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Abstract. The authors showed in an earlier paper that there is a tree
that displays, up to a natural equivalence, all non-trivial 3-separations
of a 3-connected matroid. The purpose of this paper is to show that if
certain natural conditions are imposed on the tree, then it has a unique-
ness property. In particular, suppose that, from every pair of edges that
meet at a degree-2 vertex and have their other ends of degree at least
three, one edge is contracted. Then the resulting tree is unique.

1. Introduction

Let M be a matroid with ground set E. A subset X of E is 3-separating
if r(X) + r(E −X)− r(M) ≤ 2. The partition (X,E −X) is 3-separating if
X is 3-separating. Furthermore, the partition (X,E − X) is a 3-separation
if it is 3-separating and |X|, |E − X| ≥ 3. A 3-separating set X, or a 3-
separating partition (X,E − X), or a 3-separation (X,E − X) is exact if
r(X) + r(E − X) − r(M) = 2.

Let X be an exactly 3-separating set of M . If there is an order-
ing (x1, x2, . . . , xn) of X such that, for all i in {1, 2, . . . , n}, the set
{x1, x2, . . . , xi} is 3-separating, then X is sequential. An exactly 3-separating
partition (X,Y ) of M is sequential if either X or Y is a sequential 3-
separating set.

For a set X of M , we say that X is fully closed if it is closed in both M

and M∗, that is cl(X) = X and cl∗(X) = X. The full closure of X, denoted
fcl(X), is the intersection of all fully closed sets that contain X. One way to
obtain fcl(X) is to take cl(X), and then cl∗(cl(X)) and so on until neither
the closure nor coclosure operator adds any new elements of M . The full
closure operator enables one to define a natural equivalence on exactly 3-
separating partitions as follows. Two exact 3-separating partitions {A1, B1}
and {A2, B2} of M are equivalent if {fcl(A1), fcl(B1)} = {fcl(A2), fcl(B2)}.
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The main theorem of [6, Theorem 9.1] says that every 3-connected matroid
M with at least nine elements has a tree decomposition that displays, up
to equivalence, all non-sequential 3-separations. From both an algorithmic
and structural point of view, sequential and equivalent 3-separations are
not problematic. Algorithmically, if one had a rank oracle, then listing all
sequential 3-separations or listing all 3-separations equivalent to a given non-
sequential 3-separation can be done so that each new item on the list is added
in polynomial time. Structurally, such 3-separations can be characterized
in terms of an extension of the usual matroid closure operator. Moreover,
all of the possible structures that relate two equivalent non-sequential 3-
separations as well as all of the possible structures that give rise to sequential
3-separations have been identified [3, 4]. We remark here that, in our first
paper on this subject [6], we omitted mention of the important paper of
Coullard, Gardner, and Wagner [1]. That paper contains precursors for
graphs of many of the ideas that our paper developed for matroids.

This paper will make repeated reference to the results of [6]. In the next
section, the main theorem of the paper is stated after the necessary back-
ground is introduced. In Sections 3–5, we develop properties of 3-separations
and the particular trees we use to display them. The proof of the main result
is given in Section 6, while Section 7 proves some useful consequences of the
earlier results.

2. Main Result.

In this section, we state the main theorem of the paper together with
the main result of [6]. The section begins by introducing the concepts and
terminology needed to make these statements meaningful.

The first lemma is in constant use in our work on the structure of 3-
separations in 3-connected matroids.

Lemma 2.1. Let M be a 3-connected matroid, and let X and Y be 3-
separating subsets of E(M).

(i) If |X ∩ Y | ≥ 2, then X ∪ Y is 3-separating.
(ii) If |E(M) − (X ∪ Y )| ≥ 2, then X ∩ Y is 3-separating.

Flowers. One of the main difficulties in describing the behaviour of 3-
separations in a 3-connected matroid is caused by the presence of crossing
3-separations, where two 3-separations (A1, A2) and (B1, B2) cross if each of
the intersections A1∩B1, A1∩B2, A2∩B1, and A2∩B2 is non-empty. When
each of these intersections contains at least two elements, Lemma 2.1 implies
that each of these intersections is 3-separating. Of course, the union of any
consecutive pair in the cyclic ordering (A1 ∩ B1, A1 ∩ B2, A2 ∩ B2, A2 ∩ B1)
is also 3-separating. This 4-tuple is an example of flower, a fundamental
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and particularly important structure in the study of the 3-separations of a
3-connected matroid.

Let n be a positive integer and let M be a 3-connected matroid. The par-
tition (P1, P2, . . . , Pn) of E(M) is a flower Φ in M with petals P1, P2, . . . , Pn

if, for all i, we have |Pi| ≥ 2, and both Pi and Pi ∪ Pi+1 are 3-separating,
where all subscripts are interpreted modulo n. We say that Φ displays a
3-separating partition (X,Y ) of E(M) if X is a union of petals of Φ. It
is shown in [6, Theorem 4.1] that every flower in a 3-connected matroid is
either an anemone or a daisy. In the first case, all unions of petals are
3-separating; in the second, a union of petals is 3-separating if and only if
the petals are consecutive in the cyclic ordering (P1, P2, . . . , Pn). Observe
that when n ≤ 3, the concepts of an anemone and a daisy coincide, but for
n ≥ 4, a flower cannot be both an anemone and a daisy.

Equivalent flowers and tight and loose petals. Let Φ1 and Φ2 be
flowers of a 3-connected matroid M . A natural quasi ordering on the col-
lection of flowers of M is obtained by setting Φ1 � Φ2 whenever every
non-sequential 3-separation displayed by Φ1 is equivalent to one displayed
by Φ2. If Φ1 � Φ2 and Φ2 � Φ1, we say that Φ1 and Φ2 are equivalent flowers
of M . Hence equivalent flowers display, up to equivalence of 3-separations,
exactly the same non-sequential 3-separations of M . The order of a flower
Φ is the minimum number of petals in a flower equivalent to Φ.

Let Φ be a flower of M . An element e of M is loose in Φ if e ∈ fcl(Pi)−Pi

for some petal Pi of Φ. An element that is not loose is tight. We say that a
petal Pi is loose if all elements in Pi are loose. A tight petal is one that is
not loose, that is one that contains at least one tight element. Lastly, if Φ
has order at least three, then Φ is tight if all of its petals are tight; if Φ has
order t where t ∈ {1, 2}, then Φ is tight if it has exactly t petals.

Local connectivity and flower types. The classes of anemones and
daisies can be further refined using the concept of local connectivity. For
sets X and Y in a matroid M , the local connectivity between X and Y ,
denoted ⊓(X,Y ), is defined to be

⊓(X,Y ) = r(X) + r(Y ) − r(X ∪ Y ).

When M is F-representable and hence viewable as a subset of the vector
space V (r(M), F), the local connectivity ⊓(X,Y ) is precisely the rank of
the intersection of those subspaces in V (r(M), F) that are spanned by X

and Y .

For n ≥ 3, an anemone (P1, P2, . . . , Pn) is called

(i) a paddle if ⊓(Pi, Pj) = 2 for all distinct i, j ∈ {1, 2, . . . , n};
(ii) a copaddle if ⊓(Pi, Pj) = 0 for all distinct i, j ∈ {1, 2, . . . , n}; and
(iii) spike-like if n ≥ 4, and ⊓(Pi, Pj) = 1 for all distinct i, j ∈

{1, 2, . . . , n}.
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Figure 1. A representation of a rank-7 paddle.

Similarly, a daisy (P1, P2, . . . , Pn) is called

(i) swirl-like if n ≥ 4 and ⊓(Pi, Pj) = 1 for all consecutive i and j, while
⊓(Pi, Pj) = 0 for all non-consecutive i and j; and

(ii) Vámos-like if n = 4 and ⊓(Pi, Pj) = 1 for all consecutive i and j,
while {⊓(P1, P3),⊓(P2, P4)} = {0, 1}.

If (P1, P2, P3) is a flower Φ and ⊓(Pi, Pj) = 1 for all distinct i and j, we call
Φ ambiguous if it has no loose elements, spike-like if there is an element in
cl(P1)∩cl(P2)∩cl(P3) or cl∗(P1)∩cl∗(P2)∩cl∗(P3), and swirl-like otherwise.
It is shown in [6] that every flower with at least three petals is one of these
six different types: a paddle, a copaddle, spike-like, swirl-like, Vámos-like,
or ambiguous.

To visualize a flower geometrically, it is useful to think of a collection of
lines in projective space, where along these lines the petals of the flower are
attached. For example, we can obtain a paddle by gluing the petals along
a single common line. Figure 1 represents a 5-petal paddle in which each
petal is a plane with enough structure to make the matroid 3-connected.
The rank of this matroid is 7. Furthermore, Fig. 2 represents a 4-petal
swirl-like flower. Again each petal is a plane. In that figure, the lines of
attachment are the lines spanned by {b1, b2}, {b2, b3}, {b3, b4}, and {b4, b1},
where {b1, b2, b3, b4} is an independent set and each of the elements in this
set may or may not be in the matroid. The rank of this matroid is 8.

Partial 3-trees. The type of tree used in the tree decomposition result
in [6] is called a maximal partial 3-tree. In this subsection, we define such
trees. Let π be a partition of a finite set E. Let T be a tree such that
every member of π labels a vertex of T ; some vertices may be unlabelled
but no vertex is multiply labelled. We say that T is a π-labelled tree; labelled
vertices are called bag vertices and members of π are called bags.

Let G be a subgraph of T having components G1, G2, . . . , Gm. Let Xi

be the union of those bags that label vertices of Gi. Then the subsets of
E displayed by G are X1,X2, . . . ,Xm. In particular, if V (G) = V (T ), then
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Figure 2. A representation of a rank-8 swirl-like flower.

