4 6
5 13
6 [22, 23]
7 [33, 35]
8 [46, 49]
≥ 9 [m2 − 2m− 2, m2 − 2m + 2]

Table 7.1: Known bounds on κ2(m) for m ≥ 4.

PART III

TREE REARRANGEMENT

OPERATIONS

In the late sixties, Robinson introduced nearest neighbour interchange

(nni) as a measure for comparing two leaf-labelled trees that share the same

leaf-set ([39]). The underlying notion of nni is that one tree is transformed

into the other through a sequence of edge deletions and insertions. That is,

we cut a tree into two pieces by deleting an edge, and then put these pieces

back together by inserting a new edge.

The nni operation is the precursor to a number of other tree rearrange-

ment operations. Two that we study in particular in this thesis are subtree

prune and regraft (spr) and tree bisection and reconnection (tbr), with the

latter being the primary focus of our results. Both spr and tbr are general-

isations of the basic nni move we described above. Formal definitions of all

three operations are given in Chapter 8.

Each of these rearrangement operations induces a metric on the space of

binary leaf-labelled trees with n leaves. That is, there is a distance defined

between any pair of trees in Tn in each of these metrics. A natural question

to consider is why this distance may be taken as a measure of similarity

between the trees in question. The nature of the operations means that any

single operation preserves most of the structural information in the original

tree.

Rearrangments of rooted trees are not studied in this thesis, although

we make brief mention of them here as motivation for studying tree rear-

87

88

rangment in general. The rooted version of spr is often used to model the

effects of recombination within an evolutionary system, by which we mean

any hereditary process that passes information from one type to another

other than through purely tree-like evolution ([3]). Examples of this may be

found in linguistics with the genesis of creole languages and in stemmatology

when a scribe copies from two or more manuscripts simultaneously.

The usefulness of tree rearrangement can also be seen in algorithmic ap-

plications. Quantitative measures of how well a specific tree fits a set of

data are commonly used as optimisation criteria for selecting the most likely

tree to underlie an evolutionary system. Given the size of the tree space for

any practical application, it is unrealistic to calculate how well every single

tree models a given data set and to then choose an optimal tree. Using the

assumption that the collection of the most optimal trees share a degree of

similarity, we can implement a search starting at some tree in the space,

and then iterate by choosing the optimal tree that lies within one operation

of the original tree, thus dramatically reducing the search space at any one

iteration. In the light of this method, there are two factors which affect the

efficiency of the algorithm. Firstly, how many trees are within a single oper-

ation of a given tree, and secondly, how far apart can two trees be. The first

of these questions has been fully answered for both the nni and spr metrics,

while upper and lower bounds are known for the maximum distance between

a pair of trees under each of the three metrics.

The key results in this part of the thesis are all improvements on previous

authors’ work. In Chapter 8, we find an exact expression for the size of

the tbr unit neighbourhood of a tree, and at the same time reprove the

known analogue for spr. We then continue by characterising the trees that

respectively maximise and minimise the size of this neighbourhood. This

work was carried out in collaboration with Taoyang Wu. Chapter 9 was

researched jointly with Stefan Grünewald, and is concerned with finding the

maximum distance between a pair of trees in both the spr and the tbr

metrics. While an exact result is not achieved, we improve on both the

current best known upper and lower bounds.

Chapter 8

The TBR Unit Neighbourhood

8.1 Introduction

As we have already outlined, tree rearrangement operations may be of

use in heuristic algorithms for finding a tree that optimally explains a given

data set. The problem of quantifying the agreement between a tree and a

data set is not addressed here. For the purposes of this discussion, we will

instead impose a hypothetical measure µ on the implied tree space, so that

if µ(T) > µ(T ′) then it is understood that T is a more optimal tree than T ′.

The basic method is to choose, either randomly or intelligently, a tree

T to serve as the initial input for the algorithm, and to calculate µ(T).

The measure µ(T ′) is then calculated for all trees T ′ that are exactly one

rearrangement operation from T . If µ(T) ≥ µ(T ′) for all such trees, then the

algorithm outputs T . Otherwise, the tree with the highest known measure

is fed back in to the algorithm, and the same procedure is followed until a

tree is returned. This guarantees to output a tree that locally maximises µ

within the metric induced by the chosen rearrangement operation.

We now give formal definitions for each of the tree rearrangement opera-

tions of interest, namely nni (nearest neighbour interchange), spr (subtree

prune and regraft) and tbr (tree bisection and reconnnection). Although

nni was the point of departure for the study of these operations, we begin

by defining tbr, being the most general of the three.

A tbr operation on a binary leaf-labelled tree T involves deleting some

edge e from T (the bisection), and subsequently inserting a new edge f so that

the resultant tree T ′ is distinct from T (the reconnection). Since we require

T ′ to be binary, it is necessary to subdivide an edge in one (in the case

89

90

that the other component is an isolated labelled vertex) or both components

created in the bisection stage before inserting the new edge. An example is

given in Fig. 8.1. We can transform T1 into T2 by first deleting the edge e

��

@@ ��

@@ ��

@@ ��

@@
T1

1

2 3

e

4 5

6

T2

1

3 2

f

5 4

6

Figure 8.1: Two trees T1, T2 ∈ T6 that are one tbr operation apart.

from T1, and then adding the new edge f . To check that there has been no

other change to the tree’s structure, note that deleting e from T1 gives the

same forest as deleting f from T2.

For a binary tree T , we define the set Otbr(T) to be all possible tbr

operations θ that can be applied to the tree T . An important point to note

here is that for distinct θ1, θ2 ∈ Otbr, we may have θ1(T) = θ2(T). The

reason for this is that an operation θ ∈ Otbr(T) is not specified solely by

the output tree θ(T), but also by the edge e that is deleted from T in the

bisection stage of θ.

Observe that for any two distinct trees T , T ′ ∈ Tn, there is a tbr op-

eration θ ∈ Otbr(T) for which θ(T) = T ′ if and only if there is some split

X1|X2 ∈ Σ(T)∩Σ(T ′) such that T |Xi = T ′|Xi for all i ∈ {1, 2}. To demon-

strate this, if the edges e and f have respectively been deleted and inserted

in the tbr operation that changes T into T ′, then the forest obtained by

deleting e from T must be identical to the forest obtained by deleting f from

T ′. This provides not only the common bipartition of the leaf set, but also

the common subtrees induced by each part of this bipartition1.

Spr is a special case of tbr in which there is less freedom at the re-

connection stage. Let T be a binary tree, and let θ ∈ Otbr(T) be a tbr

operation on T in which the edge e is deleted, and let X1|X2 be the split of

T induced by e. Then θ is an spr operation for T if and only if, without

1The natural extension of this idea to arbitrary partitions is called an agreement forest.
These are discussed in Chapter 9.

91

loss of generality, T |X2 ∪ x1 = θ(T)|X2 ∪ x1 for some x1 ∈ X1. Moreover, if

this holds then in fact the same property holds for all x1 ∈ X1.

The significance of this condition is that one of the components formed

in the bisection of T , in this case T |X2, is treated as a rooted subtree, and

is then regrafted so that this rooting is preserved with respect to the other

component. We say that we have pruned T |X2 from T , and regrafted it to

form T ′.

The previous example (refer to Fig. 8.1) does not represent an spr opera-

tion, since neither component obtained by deleting e from T1 can be regrafted

to the other to form T2. By making a subtle change, in particular by exchang-

��

@@ ��

@@ ��

@@ ��

@@
T1

1

2 3

e

4 5

6

T3

1

3 2

f

4 5

6

Figure 8.2: Two trees T1, T3 ∈ T6 that are one spr operation apart.

ing the labels 4 and 5 on T2, we get a tree T3 that can be obtained from T1

by a single spr operation. This example is depicted in Fig. 8.2.

Nni operations are tbr operations in which the reconnection is still more

restricted than for spr. Let T be a leaf-labelled tree, and let θ ∈ Otbr(T)

be an spr operation in which T |Y is pruned from T and regrafted to form

T ′ = θ(T). We say that θ is an nni operation if and only if there is some

cluster Z 6= Y of T such that we can form T ′ from T by swapping the

subtrees T |Y and T |Z. In this case, T |Y and T |Z can be seen as adjacent

in some sense, as shown by the schematic diagram in Fig. 8.3. Although

��
HH

�� AA �� AA

��HHX W ��
HH

�� AA �� AA

��HHX W
T

Y Z

T ′

Z Y

Figure 8.3: A tree illustrating the simplest case of Lemma 8.3.3.

92

it may not be immediately obvious, the example in Fig. 8.2 shows an nni

operation in which the leaves 2 and 3 have been swapped. Alternatively, the

same outcome is reached by interchanging the subtrees labelled by {1} and

{4, 5, 6} respectively. The possibility that two distinct operations can result

in the same tree lies behind the main lemma (Lemma 8.2.1) in Section 8.2.

Extending our earlier notation for tbr to both spr and nni, we have

Onni(T) ⊆ Ospr(T) ⊆ Otbr(T)

for any tree T . For each ϑ ∈ {nni, spr,tbr}, the ϑ unit neighbourhood of T
is the set

Nϑ(T) = {θ(T) : θ ∈ Oϑ(T)}.

That is, Nϑ(T) is the set of all trees that are precisely one ϑ rearrangement

operation from T . Clearly, the elements in these neighbourhoods are depen-

dent on the operation in question, and we have the corresponding nesting

property as above. More explicitly,

Nnni(T) ⊆ Nspr(T) ⊆ Ntbr(T).

Our interest in this chapter is in the size of these neighbourhoods, pri-

marily the size of the tbr unit neighbourhood. For a tree T ∈ Tn, with

n ≥ 4, Robinson showed in [39] that the nni unit neighbourhood has size

exactly equal to 2n− 6, while Allen and Steel ([2]) proved that

|Nspr(T)| = 2(n− 3)(2n− 7).

It was also demonstrated in [2] that the size of the tbr unit neighbourhood

is dependent on the shape of T . More recently, the bounds

cn2 log n + O(n2) ≤ |Ntbr(T)| ≤ 2

3
n3 − 4n2 +

16

3
n + 2

were shown to hold for all n ≥ 4, with the upper bound being met with

equality if and only if T is a caterpillar ([27], see Appendix C).

93

The rest of this chapter is divided into two sections. In the first of these

(Section 8.2), we relate the sizes of Oϑ(T) and Nϑ(T) for spr and tbr, and

then use this to both reprove Allen and Steel’s ([2]) result for the spr neigh-

bourhood and to obtain an expression for the tbr neighbourhood dependent

on the tree shape. In Section 8.3, we characterise the trees that respectively

maximise and minimise the size of Ntbr(T) for all binary tree spaces Tn.

This is then extended to reprove the tight upper bound given in [27], and to

further prove a tight asymptotic lower bound.

8.2 Neighbourhood Sizes

The approach used by Allen and Steel in [2] to determine both the size

of the spr unit neighbourhood and the upper bound on the size of the tbr

unit neighbourhood was to count directly the number of trees that can be

obtained from T via a single operation. While this seems the most natural

approach, there is a fundamental barrier to performing this enumeration that

we alluded to briefly in the introduction for this chapter. This is the fact

that some operations in Otbr(T) may be redundant. That is, there may be

distinct elements θ1, θ2 ∈ Otbr(T) for which

θ1(T) = θ2(T).

This potentially leads to counting some trees more than once. If we can

determine precisely which operations in Otbr(T) output the same tree, then

we can relate the size of the tbr unit neighbourhood to the number of

legitimate operations on T .

It transpires, as the next lemma shows, that the only redundant tbr

operations are all nni operations.

Lemma 8.2.1. Let θ, θ′ ∈ Otbr(T) be distinct tbr operations. If θ(T) =

θ′(T), then θ ∈ Onni(T).

Proof. Suppose that A|B is the split of T induced by θ, and that A′|B′

is the split induced by θ′. We may assume that A ⊂ A′ and B′ ⊂ B.

Since T |A′ = θ(T)|A′, we have immediately that θ ∈ Ospr(T). Let A0 =

A, A1, . . . , Ak = A′ be clusters of T such that

94

(i) Ai|B′ is a partial split of T ; and

(ii) Ai+1 is a minimal cluster of T that contains Ai.

The generic structure of T is depicted in Fig. 8.4. If k = 1, then it must be

��
HH

�� AA �� AA

��
HHA0

A1 − A0 Ak − Ak−1

B′

Figure 8.4: The tree T in Lemma 8.2.1.

that T = θ(T). On the other hand, if k ≥ 3 then in order for T |A′ = θ(T)|A′

to hold, we must regraft the pruned subtree T |A in the same place so that

again T = θ(T). Hence k = 2, and so swapping the subtrees T |A and T |B′

produces θ(T) from which it follows that θ is an nni operation.

As a consequence of Lemma 8.2.1, we can express the sizes of both the spr

and the tbr unit neighbourhoods in terms of the number of each operation

for a tree and the size of the nni neighbourhood.

Lemma 8.2.2. For T ∈ Tn, n ≥ 4, we have

|Nϑ(T)| = |Oϑ(T)| − 3|Nnni(T)|,

where ϑ ∈ {spr,tbr}.

Proof. The proof follows from Lemma 8.2.1 and the observation that, if θ

is an nni operation for T , then there are precisely four distinct operations

θ′ ∈ Onni(T) such that θ(T) = θ′(T).

