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Abstract

The rapid revolutionary rapid Big Data technology has attracted increasing attention and

widely been used in many industries. It is not only benefiting our life dramatically, but also

posing new challenges to us at the same time. In many situations, dealing with these big and

complex data can extremely difficult. However, do we really always need big data?

This thesis attempted to investigate whether do we need a large dataset to build a model

with acceptable accuracy, how the number of observations affect the performance of statistical

predictive methods and use learning curves to describe this relationship. Some popular statis-

tical learning methods were considered and applied on 3 large datasets. An efficient parallel

coding strategy in R was also provided.
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Chapter I

Introduction

1.1 Big Data

This is an era of data, where many human activities and natural phenomena can be described

and analysed digitally [5]. Modern technology and digital devices are being widely used to

increase the collection, storing and exchanging of data. This gives us a great opportunity to

understand ourselves and the world better than ever before. Organizations are realizing the

value of data in marketing analysis, strategy design and decision-making. For instance, by

tracking customers’ purchase and website visiting records, Amazon recommends goods to tar-

geted users, which makes their advertisements more effective [7]. Rob (2014) outlined some

former and currently being built “smart cities”, equipped with digital devices and instruments,

where data from human activities, the environment, and other sources are collected and anal-

ysed to improve everyday life, such as traffic guidance, monitoring the source of air pollution,

etc [8].

The revolutionary collection, storing, transferring and analysis methods for large amounts of

data is firstly called “big data” by John Mashey in the 1990s. Since then, “big data” is a

term used for datasets which are so large or complex that traditional data management and

analysis tools or methods are inefficient and insufficient to process them. Doug Laney (2001)

summarized big data in three dimensions: volume, velocity and variety.

Volume refers to the size of data. A survey conducted by IBM in 2012 showed that datasets

over one terabyte were considered to be big data by the majority of respondents [16]. For

instance, Walmart collects nearly more than 2.5 petabytes (1015 bytes) of data per hour from

customer transactions [11]. Beaver (2010) pointed out that Facebook processed over 1 mil-
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lion photographs per second [15], and over 260 billion photos have been stored using over 20

petabytes of storage space [16]. However, the definitions of big data volume are relative and

change overtime. The world’s capability of storing data has nearly doubled every 40 months

from the 1980s [49], and IBM estimated 2.5 quintillion (1018 bytes) of data is created everyday

in various forms [48]. What are considered big data today may not be in the future, because

both the volume of data and the processing tools are growing fast.

Velocity refers to the speed at which data are generated and required to be analysed. For

some organizations, the velocity of data collection can be more important than the volum [11].

The real-time data generated from widely used digital devices such as smartphones and sensors

can be used to generate real-time personalized customer offers. For instance, Alibaba use real

time analysis tools to evaluate the up-to-date transaction streams of enterprises in order to

decide whether to approve the loans to them [17]. In the smart cities described by Rob (2014),

real time city data analysis is used to monitor and adjust the traffic flow [8].

Variety refers to the various sources and structures of data. A study conducted by Cukier

in 2012 showed that the proportion of tabular data in spreadsheets and database is only about

5%. The advanced digital tool make many companies and organizations are able to generate

various forms of non-tabular data, such as text, images, videos, etc. In these situation, specific

machines or tools are required to organize these data to make them recognizable by data anal-

ysis tools [16].

Although some of these massive and complex data can be processed by super computers, some of

them can no longer be processed or stored on a single computer. For instance, Memorial Sloan-

Kettering Cancer Center used IBM’s Watson supercomputer to construct a real-time cancer

diagnose and treatments suggestion system [18]. However, supercomputers are not available to

most organizations and industries because of their expensive purchase and maintenance costs.

Therefore, big data poses real demands and challenges.