{X1,X2, . . . ,Xm} is the partition of E displayed by G. Let e be an edge
of T . The partition of E displayed by e is the partition displayed by T\e.
In particular, if e = v1v2 for some vertices v1 and v2, then (Y1, Y2) is the
(ordered) partition of E(M) displayed by v1v2 if Y1 is the union of the bags in
the component of T\v1v2 containing v1. Let v be a vertex of T that is not a
bag vertex. Then the partition of E displayed by v is the partition displayed
by T−v. The edges incident with v are in natural one-to-one correspondence
with the components of T − v, and hence with the members of the partition
displayed by v. In what follows, if a cyclic ordering (e1, e2, . . . , en) is imposed
on the edges incident with v, this cyclic ordering is taken to represent the
corresponding cyclic ordering on the members of the partition displayed by
v.

Let M be a 3-connected matroid with ground set E. An almost partial
3-tree T for M is a π-labelled tree, where π is a partition of E such that the
following conditions hold:

(i) For each edge e of T , the partition (X,Y ) of E displayed by e is
3-separating, and, if e is incident with two bag vertices, then (X,Y )
is a non-sequential 3-separation.

(ii) Every non-bag vertex v is labelled either D or A. Moreover, if v is
labelled D, then there is a cyclic ordering on the edges incident with
v.

(iii) If a vertex v is labelled A, then the partition of E displayed by v is
a tight maximal anemone of order at least 3.

(iv) If a vertex v is labelled D, then the partition of E displayed by v,
with the cyclic order induced by the cyclic ordering on the edges
incident with v, is a tight maximal daisy of order at least 3.

By conditions (iii) and (iv), a vertex v labelled D or A corresponds to a
flower of M . The 3-separations displayed by this flower are the 3-separations
displayed by v. A vertex of a partial 3-tree is referred to as a daisy vertex or
an anemone vertex if it is labelled D or A, respectively. A vertex labelled
either D or A is a flower vertex. A 3-separation is displayed by an almost
partial 3-tree T if it is displayed by some edge or some flower vertex of T .
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Figure 3. A rank-6 matroid containing a tight maximal
flower of order 3.

A 3-separation (R,G) of M conforms with an almost partial 3-tree T if
either (R,G) is equivalent to a 3-separation that is displayed by a flower
vertex or an edge of T , or (R,G) is equivalent to a 3-separation (R′, G′)
with the property that either R′ or G′ is contained in a bag of T .

An almost partial 3-tree for M is a partial 3-tree if

(v) every non-sequential 3-separation of M conforms with T .

We now define a quasi order on the set of partial 3-trees for M . Let T1 and
T2 be two partial 3-trees for M . Then T1 � T2 if all of the non-sequential
3-separations displayed by T1 are displayed by T2. If T1 � T2 and T2 � T1,
then T1 is equivalent to T2. A partial 3-tree is maximal if it is maximal with
respect to this quasi order. We shall sometimes use MP3T to abbreviate
‘maximal partial 3-tree’.

Main results. The following theorem is the main result of [6, Theorem 9.1,
Corollary 9.2].

Theorem 2.2. Let M be a 3-connected matroid with |E(M)| ≥ 9. Then M

has a maximal partial 3-tree T . Moreover, every non-sequential 3-separation
of M is equivalent to a 3-separation displayed by T .

Our concern in [6] was to show that, up to equivalence, we could display
all non-sequential 3-separations of a 3-connected matroid in a tree. Having
shown that an MP3T succeeds in doing this, we did not consider the question
of whether such an MP3T is unique. The purpose of this paper is to explore
that question and our main result is a uniqueness theorem. Our initial
investigation of this issue involve considering MP3T’s having the minimum
number of vertices. Subsequently, we looked at a structurally more natural
class of MP3T’s, which we define in the next paragraph. Before doing this,
we note that we shall prove in Lemma 4.4 that, for every tight flower Φ of
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order at least four in a 3-connected matroid M and, for every MP3T T for
M , there is a vertex of T that displays a flower equivalent to Φ. But an
MP3T for M need not display a tight maximal flower of order three. For
example, let M be the 3-connected matroid that is formed by taking three
distinct triangles in M(K4) and, along each, attaching a copy of the Fano
matroid via generalized parallel connection (see Figure 3). Then M has 18
elements and rank 6. One possible MP3T T1 for M consists of a bag vertex
that is labelled by the ground set of M(K4) and is adjacent to exactly three
other bag vertices, each labelled by the elements of one of the copies of F7

that are not in the initial M(K4). We can transform T1 into another MP3T
for M by moving each element of the initial M(K4) into one of the bags
whose elements span it, and then relabelling the resulting empty degree-3
bag vertex as a degree-3 flower vertex.

An MP3T for a 3-connected matroid M is a 3-tree if

(I) for every tight maximal flower of M of order three, there is an equiv-
alent flower that is displayed by a vertex of T ; and

(II) if a vertex v is incident with two edges, e and f , that display equiva-
lent 3-separating partitions, then the other ends of e and f are flower
vertices, v has degree two, and v labels a non-empty bag.

We shall call two edges in a 3-tree twins if they are incident with a common
vertex and display equivalent 3-separating partitions. Note that condition
(II) above implies that if e and f are twins and f and g are twins, then
e = g. We shall prove in Theorem 5.3 that every 3-connected matroid has
an associated 3-tree.

Given a 3-tree T , the reduction R(T ) of T is the unlabelled tree that is
obtained from T by contracting one edge from every pair of twins in T . If an
edge of R(T ) results from such a contraction, we call it a twin-edge. Every
other edge of R(T ) corresponds to a unique edge of T ; such edges will be
called stationary. For each edge e of R(T ), there is a corresponding set of
edges of T consisting of a single edge if e is stationary, and a pair of twins if e

is a twin-edge. Let v be a vertex of R(T ). If v meets only stationary edges,
then there is a unique vertex corresponding to v; if v meets a twin-edge,
then, by (II), there is a unique flower vertex corresponding to v. We shall
identify each vertex of T with the corresponding vertex of R(T ). Thus V (T )
is the disjoint union of V (R(T )) and the set of degree-two bag vertices of T

that meet a pair of twins.

The following is the main result of the paper.

Theorem 2.3. Let T1 and T2 be 3-trees for a 3-connected matroid M with
|E(M)| ≥ 9. Then the reductions of T1 and T2 are isomorphic trees. Indeed,
there is an isomorphism ϕ from V (R(T1)) onto V (R(T2)) such that

(i) ϕ maps the vertices of T1 of degree at least three bijectively onto the
vertices of T2 of degree at least three so that each flower vertex is
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mapped to an equivalent one of the same type and each bag vertex is
mapped to a bag vertex of the same degree; and

(ii) if ϕ maps an edge u1v1 of R(T1) to an edge v2u2 of R(T2), then
the equivalent 3-separations displayed by the one or two edges of T1

corresponding to u1v1 are equivalent to the 3-separations displayed
by the one or two edges of T2 corresponding to u2v2.

In addition, if ϕ maps adjacent flower vertices u1 and v1 of T1 onto non-
adjacent vertices u2 and v2 of T2, then every element in the bag vertex w2

of T2 that is adjacent to u2 and v2 is loose in the flower displayed by u2 or
in the flower displayed by v2, and is also loose in the flower displayed by u1

or the flower displayed by v1.

We remark here that, with a slightly modified definition of ‘3-tree’, a
similar uniqueness result holds if we replace ‘3-tree’ by ‘MP3T with the
minimum number of vertices.’ The basic modification in the definition in-
volves how one treats flowers of order three for which one of the petals is
sequential. We give no further details of that alternative approach.

3. Some Useful Lemmas

Two ordered exact 3-separating partitions (C1,D1) and (C2,D2) are equiv-
alent if fcl(C1) = fcl(C2) and fcl(D1) = fcl(D2). We remark that this ter-
minology differs slightly from that used in [6] where (C1,D1) and (C2,D2)
were defined to be equivalent if {fcl(C1), fcl(D1)} = {fcl(C2), fcl(D2)}. The
modification described above will simplify the exposition here in a number
of places.

The next two lemmas are used frequently. The first follows from [6,
Lemma 3.1(i)] and the second is established in [6, Lemma 3.3].

Lemma 3.1. Let X be an exactly 3-separating set of a matroid M . Then
X is sequential if and only if fcl(E(M) − X) = E(M).

Lemma 3.2. Let (A1, A2) be a non-sequential 3-separation of a 3-connected
matroid M and let (B1, B2) be a 3-separation of M . Then (A1, A2) is equiv-
alent to (B1, B2) if and only if fcl(A1) = fcl(B1).

The elementary proofs of the next two lemmas are omitted.

Lemma 3.3. Let (X1, Y1) and (X2, Y2) be non-sequential 3-separations of
a matroid M . If fcl(X2) ⊇ X1 and fcl(Y2) ⊇ Y1, then (X1, Y1) and (X2, Y2)
are equivalent.

Lemma 3.4. Let (X1, Y1) and (X2, Y2) be crossing 3-separations that are
displayed in an MP3T T . Then T has a vertex at which each of (X1, Y1)
and (X2, Y2) is displayed other than by an edge.
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We also omit the straightforward proof of the first part of the next lemma,
although we do include the proof of the second part.

Lemma 3.5. Let X1,X2, Y1, and Y2 be subsets of the ground set of a 3-
connected matroid M .

(i) If fcl(Xi) = fcl(Yi) for each i, then fcl(X1 ∪ X2) = fcl(Y1 ∪ Y2).
(ii) If (Xi,X

′

i) and (Yi, Y
′

i ) are equivalent non-sequential 3-separations of
M for each i in {1, 2} such that |X1∩X2| ≥ 2 and fcl(X1∪X2) 6= E,
then (X1 ∪ X2,X

′

1 ∩ X ′

2) and (Y1 ∪ Y2, Y
′

1 ∩ Y ′

2) are equivalent non-
sequential 3-separations of M .

Proof. For (ii), we note that, by Lemma 2.1, X1 ∪X2 is 3-separating. Since
fcl(X1 ∪X2) 6= E, we deduce that (X1 ∪X2,X

′

1 ∩X ′

2) is a non-sequential 3-
separation. Moreover, by (i) and Lemma 3.2, this 3-separation is equivalent
to (Y1 ∪ Y2, Y

′

1 ∩ Y ′

2). �

The following lemma, which will be used repeatedly, can be obtained
immediately from [6, Lemma 5.9] by using [6, Corollary 5.10].

