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Abstract

Massive multiple-input-multiple-output (MM) is becoming a promising candidate for wireless

communications. The idea behind MM is to use a very large number of antennas to increase

throughput and energy efficiency by one or more orders of magnitude. In order to make MM

feasible, many challenges remain. In the uplink a fundamental question is whether to deploy

single massive arrays or to build a virtual array using cooperative base stations. Also, in such

large arrays the signal processing involved in receiver combining is non-trivial. Therefore, low

complexity receiver designs and deployment scenarios are essential aspects of MM and the

thesis mainly focuses on these two areas.

In the first part, we investigate three deployment scenarios: (i) a massive co-located array

at the cell center; (ii) a massive array clustered at B discrete locations; and (iii) a massive

distributed array with a uniform distribution of individual antennae. We also study the effect of

propagation parameters, system size, correlation and channel estimation error. We demonstrate

by analysis and simulation that in the absence of any system imperfections, a massive distributed

array is preferable. However, an intermediate deployment such as a massive array clustered at a

few discrete locations can be more practical to implement and more robust to imperfect channel

state information. We then focus on the performance of the co-located scenario with different

types of antenna array, uniform square and linear arrays. With MM, it may be the case that

large numbers of antennas are closely packed to fit in some available space. Hence, channel

correlations become important and therefore we investigate the space requirements of different

array shapes. In particular, we evaluate the system performance of uniform square and linear

arrays by using ergodic capacity and capacity outage. For a range of correlation models, we

demonstrate that the uniform square array can yield similar performance to a uniform linear

array while providing considerable space saving.

In the second part of the thesis we focus on low complexity receiver designs. Due to the



high dimension of MM systems there is a considerable interest in detection schemes with a

better complexity-performance trade-off. We focus on linear receivers (zero forcing (ZF) and

maximum ratio combining (MRC)) used in conjuction with a Vertical Bell Laboratories Lay-

ered Space Time (V-BLAST) structure. Our first results show that the performance of MRC

V-BLAST approaches that of ZF V-BLAST under a range of imperfect CSI levels, different

channel powers and different types of arrays as long as the channel correlations are not too

high. Subsequently, we propose novel low complexity receiver designs which maintain the

same performance as ZF or ZF V-BLAST. We show that the performance loss of MRC relative

to ZF can be removed in certain situations through the use of V-BLAST. The low complexity

ordering scheme based on the channel norm (C-V-BLAST) results in a V-BLAST scheme with

MRC that has much less complexity than a single ZF linear combiner. An analysis of the SINR

at each stage of the V-BLAST approach is also given to support the findings of the proposed

technique. We also show that C-V-BLAST remains similar to ZF for more complex adaptive

modulation systems and in the presence of channel estimation error, C-V-BLAST can be supe-

rior. These results are analytically justified and we derive an exhaustive search algorithm for

power control (PC) to bound the potential gains of PC. Using this bound, we demonstrate that

C-V-BLAST performs well without the need for additional PC. The final simplification is based

on the idea of ordering users based on large scale fading information rather than instantaneous

channel knowledge for a V-BLAST scheme with MRC (P-V-BLAST). An explicit closed form

analysis for error probability for both co-located and distributed BSs is provided along with a

number of novel performance metrics which are useful in designing MM systems. It is shown

that the error performance of the distributed scenario can be well approximated by a modified

version of a co-located scenario. Another potential advantage of P-V-BLAST is that the or-

dering can be obtained as soon as the link gains are available. Hence, it is possible that mean

SINR values could be used for scheduling and other link control functions. These mean values



are solely functions of the link gains and hence, scheduling, power adaptation, rate adaptation,

etc. can all be performed more rapidly with P-V-BLAST. Hence, the P-V-BLAST structure may

have further advantages beyond a lower complexity compared to C-V-BLAST.
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Notation

a, µ,A Scalar. Italics characters of standard weight.

v Vector. Boldface, lower case. alphabeticals. Column vector unless otherwise

stated.

M Matrix. Boldface, upper case alphabeticals.
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a∗ Complex conjugation.
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M−1 Matrix inverse.

M+ Moore-Penrose generalized inverse of M.
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Q(x) =
1√
2π

∫ ∞
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u2

2 du

=
1

2
erfc(

x√
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R Real field.

C Complex field.

∈ In (an element of a set).

ab Multiplication of a and b.

a× b Notation for matrix dimension where a is the number of rows and b is the number

of columns.

∼ Is distributed as.

CN (0, σ2) A complex Gaussian distribution with zero mean and variance σ2.

Perm(.) Permanent of a matrix.

O(f(x)) The order of the function f(x). Assume that the point x approaches x0. If

there exists an N > 0 such that |g(x)| ≤ N |f(x)| in some sufficiently small

neighborhood of the point x0, we write g(z) = O(f(z)).

y A received signal.

W A combiner matrix.

H A channel matrix.
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Nr Number of receive antennas.

n A noise vector.

I The identity matrix.

ρ The ratio of the transmit signal power to the noise power.

σ2 The noise power.

r0 The correlation coefficient between the true channel and its estimate.

δij The Kronecker delta function is defined as

δij =


1 if i = j

0 if i 6= j.
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γ The path loss exponent.

σSF The shadowing factor standard deviation.

da A cell diameter scaling factor.
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J0(.) The zeroth order Bessel function.

logn(.) The Logarithm operation of base n.

PG Group error probability.

Iq(.) An incomplete beta function.

χ2
n Chi squared distribution with n degrees of freedom.
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Chapter I

Introduction

This chapter is organized as follows. The problem statement and focus is given in Section 1.1

and a statement of originality is provided in Section 1.2. Section 1.3 illustrates the thesis out-

line and contributions, and Section 1.4 presents the published work, submitted work and papers

under preparation.

1.1 Problem Statement and Focus

In the next decade, the demand for higher data rates and quality of service in wireless and mo-

bile communications is expected to continue to grow rapidly. For example, according to the

Telecommunication Regulatory Authority, in 2012, the United Arab Emirates’ (UAE) mobile

usage rose with an increase in active mobile subscribers to 11.72 million. That is a 7.33 per-

cent increase in users from 2010, when there were 10.92 millions subscribers [3] 1 In addition,

Commercial and Industrial Security Corporation made a prediction that global mobile traffic

growth will increase by a factor of three from 2014 - 2019 [4]. Moreover, the internet of things

is also predicted to increase the number of interconnected devices. This will potentially exceed

the number of human subscriptions to cellular networks. According to a recent research fore-

cast, the internet of things is predicted to reach 25 billion smart objects by 2020 [5]. Overall,

this predicted growth in users, devices and traffic is expected to exceed the improvements in

wireless communication technology that are currently possible with today’s technology. As a

1 The population of the UAE in 2012 was 9.2 million, of which 1.4 million were Emirati citizens.
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result, telecom operators around the world are attempting to gain more spectrum. However,

spectrum is scarce and expensive and industry and academia are already looking ahead to new

ideas and new technologies that can help to meet the needs of future wireless services. Mas-

sive multi-input multi-output (MIMO), my area of study, is one of the technologies proposed

both in university laboratories and in international industrial partnerships as a key enabler in the

future. The idea is to have a large number of antennas in the transceivers to enhance the perfor-

mance of a radio link [1,6–8]. Adding large numbers of antennas (10s-100s) at the base stations

can be advantageous even under noisy channels [6].Despite several issues with massive MIMO

(MM) [7] including array size [7], pilot contamination [7], mutual coupling [9], latency [10],

cost and complexity, MM remains a very promising area. Companies are working in this area

to standardize MM. For instance, Zhongxing Telecommunication Equipment Corporation has

investigated MM in partnership with China Mobile as Huawei introduced the MM prototype

in 2014 [11]. Vendors and operators such as Samsung and South Korea Telecommunication

Company (SK Telecom) have experimented with MM prototypes [12].

In the 1990s, the development of multi-antenna communication increased the level of spec-

tral efficiency and reliability that wireless channels could provide. MIMO technology has now

been integrated into various developments such as WiFi and the Long Term Evolution (LTE)

standard [13]. MM takes the development further, by increasing the scale of the MIMO con-

cept. The degrees of freedom (DOF) in the wireless channel can be increased using MM where

a large number of antennas are deployed [14]. Note that, as the number of antennas is increased

at the transceivers, the better the performance that can be achieved in terms of data rate and link

reliability [15].

In this thesis, we focus on the uplink of a MM system and receiver design in particular.

With such a large number of antennas at the BS receiver, questions of deployment become even

more relevant for MM than traditional MIMO. For example, should the 100s of antennas be
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co-located at one BS or distributed at several BSs in the coverage area which are backhauled

together to form a virtual array? (Note that, as antennas are distributed over a large geographical

area, backhaul requirements and latency will be increased). In addition, at each BS should the

antennas be deployed in a linear array or in a more compact shape such as a square? These

issues are also closely related to the presence of channel correlation since the large MM arrays

may be constructed in a small physical space. This reduces antenna spacing and increases

the likelihood of high channel correlation. For these reasons, deployment issues and channel

correlation effects are also considered in the thesis in addition to receiver design.

In terms of uplink receiver design, two important factors for MM are complexity and channel

state information (CSI). Typical linear receiver (zero forcing (ZF) and minimum mean-square

error (MMSE)) are commonly considered to be low-complexity for traditional MIMO systems.

However, with a MM system there might be 100s of antennas serving 10s of users. Here, the

processing involved in computing the receiver weights is non-negligible, especially when matrix

inverses are required. Hence, there is an increased focus on further complexity reduction for

MM. Finally, MM is likely to suffer from less accurate channel estimation than smaller systems

due to effects such as latency in distributed arrays [10] and pilot contamination [7]. Hence,

in this thesis both perfect and imperfect CSI are considered. In terms of receiver design, the

thesis develops and analyzes a novel low-complexity receiver which has lower complexity than

a linear ZF reciever while maintaining similar performance in a wide range of conditions.

1.2 Statement of Originality

This thesis represents original work by the author, unless otherwise mentioned. None of the

material of this thesis has been previously submitted for examination for any degree. Most of

the material in this thesis has been published, submitted for publication, or is under preparation

for publication. The thesis outline, author’s contribution and publications are listed in Sections
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1.3 and 1.4. This work has been undertaken under the support and guidance of my supervisors:

Prof. Peter Smith and Dr. Graeme Woodward.

1.3 Thesis Outline and Contributions

This thesis studies MM receiver designs and their performance in a multiuser context. In terms

of performance metrics, the output signal-to-interference-and-noise-ratio (SINR), symbol error

rate (SER) and ergodic capacity are used for facilitating system comparison. Brief summaries

of each chapter are shown below.

• Chapter 2: Background and Literature Review

This chapter gives an overview of MIMO, multiuser MIMO, MM, MM deployment and

MM arrays. In addition, channel models, system models, receivers, performance metrics,

power control (PC) and adaptive modulation (AM) are introduced.

• Chapter 3: Distributed vs Co-located Base Station Deployment

To evaluate the benefits of distributed arrays in MM systems, we investigate the interac-

tion between linear receivers (maximum ratio combining (MRC) and ZF and three de-

ployments scenarios: (i) a massive co-located array at the cell center; (ii) a massive array

clustered at B discrete locations; and (iii) a massive distributed array with a uniform

distribution of individual antennas. We also study the effect of propagation parameters,

system size, correlation and channel estimation error. We demonstrate by analysis and

simulation that in the absence of any system imperfections, a massive distributed array

is preferable. An intermediate deployment such as a massive array clustered at a few

discrete locations, can be more practical to implement and more robust to imperfect CSI.

We show an example with a 128 antenna deployment where four locations achieves one

third of the gains due to a fully distributed array.
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• Chapter 4: Array Size and Shape

With MM, it may be the case that large numbers of antennas are closely packed to fit in

some available space. Here, channel correlations become important and it is of interest to

investigate the space requirements of different array shapes. Here, we focus on uniform

square and linear arrays and consider a range of correlation models. We show that the

benefits of two-dimensional arrays are dependent on the type of correlation. When the

correlation decays slowly over small antenna separations then square arrays can be far

more compact than linear arrays or they can offer substantial capacity enhancements.

When the correlation decays more quickly, then the main benefit is compactness.

• Chapter 5: Performance of Traditional Vertical Bell Laboratories Layered Space

Time (V-BLAST) Based on Optimal Ordering

In an uplink MM deployment with distributed single-antenna user equipments (UEs) and

a large base-station (BS) array, we consider, in this chapter, the performance of vertical

Bell Laboratories Layered Space Time (V-BLAST) with MRC and V-BLAST with ZF.

In the performance evaluation, we include the effects of imperfect CSI and channel cor-

relation since these system imperfections are of particular importance in MM. The main

contribution is that the performance of MRC V-BLAST is shown to approach that of ZF

V-BLAST under a range of imperfect CSI levels, different channel powers and different

types of array, as long as the channel correlations are not too high.

• Chapter 6: Low Complexity MRC V-BLAST Based on Channel Norm Ordering

In an uplink MM deployment with distributed single-antenna UEs and a large BS array,

we consider, in this chapter, several combinations of receivers using linear combiners

(MRC and ZF) in conjunction with V-BLAST. We show that the performance loss of

MRC relative to ZF can be removed in certain situations through the use of V-BLAST.
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Furthermore, we develop a low complexity ordering scheme based on the channel norm

(C-V-BLAST) which results in a V-BLAST scheme with MRC which has much less

complexity than a single ZF linear combiner. An analysis of the SINR at each stage

of the V-BLAST approach is also given to support the findings of the proposed technique.

• Chapter 7: Low Complexity MRC V-BLAST Based on Channel Norm Ordering

with Adaptive Modulation and Power Control

We consider the performance of a low complexity V-BLAST system with an MRC re-

ceiver (C-V-BLAST) in an uplink MM deployment with single antenna UEs. We show

in Chapter 6 that this receiver gives a similar error rate performance to ZF for simple

systems while reducing complexity. In this chapter, we show that C-V-BLAST remains

similar to ZF for more complex adaptive modulation systems and in the presence of chan-

nel estimation error, C-V-BLAST can be superior. These results are analytically justified

and we derive an exhaustive search algorithm for PC to bound the potential gains of PC.

Using this bound, we demonstrate that C-V-BLAST performs well without the need for

additional PC.

• Chapter 8: Analysis of Low Complexity MRC V-BLAST based on Link Gain Or-

dering

An uplink MIMO deployment with distributed single-antenna UEs and a large BS array

is considered. Due to the high dimension of MM systems there is a considerable interest

in detection schemes with a better complexity-performance trade-off. In this chapter,

a simplified version of a low complexity ordering scheme based on large scale fading

information is developed and analyzed for a V-BLAST scheme with MRC, and compared

with other more complex detection schemes such as the linear ZF receiver. Moreover,

an explicit closed form analysis for error probability for both co-located and distributed
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BSs is provided along with a number of novel performance metrics which are useful in

designing MM systems. It is shown that the error performance of the distributed scenario

can be well approximated by a modified version of a co-located scenario. The simulation

study in the absence of any system imperfections demonstrates the performance of the

proposed scheme and confirms the accuracy of analytical results.

• Chapter 9: Conclusions and Future Work

This chapter provides conclusions and details of possible future work.

1.4 Publications

A list of published, submitted papers and presentations produced during my PhD studies is

shown below.

1. Journal Articles

• K. A. Alnajjar, P. J. Smith and G. K. Woodward, “Co-located and distributed an-

tenna systems: deployment options for massive MIMO”, accepted for publication

in IET Microwaves, Antennas & Propagation, Jun 2015.

2. Submitted Papers

• K. A. Alnajjar, P. J. Smith, G. K. Woodward and D. A. Basnayaka, “Analysis of

Low complexity MRC V-BLAST based on link gain ordering for massive MIMO”,

Submitted to IEEE Transactions on Wireless Communications (TWC), 2015.

• K. A. Alnajjar, P. J. Smith, G. K. Woodward and P. Whiting, “An investigation of

size and array shape for “Size and array shape for massive MIMO”, Submitted to

IEEE Wireless Communications letters, 2015.
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3. Conference Proceeding Papers

• K. A. Alnajjar, P. J. Smith and G. K. Woodward, “Low complexity V-BLAST for

massive MIMO”, in Proc. IEEE Australian Communications Theory Workshop

(AusCTW), Sydney, Australia, Feb. 2014.

• K. A. Alnajjar, P. J. Smith and G. K. Woodward, “Performance of massive MIMO

V-BLAST with channel correlation and imperfect CSI”, in Proc. IEEE on Aus-

tralian Telecommunication Networks and Applications Conference (ATNAC), Mel-

bourne, Australia, Nov. 2014.

• K. A. Alnajjar, P. J. Smith and G. K. Woodward, “Low complexity V-BLAST for

massive MIMO with adaptive modulation and power control”, in Proc. IEEE Conf.

on Information and Communication Technology Research (ICTRC), Abu Dhabi,

UAE, May. 2015 (Awarded for the Best Oral Paper ).

4. Additional Presentations

• K. A. Alnajjar, P. J. Smith and G. K. Woodward, “What is the best deployment

for massive MIMO ?”, IEEE New Zealand Wireless Workshop, Wellington, New

Zealand, Sep. 2013.

• K. A. Alnajjar, P. J. Smith and G. K. Woodward, “Deployment scenarios in massive

MIMO”, UC SHOWcase, Christchurch, New Zealand, Nov. 2013.

• K. A. Alnajjar, P. J. Smith and G. K. Woodward, “Receiver design for massive

MIMO”, WRC Seminar, Christchurch, New Zealand, May. 2014.

• K. A. Alnajjar, P. J. Smith and G. K. Woodward, “Performance of massive MIMO

with channel correlation and imperfect CSI”, IEEE ICTRF2014/GERS2014 sympo-

sium, Abu Dhabi, United Arab Emirates, May. 2014.
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• K. A. Alnajjar, P. J. Smith and G. K. Woodward, “Low complexity V-BLAST for

massive MIMO”, Seminar in University of Sharjah, Sharjah, United Arab Emirates,

May. 2014.

• K. A. Alnajjar, P. J. Smith and G. K. Woodward, “Technical work: Receiver design

for massive MIMO and personal experience of studying abroad and the challenges”,

Seminar in Khalifa University, Abu Dhabi, United Arab Emirates, May. 2014.

• K. A. Alnajjar, P. J. Smith and G. K. Woodward, “Massive MIMO receiver design”,

Thesis in 3, Christchurch, New Zealand, August. 2014.

• K. A. Alnajjar, P. J. Smith and G. K. Woodward, “Power control with low complex-

ity V-BLAST for massive MIMO with adaptive modulation”, IEEE New Zealand

Wireless Workshop, Christchurch, New Zealand, Sep. 2014.

• K. A. Alnajjar, P. J. Smith and G. K. Woodward, “Recent research outcomes in

massive MIMO receiver design”, Seminar in University of Sharjah, Sharjah, United

Arab Emirates, Jan. 2015.

• K. A. Alnajjar, P. J. Smith and G. K. Woodward, “Recent research outcomes in

massive MIMO receiver design”, Seminar in American University of Sharjah, Shar-

jah, United Arab Emirates, Jan. 2015.
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Chapter II

Background and Literature Review

2.1 Introduction

This chapter provides the relevant background information. Sections 2.2, 2.3 and 2.4 give an

overview of Multiple-Input-Multiple-Output (MIMO), multiuser MIMO and massive MIMO

(MM), respectively. In Section 2.5 some issues concerning deployment and array design are

presented. Section 2.6 provides channel models and Section 2.7 gives the system model. We

present in Section 2.8 the basic receiver designs considered including linear combiners and the

Vertical Bell Laboratories Layered Space Time (V-BLAST) technique. We present performance

metrics, power control and adaptive modulation in Sections 2.9, 2.10 and 2.11, respectively. We

provide parameter values in Section 2.12 and conclude in Section 2.13.

2.2 Multiple-Input-Multiple-Output (MIMO)

The wireless channel changes over time and space because of random movements of obstacles

or UEs [16]. Owing to the presence of scattering in the wireless channel, the received signal at

the destination experiences a random superposition of multi-path components [16]. Figure 2.1

illustrates an example of possible paths for the received signal. The undesired random channel

fluctuations, called fading, severely affect quality and reliability.

MIMO is one of the techniques designed to combat and exploit these problems. MIMO is
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Figure 2.1: An example of possible paths for the received signal in a wireless channel.

a combination of single-input-multiple-output (SIMO) and multiple-input-single-output design

(MISO) [17]. MIMO exploits spatial diversity at each end of the link [17, 18]. The MIMO

channel is constructed with multiple element arrays at both ends of the wireless link. Multi-

plexing gain and diversity gain are two major MIMO gains [17,18]. Multiplexing gain requires

multiple receive and transmit antennas where transmitters send multiple streams [17,18]. How-

ever, diversity gain requires multiple transmit and/or receive antennas and deals with one data

stream which can be viewed multiple times via different fading channels [17, 18]. Figure 2.2

shows an example of a MIMO system model. It has been shown that large gains in capacity

compared with traditional single-input-single-output (SISO), SIMO or MISO channels are fea-

sible in MIMO systems. However, hardware costs and some additional processing are required

when using MIMO [19]. There are many factors affecting the performance of MIMO systems.

The number of antennas, antenna spacing, channel characteristics (line-of-sight or non-line-

of-sight), and choice of codes and signal combining methods [20] are all important factors in
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Figure 2.2: A MIMO system model.

MIMO performance.

2.2.1 Detection

In MIMO systems, the joint detection of signals is essential and can be performed optimally by

the exhaustive search method, namely maximum likelihood detection [17, 18, 21]. Due to its

exponential complexity with the number of transmitters and the constellation size [18], subop-

timal methods have been investigated [21] including linear combiners, successive interference

cancellation (SIC) detection, list decoding and lattice reduction aided detection [21]. As the

number of antennas grows, the simpler methods become more and more attractive due to the

computational demands of the near-optimal approaches.
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2.3 Multiuser MIMO

Multiuser MIMO systems allow multiple UEs to transmit to the BS 1 which receives separate

signals simultaneously in the same time and frequency slot [17, 22]. Multiuser MIMO has

been studied in both downlink (broadcast channel) and uplink (multiple access channel) sce-

narios [17, 22]. A multiuser MIMO base station can be deployed in co-located or distributed

configurations. In the co-located scenario, there is only one BS that serves many UEs, but in

the distributed scenario, many BSs can collaborate and serve many UEs. Note that these dis-

tributed BSs are located in different places and each BS is connected to a central processing

unit (CPU) to share information. The motivation for the distributed scenario was to increase

coverage areas and reduce outage by using several inexpensive BSs spread across the cell [23].

Figures 2.3 and 2.4 show examples of uplink multiuser MIMO systems. Figure 2.3 shows the

co-located scenario example where one BS receives signals from three UEs. Figure 2.4 dis-

plays the distributed scenario example where three BSs support four UEs. The downside of

using distributed BSs includes cost, latency, environmental issues and complexity. This is due

to increased backhaul from each antenna to the central processing location (which has impli-

cations on cost, latency and complexity) and getting access to many more antenna sites (cost,

regulatory, environmental, complexity).

2.3.1 Detection for MIMO

The maximum likelihood multiuser detector can be used for the uplink scenario for obtaining

optimal performance [21]. It has also been shown that an iterative lattice reduction based de-

tection method can achieve the same diversity as that of the maximum likelihood multiuser

detection with reduced complexity [21]. However, these receivers lead to a complex system

1 In the long term evolution (LTE), the BS is usually called E-UTRAN Node B (eNodeB) or Evolved Node B
(eNB) [13].
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Figure 2.3: An uplink multiuser MIMO system, co-located scenario.

CPU

Figure 2.4: An uplink multiuser MIMO system, distributed scenario.
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implementation, especially for large systems. Consequently, the linear combiners discussed in

Section 2.8.1 are commonly used alternative suboptimal MIMO detection techniques.

2.4 Massive MIMO

Massive MIMO or very large MIMO is becoming a promising candidate for wireless commu-

nications [1, 6–8]. In addition, MM is an active area for 5th generation wireless systems (5G)

due to its potential to achieve high performance [6] and to reap all the benefits of conventional

MIMO but on a larger scale [1]. MM is also known as a large-scale antenna system, very large

MIMO, hyper MIMO and full-dimension MIMO. MM systems are a type of cellular commu-

nication system where a BS has a large number of antennas (10-100)s either in one location or

in different locations [6]. By using large numbers of antennas at the BS, different UEs become

orthogonal to each other and the inter-user interference diminishes. Therefore, the data rate will

increase and low complexity signal processing techniques can be utilized [6]. However, there

are some disadvantages in using MM. More details are given in the following sections.

2.4.1 Massive MIMO Advantages

With MM, the DOF can be increased [15] and the transmitted power can be reduced [24].

In contrast to the expensive high power linear amplifiers used in traditional MIMO systems,

inexpensive low power (milliwatts) amplifiers can be used in MM [24]. In addition, MM can

average out the effect of small-scale fading and create quasi-orthogonal UEs [24]. As a result, it

is powerful against fading and robust against failure of one or a few antennas [1]. Adding large

numbers of antennas (10s-100s) at the BSs can be advantageous even under noisy channels

[1, 6–8]. Note that large arrays at the BSs can handle large number of UEs because the DOF

increases. Large multiplexing gains and an improved radiation efficiency are other advantages

of using MM [1]. For example, MM can utilize a very narrow (pencil) radiation beam pattern
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or a high directivity gain [25].

MM represents a paradigm shift in theory, systems and implementation [1, 6–8, 15, 26].

For instance, although interference mitigation techniques have been the focus in traditional

MIMO, these techniques are less critical for large systems. By using the simplest forms of UE

detection and precoding (MRC and matched filtering (MF)), good performance is obtained in

MM [7, 15, 26].

2.4.2 Massive MIMO Disadvantages

The performance of MM systems depends heavily on the antenna properties and the propagation

environment [7]. The MM performance can be enhanced by using channel state information

(CSI) at the BS [7, 25]. For instance, in time division duplex (TDD), CSI is assumed to be

available due to channel reciprocity [7, 25]. However, hardware impairments in MM systems

can lead to imperfect CSI and decreasing system performance [25, 27, 28]. Additionally, with

TDD operation, the performance of MM becomes limited by the interference arising from the

re-use of pilots in neighboring cells [7, 25]. The number of orthogonal sequences is limited by

the coherence time [7, 25], which itself depends on the mobility of the terminals. Thus, the

pilots must be reused and therefore, inter-cell interference remains [29]. Hence, with imperfect

channel estimation, the system performance can degrade severely due to pilot contamination.

MM array size, deployment and configuration are some of the crucial issues in MM [7, 25].

Placing the antennas in a two dimensional grid or in three dimensions, and in co-located or

distributed configurations are some practical issues that need to be considered for the antenna

arrays [1,25,30–34]. Mutual coupling [9] can only be ignored when the antennas are separated

from each other and this is unlikely in the MM scenario [25]. Furthermore, due to the commu-

nication required between BSs in the distributed case, latency [1,10] and backhaul requirements

will increase. Moreover, hardware cost and complexity remain crucial in MM [7, 25].
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Propagation models are complicated by the number of antennas, although ongoing research

adapts the Rayleigh fading model to analyze MM systems [25]. Some experimental studies have

shown that antenna correlations can be significant [25]. Also, for highly correlated channels,

channel vectors tend to be less orthogonal than for independent channels [7, 25]. Such effects

are important in MM, since if the large arrays are located within a small area, then the channel

correlations may be substantial [7].