2



1.2 Why Statistical Learning?

In data analysis, the two main goals are to provide insight into the relationships between the

features in the data, and to construct accurate models for predictive purposes [12]. However,

large datasets can have many observations, many features and, hence, potentially more complex

patterns. In these situations, classical statistical methods may require unrealistic properties

and are often inefficient [14]. For instance, some classical statistical techniques concentrate

more on testing hypotheses, where some subjective assumptions might be needed [18].

To extract the valuable information from the big datasets, it is necessary to develop more

effective and powerful ways to let the data speak. Statistical learning is a set of applied statis-

tics methods that help with learning the pattern and relation of data. These methods, which

are computationally effective and well performed in classification, combine standard statistical

thinking with machine learning idea [18]. Statistical learning techniques can be divided into

two categories: supervised learning and unsupervised learning.

In unsupervised learning, the task is to explore unknown patterns or structures in the data,

such as clustering, anomaly detection, etc. For instance, a mobile phone company might try to

identify groups of users with similar usage in data, phone call time and text. Then they can

design “combos” for each group to make deals targeted more precisely for their customers.

In supervised learning, the goal is to train a predictive model and evaluate its predicting

performance using training data. For instance, suppose we are interested in how much new

Amazon users are likely to spend on-line and we have information related it, such as the num-

ber of hits by the user, age, gender, etc. Using the purchase history and relevant information

of former known customers, we can construct a model to describe the relationship between the

customers’ expenditure and other relevant features. Then, the new Amazon users’ expenditure

can be estimated using the other relevant features. In this example, the user’s expenditure is

also often called the response or dependent variable, and is usually denoted as Y . The known

features such as the number of hits by the user, age and gender are also called independent

variables or predictors, and are normally denoted using X, with a subscript to distinguish

them. Then, the number of hits by the users can be denoted as X1, the customers’ age can be

denoted as X2 and the customers’ gender can be denoted as X3. The set of former customers,

whose predictors and responses are known, is normally called training data. The set of new
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customers, whose responses are unknown, is usually called test data. The goal is to construct a

good model that can be used to predict unknown responses in test data, in other words, to find

a function f̂ such that Y ≈ f̂(X). The question is how do we construct such models? When the

data is huge and complex, the relationships between the response and predictors are more likely

to be complex too. As a result, statistical learning methods, such as artificial neural networks,

decision trees, random forest, supporting vector machine, etc. become popular because they

can construct flexible models to capture the relationships between the features [13] [2].

1.3 About This Thesis

This thesis focuses on supervised learning. It can be time consuming and computationally

expensive (or even impossible) to apply some supervised learning methods to large datasets.

The main purpose of this thesis is to investigate how the number of observations affect the

performances of different supervised learning algorithms. Furthermore, we investigate whether

all the observations in large datasets are necessary to construct models with acceptable accuracy.

The study consistsl of:

• testing and comparing the performances of different supervised learning algorithms on

large datasets,

• using parallel computing techniques to implement algorithms effectively and

• comparing the computation time and memory usage of different supervised learning al-

gorithms on large datasets.

In Chapter 2, a literature review of some popular supervised learning algorithms is given. We

consider model selection methods and the learning curves in Chapter 3. A simulation study

comparing different algorithms on three datasets is given in Chapter 4. Concluding remarks

and future research is given in Chapter 5.

4



Chapter II

Algorithms

There is no one statistical approach will outperform all others in all situations [2]. It is difficult

to select the most efficient method without a basic understanding of their key features [2]. In

this chapter, we consider the basic features of some popular statistical learning techniques,

which are K-Nearest Neighbours, Discriminant Analysis, Decision Trees, Bagging Trees, Ran-

dom Forests, Boosting Trees and Support Vector Machine [1].

2.1 K–Nearest Neighbours

K-Nearest Neighbours (KNN) is one the oldest and simplest statistical learning methods [22],

introduce by Cover and Hart (1967). In many areas, such as hand-writing and face recognition,

KNN is a effective method, especially when combined with domains knowledge [23][24]. KNN

makes prediction using a neighbourhood of known observations. The tuning parameter K is

the number of neighbours considered, which is used to determine how many observations are

used to make the prediction. The neighbourhood can be defined in several ways using the

Manhattan distance, Euclidean distance and supreme distance, for example, and is sensitive to

the way of distance measured [23]. Cross-validation can be applied to estimate the optimal K,

which is the value with the least cross-validation error.