Lemma 3.6. Let Φ = (P1, P2, . . . , Pn) be a tight flower in a 3-connected
matroid, where n ≥ 3.

(i) If 2 ≤ j ≤ n − 2, then (P1 ∪ P2 ∪ · · · ∪ Pj , Pj+1 ∪ Pj+2 ∪ · · · ∪ Pn) is
a non-sequential 3-separation.

(ii) If 1 ≤ j ≤ n − 2, then

fcl(P1 ∪P2 ∪ · · · ∪Pj)− (P1 ∪P2 ∪ · · · ∪Pj) ⊆ (fcl(P1)−P1)∪ (fcl(Pj)−Pj)

and every element of (fcl(P1) − P1) ∪ (fcl(Pj) − Pj) is loose. In
particular, if j < i ≤ n, then Pi * fcl(P1 ∪ P2 ∪ · · · ∪ Pj) and
(P1 ∪ P2 ∪ · · · ∪ Pj , Pj+1, . . . , Pn) is a tight flower.

The following observations may help the reader. Let Φ be a tight flower
of degree at least 3. Lemma 3.6(i) says that, for every 3-separation (X,Y )
displayed by Φ in which X contains at least two petals and Y contains at
least two petals, (X,Y ) is non-sequential. Moreover, Lemma 3.6(ii) implies
that if (X1, Y1) and (X2, Y2) are two equivalent 3-separations displayed by Φ,
then (X1, Y1) = (X2, Y2). To see this, suppose that (X1, Y1) and (X2, Y2) are
equivalent 3-separations displayed by Φ but (X1, Y1) 6= (X2, Y2). Without
loss of generality, we may assume that X1 contains no more petals of Φ than
either Y1 or X2, so Y1 contains at least two petals. Since (X1, Y1) 6= (X2, Y2),
it follows that there is a petal P of Φ such that P ⊆ X2−X1, and so P ⊆ Y1.
But fcl(X1) = fcl(X2) and so P ⊆ fcl(X1), contradicting Lemma 3.6(ii).

The following is an immediate consequence of the last lemma.

Corollary 3.7. In a 3-connected matroid M , let (P1, P2, . . . , Pn) be a tight
flower for some n ≥ 4. Then (P1 ∪ P2, P3, . . . , Pn) is also a tight flower in
M .
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The process of taking unions of consecutive petals in a flower may
be iterated to produce another flower. Any such flower obtained from
(P1, P2, . . . , Pn) is a concatenation of (P1, P2, . . . , Pn). The next lemma is
[6, Corollary 5.10].

Lemma 3.8. If Φ is a flower in a 3-connected matroid, then the order of Φ
is the number of petals in any tight flower equivalent to Φ.

Recall that a flower of order one or two is tight if it has one or two petals,
respectively, whereas a flower of order at least three is tight if all of its
petals are tight. This definition means, for example, that a 3-petal flower
Φ in which every petal is tight need not be a tight flower. In particular, if
Φ has either two petals whose union is sequential, or three petals that are
sequential, then Φ has order one. If Φ has exactly two sequential petals and
their union is not sequential, then Φ has order two; and if Φ has at most
one sequential petal, then it has order three and is tight. The next lemma
shows that, for k ≥ 4, a k-petal flower in which every petal is tight behaves
much more predictably.

Lemma 3.9. If Φ is a k-petal flower with k ≥ 4 and every petal of Φ is
tight, then Φ is a tight flower.

Proof. If Φ has order at least three, then the result is an immediate conse-
quence of [6, Lemma 5.8]. Now assume that Φ has order at most two. Then
we may assume that, for some j with 2 ≤ j ≤ k−2, the set P1∪P2∪· · ·∪Pj

is sequential. Thus there is an ordering (x1, x2, . . . , xn) of P1 ∪P2 ∪ · · · ∪Pj

such that, for all i in {1, 2, . . . , n}, the set {x1, x2, . . . , xi} is 3-separating.
Since both P1 and {x1, x2, . . . , xi} are 3-separating, Lemma 2.1 implies
that their intersection is 3-separating. It follows that we may assume that
(x1, x2, . . . , xn) is ordered so that the first |P1| elements are in P1. Repeat-
ing this argument using P1 ∪ P2 instead of P1, we may assume that, in
(x1, x2, . . . , xn), the elements of P1 are immediately followed by those of P2.
We deduce that P2 ⊆ fcl(P1) so P2 is not tight; a contradiction. �

By definition, equivalent flowers display the same sets of non-sequential
3-separations, up to equivalence. The next lemma, which combines several
results from [6], shows that, up to equivalence, equivalent tight flowers also
display the same sets of sequential 3-separations.

Lemma 3.10. Let (P1, P2, . . . , Pn) be a tight maximal flower Φ in a 3-
connected matroid M and let (Q1, Q2, . . . , Qm) be a tight maximal flower
Ψ of M that is equivalent to Φ. Then m = n and there is a permutation
α of {1, 2, . . . , n} such that fcl(Pi) = fcl(Qα(i)) for all i. Thus, for every
3-separation displayed by Φ, there is an equivalent 3-separation displayed by
Ψ.

Proof. Let Φ have order t. If t ∈ {1, 2}, then, since Ψ and Φ are equivalent
and tight, t = m = n and the lemma follows. Now suppose t ≥ 3. Then
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t = m = n by the last lemma. By [6, Theorem 5.1, Lemmas 5.3 and 5.8],
if τ is the set of tight elements of Φ, then τ is the set of tight elements of
Ψ. Moreover, there is a permutation α of {1, 2, . . . , n} such that fcl(Pi) =
fcl(τ ∩ Pi) = fcl(τ ∩ Qα(i)) = fcl(Qα(i)) for all i. �

The next two lemmas concern a non-sequential 3-separation that is dis-
played in an MP3T for a 3-connected matroid M . They show that if (X,Y )
is displayed by an edge in T , then every other MP3T for M has an edge
displaying a 3-separation equivalent to (X,Y ); and, if (X,Y ) is not dis-
played by an edge of T , then no other MP3T for M has an edge displaying
a 3-separation equivalent to (X,Y ).

Lemma 3.11. Let T1 and T2 be maximal partial 3-trees for a 3-connected
matroid M . If (X1, Y1) is a non-sequential 3-separation that is displayed
by an edge of T1, then there is an edge of T2 that displays a 3-separation
(X2, Y2) that is equivalent to (X1, Y1).

Proof. Certainly T2 displays a 3-separation (X2, Y2) that is equivalent to
(X1, Y1). Assume that (X2, Y2) is not displayed by an edge of T2. Then T2

has a vertex that displays a tight flower (P1, P2, . . . , Pn) such that X2 = P1∪
P2∪· · ·∪Pj and Y2 = Pj+1∪Pj+2∪· · ·∪Pn for some j with 2 ≤ j ≤ n−2. Let
(Z2,W2) be a partition of E(M) with Z2 = Pj−s+1∪Pj−s+2∪· · ·∪Pj+t, where
s and t are non-negative integers, such that Pj , Pj+1 ⊆ Z2 and P1, Pn ⊆ W2.
Then, by Lemma 3.6, (Z2,W2) is a non-sequential 3-separation of M and an
equivalent 3-separation (Z1,W1) must be displayed in T1. Then, as (X1, Y1)
is displayed by an edge in T1, without loss of generality, Z1 ⊆ X1 and
W1 ⊇ Y1. Thus fcl(Z2) = fcl(Z1) ⊆ fcl(X1) = fcl(X2). Hence Pj+1 ⊆
fcl(P1 ∪ P2 ∪ · · · ∪ Pj); a contradiction to Lemma 3.6. �

Lemma 3.12. Let T1 and T2 be maximal partial 3-trees for a 3-connected
matroid M . If (X1, Y1) is a 3-separation that is displayed by a vertex of T1

but not by an edge of T1, then there is a unique 3-separation (X2, Y2) that is
equivalent to (X1, Y1) and is displayed in T2. Moreover, (X2, Y2) is displayed
by a vertex and not by an edge.

Proof. As T2 is an MP3T, there is a 3-separation (X2, Y2) that is equivalent
to (X1, Y1) and is displayed by T2. By Lemma 3.11, if (X2, Y2) is displayed by
an edge, then T1 has an edge that displays a 3-separation (X3, Y3) equivalent
to (X2, Y2) and hence to (X1, Y1). Then, by symmetry, we may assume that
X1 ⊆ X3 or Y1 ⊆ X3. The latter implies the contradiction that fcl(X3) ⊇
Y1 ∪ X1 = E. Hence X1 ⊆ X3. Now there is a petal P of the flower
of T1 that displays (X1, Y1) that is disjoint from both X1 and Y3. Since
fcl(X1) = fcl(X3), it follows that P ⊆ fcl(X1), so, by Lemma 3.6, P is loose;
a contradiction. We conclude that each 3-separation equivalent to (X1, Y1)
that is displayed by T2 is displayed by a vertex but not by an edge. If there
is more than one such 3-separation, then a similar argument to the above
yields a contradiction. �
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From now on, we shall say that a 3-separating partition of a 3-connected
matroid is strictly displayed by a vertex v of an MP3T T for M if it is dis-
played by v but not by an edge incident with v. Observe that this definition
implies that when a 3-separating partition is strictly displayed by a vertex,
that vertex must have degree at least four.

4. Flowers and Maximal Partial 3-Trees

In this section, we prove some properties of flowers and maximal partial
3-trees that will be used in the proof of the main result but are also of
independent interest. Throughout the discussion here, whenever we refer to
an MP3T or a 3-tree T , it will be implicit that T is an MP3T or a 3-tree
for a 3-connected matroid M . When we say that a flower vertex is tight, we
shall mean that the flower displayed by v is tight.