Lemma 8.2.2 forms the basis of the two key results for this section. Both

the number of distinct spr operations and the number of distinct tbr oper-

ations for any given tree can be found relatively easily. We proceed with the

spr case first.

95

Theorem 8.2.3. For a tree T ∈ Tn where n ≥ 4, we have

|Ospr(T)| = 4(n− 2)(n− 3).

Proof. We consider two possible spr operations on T , firstly those that in-

duce a trivial split on T , and secondly those that induce a non-trivial split.

In the first case, there are n possible leaves that can be pruned from T , and

for each leaf x there are 2n− 6 edges in T − x to which we can reconnect it

so that the resulting tree is different from T .

In the second case, suppose that the non-trivial split is A|B, with |A| = a

and |B| = b. If we choose T |A to be the pruned subtree, then there are

2b − 3 edges to which we can regraft T |A. However, one of these results

in the same tree as we began with, namely T . Thus there are 2b − 4 such

distinct operations. Similarly, if we choose T |B as the pruned subtree, then

there are 2a− 4 possible spr operations. Thus there are 2n− 8 distinct spr

operations for each of the n− 3 non-trivial splits of T . Hence

|Ospr(T)| = n(2n− 6) + (n− 3)(2n− 8)

= 4(n− 2)(n− 3).

As a corollary to this theorem, we obtain the result of Allen and Steel’s

([2]) for the size of the spr unit neighbourhood. The proof is omitted, as it

follows trivially from Lemma 8.2.2 and Theorem 8.2.3.

Corollary 8.2.4 (Theorem 2.1, [2]). For T ∈ Tn where n ≥ 4, we have

|Nspr(T)| = 2(n− 3)(2n− 7).

We require one further idea before tackling the tbr problem. For a binary

tree T , we define Γ(T) by

Γ(T) =
∑

|A| · |B|,

where the sum is taken over all non-trivial splits A|B of T .

96

Theorem 8.2.5. For a tree T ∈ Tn where n ≥ 4, we have

|Otbr(T)| = 4Γ(T)− 4(n− 2)(n− 3).

Proof. We consider two possible tbr operations on T , firstly those that

induce a trivial split on T , and secondly those that induce a non-trivial

split. The argument in the first case is identical to that given in the proof of

Theorem 8.2.3, and gives n(2n− 6) distinct tbr operations.

Now, let A|B be some non-trivial split of T induced by the edge e. Then

when we bisect T by deleting e, there are 2|A| − 3 edges in one component

of the resulting forest and 2|B| − 3 edges in the other. Hence, there are

(2|A| − 3)(2|B| − 3) ways to choose an edge from each of T |A and T |B.

Precisely one of these results in re-forming T . Hence, by taking a sum over

all non-trivial splits A|B of T , we get

|Otbr(T)| = n(2n− 6) +
∑

[(2|A| − 3)(2|B| − 3)− 1]

= 4Γ(T)− 4(n− 2)(n− 3).

This brings us to the main result of the chapter. While the following

corollary gives the size of the tbr neighbourhood for T in terms of Γ(T),

calculating this quantity is straightforward. Also, as we will see in Section 8.3,

Corollary 8.2.6 gives enough traction for us to characterise the trees in a space

that respectively maximise and minimise the size of the neighbourhood.

Corollary 8.2.6. For T ∈ Tn where n ≥ 4, we have

|NTBR(T)| = 4Γ(T)− (4n− 2)(n− 3).

8.3 Characterisations of the Extremal Cases

Since the size of the tbr unit neighbourhood for T is dependent on both

the number of leaves in T and the shape of T , it makes sense to characterise

which tree shapes give the extreme values for this size. As a consequence

of Corollary 8.2.6, it suffices to determine which tree shapes maximise and

97

minimise the size of Γ(T) over all trees in Tn for some n. We begin with the

easier case, that is, finding the trees that maximise Γ(T).

Lemma 8.3.1. Let T ∈ Tn be a tree such that Γ(T) ≥ Γ(T ′) for all T ′ ∈ Tn.

Then T is a caterpillar.

Proof. Suppose that {x1, x2} and {x3, x4} are cherries of T , and let the sets

Y1, . . . , Yk partition the remaining leaves so that T can be represented as in

Fig. 8.5. Setting yi = |Yi|, it will suffice to show that yi = 1 for all i. For

�� AA �� AA

x1

x2

Y1 Yk

x3

x4

Figure 8.5: The tree T in the proof of Lemma 8.3.1.

some i ∈ {1, . . . , k}, we form a second tree T ′ by moving the subtree T |Yi to

the position adjacent to x1. The tree T ′ is shown in Fig. 8.6. Since yj ≥ 1

��
HH

�� AA

Yi

x1 x2

Yk

x3

x4

Figure 8.6: The tree T ′ in the proof of Lemma 8.3.1.

for all j, we have the inequality

yi + (i− 1) ≤ n− 4,

from which n− yi − i− 2 is strictly positive. Now, calculating the difference

98

between Γ(T) and Γ(T ′), we find that

Γ(T)− Γ(T ′) =
i−1∑
j=0

(j + 2)(n− j − 2)−
i−1∑
j=0

(yi + j + 1)(n− yi − j − 1)

= i(1− yi)(n− yi − i− 2).

If yi > 1, then Γ(T) < Γ(T ′), and so in fact yi = 1 for all i ∈ {1, . . . , k}.
Thus T is a caterpillar.

Recall from Section 8.1 that the previous best upper bound on the size

of Ntbr(T) for a tree T ∈ Tn was 2n3 + O(n2). Theorem 8.3.2 confirms that

the tight upper bound is a cubic function of n.

Theorem 8.3.2. The tree T ∈ Tn maximises the size of the tbr unit neigh-

bourhood over Tn if and only if T is a caterpillar. Moreover, if T is a

caterpillar then

|Ntbr(T)| = 2

3
n3 − 4n2 +

16

3
n + 2.

Proof. The first part of the theorem follows from Lemma 8.3.1. To find the

size of the neighbourhood, we apply Corollary 8.2.6 from which we have

|NTBR(T)| = 4Γ(T)− (4n− 2)(n− 3)

= 4
n−2∑
i=2

i(n− i)− (4n− 2)(n− 3)

=
2

3
n3 − 4n2 +

16

3
n + 2.

The characterisation of those trees that minimise the size of the tbr

neighbourhood relies heavily on the next lemma (Lemma 8.3.3). Before

proving this, we give an example of the simplest case of this lemma. Suppose

that, in Fig. 8.7, the sizes of the pendant subtrees labelled by X1, . . . , X4 are

x1, . . . , x4 respectively. If this tree has a minimal value for Γ(T), then since

99

��
HH

�� AA �� AA

��HHX1

X2 X3

X4

Figure 8.7: A tree illustrating the simplest case of Lemma 8.3.3.

Γ(T) is the sum of |A| · |B| over all non-trivial splits A|B, we must have

(x1 + x2)(x3 + x4) ≤ min{(x1 + x3)(x2 + x4), (x1 + x4)(x2 + x3)}.

Assuming without loss of generality that x1 is the smallest of the four quan-

tities, it is easy to show that x2 is the next smallest. Lemma 8.3.3 extends

this observation to a more general result.

Lemma 8.3.3. Let X = {1, . . . , n}, and let T ∈ Tn be such that Γ(T) ≤
Γ(T ′) for all T ′ ∈ Tn. Further, for some k ≥ 0 let X1, . . . , X4, Y1, . . . , Yk

partition X such that the following hold:

(i) Xi|X −Xi ∈ Σ(T) for all i ∈ {1, . . . , 4};

(ii) Yi|X − Yi ∈ Σ(T) for all i ∈ {1, . . . , k}; and

(iii) Ai|X − Ai ∈ Σ(T) for all i ∈ {0, . . . , k}, where A0 = X1 ∪ X2, Ai =

Ai−1 ∪ Yi.

Then without loss of generality we have x1 ≤ x2 ≤ x3 ≤ x4, where xi = |Xi|.

Proof. Without loss of generality, we can assume x1 ≤ x2 ≤ x3. Supposing

that the lemma is false, we have x2 > x4. Then either x1 = x3, and so

x1 ≥ x2 ≥ x3 ≥ x4, contradicting our assumption that the lemma is false, or

x1 < x3.

Figure 8.8 shows the general structure of a tree T that satisfies the con-

ditions of the lemma. Let T1 be the tree obtained from T by swapping the

subtrees labelled by X1 and X3, and let T2 be similarly obtained by swapping

100

��
HH

�� AA �� AA �� AA �� AA

��HHX1

X2 Y1 Yk X3

X4

Figure 8.8: The tree T in Lemma 8.3.3.

the subtrees T |X2 and T |X4. Let yi = |Yi|, and b0 = 0, bi = bi−1 + yi. Then

we have

Γ(T)− Γ(T1) =
k∑

j=0

(x1 + x2 + bj)(n− x1 − x2 − bj)

−
k∑

j=0

(x2 + x3 + bj)(n− x2 − x3 − bj)

= (x3 − x1)

[
2

k∑
j=0

bj − (k + 1)(n− x1 − 2x2 − x3)

]
.

Since we assume that Γ(T) ≤ Γ(T1), and that both x1 < x3 and x2 > x4

hold, we get

Γ(T)− Γ(T2) = (x4 − x2)

[
2

k∑
j=0

bj − (k + 1)(n− 2x1 − x2 − x4)

]

> (x4 − x2)

[
2

k∑
j=0

bj − (k + 1)(n− x1 − 2x2 − x3)

]

=
x4 − x2

x3 − x1

(Γ(T)− Γ(T1))

≥ 0,

contradicting the fact that Γ(T) ≤ Γ(T2).

Applying Lemma 8.3.3, we can completely characterise those trees T that

minimise the size of Γ(T), and therefore those trees that minimise the size

of the tbr unit neighbourhood.

101

Lemma 8.3.4. Let X = [n] for some n =
∑k

i=0 αi2
i, where αi ∈ {0, 1}

for 0 ≤ i < k and αk = 1. Let βj = 1
2j

∑k
i=j αi2

i. Let T ∈ Tn such that

Γ(T) ≤ Γ(T ′) for all T ′ ∈ Tn. Then for all 0 ≤ j ≤ k−1 there is a partition

X1, . . . , Xβj
of X into βj disjoint subsets such that following properties hold:

(i) Xp|X −Xp ∈ Σ(T) for all 1 ≤ p ≤ βj; and

(ii) |Xp| = 2j for all 1 ≤ p < βj.

Proof. For j = 0, this holds trivially. We assume that for some 0 ≤ j < k−1,

the partition X1, . . . , Xβj
of X satisfies the conditions of the lemma.

Suppose that for 1 ≤ p < q < βj, there is no set Y that contains either

Xp or Xq such that Y |X − Y ∈ Σ(T) and |Y | = 2j+1. Then we can apply

Lemma 8.3.3 to find a tree T ′ for which Γ(T ′) < Γ(T). Hence, for m such that

2m < βj, there are disjoint subsets X ′
1, . . . , X

′
m of X such that X ′

p|X −X ′
p ∈

Σ(T) and |X ′
p| = 2j+1.

There are two cases to consider. Suppose firstly that 2m = βj − 2. Then

there is some 1 ≤ p < βj such that Xp is not contained in some Y , where

Y |X − Y ∈ Σ(T) and |Y | = 2j+1. We can then use Lemma 8.3.3 again

to show that if X ′
βj+1

= Xp ∪ Xβj
, then X ′

βj+1
|X − X ′

βj+1
∈ Σ(T). Since

m + 1 = βj+1, we have the required partition.

On the other hand, if 2m = βj − 1 then we can use Lemma 8.3.3 to

show that there is some 1 ≤ p ≤ m such that, if X ′
βj+1

= Xβj
∪ X ′

p, then

X ′
βj+1

|X−X ′
βj+1

∈ Σ(T). Again, this gives the required partition, completing

the induction.

The question now is what these trees look like. In some sense, the trees

that minimise the size of Γ(T) are maximally balanced, although we must

define carefully what we mean by this. The only sizes of n for which an

unrooted binary tree can be truly balanced, or perfect, are n = 2k or n = 3·2k,

where we have either two-fold symmetry about an interior edge of the tree or

three-fold symmetry about an interior vertex, and the tree is vertex-transitive

with respect to the leaves. For values of n other than those which admit a

perfect tree, we necesssarily lose the property of leaf-transitivity as a global

structural property.

A tree T ∈ Tn, where 3 · 2k ≤ n < 3 · 2k+1 is complete if and only if

102

(i) there is a cluster Y of T with |Y | = 2k+1; and

(ii) for all clusters Y with 2 ≤ |Y | ≤ 2k+1, there is a bipartition Y1, Y2

of Y such that both of Y1, Y2 are clusters of T , and |Y1| = 2j and

2j−1 ≤ |Y2| < 2j+1 for some j.

That is, for each such cluster Y , the pendant subtree T |Y has minimal

depth, and one half of this pendant subtree is perfectly balanced. The trees

in Lemma 8.3.4 are precisely the complete trees in the space Tn, from which

we obtain the next theorem. The proof is routine and omitted.

Theorem 8.3.5. The tree T ∈ Tn minimises the size of the tbr unit neigh-

bourhood over Tn if and only if T is complete.