Denote a training dataset with p predictors, (xi, yi), i = 1, 2, ..., n, where xi = (xi1, xi2, ..., xip)

are the predictors of the ith observation, and yi is the class label. The prediction of an ob-

servation xj in the test data is made by the training observations that are “close” to it. For

classification problems, it is

f̂ (xj) = Majority Voting ({yi|xi ∈ Nj}) ,
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where Nj is the subset of K observations in training data that are nearest to xj. For regression

problems, it is

f̂ (xj) =
1

K

∑
i:xi∈Nj

yi,

where Nj is the subset of K observations in training data that are nearest to xj.

The distances can be measured by multiple ways. For example, the Lp distances between

two points, (xi1, xi2, ..., xip) and (xj1, xj2, ..., xjp) is,

Ld =

(
p∑

k=1

|xik − xjk|d
) 1

d

.

When d = 1, we have Manhattan Distance, when d = 2, we have Euclidean Distance and when

d →∞,

lim
d→∞

Ld = max
k

(|xik − xjk|) ,

is called Chebyshev Distance. In different situations, we need to choose the best distance

measuring methods. However, this approach can be computationally expensive without any

previous knowledge about the potential range [23]. In this thesis, we considered the Euclidean

Distance and each feature is standardized to mean 0 and variance 1, so that every predictor

has the same effect.

The the number of neighbours K, controls the model’s flexibility. When K is small, every

estimate is made by a small number of training observations. So, the model is flexible because

the decision boundary could change dramatically with small changes in training data. When K

is big, the model is relatively stable, because all estimates are made using many observations.

Flexible models have small bias and large variance [1]. More details about model bias and

variance will be discussed in Chapter 3.
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2.2 Discriminant Analysis

Discriminant Analysis is a parametric statistical learning algorithms model each class using dis-

criminant functions Φk(x), k = 1, 2, 3, ..., K, and classify the observation x to the class with the

biggest discriminant functions. The first discriminant analysis approach, Linear Discriminant

Analysis (LDA), is a generalization of Fisher Linear Discriminant Analysis, proposed by R. A.

Fisher (1936). It is widely used in pattern recognition, feature extraction and classification [3].

Comparing to logistic regression, the discriminant analysis is more stable when the response

variable is well separated [1]. Secondly, in logistic regression, the response variable is the odds.

Then, pivots are required if the response has multiple levels, which makes the model to be

complex and less effective. However, discriminant analysis are more straightforward and easy

to apply in this case.

Suppose a K levels classification problem with p predictors, where 2 ≤ K < ∞. Denote

the predictors are x ∈ Rp, and the response variable is Y , where Y = 1, 2, ..., K. We set the

discriminant functions to the posterior probabilities of Y given X, then

Φk(x) = Pr(Y = k|X = x),

where k = 1, 2, ..., K. Denote the predictors of the kth level follows the distribution

fk(x) = Pr(X = x|Y = k),

and πi = Pr(Y = i) to be the prior probability of kth level, then from the Bayesian theorem,

we have,

Pr(Y = k|X = x) =
fk(x)πk∑K
i=1 fi(x)πi

.

So, the posterior probability can be figured out, given πi and Pr(X = x|Y = i), i = 1, 2, ..., K.

The unlabeled observation, whose values of predictors are x, can be classified to the ith level, if

Pr(Y = i|X = x) > Pr(Y = j|X = x), j = 1, 2, ..., i− 1, i+ 1, ..., k. In applications, πi can be

estimated by π̂i, the proportion of the observations labelled the ith level in the training data.