2.4.3 Massive MIMO Companion Technologies

Millimeter wave (mmWave) is another technology proposed for 5G [8, 25]. It has been stan-

dardized for short range usage (IEEE 802.11ad) and deployed for niche applications such as

small-cell backhaul [8]. The available mmWave frequency bands include 28-30 GHz, the free

band at 60 GHz and the E-band at 71-76 GHz, 81-86 GHz and 92-95 GHz [8]. mmWave of-

fers spectral availability and shorter wavelengths allowing for small dense antenna arrays with,

relatively, low correlation at small antenna spacings. The main problem with mmWave is the

sensitivity to blockages [8]. The advantages of using mmWave with MM is increased capacity

and spectral efficiency for communication systems [35]. For instance, using both technologies

can be significant in increasing throughput backhaul in areas where it is expensive to install fiber

or wire connections [35]. In fact, MM has been proposed as a method to relay information back

and forth between cells or closer network hubs [35]. This has considerable advantages over mi-

crowave backhaul links which require dish antenna and physical antenna alignments [35]. Inter-

estingly, MM arrays can alter transmit and receive beams under environmental changes without

the demand of physical readjustments and MM arrays can also communicate with many back-

haul stations because their beams are steerable [35]. Moreover, compact dimensions, flexibility

and adaptivity in small cells can be achieved using both technologies.

Besides the mmWave technology, heterogeneous networks (HetNets) are another technol-
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ogy which can link with MM. HetNets involve a mixture of cell types, commonly including

macro-cells containing low-cost small cells such as pico-cells or femto-cells [14, 25]. By us-

ing HetNets with MM, interference management, energy efficiency and throughput can be im-

proved and this is an important future research direction [25]. For instance, during downlink

transmission, the macro-cell BS can estimate the null space of the small cells and project its

downlink data into the null space for interference free transmission. By using a MM array at the

macro-cell BS, the increased degrees of freedom can be used to handle more small cells and im-

prove system performance [25]. Several studies have proposed some solutions for interference

coordination, precoding techniques and backhaul requirements [14, 36, 37] to improve system

performance when using both technologies.

2.4.4 Massive MIMO in Practice

There are numerous recent prototypes that provide high spectral efficiency with large arrays.

For example, the Ngara testbed uses a 32 element BS to serve 18 UEs [38] and 64 × 64 MIMO

channel sounding measurements at 5GHz in an indoor environment are discussed in [39]. In

addition, the Argos testbed also used 64 antennas as described in [40]. Companies are also

working to standardize MM. For instance, Zhongxing Telecommunication Equipment Corpo-

ration has investigated MM in partnership with China Mobile and Huawei introduced the MM

prototype in 2014 [11]. Finally, Samsung and South Korea Telecommunication Company have

experimented with MM in a mmWave prototype [12] in 2015.

2.4.5 Detection for Massive MIMO

Many detection methods have been studied in MM to extract the desired signal from the received

signal. The complexity of optimal detectors is based on a maximum likelihood or maximum

posteriori probability criterion and is exponential in the number of transmit antennas [6]. De-
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tectors which approach optimal performance (i.e., the sphere decoder and variants) introduce

usually high complexity. In contrast, popular low complexity approaches are usually based on

linear receivers such as ZF, MMSE and MRC. However, in MM, linear receivers can approach

optimal performance and there are several algorithms proposed to achieve high performance

with the same complexity as linear detectors. Examples include detectors based on local search

and belief propagation [41].

One of the most popular schemes in traditional MIMO is the V-BLAST approach, which

is a multi-layer symbol detection scheme. It uses nonlinear (serial cancellation) and linear

combining (interference suppression) and has been studied with imperfect channel estimation

[42] and with correlated channels [43]. Most of the work on traditional V-BLAST discusses ZF

or MMSE combiners and rarely considers MRC [44, 45]. Also, very little work has appeared

on V-BLAST with MM since the prime focus of MM is simplicity whereas V-BLAST requires

repeated detection and ordering. However, by replacing ZF or MMSE receivers with MRC and

using a one-shot ordering method (see Chapter 6 and Chapter 8) this thesis develops a version of

V-BLAST for MM with a lower complexity than linear ZF detection and a similar performance.

2.4.6 Precoding for Massive MIMO

In MM there is a very large array at the BS serving many UEs with small numbers of antennas.

Hence, both the computational processing power and the DOF are heavily weighted towards the

BS. As a result, most work on MM focuses on uplink combining or downlink precoding. In both

cases, the BS uses the large array to separate the signals associated with multiple UEs. In this

context, uplink precoding at the UEs is often neglected. This is because the MM array already

has the power to separate the UEs and the further enhancement offered by uplink precoding

may be small. More importantly, uplink precoding also involves an extra feedback stage from

the BS to the UEs so that precoding information can be computed at the BS and sent out to
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the UEs. Since only a limited number of feedback bits are usually available, the precoding

information actually delivered to the UEs is not perfect. The use of an extra feedback stage

to provide imperfect precoding information to the UEs is often considered too expensive for

implementation. Hence, following much of the MM literature, we do not assume any precoding

at the UEs in the thesis.

Nevertheless, uplink precoding may have its place in some systems. In the LTE system, for

example, an uplink precoder has been standardized [46].

2.5 Deployment and Array Design

2.5.1 Deployment

MM can result from a large number of antennas deployed at one location or from an array of

distributed antennas linked together to form a massive network MIMO system [7]. Hence, the

following scenarios are considered in the thesis:

• one massive co-located array (COL);

• B-collaborative base stations with multiple antennas at each BS (BBS);

• one massive array with geographically distributed single antenna BSs (DIST).

In all deployment scenarios, we assume that the UEs are located uniformly and randomly in

the coverage area. For example, suppose the UEs are located randomly in the coverage area

(assumed to be square for simplicity) and the number of received antennas is 81. The BSs are

located symmetrically in the region as in Figure 2.5. In this example we consider the specific

cases given by COL: 81 co-located antennas; 3BS : 27 antennas at 3 BSs; and DIST: 81 single

antenna BSs located in a symmetric 9×9 grid.
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COL 3BS

DIST

= BS

= UE

Figure 2.5: Example of deployment scenarios. COL: one massive co-located array. 3BS: 3-collaborative
base stations with multiple antennas at each BS. DIST: one massive array with geographically distributed
single antenna BSs.

41



2.5.2 Arrays

MM array types can take different shapes such as [7]:

• Linear Array.

• Square Array.

• Circular Array.

• Rectangular Array.

• Cylindrical Array.

Figure 2.6 shows an example of antenna arrays and deployment scenarios for a MM base station

[1].

If the large arrays are located within a small area, then the channel correlations may become

quite high impacting on system performance [7]. With a limited dimension on the antenna

array, the DOF, and thus the sum-capacity, only grows as the square-root of the number of

antennas [15]. In this thesis, we consider the uniform linear array (ULA) and the uniform

square array (SQ). The difference between the two types of array is dependent on the scenario.

For example, a SQ can be more compact than a ULA if space is limited. However, if space is

not an issue, SQ can offer increased antenna spacing for the same overall length of array. These

situations are described as Case 1 and Case 2 respectively in Figure 2.7. In Case 1, the SQ is

very compact compared to the ULA, which can be useful in MM when there is limited space

available for the array. However, if the correlation increases, the antennas in the SQ may need

to be separated to give the same performance as the ULA. In Case 2, we see that using the same

width as the ULA gives increased spacings and reduced correlation with SQ. Hence, the choice

of array is governed by two key factors: the available space for deployment and the size of the

42



Figure 2.6: An example of antenna arrays and deployment scenarios for a MM base station [1].
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Case 2

ULA

SQ

ULA

SQ

Figure 2.7: Two deployment cases with two types of array (SQ and ULA).
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arrays needed to provide a given performance. Hence, there is a trade off between performance

and antenna spacing.

2.6 Channel Models

A channel is a medium, wired or wireless, which is used to convey an information signal [6,17,

47]. The wireless channel is usually considered to be random with the variation of the channel

strength, being classified into large scale fading and small scale fading [6,17,47]. The large scale

fading, which can be independent of frequency [48], results from signal path loss (a distance

function) and shadowing, from large obstacles such as buildings. On the other hand, small-scale

fading, which is frequency dependent, is a consequence of multiple signal paths between the

transmitter and receiver that lead to both constructive and destructive interference [6, 17, 47].

2.6.1 MIMO Channel Models

Assume the number of receive antennas is Nr and the number of transmit antennas is Nt. The

channel matrix of size Nr ×Nt can be written as

H = [h1 · · ·hNt ] =



h11 h12 . . . h1Nt

h21 h22 . . . h2Nt

...
... . . . ...

hNr1 hNr2 . . . hNrNt


, (2.1)

where hi = [h1i h2i · · ·hNri]T . The channel matrix H describes the fading characteristics of

the entire MIMO link. According to the geographical distribution of the transmit and receive

antennas, each link can have a different average link power. Because our focus is on multiuser

MIMO, where each UE has a single antenna, each column corresponds to a UE. The channel

coefficient, hij , from UE j to receive antenna i has power E[|hij|2] = Pij . Therefore the link
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gain power matrix can be written as

P =



P11 P12 . . . P1Nt

P21 P22 . . . P2Nt

...
... . . . ...

PNr1 PNr2 . . . PNrNt


. (2.2)

In the COL scenario shown in Figure 2.8, there is a single massive co-located array. Each link

from a user to the co-located BS therefore has the same power. Therefore, Pij = Pj and the P

matrix can be written as

P =



P1 P2 . . . PNt

P1 P2 . . . PNt
...

... . . . ...

P1 P2 . . . PNt


. (2.3)

In the BBS scenario shown in Figure 2.9, there are B-collaborative base stations with multiple

antennas at each (BBS). Each link from a user to each group of BS has the same power. Hence,
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Figure 2.8: An example of a COL scenario with a link gain profile.

Pij = P
(k)
j where k = {1 . . . , B} and P can be written as

P =



P
(1)
1 P

(1)
2 . . . P

(1)
Nt

P
(1)
1 P

(1)
2 . . . P

(1)
Nt

...
... . . . ...

P
(2)
1 P

(2)
2 . . . P

(2)
Nt

P
(2)
1 P

(2)
2 . . . P

(2)
Nt

...
... . . . ...

P
(B)
1 P

(B)
2 . . . P

(B)
Nt

P
(B)
1 P

(B)
2 . . . P

(B)
Nt



. (2.4)

In the DIST scenario, there is one massive array with geographically distributed single antenna
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Figure 2.9: An example of a BBS scenario with a link gain profile.

48



BSs. Each link from a user to a BS has different power. Therefore P can be written as in (2.2).

In the following subsections, the specific types of channel models and link gain structures

are described.

2.6.2 Rayleigh Fading Channel Model

A Rayleigh fading model describes the received power in a situation where there is no line

of sight between transmitter and receiver due to a dense urban environment containing a large

number of scatterers [47]. In Rayleigh fading, the channel coefficient, hij , from UE j to receive

antenna i can be written as [49]

hij = Uij, (2.5)

where Uij ∼ CN (0, σ2
x). The variable X = |hij| has a Rayleigh distribution. The probability

density function (PDF) of the Rayleigh distribution is given by [50, equation (2.5), page 9]

fX(x) =
{
x
σ2
x

exp
(
−x2

2σ2
x

)
x ≥ 0.

2.6.3 Kronecker Channel Model

This model assumes that the transmitter and receiver correlations are separable. In fact, the

covariance matrix can be written as [51]

R = E[vec (H) vec (H)H ] = Rt ⊗Rr, (2.6)

where vec(.) is a vector operation which stacks a matrix into a vector, ⊗ is the Kronecker

product, and Rr and Rt are the correlation matrices at the receiver and transmitter, respectively.
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Therefore, the correlated channel matrix can be written as [52]

H = R1/2
r UR

1/2
t , (2.7)

where the elements of U are i.i.d CN (0, 1).

The Kronecker model is valid if and only if two conditions are jointly satisfied [51]. The

transmitter correlation coefficients are independent from the receiver antenna and vice versa. In

addition, the correlation matrix must be equal to the Kronecker product of the transmitter and

receiver correlation matrices [51].

2.6.4 One Sided Correlation Model

In the special case where correlation is present only at one end of the link, the model is called

the one-sided Kronecker model [53]. Here, (2.7) simplifies to

H = R1/2
r U or H = UR

1/2
t . (2.8)

This model is used when sufficiently large antenna spacings at one side allows decorrelation

across the antennas at that side.

2.6.5 Large Scale Fading Model

The channel coefficient, hij , from UE j to receive antenna i can be written as

hij =
√
PijUij, (2.9)
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where Uij ∼ CN (0, 1). The link gain, Pij including path loss and shadowing [47, page 104], is

defined by

Pij = ALijd
−γ
ij . (2.10)

In (2.10), j ∈ {1, 2, . . . , Nt} identifies the UEs, A is a constant depending on transmit power,

antenna height, etc., Lij is a lognormal shadow fading variable defined by Lij = 10
Lij
10 , where

Lij is an independent and identically distributed (i.i.d.) complex Gaussian variable with zero

mean and constant shadow fading variance σ2
SF , Lij ∼ CN (0, σ2

SF ), dij is the link distance

and γ is the path loss exponent. For simplicity, we assume A, σSF and γ are constant for all

UEs. This model is a classical statistical model which is widely used for evaluating system

performance. This model is used in most of the chapters in this thesis.

Link Gain Calculation

The difference between the channel coefficients for the scenarios lies solely in the structure

of the link gains (see (2.10)). Referring to Figure 2.8 and (2.3), for COL, where one massive

co-located array at BS is considered,

Pij = Pj = ALjd
−γ
j , (2.11)

as all Nr paths from UE j to the BS have the same power defined by a single shadow fading

variable, Lj and a single distance, dj . In the BBS scnario, referring to Figure 2.9 and (2.4),

there are B-collaborative base stations with multiple antennas at each BS. The BS powers are

defined by

Pij = P
(k)
j = AL

(k)
j (d

(k)
j )−γ, (2.12)

where k = {1 . . . , B}, the B lognormals L1 . . . LB are independent, distances are distinct and k

is the index of the BS. Referring to Figure 2.5 and (2.2), for DIST, where there is one massive
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array with geographically distributed single antenna BSs, the link gains are defined by

Pij = ALijd
−γ
ij . (2.13)

2.6.6 Correlated Channels with Random Large Scale Fading

The channel model including fast fading, correlation and random large scale fading is defined

as

H = R1/2
r G, (2.14)

where Gij =
√
PijUij , the Uij ∼ CN (0, 1) are i.i.d. fast fading terms, R1/2

r is the spatial

correlation matrix at the receive array and Pij is defined in (2.10), where Pij = ALijd
−γ
ij .

In (2.14), the channel correlation matrix at the receiver has the block diagonal form

Rr =



Rb 0 . . . 0

0 Rb . . . 0

...
... . . . ...

0 0 . . . Rb


. (2.15)

where Rb is the correlation matrix at each of the B arrays. The result in (2.15) is valid only if

all BSs are identical, i.e., when each BS has the same number of antennas, the same shape, etc.

In practice different users have different correlation but we employed a simplified model where

the correlations are the same.

Figure 2.10 demonstrates an example of correlated channels in the 2BS scenario. Suppose

there are three UEs (UE 1, UE 2 and UE 3) and each of them has correlated links with BS1 and

BS2. For example, UE 2 has correlated links to BS1 and another set of correlated links with

BS2 (see Figure 2.10). However, the links from UE 2 to BS 1 are not correlated with the links

from UE 2 to BS 2. Moreover, due to spatial separations, all links from UE 2 to BS 1 and BS
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Figure 2.10: An example of correlated channels in the 2BS scenario.

2 are also not correlated to those from UE 1 or UE 3. Subsequently, the correlation matrix for

each UE can be separated into a block-diagonal structure with blocks of Rb in the diagonal as

in (2.15). Note that Rb is the common correlation matrix at each BS.

2.6.7 Correlated Channel for the Co-located Scenario Based on a Simple Exponential Decay

for the Link Gains

The channel model in Section 2.6.6 can cover several BS deployment scenarios: COL, BBS

and DIST. Here, we consider only the COL scenario. Thus, the channel matrix is a special case

of (2.14) and can be defined as

H = R
1
2
r UP

1
2 , (2.16)

where the elements of U are i.i.d. CN (0, 1), P = diag(P1, P2, . . . , PNt) and Pj is the link

gain of user j. Note that for this simplified model, the matrix P is constructed differently to
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(2.3), however the interpretation of the individual components as the expectations of the link

gain powers (Section 2.6.1) remains. Traditionally, Pj is modeled as in (2.11) which includes

path loss, shadowing, etc. In contrast, we employ in this section a simple model [54] so that

Pj is defined as Pj = Aβj−1, j = {1, 2, . . . , Nt}, where A is the link gain of the strongest

UE and β is a parameter which controls the rate of decay of the link gains and 0 < β ≤ 1.

This model is simple as the power can be changed by a single parameter, β. This model gives

P1 > P2 > · · · > PNt so that the link gains of the UEs are ordered. This has no effect on the

generality of the results since the user order is arbitrary. As β → 1 the link gains become equal

and as β → 0 the link gains are dominated by one strong UE.

2.6.8 Correlation Models

Here, we list a few candidate models for the correlations. Let Rr = (Rij), then the element Rij

could be defined by a wide variety of different models. We consider four common models from

the literature [55]. These models depend upon a single parameter µ. We chose these models

due to their simplicity and the wide range of behavior covered by these correlations.

• The Jakes model (Jakes): Rij = J0(2πµdij), where J0(.) is the zeroth order Bessel func-

tion and dij is the physical distance between two antennas measured in terms of the wave-

length [56].

• A Gaussian decay model (Gauss): Rij = µd
2
ij [57].

• A square root model (Sqrt): Rij = µ
√
dij [55].

• The exponential correlation model (Exp): Rij = µdij , where 0 < µ < 1 [58].

54



2.6.9 A Statistical Model for Imperfect Channel Estimation

If at the receiver, only an estimate, Ĥ, of the true channel, H, is available, we consider the

equivalent imperfect channel estimation model in [59],

H = r0Ĥ +
√

1− r2
0E, (2.17)

where r0 is the correlation coefficient between the true channel, H, and the estimated channel,

Ĥ, and E has the same statistics as H and is independent of Ĥ.

2.7 System Model

Consider a BS with Nr receive antennas serving Nt single antenna UEs. For this uplink model

the received signal, y ∈ CNr , is given by

y = Hx + n =
Nt∑
m=1

hmxm + n, (2.18)

where H = [h1 · · ·hNt ] is the Nr × Nt channel matrix, x is the Nt × 1 vector of transmitted

symbols, x = [x1, x2, . . . xNt ]
T , and n = [n1 · · ·nNr ]T is the Nr × 1 noise vector with i.i.d.

uncorrelated complex Gaussian components, ni ∼ CN (0, σ2). Without loss of generality we

assume the transmit symbols are normalized so that E[|xj|2] = Es = 1 and the noise power is

E[|ni|2] = σ2. ρ is the ratio of the signal power to the noise power so that ρ = E[|xj|2]/σ2. The

channel coefficient, hij , from UE j to receive antenna i has power E[|hij|2] = Pij .
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2.8 Receivers

2.8.1 Linear Combiners

Linear combiners have been extensively studied in the literature [21,60]. They are an attractive

low complexity alternative to optimal processing for MIMO communications [21, 60]. The

role of linear combiners is to extract the desired signal from the received signal and suppress

or reduce the effect of interference [21, 60]. To compute the coefficients of a linear combiner

typically requires matrix inversion [21, 60]. The sizes of the matrices to invert grows with

the number of antennas which can become challenging in a practical implementation of MM

[21, 60]. Some techniques based on Neumann series expansions have been studied in [61, 62]

to simplify the inverse computation.

The traditional types of linear combiner are ZF, MMSE and MRC [21, 60]. Under the

assumption of availability of perfect channel state information, we consider linear detectors

where the estimated symbol, x̂, is found by a transformation of the received vector, y, of the

form

x̂ = Q̂(WHy). (2.19)

In (2.19), W is the linear combiner in matrix form, WH represents the complex conjugate

transpose of W and Q̂ is a quantizer that maps its argument to the closest signal point using

Euclidean distance.

Zero Forcing Combiner

The ZF combiner converts the joint decoding problem into Nt single stream decoding problems

[21,60]. The ZF combiner requires that the number of transmitters is fewer than or equal to the
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number of receivers [21]. The ZF combiner is calculated by

W = H(HHH)−1. (2.20)

This combiner neglects the effect of noise and suppresses completely the effect of interference

without regarding the loss in energy of the desired stream and satisfies the following condition

[63]:

wH
i hj = δij, (2.21)

where wi and hj are column vectors of W and H and δij is the Kronecker delta function

δij =


1 if i = j

0 if i 6= j.

The SINR for the mth UE is [64]

SINR(ZF)
m = SNR(ZF)

m =
1

σ2[(HHH)−1]mm
, (2.22)

where [T]mm denotes the (m,m)th element of a matrix T. With imperfect CSI, the ZF combiner

uses the estimated channel so that it is defined as [21, page 48] W = Ĥ(ĤHĤ)−1.

Advantages and disadvantages: With ZF, the processing of the signal is simple and works

well in interference limited cases [21, 60]. However, there is a noise enhancement, especially

in the low SNR range [21, 60]. Therefore, ZF works poorly in noise limited cases. The inverse

computation of the channel matrix increases the computation complexity [21, 60]. However,

low complexity alternatives to inversion using Neumann series expansions are currently being

developed for MM [62].
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Minimum Mean-Squared Error Combiner

The MMSE combiner maximizes SINR [21] or equivalently minimizes the mean squared error

between the estimated signal wHy and transmitted signal xm. The MMSE combiner is obtained

as [21, page 48]

W = H(HHH + σ2I)−1. (2.23)

The corresponding SINR of the m user is [64]

SINR(MMSE)
m =

1

[(I + σ2HHH)−1]mm
− 1. (2.24)

With imperfect CSI, the MMSE combiner uses the estimated channel so that it is defined as

W = Ĥ(ĤHĤ + σ2I)−1.

Advantages and disadvantages: MMSE has better performance than ZF at low SNR because

it suppresses both noise and interference components [21, 60]. At high SNR, ZF approaches

MMSE [21, 60]. Note that MMSE combining is not considered in this thesis because for MM

ZF and MMSE are very similar [65].

Maximal Ratio Combining

MRC is the simplest linear combiner which is used to maximize the SNR and ignores the

interference effect [60]. For instance, MRC requires only channel knowledge of the desired

source signal while MMSE requires channel knowledge of the desired and interfering signals

[60]. The MRC receiver is obtained as [60, page 331]

W = H. (2.25)
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The SINR for user m is given by

SINR(MRC)
m =

|hHmhm|2∑
j 6=m hHmhjhHj hm + σ2hHmhm

. (2.26)

With imperfect CSI, the MRC receiver uses the estimated channel so that it is defined as W =

Ĥ.

Advantages and disadvantages: At low SNR, the same array gain as in the case of the single

UE system can be achieved with MRC [21, 60]. However, neglecting the interference gives a

poor performance in interference limited cases [21, 60].

Figure 2.11 shows the mean average SINR for the three linear combiners versus transmit

SNR (ρ), where the number of transmitters is Nt = 3 and the number of receivers is Nr = 5 in

a MIMO system. We assume the channel elements are i.i.d. complex Gaussian distributed with

zero mean and unit variance. MMSE has better performance than both ZF and MRC over the

entire range of ρ. MRC is widely considered for MM due to its simplicity.

2.8.2 Vertical Bell Laboratories Layered Space Time (V-BLAST)

V-BLAST is a wireless architecture that detects the source signals iteratively and utilizes tradi-

tional detection techniques such as linear detectors at each iteration [17].

The two major computational bottlenecks in the V-BLAST algorithm are ordering for the

nulling and cancellation process and matrix inverse computations for the receiver weights [66].

The classic approach to ordering the streams for detection in V-BLAST is to detect the stream

with the highest output SINR first [66]. This classic approach is an optimal approach which

requires ordering at each stage. From [66], let the ordered set S = {k1, k2, . . . , kNt} be a

permutation of the integers 1, 2, . . . , Nt specifying the order in which the transmitted symbols

in x are extracted. In the optimal approach, the index ki is chosen such that the SINR/SNR of

the detected symbol at the ith stage is maximized. Algorithm 1 shows the pseudocode for the
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Figure 2.11: Average SINR of the three linear combiners vs transmit SNR (ρ), Nt =3 and Nr = 5. The
linear combiners are ZF, MMSE and MRC.

V-BLAST detection algorithm.

In order to define the V-BLAST approach, we require the following notation. Let Hi

represent H with columns k1, k2, . . . , ki−1 replaced by zeros and let Wi be given by Hi for

MRC, Hi(H
H
i Hi)

−1 for ZF and Hi(H
H
i Hi + σ2I)−1 for MMSE. The SINR for user m at

the ith stage is given by (2.26), where the summation in the denominator of (2.26) is over

j /∈ {k1, k2, . . . , ki−1} such that j 6= m. Maximizing the SINR at stage i gives

k
(MRC/MMSE)
i = arg max

m/∈{k1,k2,...,ki−1}
SINR(MRC/MMSE)

m . (2.27)

The optimal ordering for ZF is defined by [66]

k
(ZF)
i = arg min

j /∈{k1,k2,...,ki−1}
||(Wi)j||

2, (2.28)
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Algorithm 1 V-BLAST Algorithm

1) Initialization:
i = 1 i is the iteration number.
y y is the received signal.
H H is the channel matrix.
2) Iterative Process:
W Calculate the linear combiner.

For ZF, W = H(HHH)−1.
For MMSE, W = H(HHH + σ2I)−1.
For MRC, W = H.

G = WH Find the Hermitian of the linear combiner, W.
ki Find the selection index ki.

For ZF, ki = arg min
j /∈{k1,k2,...,ki−1}

||(Wi)j||2.

For MRC and MMSE, ki = arg max
j /∈{k1,k2,...,ki−1}

SINR
(MRC/MMSE)
j .

mki = (Gi)ki . mki
is the ith row of G.

x̃i = mkiy Calculate the estimated input signal x̃i.
x̂i = Q̂[x̃i] Q̂(.) is the quantization (slicing) operation appropriate to the

constellation in use.

yi+1 = yi − hkix̂ki The interference due to x̂ki is canceled.
Hi+1 = Hk̄i

i Update H at iteration i by zeroing the ki column.
This is denoted by Hk̄i

i .
i = i+ 1 Update i.
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Figure 2.12: BER vs transmit SNR for the three different combiners and V-BLAST, Nt = 4 and Nr =
20. The linear combiners are ZF, MMSE and MRC.

where (Wi)j represents column j of Wi, the ZF combiner at stage i.