Let us continue towards finding the size of the tbr unit neighbourhood

for complete trees.

Lemma 8.3.6. Let T ∈ Tn be a complete tree for some n =
∑k

i=0 αi2
i,

where αi ∈ {0, 1} for 0 ≤ i < k and αk = 1. Then

Γ(T) =
k−1∑
j=1

(
k∑

i=j

αi2
i − 2j

)(
2n−

k∑
i=j

αi2
i

)

if αk−1 = 1, and

Γ(T) =
k−2∑
j=1

(
k∑

i=j

αi2
i − 2j

)(
2n−

k∑
i=j

αi2
i

)
+ 2k−1(n− 2k−1)

if αk−1 = 0.

Proof. We use the proof of Lemma 8.3.4 to obtain this result. For each of the

partitions X1, . . . , Xβj
, we take the sum of |Xp| · (n− |Xp|). We consider the

family of complete trees on n leaves, where αk−1 = 1 following the notation

103

of Lemma 8.3.4. This gives

Γ(T) =
k−1∑
j=1

 βj∑
p=1

|Xp| · (n− |Xp|)


=

k−1∑
j=1

[
2j(βj − 1)(n− 2j) + |Xβj

| · (n− |Xβj
|)
]
.

Now, we also have from Lemma 8.3.4 that

|Xβj
| = n− 2j(βj − 1),

so incorporating this into the above expression we find

Γ(T) =
k−1∑
j=1

2j(βj − 1)(2n− 2jβj)

=
k−1∑
j=1

(
k∑

i=j

αi2
i − 2j

)(
2n−

k∑
i=j

αi2
i

)
.

In the case that αk−1 = 0, the partition X1, . . . , Xβk−1
is a bipartition of

the leaf set of T , and so we need only take the product |X1| · (n− |X1|) once

in the sum above. That is

Γ(T) =
k−2∑
j=1

 βj∑
p=1

|Xp| · (n− |Xp|)

+ 2k−1(n− 2k−1)

=
k−2∑
j=1

(
k∑

i=j

αi2
i − 2j

)(
2n−

k∑
i=j

αi2
i

)
+ 2k−1(n− 2k−1).

We conclude this chapter with two corollaries that give firstly an ex-

act value for the size of the tbr unit neighbourhood for perfect trees, and

secondly an asymptotic lower bound on the size of this neighbourhood for

complete trees. Both proofs follow from Lemma 8.3.6 and Corollary 8.2.6.

104

Corollary 8.3.7. Let T ∈ Tn be a perfect tree. Then

|Ntbr(T)| = n2

(
4k − 32

3

)
+ 22n− 6

if n = 3 · 2k−1 for some k, and

|Ntbr(T)| = n2(4k − 13) + 22n− 6

if n = 2k for some k.

Proof. In the first case, where n = 3 · 2k, we have

Γ(T) =
k−1∑
j=1

n(n− 2j)

= n2(k − 1)− n(2k − 2)

= n2

(
k − 5

3

)
+ 2n,

and the result follows by applying Corollary 8.2.6. On the other hand, if

n = 2k+1 then

Γ(T) =
k−2∑
j=1

n(n− 2j) +
n2

4

= n2

(
k − 7

4

)
− n(2k−1 − 2)

= n2

(
k − 9

4

)
+ 2n,

and again applying Corollary 8.2.6 gives the required result.

Corollary 8.3.8. Let T ∈ Tn be a complete tree. Then

|Ntbr(T)| = 4n2blog2 nc+ O(n2).

Proof. The proof is similar in nature to that for the previous corollary. In

105

the first case, where 3 · 2k−1 ≤ n < 2k+1 for some k ≥ 1, we have

Γ(T) =
k−1∑
j=1

(
n−

j−1∑
i=0

αi2
i − 2j

)(
n +

j−1∑
i=0

αi2
i

)

= n2(k − 1)− n(2k − 2)−
k−1∑
j=1

(
j−1∑
i=0

αi2
i

)2

.

However, we can obtain a bound for the final term of this expression by

assuming that αi = 1 for all i ∈ {0, . . . , k − 2}, giving

k−1∑
j=1

(
j−1∑
i=0

αi2
i

)2

<

k−1∑
j=1

22j

=
2

3

(
22k−1 − 1

)
= O(n2).

The second case, where 2k ≤ n < 3 · 2k−1, follows in a similar manner and

we complete the proof by Corollary 8.2.6.

Chapter 9

Agreement Forests

9.1 Introduction

In the previous chapter, we defined three different tree rearrangement

operations that may be used to transform one leaf-labelled tree into another.

We refer the reader back to Section 8.1 for the definitions of these operations.

The purpose of Chapter 8 was to more accurately determine the size of the

unit neighbourhood for some tree under tbr. That is, how many trees are

obtainable from a given tree by a single tbr operation.

One of the primary motivations for studying tree rearrangements is that

they can be used to quantify the level of similarity inherent in two trees in the

same tree space. For ϑ ∈ {nni, spr,tbr}, we define the ϑ distance between

T , T ′ ∈ Tn to be the fewest number of ϑ operations required to change T
into T ′. The notation we use for the ϑ distance is

dϑ(T , T ′) = dϑ(T ′, T) = k,

where k is the smallest non-negative integer such that there is a sequence of

trees T0 = T , T1, . . . , Tk = T ′ that satisfies

Ti ∈ Nϑ(Ti−1)

for all i ∈ {1, . . . , k}.
With the distance defined in this way, if

dϑ(T1, T2) < dϑ(T1, T3)

106

107

for trees T1, T2, T3 ∈ Tn, then we would expect T1 and T2 to be more alike in

some structural sense than T1 and T3 are.

The ϑ distance also induces a metric on the tree space Tn for each

ϑ ∈ {nni, spr,tbr} ([2],[39]). In this chapter, we will introduce a graph

that realises this metric for the various tree rearrangment operations we are

considering. The adjacency graph Gϑ(n) for the ϑ operation in Tn has the

elements of Tn as its vertex set, and an edge between any two trees if and

only if each tree lies in the ϑ unit neighbourhood of the other (note that

T ′ ∈ Nϑ(T) forces T ∈ Nϑ(T ′)). That is, the edge set E of Gϑ(n) is

E = {{T , T ′} : T , T ′ ∈ Tn, T ′ ∈ Nϑ(T)}.

Alternatively, the condition that T ′ is in Nϑ(T) may now be replaced by

dϑ(T , T ′) = 1,

as the two are equivalent. Also, as Gϑ(n) is a direct representation of the

metric that ϑ induces on Tn, the ϑ distance between any two trees in Tn is

the same as the length of the shortest path between the two corresponding

vertices in the adjacency graph.

As a simple example, the graph Gϑ(4) is isomorphic to K3, the com-

plete graph with three vertices, for each ϑ ∈ {nni, spr,tbr}. For n = 5,

the adjacency graphs Gspr(n) and Gtbr(n) are again identical since any tbr

operation on a tree in T5 is also an spr operation. Rather than directly

describe Gtbr(5), it is easiest to begin with a description of the complemen-

tary graph, which we will denote by H. Suppose that T1 ∈ T5 is the tree

shown in Fig. 9.1. If T ′ is a tree that is not in Ntbr(T1), then T1, T ′ do

��

@@ ��

@@

1

2 3 4

5

Figure 9.1: A tree T1 ∈ T5.

108

not share a quartet. A quick check will confirm that there are only two

trees in T5 that satisfy this, namely the trees T2, T3 shown in Fig. 9.1. From

��

@@ ��

@@ ��

@@ ��

@@
T1

1

4 3 2

5

T2

1

5 3 2

4

Figure 9.2: Two trees in T2, T3 ∈ T5 that are not in the tbr unit neighbour-
hood of the tree T1 from Fig. 9.1.

the symmetry, we deduce that T1, T2, T3 form a clique in H. Extending this

across the remainder of T5, we can see that H consists of five disconnected

copies of K3. Hence Gtbr(5) is precisely isomorphic to the complete multi-

partite graph K3,3,3,3,3, which alternatively is K15 with the fifteen edges of

five vertex-disjoint triangles missing.

These graphs give us a useful way to visualise the tree space as a highly

connected object, as the example of Gtbr(5) above shows. The results from

Chapter 8 about the size of a tree’s tbr unit neighbourhood can now alterna-

tively be viewed in a graph theoretic sense as the degree of the corresponding

vertex in some adjacency graph Gtbr(n).

We turn our attention now to the problem of determining how far apart

two trees in Tn may be under the tbr metric. This is equivalent to finding

the diameter of the tbr adjacency graph for Tn. Upper and lower bounds

as functions of n have been established in [2, 29] for the diameter of Gϑ(n)

for each ϑ ∈ {nni, spr,tbr}, some of which are asymptotically tight. If we

denote the diameter of Gϑ(n) by ∆ϑ(n), then the best current known bounds

are

n

4
log2 n− o(n log n) ≤ ∆nni(n) ≤ n log2 n + O(n),

n

2
− o(n) ≤ ∆spr(n) ≤ n− 3,

109

and

n

4
− o(n) ≤ ∆tbr(n) ≤ n− 3.

Using a result from Chapter 7, we can already improve on the upper

bound for both spr and tbr. As a special case of Theorem 7.2.4 we have

the following lemma, which partially restates the theorem in a form more

appropriate to the current context.

Lemma 9.1.1. For all m ≥ 4, there is some N > 0 such that for all n ≥ N ,

any pair of distinct trees T , T ′ ∈ Tn share a common subtree that has at least

m leaves.

It is a short step from there to prove Theorem 9.1.2, although we remark

that this result is further improved upon in this chapter.

Theorem 9.1.2. For all positive integers m ≥ 4, there is some N > 0 such

that for all n ≥ N ,

∆spr(n) ≤ n−m.

Proof. Given two trees T , T ′ ∈ Tn, it suffices to construct a sequence of n−m

spr operations that transforms T into T ′ By Lemma 9.1.1, the trees T , T ′

share a common subtree with m leaves. Let Y be the leaf set of some such

common subtree, and let x /∈ Y be some other leaf. Then we can perform

an spr operation by pruning x from T and regrafting it to form a tree T ′′

so that T ′′|Y ∪ x = T ′|Y ∪ x. Now T ′′ and T ′ share a common subtree on

m + 1 leaves. We induct this over each of the n−m leaves in [n]− Y . This

requires n−m spr operations, completing the proof of the theorem.

As a further corollary to this, we have the same result holding for tbr.

This is provable, for example, as a consequence of the spr adjacency graph

being a subgraph of the tbr adjacency graph.

Corollary 9.1.3. For all positive integers m ≥ 4, there is some N > 0 such

that for all n ≥ N ,

∆tbr(n) ≤ n−m.

110

We remind the reader that it was conjectured in Chapter 7 that

τk(m) = κk(m) = Θ(m2)

for all k,m (Conjecture 7.2.11). In particular, if this conjecture were true for

k = 2, then the same construction used in the proof of Theorem 9.1.2 can be

applied to show that

∆spr(n) ≤ n−Θ(
√

n).

In Section 9.2, we define agreement forests and explain how they relate to

tree rearrangement operations, or to the tbr operation to be more specific.

These ideas are then applied in Section 9.3 in showing that

∆ϑ(n) = n−Θ(
√

n)

for ϑ ∈ {spr,tbr}.

9.2 Agreement Forests

In the introduction to this chapter, we demonstrated how the idea of

finding a common subtree for a pair of trees can be used to improve on the

upper bound for the diameter of both the spr and tbr adjacency graph.

In this section, we show how this idea can be extended. This basic premise

behind this extension is to break a pair of trees up into a collection of disjoint

common subtrees. For tbr, this approach suffices, although for spr we need

to be a little more careful.

Suppose that T1, T2 ∈ Tn for some n ≥ 4, and that the partition

X0, . . . , Xk of X = [n] satisfies

(i) T1|Xj = T2|Xj for all j ∈ {0, . . . , k}; and

(ii) the subtrees Ti|Xj, where j ∈ {0, . . . , k}, are vertex disjoint subtrees of

Ti for i ∈ {1, 2}.

111

Then we say that the forest

F = {Ti|Xj : j ∈ {0, . . . , k}}

is an agreement forest for T1, T2. Further, if k is the smallest such integer for

which such a partition exists, then we call F a maximum agreement forest

for T1, T2, and write

m(T1, T2) = k.

Note that m(T1, T2) = |F| − 1. Allen and Steel proved in [2] that the size

of a maximum agreement forest for two trees is directly related to the tbr

distance between them. We will use this result later, and so include it here

as a lemma.

Lemma 9.2.1 (Theorem 2.4, [2]). Let T , T ′ ∈ Tn for some n. Then

dtbr(T , T ′) = m(T , T ′).

The proof of [2, Theorem 2.4] (Lemma 9.2.1) involves showing that an

agreement forest induces a sequence of tbr moves between two trees, and

vice-versa, based on the observation that the construction of either a tbr

sequence or an agreement forest requires repeated bipartitioning of the leaf

set for the trees.

With all this in mind, agreement forests give us additional traction on

the problem of bounding the diameter of the tbr adjacency graph. They

allow us to generalise the proof method we used for Theorem 9.1.2, where

we essentially constructed an agreement forest, albeit a relatively trivial one,

by taking a large common subtree for the two trees and allowing all other

leaves to be isolated components. It must be pointed out that as a general

rule, agreement forests are of limited use in studying spr-based problems. As

an exception to this rule, we give an example of a result relating agreement

forests to spr in Lemma 9.2.2. This lemma is in fact used in Section 9.3 in

proving an upper bound on ∆spr(n).