The posterior probability, Pr(Y = i|X = x), mostly depends on the class density, fi(x). There

are multiple ways to estimate of the class density, such as Linear Discriminant Analysis(LDA)
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and Quadratic Discriminant Analysis(QDA), Kernel Density Classification, Naive Bayesian

Classifier, etc. In this thesis, we considered LDA and QDA, where the class density, fi(x), is

assumed to be normal distributed.

2.2.1 LDA

In both LDA and QDA, the class density are supposed to be Gaussian, then

fi(x) =
1

(2π)p/2|Σi|1/2
exp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)
,

where µi and Σi are the mean vector and covariance matrix of the multivariate normal density

of the ith class. Therefore, we can figure out all probabilistic features given the parameters µ

and Σ for all class. In LDA, we assume the covariance matrix of each class are same, so Σi = Σ

for all i = 1, 2, ..., K. For two class problems, comparing the posterior probability of each class

is equivalent to considering the log of ratio between them. So, we find that

log
Pr(Y = i|X = x)

Pr(Y = j|X = x)
= log

fi(x) · πi
fj(x) · πj

= log
πi
πj
− 1

2
(µi + µj)

TΣ−1(µi − µj)+

xTΣ−1(µi − µj)

is a linear function of x. It suggests that the decision boundary between these two classes is

a straight line if the number of predictors p = 2; or a hyperplane if the number of predictors

p ≥ 3, whose norm is determined by Σ−1(µi − µj). The prior probability, πi and πj, are esti-

mated using the proportion of each class in the training data. The mean of each class, µi and

µj, are estimated by the mean of each class in the training data µ̂i and µ̂j. The covariance

matrix Σ is estimated by the pooled variance of both classes Σ̂.
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2.2.2 QDA

In QDA, the class densities are also assumed to be Gaussian distributed, but with different

covariance matrix for each class, so they are estimated separately. So the mean of each class,

µi and µj, are estimated by the mean of each class in the training data µ̂i and µ̂j. The prior

probability for each class, πi and πj, are estimated using the proportion of each class in the

training data. The variances of each class Σi and Σk are estimated separately. Similarly to

LDA, we can show the boundary of QDA classifier is determined by a quadratic of x. That

means the decision boundary made by QDA will be a curve or a surface for two classes problems.

Comparing with LDA, QDA is more flexible, but more parameters required to be estimated.

In classification problem with K levels and p predictors, there are p(p + 1)/2 parameters in

each covariance matrix in total. Then, there are Kp(p + 1)/2 parameters in QDA, comparing

to p(p+ 1)/2 in LDA. As a result, QDA is potentially more flexible, and has a higher variance

and lower bias, comparing to LDA. So, LDA is recommended in situations where the amount

of observations is small and the difference in variance of each class are not significantly big [2].

2.3 Decision Tree

Decision trees is a set of powerful and efficient statistical learning techniques widely used both

in regression and classification problems [26]. As the algorithm can be described as tree-like

graph, it got its name. The basic idea of a decision tree is to split the predictor space into

simple regions using the training data, and the prediction is made by the mean (for regression

problems) or majority voting (for classification problems) of the observations that are in the

same regions with the testing observation. One main advantage of decision trees is they are

straightforward and visible, so it is easy to understand and interpret. Secondly, decision tree

is a non-parameter method which can create classifiers with flexible boundaries to capture the

patterns of data automatically. Thirdly, the splitting rules of decision tree computationally

simple.

2.3.1 Classification and Regression Trees

In the following part, we introduce the procedure of classification and regression trees (CART)

[27]. In CART, there are two major elements in the tree, one is node, which is the condition of

the split, and the other one is terminal node (or leaf), which is the predicting regions. The node
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is the condition applied in each splitting step. We split the predictor space until some stopping

rule satisfied where a terminal node reach. Then, the predictions are made by the response of

the observations in each terminal node. theoretically, there are various of ways to construct

a split condition. However, it is impossible to consider every situation in practice. So, for

simplicity and easy interpretation purpose, in CART, just the vertical conditions are applied

the vertical conditions at each node, and complex classifiers are created by the combination of

further partitions.