We are interested in how a tight maximal flower Φ in a 3-connected ma-
troid M shows up in an MP3T for M . We begin with the case when Φ has
order 3, which differs from the higher-order case.

Lemma 4.1. Let (P1, P2, P3) be a tight maximal flower Φ in a 3-connected
matroid M where none of P1, P2, and P3 is sequential. Let T be a maxi-
mal partial 3-tree for M . Then there is a degree-3 vertex of T at which 3-
separations equivalent to each of (P1, E−P1), (P2, E−P2), and (P3, E−P3)
are displayed.

Proof. For each i in {1, 2, 3}, let (P ′

i , E −P ′

i ) be a 3-separation displayed by
T that is equivalent to (Pi, E −Pi). Let τ be the set of tight elements of Φ.
Then, for distinct i and j, we have fcl(P ′

i ) = fcl(Pi) = fcl(Pi ∩ τ), and Pj ∩ τ

avoids fcl(P ′

i ). Thus Pi ∩ τ ⊆ P ′

i .

Suppose P ′

1 ∩ P ′

2 6= ∅. Then P ′

1 and P ′

2 are displayed at a flower vertex v

of T and P ′

1 ∩ P ′

2 is a union of petals of the corresponding flower Φv. Since
P ′

1 − P ′

2 ⊇ P1 ∩ τ , we have P ′

1 ∩ P ′

2 ⊆ fcl(P ′

1 − P ′

2). As P ′

1 − P ′

2 is also a
3-separating set that is a union of petals of Φv, it follows by Lemma 3.6 that
the petals in P ′

1∩P ′

2 are loose in Φv; a contradiction. Thus P ′

1∩P ′

2 = ∅ and,
by symmetry, we deduce that P ′

1, P
′

2, and P ′

3 are disjoint.

For each i in {1, 2, 3}, let vi be a vertex of T at which a 3-separation
equivalent to (Pi, E − Pi) is displayed and choose these vertices so that the
distance between v1 and v2 is minimized. Assume that v1 6= v2 and let w

be the vertex of the path from v1 to v2 that is the minimum distance in T

from v3. Without loss of generality, we may assume that w 6= v2. Let e2

be the edge that meets w and lies on the path from w to v2. The partition
(W,E − W ) displayed by e2 has P ′

2 in one set and P ′

1 ∪ P ′

3 in the other.
By Lemma 3.3, it follows that (W,E − W ) is equivalent to (P2, E − P2)
since fcl(P ′

1 ∪ P ′

3) = fcl(P1 ∪ P3) = fcl(E − P2). Hence the choice of v2 is
contradicted. We conclude that v1 = v2.
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Now assume that v3 6= v1, and consider the edge e3 that meets v1 and lies
on the path from v1 to v3. The 3-separation (E − P ′′

3 , P ′′

3 ) that e3 displays
has P ′

1 ∪ P ′

2 contained in the first set and P ′

3 contained in the second so, by
Lemma 3.3, it is equivalent to (E − P ′

3, P
′

3) and we may replace P ′

3 by P ′′

3 .

We may now assume that each of (P ′

1, E−P ′

1), (P
′

2, E −P ′

2), and (P ′

3, E −
P ′

3) is displayed at v1. Suppose that v1 is incident with an edge f displaying
a 3-separation (Z,E − Z) with P ′

1 ∪ P ′

2 ∪ P ′

3 ⊆ Z. Now

fcl(P ′

1) ∪ fcl(P ′

2) ∪ fcl(P ′

3) ⊇ P1 ∪ P2 ∪ P3 = E.

Hence (Z,E −Z) is sequential, so f does not exist when v1 is a bag vertex.
Nor does it exist when v1 is a flower vertex for, in that case, by applying
Lemma 3.6 to each of fcl(P ′

1), fcl(P ′

2), and fcl(P ′

3), we deduce that E − Z is
a loose petal of this flower. We conclude that, when v1 is a bag vertex, it
has degree 3, and, when v1 is a flower vertex, P ′

1 ∪ P ′

2 ∪ P ′

3 = E.

Assume that the flower Ψ displayed by v1 is (Q1, Q2, . . . , Qk) where k ≥ 4.
We may suppose that P ′

1 = Q1∪Q2∪· · ·∪Qt and P ′

2 = Qt+1∪Qt+2∪· · ·∪Qt+s

for some t ≥ 2. Then Φ � Ψ but (Qt ∪ Qt+1, E − (Qt ∪ Qt+1)) is a non-
sequential 3-separation that is displayed by Ψ but not by Φ, so Φ is not a
maximal flower. This contradiction implies that k = 3. �

Lemma 4.2. Let (P1, P2, P3, P4) be a tight flower in a 3-connected matroid
M . Let (A,B) and (C,D) be 3-separations in M equivalent to (P1∪P2, P3∪
P4) and (P2 ∪ P3, P4 ∪ P1), respectively. Then (A,B) and (C,D) cross.

Proof. By Lemma 3.6, fcl(P3 ∪ P4) = fcl(P3) ∪ fcl(P4). Since fcl(P3 ∪ P4) =
fcl(B), we deduce that the tight elements of P1 are in A. Likewise, these tight
elements are in D. Hence A∩D 6= ∅. The lemma follows by symmetry. �

Lemma 4.3. Let Ψ and Φ be tight flowers, (P1, P2, . . . , Pm) and
(Q1, Q2, . . . , Qn), in a 3-connected matroid and suppose that Ψ � Φ.

(i) If (P1 ∪ · · ·∪Pj , Pj+1∪ · · · ∪Pm) and (Q1 ∪ · · · ∪Qk, Qk+1∪ · · · ∪Qn)
are equivalent, where 2 ≤ j ≤ m− 2, then j ≤ k and m− j ≤ n− k.

(ii) The order of Ψ is at most that of Φ.

Proof. To prove (i), by symmetry, it suffices to show that j ≤ k. We argue
by induction on j. If j = 2, let Ψ′ = (P1, P2, P3, P4∪· · ·∪Pn). Then Ψ′ � Ψ
and, by Corollary 3.7, Ψ′ is tight. Now Ψ′ � Φ, so there are 3-separations
equivalent to (P1∪P2, E−(P1∪P2)) and (P2∪P3, E−(P2∪P3)) displayed by
Φ and these must cross. Hence P1∪P2 is not displayed by a single petal of Φ
so j = 2 ≤ k. Now assume that if 2 ≤ j < t ≤ m− 2, then P1 ∪P2 ∪ · · · ∪Pj

is displayed by at least j petals of Φ. Thus each of P1 ∪ P2 ∪ · · · ∪ Pt−1 and
P2∪P3∪· · ·∪Pt is displayed by at least t−1 petals of Φ. These sets of petals
do not coincide otherwise Pt ⊆ fcl(P1∪P2∪· · ·∪Pt−1) which, by Lemma 3.6,
contradicts the fact that Pt is tight. We deduce that P1 ∪ P2 ∪ · · · ∪ Pt is
displayed by at least t petals of Φ, and (i) follows by induction.
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For (ii), observe first that if Ψ has order one or two, then its order is at
most that of Φ. If Ψ has order 3, then, by Lemma 3.8, m = 3 so Ψ displays
at least two unordered non-sequential 3-separations. Hence so does Φ. Thus
Φ has order at least three. If Ψ has order at least four, then we can apply
(i) to get that m ≤ n, which, by Lemma 3.8, implies the required result. �

Lemma 4.4. Let T be an MP3T for a 3-connected matroid M and let Φ be
a tight maximal flower of M of order at least four. Then there is a vertex v

of T that displays a flower equivalent to Φ.

Proof. Let Φ be the flower (P1, P2, . . . , Pn) and consider an arbitrary con-
catenation (Q1, Q2, Q3, Q4) of Φ to a 4-petal flower. By Corollary 3.7, this
flower is tight. The MP3T T displays 3-separations (A,B) and (C,D) that
are equivalent to (Q1 ∪ Q2, Q3 ∪ Q4) and (Q2 ∪ Q3, Q4 ∪ Q1), respectively.
By Lemma 4.2, (A,B) and (C,D) cross and, by Lemma 3.4, T has a ver-
tex at which each of (A,B) and (C,D) is strictly displayed. Moreover, by
Lemma 3.12, the only 3-separations equivalent to (A,B) or (C,D) that
are displayed by T are (A,B) and (C,D) themselves. In particular, if
(Q1, Q2, Q3, Q4) = (P1, P2, P3, P4 ∪ · · · ∪ Pn), then 3-separations equiva-
lent to (P1 ∪ P2, E − (P1 ∪ P2)) and (P2 ∪ P3, E − (P2 ∪ P3)) are strictly
displayed at a common vertex v of T . Similarly, a 3-separation equivalent
to (P3 ∪ P4, E − (P3 ∪ P4)) is strictly displayed at v. Extending this, we
deduce that, for all distinct i and j such that (Pi ∪ Pj , E − (Pi ∪ Pj)) is a
3-separation of M , there is an equivalent 3-separation (Rij , E−Rij) strictly
displayed at v. Provided that fcl(P1∪P2∪P3) 6= E, it follows by Lemma 3.5
that (R12 ∪R23, E− (R12 ∪R23)) is a non-sequential 3-separation equivalent
to (P1 ∪P2 ∪P3, E− (P1 ∪P2 ∪P3)). Since R12 ∪R23 is a 3-separating union
of petals of the flower Φv displayed by v, it follows that (R12 ∪ R23, E −
(R12 ∪ R23)) is displayed at v, possibly by a single edge. By continuing in
this way, we deduce that if (Pi1 ∪ Pi2 ∪ · · · ∪ Pik , E − (Pi1 ∪ Pi2 ∪ · · · ∪ Pik))
is a 3-separation of M where 2 ≤ k ≤ n − 2, then there is an equivalent
3-separation displayed at v. Finally, if, for example, (P2 ∪ P3 ∪ · · · ∪ Pn, P1)
is a non-sequential 3-separation, then, as there are 3-separations equivalent
to each of (P2 ∪ P3 ∪ · · · ∪ Pn−1, Pn ∪ P1) and (P3 ∪ P4 ∪ · · · ∪ Pn, P1 ∪ P2)
displayed at v, Lemma 3.5 implies that there is a 3-separation equivalent to
(P2 ∪ P3 ∪ · · · ∪ Pn, P1) displayed at v. We conclude that Φ � Φv. But Φ is
a maximal flower, so Φ and Φv are equivalent. �

Corollary 4.5. Let T and T ′ be maximal partial 3-trees for a 3-connected
matroid. Then there is a bijection ϕ between the flower vertices of T of
degree at least four and the flower vertices of T ′ of degree at least four such
that the flower displayed by v is equivalent to that displayed by ϕ(v).