Lemma 9.2.2. Let F = {t0, . . . , tk} be an agreement forest for two bi-

112

nary trees T , T ′ ∈ TX such that |L(ti)| ≤ 2 for all i ∈ {1, . . . , k}. Then

dspr(T , T ′) ≤ k.

Proof. We use an induction argument to construct a sequence of k spr oper-

ations to transform T ′ into T . Suppose firstly that k = 1. Then we perform

an spr operation on T ′ by pruning t1 from T ′, and then regrafting it to t0

to form T . That is, dspr(T , T ′) = 1, completing the basis for the induction.

Now suppose that k > 2, and let Xi = L(ti) so that X0, . . . , Xk forms

a partition of X. Then there is some part Xk say, such that by setting

X ′
0 = X0∪Xk and X ′

i = Xi for all i ≥ 1, the partition of X into X ′
0, . . . , X

′
k−1

satisfies the agreement forest condition that the collection of induced subtrees

be vertex-disjoint with respect to T . Let Y be the minimal cluster of T ′ that

contains Xk but not X0. We perform the spr operation that prunes the

subtree T |Y from T , and subsequently regrafts it to T |X−Y so that, in the

resulting tree T ′′ we have

(i) T ′′|X ′
i = T |X ′

i for all i ∈ {0, . . . , k − 1}; and

(ii) the subtrees T ′′|X ′
i, where i ∈ {0, . . . , k − 1}}, are vertex disjoint sub-

trees of T ′′.

By definition, the forest F ′ = {T |X ′
i : i ∈ {0, . . . , k − 1}} is an agreement

forest for T , T ′′. Also, F ′ satisfies the conditions of the lemma for k− 1, and

as dspr(T ′, T ′′) = 1 this completes the induction.

Since our primary interest with agreement forests in this chapter is to

bound the diameter of the spr and tbr adjacency graphs, we require a

further definition. For all n ≥ 4, we let m(n) be the least positive integer k

such that

m(T , T ′) ≤ k

for all pairs of trees T , T ′ ∈ Tn. It is easy to check by Lemma 9.2.1 that

m(n) = ∆tbr(n). As a further consequence of the same lemma, we have one

further result to end the section. The proof is routine.

113

Lemma 9.2.3. For all n ≥ 4, we have

m(n) ≤ m(n + 1) ≤ m(n) + 1.

Proof. Let T , T ′ be trees in Tn+1, and let X = [n], x = n+1. Suppose firstly

that F is an agreement forest for T , T ′. Then F|X is an agreement forest for

T |X, T ′|X ∈ Tn, proving the first inequality. If instead we suppose that F
is an agreement forest for T |X, T ′|X, then F ∪{T |x} is an agreement forest

for T , T ′, from which the second inequality follows.

9.3 Main Results

The central aim of this chapter is to improve the bounds on the diameter

of both the spr and the tbr adjacency graphs. The main theorem is stated

below:

Theorem 9.3.1. For all n ≥ 4,

∆ϑ(n) = n−Θ(
√

n),

where ϑ ∈ {spr,tbr}.

We devote this section to a proof of Theorem 9.3.1, firstly showing that

there is some constant c > 0 such that

∆tbr(n) ≥ n− c
√

n + O(1).

This is done constructively by proving that, for positive integers k, l ≥ 2,

there is a pair of caterpillars in Tkl for which any agreement forest contains

a large number of isolated vertices as components.

Lemma 9.3.2. Let k, l, n ≥ 2 be positive integers such that k ≤ l and n = kl,

and let T , T ′ ∈ Tn be caterpillars such that T has the label ordering [1, . . . , kl]

and T ′ has the label ordering [1, k + 1, . . . , k(l − 1) + 1, 2, k + 2, . . . , k(l −
1), kl]. If F is a maximum agreement forest for T , T ′, then either there are

k consecutive leaves in T of which k − 1 are isolated in F or there are l

consecutive leaves in T ′ of which l − 1 are isolated in F .

114

Proof. We assume throughout that the lemma is false. The case k = 1 is

trivial, so we may assume that 2 ≤ k ≤ l. There are two leaves a, b ∈ L(t0)

for some t0 ∈ F , where 1 ≤ a < b ≤ k. Suppose that these are the smallest

such a and b. Now, in T ′ the leaves {jk + a : 1 < j < l} lie between a and b.

If all of these are isolated then we have a contradiction, so L(t0) ∩ {jk + a :

0 < j < l} 6= ∅. However, we can only add a single leaf of the form jk + a to

t0, thus forming a maximal common subtree for T , T ′ since a, b must remain

adjacent in t0.

If we suppose that there is some c such that a < c < b, then all the

leaves in the set {jk + c : 0 ≤ j < l} are isolated in F , which is again a

contradiction. Thus b = a + 1. Further, the third leaf of t0 must be k + a,

for otherwise there are k − 1 leaves in {a + 1, . . . , k + a} that are isolated in

F . Hence L(t0) = {a, a + 1, k + a}.
Suppose next that k + a + 1 is isolated in F . Then k − 1 leaves in

{a+2, . . . , k+a+1} are isolated in F , which again contradicts our assumption.

We can follow a similar argument as above to show that there must be a

component ti ∈ F with L(ti) = {ik + a + i, ik + a + i + 1, (i + 1)k + a + i}
for all 0 ≤ i ≤ k − a− 1.

Let j = k − a− 1, and consider the leaf x = (j + 1)k + a + (j + 1). Note

that x ≤ kl, and hence x ∈ [n]. If x is isolated in F , then k− 1 of the leaves

in {jk+a+(j+2), . . . , (j+1)k+a+(j+1)} are isolated in F ; contradiction.

Otherwise, there must be some leaf y, where (j + 1)k + a + (j + 1) < y ≤
(j + 2)k + a + j, such that x, y are in the same component t ∈ F . However,

all such leaves, if they exist, are of the form mk + c where c < k. Hence the

path connecting x and y in T ′ must cross the path connecting jk + a + j

and (j + 1)k + a + j. That is, t and tj are not vertex disjoint and cannot

both be components of F . This final contradiction completes the proof of

the lemma.

This lemma enables us to apply an inductive argument to construct a

maximum agreement forest for two caterpillars with the specified labelling.

Theorem 9.3.3. Let k, l, n ≥ 2 be positive integers such that k ≤ l and

n = kl, and let T , T ′ ∈ Tn be caterpillars such that T has the label ordering

[1, . . . , kl] and T ′ has the label ordering [1, k + 1, . . . , k(l − 1) + 1, 2, k +

115

2, . . . , k(l − 1), kl]. Then

m(T , T ′) = (k − 1)(l − 1).

Proof. To establish (k − 1)(l − 1) as an upper bound for m(T , T ′), it is

sufficient to construct an agreement forest F of size (k− 1)(l− 1) + 1. If we

let

Y = {1, . . . , k} ∪ {jk : 1 ≤ j ≤ l},

then TY = T ′|Y . Since |Y | = k + l− 1, the forest F with T |Y as the unique

non-trivial component is an agreement forest for T , T ′ with

|F| = kl − (k + l − 1) + 1

as required.

We use induction to complete the theorem. When k = 1, the result is

straightforward. Suppose that for some m > 2 the theorem holds for all

pairs k ≤ l such that k + l = m. Suppose now that k + l = m + 1, and

let T1, T2 satisfy the conditions of the theorem for k, l. Further, let F be a

maximum agreement forest for T1, T2. By Lemma 9.3.2, there is either a set

of k consecutive leaves in T1 of which k − 1 are isolated in F , or a set of l

consecutive leaves in T2 of which l− 1 are isolated in F . Let Y be such a set

of consecutive leaves, and let T ′
1 = T1|X − Y , T ′

2 = T2|X − Y .

If |Y | = l, then under some permutation of X−Y , the trees T ′
1 , T ′

2 satisfy

the conditions of the theorem for the pair of positive integers k−1 ≤ l. Now,

by our induction hypothesis, any maximum agreement forest F ′ for T ′
1 , T ′

2

contains precisely (k − 2)(l − 1) + 1 components. Thus

|F| ≥ (k − 1)(l − 1) + 1,

as l − 1 of the leaves in Y are isolated in F . The same argument follows if

|Y | = k, noting that in the case k = l we may exchange k and l to complete

the induction.

By setting k, l ≈
√

n, we obtain as a corollary to this last theorem the

116

fact that

∆tbr(n) ≥ n−Θ(
√

n),

providing a lower bound on the diameter of the tbr adjacency graph. A

more formal proof of this is given later. For now, we move on to finding an

upper bound for ∆spr(n).

In the introduction to the chapter, we commented that a consequence of

proving Conjecture 7.2.11 would be the result that

∆spr(n) ≤ n−Θ(
√

n),

which would suffice to complete a proof of Theorem 9.3.1. This observa-

tion was based around the algorithmic proof to Theorem 9.1.2, in which our

current upper bound for ∆tbr(n) is embedded. Explicitly,

∆spr(n) ≤ n−m ≤ n− 3

for all m ≥ 3 and all n ≥ τ(m). From the point of view of agreement forests,

this approach involves the construction of a forest that has a single non-

trivial component with m leaves and many isolated leaves. The following

lemma allows us to construct a set of vertex-disjoint subtrees of a specified

minimum size.

Lemma 9.3.4. Let k, m, n > 0 be positive integers such that n ≥ 2(k −
1)(m − 1) + m, and let T ∈ Tn. Then there is a collection t1, . . . , tk of

vertex-disjoint subtrees of T such that |L(ti)| ≥ m for all i ∈ {1, . . . , k}.

Proof. Let T , T ′ ∈ Tn, and let X = [n]. We will make repeated use of the

fact that, for a tree T ∈ Tn and for all m ≤ n, there is a cluster Y of T
such that m ≤ |Y | ≤ 2m− 2. Let T1 = T . We define the collection t1, . . . , tk

of subtrees of T recursively as follows. For each i ∈ {1, . . . , k − 1}, let Yi

be some cluster of Ti with m ≤ |Yi| ≤ 2m − 2. Let ti = Ti|Yi, and let

Ti+1 = Ti|L(Ti)− Yi. Since each subtree t1, . . . , tk−1 contains at most 2m− 2

117

leaves, the tree Tk must have at least

n− (k − 1)(2m− 2) = m

leaves. We then set tk = Tk, completing the proof.

Using this, we can construct an agreement forest for an arbitrary pair of

trees on n leaves that contains O(
√

n) non-trivial components. This allows

us to then complete the proof of Theorem 9.3.1.

Theorem 9.3.5. For any two trees T , T ′ ∈ Tn where n ≥ 4, we have

dspr(T , T ′) ≤ n−
⌊

1

2

√
n

⌋
.

Proof. Let T , T ′ ∈ Tn, and let X = [n]. By Lemma 9.3.4, if we set k =

b1
2

√
nc, then there is a partition X1, . . . , Xk of X such that |Xi| ≥ 2k for all

i ∈ {1, . . . , k}, and such that {T |Xi} is a collection of vertex-disjoint subtrees

of T . We aim now to show that there is a second partition Y1, . . . , Yk of X

such that |Xi ∩ Yi| ≥ 2 for all i ∈ {1, . . . , k}, and such that {T ′|Yi} is a

collection of vertex-disjoint subtrees of T ′.

Let Y1 be a minimal cluster of T ′ such that |Xi ∩ Y1| ≥ 2 for some

i ∈ {1, . . . , k}. We may also assume without loss of generality that i = 1.

Since Y1 is a minimal cluster satisfying this, we know that Y1 has at most

two leaves in common with each of X1, . . . , Xk. Now, suppose that for some

i ∈ {2, . . . , k}, we have already defined the subsets Y1, . . . , Yi−1 of X, and let

Zi−1 =
i−1⋃
j=1

(Xj ∪ Yj).

We let Yi be a minimal cluster of T ′|X − Zi−1 such that |Xh ∩ Yi| ≤ 2 for

some h ∈ {i, . . . , k}. We may assume without loss of generality that h = i,

and we let

Zi =
i⋃

j=1

(Xj ∪ Yj).

118

If i < k, then by the minimality of each cluster Y1, . . . , Yi, the set X − Zi

contains at least 2(k− i) elements in common with each of Xi+1, . . . , Xk, and

so it follows that Y1, . . . , Yk is a partition of X that satisfies our requirements.

Let W = X −
⋃k

j=1(Xj ∩ Yj), and let F be the forest

F = {T |(Xi ∩ Yi) : i ∈ {1, . . . , k}} ∪ {T |w : w ∈ W}.

It follows from the construction of the partitions X1, . . . , Xk and Y1, . . . , Yk

that F is an agreement forest for T and T ′ in which each component has at

most two leaves. The result is now a consequence of Lemma 9.2.2.

We conclude this chapter with a proof of the main theorem. The proof

uses the two theorems we have already established in this section, and the

inequality

dtbr(T , T ′) ≤ dspr(T , T ′),

which holds for all pairs of trees T , T ′ on the same leaf set ([2]).