Figure 2.12 shows the bit error rate (BER) for the three linear combiners with V-BLAST

versus transmit SNR, with Nt = 4, Nr = 20 in a MIMO system. A quasi-static flat Rayleigh

fading channel model (channel elements are i.i.d. complex Gaussian distributed with zero mean

and unit variance) is used. Binary phase shift keying (BPSK) is assumed for input modula-

tion. The results are averaged over 100,000 coherence blocks. V-BLAST clearly improves the

performance of linear combiners.

V-BLAST performance has also been studied with imperfect channel estimation [42] and

with correlated channels [43]. Note that, repeated inverse computations are involved in the cal-

culation for MMSE or ZF. With imperfect channel estimation, a similar strategy can be used

except that the estimated channel replaces the perfect channel [42]. Hence, Ĥi is used in-

stead of Hi where Ĥi represents Ĥ with columns k1, k2, . . . , ki−1 replaced by zeros and Wi
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Figure 2.13: SER vs SNR for the three different combiners and V-BLAST with imperfect CSI, Nt = 4
and Nr = 20. The linear combiners are ZF, MMSE and MRC. The channel accuracy (r0) equals 0.8.

is calculated from the estimated channel. For ZF, this means that detection is performed using

Wi = Ĥi(Ĥ
H
i Ĥi)

−1 and this estimated combining matrix is used in (2.28) for ordering. For

MRC, detection is performed using Wi = Ĥi and ordering uses (2.26) with the true channels

replaced by their estimates.

Figure 2.13 shows the symbol error rate (SER) versus transmit SNR for the three linear

combiners with V-BLAST. This assumes a MIMO system with Nt = 4, Nr = 20 and with

imperfect channel estimation. Imperfect channel model in (2.17) is used with r0 = 0.8. Channel

elements are assumed to be distributed as i.i.d. complex Gaussian with zero mean and unit

variance. Quadrature phase shift keying (QPSK) is assumed for input modulation. The results

are averaged over 100,000 coherence blocks. Receiver performance is impaired due to channel

imperfection.
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2.9 Performance Metrics

To investigate uplink MM performance, we consider the following metrics: SINR, SER and

capacity. These are common measures found in the wireless literature [47, 67].

2.9.1 Signal-to-Interference-and-Noise-Ratio (SINR)

For any such linear combiner presented in Section 2.8.1, the output SINR for the mth user is

SINRm =
E[|wH

mhmxm|2]

E[|wH
m(
∑
j 6=m hjxj + n)|2]

, (2.29)

=
wH
mhmhHmwm

wH
m[
∑
j 6=m hjhHj + σ2INr ]wm

, (2.30)

where wm is themth column of W. However, with imperfect channel estimation used in (2.17),

the SINR for the mth user is [68]

SINRm =
r2

0|wH
mĥm|2

wH
m[(1− r2

0)emeHm +
∑
j 6=m hjhj + σ2INr ]wm

, (2.31)

where em is the mth column of E and ĥm is the mth column of Ĥ.

2.9.2 Symbol Error Rate

For M -ary quadrature amplitude modulation (M -QAM) or M -phase shift keying (M -PSK)

modulations, the SER can be written in terms of expected values of the Gaussian Q-function

and Q2-function. The Q-function is calculated as [2]

Q(x) =
1√
2π

∫ ∞
x

e−
u2

2 du

=
1

2
erfc(

x√
2

).
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For example, the exact formula for the SER for the M -QAM family, when the number of bits

(K) is even and M = 2K , is given by [2, equation (4.2.144), page 282]

SERMQAM = 2(1− 1√
M

)erfc

(√
3

2(M − 1)
Kγb

)

×
[
1− 0.5(1− 1√

M
)erfc

(√
3

2(M − 1)
Kγb

)]
, (2.32)

where γb is the SNR per bit.

2.9.3 Capacity

The ergodic capacity [69, page 36] can be defined as

E[C] = E[log2det(I + ρHHH)], (2.33)

where det(.) is the determinant of a matrix and [.]H is the Hermitian operator. The capacity

calculation is under the assumption of Gaussian noise and with no channel state information at

the transmitter.

Note that the capacity matrix is not used for receiver evaluation.

Capacity Outage

The p-percentage outage capacity, Cout, is the defined as the transmission rate that can be sup-

ported by (100-p)% of the fading channel realizations [20, page 9], i.e., P (C < Cout) = p [69,

page 36].
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2.10 Power Control

Intelligent selection techniques for transmit power can be used to achieve good system perfor-

mance [18]. The advantages of increasing transmit power are higher SNR and potentially a re-

duced BER in the communication system [18]. However, there are drawbacks of increasing the

transmit power such as reducing the battery life of the transmitter and increasing interference to

other UEs when sharing the same resources [47]. Power control in traditional MIMO, where the

number of antennas is less than 10, has been extensively studied in the literature [18,47]. For ex-

ample, closed form approximations for the power allocation are derived based on average total

and block error rates in [70], where the base station and the UEs are co-located. For the two-cell

downlink wireless system, transmit power allocation was analyzed under a sum-capacity maxi-

mization and peak power constraints at each base station [71]. Power control of the V-BLAST

system [63], with SIC and per-antenna power constraint, was studied in [72]. Moreover, a

power control method based on post detection SINR balancing in cellular V-BLAST systems

was studied in [73]. Discrete PC and adaptive power control have been extensively studied to

improve system performance as in [74–77].

In MM systems there are many UEs which are likely to have markedly different powers.

This provides considerable potential scope for PC to improve the performance of MM systems.

In Chapter 7, we investigate a low complexity receiver design under imperfect channel estima-

tion including PC in MM.

2.11 Adaptive Modulation

Adaptive modulation (AM) is an instantaneous change of modulation level to match the system

requirement [49]. Due to the continuous fluctuation of the wireless channel, AM can be used to

improve the performance of the system [49]. For instance, AM aims to transmit more bits when

the quality of the channel is good and fewer bits otherwise [49].
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In MM systems, it is likely that UEs will have very different received signal strengths.

Therefore, different modulation types are needed to transmit data in an effective manner across

all values of SINR. By altering modulation types, a minimum requirement of SINR for a target

BER can be identified. For example, a closed-form expression for the additive white Gaussian

noise (AWGN) channel can be used to obtain the BER as a function of the SNR assuming

ideal coherent detection (which is used when the receiver has knowledge of the carrier phase to

detect the signal). The minimum required SNR for a target BER is defined as a threshold. In

Chapter 7, we investigate a low complexity receiver design under imperfect channel estimation

including PC with AM in MM.

Suppose K is the number of bits and M = 2K . Define the SNR per symbol as γs = Kγb,

where γb is the SNR ber bit. The exact expression of BER for BPSK [67, equation (4.2.105),

page 262] and the SER for QPSK [67, equation (4.2.107), page 263] are given by,

BERBPSK = 0.5 erfc (γb) , (2.34)

SERQPSK = erfc (
√
γb) [1− 1/4 erfc (

√
γb)]. (2.35)

The BER with Gray coding is approximated as the SER divided by the number of bits per

symbol (K). Therefore, the standard formula for the approximate BER of the M -PSK family

in AWGN is [67, equation (4.2.109)-(4.2.110), page 265]

BER(MPSK) ≈ 1/K erfc
(√

Kγb sin(π/M)
)
. (2.36)

The exact formula for the SER of the M quadrature amplitude modulation (M -QAM) fam-

ily, when K is even, is given by (2.32). With the rectangular constellation and when K is odd,
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Figure 2.14: The BER for various M -PSK modulation levels as a function of SNR (γs) in dB.

an upper bound on the SER in (2.32) is given by [2, equation (4.2.145), page 283]

SERMQAM ≤ 2erfc

(√
3

2(M − 1)
Kγb

)
. (2.37)

Figure 2.14 shows the BER for various M -PSK modulation levels as a function of SNR (γs)

in dB. The modulation levels are 2-PSK, 4-PSK, 8-PSK and 16-PSK. We use (2.34)-(2.37) to

obtain the figure. Suppose that the target BER is 10−3 and the corresponding thresholds for

the above modulations are T1, T2, T3 and T4. When the estimated SINR is less than T1 then no

modulation can be supported and the link is in outage. In the case of T1 ≤ SINR < T2, the

modulation selected is BPSK. Similarly, if T2 ≤ SINR < T3, then the modulation is 4-PSK,

if T3 ≤ SINR < T4, then the modulation is 8-PSK and when T4 ≤ SINR, the modulation is

16-PSK.

Figure 2.15 shows the BER for various M -QAM modulation levels as a function of SNR
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Figure 2.15: The BER for various M -QAM modulation levels as a function of SNR (γs) in dB.

(γs) in dB. The modulation levels are 4-QAM, 16-QAM, 32-QAM, 64-QAM. We use (2.34)-

(2.37) to obtain the figure. The minimum required SNR to operate at a specified target BER

is defined as a threshold. For example, the minimum thresholds at a target BER of 10−3 for

QPSK, 16-QAM and 64-QAM are 9.8, 16.5 and 22.6 dB, respectively.

The performance of AM in cellular systems was studied in [78]. AM in correlated MIMO

systems was studied in [79]. In [80], the effects of power reallocation and ordering in V-BLAST

systems, with adaptive modulation and antenna selection, was discussed.

2.12 Parameter Values

In this section, we motivate and define the range of parameter values used throughout the thesis.

In terms of system size, the number of transmitters, Nt, is usually selected to be 10 or 6 and

the number of receivers is selected to be 100, 128 or 64. The reason for these selections is to
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maintain the ratio ofNr/Nt as greater than or equal to 10, which is the ratio commonly assumed

for MM [7]. Additionally, we investigate the effect of changing the ratio by also considering

Nt ∈ {20, 40}.

For the large scale fading model in Section 2.6.5, where Pij = ALijd
−γ
ij , A is a constant de-

pending on transmitting power and antenna height. A also includes transmitting and receiving

antenna gains and a reference distance loss [47]. The constant value of A is selected differently

throughout the thesis. When a performance metric, such as SER or SINR, is used in an interfer-

ence limited system, then the value of A is essentially canceled and we assume A = 1. In other

scenarios, we relate the value of A to the median SNR of ZF (MZF) in such a way that gives a

reasonable level of performance. For example, A might be chosen so that, MZF ∈ {5, 7, 10} dB

for ρ = 0 dB. We select the path loss exponent, γ ∈ {3, 4} because these are typical values in

the range of [2, 4] commonly assumed for wireless systems [47]. The lognormal shadow fading

variable, Lij ∼ CN (0, σ2
SF ), has a standard deviation of σSF . We select σSF to be 8, which is a

typical value for urban areas. In fact, typical values of σSF are in the range of [4, 12] [47].

For the correlated channel model described in Section 2.6.7, where H = R
1
2
r UP

1
2 and the

link gain is Pj = Aβj−1, we assume the link gain of the strongest UE is A = 1. This value

is unimportant as the SNR, ρ, scales the strongest channel power to any desired value. β is a

parameter which controls the rate of decay of the link gains and 0 < β ≤ 1. Therefore, we

select β ∈ {0.1, 0.5, 0.7, 0.9} in order to cover a wide range of behavior.

For the imperfect channel model described in Section 2.6.9, where H = r0Ĥ +
√

1− r2
0E,

we select the correlation coefficient between the true channel, H, and the estimated channel, Ĥ

to be r0 = {0.6, 0.8, 0.9, 0.99}. This is a much wider spread of r0 values than would be con-

sidered for traditional MIMO since latency and pilot contamination issues could make channel

estimation much more difficult in MM. Note that when r0 = 1, the model is equivalent to

perfect CSI.
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Throughout the thesis results are averaged over a specific number of experiments, for ex-

ample 1000-100,000 coherence blocks. In each case, the number of experiments are chosen to

ensure statistically valid results and smooth curves in the resulting plots.

2.13 Summary

In this thesis, we focus on the uplink performance of MM with low complexity receivers, no

precoding at the UEs and no CSI feedback to the UEs. We also assume that the UEs are

uncoordinated, all UEs have single antennas and the receiver has a large number of antennas.

At the receiver, we assume both single co-located arrays and multiple BSs back-hauled together

to form a network MIMO system. In all cases, perfect or imperfect CSI is available to all

collaborating BSs, but the effects of latency and imperfect backhaul are ignored. In addition,

we only focus on simple receivers based on linear combiners and the V-BLAST technique [17]

and we propose low complexity V-BLAST receivers, with ordering based on channel norms or

link gains.

The relevant background information for this work has been presented in this chapter. This

includes an overview of MIMO, multiuser MIMO, MM, MM deployment and MM arrays,

channel models, the system model, receivers, performance metrics, PC and AM.
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Chapter III

Distributed vs Co-located Base Station Deployment

3.1 Introduction

Most work on MM assumes co-located arrays but the distributed case has been proposed as

a promising option for increased throughput and shadow fading diversity [81–84]. The ad-

vantage of distributed arrays has been investigated in traditional MIMO systems (less than 10

antennas) [85, 86] as well as in the context of remote radio heads/units [87] and cloud Radio

Access Network [82]. In this chapter, we consider three MM deployment options: a co-located

base station array (COL); B collaborative base stations with multiple antennas (BBS); and dis-

tributed arrays with geographically separated single antenna base stations (DIST). We assume a

standard hexagonal cellular topology with two tiers of interference: a desired cell at the center

and interference cells located in two surrounding tiers.

One of the advantages of large arrays is their ability to orthogonalize the channel vectors

of different UEs at the co-located BS [24]. Here, the focus is on a different MM property, a

type of averaging over the link gains, which enables us to demonstrate the gains of distributed

over co-located deployment. In [81], a downlink finite system analysis was developed using

randomly located BSs and in [82,84], a downlink asymptotic analysis was derived for sum-rate

and rate performance, respectively. In [83], an uplink distributed system analysis for SINR was

derived from the asymptotic analysis in [88]. The work in [83] is the closest to this chapter but

it focuses on spatial correlation effects and BS grouping. We take a different approach, simpli-
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fying the analysis further while maintaining accuracy and deriving insights into MRC and ZF

receivers, deployment options and propagation conditions. In this chapter, uplink performance

is considered using linear receivers with fixed BS locations. MRC and ZF are used because they

are particularly relevant in MM due to their relatively low complexity [7].

The main contributions of this chapter are: We

• develop remarkably simple and accurate analytic approximations to the SINR at the out-

put of MM linear receivers;

• use the analytical results to explain the effects of path loss, shadowing, channel estimation

error, channel correlation and system size;

• use analysis and simulation to evaluate the performance of an intermediate deployment,

where the massive array is spread over B locations (BBS);

• use analysis and simulations to evaluate the deployment scenarios under differing levels

of interference (different frequency re-use factors) and with different geographic spreads

of the antenna arrays within the cell.

This chapter is organized as follows. The system model and deployment scenarios are given

in Sections 3.2 and 3.3. Sections 3.4, 3.5 and 3.6 provide analysis, results and conclusions.

3.2 System Model

Consider a standard cellular structure with 19 hexagonal cells, where the center cell contains

the desired UEs and there are two surrounding interference tiers (top left, Figure 3.1). In each

cell a BS with Nr receive antennas serves Nt single antenna UEs. Nf ≤ 18Nt is the number of

interferers in the first and second interference tier that use the same resources, such as frequency

and time, as the center cell. Single antenna UEs are uniformly distributed across each cell, with
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a fixed number per cell. The intra-cell interference is the interference between UEs located in

the center cell. The inter-cell interference is the interference from UEs located in different cells

to the UEs in the center cell. For this uplink model which is a modified version from Section 2.7

with the inclusion of inter cell interference, the received signal is given by

y = Hx + FxI + n

= h1x1︸ ︷︷ ︸
desired signal

+
Nt∑
m=2

hmxm︸ ︷︷ ︸
intra-cell interference

+
Nf∑
m=1

fmxIm︸ ︷︷ ︸
inter-cell interference

+ n︸︷︷︸
noise

, (3.1)

where H,x and n have the same definitions in Section 2.7 and they are related to the center

cell. F = [f1 · · · fNf ] is the Nr ×Nf channel matrix of UEs located in the other cells and xI =

[xI1 , xI2 , . . . xINf ]T is the Nf × 1 vector of transmitted symbols from other cell UEs. Without

loss of generality the transmit symbols satisfy E[|xj|2] = E[
∣∣∣xIj ∣∣∣2] = 1. The channel coefficient,

fij , from UE j outside the center cell to receive antenna i has the link gain E[|fij|2] = Qij .

Obtaining accurate CSI is one of the challenges in MM due to pilot contamination [7] and

in distributed scenarios there are likely to be latency issues also [10]. Hence, we assume the

imperfect CSI model provided in Section 2.7.

In this chapter, we consider linear detectors and for any such combiner, the output SINR for

the mth user is calculated using a simple variation of the SINR in [68, equation (9)] as

SINRm =
E[|r0w

H
mĥmxm|2]

E[|wH
m(r0

∑
j 6=m ĥjxj +

√
1− r2

0Ex + FxI + n)|2]
(3.2)

Note that the expectations in the numerator and denominator of (3.2) are with respect the trans-

mitted symbols and the noise. The combiners considered are mainly ZF and MRC, but some

results are also given for MMSE.
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Figure 3.1: Example of deployment scenarios.

3.3 Deployment

The following scenarios are considered for simplicity and are also shown schematically in Fig-

ure 3.1.

• One massive co-located array (COL).

• B-collaborative base stations with multiple antennas at each BS (BBS).

• One massive array with geographically distributed single antenna BSs (DIST).
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The UEs are located uniformly and randomly in all cells. Each cell has a radius of r (di-

ameter D = 2r). The BSs are located in the inner indented hexagon of the center cell as

in Figure 3.1 in order to study the effects of distributing antennas over varying proportions

of the cell. Hence, the BSs are located inside a hexagon of diameter Da = daD where

0 ≤ da ≤ 1 is a scaling factor. The special case of da = 0 corresponds to COL and, in

DIST, da = 1 corresponds to spreading the array over the entire cell. Note that Figure 3.1

shows only 12 antennas in DIST for clarity. In this chapter we consider 128 antennas in the

array because a regular grid of 128 points fits almost symmetrically in a hexagon giving an

even spread of antennas over the cell in DIST. Hence, the specific deployments are: COL: 128

co-located antennas at the center of the coverage area; 4BS: 4 BS locations each with 32 anten-

nas at each of the positions (0,−
√

3/4), (−0.25, 0), (0,−
√

3/4) and (0.25, 0) for da = 1 and

D = 1; 8BS: 8 BS locations each with 16 antennas at each of the circular positions (
√

3/4, 0),

(0.3062, 0.3062), (0,
√

3/4), (−0.3062, 0.3062), (−
√

3/4, 0), (−0.3062,−0.3062), (0,
√

3/4)

and (0.3062,−0.3062) for da = 1 and D = 1; and DIST: 128 single antenna BSs. We consider

various levels of interference from the two interference tiers in the cell layout of Fig. 3.1. The

interference scenarios are: no interference (nCells = 1), interference from the 6 cells located in

the first interference tier (nCells = 7), interference from the 18 cells located in both interference

tiers (nCells = 19), and interference from the 6 shaded cells located in the frequency reuse group

of size 3 (nCells = 19, reuse 3).

3.3.1 Channel Models

For all scenarios, we use the channel model from Section 2.6.6, where in (2.14) H = R1/2
r G,

Gij =
√
PijUij , theUij ∼ CN (0, 1) are i.i.d. fast fading terms and R1/2

r is the spatial correlation

matrix at the receive array. For each scenario, the corresponding link gains are calculated as

shown in Section 2.6.5, where Pij = ALijd
−γ
ij andA is a constant depending on transmit power,
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antenna height, etc., Lij is a lognormal shadow fading variable, dij is the link distance and γ

is the path loss exponent. We assume Lij in (2.9) to be spatially correlated lognormal shadow

fading.

Note that including the effects of spatial correlation in the shadow fading is critical here

because small values of da bring the antennas close together and in this situation independent

shadowing is unrealistic. The correlation between the shadow fading terms at antennas i and

j, is defined by R̄ij = e−rij/(br) with rij being the antenna separation and b ∈ [0, 1] is the

fraction of the cell radius at which decorrelation occurs i.e., at which R̄ij = e−1. Note that

R̄ij = E[10 log10Lik × 10 log10Ljk ] for any UE, k = 1, 2, .., Nt. This is the well-known

exponential correlation model [89]. Typical values of b in the literature range from 0.1 to 0.5

[36, 90].

For simplicity, we assume a constant A and a constant path loss exponent, γ. In (2.14), the

channel correlation matrix at the receiver has the block diagonal form Rr = diag (Rb, . . . ,Rb),

where Rb is the correlation matrix at each of theB arrays. Let Rb = (Rij), then the elementRij

is modeled by Rij = α|i−j|u , where αu is the correlation between channels at adjacent antennas,

0 < αu < 1 and i, j = {1, . . . , Nr/B}. This is the simple exponential correlation model given

in [58]. Therefore, Rb can be decomposed as Rb = ΨH
b ΛbΨb, where Ψb is a unitary matrix

and Λb is a diagonal matrix containing the eigenvalues of Rb.

3.4 Analysis

In this section we analyze the effects of propagation parameters and the BS deployment scenar-

ios described in Section 3.3 on MRC and ZF performance.
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3.4.1 Exact SINR Calculations

For a ZF receiver and UE 1, the general SINR in (3.2) collapses to [91]

SINR
(ZF)
1 =

r2
0

[(WH((1− r2
0)EEH + FFH + σ2I)W]11

, (3.3)

where [.]11 denotes the (1,1)th element of a matrix. For an MRC receiver, the SINR for user 1

is given by

SINR
(MRC)
1 =

r2
0|ĥH1 ĥ1|2

r2
0

∑Nt
j=2 ĥH1 ĥjĥHj ĥ1 + (1− r2

0)
∑Nt
j=1 ĥH1 ejeHj ĥ1 +

∑Nf
j=1 ĥH1 fjfHj ĥ1 + σ2ĥH1 ĥ1

.

(3.4)

Every term in (3.3) and (3.4) is constructed from the cross products ĥHi ĥj , ĥHi ej and ĥHi fj .

Since all UEs experience the same correlations, ĥj , ej and fj all have the same correlation

matrix. Hence, each cross product is of the form x̆H y̆ = x̃HR1/2
r R1/2

r ỹ where x̃, ỹ have the

same power structure as x̆, y̆, but are independent. Using the eigenvalue decomposition of Rr

gives

x̆H y̆ = x̃HΨHΛΨỹ, (3.5)

where Ψ = diag (Ψb, . . . ,Ψb) and Λ = diag (Λb, . . . ,Λb) are block diagonal. Furthermore,

since Ψ is block diagonal and each UE has the same power in each block, Ψx̃ is statistically

identical to x̃. Hence, x̆H y̆ is statistically identical to x̃HΛỹ = x̃HΛ1/2Λ1/2ỹ. Now Λ1/2ỹ

and x̃HΛ1/2 are simply scaled versions of the original x̃, ỹ values. Hence, for our uplink model

of distributed single-antenna transmitters, the effect of correlation is equivalent to scaling the

power at antenna i by Λii. As a result, in the subsequent analysis, we replace Pij by P̄ij = ΛiiPij

and Qij by Q̄ij = ΛiiQij and maintain the independence of the channel correlation coefficients

as the correlation is catered for by the power scaling. Note that in the uncorrelated case, Rr =

Λ = I and the power scaling has no effect, as desired.
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3.4.2 SINR Approximation Analysis with ZF

Using the full SINR representation in (3.3) leads to a complicated analysis without any resulting

insight. To avoid this complexity, we can approximate the interference from outside the desired

cell as noise and replace the estimation error, interference and noise covariance matrix, (1 −

r2
0)EEH + FFH + σ2I, by an equivalent noise covariance matrix, σ2

eqI, where

σ2
eq = 1/NrTr

(
(1− r2

0)EEH + FFH + σ2I
)

= σ2 + 1/Nr(1− r2
0)

Nr∑
i=1

Nt∑
j=1

P̄ij + 1/Nr

Nr∑
i=1

Nf∑
j=1

Q̄ij. (3.6)

Note that in (3.6) σ2
eq approaches σ2 as Nr becomes large. The accuracy of this approximation

investigated in Section 3.5 (see Figures 3.4 - 3.6). Thus,

SINR
(ZF)
1 ≈ r2

0

σ2
eq[(ĤHĤ)−1]11

. (3.7)

Using the co-factor expression for [(ĤHĤ)−1]11, we obtain

r2
0

σ2
eq[(ĤHĤ)−1]11

=
r2

0|ĤHĤ|
σ2

eq|ĤH
2 Ĥ2|

, (3.8)

where Ĥ2 is the channel matrix, Ĥ, with the first column removed. The mean SINR over the

fast fading can be approximated using the Laplace approximation approach from [92], which

was shown to be quite accurate for ratios of quadratic forms in [93], as

E[SINR
(ZF)
1 ] ≈ r2

0E[|ĤHĤ|]
σ2

eqE[|ĤH
2 Ĥ2|]

=
r2

0Perm(P̄)

σ2
eqPerm(P̄2)

, (3.9)

where Perm(.) is the permanent of a matrix, P̄ = (P̄ij), 1 6 i 6 Nr, 1 6 j 6 Nt, P̄2 = (P̄ij), 1

6 i 6 Nr, 2 6 j 6 Nt and the expectations are with respect to the fast fading. There are several
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reasons for using the Laplace approximation. The results, shown in Figures 3.4 - 3.6, verify its

accuracy for this situation and the analytical results in (3.12)-(3.16) verify the simple form of

the resulting expressions. Furthermore, [92, 93] suggest that an exact analysis is intractable for

more than two UEs. Rewriting the right hand side of (3.9) gives:

r2
0Perm(P̄)

σ2
eqPerm(P̄2)

≈
r2

0

∑Nr
i1=1 P̄i11

∑
i2∈s(1,1) P̄i22 · · ·

∑
iNt∈s(1,Nt−1) P̄iNtNt

σ2
eq

∑Nr
i2=1 P̄i22 · · ·

∑
iNt∈s(2,Nt−1) P̄iNtNt

=
r2

0

∑Nr
i1=1 P̄i11[Ḡ−∑Nt

j=2 Fj(i1)]

σ2
eqḠ

=
r2

0

∑Nr
i1=1 P̄i11

σ2
eq

−
r2

0

∑Nr
i1=1 P̄i11

∑Nt
j=2 Fj(i1)

σ2
eqḠ

, (3.10)

where s(k, l) = {1, 2, . . . Nr}\{ik, ik+1, . . . , il}, Ḡ =
∑Nr
i2=1 P̄i22 · · ·

∑
iNt∈s(2,Nt−1) P̄iNtNt and

Fj(i1) is defined as

Fj(i1) = P̄i1j
∑

i2∈s(1,1)

P̄i22 · · ·
∑

ij−1∈s(1,j−2)

P̄ij−1j−1

∑
ij+1∈s(1,j)

P̄ij+1j+1 · · ·
∑

iNt∈s(1,Nt−1)

P̄iNtNt .(3.11)

For Nr � Nt, the number of products of powers in Ḡ dominates the number in
∑Nt
j=2 Fj(i1)

and therefore Ḡ� ∑Nt
j=2 Fj(i1) so that

E[SINR
(ZF)
1 ] ≈ r2

0

Nr∑
i=1

P̄i1/σ
2
eq. (3.12)

Note that (3.12) relies on the equivalent noise model (see (3.7)), the Laplace approximation

(see (3.9)) and the removal of lower order terms in (3.10). The latter two approximations are

motivated by MM properties while the first is required for analytical progress. The overall

accuracy and the accuracy of the Laplace approximation stage are evaluated in Section 3.5.
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3.4.3 SINR Approximation Analysis with MRC

The mean SINR is again approximated using a Laplace approximation (as in (3.9)) to give

E[SINR
(MRC)
1 ] ≈ r2

0(
∑Nr

i=1
P̄i1)2+r2

0

∑Nr
i=1

P̄ 2
i1

r2
0

∑Nr
i=1

∑Nt
j=2

P̄i1P̄ij+(1−r2
0)
∑Nr

i=1

∑Nt
j=1

P̄i1P̄ij+
∑Nr

i=1

∑Nf
j=1 P̄i1Q̄ij+σ

2
∑Nr

i=1
P̄i1
.