Proof. If Φ is a tight maximal flower displayed at a vertex v of T of degree at
least four, then, by Lemma 4.4, there is a vertex v′ of T ′ that displays a tight
maximal flower Φ′ equivalent to Φ. By Lemma 3.8, Φ and Φ′ have the same
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Figure 4. The 3-tree T1.

number of petals, so v and v′ have the same degree. Thus, corresponding to
each flower vertex of T of degree at least four, there is a flower vertex of T ′ of
the same degree displaying an equivalent flower. By symmetry, every flower
vertex of T ′ of degree at least four has a corresponding flower vertex of T .
The fact that this correspondence is one-to-one is an immediate consequence
of Lemma 3.12. �

5. 3-Trees

The first theorem of this section shows that every 3-connected matroid
has a corresponding 3-tree. But we begin the section with an example to
show how 3-trees for a 3-connected matroid can differ from each other and
from MP3T’s with the minimum number of vertices. For n ≥ 3 and k ≥ 2,
the free (n, k)-swirl is the matroid that is obtained by beginning with a
basis {1, 2, . . . , n}, adding k points freely on each of the n lines spanned
by {1, 2}, {2, 3}, . . . , {n, 1}, and then deleting {1, 2, . . . , n}. The usual free
n-swirl coincides with the free (n, 2)-swirl. We observe that, when n+k > 5,
the free (n, k)-swirl can be viewed as a swirl-like flower whose n petals consist
of the sets of k points that were freely placed on the n lines above. The spine
of a paddle (P1, P2, . . . , Pn) is the set cl(P1) ∩ cl(P2) ∩ · · · ∩ cl(Pn), which
coincides with each of the sets cl(Pi) ∩ cl(Pj) with 1 ≤ i < j ≤ n.

Begin with a free (5, 4)-swirl S = (A,B,C,D,L), where each of A, B, C,
D, and L is a line of S. Now use L as the spine of a paddle P and attach
three petals X, Y , and Z to this spine making each of X, Y , and Z a free
(4, 4)-swirl with X = (X1,X2,X3, L) and Y and Z defined similarly.

One choice for an MP3T for this matroid M is to begin with a bag vertex
v for L adjacent to a flower vertex s corresponding to the swirl S, where s has
degree 5 and has bag vertices labelled by A, B, C, D, and L as its neighbours.
The vertex v is also adjacent to a flower vertex p corresponding to the paddle
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Figure 5. The 3-tree T2.

P ; and p is also adjacent to flower vertices x, y, and z corresponding to the
swirls X, Y , and Z. Finally, x is adjacent to three bag vertices corresponding
to the petals X1, X2, and X3; and one has a similar configuration at each
of y and z. The resulting MP3T is the tree T1 shown in Fig. 4, where large
open circles represent bag vertices. Clearly, T1 is a 3-tree. It is not difficult
to see that T1 has the minimum number of vertices among possible MP3T’s
for M . Indeed, all edges of T1 display inequivalent 3-separations except for
the edges vs and vp. Moreover, the crossing 3-separations of M force each of
the flower vertices of T1 and the only loose elements in any of these flowers
are the elements of L, which are loose in the paddle P . These elements
cannot be placed in any of the bag vertices A, B, C, D, X1, X2, X3, Y1, Y2,
Y3, Z1, Z2, or Z3. Hence T1 must have at least one additional bag vertex
to accommodate the elements of L. We conclude that T1 has the minimum
number of vertices among MP3T’s for M .

Now we can modify the tree T1 and place the elements of L elsewhere in
the tree. First replace the 2-edge path from p to s by a single edge. Then
take the edge px and subdivide it inserting a new bag vertex v′ labelled by
L. This gives a new MP3T T2 as shown in Fig. 5 with the same number of
vertices as T1. Moreover, T2 is also a 3-tree for M so we have now shown
that 3-trees need not be unique. However, observe that the reductions of T1

and T2 are isomorphic.

We can obtain another 3-tree for M by leaving one element of L in its
original bag v and then adding new bags by subdividing each of px, py, and
pz and putting one element of L in each of these new bags. This new tree
T3 is a 3-tree for M but it certainly does not have the minimum number of
vertices among MP3T’s for M .
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Although MP3T’s with the minimum number of vertices need not be
3-trees, they do satisfy (II) for a 3-tree. To verify this, we shall use the
following preliminary result.

Lemma 5.1. Let e and f be edges of a maximal partial 3-tree T , and let e

and f both be incident with a vertex v of degree at least three. If e and f

display the 3-separating partitions (Xe, Ye) and (Xf , Yf ), respectively, where
Xf ⊆ Ye, then fcl(Xe) + Xf .

Proof. If v is a flower vertex, then v is tight, so fcl(Xe) + Xf . Hence we may
assume that v is a bag vertex. Let vf be the end of f that is different from
v. If vf is a flower vertex, then vf is tight having Xe contained in a petal
and Xf as the union of the other petals; so fcl(Xe) + Xf . If vf is a bag
vertex, then f displays a non-sequential 3-separation, so fcl(Xe) + Xf . �

Lemma 5.2. Let T be a maximal partial 3-tree for a 3-connected matroid
M with the minimum number of vertices. Then T satisfies (II) for a 3-tree.

Proof. Suppose that a vertex v of T is incident with a pair of twins e and
f . Assume that v has degree at least three and let Xe, Xf , and Xg be,
respectively, the subsets of E displayed by the components of T\e, T\f, and
T\g that avoid v, where g is an edge of T incident with v that is different from
e and f . Then Xf ⊆ E−Xe so, by Lemma 5.1, fcl(Xe) + Xf . Since e and f

are twins, we deduce that (Xe, E −Xe) is equivalent to (E −Xf ,Xf ). Thus
fcl(Xf ) ⊇ E − Xe ⊇ Xg. Since Xg ⊆ E − Xf , this contradicts Lemma 5.1.
Hence v has degree two and so v labels a bag vertex.

If v labels an empty bag, then we can contract one of the edges incident
with v to obtain an MP3T with fewer vertices than T . Hence v labels a
non-empty bag. Now suppose that ve, the end of e other than v, labels
a bag vertex. Then by contracting e from T , and making the vertex that
results from identifying ve and v into a bag vertex labelled by the union of
the labels on ve and v, we obtain a π-labelled tree. Moreover, since e and f

are twins, this π-labelled tree is also an MP3T for M . But this new MP3T
has fewer vertices than T . Hence the ends of e and f different from v both
label flower vertices. �

Theorem 5.3. If M is a 3-connected matroid with at least nine elements,
then M has a 3-tree.

Proof. Let T be an MP3T for M satisfying (II). Such an MP3T exists by
Lemma 5.2. By Lemma 4.4, T displays all tight maximal flowers of order
at least four. Choose T so that it displays the maximum number of tight
maximal flowers of M of order 3. Suppose that M has a tight maximal flower
Φ for which no equivalent flower is displayed by T . Let Φ = (P1, P2, P3).

Suppose first that all of P1, P2, and P3 are non-sequential. Then, by
Lemma 4.1, T has a degree-3 vertex v at which 3-separations equivalent to
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(P1, E−P1), (P2, E−P2), and (P3, E−P3) are displayed. By assumption, v

is not a flower vertex so it is a bag vertex. Let P ′

1, P
′

2, and P ′

3 be the unions of
the bag labels in the three components of T\v where (P ′

i , E−P ′

i ) is equivalent
to (Pi, E−Pi). Let V label the bag vertex v. Then V = E(M)−(P ′

1∪P ′

2∪P ′

3)
and, since E = P1 ∪P2 ∪P3 and fcl(Pi) = fcl(P ′

i ) for each i, each element of
V is in fcl(P ′

1) ∪ fcl(P ′

2) ∪ fcl(P ′

3). For each i, let viv be the edge of T that
displays (P ′

i , E − P ′

i ). Now modify T as follows. If the set V ∩ fcl(P ′

1) is
non-empty, then subdivide the edge vv1 adding a new bag vertex u1 labelled
by that set. If the set [V ∩ fcl(P ′

2)] − fcl(P ′

1) is non-empty, then subdivide
the edge vv2 adding a new bag vertex u2 labelled by that set. Finally,
if [V ∩ fcl(P ′

3)] − [fcl(P ′

1) ∪ fcl(P ′

2)] is non-empty, then subdivide the edge
vv3 adding a new bag vertex u3 labelled by that set. In the resulting π-
labelled tree, relabel v as a flower vertex. The resulting π-labelled tree is
an MP3T and v displays a flower equivalent to Φ. For each i such that ui

exists, the edges viui and uiv display equivalent 3-separations. If vi labels
a bag vertex, then contract the edge viui labelling the resulting composite
vertex by the union of the labels on vi and ui. After these contractions,
we obtain an MP3T T ′ that satisfies (II), displays all of the tight maximal
flowers displayed by T and also displays a flower equivalent to Φ. Thus T ′

contradicts the choice of T .