Proof of Theorem 9.3.1. Let k = l = d
√

ne. Since kl ≥ n, we can combine

Lemma 9.2.3 and Theorem 9.3.3 to obtain

∆tbr(n) ≥ (k − 1)(l − 1)− (kl − n)

= n− k − l + 1

= n− 2
⌈√

n
⌉

+ 1.

Using the inequality between spr and tbr stated above along with Theo-

rem 9.3.5 yields

n− 2
⌈√

n
⌉

+ 1 ≤ ∆tbr(n) ≤ ∆spr(n) ≤ n−
⌊

1

2

√
n

⌋
,

completing the proof.

As a closing comment, we further remark that the approach taken in

this chapter gives bounds of the same nature for the analogue of the tbr

119

operation in the space of rooted trees, namely the rooted subtree prune and

regraft (rspr) operation. This result is given without proof as Corollary 9.3.6.

Corollary 9.3.6. For all n ≥ 3,

∆rspr(n) = n−Θ(
√

n).

Interested readers may refer to [25, 43] for background to and a more

formal treatment of rooted tree rearrangement operations.

References

[1] Allen, B.L. (1998). Subtree Transfer Operations and their Induced
Metrics on Evolutionary Trees. MSc thesis. University of Canterbury,
Christchurch, NZ.

[2] Allen, B.L. and Steel, M. (2001). Subtree transfer operations and their
induced metrics on evolutionary trees. Annals of Combinatorics, 5, 1–15.

[3] Baroni, M.C. (2004). Hybrid Phylogenies: A graph-based approach to
represent reticulate evolution. PhD thesis. University of Canterbury,
Christchurch, NZ.

[4] Berdichevsky, N. (2004). Nations, language and citizenship. Jefferson,
NC: McFarland.

[5] Bininda-Emonds, O.R.P., Gittleman, J.L. and Steel, M.A. (2002). The
(super)tree of life: procedures, problems and prospects, Annual Reviews
of Ecology and Systematics, 33, 265–289.

[6] Bininda-Emonds, O.R.P. (ed.) (2004). Phylogenetic Supertrees: Com-
bining Information to Reveal the Tree of Life. Computational Biology
Series. Dortrecht, NL: Kluwer.

[7] Blaz̆ek, V. (2005). On the internal classification of Indo-European lan-
guages: survey. Linguistica Online.

[8] Bocker, S., Dress, A. and Steel, M. (1999). Patching up X-trees, Annals
of Combinatorics, 3, 1–12.

[9] Bodlaender, H.L., Fellows, M.R. and Warnow, T.J. (1993). Two strikes
against perfect phylogeny. In: Proceedings of the International Collo-
quium on Automata, Languages and Programming, Lecture Notes in
Computer Science, 623, 273–283. Berlin: Springer-Verlag.

[10] Bollobás, B. (1998). Modern Graph Theory. New York: Springer.

120

121

[11] Bona, M. (2002). A Walk Through Combinatorics. River Edge, NJ:
World Scientific.

[12] Bona, M. (2004). Combinatorics of Permutations. Boca Raton: Chap-
man and Hall.

[13] Bordewich, M., Huber, K.T. and Semple, C. (2005). Identifying phylo-
genetic trees. Discrete Mathematics, 300, 30–43.

[14] Bordewich, M. and Semple, C. (2005). Private communication.

[15] Bryant, D. and Steel, M. (1995). Extension operations on sets of leaf-
labelled trees. Advances in Applied Mathematics, 16, 425–453.

[16] Bryant, D. (1997). Building Trees, Hunting for Trees, and Comparing
Trees. PhD thesis. University of Canterbury, Christchurch, NZ.

[17] Buneman, P. (1971). The recovery of trees from measures of dissimilarity.
In: Mathematics in the archaeological and historical sciences (ed. F.R.
Hodson, D.G. Kendall and P. Tautu), 387–395. Edinburgh: Edinburgh
University Press.

[18] Buneman, P. (1974). A characterization of rigid circuit graphs. Discrete
Mathematics, 9, 205–212.

[19] Dekker, M.C.H. (1986). Reconstruction methods for derivation trees. Un-
published Masters thesis. Vrije Universiteit, Amsterdam, The Nether-
lands.

[20] Deutscher, G. (2005). The Unfolding of Language: an evolutionary tour
of mankinds greatest invention. New York: Metropolitan Books.

[21] Dress, A. and Erdős, P. (2003). X-trees and weighted quartet systems.
Annals of Combinatorics, 7, 155–169.

[22] Embleton, S. (1986). Statistics in Historical Linguistics. Bochum:
Brockmeyer.

[23] Erdős, P. and Szekeres, G. (1935). A combinatorial problem in geometry.
Compositio Mathematica, 2, 463–470.

[24] Grünewald, S., Humphries, P. and Semple, C. (2008). Quartet compat-
ibility and the quartet graph. Electronic Journal of Combinatorics, 15,
R103.

122

[25] Hein, J. (1993). A heuristic method to reconstruct the history of se-
quences subject to recombination. Journal of Molecular Evolution, 36,
369–405.

[26] Huber, K., Moulton, V., Semple, C. and Steel, M. (2004). Recovering a
phylogenetic tree using pairwise closure operations. Applied Mathemat-
ics Letters, 18, 361–366.

[27] Humphries, P. (2008). Bounds on the size of the tbr unit-
neighbourhood. Annals of Combinatorics, in press.

[28] Kubicka, E., Kubicki, G. and McMorris, F.R. (1992). On agreement
subtrees of two binary trees. Congressus Numerantium, 88, 217–222.

[29] Li, M., Tromp, J. and Zhang, L. (1996). On the nearest neighbour in-
terchange distance between evolutionary trees. Journal of Theoretical
Biology, 182, 463–467.

[30] Lipo, C.P., OBrien, M.J., Collard, M. and Shennan, S.J. (ed.) (2005).
Mapping Our Ancestors: Phylogenetic Approaches in Anthropology and
Prehistory. New York: Aldine Transaction.

[31] Maddison, D.R. (1991). The discovery and importance of multiple is-
lands of most-parsimonious trees. Systematic Zoology, 43, 315–328.

[32] Matsen, F.A. and Steel, M. (2007). Phylogenetic mixtures on a single
tree can mimic a tree of another topology. Systematic Biology, 56, 767–
775.

[33] Matsen, F.A., Mossel, E. and Steel, M. (2008). Mixed-up trees: the
structure of phylogenetic mixtures. Bulletin of Mathematical Biology, in
press.

[34] Meacham, C.A. (1983). Theoretical and computational considerations
of the compatibility of qualitative taxonomic characters. In: Numerical
Taxonomy (ed. J. Felsenstein), NATO ASI Series, Vol. G1, 304–314.
Berlin: Springer-Verlag.

[35] Mossel, E. and Steel, M. (2003). A phase transition for a random cluster
model on phylogenetic trees. Mathematical Biosciences, 187, 189–203.

[36] Ramat, A.G. and Ramat, P. (1998). The Indo-European languages. Lon-
don: Routledge.

[37] Ramsey, F.P. (1930). On a problem of formal logic. Proceedings of the
London Mathematical Society, series 2, 30, 264–286.

123

[38] van Reenen, P. and van Mulken, M. (ed.) (1996). Studies in Stemmatol-
ogy. Amsterdam: Benjamins.

[39] Robinson, D.F. (1971). Comparison of Labeled Trees with Valency
Three. Journal of Combinatorial Theory, 11, 105–119.

[40] Semple, C. and Steel, M. (2001). Tree reconstruction via a closure oper-
ation on partial splits. In: Computational Biology: First International
Conference on Biology, Informatics, and Mathematics, JOBIM 2000,
Montepellier, France, May 3–5, 2000: Selected papers (ed. O. Gascuel
and M.-F. Sagot), 126–134. New York: Springer.

[41] Semple, C. and Steel, M. (2002). A characterization for a set of partial
partitions to define an X-tree. Discrete Mathematics, 247, 169–186.

[42] Semple, C. and Steel, M. (2003). Phylogenetics. Oxford: Oxford Univer-
sity Press.

[43] Song, Y.S. (2003). On the combinatorics of rooted binary phylogenetic
trees. Annals of Combinatorics, 7, 365–379.

[44] Steel, M. (1989). Distributions on bicoloured evolutionary trees. PhD
thesis. Massey University, Palmerston North, NZ.

[45] Steel, M. (1992). The complexity of reconstructing trees from qualitative
characters and subtrees. Journal of Classification, 9, 91–116.

APPENDICES

These appendices contain three mathematical papers on very different
topics. They are included here because all three were written during the
course of this thesis, even though only one of them has a direct connection
to it.

The first paper (Geelen and Humphries, 2006) was written while visiting
the University of Waterloo in Ontario, and concerns a problem in matroid
theory. The second (Humphries, 2007) was inspired by reading a biography of
Ramanujan, and the third (Humphries, in press) is a precursor to Chapter 8
of this thesis.

List of Publications

[A] Geelen, J. and Humphries, P. (2006). Rota’s basis conjecture for paving
matroids. SIAM Journal of Discrete Mathematics, 4, 1042–1045.

[B] Humphries, P. (2007). Nesting polynomials in infinite radicals. Bulletin
of the Korean Mathematical Society, 44, 331–336.

[C] Humphries, P. (in press). Bounds on the size of the tbr unit-
neighbourhood. Annals of Combinatorics.

124

Appendix A

Rota’s basis conjecture for
paving matroids

Jim Geelen and Peter J. Humphries

Abstract. Rota conjectured that, given n disjoint bases of a rank-n
matroid M , there are n disjoint transversals of these bases that are all bases
of M . We prove a stronger statement for the class of paving matroids.

A.1 Introduction

We prove the following theorem.

Theorem A.1.1. Let B1, . . . , Bn be disjoint sets of size n ≥ 3 and let
M1, . . . ,Mn be rank-n paving matroids on

⋃
i Bi such that Bi is a basis of Mi

for each i ∈ {1, . . . , n}. Then there exist n disjoint transversals A1, . . . , An

of (B1, . . . , Bn) such that Ai is a basis of Mi for each i ∈ {1, . . . , n}.

A paving matroid M is a matroid in which each circuit has size r(M) or
r(M)+1, where r(M) is the rank of M . Theorem A.1.1 implies Rota’s basis
conjecture for paving matroids.

Conjecture A.1.2 (Rota). Given n disjoint bases B1, . . . , Bn in a rank-n
matroid M , there exist n disjoint transversals A1, . . . , An of (B1, . . . , Bn) that
are all bases of M .

For n = 2, Conjecture A.1.2 follows immediately from basis exchange
in matroids. Chan [2] proved the conjecture for n = 3. Wild [9] proved a
stronger conjecture for the class of strongly base-orderable matroids, while
more recently a slightly weaker result was proved for a general matroid (Pono-
marenko [8]). Further partial results may be found in [1], [3], [4], [5] and [9].

Theorem A.1.1 fails for both n = 2 and matroids in general. When
n = 2, if we take B(M1) = {{e, f}, {e, g}, {f, h}, {g, h}} and B(M2) =

125

126

{{e, f}, {e, h}, {f, g}, {g, h}}, then {e, f}, {g, h} is the only pair of disjoint
bases. In the second instance, if rM1(E − B1) = 0, then there are no M1-
independent transversals of (B1, . . . , Bn).

The remainder of this paper is taken up with the proof of the theorem. In
Section A.2, we prove that Theorem A.1.1 holds when n = 3. This result is
used, in Section A.3, as the base case of an inductive proof of Theorem A.1.1.
The induction argument is surprisingly straightforward and can be read in-
dependently of Section A.2.

A.2 The case n = 3

For basic concepts in matroid theory, the reader is referred to Oxley [7]. We
follow the same notation as Oxley throughout this paper.

A closed set in a matroid is commonly known as a flat. We will primarily
be interested in rank-2 flats, or lines. In the proof of Theorem A.2.1, we
make frequent use of the fact that if rM(X) = rM(Y) = 2 and |X ∩ Y | ≥ 2,
then X and Y are contained in the same line in M .

Theorem A.2.1. Theorem A.1.1 holds for n = 3.

Proof. Assume that the theorem is false. Then there exist bases B1 =
{a1, a2, a3}, B2 = {b1, b2, b3}, B3 = {c1, c2, c3} of rank-3 paving matroids
M1, M2, M3 respectively, with common ground set E = B1 ∪ B2 ∪ B3, that
provide a counterexample. The rank of a set X in Mi will be denoted by
ri(X) and the closure by cli(X). A three-element subset of E will be called
a transversal if it meets each of B1, B2, and B3. Note that we may assume
that every non-trivial line in each matroid contains a transversal, since all
non-trivial lines not containing a transversal may be relaxed to provide an
alternative counterexample (see [7], Section 1.5, Exercise 3).

A.2.1.1. Let X ⊆ E be a set that meets each of B1, B2, B3. If ri(X) = 3,
then X contains an Mi-independent transversal.

Subproof. Let T ⊆ X be a transversal, and suppose that T is Mi-dependent.
Then since ri(X) = 3, there is some e ∈ X such that e /∈ cli(T). Without
loss of generality, e ∈ B1, so let f be the unique element in T ∩ B1. Then
ri((T − f) ∪ e) = 3, and we are done.

A.2.1.2. If no M1-dependent transversal contains both a1 and b1, then there
exists e ∈ B3 such that r2(E − {a1, b1, e}) = 2.