2.3.2 Construction Process

Suppose the variable of interest is Y and there are p predictors, X1, X2, ..., Xp, in the model.

Given a training data, we consider a vertical binary split condition, ‘Whether Xn1 is smaller

than a specific value, c1’, where n1 ∈ {1, 2, ...., p}, c1 ∈ R. Then, the training data is split into

two subsets, A1
1 = {x|Xn1 > c1} and A1

2 = {x|Xn1 ≤ c1}. If any of the subset is a terminal

node, we make the prediction by the majority voting of the training data in the subset for

classification problems, or the mean of the training data in the subset for regression problems.

The splitting is decided by choosing ni, the predictor to use, and c1, the cut-off point, which

minimize the loss function. For example, for a regression problem, and the sum of squared

error was used as the loss function. Then, at each node, the splitting was determined by

{n̂1, ĉ1} = min
n1,c1

 ∑
i:xi∈A1

1

(yi − ŷA1
1
)2 +

∑
i:xi∈A1

2

(yi − ŷA1
2
)2

 ,

where ŷA1
1

and ŷA1
2

are the means of the training observations in region A1
1 and A1

2 separately.

For classification problems, the loss function is normally supposed to be mis-classification rate,

but in tree algorithm, it is not sensitive enough, so Gini index and cross-entropy are used to

measure the error rate for each region [1]. For K classes problems, denote p̂k represent the rate

of kth class of the training observations in the specific region, then Gini index is
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Gini =
K∑
k=1

p̂k(1− p̂k).

From the equation above, we can see that Gini index is small when p̂k is close to 0 or 1.

Gini index is also called Gini impurity, used to measure the node purity, and regarded as a

measurement which in favour of pure class splitting. An alternative way to measure the mis-

classified rate is cross-entropy, given by

CE = −
K∑
k=1

p̂k log p̂k.

It is showed both Gini index and cross-entropy are more sensitive to changes of class pro-

portion in the node than mis-classification rate [1].

The tree is built by repeatedly further splitting the predictor regions until some stopping rules

satisfied. There are multiple criterion are used as the stopping rule. For example, the minimum

number of a node, which means splitting only can be made when the number of observation

in that node is bigger than a pre-specified number. An alternative way is to setting a mini-

mum purity of the terminal nodes, so the node will be split further if it is not pure enough. We

continue split the node until all sub-nodes satisfy the stopping rules. Denote the tree classifier as

T (X,Θ),

where Θ is a set of parameters, representing the splitting variable and the cut-off points used

at each node. This tree construct process is called top-down, greedy approach which is also

known as recursive binary splitting [2]. The ‘top-down’ means the tree splitting process start

at the full predictor space which is a single node (or the root of the tree). The algorithm is

greedy because we just consider the best split at specific node in the building process without

caring about the previous splitting steps. As a result, the solution given by the algorithm is a

series of local optimization at each node, rather than a global optimization.
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To improve the predicting ability, we also consider the CART algorithm from a view of model

complexity. Generally, we can get a much flexible model if more splitting are allowed, so a

common way to measure the complexity of a tree is its depth, which is the maximum number

of steps taken to split from the root to a terminal node. In practice, the widely used building

tree strategy is to grow a big tree, and then using the cross-validation method to choose the

best tree depth by pruning the tree. For classification problems, suppose we trained a big tree

with M leafs and use Gini index to measure the purity, we introduce a tuning parameter α into

the loss function

M∑
m=1

K∑
k=1

p̂k(1− p̂k) + α|M |,

to control model’s complexity. When α is small, the impurity of each leaf will dominate the

loss function, the model will tend to be more complex to smaller the impurity for each leaf. If

α is big, the model will suffer much cost of its complexity, which leads to model will tend to be

less flexible. In practice, we use cross-validation to choose best α which is give best predicting

testing error, thereby we can find the best depth of tree according to the tuning parameter, α.