We may now assume that P1 and P2 are non-sequential but P3 is sequen-
tial. Then T has vertices v1 and v2 at which 3-separations (P ′

1, E −P ′

1) and
(P ′

2, E−P ′

2) are displayed, where (P ′

i , E−P ′

i ) is equivalent to (Pi, E−Pi). We
choose these vertices so that the distance between v1 and v2 is minimized.
Suppose first that v1 = v2. Assume that this vertex is a flower vertex v and
Φv is the corresponding flower. Suppose that v has degree at least four. Then
Φv certainly displays a pair of crossing 3-separations. Because (P1, E − P1)
and (P2, E − P2) do not cross, it follows by Lemma 4.2 that Φv displays
a non-sequential 3-separation that is not displayed by Φ, contradicting the
maximality of Φ. Hence, when v is a flower vertex, it has degree 3. In that
case, Φv is equivalent to Φ because the non-sequential 3-separations they
display coincide up to equivalence since fcl(P ′

1 ∪ P ′

2) = fcl(P1 ∪ P2) = E.
This contradiction implies that we may assume that v is a bag vertex. Then
every edge incident with v displays a non-sequential 3-separation. Since
fcl(P ′

1 ∪ P ′

2) = E, we deduce that v has degree 2. Let v be labelled by V .
Then V contains all the tight elements of P3 so |V | ≥ 2. In this case, we
modify T by creating a new bag vertex v′ labelled by V , adding an edge vv′,
and relabelling v as a flower vertex. The new π-labelled tree T ′ is easily seen
to be an MP3T satisfying (II). Since a flower equivalent to Φ is displayed
by v in T ′, we deduce that T ′ contradicts the choice of T .

We may now suppose that v1 6= v2. Since fcl(P ′

1 ∪ P ′

2) = E, there is an
ordering x1, x2, . . . , xm of E − (P ′

1 ∪P ′

2) such that P ′

1 ∪P ′

2 ∪ {x1, x2, . . . , xk}
is 3-separating for all k in {0, 1, . . . ,m}. Let u1u2 be an edge on the path
between v1 and v2, and let (U1, U2) be the partition of E displayed by u1u2
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where P ′

i ⊆ Ui. As {xm−2, xm−1, xm} is a triangle or a triad, these last three
elements can be reordered so that, without loss of generality, {xm−1, xm} ⊆
U2. Then, since U1 is 3-separating, we deduce, by repeated applications of
Lemma 2.1, that each of P ′

1, P
′

1 ∪ x′

1, P
′

1 ∪ x′

1 ∪ x′

2, . . . , P
′

1 ∪ x′

1 ∪ x′

2 ∪ · · · ∪ x′

n

is 3-separating where x′

1, x
′

2, . . . , x
′

n is the ordering induced on U1 − P ′

1 by
x1, x2, . . . , xm. We conclude that U1 ⊆ fcl(P ′

1). Hence u1u2 displays a 3-
separation equivalent to (P ′

1, E − P ′

1). By replacing v1 by u2, we obtain a
contradiction. �

Next we show that two edges of a 3-tree that display equivalent 3-
separating partitions must be twins.

Lemma 5.4. Let e and f be distinct edges of a 3-tree T . If e and f display
equivalent 3-separating partitions, then T has a degree-2 bag vertex that is
incident with both e and f .

Proof. Take a shortest path R in T that uses both e and f . Let R have ends
ve and vf that are incident with e and f , respectively. Let {Xe,Xf ,X3}
be the partition of E(M) displayed by T\{e, f}, where ve and vf are in the
components of this graph corresponding to Xe and Xf , respectively. Assume
that the interior of R contains a vertex u of degree at least three. Let e′

and f ′ be the edges on the veu- and vfu-paths that are incident with u.
Let g′ be a third edge incident with u. Then, as the 3-separating partitions
displayed by e and f are equivalent, fcl(Xe) contains those elements of E in
the bags of the component of T\g′ that does not contain u. This contradicts
Lemma 5.1. Thus u and every other vertex in the interior of R has degree
2 and so is a bag vertex.

Suppose that u is not the unique interior vertex of R. Since the 3-
separating partitions displayed by e and f are equivalent, fcl(Xe) ⊇ X3,
and so the two edges incident with u display equivalent 3-separating par-
titions. But u is adjacent to at least one bag vertex, which contradicts
condition (II) defining a 3-tree. We conclude that u is the unique vertex in
the interior of R. �

Lemma 5.5. If (X1, Y1) is a sequential 3-separating partition displayed in
a 3-tree T and (X2, Y2) is an equivalent 3-separating partition displayed by
T , then (X2, Y2) = (X1, Y1).

Proof. By Lemma 3.6, we may assume that (X1, Y1) is displayed by an edge,
say e, of T because (X1, Y1) is sequential and every flower vertex of T is tight.
We may also assume that X1 labels a bag vertex and that it is joined by an
edge e1 to a flower vertex v1 of T . Evidently (X2, Y2) must also be displayed
by an edge, say e2, of T . Since e1 is not incident with a degree-2 bag vertex
of T , it follows, by Lemma 5.4, that e2 = e1. �

The next lemma was proved in [4, Lemma 4.1].
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Lemma 5.6. Every 3-separation of a sequential matroid is sequential.

Lemma 5.7. If a 3-connected matroid M is sequential and T is a 3-tree for
M , then T consists of a single bag vertex.

Proof. By the last lemma, M has no non-sequential 3-separations. Thus T

has no flower vertices of degree 3 and, by Lemma 3.6, none of degree 4 or
more. Hence every edge of T joins two bag vertices. But such edges display
non-sequential 3-separations. Thus T consists of a single bag vertex. �

Lemma 5.8. Let v be a bag vertex of degree at least two in a 3-tree T . Then
every 3-separation displayed by an edge incident with v is non-sequential.

Proof. Let e be an edge of T incident with v and let u be the other end
of e. If u labels a bag vertex, then e certainly displays a non-sequential
3-separation. Therefore suppose that u labels a flower vertex of T . Let
(U, V ) be the 3-separation displayed by uv. As u displays a tight flower, U

is not sequential. If V is sequential, then pick an edge f incident with v but
different from e. Arguing as above, we deduce that the other end of f must
be a flower vertex and hence must have degree at least three. But, since V

is sequential, this flower cannot be tight; a contradiction. �

Lemma 5.9. Let (X1, Y1) and (X2, Y2) be equivalent 3-separating partitions
that are displayed in a 3-tree T . Then either

(i) X1 = X2 and Y1 = Y2; or
(ii) (X1, Y1) and (X2, Y2) are displayed by edges that meet a common

degree-2 bag vertex and whose other ends are flower vertices.

Proof. Assume that neither (i) nor (ii) holds. By Lemma 5.5, we may assume
that (X1, Y1) and (X2, Y2) are non-sequential otherwise (i) holds. Moreover,
by Lemma 5.4, we may assume that one of (X1, Y1) and (X2, Y2), say the
latter, is strictly displayed by a vertex. Then, applying Lemma 3.12 taking
T1 = T2 = T , we deduce that (X2, Y2) = (X1, Y1). �

Let T be a 3-tree for a 3-connected matroid M and let v be a bag vertex
of T . If v has degree at least 3, then, by Lemmas 5.8 and 5.9, every edge
incident with v displays a non-sequential 3-separation and no pair of such
3-separations are equivalent.

Lemma 5.10. Let T be a 3-tree for a non-sequential 3-connected matroid
M . Suppose that (X,Y ) is a sequential 3-separation of M displayed by T .
Then (X,Y ) is displayed by a pendant edge of T that is incident with a
flower vertex.

Proof. By Lemma 3.6, if (X,Y ) is displayed by a flower vertex of T , then
(X,Y ) is displayed by an edge incident with this vertex. We deduce that
(X,Y ) is indeed displayed by an edge, say e, of T . By Lemma 5.8, e is not
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incident with a bag vertex of degree at least two. Thus, if e = uv, then each
of u and v is either a bag vertex of degree one, or a flower vertex. If both
u and v are bag vertices, then (X,Y ) is non-sequential; a contradiction. If
both u and v are flower vertices, then, as (X,Y ) is sequential, u or v is not
tight; a contradiction. We conclude that the lemma holds. �

Recall that a 3-separating partition of a 3-connected matroid is strictly
displayed by a vertex of an MP3T if it is displayed by a vertex but not by
an incident edge.

Lemma 5.11. Let T1 and T2 be 3-trees for a 3-connected matroid M . Let
(X1, Y1) be a non-sequential 3-separation that is strictly displayed by a ver-
tex v1 of T1. Let Φ be the flower at v1, and let (W1, Z1) be a 3-separation
displayed by v1 that crosses (X1, Y1). Then there are unique 3-separations,
(X2, Y2) and (W2, Z2), that are equivalent to (X1, Y1) and (W1, Z1), respec-
tively, and are displayed by T2. Moreover, (X2, Y2) and (W2, Z2) are strictly
displayed by the same vertex of T2.

Proof. As (W1, Z1) crosses (X1, Y1), the former is strictly displayed by v1.
By Corollary 3.12, there are 3-separations (X2, Y2) and (W2, Z2) that are
equivalent to (X1, Y1) and (W1, Z1), respectively, and are strictly displayed
by vertices v2 and v3, respectively, of T2. Assume that v2 6= v3. Then,
without loss of generality, W2 ⊆ X2 and Z2 ⊇ Y2. Now W1 ∩ Y1 contains a
petal P of Φ, so

P ⊆ fcl(W1) = fcl(W2) ⊆ fcl(X2) = fcl(X1).

Thus P ⊆ fcl(X1) − X1, so, by Lemma 3.6, P is loose; a contradiction. �

Lemma 5.12. Let T1 and T2 be 3-trees for a 3-connected matroid M . Let
(X1, Y1) and (U1, V1) be inequivalent non-sequential 3-separations such that
both are strictly displayed by the same vertex v1 of T1. Then there are
unique 3-separations, (X2, Y2) and (U2, V2), that are equivalent to (X1, Y1)
and (U1, V1), respectively, and are displayed by T2. Moreover, (X2, Y2) and
(U2, V2) are strictly displayed by the same vertex of T2.

Proof. By Corollary 3.12, there are 3-separations, (X2, Y2) and (U2, V2),
that are equivalent to (X1, Y1) and (U1, V1), respectively, and are strictly
displayed by vertices v2 and v3, respectively, of T2. Moreover, (X2, Y2) and
(U2, V2) are unique. Assume that v2 6= v3.