Subproof. For each a ∈ B1 and b ∈ B2, there exists c ∈ B3 such that {a, b, c}
is M3-independent (since r3(B3) = 3). In particular, there exist e, f, g ∈ B3

such that {a2, b3, e}, {a3, b3, f}, and {a2, b2, g} are M3-independent. Then,

127

by A.2.1.1, {a3, b2}∪(B3−{e}), {a2, b2}∪(B3−{f}), and {a3, b3}∪(B3−{g})
all have rank 2 in M2 (since otherwise we would find the required partition
into transversals). The second and third of these sets both have two points
in common with the first, and so they are all contained in a common line in
M2.

Suppose that M1 has a line L containing at least seven elements. Since
r1(B1) = 3, |L − B1| ≥ 5. Up to symmetry, we may assume that
b1, b2, c1, c2, c3 ∈ L and that a1 /∈ cl1(L). Now neither {a1, b1} nor {a1, b2}
is in an M1-dependent transversal. So by A.2.1.2 r2({a2, a3, b2, b3}) =
r2({a2, a3, b1, b3}) = 2, contradicting the fact that r2(B2) = 3. Thus none of
M1, M2, and M3 contain a line on seven or more elements.

A.2.1.3. Every pair e ∈ Bi, f /∈ Bi is contained in some Mi-dependent
transversal.

Subproof. Suppose that no M1-dependent transversal contains both a1 and
b1. Then, by A.2.1.2 and symmetry, we may assume that r2(E−{a1, b1, c1}) =
2. Let X = E − {a1, b1, c1} and Y = X − B1. Each transversal in
{a2, a3, b2, b3, c1} is M2-independent, for otherwise E − {a1, b1} is a seven-
point line in M2. Since each transversal in {a1, b1, c2, c3} is M1-independent,
there is no M3-independent transversal in X; thus r3(X) = 2. Similarly, since
each transversal in {a2, a3, b1, c2, c3} is M2-independent and each transversal
in {a2, a3, b2, b3, c1} is M3-independent, we conclude that r1(Y ∪ {a1}) = 2.
Without loss of generality, a2 /∈ cl1(Y), and so both {a2, b2, c2} and {a2, b3, c3}
are M1-independent. This means that {a1, b1, c2} and {a1, b1, c3} are M2-
dependent, for otherwise we again have three disjoint transversals that are
independent in their respective matroids. Thus r2({a1, b1, c2, c3}) = 2 and
E − {c1} is an eight-point line in M2, which is a contradiction.

Assume that B2 is dependent in M1. Thus, some line L in M1 contains
B2; we may assume that L also contains a1 and c1, since any non-trivial line
contains a transversal. There must be some element a3, say, of B1 that is
not in cl1(L), but then no transversal containing both a3 and c1 is dependent
in M1, leading to a contradiction by A.2.1.3. Thus each of B1, B2, and B3 is
independent in all three matroids. This provides additional symmetry since
we may now permute (B1, B2, B3).

Suppose next that M1 contains a five- (or six-) point line L. By the
conclusion of the last paragraph, we may assume that a1, b1, b2, c1, c2 ∈ L and
that a3 /∈ cl1(L). Now, since there is an M1-dependent transversal containing
a3, b1, we have that {a3, b1, c3} must be M1-dependent. Likewise {a3, b2, c3}
is M1-dependent, and thus r1({a3, b1, b2, c3}) = 2, contradicting the fact that
a3 /∈ cl1(L). Hence, none of M1, M2, and M3 have lines containing more than
four points.

128

We suppose now that the transversal {a3, b3, c3} is M2-independent and
M3-dependent. Since r1(E−{a3, b3, c3}) = 3, we may assume that {a1, b1, c1}
is M1-independent, and also that r3({a2, b2, c2}) = 2 for otherwise we have
the required disjoint bases. Now, at most one of a3, b3, and c3 may be
contained in cl3({a2, b2, c2}), so without loss of generality both {a2, b3, c2} and
{a3, b2, c2} are M3-independent. Then {a3, b2, c3} and {a2, b3, c3} are both
M2-dependent. The transversal {a2, b2, c3} must now be M2-independent, for
otherwise we get a line in M2 containing {a3, b3, c3}. Thus r3({a3, b3, c2}) = 2,
and further r3({a3, b3, c2, c3}) = 2. Then both of {a2, b2, c3} and {a3, b2, c3}
are M3-independent, for otherwise there is a line in M3 that contains E −
{a1, b1, c1}. So we have r2({a3, b3, c2}) = r2({a2, b3, c2}) = 2. This, together
with the dependence of {a3, b2, c3} and {a2, b3, c3} in M2, further implies that
{a3, b3, c3} is M2-dependent, which is a contradiction.

From now on, we may assume that M1, M2, and M3 are the same matroid
M , since they share the same set of independent transverals. Suppose that
M contains the four-point line {a3, b3, c2, c3}. Without loss of generality, we
may assume that {a1, b1, c1} is independent in M , but then both {a2, b3, c3}
and {a3, b2, c2} are also independent in M , so we are done.

Thus, the rank-2 flats in M each contain at most three points. Let
{a3, b3, c3} be a dependent transversal of M . By A.2.1.1, the set {a3, b2, c1, c2}
contains a transversal that is independent in M . Suppose without loss of gen-
erality that {a3, b2, c2} is such a transversal. Then, again by A.2.1.1, the set
{a1, a2, b1, c1} contains an M -independent transversal, {a1, b1, c1} say. Fi-
nally, {a2, b3, c3} is also independent, for otherwise we get a four-point line,
and we have the three required transversals.

A.3 Proof of Theorem A.1.1

Before proving Theorem A.1.1, we require two further lemmas. These allow
us to apply induction with Theorem A.2.1 as the base case. Let B(M) denote
the set of bases of a matroid M .

Lemma A.3.1. Let B1 ∈ B(M1), B2 ∈ B(M2) be disjoint bases of rank-
n paving matroids on the same ground set, where n ≥ 3. Let X be a
two-element subset of B1. Then there is some x ∈ X, y ∈ B2 such that
(B1 − x) ∪ y ∈ B(M1) and (B2 − y) ∪ x ∈ B(M2).

Proof. Since M1, M2 are paving matroids, (B1 − X) ∪ y is M1-independent
for all y ∈ B2. Suppose that both (B1 − x)∪ y and (B1 − x′)∪ y are circuits
in M1, where x, x′ are distinct elements of X. Then by circuit elimination,
B1 is also a circuit of M1. Hence for each y ∈ B2, at least one of (B1−x)∪ y
and (B1 − x′) ∪ y must be a basis of M1.

129

Let y1, y2, y3 be distinct elements of B2. Then without loss of generality
(B1−x)∪y1, (B1−x)∪y2 ∈ B(M1). Also, one of (B2−y1)∪x and (B2−y2)∪x
is a basis of M2, so we are done.

Lemma A.3.2. Let B1, . . . , Bn be disjoint sets of size n ≥ 3 and let
M1, . . . ,Mn be rank-n paving matroids on

⋃
i Bi such that Bi is a basis of

Mi for each i ∈ {1, . . . , n}. Then there is an ordering of the elements of B1

as a1, . . . , an and a transversal {b2, . . . , bn} of (B2, . . . , Bn) such that for all
j ∈ {2, . . . , n}, the set (B1 − {a2, . . . , aj}) ∪ {b2, . . . , bj} is a basis of M1 and
(Bj − bj) ∪ aj is a basis of Mj.

Proof. For j = 2, the lemma follows immediately from Lemma A.3.1. Sup-
pose now that the lemma holds for some j ∈ {2, . . . , n − 1}, so that
B′ = (B1 − {a2, . . . , aj})∪ {b2, . . . , bj} ∈ B(M1). Then |B1 ∩B′| ≥ 2, and so
by Lemma A.3.1 there is some element aj+1 ∈ B1 ∩B′ and some bj+1 ∈ Bj+1

such that (B′ − aj+1) ∪ bj+1 ∈ B(M1) and (Bj+1 − bj+1) ∪ aj+1 ∈ B(Mj+1),
thus proving the lemma.

Lemma A.3.2 is stated for j ∈ {2, . . . , n} to simplify the induction process.
We only need the result for j = n to prove main theorem of this paper.

Proof of Theorem A.1.1. Assume that the theorem is true for some m ≥ 3,
and take n = m+1. Let B1 = {a1, . . . , an} and bi ∈ Bi for each i ∈ {2, . . . , n}.
By Lemma A.3.2 we may assume that A1 = {a1, b2, . . . , bn} is a basis of M1

and that B′
i = (Bi − bi) ∪ ai is a basis of Mi for each i ∈ {2, . . . , n}.

Now let X = E− (B1 ∪A1) and M ′
i = (Mi/ai)|X for each i ∈ {2, . . . , n}.

Then each M ′
i is a rank-m paving matroid having Bi − bi as a basis. By our

induction hypothesis, there are disjoint transversals A′
2, . . . , A

′
n of these m

bases such that A′
i is a basis of M ′

i . Hence Ai = A′
i ∪ ai is a basis of Mi for

each i ∈ {2, . . . , n}. Moreover, the bases A1, . . . , An are disjoint transversals
of (B1, . . . , Bn) as required.

References for Appendix A

[1] Aharoni, R. and Berger, E. (2006). The intersection of a matroid and
a simplicial complex. Transactions of the American Mathematical So-
ciety, 358, 4895–4917.

[2] Chan, W. (1995). An exchange property of matroid. Discrete Mathe-
matics, 146, 299–302.

[3] Chow, T. (1995). On the Dinitz conjecture and related conjectures.
Discrete Mathematics, 145, 73–82.

130

[4] Drisko, A.A. (1997). On the number of even and odd Latin squares of
order p + 1. Advances in Mathematics, 128, 20–35.

[5] Drisko, A.A. (1998). Proof of the Alon-Tarsi conjecture for n = 2rp.
Electronic Journal of Combinatorics, 5, R28.

[6] Huang, R. and Rota, G.-C. (1994). On the relations of various conjec-
tures on Latin squares and straightening coefficients. Discrete Mathe-
matics, 128, 225–236.

[7] Oxley, J.G. (1992). Matroid Theory. New York: Oxford University
Press.

[8] Ponomarenko, V. (2004). Reduction of jump systems. Houston Journal
of Mathematics, 30, 27–33.

[9] Wild, M. (1994). On Rota’s problem about n bases in a rank n matroid.
Advances in Mathematics, 108, 336–345.

Appendix B

Nesting polynomials in infinite
radicals

Peter J. Humphries

Abstract. We consider infinite nested radicals in which the arguments
are positive polynomial sequences. It is shown that the evaluation of such a
nesting is always finite, and we prove necessary and sufficient conditions for
the evaluation to be a finite polynomial.

B.1 Introduction

A famous problem posed by Ramanujan asks for the evaluation of the infinite
nested radical √

1 + 2

√
1 + 3

√
1 + 4

√
1 + · · ·

If we instead try to evaluate a more general expression, where we replace the
increasing sequence by an arithmetic progression in x, namely

L(x) =

√
1 + x

√
1 + (x + 1)

√
1 + (x + 2)

√
1 + · · ·

then it can be seen that L(x) satisifes the functional equation

L(x)2 = 1 + xL(x + 1)

The solution to this is L(x) = x+1, giving the evaluation of Ramanujan’s ex-
ample correctly as 3. In fact, this numerical example is merely a special case
of a more complicated identity in three variables (see the end of Section B.2).

131

132

Several identities concerning infinite nested radicals may be found in [1],
[2] and [3]. In [1], nested radicals involving arithmetic sequences in n-th roots
are considered. The purpose of the current paper is to study the case where
the radicals have two polynomials as their arguments.

Throughout this paper, we denote the natural numbers (without zero)
and the real numbers by N and R respectively. The ring of polynomials in x
with real coefficients will be specified by R[x], and we note further that any
use of square roots automatically implies a positive square root. A sequence
an of positive real numbers is called a positive polynomial sequence if there
exists a polynomial a(x) ∈ R[x] such that ai = a(i) for all i ∈ N.

To remove the possibility of any ambiguity, we formalise the concept of
evaluating an infinite nested radical√

a1 + b1

√
a2 + b2

√
a3 + . . .

to be the limit

lim
n→∞

√
a1 + b1

√
a2 + . . . + bn−1

√
an + bn (B.1)

where an, bn are sequences of real numbers.
In Section B.2, we characterise when an infinite nested radical involving

polynomials from R[x] has a simple closed form as another polynomial in
R[x]. Section B.3 is devoted to proving that, for all positive polynomial
sequences an, bn, the limit in (B.1) exists and is finite.

B.2 Identities involving nested radicals

The following lemma does not require proof, being a consequence of viewing
the infinite nested radical as being a limit of an infinite sequence.

Lemma B.2.1. Let L(x), p(x), q(x) be polynomials in R[x]. Then

L(x) =

√
p(x) + q(x)

√
p(x + d) + q(x + d)

√
p(x + 2d) + · · ·

if and only if

L(x) =
√

p(x) + q(x)L(x + d)

An analogous statement can be made for higher-order roots, and we may
further replace the ring R[x] by any class of function in one or more vari-
ables. However, for the purposes of this paper we are primarily interested in

133

polynomials in one variable.
From the above lemma, we get any number of results. More importantly,

though, given a nested radical to evaluate, we can now concentrate on solving
the non-linear functional equation

L(x)2 = p(x) + q(x)L(x + d) (B.2)

rather than on the radical itself, where L(x) is assumed to take positive
values on the domain of interest.