2.3.3 Bagging Trees

In this section, we discuss the Bagging Trees, short for Bootstrap Aggregating Trees, intro-

duced by Leo Breiman (1994). It is an ensemble statistical learning techniques used to improve

a model’s stability. Denote the train dataset is Z = {(x1, y1), (x2, y2), ..., (xn, yn)}, and a classi-

fier constructed using Z is F̂Z(x). To improve the performance of F̂Z(x), a set of bootstrapped

samples, Z1,Z2, ....,ZB, are generate by repeatedly sampling Z of size n with replacement for

B times. Next, these bootstrapped samples are separately used to build models, F̂Z1(x), F̂Z2(x)

,...., F̂ZB
(x). The averaging models of these bootstrapped models is called the Bagging model.

The variance of the original model is reduced by applying the Bagging process. So, the Bagging

models has better performance. For regression problems, the outcome of Bagging model is
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F̂bagging(x) =
1

B

B∑
i=1

F̂Zi
(x).

For classification problems, the prediction outcome by Bagging model is given by majority

voting,

F̂bagging(x) = Majority Voting
(
{F̂Zi

(x)|Zi = 1, 2, ..., B}
)
.

The Bagging Trees is an approach applying the Bagging method on trees. We first gener-

ate B bootstrapped samples and use them to fit B Classification or Regression Trees, the

Bagging Trees is the aggregating of these bootstrapped trees. In the construction process, each

tree is fully grown to capture the structure of data as much as possible. That makes each tree

has a small bias and large variance. However, the variance of final model can be controlled by

taking the average of the classifiers in the later step. So the original model has been improved.

Suppose the variance of each of the constructed trees is σ2, and they are independent, it is easy

to show that the variance of Bagging trees, based on B bootstrapped samples, is 1
B
σ2. However,

all tree are built using bootstrapped samples, which are sampled with replacement, some of the

observations have been repeatedly used in each tree. As a result, they are correlated. Suppose

the correlation between the trees is ρ, then the variance of the bagging model is

V

(
F̂bagging(x)

)
=V

(
1

B

B∑
i=1

F̂Zi
(x)

)

=
1

B2

[
B × V

(
F̂Zi

(x)

)
+ (B2 −B)× Cov

(
F̂Zi

(x), F̂Zj
(x)

)]

=
1

B2

[
B × V

(
F̂Zi

(x)

)
+ (B2 −B)× ρ× V

(
F̂Zi

(x)

)]

=ρσ2 +
1− ρ
B

σ2.
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We can see that when the number of bootstrapped samples B increases, the second term

of the equation will be smaller, so the overall variance of the bagging model will be smaller.

The idea in Random Forest is to improve the model by reducing, ρ, the correlation between

the trees, therefore the variance of the ensemble model will be smaller.

Not all observations of the original dataset are not used in every model construction. In origi-

nal dataset, the probability that the ith observation was sampled in the bth bootstrap sample is

P (observation i ∈ bootstrap sample b) =1− (1− 1

n
)n

Then,

lim
n→∞

1− (1− 1

n
)n =1− lim

n→∞
(1− 1

n
)n

=1− lim
n→∞

(1 +
1

n
)−n

=1− e−1

≈0.632

It suggests that each tree make use of about 2
3

of the total observations in construction process

when the number of observations in the training set is sufficient big. That brings additional ben-

efit, because the rest 1
3

observations can be used to evaluate the ensemble model and estimate

its prediction error, this error is called out-of-bag error [34]. It is showed that the out-of-bag

error is almost identical to the estimated error given by leave-one-out cross validation, which is

too optimistic comparing with k-fold cross-validation [35]. One advantage of out-of-bag error is

that they can be measured at any stage of the model construction, rather than when the whole

bagging process finished. So, they provide a very good version of model performance during

the building process. Because the the Bagging Tree has been improved by the Random Forest

approaches. So, more details of both algorithms will be discussed in the next section.
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2.3.4 Random Forest