Without loss of generality, U2 ⊆ X2 and V2 ⊇ Y2. Then fcl(U1) =
fcl(U2) ⊆ fcl(X2) = fcl(X1). If U1 contains a petal of the flower Φ at v1

that is not in X1, then that petal is loose; a contradiction to Lemma 3.6.
Hence U1 ⊆ X1 and so Y1 ⊆ V1. As (X1, Y1) and (U1, V1) are inequivalent,
U1 $ X1 and Y1 $ V1. Thus there is an ordering (P1, P2, . . . , Pn) of the
petals of Φ such that X1 = P1 ∪P2 ∪ · · · ∪Pj and U1 = Ps ∪Ps+1 ∪ · · · ∪Pt,
where 2 ≤ j ≤ n − 2 and 1 ≤ s ≤ t − 1 ≤ j − 1. As U1 6= X1, we may
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assume that s ≥ 2. Now (Pn ∪ P1 ∪ · · · ∪ Ps, E − (Pn ∪ P1 ∪ · · · ∪ Ps)) is a
non-sequential 3-separation of M , and so there is an equivalent 3-separation
that is strictly displayed by a vertex v4 of T2.

By Lemma 5.11 applied to (Pn ∪ P1 ∪ · · · ∪ Ps, E − (Pn ∪ P1 ∪ · · · ∪ Ps))
and (X1, Y1), we deduce that v4 = v2. Applying the same lemma to (Pn ∪
P1 ∪ · · · ∪Ps, E − (Pn ∪P1 ∪ · · · ∪Ps)) and (U1, V1), we deduce that v3 = v4.
We conclude that v2 = v3 and this contradiction completes the proof. �

Lemma 5.13. Let e and f be edges of a 3-tree T for a 3-connected matroid
M that display non-sequential 3-separations (Xe, Ye) and (Xf , Yf ), respec-
tively. Assume that Xf ⊆ Xe. Let (X ′

e, Y
′

e ) and (X ′

f , Y ′

f ) be 3-separations

that are equivalent to (Xe, Ye) and (Xf , Yf ), respectively, and are displayed
in a 3-tree T ′ for M . Then either

(i) X ′

f ⊆ X ′

e; or

(ii) (Xe, Ye) and (Xf , Yf ) are equivalent.

Proof. By Lemmas 3.11 and 5.9, (X ′

e, Y
′

e ) and (X ′

f , Y ′

f ) are both displayed

by edges of T ′. There are four possibilities:

(a) X ′

f ⊆ X ′

e and Y ′

f ⊇ Y ′

e ;

(b) Y ′

f ⊆ X ′

e and X ′

f ⊇ Y ′

e ;

(c) X ′

f ⊆ Y ′

e and Y ′

f ⊇ X ′

e;

(d) Y ′

f ⊆ Y ′

e and X ′

f ⊇ X ′

e.

If (b) holds, then

fcl(Xe) ⊇ fcl(Xf ) = fcl(X ′

f ) ⊇ fcl(Y ′

e ) = fcl(Ye) ⊇ Ye,

so (Xe, Ye) is sequential; a contradiction. By symmetry, (c) does not hold
either. If (d) holds, then

fcl(Xe) ⊇ fcl(Xf ) = fcl(X ′

f ) ⊇ fcl(X ′

e) = fcl(Xe).

Hence fcl(Xe) = fcl(Xf ), and so (Xe, Ye) and (Xf , Yf ) are equivalent. Fi-
nally, if (a) holds, then so does (i). �

Lemma 5.14. Let e and f be adjacent edges in a 3-tree T for a 3-connected
matroid M . Assume that e and f display inequivalent non-sequential 3-
separations (Xe, Ye) and (Xf , Yf ). If T ′ is also a 3-tree for M , then it has
adjacent edges e′ and f ′ that display 3-separations (X ′

e, Y
′

e ) and (X ′

f , Y ′

f ) that

are equivalent to (Xe, Ye) and (Xf , Yf ), respectively.

Proof. Without loss of generality, we may assume that Xf ⊆ Xe. Let v be
the common vertex of e and f . Let {Xf , Ye, Z} be the partition of E(M)
induced by T\{e, f} where v is in the component corresponding to Z, while
Xf and Ye correspond to the components containing the ends of f and e,
respectively, that are different from v.
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By Lemma 3.11, T ′ has edges e′ and f ′ that display 3-separations (X ′

e, Y
′

e )
and (X ′

f , Y ′

f ) that are equivalent to (Xe, Ye) and (Xf , Yf ), respectively.

Choose such edges so that the shortest path R containing e′ and f ′ has
minimum length. We may assume that this length is at least three. By
Lemma 5.13, since Xf ⊆ Xe and Yf ⊇ Ye, we have X ′

f ⊆ X ′

e and Y ′

f ⊇ Y ′

e .

By the choice of R, no edge of E(R) − {e′, f ′} displays a 3-separation that
is equivalent to either (X ′

e, Y
′

e ) or (X ′

f , Y ′

f ). Let g′ be the edge of R that

is adjacent to f ′. Let (X ′

g, Y
′

g) be the 3-separation displayed by g′, where

X ′

f ⊆ X ′

g ⊆ X ′

e. By Lemma 5.10, (X ′

g, Y
′

g) is non-sequential. Hence there is

a 3-separation (Xg, Yg) equivalent to (X ′

g, Y
′

g) that is displayed by an edge
g of T and, by Lemma 5.13, Xf ⊆ Xg ⊆ Xe. Since f and e are adjacent, it
follows that g ∈ {f, e}. Thus (Xg, Yg) is (Xf , Yf ) or (Xe, Ye), so (X ′

g, Y
′

g) is

equivalent to (X ′

f , Y ′

f ) or (X ′

e, Y
′

e); a contradiction. �

Lemma 5.15. For some k ≥ 2, let e1, e2, . . . , ek be the edges incident with a
vertex v in a 3-tree T for a 3-connected matroid M such that every ei displays
a non-sequential 3-separation and no two such edges display equivalent 3-
separations. For each i, let Xi be the union of the bag labels in the component
of T\ei avoiding v. Let T ′ be another 3-tree for M . Then there is a degree-k
vertex v′ in T ′ with incident edges e′1, e

′

2, . . . , e
′

k such that, for all i, if X ′

i

is the union of the bag labels in the component of T ′\e′i avoiding v′, then
(X ′

i, E − X ′

i) is equivalent to (Xi, E − Xi). Moreover, if v is a bag vertex,
then v′ is also a bag vertex.

Proof. By Lemma 5.14, there are adjacent edges e′1 and e′2 of T ′ that display
3-separations (X ′

1, E−X ′

1) and (X ′

2, E−X ′

2) that are equivalent to (X1, E−
X1) and (X2, E−X2), respectively. Moreover, by Lemma 5.13, X ′

2 ⊆ E−X ′

1.
Let v′ be the vertex that is common to e′1 and e′2. If v is a flower vertex, then,
by (I) or Lemma 4.2, T ′ has a vertex w′ that displays a flower equivalent to
that displayed by v. If w′ 6= v′, then both w′ and v′ display 3-separations
equivalent to (X ′

1, E −X ′

1) and (X ′

2, E −X ′

2). This leads to a contradiction
to Lemma 5.9. Hence w′ = v′ and the lemma holds. A similar argument
establishes the lemma if v′ is a flower vertex. We may now assume that both
v and v′ are bag vertices.

Assume that k = 2. If v′ has degree greater than two, then, by Lemma 5.8,
there is a non-sequential 3-separation (X ′

3, E−X ′

3) displayed at v′ such that
E − X ′

3 ⊇ X ′

1 ∪ X ′

2. Then

fcl(E − X ′

3) ⊇ fcl(X ′

1 ∪ X ′

2) ⊇ X1 ∪ X2.

Now T displays a 3-separation (X3, E − X3) that is equivalent to (X ′

3, E −
X ′

3). As k = 2, without loss of generality, X3 ⊆ X1 or E −X3 ⊆ X1. In the
first case, E − X3 ⊇ E − X1 so

fcl(E − X3) = fcl(E − X ′

3) ⊇ (X1 ∪ X2) ∪ (E − X1) = E;
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a contradiction to the fact that (X3, E−X3) is non-sequential. In the second
case,

fcl(E − X2) ⊇ fcl(X1) ⊇ fcl(E − X3) = fcl(E − X ′

3) ⊇ X2,

so (X2, E − X2) is sequential; a contradiction. We conclude that if k = 2,
then v′ has degree exactly two and the lemma holds.

We may now assume that k ≥ 3. Then T ′ has edges f31 and f32, which
may be equal, that both display 3-separations equivalent to (X3, E − X3)
such that f3i is adjacent to an edge that displays a 3-separation equivalent to
(Xi, E−Xi). Either f31 = f32 or, by Lemma 5.9, these edges are distinct and
meet at a degree-2 bag vertex. Since the only edge of T ′ other than e′i that
can display a 3-separation equivalent to (Xi, E −Xi) must share a degree-2
vertex with e′i, it follows that f31 = f32 and this edge, which we relabel e′3, is
incident with v′. Similarly, there are edges e′4, e

′

5, . . . , e
′

k incident with v′ that
display 3-separations equivalent to (X4, E−X4), (X5, E−X5), . . . , (Xk, E−
Xk). Thus k′ ≥ k, where k′ is the degree of v′. If k′ > k, then v′ is incident
with an edge e′k+1 that is not in {e′1, e

′

2, . . . , e
′

k}. By Lemma 5.8, the 3-
separation (X ′

k+1, E − X ′

k+1) that is displayed by e′k+1 is non-sequential,
and so there is an edge ek+1 of T that displays a 3-separation equivalent to
(X ′

k+1, E − X ′

k+1). By Lemmas 5.14 and 5.9, ek+1 must be incident with v

but distinct from e1, e2, . . . , ek. This contradiction implies that k′ = k and
thereby completes the proof. �

6. Proof of the Main Theorem

In this section, we prove the main result of the paper.