Given L(x), q(x) and d, we can always find a p(x) that satisfies equation
(B.2). That is, p(x) = L(x)2 − q(x)L(x + d). A more interesting problem is,
given p(x), q(x) and d, to find the function L(x). In particular, we want to
find some L(x) that is a polynomial of finite degree.

This is not always possible, as the following example shows. If we take
p(x) = 1, q(x) = x and d = 2, then we wish to find some L(x) that satisfies

L(x)2 = 1 + xL(x + 2)

It can be seen that the degree of L(x) must be one, and moreover the linear
term will be x. However, if we try to evaluate a constant term a, we run into
problems:

(x + a)2 = 1 + x(x + 2 + a)

ax + a2 = 2x + 1

Comparing the linear coefficients gives a = 2, but the constant terms give
the solution a = ±1.

Our aim is to characterise when an infinite nested radical with polynomial
arguments has a polynomial solution. That is, for what combinations of
p(x), q(x) and d can we find some L(x) ∈ R[x] satisfying equation (B.2). It is
known ([3]) that if both p(x) and q(x) are constants, p and q say, then L(x)
is also constant, and solves the quadratic equation L2 − qL− p = 0.

Let deg(f) denote the degree of a polynomial f(x), and [xi]f(x) denote
the coefficient of xi in the function f(x). Then we have the following two
lemmas, which both follow from equation (B.2):

Lemma B.2.2. If L(x) ∈ R[x] solves equation (B.2) for some p(x), q(x) ∈
R[x], then deg(L) = max{deg(p)

2
, deg(q)}.

Lemma B.2.3. Let p(x), q(x) be polynomials in R[x], and let

F (x) = L(x)2 − p(x)− q(x)L(x + d)

where L(x) = akx
k + . . . + a0. Then there exist a0, . . . , ak ∈ R such that

134

L(x) solves equation (B.2) if and only if there exist a0, . . . , ak ∈ R such that
[xi]F (x) = 0 for all i ≥ 0.

This now allows us to find a solution to equation (B.2) by comparing
coefficients of F (x). While in the last lemma it is stated that [xi]F (x) must
be zero for all i ≥ 0, it suffices by Lemma B.2.2 for this to hold only for values
of i not exceeding the maximum of deg(p) and 2 deg(q). While, for L(x) of
degree k, this could potentially involve solving up to 2k + 1 simultaneous
polynomials in the k + 1 coefficients of L(x), we can use the next lemma
to find the solution systematically by solving only one quadratic equation
(taking the positive root) and at most k linear equations.

Lemma B.2.4. Let p(x), q(x) be polynomials in R[x], and let

F (x) = L(x)2 − p(x)− q(x)L(x + d)

where L(x) = akx
k + . . . + a0, and k = max{deg(p)

2
, deg(q)}. Then

(i) [x2k]F (x) is quadratic in ak;

(ii) [xj]F (x) is linear in aj−k for all k ≤ j < 2k; and

(iii) [xj]F (x) is independent of ai for all i < j − k where k ≤ j ≤ 2k.

Proof. The coefficient [x2k]F (x) is given by

[x2k]F (x) = ([xk]L(x))2 − [x2k]p(x)− ([xk]q(x))([xk]L(x + d))

= a2
k − ak[x

k]q(x)− [x2k]p(x)

proving part (i). Similarly, the coefficient [xj]F (x), where k ≤ j < 2k is

[xj]F (x) =
k∑

i=j−k

([xi]L(x))([xj−i]L(x))− [xj]p(x)

−
k∑

i=j−k

([xi]q(x))([xj−i]L(x + d))

= 2aj−kak − aj−k[x
k]q(x)− [xj]p(x) + g(aj−k+1, . . . , ak)

where g(aj−k+1, . . . , ak) takes care of the extra terms in the summations.
This proves (ii), and (iii) follows directly from the expansions above.

We can now prove the main result of this section.

135

Theorem B.2.5. Let p(x), q(x) be polynomials of degree s, t respectively
in R[x], both with positive leading coefficients. Then there are max{ s

2
, t}

equalities that must be satisfied by d and the coefficients of p(x), q(x) in
order for some L(x) ∈ R[x] that solves equation (B.2) to exist. Moreover,
if these equalities are satisfied, then there is a general solution for L(x) in
terms of d and the coefficients of p(x), q(x).

Proof. We take L(x), F (x) as in Lemma B.2.4. Then, by the same lemma, we
can find a positive ak ∈ R that solves [x2k]F (x) = 0. Further, given ai, . . . , ak,
where i > 0, we can find ai−1 that solves [xi+k−1]F (x) = 0. That is, we can
find a0, . . . , ak that simultaneously solve [xi]F (x) = 0 for all k ≤ i ≤ 2k.

Now, by Lemma B.2.3, for L(x) ∈ R[x] to exist, we need [xi]F (x) = 0 for
all i ≥ 0. Since we have this equality for k ≤ i ≤ 2k, we need the remaining
k equations to be satisfied. That is, [xi]F (x) = 0 for 0 ≤ i < k. Hence there
are k constraints on d and the coefficients of p(x), q(x).

We complete the proof of the theorem by noting that, by Lemma B.2.3
L(x) = akx

k + . . . + a0 solves equation (B.2) if and only if all of the k
constraints are met with equality.

We illustrate the theorem with a more concrete example. If p(x) and q(x)
are both linear, then we wish to find L(x) ∈ R[x] such that

L(x)2 = (p1x + p0) + (q1x + q0)L(x + d)

where we assume that both p1 and q1 are non-zero. In this case, it can be
seen that L(x) is of the form a1x + a0, and that in fact a1 = q1. So we have

(q1x + a0)
2 = (p1x + p0) + (q1x + q0)(q1x + q1d + a0)

a0q1x + a2
0 = (q1q0 + q2

1d + p1)x + (q1q0d + a0q0 + p0)

By comparing the linear terms, we get a0 = q0+q1d+p1

q1
, which on substitution

into the constant terms gives

0 = (q2
1d + p1)

2 + q1(p1q0 − p0q1) (B.3)

That is, the solution L(x) ∈ R[x] exists if and only if equation (B.3) holds,
in which case

L(x) = q1x +

(
q0 + q1d +

p1

q1

)
The identity of Ramanujan’s, which we alluded to in the introduction, is

x + n + a =

√
ax + (n + a)2 + x

√
a(x + n) + (n + a)2 + . . .

136

where p(x) = ax+(n+a)2, q(x) = x and d = n. Applying the results we have
just derived we find that the constraint in equation (B.3) is indeed satisfied,
and the evaluation of the nested radical is x + n + a as expected.

B.3 Convergence of nested radicals

At this point, we introduce a more compact notation for nested radicals. For
two sequences an, bn of positive real numbers, we define the operator R by

Rn
i=1(ai, bi) =

√
a1 + b1

√
a2 + . . . + bn−1

√
an + bn

It was proved by Herschfeld ([2]) that Rn
i=1(ai, 1) converges if a2−n

n has a finite
upper limit as n tends to infinity.

Let pn, qn be positive polynomial sequences, and let the sequence rn be
given by

rn = Rn
i=1(pi, qi)

Then we wish to find whether or not rn converges. The next lemma will be
of use.

Lemma B.3.1. Let un, vn, yn, zn be sequences of positive real numbers such
that ui ≤ yi, vi ≤ zi for all i ∈ N. Then for all n ∈ N

Rn
i=1(ui, vi) ≤ Rn

i=1(yi, zi)

Proof. The result is a straight-forward consequence of the sequences being
strictly positive.

Theorem B.3.2. Let pn, qn be positive polynomial sequences. Then the
sequence rn = Rn

i=1(pi, qi) converges.

Proof. Let p(x), q(x) ∈ R[x] be polynomials such that p(i) = pi, q(i) = qi for
all i ∈ N, and let m ∈ N be such that 2m > deg(p), m > deg(q) + 1. Then
let L(x) = xm and v(x) = xm−1, and define u(x) by

u(x) = L(x)2 − v(x)L(x + 1)

= x2m + O(x2m−1)

We further define the sequences un, vn by ui = u(i), vi = v(i). Then there is
some k ∈ N such that pj ≤ uj, qj ≤ vj for all j ≥ k. Hence, by Lemmas B.2.1

137

and B.3.1 , we have

lim
n→∞

Rn
i=k(pi, qi) ≤ lim

n→∞
Rn

i=k(ui, vi)

= L(k)

= km

This provides a finite upper bound on rn by applying Lemma B.3.1 again
with the finite sequences 〈p1, . . . , pk−1〉 and 〈q1, . . . , qk−2, k

mqk−1〉.
Now, there is also some k ∈ N such that pj + qj > 1 for all j ≥ k. That is

Rj
i=1(pi, qi) ≤ Rj+1

i=1 (pi, qi)

for all j ≥ k, and hence rn converges to some finite limit.

References for Appendix B

[1] Borwein, J.M. and de Barra, G. (1991). Nested radicals. American
Mathematical Monthly, 98 (8), 735–739.

[2] Herschfeld, A. (1935). On Infinite Radicals. American Mathematical
Monthly, 42 (7), 419–429.

[3] McGuffin, M. and Wong, B. The Museum of Infinite Nested Radicals.
http://www.dgp.toronto.edu/~mjmcguff/math/nestedRadicals.html

Appendix C

Bounds on the size of the TBR
unit-neighbourhood

Peter J. Humphries

Abstract. In this paper, we study the unit-neighbourhood of the tree
bisection and reconnection operation on unrooted binary phylogenetic trees.
Specifically, we provide a recursive method to calculate the size of the unit-
neighbourhood for any tree in the space Tn of unrooted binary phylogenetic
trees with n-leaves. We also give both upper and lower bounds on this size
for all trees in Tn, and characterise those trees for which the stated upper
bound is sharp.

C.1 Introduction

Phylogenetic (evolutionary) trees are used to display the relationships be-
tween a set of objects. The techniques from phylogenetics are most com-
monly applied to computational biology to determine how different species
or sets of species are interrelated. Due in part to the incompleteness of bio-
logical data, uncertainty often arises as to the ‘true’ tree that describes the
speciation process.

Making local changes to a phylogenetic tree is referred to as a tree rear-
rangement operation. These operations were first introduced by Robinson [4]
as a measure of the similarity between two unrooted trees having the same
set of leaf labels. Since then, this notion has been extended in a number of
ways for both rooted and unrooted trees [1, 2, 3]. Our focus in this paper is
solely on the tree bisection and reconnection (tbr) operation.

A primary use of tree rearrangment operations in evolutionary biology
is in modelling the effects of recombinantion or horizontal gene transfer.
Perhaps more importantly for our purposes, the tbr operation induces a
metric on the space of unrooted trees, and is used as the basis for heuristic

138

139

algorithms that search this space for the best tree under some optimisation
constraints [2, 3].

In view of the algorithmic applications of tbr, an important question
is how many different trees can be obtained by performing exactly one tbr
operation on a given unrooted tree T . That is, what is the size of the tbr
unit-neighbourhood for T . Upper and lower bounds for this problem may be
found in [1]. The main results of this paper provide a sharp upper bound
on the size of a tbr unit-neighbourhood and a characterisation of all trees
satisfying this upper bound, as well as an improvement on the current best
known lower bound. This work fills a gap in the literature, as the size of
unit-neighbourhoods using other well-known tree rearrangement operations
has been completely solved [1, 4].

The organisation of this paper is as follows. In Section C.2, we formalise
the basic concepts used in the remainder of the paper, and then state the
main theorems. Section C.3 presents the proofs of these theorems.

C.2 Definitions and results

For the purposes of this paper, we are interested primarily in unrooted binary
phylogenetic trees. That is, bijectively leaf-labelled trees without a specified
root in which every interior vertex has degree three. We denote by Tn the set
of all unrooted binary phylogenetic trees with the leaf set {1, . . . , n}. Two
trees in T7 are shown in Figure 1. Some use is also made of rooted binary
phylogenetic trees, or bijectively leaf-labelled rooted binary trees.

A cherry is a pair of leaves {x, y} adjacent to the same interior vertex.
For example, in Figure 1, {3, 4} is the only cherry common to both trees. If
a tree T ∈ Tn has exactly two cherries, where n ≥ 4, then we refer to T as
a caterpillar. For example, the tree on the right in Figure 1 is a seven-leafed
caterpillar.

The tbr operation consists of two steps, namely the bisection and the
reconnection. Given an unrooted binary phylogenetic tree T , we remove any
edge e of T to give two subtrees t1, t2, contracting any vertices of degree
two so that t1, t2 are both binary. We then reconnect these two subtrees by
adding a new edge f between the midpoints of some edge of t1 and some
edge of t2. If either t1 or t2 consists of a single leaf, then this new edge f is
incident with the leaf. Figure C shows an example of a tbr operation on a
seven-leafed tree.

The concept of the tbr unit-neighbourhood was mentioned in the preced-
ing section. More completely, the tbr unit-neighbourhood of a tree T ∈ Tn

is the set N(T) of all trees T ′ ∈ Tn that can be obtained from T by a single
tbr operation. We now have enough to state the main results of this paper.