(3.13)

Similar results were obtained in [83] from a different approach, but were not expressed or used

in the same way as in the following. In the MM scenario, the system is intra-cell interference

limited and the leading term in both the numerator and denominator of (3.13) is dominant. As

a result,

E[SINR
(MRC)
1 ] ≈ r2

0

∑Nr
i=1 P̄i1∑Nr

i=1
P̄i1(−r2

0P̄i1+
∑Nt

j=1
P̄ij)∑Nr

k=1
P̄k1

. (3.14)

3.4.4 Discussion

The simple approximations in (3.12) and (3.14) provide the following insights. Increasing the

transmit SNR, ρ, does not scale (3.12) linearly as ZF only removes the intra-cell interference

resulting in a ceiling on the ZF SINR. In addition, for MRC, (3.14) is independent of ρ as MRC

is interference limited and a higher transmit SNR does not help. Consider the case of perfect

CSI, r0 = 1, for further insights. To evaluate the effects of distributed antennas, we substitute

P̄ij = P̄j into (3.12) and (3.14) to obtain the co-located results:

E[SINR
(ZF)
1 ] ≈ NrP̄1

σ2
eq

, E[SINR
(MRC)
1 ] ≈ Nr

P̄1∑Nt
t=2 P̄t

. (3.15)
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In the BBS scenario, using P̄ij = P̄
(k)
j , where k ∈ {1, . . . , B}, (3.12) and (3.14) simplify to

E[SINR
(ZF)
1 ] ≈ Nr

B

∑B
k=1 P̄

(k)
1

σ2
eq

,

E[SINR
(MRC)
1 ] ≈ Nr

B

∑B
k=1 P̄

(k)
1∑B

k=1(
P̄

(k)
1∑B

i=1
P̄

(i)
1

)
∑Nt
r=2 P̄

(k)
r

.

(3.16)

Note that the results in (3.12)-(3.16) are averaged over the fast fading. Nevertheless, we use

these results as approximations to the instantaneous SINR at a system level as the variation due

to the fast fading is negligible compared to the variation due to the long term powers.

The coefficient of variation (CV) is one type of measure of variation. For a random variable

X , the CV can be calculated asCV (X) =
√

variance[X]/mean[X]. Here, the CV of the square

of the absolute fast fading term, |Uij|2, is CV = 1 whereas for σSF = 8 dB, γ = 3 the CV of

P̄ij , exceeds 50 (where the CV is computed using the moments derived in [94] for a circular

cell). In fact, this difference is massive on the CV scale. The validity of the approximations is

also supported by the accuracy of the results in Figure 3.4.

The MRC result in (3.15) is similar to the SINR of a large code division multiple access

system [95, equation (8)]; however, the assumptions and channels are significantly different.

The ZF result also differ from previously published results [83, 95]. Comparing (3.12) with

(3.15) and (3.16) for r0 = 1, we observe that the form of the ZF SINR is the same, but the

co-located version has a single power, P̄1, scaled by Nr/σ
2
eq; the BBS version has the average

of B powers
∑B
k=1 P̄

(k)
1 /B scaled by Nr/(σ

2
eq) and the distributed version has the average of Nr

different powers, P̄i1, scaled by Nr/σ
2
eq. Hence, the mean of the absolute SINR is very similar

for the three cases, but in the BBS and the distributed case the variation is heavily reduced due

to the increasing amount of averaging. Thus, the co-located case has higher maximum values

(due to the fact that all Nr links are strong when the UE is in a good location) but suffers from
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a poor lower tail (when all Nr links are weak). The lower tail of the cumulative distribution

function (CDF) is critical and is emphasised with a dB scale showing that the distributed case

will outperform the co-located case considerably (see Figures 3.4, 3.7, 3.8). Note that for each

individual UE the CDF may not be an adequate representation of the expected performance,

but here it is used as to assess the expected system wide performance across all UEs. The BBS

scenario is important because it is much easier to locate a few BSs around the cell rather than

use DIST. Hence, this scenario enables us to investigate how much of the fully distributed gains

are achieved from a layout with only B sites. The same conclusions can be drawn for MRC,

since the ratio of two single variables in (3.15) is being compared to the ratio of an average

to a weighted average in (3.14) and (3.16). Again, with a distributed array, the averaging will

reduce the variation leading to considerable improvement in the lower tail and in the dB values.

Note that the averaging due to distributed antennas has a greater impact when the equivalent

link gains are more variable, i.e., when the path loss exponent is higher or when the shadow

fading correlation is smaller. The improvements of distributed arrays have been explained via

(3.12) and (3.14)-(3.16) in terms of an averaging effect. This is closely linked to to the benefits

of reduced link distances with distributed arrays. Spreading the antennas creates a range of link

distances and most UEs will be in close proximity to some antennas and distant from others. As

a result, extreme cases with all short or long links are removed and most UEs have a few short

links. Therefore, these antenna proximity benefits can be viewed as an averaging effect.

3.5 Results

In this section, we verify the accuracy of the analysis and investigate the effects of system size,

deployment and propagation parameters via Monte Carlo simulation. The baseline parameters

are: Nr = 128, Nt = 10, ρ = 0 dB, γ = 3, σSF = 8 dB. Each cell is assumed to have a

radius of r = 0.5 units, b = 1/5, da = 0 for the COL scenario, da = 0.7 for the 4BS scenario,
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da = 0.6 for the 8BS scenario, and da = 1 for the DIST scenario. The value of da selected for

the 4BS and 8BS scenarios is chosen as it is nearly optimal for both ZF and MRC. Where these

parameters are changed, it is denoted in figure labels or captions. The link distance is calculated

with an exclusion zone, so that dij > 0.01, and the scaling parameter, A, in (2.11) is set to 1.

Note that the value of A has a very small impact on the results as in the interference limited

cases considered, A is present in the numerator and denominator of the SINR and is essentially

canceled out. This value is fixed across all simulations so we are essentially considering a fixed

transmit power. Most of the results correspond to the ideal situation where perfect channel state

information is available with zero latency. These assumptions are much harder to emulate for

distributed arrays.

Figure 3.2 shows the SINR for DIST with MRC and ZF and differing levels of interference.

For MRC, intra-cell interference is not nulled and is dominant. Hence, all four interference

scenarios have similar SINR distributions. For ZF, intra-cell interference is nulled and so the

interference scenarios have a large effect. Results for nCells = 7 and nCells = 19 are similar as

the tier 1 interferers are dominant. The effect of reuse is large and the (nCells = 19, reuse 3)

CDF is shifted up by around 10 dB. Finally, the nCells = 1 result is interference free due to ZF

and this CDF gives much higher SNRs. Note that similar conclusions are found with COL, 4BS

and 8BS deployments.

Figure 3.3 shows the SINR for DIST with MMSE and different levels of interference. Sim-

ilar to the ZF results in Figure 3.2, results for nCells = 7 and nCells = 19 are similar as the tier

1 interferers are dominant. When the effect of reuse is large (the nCells = 19, reuse 3 case), the

CDF is shifted up by around 10 dB. Finally, when nCells = 1 there is no inter cell interference

and the CDF gives much higher SNRs similar to ZF in Figure 3.2. All the curves in Figure 3.3

are very similar to those in Figure 3.2 with MMSE giving a small performance improvement

that is most noticeable in the upper tail.
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Figure 3.2: SINR CDFs for the DIST scenario with ZF and MRC and differing numbers of interfering
cells. Lines alone represent ZF and lines with circles represent MRC. nCells ∈ {1, 7, 19}.
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Figure 3.3: SINR CDFs for the DIST scenario with MMSE and differing numbers of interfering cells.
nCells ∈ {1, 7, 19}.
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Figure 3.4: SINR CDFs for the three deployment scenarios with ZF and MRC and r0 = 1. nCells = 19,
reuse 3.

Figure 3.4 compares the SINR approximations (labeled Approx.) using (3.12) and (3.14)

with the simulated instantaneous SINR values (labeled Sim.) for MRC and ZF. The remarkably

simple approximations in (3.12) and (3.14) provide an excellent match to the SINR CDFs for

both receivers. This validates the use of the simple approximation techniques in Section 3.4.

The results in Figure 3.4 are for perfect CSI (r0 = 1).

Figure 3.5 compares the SINR approximations using (3.12) and (3.14) with the simulated

instantaneous SINR values for MRC and ZF with imperfect CSI, r0 = 0.99. Simulation results

suggest that the SINR obtained from the simple approximations in (3.12) and (3.14) is less

accurate in the upper tail, particularly in more distributed scenarios, but works well in the COL

case. For ZF, this may be due to the approximation of the interference from outside the desired

cell as noise and the replacement of the estimation error, interference and noise covariance

matrix, by equivalent noise as discussed in Section 3.4. Compared to the perfect CSI case,
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Figure 3.5: SINR CDFs for the three deployment scenarios with ZF and MRC and r0 = 0.99. nCells =
19, reuse 3.

the estimation error is an extra term in this covariance matrix. Hence, imperfect CSI makes

the covariance matrix larger and this makes the results more sensitive to the equivalent noise

approximation. Compared to the results in Figure 3.4, imperfect CSI has a much greater impact

on ZF than MRC.

When imperfect CSI is considered the analytical results are slightly less accurate as shown

in Table 3.1. For r0 ∈ {0.6, 1}, approximate results for the median SINR are accurate to within

1 dB for all MRC scenarios. For ZF, results are within 1 dB for COL, but have errors around

2 dB for 4BS and DIST. Two other features are shown in Table 3.1. First, the approximation

error increases as r0 reduces since greater channel estimation error inflates the E matrix making

the equivalent noise model less accurate. Secondly, when the CSI is poor 4BS can outperform

DIST. This is because DIST often results in a UE having a single dominant link and this situation

is particularly susceptible to poor CSI.
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Table 3.1: Simulated and approximated median SINR (dB) with imperfect channel estimation.

ZF (nCells = 19, reuse 3)
Sim. Approx.

r0 COL 4BS DIST COL 4BS DIST
1 17.2 22.2 30.1 17.3 22.2 30.8
0.99 14.1 18.5 20.0 14.1 17.7 22.4
0.9 7.7 11.6 10.3 7.5 10.0 12.6
0.8 4.6 8.1 6.7 4.2 6.3 8.8
0.6 -0.1 3.3 1.6 -0.5 1.6 3.9

MRC(nCells = 19, reuse 3)
Sim. Approx.

r0 COL 4BS DIST COL 4BS DIST
1 3.0 6.9 13.0 2.4 6.2 12.9
0.99 2.9 6.8 11.6 2.1 6.1 12.2
0.9 2.1 5.9 7.0 1.4 5.2 6.9
0.8 0.9 4.8 4.5 0.2 4.0 3.7
0.6 -1.5 2.2 0.4 -2.4 1.4 -0.5

For the COL scenario, Figure 3.6 compares the SINR approximations, (3.12), (3.7) and

(3.14), with simulated instantaneous SINR values for MRC and ZF with imperfect CSI and cor-

relation, r0 = 0.99 and αu = {0.1, 0.9}. These results demonstrate that the SINR obtained from

the simple approximations in (3.12) and (3.14) are less accurate for ZF when the correlation is

high, but work well with low correlation. In addition, with low correlation the approximations

in (3.7) are similar to (3.12) supporting the use of the Laplace approximation. However, for

high correlation the ZF approximation is poor. This is caused by the effect of the correlation

which makes the aggregate interference and noise more colored and less like simple additive

noise. Overall, the simple closed form approximations are useful for all MRC scenarios and for

ZF with low correlation.

Compared to the results in Figure 3.4, imperfect CSI has a much greater impact on ZF than

MRC. In the DIST scenario, the correlation does not have an impact on the system performance
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Figure 3.6: SINR CDFs for the COL scenario with ZF and MRC for r0 = 0.99 and different correlation
levels, αu = {0.1, 0.9}. nCells = 19, reuse 3.

because the correlation matrix Rr is the identity matrix.

Using a frequency reuse of factor 1 (nCells = 19), Figures 3.7 and 3.8 show the effect of

γ on ZF and MRC. As shown in Section 3.4, increasing γ increases the gap between the co-

located and distributed results. The changes between γ = 3 and γ = 4 are more noticeable for

ZF than for MRC since an increased γ has a direct effect on SINR for ZF, whereas for MRC,

increasing γ affects both the numerator and denominator of (3.14). Changes are also more

noticeable for the distributed scenario. Increased path loss accentuates the variability in link

gain. This is ideal for DIST where the different antenna locations mean that different UEs can

tend to find different sets of antennas with reasonable link gains and the greater path loss from

other UEs reduces the overall interference which must be mitigated. An interesting feature of

Figures 3.7 and 3.8 is that they quantify the gains offered by 8BS and 4BS in comparison to

DIST. In practice a fully distributed array may be impractical and only a partial distribution,
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Figure 3.7: SINR CDFs for the four deployment scenarios with ZF, γ ∈ {3, 4}. Lines alone represent γ
= 3 and lines with markers represent γ = 4. nCells = 19.

an intermediate deployment as in 4BS or 8BS, may be viable. Here, we observe that for ZF,

moving from one BS site to four provides approximately 38% of the gains in moving from one

site to 128 sites. The corresponding percentage gain is approximately 40% for MRC. Moving

from one BS site to eight provides approximately 56% of the gains in moving from one site

to 128 sites for ZF. The corresponding percentage gain is approximately 53% for MRC. With

reuse 3, the percentage gains are similar.

Figure 3.9 shows the median SINR of ZF and MRC with different values of da and b for

DIST, 4BS and 8BS. This explores the effect of spreading the antennas over increasing pro-

portions of the cell area (increasing da) and the effect of increasing shadow fading correlation

(increasing b). We observe that increasing the spread of the antenna array is more beneficial

for DIST compared to 4BS or 8BS and for ZF compared to MRC. Both effects are due to the

averaging effect explained by the closed form analysis in Section 3.4.
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Figure 3.8: SINR CDFs for the four deployment scenarios with MRC, γ ∈ {3, 4}. Lines alone represent
γ = 3 and lines with markers represent γ = 4. nCells = 19.
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Figure 3.10: SINR CDFs for the four deployment scenarios with ZF, σSF ∈ {4, 8} dB. Lines alone
represent σSF = 4 and lines with markers represent σSF = 8. nCells = 19.

Figures 3.10 -3.11 show the SINR CDFs for the four deployment scenarios with ZF and

MRC respectively for σSF ∈ {4, 8} dB. The changes between σSF = 4 and σSF = 8 are

more noticeable for ZF than for MRC since an increased σSF has a direct affect on SINR for

ZF, whereas for MRC, increasing σSF affects both the numerator and denominator of (3.14).

Changes are also more noticeable for the co-located scenario.

Obtaining accurate CSI is one of the challenges in MM as performance can be limited by

interference arising from the re-use of pilots in neighboring cells [7]. Correlation is also an

important factor when large numbers of antennas are deployed in a small physical volume. In

Table 3.2, we give median SINR results for the four scenarios and both linear receivers for

varying levels of CSI and correlation. Clearly, ZF is more sensitive to imperfect CSI in all

deployments and the gains of ZF over MRC are reduced as r0 decreases, particularly for DIST.

92



−30 −20 −10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR of MRC (dB)

C
D

F

 

 

COL
4BS
8BS
DIST

Figure 3.11: SINR CDFs for the four deployment scenarios with MRC, σSF ∈ {4, 8} dB. Lines alone
represent σSF = 4 and lines with markers represent σSF = 8. nCells = 19.
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Table 3.2: Median SINR (dB) with imperfect channel estimation and correlation.

αu = 0.1 (nCells = 19, reuse 3)
ZF MRC

r0 COL 4BS 8BS DIST COL 4BS 8BS DIST
1 17.5 22 24 30 3.0 7.1 8.3 13
0.99 14 18.5 20.1 20.2 2.8 6.9 7.9 12
0.9 7.6 11.5 12.3 10 1.9 5.8 7.2 7.0
0.8 4.7 7.9 8.9 6.6 1.4 4.9 5.8 4.4
0.6 0.1 3.4 3.9 1.7 -1.3 2.9 2.8 0.4

αu = 0.9 (nCells = 19, reuse 3)
ZF MRC

r0 COL 4BS 8BS DIST COL 4BS 8BS DIST
1 8.9 14 17 30 -6.4 -1.7 0.3 13
0.99 5.8 10 13 20 -6.7 -2.1 0.01 12
0.9 -0.5 3.5 5.5 10 -7.4 -3.2 -0.7 7.0
0.8 -3.6 0.3 1.9 6.6 -8.2 -3.9 -2.2 4.5
0.6 -8.1 -4.5 -3 1.7 -11 -6.5 -5.2 0.4

DIST is more heavily affected by imperfect CSI than COL. With imperfect CSI, the additive

channel errors in the desired channel are of the form
√

1− r2
0em, where em is the mth column

of E. The power of this term is (1− r2
0)
∑Nr
i=1 P̄im and as shown in Section 3.4, this is larger for

DIST than COL. Hence, imperfect CSI has a greater impact on DIST than on COL as mentioned

in the discussion of Table 3.1. Both r0 and αu have a serious impact on performance, although

DIST is unaffected by correlation as there are no co-located antennas. Again, we observe that

imperfect CSI can cause 4BS or 8BS to outperform DIST.

To summarize the practical implications of the numerical results, some level of distribution

is preferable as averaging reduces variation and correlation has less impact on performance.

Since urban channels tend to have higher σSF and γ values than most environments, they are

usually more variable and therefore will benefit more from the averaging effects of distributed

arrays. However, it is far easier to locate a few BSs around a cell than to use the full DIST ap-
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proach. Hence, there is a performance-complexity trade-off which is also influenced by the fact

that distributed arrays are likely to have less accurate CSI than co-located arrays. As a result,

an intermediate deployment is an appealing design choice as it is simpler and less sensitive to

CSI quality than DIST while avoiding the spatial correlation problems of COL.

3.6 Summary

In this chapter, we investigated the interactions between deployment scenarios, ZF, MRC and

propagation parameters. A mixture of analysis, simulation and physical interpretations were

used to show that the improvements offered by distributed arrays are largely due to an averaging

effect which is more prominent for the ZF case. This averaging improves the lower tail of the

SINR CDF of the distributed case relative to the co-located case. We also show that imperfect

CSI has a significant impact which is greater for distributed arrays than for co-located arrays

and reduces the improvements offered by ZF. In addition, correlation does not play a role in

degrading the performance in distributed arrays but strongly affects co-located deployments. As

a result, a partially distributed ZF system is an ideal candidate if the cost and CSI requirements

could be met, providing performance benefits and robustness to errors in CSI.
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Chapter IV

Array Size and Shape

4.1 Introduction

If the large arrays envisaged for MM are located within small volumes, then the channel cor-

relations may become significant impacting on system performance [7, 25]. In this chapter, we

look at the correlations present in massive uniform SQs and ULAs and evaluate the impact of

correlation on capacity.

The advantages and disadvantages of different array configurations have been discussed

in [1, 25, 30–34]. One-dimensional arrays, such as the ULA, have been shown to have some

disadvantages such as front back ambiguity [32, 34] and an inability to resolve signal paths

in azimuth and elevation [32, 34]. In contrast, two-dimensional and three-dimensional arrays,

such as the SQ, offer extra degrees of freedom due to the variation in elevation angle [30]

and a compact layout [31]. This work includes survey articles [1, 25, 30, 31] and research into

precoding [32,34,96] and direction of arrival estimation [33]. In contrast, this chapter considers

the joint effects of size and shape and focuses on the particular issue of how compact a two-

dimensional array can be made relative to a ULA. Directly related work includes Chapter 5

where SQs and ULAs were compared in terms of antenna spacings. Here, we use capacity to

perform a more meaningful comparison.

We consider an uplink MM deployment with a co-located BS array and distributed single

antenna UEs. The performance of these systems is evaluated by ergodic capacity and capacity
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outage. The key idea is to evaluate capacity under a range of correlation models and compare the

performance of SQ and ULA. Square arrays offer two types of benefits relative to linear arrays.

One benefit is compactness since a ULA of length bULA has approximately the same antenna

spacing as a SQ with dimension
√
bULA ×

√
bULA. If size is not an issue, then a bULA × bULA

SQ will deliver increased capacity compared to a ULA of length bULA. The main contributions

of this chapter are:

• We evaluate these benefits for a range of correlation models and show that SQs always of-

fer considerable space savings, usually requiring only 30% - 50% of the width of a ULA.

When the correlations decay slowly at small distances, then SQ also offers a considerable

increase in capacity compared to a ULA of the same width.

• We analytically quantify the potential effects of correlation and also prove the validity of

a family of correlation models previously used in the literature [55].

The rest of the chapter is organized as follows. Sections 4.2 introduces the system model and

Section 4.3 describes the correlation models. Section 4.4 defines the capacity metrics and eval-

uates ergodic capacity for some extreme cases. Results and conclusions are found in Sections

4.5 and 4.6, respectively.

4.2 System model

We consider the system model in Section 2.7, where the uplink received signal is

y = Hx + n =
Nt∑
j=1

hjxj + n, (4.1)

and H, x and n are the channel, signal vector and noise, respectively.
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Assume a large co-located array at the BS serving Nt UEs in the coverage region. The

correlated channel model and link gains can be calculated as given in Section 2.6.7 where

H = R
1
2
r UP

1
2 , (4.2)

P = diag(P1, P2, . . . , PNt) and Pj = Aβj−1 are the link gains. We use this simple model

for the link gains in order to control the Pj’s with a single parameter, β, which has a physical

interpretation. Rr is the channel correlation matrix at the receiver.

4.3 Correlation Models

We consider the four common models described in Section 2.6.8. They are the Jakes, Gauss,

Sqrt and Exp models. Note that when large arrays are deployed in a small volume, coupling may

also become important. In this chapter, we do not model coupling explicitly but the aggregate

effects of correlation and coupling may be captured by the broad range of correlation models

considered here.

In [55,57,58], these models were explored without any formal verification that they are valid

correlation models. The Jakes model is certainly valid by construction since it was derived from

a physical scattering model [56]. However, to the best of our knowledge, the other three models

including the widely used exponential model have not been validated. Hence, we prove their

validity below.

Definition 1. A correlation model for the channel vector, hi, is valid if Rr = Rij satisfies

Rij = 1∀i, |Rij| ≤ 1∀i,j and if Rr is positive semidefinite for all possible antenna numbers and

locations.

A more convenient approach to checking the validity of the Gauss, Sqrt and Exp models is

given in the Theorem below.
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Theorem 1. The correlation model,Rij = e−ad̄
c
, for two antennas i and j separated by distance

d̄ is valid for all a > 0 and 0 ≤ c ≤ 2.

Proof. The spectral theorem for autocorrelation functions (ACF) [97, page 82] states that a

given function is the ACF of a complex weakly stationary mean square continuous process in

RĎ, where Ď is a positive integer, if and only if it is the characteristic function (CF) of a certain

random variable. Let h(x̌, y̌) refer to a channel coefficient from a given source to an antenna

located at position (x̌, y̌). The Rayleigh channel assumptions imply that E[h(x̌, y̌)] = 0 and

E [|h(x̌, y̌)|2] = 1 for all (x̌, y̌). Furthermore, the ACF is defined as E[h(x̌1, y̌1)h∗(x̌2, y̌2)] =

exp
(
−ad̄c

)
, where d̄ =

√
(x̌1 − x̌2)2 + (y̌1 − y̌2)2 is the distance between (x̌1, y̌1) and (x̌2, y̌2),

and (.)∗ is the conjugate operator. Hence, the process is a weakly stationary two dimensional

process. Since the ACF, exp
(
−ad̄c

)
, is continuous at d̄ = 0 it follows from [97, page 81] that

h(x̌, y̌) is mean square continuous. Hence, exp
(
−ad̄c

)
is valid if and only if it is the CF of

a certain random variable. A stable random variable with parameters α (0 < α ≤ 2), σ̌ (σ̌ ≥

0), β̌ (−1 ≤ β̌ ≤ 1), µ̌ (−∞ < µ̌ < ∞) is denoted Sα(σ̌, β̌, µ̌) [98, page 5] and the particular

stable variable Sα(σ̌, 0, 0) has the CF ϕ(t) = exp (−σ̌α|t|α) [98, page 9]. Hence, the ACF is

the CF of a Sc(a1/c, 0, 0) variable and the ACF is valid for any c ∈ (0, 2].

The theorem demonstrates the validity of the Gaussian model (when c = 2, the Gauss

correlation is the CF of a zero-mean Gaussian variable), the square root model (when c = 1
2
,

the Sqrt correlation is the CF of a Levy variable) and the exponential model (when c = 1, the

Exp correlation is the CF of a Cauchy variable). To understand why the model is invalid for

c > 2, consider three closely spaced antennas in a ULA with antenna separation ε > 0. The
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correlation matrix, using e−z ≈ 1− z for small z > 0, is given by

Rr =


1 e−aε

c
e−a(2ε)c

e−aε
c

1 e−aε
c

e−a(2ε)c e−aε
c

1



≈


1 1− aεc 1− a2cεc

1− aεc 1 1− aεc

1− a2cεc 1− aεc 1

 , (4.3)

where we have neglected lower order terms in the approximation. Taking the determinant of

both sides of (4.3) and keeping dominant terms gives

|Rr| ≈ a22cε2c(4− 2c). (4.4)

From (4.4) we see that c > 2 causes |Rr| to be negative for a small enough spacing and violates

the property that Rr must be positive semi-definite. The result also identifies the order of “roll

off” of the correlation function at the origin which is allowable, with the Gaussian model giving

the slowest valid decay at small spacings. Specifically, we observe that the correlation at a small

spacing, ε, can take the form 1 − aεc + o(εc) only for c ≤ 2 and a > 0. Hence, a quadratic

roll-off is possible but not a cubic.