Proof of Theorem 2.3. By Lemma 5.7, the theorem holds if M is sequential.
We may thus assume that M has at least one non-sequential 3-separation.
If T1 has no vertices of degree more than two and every degree-two vertex
is incident with a pair of twins, then, up to equivalence, M has exactly one
non-sequential 3-separation. In this case, both T1 and T2 consist of a single
edge and the theorem holds.

We may now assume T1 has a vertex v1 of degree k such that it is either
a bag vertex of degree 2 that is not incident with a pair of twins, or a
bag or flower vertex of degree at least 3. If v1 is a bag vertex, then, by
Lemma 5.15, there is a degree-k bag vertex v2 of T2 such that if we label the
sets displayed by T1 − v1 by P11, P12, . . . , P1k and those displayed by T2 − v2

by P21, P22, . . . , P2k, then (P1j , E − P1j) is equivalent to (P2j , E − P2j) for
all j.

If v1 is a flower vertex, then there is a degree-k flower vertex v2 of T2 such
that if (Pi1, Pi2, . . . , Pik) is the flower Φi displayed at vi for each i, then,
by (I) or Lemma 4.4, Φ1 is equivalent to Φ2, and so they have the same
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type. By Lemma 3.10, we may again assume that Φ2 is labelled so that
(P1j , E − P1j) is equivalent to (P2j , E − P2j) for all j.

Our isomorphism between R(T1) and R(T2) will map v1 to v2. Let the
edges incident with vi be viwij for j = 1, 2, . . . , k where Pij is the union
of the bag labels in the component of Ti\viwij containing wij. Let Tij

be the subtree obtained from this component by adjoining the edge viwij.
By Lemma 5.13, for a non-sequential 3-separation (Xij , E − Xij) that is
displayed by an edge with Xij ⊆ Pij , if (X(i+1)j , E − X(i+1)j) is equivalent
to (Xij , E−Xij), then X(i+1)j ⊆ P(i+1)j , where i+1 is calculated modulo 2.

Now consider w11 and w21. If both have degree one, then we map w11

to w21, and the 3-separations displayed by the edges incident with w11 and
w21 are equivalent. Now assume that w11, say, has degree more than one. If
w11 is incident with twins, let w′

11 be the other neighbour of w11 apart from
v1. Otherwise, let w′

11 = w11. Then w′

11 is a flower vertex of degree m for
some m ≥ 3 or a bag vertex that is not incident with a pair of twins and
has degree m for some m ≥ 2.

By Lemma 5.15, (I), or Lemma 4.4, there is a degree-m vertex w′

21 of
T2 such that the 3-separations displayed by edges incident with w′

21 or by
the vertex w′

21 and its incident edges coincide, up to equivalence, with the
3-separations displayed by edges incident with w′

11 or by w′

11 itself and its
incident edges. By Lemma 5.13, w′

21 is a vertex of T21. The first edge
on the path in T2 from w′

21 to v2 displays a non-sequential 3-separation
(W2, Z2) that is equivalent to one of the 3-separations (W1, Z1) displayed by
an edge incident with w′

11. By two applications of Lemma 5.13, we deduce
that (W1, Z1) is equivalent to the 3-separation displayed by v1w11, namely
(P11, E−P11). But (P11, E−P11) is equivalent to the 3-separation displayed
by v2w21. It follows by Lemma 5.9 that either w′

21 = w21, or w′

21 is adjacent
to w21 and w21 is a degree-2 bag vertex for which the two incident edges
are twins. In each case, we map w′

11 to w′

21 and note that the 3-separations
displayed by edges incident with w′

11 or by w′

11 coincide, up to equivalence,
with the 3-separations displayed by edges incident with w′

21 or by w′

21 itself.
Thus we can iterate the above process working outward from the vertices v1

and v2. It follows that R(T1) is isomorphic to R(T2) and that there is such
an isomorphism ϕ satisfying (i) and (ii).

Finally, assume that ϕ maps adjacent flower vertices u1 and v1 of T1

onto non-adjacent vertices u2 and v2 of T2. Let w2 be the bag vertex of T2

that is adjacent to both u2 and v2, and let w2 be labelled by W . Observe
that u2w2 and w2v2 are twins. Let the partition of T2\{u2w2, w2v2} be
{U2,W, V2} where U2 and V2 correspond to the components containing u2

and v2, respectively. Let (U1, V1) be the partition displayed by the edge u1v1

of T1. Then W ⊆ fcl(U2) ∩ fcl(V2) = fcl(U1) ∩ fcl(V1). Now, in T1, every
element of W must lie either in one of the petals contained in U1 of the flower
at u1, or in one of the petals contained in V1 of the flower at v1. Since each
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element of U1 is in fcl(U2) and each element of V1 is in fcl(V2), we deduce
that every element of W is, indeed, loose in the flower displayed by u2 or
is loose in the flower displayed by v2. Hence, because ϕ maps flowers onto
equivalent flowers, every element of W is also loose in the flower displayed
by u1 or in that displayed by v1. �

7. Consequences

We conclude the paper by noting some additional useful properties of
flowers and 3-trees. The main result of the section is Proposition 7.3, which
describes a partition of the non-sequential 3-separations in a 3-connected
matroid M into three classes and indicates how membership of these classes
can be determined from any 3-tree for M .

Lemma 7.1. Let Φ be a flower of order at least three in a 3-connected
matroid M . Then, up to equivalence, there is a unique tight maximal flower
Ψ such that Φ � Ψ.

Proof. Let Ψ1 and Ψ2 be inequivalent tight maximal flowers such that Φ �
Ψ1 and Φ � Ψ2. Take a 3-tree T for M . Then, by (I) and Lemma 4.4,
T has distinct vertices v1 and v2 that display flowers equivalent to Ψ1 and
Ψ2, respectively. Since Φ has order at least three, it displays at least two
non-sequential 3-separations, so 3-separations equivalent to both of these
are displayed at both v1 and v2. But this contradicts Lemma 5.9. �

Lemma 7.2. Let T be a 3-tree for a 3-connected matroid M . Let e and f

be edges of T that display inequivalent 3-separations and are incident with
a common vertex v. Let (L,C,R) be the partition of E(M) that refines the
partitions displayed by both e and f . Then C is not 3-separating if and only
if either v is a bag vertex, or v displays a daisy in which the petals displayed
by e and f are non-consecutive.

Proof. Suppose that v is a bag vertex and C is 3-separating. Then (L,C,R)
is a tight flower Φ. Thus there is a tight maximal flower Ψ for which Φ � Ψ.
By (I) or Lemma 4.4, T has a vertex w that displays a flower equivalent to
Ψ. Thus there are 3-separations equivalent to both (L,C∪R) and (L∪C,R)
that are displayed at both w and v. Since w 6= v, we get a contradiction
to Lemma 5.9. We conclude that C is not 3-separating. The lemma now
follows without difficulty. �

Proposition 7.3. Let T be a 3-tree for a 3-connected matroid M and (A,B)
be a non-sequential 3-separation of M . Let (A′, B′) be a 3-separation equiv-
alent to (A,B) that is displayed in T . Then

(i) A is displayed by a pair of petals in a tight flower of M of order four
if and only if (A′, B′) is displayed in T by a vertex and not by an
edge.
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(ii) A is displayed by a petal of a maximal flower of M of order at least
three if and only if (A′, B′) is displayed in T by a vertex and an edge.

(iii) (A,B) is not displayed in a flower of M of order at least three if and
only if (A′, B′) is displayed in T by an edge and not by a vertex.

Proof. Consider (i). Assume that A is displayed by a pair of petals in a
tight flower (P1, P2, P3, P4), say A = P1 ∪ P2. Then (P1, P2, P3, P4) � Φ,
a tight maximal flower of M . By Lemma 4.4, there is a vertex v of T

that displays a flower Φv equivalent to Φ. Now Φv displays a 3-separation
(X,E − X) equivalent to (P1 ∪ P2, E − (P1 ∪ P2) and, by Lemma 4.3, each
of X and E − X is a union of at least two petals of Φv. By Lemma 5.9,
(X,E − X) = (A′, B′) so (A′, B′) is displayed by a vertex and not an edge
of T . The converse follows without difficulty using Corollary 3.7.

For (ii), suppose that A is displayed by a petal P of a maximal flower
Ψ of M of order at least three. Then, by [6, Lemmas 5.3 and 5.7], Ψ is
equivalent to a tight maximal flower Φ, which equals (P1, P2, . . . , Pk) say.
Moreover, as P is a tight petal of Ψ, it follows by [6, Lemma 5.8] that Φ has
a petal, say P2, such that (P2, E −P2) is equivalent to (A,B). Now T has a
vertex v that displays a tight maximal flower (Q1, Q2, . . . , Qj) equivalent to
Φ. By Lemma 3.10, j = k and there is a permutation α of {1, 2, . . . , k} such
that fcl(Pi) = fcl(Qα(i)) for all i. Thus (P2, E − P2), and hence (A′, B′), is
equivalent to (Qα(2), E−Qα(2)). By Lemma 5.9, either (A′, B′) = (Qα(2), E−
Qα(2)), or T has a degree-2 bag vertex u and a flower vertex w such that wu

and uv are edges of T and wu displays (A′, B′). Thus (A′, B′) is displayed
either by the vertex v and the edge uv, or by the vertex w and the edge wu.
Again the straightforward proof of the converse is omitted.

For (iii), we note that if (A,B) is not displayed by a flower of M of order
at least three, then T has an edge e that displays a 3-separation (A′′, B′′)
that is equivalent to (A,B) and hence to (A′, B′). Moreover, e joins two
bag vertices. It follows by Lemma 5.9 that (A′′, B′′) = (A′, B′). For the
converse, we note that if (A,B) is displayed in a flower Φ of M of order at
least three, then a 3-separation equivalent to (A,B) is displayed by a tight
maximal flower equivalent to Φ and the result follows by (i) and (ii). �
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