140

@@

��
��

@@

@@

�� @@

��

1

2

3

4

5

6

7

e

3

4 1 2 7 5

6
f-

Figure C: An example of a tbr operation, where e is the edge removed and
f is the edge added.

Theorem C.2.1. For all n ≥ 4 and all T ∈ Tn, we have

|N(T)| ≤ 2

3
n3 − 4n2 +

16

3
n + 2

Moreover, for n ≥ 6, equality holds if and only if T is a caterpillar.

It was shown in [1] proved that the size of N(T) for a tree in Tn is bounded
above by (2n − 3)(n − 3)2, which is of the same order as the expression in
the above theorem. It was further shown in [5] that for rooted binary phy-
logenetic trees, the size of the unit-neighbourhood under the rooted subtree
prune and regraft operation, which is considered to be the rooted analogue
of tbr, is minimised when the tree is a caterpillar. This contrasts directly
with Theorem C.2.1, and so we would expect in turn that for unrooted trees,
the size of the tbr unit-neighbourhood is minimised for trees that are as
balanced as possible. As yet, however, we have been unable to find a tight
lower bound for the size of this unit-neighbourhood.

Theorem C.2.2. For all n ≥ 4 and all T ∈ Tn, we have

|N(T)| ≥ 2n2 − 8n + 2 + 2
n−4∑
i=1

l(i)

where l(1) = 0, and l(i) = 2 + 4
∑i−1

j=2blog2 jc otherwise.

Asymptotically, this bound is strictly larger than the current best known
bound of 2(n− 3)(2n− 7) stated in [1]. The details of this may be found in
Corollary C.3.5.

C.3 Proofs of results

To prove our previously stated bounds on the size of the tbr unit neigh-
bourhood, we exploit some ideas similar to those used by Song [4]. However,

141

without a root as a point of reference to orient unrooted trees, there are some
modifications required. Instead, we apply an induction around a cherry of
the tree in question.

For a rooted binary phylogenetic tree R, let ξ(R) denote the number
of distinct ways to prune a subtree from R and root it to form R′ so that
R 6= R′.

Lemma C.3.1. Let R be a rooted binary phylogenetic tree with n leaves,
and let R1 and R2 be the two rooted trees obtained by deleting the root of
R. Then

ξ(R) = ξ(R1) + ξ(R2) + 2n− 2.

Proof. There are three options to consider. We may take the rerooted subtree
R′ to be a rerooted subtree of either R1 or R2, which contributes exactly
ξ(R1) + ξ(R2). Alternatively, we may choose R′ = R1 or R′ = R2. Finally,
we may reroot R on some edge not incident with the root of R. The result
follows by summing over these possibilities.

Theorem C.3.2. Let T be an unrooted binary phylogenetic tree on n leaves,
{x, y} be a cherry of T , and let T ′ be the tree obtained by deleting x from
T . Let v be the unique interior vertex of T at distance 2 from x, and R1,R2

be the rooted trees not containing x obtained by deleting v from T . Then

|N(T)| = |N(T ′)|+ 4n− 14 + 2ξ(R1) + 2ξ(R2)

Proof. We consider four classes of tbr operations on T .
(1) Perform any tbr operation on T that retains {x, y} as a cherry. There

are precisely |N(T ′)| such tbr operations.
(2) Cut x from T and reattach to any edge not adjacent to y. There are

2n− 6 possible edges, and in no case is {x, y} a cherry on the new tree.
(3) Cut y from T and reattach to any edge not adjacent to v. If we attach

y to the edge {x, v}, we get a tree already formed in (1), and if we attach it
to either of the other two edges incident with v we get a tree formed in (2).
There are 2n− 8 possibilities here.

(4) Prune and reroot a subtree from either R1 or R2 to form R, and then
connect the root of R to either the edge adjacent to x or the edge adjacent
to y. None of these trees are formed by any of the above operations (1)-(3),
and there are exactly 2ξ(R1) + 2ξ(R2) possibilities.

This covers all possible tbr operations on T , and the result follows by
summing the four quantities.

This theorem can be used recursively to find the exact size of the tbr
unit neighbourhood for any unrooted tree T . However, we are primarily

142

interested in finding bounds on the size of N(T) for a tree T ∈ Tn. To
do so, we first find bounds on ξ(R). Let u(n) and l(n) be the maximum
and minimum values of ξ(R) respectively over all rooted binary phylogenetic
trees R with n leaves. Applying Lemma C.3.1, we get

u(n) = max{u(i) + u(n− i) : 1 ≤ i ≤ n− 1}+ 2n− 2

l(n) = min{l(i) + l(n− i) : 1 ≤ i ≤ n− 1}+ 2n− 2

with initial condition u(1) = l(1) = 0. We ideally want a closed form for
both u(n) and l(n).

Lemma C.3.3. u(n) = n2 − n for all n ≥ 1.

Proof. The lemma is true for n = 1, so assume n > 1 and that the lemma
holds for all values strictly less than n. Then

u(n) = max{u(i) + u(n− i) : 1 ≤ i ≤ n− 1}+ 2n− 2

= u(n− 1) + 2n− 2

= n2 − n

proving the lemma.

Lemma C.3.4. l(n) = 2 + 4
∑n−1

i=2 blog2 ic for all n ≥ 2.

Proof. The lemma holds trivially for n = 2, so we assume that n > 2 and
that it is true for all values less than n. We note that l(j) > l(j − 1), and
also that l(j)− l(j − 1) ≥ l(j − 1)− l(j − 2). Hence, if l(i) + l(n− i) is to be
minimised, we want i and n− i to be equal or to differ by one. Let m = bn

2
c.

Then

l(n) = min{l(i) + l(n− i) : 1 ≤ i ≤ n− 1}+ 2n− 2

= l(m) + l(n−m) + 2n− 2

= l(m) + l(n−m− 1) + 2n− 2 + 4blog2(n−m− 1)c
= l(n− 1) + 4 + 4blog2(n−m− 1)c

= 2 + 4
n−2∑
i=2

blog2 ic+ 4blog2(n− 1)c

= 2 + 4
n−1∑
i=2

blog2 ic

since l(2) = 2 is our boundary condition. We remark that the penultimate
line in the working above follows from the definition of m.

143

These two bounds now allow us to prove Theorems C.2.1 and C.2.2.
Let U(n) and L(n) denote upper and lower bounds on the size of N(T),
where T is an unrooted binary phylogenetic tree with n leaves. That is,
U(n) = max{|N(T)| : T ∈ Tn} and L(n) = min{|N(T)| : T ∈ Tn}.

Proof of Theorem C.2.1. It can be checked that the theorem holds for all
n ≤ 6, so assume that n ≥ 7 and let T be an n-leafed caterpillar and T ′ be
an (n− 1)-leafed caterpillar. Then, by Theorem C.3.2 and Lemma C.3.3,

|N(T)| = |N(T ′)|+ 4n− 14 + 2u(1) + 2u(n− 3)

= U(n− 1) + 4n− 14 + 2
(
(n− 3)2 − (n− 3)

)
=

2

3
n3 − 4n2 +

16

3
n + 2

Suppose instead that T ∈ Tn is not a caterpillar, and that T ′ is a tree
obtained by deleting a single leaf from a cherry of T . Note that we can do this
in such a way that T ′ is not a caterpillar, and further that u(i)+u(n− i−2)
is maximised if i = 1. Then

|N(T)| ≤ |N(T ′)|+ 4n− 14 + 2u(1) + 2u(n− 3)

< U(n− 1) + 4n− 14 + 2u(1) + 2u(n− 3)

= U(n)

completing the proof of the theorem.

Proof of Theorem C.2.2. The theorem holds when n ≤ 5, so we assume that
n ≥ 6. Let T ∈ Tn be a tree for which the size of the unit-neighbourhood
is minimised, and let {x, y} be a cherry of T that is at the end of a longest
path. Taking R1,R2 as in Theorem C.3.2, we may assume that R1 has at
most two leaves. Applying Theorem C.3.2 and Lemma C.3.4 we have

|N(T)| ≥ L(n− 1) + 4n− 14 + 2ξ(R1) + 2ξ(R2)

≥ 2n2 − 8n− 2 + 2
n−5∑
i=1

l(i) + 2 min{l(1) + l(n− 3), l(2) + l(n− 4)}

However, for all n ≥ 6 we have l(1) + l(n− 3) ≥ l(2) + l(n− 4), and so

|N(T)| ≥ 2n2 − 8n + 2 + 2
n−4∑
i=1

l(i)

thus proving the theorem.

144

Asymptotically, Theorem C.2.2 gives a better lower bound on the size of
the unit-neighbourhood. Recall that the previous lower bound on the size
of N(T) for T ∈ Tn was quadratic in n. Corollary C.3.5 improves this to a
function of order O(n2 log n).

Corollary C.3.5. There is some c > 0 such that, for all n ≥ 4 and all
T ∈ Tn,

|N(T)| ≥ cn2 log n.

Proof. From Theorem C.2.2, the size of the unit-neighbourhood N(T) is
bounded by a double sum of logarithms, so that for some c > 0,

|N(T)| ≥ 2c
n∑

i=1

i∑
j=1

log j

> 2c

∫ n

1

∫ x

1

log ydydx

= cn2 log n + O(n2).

We remark that the result may also be proved by way of generating
functions. Let Gl(x) be the ordinary generating function for the sequence
l(n), and let Gf (x) be the ordinary generating function for the sequence f(n),
where f(4) = 2 and f(n) = 2n2 − 8n + 2 + 2

∑n−4
i=1 l(i) for n ≥ 5. Then it

can be shown that

Gl(x) =
1

(1− x)2

[
2x2(1 + x) + 4x

∞∑
k=2

x2k

]
,

provided we define l(0) = 0, and further that

Gf (x) =
2x4

1− x

[
1 + 3x− 2x2

(1− x)2
+ Gl(x)

]
=

2x4

(1− x)3

[
1 + 3x− 2x4 + 4x

∞∑
k=2

x2k

]
.

Extracting the coefficient of xn in Gf (x) gives the same asymptotic bound
on the size of the unit-neighbourhood as we established in Corollary C.3.5.

145

References for Appendix C

[1] Allen, B.L. and Steel, M. (2001). Subtree transfer operations and their
induced metrics on evolutionary trees. Annals of Combinatorics, 5,
1–15.

[2] Hein, J. (1993). A heuristic method to reconstruct the history of se-
quences subject to recombination, Journal of Molecular Evolution, 36,
369–405.

[3] Maddison, D. R. (1991). The discovery and importance of multiple
islands of most-parsimonious trees. Systematic Zoology, 43 (3), 315–
328.

[4] Robinson, D.F. (1971). Comparison of Labeled Trees with Valency
Three. Journal of Combinatorial Theory, 11, 105–119.

[5] Song, Y.S. (2003). On the Combinatorics of Rooted Binary Phyloge-
netic trees. Annals of Combinatorics, 7, 365–379.

Index

adjacency graph, 107
agreement forest, 111

maximum, 111
avoid, 81

binary tree, 8
bud, 56

k-, 56

cherry, 8
chordal graph, 35
closure

partial splits, 16
quartet set, 16

collect, 32
compatible, 11

partial splits, 13
quartet set, 13

complete tree, 101
cover

generous, 19
k-, 22
sub-, 20

definitive, 11
quartet set, 14

minimal, 15
disentangle, 66
disentangling number, 69
display, 8
distinguish, 10

specially, 32
strongly, 36

dyadic closure, 17

edge
colouring, 29

proper, 29
interior, 8
pendant, 8

generous cover, 19
graph

adjacency, 107
chordal, 35
partition intersection, 35
quartet, 29

identifying, 11
partial splits, 48
quartet set, 32

induced tree, 38
inference rule, 17

dyadic, 17
partial split, 17
quartet, 17
semi-dyadic, 25
split, 18
triadic, 48

interior
edge, 8
interior, 8
vertex, 7

k-bud, 56
k-cover, 22

label
order, 8

leaf, 7

146

147

leaf set, 7
leaf-labelled tree, 7

merge, 32

nearest neighbour interchange, 91
neighbourhood

unit, 92
nni, 91

one-split tree, 35

partial split, 9
partial split rule, 17
partition intersection graph, 35
path

interior, 8
pattern, 81

avoid, 81
pendant

edge, 8
pendant subtree, 9
perfect tree, 101

q-coloured, 29
quartet, 9
quartet graph, 29
quartet rule, 17

refined
minimally, 40

refinement, 8
restricted chordal completion, 35

minimal, 36
restriction, 66

semi-dyadic closure, 25
separate, 69
set

leaf, 7
specially distinguish, 32
split, 9

non-trivial, 9
partial, 9

split closure, 18
splits

induced, 32
spr, 90
strongly distinguish, 36
subcover, 20
subtree, 8

pendant, 9
subtree prune and regraft, 90
supertree, 11

method, 11

tbr, 89
ϑ distance, 106
tree

binary, 8
complete, 101
induced, 38
leaf-labelled, 7
one-split, 35
perfect, 101
space, 8

tree bisection and reconnection, 89
triadic closure, 48

unification, 30
sequence, 30

complete, 30
minimal, 33

unifying sets, 32
unit neighbourhood, 92

vertex
interior, 7
leaf, 7