4.4 Capacity Metrics

In this chapter, we evaluate the effects of array size and shape through the corresponding effect

of correlation on capacity. Hence, in this section we define the necessary capacity metrics.
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4.4.1 Ergodic Capacity

As discussed in Section 2.9.3, the ergodic capacity [69, page 36] of the Nt UEs is given by

E[C] = E[log2det(I + ρHHH)], (4.5)

where ρ is the SNR.

4.4.2 Capacity Outage

As mentioned in Section 2.9.3, the p-percentage outage capacity, Cout, is defined as the trans-

mission rate that can be supported by (100-p)% of the fading channel realizations [20, page

9], i.e., P (C < Cout) = p [69, page 36]. For the model in (4.2) the ergodic capacity can be

computed using results in [99] but no exact analytical results are known for Cout. Due to the

complexity of [99] and the need to simulate Cout, simulations are used for both metrics.

4.4.3 Ergodic Capacity for Independent Channels

In the absence of correlation, Rr = I and (4.5) reduces to

E[C] = E[log2det(I + ρP1/2UUHP1/2)] (4.6)

= Nt E[log2(1 + ρλarb), (4.7)

where λarb is an arbitrary (i.e., randomly selected) eigenvalue of P1/2UUHP1/2 as derived

in [100].

4.4.4 Ergodic Capacity for Perfectly Correlated Channels

In the limit, as the channel becomes perfectly correlated (Rr → 1Nr×Nr , where 1Nr×Nr is the

Nr × Nr matrix of ones), the channels from a UE to the antennas become identical and H has
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the representation

H = 1Nr×NrUDP1/2, (4.8)

where UD is a diagonal matrix, UD = diag(U1, U2, . . . , UNt), where Ui is the common channel

coefficient for user i. Substituting (4.8) in (2.33) and simplifying gives

E[C] = E
[
log2det(I + ρNrP

1/2UH
D1Nr×NrUDP1/2)

]
(4.9)

= E [log2(1 + ρNrλ)] (4.10)

= E
[
log2

(
1 + ρNrTr

(
P1/2UH

D1Nr×NrUDP1/2
))]

(4.11)

= E

[
log2(1 + ρNr

Nt∑
i=1

Pi|Ui|2)

]
, (4.12)

where Tr(.) is the trace operator. Note that (4.10) follows from (4.9) since 1Nr×Nr is rank 1 and

λ is the single non-zero eigenvalue of P1/2UH
D1Nr×NrUDP1/2. Similarly, (4.11) follows from

(4.10) since Tr
(
P1/2UH

D1Nr×NrUDP1/2
)

= λ. From (4.7) and (4.12), we observe that E[C]

tends to grow linearly in the uncorrelated case with Nt whereas the growth is logarithmic in the

perfectly correlated case. This difference is more noticeable for MM than for traditional MIMO

and so the effects of correlation can be large. Furthermore, the effect of the P matrix can be

inferred from (4.7) and (4.12). Large powers will clearly boost capacity. In contrast, increasing

the spread of the powers tends to increase the variability of both λarb and
∑Nt
i=1 Pi|Ui|2. The

logarithm then penalizes the increased lower tail and the capacity tends to be reduced.

4.5 Results

In this section, we evaluate the performance of SQs and ULAs with different correlation models

using ergodic capacity or 10% capacity outage. The system size is Nr = 100, Nt = 10 and

the link gains are defined by A = 1, β ∈ {0.1, 0.9}. The scale factor A, is unity without loss

of generality and β = 0.1, β = 0.9 correspond to a dominant UE and several similar strength
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UEs, respectively. For most of the results, we assume ρ = 0 dB. Since SNR is essentially just

a scaling factor, the trends discussed for ρ = 0 dB remain valid at other SNR values and this

is supported by simulations at the end of the section. In order to compare the two arrays, the

length of the ULA, (bULA), is given by bULA = 1 without loss of generality. The SQ has width

bSQ expressed as a fraction of bULA = 1, e.g., bSQ = 0.3 bULA. Varying levels of correlation are

introduced by defining Rtarget as the correlation between the first and last ULA antennas, i.e.,

at separation 1. Varying Rtarget creates lightly or heavily correlated channels and a fixed value

of Rtarget gives the value of µ required to define the four correlation models in Section 4.2.

In Figure 4.1, we show ergodic capacity and the 10% capacity outage vs Rtarget for the

Jakes model with β = 0.9. Results are shown for a ULA with bULA = 1 and a SQ with 30%

(bSQ = 0.3 bULA) and 50% (bSQ = 0.5 bULA) of the width of the ULA. We observe that the ULA

performs similarly to a SQ of 30% the width whereas 50% width gives a noticeable capacity

improvement. Due to the stability of MM, the capacity distribution is not highly variable and

the Cout results are simply a slightly shifted version of the ergodic capacity results. Since no

further insights are found from Cout, we restrict the following results to ergodic capacity.

Figures 4.2 and 4.3 show mean capacity vs Rtarget for the Jakes and Gauss models. A

comparison of Figure 4.2 and Figure 4.3 shows the obvious effect that ergodic capacity increases

with β since the link gains grow with β. The results also show that ULA performance is usually

bracketed by bSQ = 0.3 bULA and bSQ = 0.5 bULA and that a larger SQ is needed for β = 0.1

compared to β = 0.9.

Figures 4.4 and 4.5 repeat the results of Figures 4.2 and 4.3 for the Sqrt and Exp models.

A comparison of Figures 4.2 and 4.3 with Figures 4.4 and 4.5 shows that the Jakes and Gauss

models are more sensitive to correlation than Exp and Sqrt. This is shown by the substantial

variation in capacity between the three SQs of varying widths. This difference is caused by the

slow, quadratic roll-off of the correlation at small distances provided by Jakes and Gauss. Note
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Figure 4.1: Capacity metrics vs Rtarget for the Jakes model. The metrics are mean capacity (given by
lines) and Cout with p =10% (given by lines with points). β = 0.9.
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Figure 4.2: Ergodic capacity vs Rtarget for Jakes (lines only) and Gauss (lines with points) models.
β = 0.9.
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Figure 4.3: Ergodic capacity vs Rtarget for Jakes (lines only) and Gauss (lines with points) models.
β = 0.1.

that the Sqrt and Exp models give lower correlation and this is why the observed capacity is

higher.

Also shown in Figures 4.4-4.5 is the convergence of ergodic capacity to the Independent

case, shown explicitly in Figure 4.5, which gives the plateau to the left of the figures as Rtarget

becomes small. The Independent and Full Corr. results in Figure 4.5 are computed using

(4.6) and (4.9) and show the potential variation in ergodic capacity as well as the extreme

limits. Note that the Independent limit is approached faster by the Sqrt and Exp models as they

decay more quickly. The Jakes model alone does not converge to the Independent limit since

J0(2πµdij) is not monotonic in dij . Hence, equating the Bessel function to Rtarget at dij = 1

does not provide small correlations as Rtarget → 0 since the first lobe of the Bessel function

does not diminish. An overview of Figures 4.1-4.5 shows that ULA performance is achieved

for bSQ ∈ (0.3 bULA, 0.5 bULA) for virtually all cases. Factors which tend to require a larger
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Figure 4.4: Ergodic capacity vsRtarget for Sqrt (lines only) and Exp (lines with points) models. β = 0.9.

equivalent SQ are higher correlation and slowly decaying correlation.

Figures 4.1-4.5 also show that the benefits of SQs are dependent on the correlation models.

For models with a quadratic roll-off (Jakes and Gauss) the high correlations at small spacing

impact strongly on ULAs and a substantial capacity improvement is possible using SQs. For ex-

ample, in Figure 4.2, 50% improvements are possible (comparing bULA = 1 with bSQ = 1bULA).

In contrast, for Sqrt and Exp the capacity improvements are much smaller. This contrasts to the

space saving benefits which are between 30% and 50% for all correlation types.

For different values of ρ and different system sizes, the results remain similar, but the effects

of correlation are more prominent as the ratio Nt/Nr increases. Figures 4.6 and 4.7 support this

conclusion. In both figures we use the Exp model. In Figure 4.6 we vary ρ ∈ {−10, 0, 10} dB

and select Nr = 100, Nt = 10. In Figure 4.7 we fix ρ at 0 dB, and vary Nr ∈ {100, 200} and

Nt ∈ {10, 20, 40}.
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4.6 Summary

In this chapter, we have analytically justified a range of correlation models that have previously

been used in the literature without verification. This analysis has also shown that correlation

models must decay away from unity at zero separation with a power law behavior where the

power is at most quadratic. Powers greater than two are invalid and so a quadratic roll-off is

the slowest possible. Models such as Gaussian and Jakes which are quadratic near the origin

are therefore extreme cases. This observation is closely tied to the differences between SQs and

ULAs. We have shown that the capacity benefits of SQs are highly dependent on the correlation

models. When the spatial correlation decays very slowly at the origin, then SQs offer substantial

benefits in capacity. However, for more rapidly decaying correlations, the space savings offered

by SQs are more important.
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Chapter V

Performance of Traditional V-BLAST Based on Optimal

Ordering

5.1 Introduction

The purpose of this chapter is to benchmark the performance of the traditional V-BLAST al-

gorithm and take the first step towards simplification by substituting the ZF detector with the

MRC detector. The effect of imperfect CSI is also investigated.

As shown in Section 2.8, the system performance of MM strongly depends on the accuracy

of the CSI [7]. With imperfect channel estimation, the system performance can degrade severely

due to pilot contamination [7] and latency effects [1]. Also, if the large arrays are located

within a small area, then the channel correlations may become quite high, impacting system

performance [7]. Finally, simple processing is very important for MM. Hence, our focus is to

study a low complexity, MRC-based MM receiver with imperfect CSI and channel correlation.

We consider an uplink MM deployment of Section 2.7, with a co-located BS array and dis-

tributed single antenna UEs. Several studies which consider channel estimation and correlated

channels have appeared in [101, 102] for traditional MIMO and in [96, 103] for MM. One of

the most popular schemes in traditional MIMO is the V-BLAST approach, which is discussed

in Section 2.8.2. Most of the work on traditional V-BLAST discusses ZF or MMSE combining

and rarely considers MRC [44]. Also, very little work has appeared on V-BLAST with MM
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probably because of the complexity of V-BLAST with large numbers of antennas. In this Chap-

ter, we begin the development of a low-complexity version of V-BLAST which is suitable for

MM. The baseline receiver is ZF V-BLAST and in this chapter we integrate V-BLAST with

MRC in MM which gives similar performance to ZF V-BLAST with reduced complexity. This

motivates our work to propose an improved low complexity MRC V-BLAST receiver design

based on the channel norms in Chapter 6 and then simplify it further using link gain ordering as

shown in Chapter 8.

Hence, in this chapter, we contribute as follows. We integrate MRC with V-BLAST for

MM and compare its performance with ZF with V-BLAST. This work considers realistic MM

scenarios with correlated channels and imperfect CSI. Furthermore, our results show that MRC

with V-BLAST can approach the performance of ZF with V-BLAST in a MM context. In

addition, following on from the work in Chapter 4, we provide analytical results which define

the antenna spacings required for ULAs and SQs in order to obtain similar performance with

MRC V-BLAST and ZF V-BLAST. For example, the SQ is dimensioned so that it gives a similar

performance to the ULA with MRC V-BLAST and ZF V-BLAST. Note that we do not provide

the closed-form results for the SER for this receiver because this is an intermediate receiver.

However, for the final receiver which is discussed in Chapter 8, we provided the close-form

results for the SER.

The rest of Chapter 5 is organized as follows. Section 5.2 introduces the system model

while Section 5.3 describes the MM deployment and the channel model. Section 5.4 illustrates

V-BLAST with optimal ordering. We provide analysis in Section 5.5, give simulation results in

Section 5.6, and conclude in Section 5.7.
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5.2 System Model

We consider the system model in Section 2.7, where the uplink received signal is

y = Hx + n =
Nt∑
j=1

hjxj + n, (5.1)

and H, x and n are the channel, signal vector and noise, respectively. Also, we assume the

imperfect CSI model described in Section 2.6.9 where

Ĥ = r0H +
√

1− r2
0E, (5.2)

and the SINR can be calculated as in (2.31).

5.3 Deployment and Channel Model

Assume a large co-located array at the BS servingNt UEs in the coverage region. The correlated

channel model and link gains can be calculated as given in Section 2.6.7 where

H = R
1
2
r UP

1
2 , (5.3)

P = diag(P1, P2, . . . , PNt) and Pj = Aβj−1 are the link gains. We use this simple model for

the link gains in order to control the Pj’s with a single parameter, β, which has a physical inter-

pretation. Moreover, this model is useful because of the importance of the link gain decay rate

in V-BLAST, where it is well-known that performance is heavily dependent on the differences

between the link gains. Rr is the channel correlation matrix at the receiver. In the following,

we provide two simple models for the correlation matrix, depending on the type of array used

at the receiver.
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5.3.1 Case 1: Uniform Linear Array (ULA)

Let Rr = (Rij), then the element Rij is defined by Rij = α|i−j|u , where αu is the correlation be-

tween channels at adjacent antennas and 0 < αu < 1. This is the simple exponential correlation

model given in [58].

5.3.2 Case 2 : Uniform Square Array (SQ)

Here, we assume a regularly spaced uniform square array and the element Rij is defined by

Rij = α
dij
s , where αs is a correlation parameter and dij is the distance between the ith and jth

antenna. To make the models comparable and ensure the correlation at a fixed separation is

identical, we select αs = α1/∆
u , where ∆ is the distance between adjacent antennas.

5.4 V-BLAST with Optimal Ordering

The two major computational bottlenecks in the V-BLAST algorithm are ordering for the nulling

and cancellation process and matrix inverse computations for the receiver weights. The classic

approach to ordering the streams for detection in V-BLAST is to detect the stream with the

highest output SINR first [66]. From [66], let the ordered set S = {k1, k2, . . . , kNt} be a per-

mutation of the integers 1, 2, . . . , Nt specifying the order in which the transmitted symbols in

x are extracted. In the optimal approach, the index ki is chosen such that the SINR/SNR of the

detected symbol at the ith stage is maximized.

In order to define the optimal V-BLAST approach, we require the following notation. Let

Hi represent H with columns k1, k2, . . . , ki−1 replaced by zeros and let Wi be given by Hi for

MRC, Hi(H
H
i Hi)

−1 for ZF. With this notation, MRC V-BLAST is based on (2.30). The SINR

for user m at the ith stage is given by (2.26), where the summation in the denominator of (2.26)
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is over j /∈ {k1, k2, . . . , ki−1} such that j 6= m. Maximizing the SINR at stage i gives

k
(MRC)
i = arg max

m/∈{k1,k2,...,ki−1}
SINR(MRC)

m . (5.4)

The optimal ordering for ZF is defined by [66]

k
(ZF)
i = arg min

j /∈{k1,k2,...,ki−1}
||(Wi)j||

2, (5.5)

where (Wi)j represents column j of Wi, the ZF combiner at stage i.

5.5 Analysis

5.5.1 Analysis of Imperfect CSI

In this section, we analyze the effects of imperfect CSI to see if MRC V-BLAST and ZF V-

BLAST can have similar performance. Consider stage m + 1 of V-BLAST detection where

the symbols xk1 , xk2 , . . . , xkm have already been detected and assume that all m symbols in the

previous stages are detected correctly. This assumption is used to simplify the analysis and to

obtain insights into the effects of imperfect CSI.

In the subsequent simulations in Section 5.6, the full V-BLAST procedure is used and error

propagation [104] may occur. The remaining UEs have link gains Pkm+1 , Pkm+2 , . . . , PkNt which

are denoted P(m+1), P(m+2), . . . , P(Nt). Similarly, P(1), P(2), . . . , P(m) are the link gains of UEs

k1, k2, . . . , km. Consider the noise inflation which occurs in V-BLAST with imperfect CSI in

both the detection and cancellation stages. The noise inflation is defined as the difference in

noise power between the imperfect CSI case and the perfect CSI case.
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Detection Stage

During detection, the extra noise term due to imperfect CSI is given by
√

1− r2
0Ex. The co-

variance matrix of the extra noise is given by

E
[
(1− r2

0)ExxHEH
]

= (1− r2
0)E

[
EEH

]
. (5.6)

Since E has the same statistics as H in (5.3), it follows that

E
[
EEH

]
= E

[
R1/2
r UPUHR1/2

r

]
= tr(P)Rr. (5.7)

Hence, the power of the extra noise on each antenna is tr(P) as (Rr)ii = 1. Since the detection

is at stage m + 1, E, x,U, P and Rr contain information about UEs m + 1, m + 2, . . . , Nt.

Therefore, the noise inflation for a ZF combiner is calculated as

(1− r2
0)

Nt∑
j=m+1

P(j). (5.8)

For an MRC receiver, adapting the result in [105], the noise inflation during detection is (1 −

r2
0)P(m+1).

Cancellation Stage

The signal to be detected at stage m+ 1 is xm+1 and the corresponding received signal is

y(m+1) =
Nt∑

j=m+1

hkjxkj + n(m), (5.9)
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where n(m) = n + (hk1 − ĥk1)xk1 + · · · + (hkm − ĥkm)xkm and hj = r0ĥj +
√

1− r2
0ej ,

where ej is the jth column of E. The definition of n(m) uses the assumption that x̂kj = xkj for

j = 1, 2, . . . ,m. Substituting for hj in n(m) gives

n(m) = n +
m∑
j=1

((r0 − 1)ĥkj +
√

1− r2
0ekj)xkj

= (r0 − 1)
m∑
j=1

ĥkjxkj + n +
√

1− r2
0

m∑
j=1

ekjxkj .

The covariance matrix of n(m), denoted Σ(m), is given by

Σ(m) = (r0 − 1)2E[
m∑
j=1

ĥkjxkj

m∑
j=1

xHkj ĥ
H
kj

]

+ E[nnH ] + (1− r2
0)E[

m∑
j=1

ekjxkj

m∑
j=1

xHkje
H
kj

]

= (r0 − 1)2
m∑
j=1

ĥkj ĥ
H
kj

+ σ2I + (1− r2
0)

m∑
j=1

P(j)Rr. (5.10)

In (5.10), we have used E[eje
H
j ] = P(j)Rr since ej has the same statistics as hj . Taking the

(1, 1)th element of (5.10) gives the equivalent noise at stage m+ 1 as

(r0 − 1)2
m∑
j=1

|ĥkj1|2 + σ2 + (1− r2
0)

m∑
j=1

P(j), (5.11)

where ĥkj1 is the first element of ĥkj . Hence, the noise inflation due to cancellation is

(r0 − 1)2
m∑
j=1

|ĥkj1|2 + (1− r2
0)

m∑
j=1

P(j). (5.12)

Overall Noise Inflation

Combining the noise inflation due to cancellation in (5.12) with the noise inflation during detec-

tion ((1− r2
0)P(m+1) for MRC and (1− r2

0)
∑Nt
j=m+1 P(j) for ZF) gives the overall noise inflation

115



results:

MRC : (r0 − 1)2
m∑
j=1

|ĥkj1|2 + (1− r2
0)

m+1∑
j=1

P(j),

ZF : (r0 − 1)2
m∑
j=1

|ĥkj1|2 + (1− r2
0)

Nt∑
j=1

P(j).

Hence, imperfect CSI has a greater effect on ZF which suffers from a noise inflation at stage

m+1 which is greater than MRC by (1−r2
0)
∑Nt
j=m+2 P(j). A similar analysis was given in [106],

but the simple form of (5.12) was not given.

The analysis shows that ZF is affected more by imperfect CSI and that the difference is

weighted by the total remaining link gain, i.e.,
∑Nt
j=m+2 P(j). When the P(j) terms are small,

then the difference is small and the effect on ZF and MRC will be similar. When the P(j) terms

are large then there is a larger difference in the effect of imperfect CSI. However, when the P(j)

terms are large the SERs are likely to be small and will not contribute greatly to the overall

V-BLAST SER.

For example, in Figure 5.2 with β = 0.5, the SERs were also calculated for each layer. In

the first few layers as shown in Figure 5.3, where strong UEs are present, the P(j) terms are large

but the SERs are low (below 10−3 for SNR≤ 0 dB). Hence, the overall SER (approximately 2×

10−1 at SNR = 0 dB) is not affected by these results. In contrast, in the later stages, the SERs are

dominant (See Figure 5.3) and here the P(j) terms are much smaller. Note that the ZF and MRC

results are indistinguishable. Overall, the analysis suggests that the effects of imperfect CSI are

likely to be similar for ZF and MRC and this is supported by the simulations in Section 5.6.

This is also supported in related work [26] where the asymptotic performance of MMSE and

MRC receivers is shown to be equivalent (and ZF behaves similarly to MMSE [107]).
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5.5.2 Analysis of Correlation

When comparing a ULA with a SQ, the SQ will suffer if the antenna spacing is held constant as

there are many more near-neighbors in a square layout. Hence, it is of interest in a MM context

to investigate SQ and ULA dimensions which lead to similar levels of correlations. To avoid

relying on any particular correlation model, we define a ULA and a SQ to be “equivalent” if the

median inter-element spacing is identical. Furthermore, since closed form results for median

spacing in a SQ appear to be intractable, we employ a continuous approximation to the problem

where the antenna locations are uniformly located on a line segment of length bULA, uniform

on [0, bULA] for ULA, and on a square of width bSQ uniform on [0, bSQ] × [0, bSQ] for SQ. The

continuous approximation is particularly appealing for MM where a large number of antennas

are considered.

For the ULA a random inter-element spacing can be given as ZULA = |X1−X2|, where X1

and X2 are i.i.d. uniform variables on [0, bULA]. The CDF of ZULA is well-known as X1 −X2

is triangular. Using standard transformation theory [108, page 136 and 137] the CDF of ZULA

is given by

FZULA
(z) = 2b−2

ULA(bULAz − z2/2), 0 ≤ z ≤ bULA. (5.13)

For the SQ case, the inter-element spacing is defined by ZSQ =
√

(X1 −X2)2 + (Y1 − Y2)2,

where X1, X2, Y1 and Y2 are i.i.d. uniform variables on [0, bSQ]. Using standard transformation

theory [108, page 86-142 and 135-142], we obtain the CDF of ZSQ as

FZSQ
(z) = b−4

SQ(πb2
SQz

2 − 8
3
bSQz

3 + z4

2
), 0 ≤ z ≤ bSQ. (5.14)

To find the medians (mULA,mSQ), solveFZULA
(mULA) = 1

2
using (5.13) and solveFZSQ

(mULA) =
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1
2

using (5.14), giving

mULA = (1−
√

2

2
)bULA, (5.15)

mSQ = 0.512 bSQ. (5.16)

To match the median spacing, mULA = mSQ and we obtain

bSQ =
1−

√
2

2

0.512
bULA = 0.572bULA. (5.17)

This suggests that in order for a SQ to have a similar level of correlation as a ULA, the width of

the square should be around 57% of the length of the ULA. We denote approach as “Adjusted

SQ” in Figure 5.8. A SQ with the same antenna spacing as the ULA has a width of approxi-

mately 9% of the ULA length. This preliminary observation has some impact on MM design

as the SQ is not as compact as might be hoped in comparison to a ULA. The usefulness of this

result is also demonstrated in Section 5.6.

5.5.3 Complexity Calculation

A simple way to assess the computational complexity of V-BLAST with ZF and MRC is via

the number of complex multiplications. In ZF V-BLAST, at stage 1, computing HHH re-

quires NrNt(Nt+1)
2

multiplications and the inverse computation requires N3
t

2
+ 3

2
N2
t multiplica-

tions based on [109]. Multiplying (HHH)−1 with HH requires N2
t Nr multiplications. The

ordering involves the NtNr multiplications required to compute the column norms of the ZF

combiner. Computing wH
i y and wix̂i both require Nr multiplications. Thus, stage 1 re-

quires NrNt(Nt+1)
2

+
N3
t

2
+ 3

2
N2
t + N2

t Nr + NtNr + 2Nr multiplications. Similarly, stage 2

requires Nr(Nt−1)(Nt−1+1)
2

+ (Nt−1)3

2
+ 3

2
(Nt − 1)2 + (Nt − 1)2Nr + NtNr + 2Nr multipli-

cations which is simply obtained by replacing Nt by Nt − 1. Similarly, stage 3 requires
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Nr(Nt−2)(Nt−2+1)
2

+ (Nt−2)3

2
+ 3

2
(Nt − 2)2 + (Nt − 2)2Nr +NtNr + 2Nr multiplications where

Nt − 1 is replaced by Nt − 2. Combining the Nt − 1 stages and considering the final stage

which requires detection but no cancellation, ie. Nr multiplications, ZF V-BLAST requires
Nr
∑Nt−2

i=0
(Nt−i)(Nt−i+1)

2
+
∑Nt−2

i=0
(Nt−i)3

2
+ 3

2

∑Nt−2
i=0 (Nt − i)2 +

∑Nt−2
i=0 (Nt − i)2Nr + (NtNr +

2Nr)(Nt − 1) + Nr multiplications. Since Nr � Nt, the term
∑Nt−2
i=0 (Nt − i)2Nr, which is

equivalent to Nr
∑Nt−2

i=0
(Nt−i)(Nt−i+1)

2
in term of complexity order, is dominant and larger than∑Nt−2

i=0
(Nt−i)3

2
. By using the fact that

∑n
k=1 k

2 = n(n+1)(2n+1)
6

, the total complexity of ZF V-

BLAST based on the dominant term becomes O(NrN
3
t ).

In MRC V-BLAST, at stage 1, computing hHmhm requires Nr multiplications and squaring

the term requires 1 multiply. Computing hHmhjh
H
j hm, requires Nr + Nr + 1 multiplications

and the sum,
∑
j 6=m hHmhjh

H
j hm, requires Nt − 1 of such terms. Thus the total number of

multiplications for ordering the SINR in stage 1 is (Nt − 1)(2Nr + 1). Computing hHi y and

hix̂i both require Nr multiplications. Thus, stage 1 requires (Nr + 1) + (Nt − 1)(2Nr + 1) +

Nr +Nr +Nr multiplications. Similarly, stage 2 requires (Nr + 1) + (Nt−2)(2Nr + 1) +Nr +

Nr +Nr multiplications and stage 3 requires (Nr + 1) + (Nt − 3)(2Nr + 1) +Nr +Nr +Nr

multiplications. As before, note that Nt is reduced by 1 at each stage. Combining the Nt − 1

stages and considering the final stage which requires detection but no cancellation, ie. Nr

multiplications, MRC V-BLAST requires (Nr + 1)(Nt−1) +
∑Nt−1
i=1 (Nt− i)(2Nr + 1) + (Nr +

Nr + Nr)(Nt − 1) + Nr multiplications. The dominant term is
∑Nt−1
i=1 (Nt − i)(2Nr + 1) =

(2Nr + 1)(Nt− 1 +Nt− 2 + · · ·+ 1). By using the fact that
∑k
i=1 i = 1 + 2 + · · ·+ k = k(k+1)

2
,

the total number of multiplications is (Nt− 1)(4Nr + 1) +Nr + (2Nr+1)(Nt−1)Nt
2

. Thus, the total

complexity of MRC V-BLAST based on the dominant term becomes O(NrN
2
t ). As expected,

the MRC V-BLAST complexity is less than ZF V-BLAST by an order of magnitude.

Table 5.1 summarizes the order of complexity calculations for ZF V-BLAST and MRC V-

BLAST.
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Table 5.1: Complexity calculations

Technique Complexity order of complex multipliers
ZF V-BLAST O(NrN

3
t )

MRC V-BLAST O(NrN
2
t )

5.6 Results

In this section, we consider the performance of MM receivers with imperfect CSI and corre-

lated channels using Monte Carlo simulations. Performance is measured by the SER assuming

QPSK modulation. The results were averaged over the UEs and up to 105 independent channel

realizations. The system size has Nr = 100 receive antennas and Nt = 10 transmit antennas.

The baseline parameters are: the parameter which controls the rate of decay of the link gains

β = 0.5, the correlation between adjacent antennas αu = 0.1, array type = uniform linear array

(ULA). Where other parameters are used, they are given in the figure captions. In the figures,

the signal to noise ratio (SNR) is the SNR of the strongest UE, given by A
σ2 , where the link gain

of the strongest UE is A = 1 without loss of generality.

Figure 5.1 shows SER vs. SNR with MRC V-BLAST and ZF V-BLAST for different values

of r0, r0 ∈ {1, 0.99, 0.9}. The effect of imperfect CSI on MRC V-BLAST and ZF V-BLAST is

almost identical here when αu = 0.1 is used. Hence, with small correlation, the performance of

MM using MRC V-BLAST and ZF V-BLAST is virtually the same and it is better to use MRC

V-BLAST, which has a lower complexity. However, the MM performance is strongly affected

by the level of CSI. When r0 = 0.9, the performance of the system is extremely poor.

Figure 5.2 shows SER vs. SNR with MRC V-BLAST and ZF V-BLAST for different values

of β, β ∈ {0.5, 0.7} and r0 = 0.99. The effect of changing the channel powers on MRC

V-BLAST and ZF V-BLAST is very similar with small correlation (αu = 0.1). However, the

system performance is strongly affected by β, with a better performance achieved when channel
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Figure 5.1: SER vs. SNR with MRC V-BLAST and ZF V-BLAST for different CSI accuracy (r0).

powers are less distributed (β = 0.7).

Figure 5.3 shows SER at stage 1, 2, 9, 10 and SER vs. SNR with MRC V-BLAST and ZF

V-BLAST for β = 0.5 and r0 = 0.99. In the first two layers where strong UEs are present,

the P(j) terms are large but the SERs are low (below 10−3 for SNR ≤ 0 dB). Hence, the overall

SER (approximately 2 × 10−1 at SNR = 0 dB) is not affected by these results. In contrast, in

the later stages, the SERs are dominant and here the P(j) terms are much smaller.

Figure 5.4 shows SER vs. SNR with MRC V-BLAST for SQ and ULA and αu ∈ {0.1, 0.9}.

Inter-antenna spacing is the same for both configurations. The effect of changing the type

of array on MRC V-BLAST and ZF V-BLAST is similar. From Figure 5.4, we observe that

performance deteriorates as antenna correlation increases and that the ULA has lower SER for

high αu. Note that most antennas within the SQ have more neighbors than those within the

ULA and this is why the ULA has lower SER for high αu. For low αu values, SQ and ULA are
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Figure 5.2: SER vs. SNR with MRC V-BLAST and ZF V-BLAST for different UE power distributions
(β), r0 = 0.99.
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Figure 5.3: SER vs. SNR with MRC V-BLAST and ZF V-BLAST for β = 0.5, r0 = 0.99. MRC
V-BLAST is denoted by squares and lines in black color and ZF V-BLAST by lines in blue color.
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Figure 5.4: SER vs. SNR with MRC V-BLAST with different values of antenna correlation (αu) and
array types (SQ, ULA), r0 = 0.99.

similar.

Figure 5.5 shows SER vs. SNR with MRC V-BLAST and ZF V-BLAST for different array

types (SQ and ULA), r0 = 0.99 and αu = 0.9. Here, the correlation is high (αu = 0.9) and the

increased levels of correlation found in a SQ configuration mean that the SERs for SQ are worse

than for the corresponding ULA for both MRC V-BLAST and MRC V-BLAST. The difference

between ULA and SQ is increased as αu increases, i.e., for αu = 0.1, the average correlation

between two antennas is 0.016 (SQ) and 0.012 (ULA). However, for αu = 0.9, the average

correlation is 0.60 (SQ) and 0.17 (ULA).

Figure 5.6 shows SER vs. SNR for r0 ∈ {1, 0.99} and αu ∈ {0.1, 0.5, 0.7}. By increasing

the correlation level, the performance of the receiver deteriorates, especially in the imperfect

CSI case. The correlation level has little effect in the case of perfect channel estimation and

αu = 0.1 and 0.5.
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Figure 5.5: SER vs. SNR with MRC V-BLAST and ZF V-BLAST for different array types (SQ, ULA),
r0 = 0.99 and αu = 0.9.
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Figure 5.7: SER vs. SNR with MRC V-BLAST and ZF V-BLAST for different values of CSI accuracy
(r0) and array types (SQ, ULA). αu = 0.9, MRC V-BLAST is denoted by squares and lines and ZF
V-BLAST by circles and lines.

Figure 5.7 shows SER vs. SNR with MRC V-BLAST and ZF V-BLAST for different val-

ues of r0, r0 ∈ {1, 0.99} and array types (SQ and ULA), αu = 0.9. Squares and lines de-

note MRC V-BLAST and circles and lines denote ZF V-BLAST. Figure 5.7 demonstrates that

MRC V-BLAST does not always perform in a similar way to ZF V-BLAST. For example, the

ZF V-BLAST, SQ results with r0 = 1 are far better than the MRC V-BLAST, SQ, r0 = 1

results. Also, when αu = 0.9 and r0 = 1 the performance of ZF V-BLAST with ULA is

much better than it is with SQ. Both effects are due to correlation. Firstly, with equal antenna

spacing the SQ has higher correlations and so the ZF results are worse for SQ compared to

ULA. Secondly, correlation has a much greater impact on MRC for r0 = 1 as ZF removes the

interference while interference increases with correlation for MRC. To see this effect, the inter-

ference term
∑
j 6=m hHmhjh

H
j hm in (2.26) is zero for ZF where as for MRC, each hHmhjh

H
j hm

is non-zero and is increased when hm and hj are correlated. This can be quantified numeri-
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cally by considering the power of the interference term, E[
∑
j 6=m hHmhjh

H
j hm]. From (2.16),

we see that E[
∑
j 6=m hHmhjh

H
j hm] = Tr(R2

r)Pm
∑
j 6=m Pj . For independent channels this power

is NrPm
∑
j 6=m Pj whereas for perfectly correlated channels the power is N2

rPm
∑
j 6=m Pj . This

shows the potential interference increase due to correlation and is particularly noticeable in MM

whereNr is large. For the ULA, an exact calculation is possible giving E[
∑
j 6=m hHmhjh

H
j hm] =

Nr−α2
u(Nr−2α2Nr

u +2)
(1−α2

u)2 Pm
∑
j 6=m Pj .

Figure 5.8 shows SER vs. SNR with MRC V-BLAST and ZF V-BLAST for different SQ

sizes (SQ, Adjusted SQ), αu = 0.9, r0 = 1. MRC V-BLAST is denoted by squares and lines

and ZF V-BLAST by circles and lines. By adjusting the width of the SQ, MRC V-BLAST and

ZF V-BLAST can behave similarly and the Adjusted SQ SER results are similar for both ULA

and SQ (See Figure 5.7). This shows that the simple closed form analysis in Section 5.5.2 may

be beneficial in terms of dimensioning arrays. Increasing the gaps between antennas in two

dimensions helps in reducing the correlation. In addition, the space can be used as much as it

is allowed and hence better performance can be achieved compared to the compact SQs. Note

that the MRC V-BLAST receiver may require a larger array dimension than the ZF V-BLAST

receiver. Nevertheless, given enough spacing, the performance of MRC V-BLAST can approach

ZF V-BLAST performance. We showed that by equating median antenna spacings (5.17) that

a SQ needed to be increased in width from 9% of the ULA length (for equal inter-element

spacing) to 57% in order to achieve similar performance.

5.7 Summary

In this chapter, we have investigated V-BLAST with MRC and ZF in a MM system with imper-

fect CSI and channel correlation. We found that MRC V-BLAST performance can approach ZF

V-BLAST, despite its lower complexity, for a range of imperfect CSI levels, different channel

powers and different types of array, as long as the antenna correlation is not too high. When
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the correlation level is increased, the performance of V-BLAST using either MRC or ZF is de-

graded and the gap between the two can become substantial. When the correlation is high, the

ULA also offers large gains over the SQ if the same spacing is used. However, if the SQ is

dimensioned using the closed form result derived, then MRC V-BLAST and ZF V-BLAST with

SQ or ULA are shown to behave similarly.
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Chapter VI

Low Complexity MRC V-BLAST Based on Channel Norm

Ordering

6.1 Introduction

With the advent of MM, receiver complexity is becoming critical and in this chapter our focus

is on reduced complexity receivers. We consider an uplink MM deployment with a co-located

BS array and distributed single antenna UEs. We consider two types of linear receivers: MRC

and ZF. We also consider the V-BLAST approach.

As we discussed in Chapter 5, very little work has appeared on V-BLAST with MM since the

prime focus of MM is simplicity whereas V-BLAST requires repeated detection and ordering.

Also, most of the work on traditional V-BLAST considers ZF or MMSE combining and rarely

discusses MRC [44, 45].

In this Chapter, we integrate MRC with V-BLAST in MM and propose a simple, low com-

plexity receiver design. The key contribution is that ZF performance can be reproduced using

this approach with lower complexity. In support of this result, we characterize the SINR perfor-

mance via simple closed form approximations which gives insight into the reasons why MRC

and ZF behave similarly in the novel low complexity receiver. Note that in this chapter we

ignore issues such as pilot contamination [7] and assume perfect CSI. Since ZF receivers are

likely to be more affected by imperfect CSI (see Chapter 5), the proposed receiver may have
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even greater benefits in the presence of imperfect CSI.

In [110], performance analysis based on average SER of the ordered V-BLAST approach

over Nakagami-m fading channels was discussed. However in this chapter we are using a

different channel model, different system size and a different ordering technique.

The rest of Chapter 6 is organized as follows. Section 6.2 introduces the system model.

Section 6.3 describes the MM deployment and channel models. Section 6.4 describes the pro-

posed receiver design. Section 6.5 provides analysis and a complexity comparison. We give

simulation results in Section 6.6 and conclude in Section 6.7.

6.2 System Model

We consider the system model in Section 2.7, where the received signal y is calculated as

y = Hx + n, (6.1)

where H, x and n are the channel, signal vector and noise, respectively. We assume perfect CSI

and the SINR can be calculated as in (2.30). Without loss of generality, let the noise power be

σ2 = 1.

6.3 Deployment

Consider a large co-located antenna array at the BS serving Nt UEs in the coverage region.

6.3.1 Case 1: Unequal Received User Power

In this scenario, the UEs are located randomly in a circular coverage area, as shown in Fig-

ure 6.1. Due to shadowing and path loss effects, the received powers of the UE signals are

all different. This is the standard multiuser MIMO scenario. The channel model is defined as
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Figure 6.1: Case 1: System diagram where UEs are located randomly in a circular coverage area.
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H = UD
1
2 , where the elements of U are i.i.d. CN (0, 1) and D = diag(P1, P2, . . . , PNt). Note

that Pj is calculated as in (2.11), Pj = ALjd
−γ
j , where j identifies the UEs, A is a constant

depending on transmit power, antenna height, etc., Lj is a lognormal shadow fading variable,

dj is the link distance and γ is the path loss exponent.

6.3.2 Case 2: Equal Received User Power

Here, we assume that all link powers are the same. Hence, hij =
√
Puij , where uij ∼ CN (0, 1)

are i.i.d. fast fading terms and P is the link power which is fixed for all UEs. This scenario cor-

responds to a single-user MIMO link or to situations where all UEs are essentially co-located,

possibly arising in a small cell environment. It also provides a baseline case (equal powers)

against which we can evaluate the effects of unequal powers.

6.4 The Proposed Receiver Design

In [45], the performance of V-BLAST with MRC was discussed in the context of traditional

MIMO systems. These are small systems, typically using 2-8 antennas. Here, complexity

issues are less important and ordering the SINRs at every stage, using a simple receiver such as

MRC, is considered low complexity. With MM, there is a greater need for complexity reduction.

Hence, we propose performing a single one-off ordering of the sources and then MRC detection

at each stage. The proposed ordering simply ranks the sources by the corresponding column

norms and detects the sources in this order.

Let the ordered set S = {k(C)
1 , k

(C)
2 , . . . , k

(C)
Nt } be a permutation of the integers 1, 2, . . . , Nt

specifying the order in which the transmitted symbols in x are extracted. Hence, the approach

for a single, channel norm ordering is labeled as C-V-BLAST and is defined by

k
(C)
i = arg max

j /∈{k1,k2,...,ki−1}
||hj||2, (6.2)
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where hj is the jth column of H.

6.5 Analysis

In this chapter, the focus is on comparing MRC based receivers with ZF. It is useful to un-

derstand when the two receivers, implemented in a V-BLAST framework, have similar per-

formance. Hence, in this section, we consider a generic stage of the V-BLAST process and

compare the SNR of ZF and the SINR of MRC. We also compare the complexity of the two

simplest ZF and MRC techniques.

6.5.1 Comparison of ZF and MRC

At any stage of the V-BLAST decoding, assuming the previous stages were successful, the

received signal is given by

ỹ = Hsxs + n, (6.3)

where Hs contains s columns of H and xs contains the corresponding elements of x which

have not been detected 1. Without loss of generality, we label these elements from 1 to s so that

Hs = [h1 . . .hs] and xs = [x1 . . . xs]
T . Now, denote Hs = VP

1
2 where P = diag(P1 . . . Ps)

and the elements of V are i.i.d. CN (0, 1). This gives

ỹ = VP
1
2 xs + n, (6.4)

and we further assume that P1 > P2 > · · · > Ps and the order of detection follows the order

of the link gains. Note that these assumptions are completely general except for the assumption

that the remaining s sources are detected in the order 1, 2, . . . , s. However, this assumption is

1 Hence, this is the (Nt − s+ 1)th stage with s symbols left to be detected.
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reasonable as the sources with larger link gains are usually detected first. Using the notation in

(6.4), the SNR of a ZF detector for user 1 is given by [111]

SNRZF
(1) =

P1Es
σ2[(VHV)−1]11

, (6.5)

where V = [v1v2 . . .vs]. Suppose m̄ ∈ {1, . . . , s}, then it is clear that ||vm̄||2 is a Chi-Square

random variable with 2Nr DOF, i.e., ||vm̄||2 ∼ χ2
2Nr . Note that [(VHV)−1]11 is given by [111]

[(VHV)−1]11 =
1

vH1 v1 − vH1 V1(VH
1 V1)−1VH

1 v1

. (6.6)

Accordingly, from [111, 112], 1
[(VHV)−1]11

has a χ2
2(Nr−s+1) distribution. It follows that

E[SNRZF
(1)] =

P1Es(Nr − s+ 1)

σ2
. (6.7)

For an MRC detector, the SINR in (2.30) simplifies to

SNRMRC
(1) =

P 2
1Es(v

H
1 v1)2

EsP1
∑s
j=2 Pj|vH1 vj|2 + P1(vH1 v1)σ2

. (6.8)

(6.8) gives

SINRMRC
(1) =

P1
(EsvH1 v1)

σ2

1 + Es
σ2

∑s
j=2

Pj |vH1 vj |2
|vH1 v1|

. (6.9)

Using the Laplace approximation approach [92, equations (25) and (11)], which has been shown

to be quite accurate for ratios of quadratic forms [93], the mean of the SINR in (6.9) can be

approximated by the ratio of the means giving

E[SINRMRC
(1)] ≈

P1
EsNr
σ2

1 + Es
∑s
j=2

Pj
σ2

. (6.10)
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Equation (6.10) is derived by conditioning on v1 in the denominator. Using this approach gives

E[|vH1 vj|2|vH1 v1|−1] = E[E[|vH1 vj|2|vH1 v1|−1 | v1]]

= E[|vH1 v1|−1E[vH1 vjv
H
j v1 | v1]]

= E[|vH1 v1|−1E[vH1 v1 | v1]]

= 1 (6.11)

and (6.10) follows. In order for the ZF and MRC detectors to have similar performance, we

require (6.7) and (6.10) to be similar. Hence,

P1Es(Nr − s+ 1)

σ2
≈ P1EsNr

σ2 + Es
∑s
j=2 Pj

. (6.12)

Solving (6.12) when Es = σ2 = 1 gives
∑s
j=2 Pj = (s − 1)(Nr − s + 1)−1. As expected, the

sum of the interference needs to be small before the MRC receiver is similar to the ZF receiver

because MRC is corrupted by the aggregate interference while ZF removes it completely. Sim-

ulation results shown in Figure 6.2 support the accuracy of the SINR approximations used in

(6.12) for ZF and MRC. This supports our conclusion that ZF performance and MRC perfor-

mance will be similar when (6.12) holds.

.

6.5.2 Complexity Calculations

The simplest ZF-based detector is a simple ZF linear combiner with no V-BLAST structure. In

comparison, the simplest MRC-based detector we consider uses C-V-BLAST. Here, we com-

pare the computational complexity of these two techniques, with complexity measured by the

number of complex multiplications. In ZF, computing HHH requires NrNt(Nt+1)
2

multiplications
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and the inverse computation requires N3
t

2
+ 3

2
N2
t multiplications based on [109]. Multiplying

(HHH)−1 with HH requiresN2
t Nr multiplications and multiplying (HHH)−1HH by y requires

NtNr multiplications. Thus, the ZF algorithm requires NrNt(Nt+1)
2

+
N3
t

2
+ 3

2
N2
t +N2

t Nr +NtNr

complex multiplications. In C-V-BLAST, computing hHi y and hix̂i both require Nr multiplica-

tions. Repetition of this process for the first Nt−1 stages requires 2Nr(Nt−1) multiplications.

The final stage requires detection but no cancellation, ie. Nr multiplications. The initial order-

ing involves the computation of Nt channel norms which requires NrNt multiplications. Thus,

C-V-BLAST requires 2Nr(Nt − 1) + Nr + NrNt multiplications. Table 6.1 summarizes the

complexity calculations (where the complexity of the sort process in ordering is ignored).

Table 6.1: Complexity calculations

Technique Complexity: Number of complex multipliers
ZF 0.5Nt(N

2
t + 3Nt(Nr + 1) + 3Nr)

C-V-BLAST Nr(3Nt − 1)

Even with no V-BLAST structure the ZF complexity is O(NrN
2
t ) in comparison with the

low complexity MRC approach which isO(NrNt) without sorting. For example, withNt = 10,

Nr = 100, the number of multiplications are 18150 and 2900, respectively.

6.6 Results

In this section, we investigate the performance of several MM receivers via numerical simula-

tion to measure the SER assuming QPSK modulation. The results are averaged over the UEs

and over 104 − 106 independent channel realizations. For Case 2, each set of realizations has

a fixed power. For Case 1, each realization corresponds to a random drop where each drop

creates a different set of link powers. We assume the noise power is σ2 = 1. The system size

is defined by the number of receive antennas, Nr = 100, and the number of transmit antennas,
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Nt ∈ {10, 20, 40}. The propagation parameters are a constant path loss exponent of γ = 3 and

the standard deviation of the shadowing factor is σSF = 8 dB. We employ an exclusion zone

which prevents the UEs becoming too close to the BS. The radius of the coverage area is as-

sumed to be 1. The link distance constraint used is dij > 0.01 and this avoids any unreasonably

high link gains in (2.11) due to extremely short link distances.

In order to create the link powers for Case 2, we simply vary the SNR over the desired range

and set Pj = P = SNR. For Case 1, we use equation (2.11) to generate P1, P2, . . . , PNt and

normalize by PAvg = 1
Nt

∑Nt
j=1 Pj . Hence, the value of A, a constant depending on transmit

power, is unimportant and we set A = 1. The normalized powers are then scaled by the desired

SNR so that user j has SNRj = SNR Pj
PAvg

. This makes the average SNR over all UEs equal to

the target SNR and enables a fair comparison of Case 1 and Case 2.

Figure 6.2 compares simulated instantaneous SINR values for MRC and ZF in stage 1 of a

V-BLAST detector assuming that the UE with the highest link power is detected first. In these

simulations, we have not normalized the link powers by PAvg and simply use (2.11) to create the

random drops with A = 1. Also shown are the simple mean SINR approximations using (6.7)

and (6.10). Note that the ZF analysis is visually indistinguishable from the simulated results

whereas the MRC results have a very slight offset. Hence, (6.7) and (6.10) provide excellent

approximations to the SINR cumulative distribution functions (CDFs) for both receivers and

this supports the use of (6.12) which suggests that ZF and MRC will be similar only when the

link powers are small, of the order of
∑s
j=2 Pj ≈ (s− 1)(Nr − s+ 1)−1, where s is the number

of undetected sources.

Figure 6.3 shows that the SER of a simple ZF combiner is almost the same as ZF V-BLAST

for Nr = 100, Nt = 10. Hence, the V-BLAST structure is unnecessary in this scenario and a

simple ZF combiner performs equally well. For ZF, the equal power scenario performs better,

because ZF removes the interference and with equal power there are no sources with small
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Figure 6.2: SINR CDFs for Case 1 with ZF and MRC, Nt = 10.

power, unless all sources are weak.

Figure 6.4 shows the key result that in the unequal power case (Case 1) the C-V-BLAST is

almost identical to ZF and ZF V-BLAST. This can be seen by comparing the Case 1 SER curves

in Figure 6.3 with the Case 1 C-V-BLAST results in Figure 6.4. Hence, with distributed UEs,

C-V-BLAST achieves the same performance as ZF with a much smaller complexity (see Table

6.1). This rather unexpected result can be explained using (6.12). From (6.12), MRC and ZF

should only give similar performance when the sum of the interferers is small. In general, with

random drops of distributed UEs, there is no reason why this should be the case. In fact, what

is happening is that the SER is dominated by the occasions when all the UEs have weak link

powers and in this situation the sum of the interferers is small. At low SNR, all UEs have weak

link powers and so the total interference is small and MRC and ZF are similar. At higher SNR,

the UEs do not have weak link powers and in the early V-BLAST stages the interference can be
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Figure 6.3: SER vs. SNR with ZF and ZF V-BLAST, Nt = 10. Lines represent Case 1 and lines with
circles represent Case 2.

quite large. However, due to the long-tailed shadowing/path-loss model, there are large power

discrepancies between UEs. Hence, the strongest UE dominates and experiences a high SINR.

Hence, ZF and MRC are not similar, but this is a low SER scenario which does not have a great

impact on the overall SER. In the later V-BLAST stages, the UEs experience a lower SINR and

the contribution to the overall SER is greater. Here, the total interference is small as there are

fewer, weaker undetected UEs. Hence, in the situations which contribute most to the overall

SER, MRC and ZF tend to be similar.

Also shown in Figures 6.4-6.6 is the very poor performance of a single MRC receiver in both

Case 1 and Case 2 and the presence of a floor which becomes worse as the loading increases

from 10 to 40 UEs. For MRC, a spread of powers helps the performance of V-BLAST at higher

loadings and in all cases C-V-BLAST is impressive. Also shown in Figures 6.4-6.6 is V-BLAST

with MRC where a single ordering is performed at the start based on the initial SINRs (labeled
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Figure 6.4: SER vs. SNR with MRC with different ordering techniques, Nt = 10. Lines represent Case
1 and lines with circles represent Case 2.

single SINR ordering (S-V-BLAST)). It is interesting that this is worse than C-V-BLAST and is

due to the fact that the power-based ordering remains valid throughout the iterations while the

SINR keeps changing as the detection and cancellation steps occur.

6.7 Summary

In this chapter, we have investigated a variety of simple linear combiners and V-BLAST struc-

tures based on MRC and ZF. We have found that the performance of ZF can approach ZF

V-BLAST with lower computation. Additionally, we have shown that MRC V-BLAST has a

similar performance to ZF when the link powers are different. Note that MRC V-BLAST has the

same complexity as the linear ZF receiver (see Section 5.5.3, Section 6.5.2 and Table 6.1). C-V-

BLAST, which has a lower complexity than MRC V-BLAST, can achieve a similar performance

to MRC V-BLAST and therefore to the linear ZF receiver as well. When using S-V-BLAST,
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Figure 6.5: SER vs. SNR with MRC with different ordering techniques, Nt = 20. Lines represent Case
1 and lines with circles represent Case 2.
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Figure 6.6: SER vs. SNR with MRC with different ordering techniques, Nt = 40. Lines represent Case
1 and lines with circles represent Case 2.
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the performance becomes worse as the SINR keeps changing as the detection and cancellation

steps occur. Thus, ZF performance can be reproduced using the C-V-BLAST approach with a

much lower complexity in the most important scenario, where UEs are distributed and experi-

ence different link powers. This SER equivalence is found on a system-wide basis due to the

fact that high SERs are dominated by low UE link powers. In this situation, we show that the

SNR/SINR of the ZF/MRC receivers can become very similar.

142



Chapter VII

Low Complexity MRC V-BLAST Based on Channel Norm

Ordering with Adaptive Modulation and Power Control

7.1 Introduction

In this chapter, we consider the low complexity V-BLAST receiver using MRC and a single

channel norm ordering (C-V-BLAST) proposed in Chapter 6. We evaluate its performance in

the presence of imperfect CSI in an uplink MM deployment with a co-located BS array and

distributed single antenna UEs. This receiver has shown promising performance in Chapter 6

for a simple fixed transmit power, fixed modulation scenario. In this chapter, we explore the

performance of C-V-BLAST with both PC and AM.

PC with SIC was studied in [72], and PC with V-BLAST detection was studied in [113]. In

these works, ZF and MMSE combining are considered. However, MRC which is used in C-V-

BLAST was not considered. Some work is now emerging for PC with MM [114, 115]. These

studies focus on PC for downlink [114] and uplink systems [115] without adaptive modulation,

which is a key component of the system in this chapter. There is little previous work on V-

BLAST based approaches to MM since these structures are usually considered too complex,

However, in Chapter 6 it was shown that the C-V-BLAST approach based on a single up-front

ordering based on channel norms, standard V-BLAST cancellation and an MRC was an order

of magnitude less complex than a linear ZF combiner. Results in Chapter 6 also showed that
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for MM systems the C-V-BLAST approach could achieve a similar performance to a linear ZF

receiver and also to conventional ZF V-BLAST. These results were limited to QPSK modulation

and perfect CSI and are extended in this chapter.

The main contributions of the chapter are as follows

• We develop an idealized bound for PC performance by developing an exhaustive search

procedure for the AM system which maximizes the number of transmitted bits.

• We evaluate the performance of the promising low-complexity receiver (C-V-BLAST) in

a more realistic system environment including AM and imperfect CSI.

• We show that C-V-BLAST can achieve similar performance to a linear ZF receiver with

low complexity and without the need for additional PC.

The system model and details of the adaptive modulation are given in Section 7.2 and 7.3,

respectively. Sections 7.4, 7.5, 7.6 and 7.7 provide the PC method for adaptive modulation,

analysis, results and conclusions.

7.2 System Model

We consider the system model in Section 2.7 and the imperfect CSI structure

Ĥ = r0H +
√

1− r2
0E, (7.1)

where r0 is the correlation coefficient between the true channel, H, and the estimated channel,

Ĥ, and E has the same statistics as H. We assume that the UEs are located randomly in a

circular coverage area of radius R̆ surrounding the co-located BS array. The link gain Pj is

calculated as in (2.11), Pj = ALjd
−γ
j , where j identifies the UEs, A is a constant depending

144



on transmit power, antenna height, etc., Lj is a lognormal shadow fading variable, dj is the link

distance and γ is the path loss exponent.

We also consider an exclusion zone radius, R0, such that dj > R0 to prevent UEs being too

close to the BS. In the absence of power control, we assume the transmitted symbol x is given

as in Section 2.7, i.e., E[|xj|2] = 1. With power control, each UE transmits √αjxj , i.e. user j

scales the data, xj , by √αj , where 0 ≤ αj ≤ 1. The received signal can be written as

y = Hx + n =
Nt∑
j=1

hj
√
αjxj + n, (7.2)

where n is a noise vector with ni ∼ CN (0, σ2). The SINR for the mth user using linear

combining is calculated using a simple variation of (2.31) [68] as

SINRm =
E[|wH

mr0ĥm
√
αmxm|2]

E[|wH
m(
√

1− r2
0em
√
αmxm +

∑
j 6=m hj

√
αjxj + n)|2]

. (7.3)

We consider a simple linear receiver (ZF) and the C-V-BLAST approach given in Chapter 6.

7.3 Adaptive Modulation

Due to the continuous fluctuation of the wireless channel, AM can be used to improve the per-

formance of the system. Here, we assume that each UE selects from seven modulation options:

outage, BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM and 64-QAM based on the estimated SINR.

Based on the discussion in Section 2.11, the SINR thresholds for this AM scheme can be derived

and are given in Table 7.1 for a target BER of 10−3. These thresholds make the assumption that

interference, estimation error and noise can be approximated by additive white Gaussian noise.
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Table 7.1: Modulation switching thresholds for a target BER value (from [2], see Section 2.11).

Modulation Bits Modulation switching thresholds
# Target BER = 10−3

Outage 0 0 ≤ SINR < 4.8
BPSK 1 4.8 ≤ SINR < 9.6
QPSK 2 9.6 ≤ SINR < 30.1
8-PSK 3 30.1 ≤ SINR < 45.1
16-QAM 4 45.1 ≤ SINR < 90.8
32-QAM 5 90.8 ≤ SINR < 179.9
64-QAM 6 179.9 ≤ SINR

7.4 Power Control For Adaptive Modulation

Here, we derive an exhaustive search algorithm for PC with V-BLAST. A slightly simpler form

also holds for ZF. In order to implement AM the BS estimates the SINR of the UEs and feeds

back the modulation levels to the UEs using Table 7.1. The SINR evaluation at the mth V-

BLAST stage assumes that there are no errors in detection in the first m − 1 stages. For ease

of notation, the ordered set of UEs {k1, k2, . . . , kNt} for V-BLAST detection is assumed to be

{1, 2, . . . , Nt} so that the UEs are labeled in terms of decreasing channel norms. With this

notation, user m is detected at stage m and its SINR, from (7.3), is given by

SINRm =
αmSm

αmEm +
∑Nt
j=m+1 αjImj +Nm

, (7.4)

where Sm = r2
0w

H
mĥmĥHmwm, Em = (1 − r2

0)wH
memeHmwm, Imj = wH

mhjh
H
j wm, Nm =

wH
mwm/ρ and ρ = 1/σ2. Note that the BS can only obtain Ĥ so that Imj and Em, which in-

volve knowledge of the true channel, are not known. However, since we are interested in the

maximum performance improvement possible due to power control, we allow the use of (7.4) in

the power control process. With the available information, optimal power control will adjust the
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transmit powers of the UEs (varying α1, α2, . . . , αNt) so that SINR1, SINR2, . . . , SINRNt corre-

sponds to the maximum total number of transmitted bits from the Nt UEs using Table 7.1. Note

that any SINR that lies between the modulation switching thresholds corresponds to wasted

power. Hence, without loss of generality, the only SINR values of interest in power control

use the seven thresholds in Table 7.1, i.e., the thresholds in the set T = {0, 4.78, . . . , 179.89}.

This makes the exhaustive search for α1, α2, . . . , αNt finite. Setting SINRm equal to Tm, where

Tm ∈ T , gives

αm(Sm − TmEm)−
Nt∑

j=m+1

αjTmImj = TmNm. (7.5)

Define β(m)
m = Sm−TmEm and β(m)

j = −TmImj , then (7.5) becomes αm(β(m)
m )+

∑Nt
j=m+1 αmβ

(m)
j =

TmNm. In compact form, we can write (7.5) for all Nt stages as



β
(1)
1 β

(1)
2 . . . β

(1)
Nt

0 β
(2)
2 . . . β

(2)
Nt

0 0 . . .

0 0 0 β
(Nt)
Nt





α1

.

.

αNt


=



T1N1

T2N2

.

TNtNNt


. (7.6)

If (7.6) is soluble and leads to a solution where each 0 ≤ αi ≤ 1, then this set of thresholds is

feasible and corresponds to a certain number of transmitted bits. Hence, power control can in

principle be achieved by an exhaustive search over all possible thresholds for all UEs. For each

possibility, (7.6) is checked for feasibility and the maximum number of feasible transmitted bits

is recorded. Of course, this is computationally intensive involving a search over nNtM possibilities

(nM = # of modulations). Hence, this gives an upper bound on power control performance

rather than a practical methodology.
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f(p) =
1

σSF
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σSF
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w1 + 2σ2
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σSF

)
− FG
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(7.8)

7.5 Analysis

It is well known that V-BLAST performance is enhanced when there are large differences be-

tween the SINRs of the UEs as discussed in Chapter 6. This is strongly related to power control.

If the UEs have similar SINRs power control can be used to artificially separate them, whereas

if they are very distinct already, power control may not be necessary. The largest factor affect-

ing the SINRs of the UEs is the long term power. Hence, we consider the order statistics of

the link gains to investigate the size of the difference between UEs. The CDF of Pj is given

by (7.7) [94, equation (6)], where FG(.) is the CDF of a standard Gaussian, The parameters in

(7.7) are w0 = ln(wR̆−γ), w1 = ln(wR−γ0 ) and w = A/p. Differentiating (7.7) gives the PDF

as in (7.8), where fG(.) is the PDF of a standard Gaussian. Since P1 . . . PNt are Nt independent

variates, each with CDF F (p), then P(1) < P(2) < · · · < P(Nt) are the order statistics and P(j)

has PDF f(j)(p) given by [116, equations (2.1.6)]

f(j)(p) = CjF
j−1(p)[1− F (p)]Nt−jf(p), (7.9)
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where Cj = Nt!
(j−1)!(Nt−j)! . Hence, using (7.7) and (7.8) in (7.9) provides a closed form solution

for the PDFs of P(j).

7.6 Results

In this section, the baseline parameters are: Nr = 64, Nt = 6, ρ = 0 dB, γ = 3, σSF = 8 dB

r0 = 1, R̆ = 1, R0 = 0.01 and A = 0.015. The value A = 0.015 is chosen to correspond to a

reasonable level of performance such that the median SNR of ZF (MZF) is equal to 5 dB. Note

that we use Nt = 6, which is rather small for MM, to make the complexity of the exhaustive

power control search manageable.

The PDFs of P(j) computed from (7.9) are shown in Figure 7.1 for j = {1, 2, . . . , 6}. The

PDFs have been scaled to have the same maximum value to make a visual comparison possible.

It is clear from Figure 7.1 that there are substantial differences in the means of the order statistics

since the SINRs of the UEs are heavily dependent on the P(j)’s. This suggests that there are

likely to be large differences in the UE SINRs and in turn this suggests that power control may

not have much impact on performance. This is supported by the results in Figures 7.2-7.4.

Figure 7.2 shows the CDF of the total number of transmitted bits for ZF, C-V-BLAST with

no PC and C-V-BLAST with power control (labeled C-V-BLAST (PC)). Perfect CSI is assumed.

Here, we see that C-V-BLAST with no PC performs a little worse than ZF but offers lower

complexity. PC makes little difference as suggested by the analytical results in Figure 7.1.

As MZF increases (i.e., A increases) the gap between ZF and C-V-BLAST with no PC also

increases. This is the result of two key properties. First, with perfect CSI, ZF is noise limited

and increased transmit power improves performance. Secondly, C-V-BLAST with no PC is

interference limited, as it relies on MRC, and so is not helped so much by increased power.

Figure 7.3 shows similar results for the case of imperfect CSI, r0 = 0.9. It is notable that

here, C-V-BLAST with no PC performs better than ZF as well as having reduced complex-
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Figure 7.1: Scaled PDFs of the order statistics, P(j).
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Figure 7.2: The CDF of the total number of bits under perfect CSI (r0 = 1). The median SNR for ZF is
MZF ∈ {5, 10} dB.
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Figure 7.3: The CDF of the total number of bits under imperfect CSI (r0 = 0.9). The median SNR for
ZF is MZF ∈ {5, 10} dB.

ity. This is because MRC is less sensitive to the introduction of the estimation error than ZF.

Again, PC offers a small gain and the differences between receivers grows as the transmit power

increases.

In Figure 7.4 the same CDFs are given using field measurements for the link gains. The data

was obtained from a drive test of a suburban cell in a long term evolution (LTE) network. Link

gains were measured over a drive route covering an entire cell using equipment in the vehicle

to measure received signal strength at a mobile. The measured link gains were then randomly

sampled to create a drop of Nt = 6 link gains and this was repeated 300 times. For equivalence

with Figure 7.2-7.3 and for confidentiality reasons, the link gains are scaled so that MZF = 10

dB. Here also, we observe the limited impact of PC and a small performance gap between C-

V-BLAST with no PC and ZF which tends to disappear with imperfect CSI. In all the results

shown, the improvement in the total number of bits transmitted is less than 1 bit on average.
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The channel accuracy: r0 ∈ {1, 0.9}.

7.7 Summary

The C-V-BLAST receiver is known to have reduced complexity compared to standard ZF. In

this chapter, we have also investigated its performance in terms of throughput in an AM system.

Here, we show that the performance loss relative to ZF is small for perfect CSI and that C-V-

BLAST can potentially provide both complexity reduction and performance improvement when

the CSI is imperfect. In addition, gains due to PC are limited and so C-V-BLAST is a promising

option, without the need for additional PC.
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Chapter VIII

Analysis of Low Complexity MRC V-BLAST based on Link

Gain Ordering

8.1 Introduction

With the advent of MM, receiver complexity is becoming critical and in this chapter our focus

is on further reducing the complexity of the V-BLAST receivers developed and analyzed in

Chapters 5-7. We consider an uplink MM deployment with either a co-located or distributed

BS array and distributed single antenna UEs. Note that distributed scenarios in this chapter

include both the BBS deployment and the fully distributed (DIST) deployment.

As we discussed in Chapter 5 and Chapter 6, very little work has appeared on V-BLAST

with MM since computationally efficient receiver structures are essential to make MM viable.

Conventional V-BLAST requires repeated detection and reordering. Furthermore, most work

on traditional V-BLAST considers the use of ZF or MMSE detection. Hence, traditional V-

BLAST is too computationally intensive for MM. However, by replacing ZF or MMSE receivers

by MRC and using a one-shot ordering method based on channel norms, a V-BLAST scheme

was proposed in Chapter 6 which has lower complexity than linear ZF detection and similar

performance. This system is denoted C-V-BLAST. Note that the use of both MRC and the single

ordering technique was needed in Chapter 6 to produce the complexity reduction relative to a

linear ZF receiver. Here, we propose a variation on C-V-BLAST where the ordering is simplified
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further by using the long term powers or link gains rather than the instantaneous channel norms.

This approach is denoted P-V-BLAST and analysis of this system leads to a remarkably simple

and comprehensive error rate evaluation for both co-located and distributed arrays. The P-V-

BLAST approach also opens up other possibilities for system gains as discussed in Section 8.3.

There is considerable related analytical work in the V-BLAST literature [44,104,117–121],

but not of direct relevance to the P-V-BLAST system with MM. For example, most work

considers ZF in the detection stage [44, 104, 117–121] and much of the work neglects or-

dering [44, 117, 120]. Due to the difficulties of V-BLAST analysis, most of the results are

bounds [44, 104, 118] and some make restrictions to 2 UEs [44, 119] to develop closed form

results. Error propagation is handled to at least some extent in [104,117,119,120]. In this chap-

ter, the use of MRC and a single deterministic ordering makes analytic progress more tractable.

The MM context both simplifies and hinders the analysis as discussed in Sections 8.4 and 8.5.

The main technical difficulty introduced by MM is the lack of numerical stability in established

analytical approaches. Hence, we develop novel approximate techniques which are accurate

and stable.

The main contributions in this chapter are as follows:

• We propose a simplified ordering scheme compared to the low complexity V-BLAST

receiver in Chapter 6.

• We evaluate the probability of disagreement between the channel norm based ordering in

Chapter 6 (C-V-BLAST) and our proposed ordering based on link gains (P-V-BLAST)

for both co-located and distributed arrays.

• Based on the new ordering scheme, we derive a simple, accurate, closed form approxi-

mation to the error rate of P-V-BLAST for both co-located and distributed arrays.
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• The analysis also provides an approximation to the SER of an MRC receiver which is

useful in MM for both co-located and distributed arrays.

• We show that the performance of a distributed array can be approximated by an equivalent

co-located array and derive this equivalence.

The rest of the chapter is organized as follows. Section 8.2 introduces the system model.

Section 8.3 a gives an overview of the proposed low complexity receiver. Section 8.4 and

Section 8.5 provide an analysis of the P-V-BLAST error rate and the accuracy of the ordering

method, respectively. We give simulation results in Section 8.6 and conclude in Section 8.7.

8.2 System Model

We consider the system model in Section 2.7, where

y = Hx + n =
Nt∑
m=1

hmxm + n, (8.1)

and H, x and n are the channel, signal vector and noise, respectively. We assume perfect CSI

and the SINR can be calculated as in (2.30). Let the noise power be σ2 = 1. We focus on

MRC receivers within a low complexity V-BLAST structure (similar to C-V-BLAST) and also

compare MRC to ZF.

8.2.1 Deployment

MM can result from a large number of antennas deployed at one location or from an array

of distributed antennas linked together to form a massive network MIMO system. Hence, the

following scenarios are considered.

• Scenario 1: one massive co-located array.
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• Scenario 2: B-collaborative base stations with multiple antennas at each BS (BBS).

In each scenario, the UEs are located randomly in the coverage area (assumed to be a circle

for simplicity). For all scenarios, the channel coefficient hij can be calculated as in (2.9),

so that hij =
√
PijUij where Uij is the fast fading term. In addition, for each scenario, the

corresponding link gains are calculated as shown in Section 2.6.5, where Pij = ALijd
−γ
ij and

A is a constant depending on transmit power, antenna height, etc., Lij is a lognormal shadow

fading variable, dij is the link distance and γ is the path loss exponent.

8.3 P-V-BLAST

With MM, it is shown in Section 8.5 that ordering based on the instantaneous channels (as in

(6.2)) is very similar to ordering based on the link gains or long term channel powers. This

motivates us to define an alternative, simplified ordering scheme. Assume the ordered set

S(P ) = {k(P )
1 , k

(P )
2 , . . . , k

(P )
Nt } decides the order in which the transmitted symbols in x are

detected [66]. The simplified ordering scheme based on long term powers is defined by

k
(P)
i = arg max

j /∈{k1,k2,...,ki−1}
(
Nr∑
r=1

Prj). (8.2)

The V-BLAST MRC receiver using the single power ordering in (8.2) is denoted P-V-BLAST.

Note that P-V-BLAST is simply C-V-BLAST using ordering based on the mean column norms

rather than the instantaneous values. The complexity is somewhat lower than C-V-BLAST

as the column norms are not required but it has the same order (O(NrNt)). Other potential

advantages exist since ordering and potentially scheduling can be performed based only on

the long term channel powers which are quicker and easier to obtain. For example, with P-V-

BLAST the ordering can be performed as soon as the link gains are available. Also, it is possible

that mean SINR values could be used for scheduling and other link control functions [122,
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123]. These mean values are solely functions of the link gains and hence, scheduling, power

adaptation, rate adaptation, etc. can all be performed more rapidly with P-V-BLAST. Hence,

the P-V-BLAST structure may have further advantages beyond a lower complexity compared

to C-V-BLAST.

8.4 P-V-BLAST Error Analysis

In this section, we derive the error rate for P-V-BLAST. We consider the group error probability

defined by PG = P (K ≥ 1), where K is the number of UEs in the group of Nt UEs that are

incorrectly detected. Hence,

PG = 1− P (no errors for theNt UEs)

= 1− P (s1)
Nt∏
i=2

P (si|s1, s2, . . . , si−1), (8.3)

where si denotes the event that the UE detected in the ith V-BLAST stage is detected correctly.

Note that error propagation [104] does not affect PG since the group error rate corresponds to

100% error propagation [44]. For standard MIMO systems the conditioning in (8.3) makes anal-

ysis very complex. The dependence on s1, s2, . . . , si−1 is complicated as successful detection

in the first i − 1 stages has a subtle impact on si. More importantly, with standard V-BLAST,

ordering is performed after each detection and the UE to be detected at stage i is variable.

With MM, both of these complications become less important. First, the SINR values in

(2.30) become less variable due to the averaging effect of large numbers of antennas. This

reduces the effect of conditioning on the probability of error. Secondly, with large numbers

of antennas the ordering of UEs becomes very similar to ordering based on the link gains (see

Section 8.5). This is a deterministic ordering and allows the UE to be detected at stage i to be
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identified in advance. Hence, we approximate (8.3) by

PG ≈ 1−
Nt∏
i=1

P (si), (8.4)

where UE k
(P)
i is detected at stage i with k(P)

i defined by (8.2). Note that (1 − P (si)) is the

standard SER for detecting UE k(P)
i with MRC in the presence of interferers k(P)

i+1, k
(P)
i+2, . . . , k

(P)
Nt .

Hence, we now develop SER results for MRC with interference.

8.4.1 General Symbol Error Rate Formulation

For ease of notation, consider the SER of the first UE to be detected and assume, without loss of

generality, that k(P)
1 = 1. The SER for QPSK modulation can be calculated using [124, equation

(50)]

SER = 2E[Q(
√
γ̄)]− E[Q2(

√
γ̄)], (8.5)

where Q(.) is the Gaussian Q-function and

γ̄ =

(
hH1 h1

)2

hH1
(∑Nt

j=2 P̃j + σ2I
)

h1

. (8.6)

In (8.6), P̃j = diag(P1j, P2j, . . . PNrj). Using the notation, h1 = P̃
1/2
1 u1, where the ele-

ments of u1 are i.i.d. CN (0, 1), γ̄ in (8.6) can be written as

γ̄ =

(
uH1 P̃1u1

)2

uH1 P̃
1/2
1

(∑Nt
j=2 P̃j + σ2I

)
P̃

1/2
1 u1

. (8.7)
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8.4.2 Symbol Error Rate Calculation for Co-located Scenario

In the co-located scenario P̃j = PjI and (8.6) collapses to

γ̄ = P1t̂/If , (8.8)

where If is the interference and noise power, If =
∑Nt
j=2 Pj + σ2 and t̂ = uH1 u1 has a complex

chi-squared distribution with 2Nr DOF. Hence, (8.5) becomes

SER = 2E

[
Q

(√
P1

If
t̂

)]
− E

[
Q2

(√
P1

If
t̂

)]
,

= 2
∫ ∞

0

Q
(√

b̄t̂
)
t̂Nr−1e−t̂

Γ(Nr)
dt̂−

∫ ∞
0

Q2
(√

b̄t̂
)
t̂Nr−1e−t̂

Γ(Nr)
dt̂, (8.9)

where b̄ = P1/If and Γ(.) is the gamma function. The SER in (8.9) is known (see [125–127])

and for low SER values the first term in (8.9) is often used as an approximation or upper bound.

Hence, we can write [126]

SER ≤ 2
(

1− µc
2

)Nr Nr−1∑
k=0

Nr − 1 + k

k

(1 + µc
2

)k
, (8.10)

where µc = γ̄c/(1 + γ̄c) and γ̄c = 0.5P1/(σ
2 +

∑Nt
j=2 Pj). We can also use (8.10) for the no

interference case with µc = 0.5P1/σ
2. This occurs in the final V-BLAST stage. This analysis

can be easily extended to M-QAM modulation. Note that the second integral in (8.9) can be

found in [126] and involves a sum of hypergeometric functions. Unfortunately, for MM the

arguments of the hypergeometric functions become large and the result is unstable. Hence, in

Section 8.6 the numerical results use a numerical integral to evaluate (8.9) whereas the closed

form bound in (8.10) can be used as it remains stable for MM.

Also note that the case of imperfect CSI is easily handled as [128] shows that imperfect CSI
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simply scales the SNR for an MRC receiver. Hence, (8.9) and (8.10) can still be used for the

imperfect CSI case with a suitable alteration to γ̄c.

8.4.3 Symbol Error Rate Calculation for Distributed Scenario

In principle, the SER for the distributed case can be calculated using the approach in [124] for

QPSK modulation. However, in practice there will be numerical problems that occur for large

systems. Each component of the SER expression in [124] requires the summation ofNr(Nr−1)

terms with oscillating signs and a huge range of magnitudes. For example, the simplest SER

result in [124] is of the form

Ps =
Nr∑
i=1

Nr∑
k 6=i

Psik , (8.11)

using the notation in [124]. Hence, there are Nr(Nr − 1) terms in the expression. Furthermore,

each Psik is a function of

ξik =
PNr−2
i1 υNr−3

ik∏Nr
l 6=i,k (υikνil − νikυil)

, (8.12)

again using the notation in [124]. The denominator of (8.12) is a function of the link gains

and can be positive or negative, small or large. As a result, the terms in (8.11) oscillate and

vary enormously in size. This expression is inherently unstable for large numbers of antennas.

Therefore, we propose an approximation for the SER calculation. From (8.7), γ̄ can be written

as

γ̄ =

(
uH1 P̃1u1

)2

uH1 P̃
1/2
1 Q̃P̃

1/2
1 u1

, (8.13)

where Q̃ =
(∑Nt

j=2 P̃j + σ2I
)
. Note that Q̃ is a diagonal matrix with entries Q̃11, . . . Q̃NrNr .

Now define q̄ = 1/Nr
∑Nr
i=1 Q̃ii as the average diagonal element and write

Q̃ = q̄I + Ẽ, (8.14)
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where Ẽ is a diagonal matrix with entries Ẽ11, . . . ẼNrNr and Ẽii = Q̃ii − q̄. Thus,

1

γ̄
=

uH1 P̃
1/2
1

(
q̄I + Ẽ

)
P̃

1/2
1 u1(

uH1 P̃1u1

)2 ,

=
q̄(

uH1 P̃1u1

) +
uH1 P̃

1/2
1 ẼP̃

1/2
1 u1(

uH1 P̃1u1

)2 ,

=
q̄(

uH1 P̃1u1

)
1 +

uH1 P̃
1/2
1 ẼP̃

1/2
1 u1

q̄uH1 P̃1u1

 . (8.15)

The second term in (8.15) is the complicating factor as it contains a ratio of quadratic forms.

For MM systems, these quadratic forms involve the sum of a large number of squared terms

(Nr). Dividing the numerator and denominator by Nr gives the quotient as a ratio of averages.

These averages converge in probability to their mean values as Nr → ∞ using the weak law

of large numbers [129, page 71]. A sufficient condition required for this convergence is that

the diagonal elements of P̃1 and ẼP̃1 are bounded which must be satisfied by any real system.

Hence, we propose the approximation

γ̄ ≈ uH1 P̃1u1

k̃q̄
, (8.16)

where

k̃ = 1 +
E
[
uH1 P̃

1/2
1 ẼP̃

1/2
1 u1

]
q̄E
[
uH1 P̃1u1

] = 1 +
Tr(P̃1Ẽ)

q̄Tr(P̃1)
, (8.17)

and Tr(.) is the trace operator. Note that (8.16) is almost identical to the co-located form of

γ̄ (8.8) since (8.16) is a scaled quadratic form while (8.8) is a scaled chi-squared (a special

case of a quadratic form). At first sight, this difference appears minor as uH1 P̃1u1 is a simple

linear combination of chi-squared variables. However, we demonstrate in the next section the

numerical difficulty in obtaining the PDF of uH1 P̃1u1. As a result, we employ a simple chi-
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squared approximation to uH1 P̃1u1 defined by uH1 P̃1u1 ≈ p̄1u
H
1 u1 = p̄1t̂, where t̂ is chi-

squared with 2Nr DOF and p̄1 = 1/Nr
∑Nr
i=1 Pi1 is the average diagonal element of P̃1. This

gives the final approximation

γ̄ ≈ p̄1t̂

k̃q̄
. (8.18)

Not only does this approximation yield excellent SER results, it also expresses the performance

metric for the distributed case in exactly the same form as the co-located version (8.8). Hence,

distributed systems provide a simple shift in the SER curves relative to co-located performance

as (8.18) is a scaled version of (8.8). Equating (8.18) and (8.8) gives the equivalent co-located

parameters

P eq
1 = p̄1 (8.19)

Ieq
f = k̃q̄ = q̄ + Tr(P̃1Ẽ)/Tr(P̃1). (8.20)

Note that the equivalent link gain is simply the average of the distributed link gains (see (8.19)).

Furthermore, from (8.20), the equivalent interference and noise is the average of the distributed

interference and noise terms (q̄) with a correction factor
(
Tr(P̃1Ẽ)/Tr(P̃1)

)
that disappears in

the co-located case. The simple approximation has the benefit of providing good SER results

and an equivalent co-located system. However, much tighter approximations can be achieved

using a gamma approximation [130] to γ̄ in (8.16). This would give the correct mean and

variance. However, since in MM the variance of (8.16) is small, the mean value dominates the

results and this explains why (8.18) is so accurate in obtaining the SER. If the full distribution

of γ̄ is to be approximated closely, then the gamma approximation would be preferable.
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8.5 Analysis of Ordering Methods

In this section, we derive the distribution of the column norms of the channel matrix, H. This

allows us to demonstrate that V-BLAST ordering based on long term powers is similar to the

ordering based on instantaneous channel norms. Furthermore, the results motivate the approx-

imation proposed in (8.18). We focus on evaluating the probability of disagreement between

ordering based on C-V-BLAST (see (6.2)) and ordering based on P-V-BLAST (see (8.2)). Here,

we consider two arbitrary UEs and evaluate whether the two ordering methods rank the UEs in

the same order. The probability of disagreement depends on the powers of the UEs and will

therefore vary across the UEs. The aim is to gain an indication of the similarity of the two

ordering methods but the analysis also provides the PDF of γ̄ in (8.16).

8.5.1 Co-located Scenario

Consider the co-located scenario and define the jth column norm of H by

Nr∑
i=1

|hij|2 =
Pj
2
Xj, (8.21)

where Xj has a standard chi-squared distribution with 2Nr DOF. Consider two columns of H,

i and j, where Pi > Pj . In this situation, the relative ordering of UEs i and j is different for the

two ordering methods when PjXj > PiXi. The probability of disagreement is

P (PjXj > PiXi) = P

(
Xj

Xi

>
Pi
Pj

)
(8.22)

= P

(
F >

Pi
Pj

)
(8.23)

= 1− Iq(Nr, Nr), (8.24)
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where F is the ratio of two chi-squared variables and has an F distribution with 2Nr and 2Nr

DOF [131, page 946]. Using the CDF of an F variable, (8.24) follows from (8.23) where

q = Pi/(Pi + Pj) and Iq(.) is an incomplete beta function [131, page 263]. Note that the

incomplete beta function in (8.24) can be written as a function of the binomial distribution such

that [131, page 263]

Iq(Nr, Nr) =
2Nr−1∑
j=Nr

(
2Nr − 1

j

)
qj(1− q)2Nr−1−j

= P (X ≥ Nr), (8.25)

where X ∼ Binomial(2Nr − 1, q). In the MM case, it is reasonable to use the normal approxi-

mation to the binomial distribution. This gives

P (X ≥ Nr) = P

 X − (2Nr − 1)q√
(2Nr − 1)q(1− q)

≥ Nr − (2Nr − 1)q√
(2Nr − 1)q(1− q)


≈ P

Z ≥ Nr − (2Nr − 1)q − 0.5√
(2Nr − 1)q(1− q)

 = Q(T ), (8.26)

where Z ∼ N (0, 1) and (8.26) is the standard normal approximation to a binomial tail proba-

bility using a continuity correction. In (8.26), Q(.) is the Q-function and

T =
Nr − (2Nr − 1)q − 0.5√

(2Nr − 1)q(1− q)
. (8.27)

Equation (8.27) gives a closed form link between a given probability of disagreement, defined

by equating T to a percentile of Z, and two key parameters, Nr and q. For example, if the

probability of disagreement is 5%, then Q(T ) = 95% and T is the 5th percentile of a standard

Gaussian distribution which is -1.6449. Since q = (1 + Pj/Pi)
−1, (8.27) relates the probability

of disagreement to array size (Nr) and the power differential (Pj/Pi). Solving (8.27) for the
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required array size to give a probability of disagreement (controlled by T ) for a given power

differential gives

Nr =
−T 2q2 + T 2q + q2 − q + 0.25

2q2 − 2q + 0.5
. (8.28)

In other words, solving (8.27) for Nr allows us to identify the number of antennas required to

give a probability of disagreement of 1−Q(T ) when the two UEs have a power differential of

Pj/Pi. Further simplifications can be made by replacing 2Nr− 1 in (8.27) by 2Nr and omitting

the continuity correction. This is reasonable for large Nr and gives the simplified version of

(8.28) as

Nr =
2T 210Y/10

(10Y/10 − 1)2
, (8.29)

where Y is the power differential Pj/Pi, in dB. Results obtained from (8.28) and (8.29) are

shown in Section 8.6.

8.5.2 Distributed Scenario

For ease of notation in the distributed case, we focus on the column norms of UEs 1 and 2

without loss of generality. Assume there are bk antennas at BS k and using the notation hij =√
P

(k)
j Uij , where antenna i belongs to BS k, we obtain the column norm for UE 1 as

X = P
(1)
1

b1∑
r=1

|ur1|2 + · · ·+ P
(B)
1

b1+···+bB∑
r=b1+···+bB−1+1

|ur1|2

=
1

2

(
P

(1)
1 X̄1 + P

(2)
1 X̄2 + · · ·+ P

(B)
1 X̄B

)
, (8.30)

where X̄k ∼ χ2
2bk

. Similarly, the norm of column 2 is Y =
∑B
k=1

P
(k)
2

2
Ȳk and Ȳk ∼ χ2

2bk
.

If
∑B
k=1 P

(k)
1 >

∑B
k=1 P

(k)
2 , then the probability of disagreement between the two ordering
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methods is P (X < Y ). First we compute the distribution of X and Y which are both linear

combinations of chi-squared variables. There is considerable work on the distributions of such

variables [130] but it is difficult to obtain a single general closed form solution from the PDF.

Nevertheless, for any particular linear combination, the PDF can be derived using the basic

approach outlined in [132]. Using the notation λk = P
(k)
1 /2, the characteristic function (CF),

φX(t), of X =
∑B
r=1 λrX̄r is

φX(t) =
B∏
r=1

(1− 2jtλr)
−br . (8.31)

By using partial fractions, we obtain

φX(t) =
B∑
r=1

br∑
s=1

Ars
(1− 2jtλr)s

, (8.32)

where Ars can be computed analytically using [133, page 66]. Note that the inverse transform

of (1 − 2jtλr)
−s is λ−1

r f2s (x/λr), where f2s(.) is the PDF of a standard χ2
2s variable. Hence,

inverting (8.32) gives the PDF of X as

fX(x) =
B∑
r=1

br∑
s=1

Arsλ
−1
r f2s(x/λr). (8.33)

For UE 2 we have,

fY (y) =
B∑
r=1

br∑
s=1

Brsµ
−1
r f2s(y/µr), (8.34)
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where µr = P
(r)
2 /2 and the Brs coefficients arise from the partial fraction expansion of φY (t) =∏B

r=1(1− 2jtµr)
−br . The probability of disagreement is given by

P (X < Y ) =
∫ ∞

0
FX(y)fY (y)dy,

(8.35)

where FX(.) is the CDF of X . Integrating (8.33) and substituting the resulting CDF into (8.35)

gives

P (X < Y ) =
∫ ∞

0

 B∑
r=1

br∑
s=1

Arsλrλ
−1
r F2s(y/λr)

×
 B∑
r̄=1

br∑
s̄=1

Br̄s̄µ
−1
r̄ f2s̄(y/µr̄)

 dy
=

B∑
r=1

br∑
s=1

B∑
r̄=1

br∑
s̄=1

ArsBr̄s̄µ
−1
r̄ ×

∫ ∞
0

F2s(y/λr)f2s̄(y/µr̄)dy.

(8.36)

let G(r, s, r̄, s̄) =
∫∞

0 F2s(y/λr)f2s̄(y/µr̄)dy. Then, by using the standard PDF [50, equation

(2.32), page 13] and CDF of a chi squared distribution, we obtain

G(r, s, r̄, s̄) =
∫ ∞

0

1−
s−1∑
j=0

(y/λr)
je−0.5y/λr

2jj!

 × ((y/µr̄)
s̄−1e−0.5y/µr̄

2s̄(s̄− 1)!

)
dy.

Expanding (8.37) and using the result [133, page 358]
∫∞

0 yαe−βydy = α!β−(α+1) gives the

result

G(r, s, r̄, s̄) = µr̄ −
s−1∑
j=0

(
j + s̄− 1

j

)
λs̄rµ

j+1
r̄

(λr + µr̄)j+s̄
. (8.37)

Hence, the final result is

P (X > Y ) = 1−
B∑
r=1

br∑
s=1

B∑
r̄=1

br∑
s̄=1

ArsBr̄s̄µ
−1
r̄ G(r, s, r̄, s̄). (8.38)

167



Numerically, the PDF in (8.33) and the probability of disagreement in (8.38) are awkward

as they contain a large number of terms (Nr in (8.33) and N2
r in (8.38)) with oscillating signs.

To see this, consider the special case of two BSs (B = 2) with b1/b2 antennas at BS1/BS2.

Deriving Ars and Br̄s̄ using partial fractions [133, page 66] gives

A1s =
(−1)b2

(
b1+b2−s−1

b1−s

)
λb21 λ

b1−s
2

(λ2 − λ1)(b2+b1−s)
, (8.39)

A2s =
(−1)b1

(
b1+b2−s−1

b2−s

)
λb2−s1 λb12

(λ1 − λ2)(b2+b1−s)
, (8.40)

B1s =
(−1)b2

(
b1+b2−s−1

b1−s

)
µb21 µ

b1−s
2

(µ2 − µ1)(b2+b1−s)
, (8.41)

B2s =
(−1)b1

(
b1+b2−s−1

b2−s

)
µb2−s1 µb12

(µ1 − µ2)(b2+b1−s)
. (8.42)

Not only do the coefficients have oscillating sign but λ1 ≈ λ2, µ1 ≈ µ2 and large Nr all give

rise to very large coefficients. Hence, (8.33) and (8.38) become unstable for MM. We have

found that (8.33) and (8.38) are usually reliable for Nr < 10 with some attention given to the

numerical handling of the components in the series. However, for Nr ≥ 10 the expressions tend

to be unstable.

As a result, in Section 8.4 we employed the approximation in (8.18) to avoid the prob-

lem in using (8.33). For the probability of disagreement, we approximate (8.38) by using

gamma approximations for X and Y , which is a well established approximation to quadratic

forms [130]. Using the method of moments, we approximate X and Y by Gamma(r1, θ1) and

Gamma(r2, θ2) distributions where ri =

(∑B

r=1
brP

(r)
i

)2

2
∑B

r=1
brP

(r)2
i

and θi =
∑B

r=1
brP

(r)2
i∑B

r=1
brP

(r)
i

for i = 1, 2.

Then, since the ratio of two independent gamma variables is generalized F [134, page 348], we
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have

P (X > Y ) = P
(
X

Y
> 1

)
≈ P

(
r1θ1

r2θ2

F2r1,2r2 > 1

)

= P

(
F2r1,2r2 >

r2θ2

r1θ1

)
= 1− I θ2

(θ1+θ2)

(r1, r2). (8.43)

In (8.43) F2r1,2r2 represents an F variable with 2r1 and 2r2 DOF. In summary, the density is

numerically unstable and this motivated the approximation in Section 8.4. In addition, the

probability of disagreement is obtained in (8.43), and is shown in Figure 8.7. Note that our

analysis is applicable for traditional MIMO.

8.6 Results

All results in this section assume uniformly distributed UEs in a circular coverage area of radius

1 centered at the origin. The parameters used are: Nr = 100, Nt = 10, ρ = 0 dB, γ = 3,

σSF = 8 dB, A = 0.015 and QPSK modulation. In order to prevent undesired high link

gains in (2.10), the link distance is restricted by exclusion zone so that dij > 0.01. The value,

A = 0.015, is chosen so that a linear ZF receiver has a reasonable median receive SNR of 7 dB

in the co-located scenario with the given parameters. Three deployment scenarios, as shown in

Figure 8.1, are considered. COL denotes the co-located case where all 100 antennas are at the

center of the coverage area. 2BS denotes the case where the array has two locations with 50

antennas at (−1/2, 0) and 50 antennas at (1/2, 0). 4BS denotes the case of 4 locations with 25

antennas at each of the positions (−1/2,−1/2), (−1/2, 1/2), (1/2,−1/2) and (1/2, 1/2). We

consider 2 and 4 BS locations as it is more likely that distributed arrays will be deployed at a

handful of sites rather than being spread over the whole cell. Note that although the distributions
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= BS

4BS2BSCOL

Figure 8.1: Three deployment scenarios.

of the BS coverage areas are the same, the coverage around each BS is not circular because of

the defined cell boundary.

Figure 8.2 compares the simulated SER performance of P-V-BLAST, C-V-BLAST, a linear

ZF receiver and a linear MRC receiver. Each point of the curve is averaged over both fast fading

and random UE locations. Figure 8.2 supports the work in Chapter 6, which shows that the

performance of the simple linear ZF receiver is very similar to C-V-BLAST while C-V-BLAST

offers a complexity reduction. In addition, Figure 8.2 verifies the ordering analysis in Section

8.5 which indicated that P-V-BLAST and C-V-BLAST would have similar performance. Hence,

C-V-BLAST can be further simplified to P-V-BLAST with virtually no performance loss and

the assumptions behind the error rate analysis (based on P-V-BLAST) are supported. The poor

performance of a linear MRC receiver shows the need for a V-BLAST structure. The linear

MRC receiver also has a high error floor for the other scenarios but these results are not shown

for clarity in Figure 8.2. Also shown in Figure 8.2 are the effects of deployment and system

size. As Nr is reduced from 100 to 40 in the COL scenario performance drops but P-V-BLAST,

C-V-BLAST and ZF remain very similar. As the array becomes more distributed, moving from

COL to 2BS to 4BS, the performance increases as expected. Although a direct comparison is
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Figure 8.2: SER vs SNR for four different receivers, three deployment scenarios and Nr ∈ {40, 100}.

difficult as the channel power structures are inherently different, these results are averaged over

many drops and the distributed gains are therefore seen on average over the entire cell.

Figure 8.3 evaluates the analytical error rate results for 3 random drops in the COL deploy-

ment. The simulated values of PG are compared to two analytic approximations. The curve

labeled Analysis (8.9) uses the PG approximation in (8.4) with each P (si) evaluated using nu-

merical evaluation of (8.9). The curve labeled Analysis (8.10) uses (8.4) with the closed form

result in (8.10) as an upper bound on P (si). The very simple approximation shown in Analysis

(8.10) is seen to be very effective, especially at higher SNR, and tends to provide a tight upper

bound. Even more accurate results are possible using (8.9) but the benefits are limited and may

not be worth the extra complexity of using a numerical integral for (8.9) or developing a numer-

ically robust approach to the computation of (8.9). Note the massive variation between drops

due to the lognormal shadowing and path loss differences.

171



−15 −10 −5 0 5 10
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

SNR (dB)

lo
g
1
0
(P

G
)

 

 

Simulation
Analysis (8.9)
Analysis (8.10)

Drop 1

Drop 2

Drop 3

Figure 8.3: P-V-BLAST error performance (PG) vs SNR showing simulated and analytical results for
COL.

Figures 8.4 and 8.5 show the same type of results for the 4BS and 2BS deployments respec-

tively. These results have an extra layer of approximation in that the approximate γ̄ in (8.18) is

used in (8.9) and (8.10) instead of the exact γ̄ in (8.8) which is for the COL case. Nevertheless,

Analysis (8.10) is still very accurate and Analysis (8.9) provides a tight upper bound. These re-

sults also validate the equivalence between co-located and distributed arrays derived in Section

8.5. As expected, the 4BS performance tends to be better 2BS which in turn is better than COL.

Figure 8.6 uses (8.28) and a numerical solution to (8.24) to find the required array size (Nr)

to give a certain probability of disagreement (Prob.Dis.) at a given power differential. This is

for the COL case. As shown, the approximate result in (8.28) is extremely accurate when com-

pared to the exact result obtained by numerically solving (8.24). Furthermore, we observe the

increasing demand on antenna numbers as the power differential decreases and the probability
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Figure 8.4: P-V-BLAST error performance (PG) vs SNR showing simulated and analytical results for
4BS.
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Figure 8.5: P-V-BLAST error performance (PG) vs SNR showing simulated and analytical results for
2BS.
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Figure 8.6: Required array size (Nr) to give a certain probability of disagreement at a given power
differential (COL). Points represent Nr computed via (8.24) and lines use (8.28).

of disagreement decreases. For example, 100 antennas gives a 5% probability of disagreement

at a 1 dB differential but a 0.1% probability at 2 dB.

Figure 8.7 uses (8.43) to approximate the probability of disagreement in the 2BS case. For

100,000 random drops, the probability of disagreement is computed using (8.43) and also by

simulation. The CDF of the resulting absolute relative error is given, showing the accuracy of

(8.43).

8.7 Summary

In this chapter, we have taken a proposed low-complexity V-BLAST receiver (C-V-BLAST)

and further simplified the algorithm by replacing the channel norm ordering by a power based

ordering giving P-V-BLAST. In both cases, ordering is performed once, before detection of
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Figure 8.7: CDF of the relative absolute error between approximate and simulated probabilities of dis-
agreement (2BS).

any UEs. The reduced complexity ordering is analyzed by evaluating the probability that the

two ordering methods disagree (probability of disagreement) in both co-located and distributed

antenna deployment scenarios. We demonstrate low probability of disagreement for MM and

this not only supports the P-V-BLAST scheme but also leads to a convenient error rate analy-

sis. In particular, we provide a simple, accurate, closed form approximation to the error rate

of P-V-BLAST for both co-located and distributed scenarios. The analysis also provides two

additional useful results. First, the SER of MRC in a distributed MM array is shown to have

numerical problems and a simple, stable approximation is provided. Secondly, it is shown that

a distributed array can be converted to an equivalent co-located system so the impact of link

gain variation in the distributed case can be assessed. Furthermore, P-V-BLAST is shown to

have potential benefits over C-V-BLAST in terms of enabling more rapid scheduling and link

control functions.
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Chapter IX

Conclusions and Future Work

9.1 Introduction

In the previous chapters, some contributions made in this thesis to the field of MM are presented.

In this chapter, a summary of the main contributions presented in Chapters 3-8 is given in

Section 9.2 and suggestions for future work are given in Section 9.3.

9.2 Conclusions

In Chapter 3, we investigated the interactions between deployment scenarios, ZF, MRC and

propagation parameters. A mixture of analysis, simulation and physical interpretations were

used to show that the improvements offered by distributed arrays are largely due to an averaging

effect which is more prominent for the ZF case. This averaging improves the lower tail of the

SINR CDF of the distributed case relative to the co-located case. We also show that imperfect

CSI has a significant impact which is greater for distributed arrays than for co-located arrays

and reduces the improvements offered by ZF. In addition, correlation does not play a role in

degrading the performance in distributed arrays but strongly affects co-located deployments. As

a result, a partially distributed ZF system is an ideal candidate if the cost and CSI requirements

could be met, providing performance benefits and robustness to errors in CSI.

In Chapter 4, we have analytically justified a range of correlation models that have previ-
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ously been used in the literature without verification. This analysis has also shown that corre-

lation models must decay away from unity at zero separation with a power law behavior where

the power is at most quadratic. Powers greater than two are invalid and so a quadratic roll-off

is the slowest possible. Models such as Gaussian and Jakes which are quadratic near the origin

are therefore extreme cases. This observation is closely tied to the differences between SQs and

ULAs. We have shown that the capacity benefits of SQs are highly dependent on the correlation

models. When the spatial correlation decays very slowly at the origin, then SQs offer substantial

benefits in capacity. However, for more rapidly decaying correlations, the space savings offered

by SQs are more important.

In Chapter 5, we have investigated V-BLAST with MRC and ZF in a MM system with im-

perfect CSI and channel correlation. We found that MRC V-BLAST performance can approach

ZF V-BLAST, despite its lower complexity, for a range of imperfect CSI levels, different chan-

nel powers and different types of array, as long as the correlation is not too high. When the

correlation level is increased, the performance of V-BLAST using either MRC or ZF is de-

graded and the gap between the two can become substantial. When the correlation is high, the

ULA also offers large gains over the SQ if the same spacing is used. However, if the SQ is

dimensioned using the closed form result derived, then MRC V-BLAST and ZF V-BLAST with

SQ or ULA are shown to behave similarly.

In Chapter 6, we have investigated a variety of simple linear combiners and V-BLAST

structures based on MRC and ZF. The key finding is that ZF performance can be reproduced

using the C-V-BLAST approach with a much lower complexity in the most important scenario,

where UEs are distributed and experience different link powers. This SER equivalence is found

on a system-wide basis due to the fact that high SERs are dominated by low UE link powers. In

this situation, we show that the SNR/SINR of the ZF/MRC receivers can become very similar.

In Chapter 7, we have also investigated the performance of C-V-BLAST in terms of through-
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put in an AM system. Here, we show that the performance loss relative to ZF is small for perfect

CSI and that C-V-BLAST can potentially provide both complexity reduction and performance

improvement when the CSI is imperfect. In addition, gains due to PC are limited and so C-V-

BLAST is a promising option, without the need for additional PC.

In Chapter 8, we have taken the proposed low-complexity V-BLAST receiver (C-V-BLAST)

and further simplified the algorithm by replacing the channel norm ordering by a power based

ordering giving P-V-BLAST. In both cases, ordering is performed once, before detection of

any UEs. The reduced complexity ordering is analyzed by evaluating the probability that the

two ordering methods disagree (probability of disagreement) in both co-located and distributed

antenna deployment scenarios. We demonstrate low probability of disagreement for MM and

this not only supports the P-V-BLAST scheme but also leads to a convenient error rate analysis.

In particular, we provide a simple, accurate, closed form approximation to the error rate of P-V-

BLAST for both co-located and distributed scenarios. The analysis also provides two additional

useful results. First, the SER of MRC in a distributed MM array is shown to have numerical

problems and a simple, stable approximation is provided. Secondly, it is shown that a distributed

array can be converted to an equivalent co-located system so the impact of link gain variation

in the distributed case can be assessed.

9.3 Future Work

In this section, some suggestions for future work are presented.

1. Optimal BS locations for distributed deployment.

• In Chapter 3, we considered the scaling factor of the hexagonal cell, da, and ex-

plored the effect of spreading the antennas over increasing proportions of the cell.

However, the relative locations of the BSs did not change. In DIST, we used a reg-

178



ular square grid, in 8BS we used equally spaced points on a circle and in 4BS we

employed a rectangular grid. As shown in Figure 3.9, the largest percentage change

in median SINR, for ZF with b = 5, is given by 72%, 42% and 29% for DIST, 8BS

and 4BS, respectively. Hence, there are substantial gains to be made by BS place-

ment. Future studies could consider optimizing the arrangement of arranged BSs or

unequal numbers of antennas at BSs. We also investigated an intermediate deploy-

ment such as a massive array clustered at a few discrete locations, (BBS). We found

that BBS can be more practical to implement and more robust when considering

imperfect channel state information. Hence, a complete study could investigate the

optimal number of BSs to deploy.

2. MM performance with low complexity V-BLAST and full V-BLAST receivers with chan-

nel imperfections including mutual coupling.

• Correlation is an important factor when large numbers of antennas are deployed in

a small physical volume. As shown in Chapters 3 and 5, we included correlation

in the channel model using the idea of the one sided Kronecker model described in

Section 2.6.4. In Chapter 3, we found that correlation does not play a major role

in degrading the performance of distributed arrays but strongly affects co-located

deployments (see Table 3.2 and Figure 3.6). This is because antennas in the COL

scenario are deployed at one BS, but they are spaced out with large separations

in the DIST scenario. In Chapter 5, we found that when increasing correlation

levels, the performance of ZF V-BLAST and MRC V-BLAST are degraded and the

gap between the two can become significant. For instance, in Chapter 5, when the

correlation is high, the ULA offers large gains over the SQ if the same spacing is

used (see Figure 5.7). However, if SQ was dimensioned using the closed form result
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derived in Section 5.5.2, MRC V-BLAST and ZF V-BLAST with SQ or ULA were

shown to behave similarly (see Figure 5.8). We showed that by equating median

antenna spacings (see (5.17)) that a SQ needed to be increased in width from 9%

of the ULA length (for equal inter-element spacing) to 57% in order to achieve

similar performance. Correlation was also included in the analysis and simulations

of C-V-BLAST, described in Chapter 6. All this work demonstrates that correlation

can have an important impact on MM. Coupling is also associated with reduced

antenna spacing and is modeled in a similar way to correlation via multiplication of

the channel matrix by coupling matrices rather than correlation matrices. Hence, it

is logical that coupling will also have an important effect on MM performance and

it would be desirable to evaluate the lower complexity receivers in the presence of

coupling to see if they are robust to such effects.

3. P-V-BLAST evaluation with real data or industrial channel models such as the WINNER

Phase II Model [135].

• In Chapter 7, we presented some results for C-V-BLAST using data obtained from

a drive test of a suburban cell in an LTE network. Link gains were measured over

a drive route covering the entire cell using equipment in the vehicle to measure the

received signal strength at a mobile. Note that this test only provided link gains. In

Chapter 8, we derived a simplified version of C-V-BLAST with an ordering scheme

based on large scale fading information (P-V-BLAST). We also compared the re-

sults with the linear ZF receiver. We concluded that P-V-BLAST has potential ben-

efits over C-V-BLAST in terms of enabling more rapid scheduling and link control

functions. Hence, P-V-BLAST was shown to be a promising candidate for a MM

receiver. However, only simple statistical channel models were used in this evalua-

tion. Similarly, the only measured data used was link gain data rather than complete
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channel measurements. By using complex industrial models, or channel data, we

can assess whether the proposed receiver design (P-V-BLAST) is still effective in a

variety of realistic channel conditions.

4. A low complexity precoding, using similar ideas to P-V-BLAST.

• The purpose of a receiver is to extract the desired signal from the received signal.

Linear receivers including ZF, MMSE and MRC, are relevant in MM due to their rel-

atively low complexity. The simplest receiver among them is MRC. We considered

an uplink model and focused on the receiver side in the MM system. By adopting

MRC in a C-V-BLAST or P-V-BLAST structure, system performance is improved

(see Figures 6.4-6.6 and Figure 8.2). Here, we were able to build on the simplest

MRC receiver and make its performance similar to ZF. Precoding is a beamform-

ing generalization which is used to assist in multiple transmission in multi-antenna

wireless communications. An obvious extension of the receiver ideas to the down-

link is to consider the simplest precoder, MF, and attempt to leverage this precoder

in a downlink architecture which approximates the performance of ZF precoding

without the complexity of a large inverse computation.

5. Analysis of P-V-BLAST with correlation, imperfect CSI, mutual coupling, noise inflation

and error propagation.

• The error analysis of P-V-BLAST in Chapter 8 did not include system imperfections

such as correlation, imperfect CSI or mutual coupling. Also, the sequential detec-

tion effects of noise inflation and error propagation were avoided. A much more

complete evaluation evaluation of P-V-BLAST is possible if the analysis could be

extended to cover these situations. Mutual coupling in large arrays has been exten-

sively researched (for example [136]). It would be interesting to apply the results
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of previous studies on mutual coupling to the receiver structures discussed in this

thesis. Note that correlation and imperfect CSI for a linear MRC receiver are in-

cluded in Chapter 3. Hence, some of these extensions may well be feasible. Note

that in Chapter 3, we provided some analysis with imperfect CSI and correlation

for the linear ZF and MRC receivers. We found that our approximations work well

for MRC. However, by including correlation in the ZF analysis, our approximations

begin to lose accuracy especially in the COL scenario. Thus, improving the ZF

approximations in the presence of correlation will be particularly beneficial.

6. More complex channel models can be used to investigate size and array shape for MM.

• In Chapter 4 and Chapter 5, we considered the effects of array size and shape. Chap-

ter 4 looked at ergodic capacity outage and Chapter 5 considered SER performance

of linear receivers. The results demonstrated the potential for compact arrays to

match performance of ULAs. However, this work was based on simple statistical

models and ignored physical propagation effects such as angle spread and directions

of arrival which are known to be important factors in array performance. Hence, a

complete study could evaluate array performance using two or three dimensional

scattering models.
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