The original Random Forest algorithm was firstly proposed by Ho [36] and extended by com-

bining with the idea of Bagging by Leo Breiman in 2001 [37]. Though decorrelation the bagged

trees, Random Forest is one of the few robust algorithms that could handle dataset involving

large number of predictors. Breiman(2001) pointed out that Random Forest is relative robust

to the tuning parameters setting, so it is also called an “ off-the-shelf ” algorithm which is

easy to be applied even for a new learner. Thirdly, they are easy to be applied in a parallel

computing environment. In this section, we will outline the difference between the Bagging and

Random Forest, and the issues involved.

Random Forest is generalization of Bagging trees. The only difference between Random Forest

and Bagging trees is that only a random sample of m predictors are considered as the candidates

at each split in trees in Random Forest. In other word, the best split variable at every node is

chosen from m candidate predictors, which is a random sample of all predictors. Therefore, the

parameter, m, is the main source (the other brought from bootstrap process) of the randomness

in the algorithm. If m is big, the randomness of each tree is less, and the trees are much corre-

lated. When m is equal to the number of predictors in the model, the Random Forest degrade

to Bagging Trees. On the other hand, when m is small, the number of candidates predictors at

each node is small, then, the splits will more likely to be determined by the random samples of

candidate predictors. As a result, the correlation between the trees are small. Therefore, the

main tuning parameter in Random Forest is m, the number of predictor considered at each split.

In Random Forest, each predictor’s importances are measured in the ensemble model, which

shows their overall contribution to the improvement of specific split-criterion. For example, if

we use Gini index as the measure of impurity of the trees. Then, at each split, the variable

used and the reduction of Gini index by the split will be recorded. The variable importance of

the predictor is their accumulated reduction of Gini index in all trees in the forest.

In application of Random Forest, there are 3 main parameters involved, which are the number

of candidates at each split (mtry), the number of trees (ntree) and the sizes of terminal nodes

(nodesize). It is efficient to tuning the parameters in Random Forest to get the best predict

model by minimizing the out-of-bag error. If there are p predictors in the training dataset, the

default recommended value for mtry is
√
p and the minimum node size in 1 for classification
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problems, and the recommended value for mtry is p/3 and the minimum node size is 5 for

regression problems [1]. Dı́az-Uriarte and Alvarez de Andrés (2006) investigated the a range

of mtry from
√
p to 13

√
p and found the larger mtry make the variance importance more reli-

able. Goldstein et al.(2010) suggested that bigger mtry might be needed when the number of

predictor is large. For the number of trees in the model, ntree, larger value is always better

[37]. Because the number of tree determines the number of bagging, it has been shown bigger

number of bagging lower the variance of the ensemble model, without worrying about overfit-

ting the data. When choosing the number of trees needed, out-of-bag error can be used as the

only measure [29]. Normally, we can stop building more new trees when the out-of-bag error

is flat. For example,we can stop building additional trees if the difference between maximum

and minimum of out-of-bag error made by the last 100 trees is less than a positive number C.

2.4 Boosting Trees

Boosting algorithm is a set of statistical learning techniques generalized from an approach

called “AdaBoost.M1”, initially developed by Freund and Schapire (1996) [43]. The main idea

of boosting is to build a “powerful ” ensemble model by combining a series of “weak” classifier.

Because every new classifier is constructed according to the information of existing ensemble

model, those sequence of weak classifiers are highly related. A weak classifier is one which is

just slightly better perform than a random classifier. (The random classifiers are constructed by

using no information related to the variable of interest. So the performance of random classifiers

is same as the random guessing.) Then, every newly built classifier just slightly improve the

existing model, in other word, the model ’learn’ the data slowly. However, combining enough

number of weak classifiers, the ensemble model will be very powerful.

2.4.1 AdaBoost.M1.

AdaBoost, short for Adaptive Boosting, is the one of the most popular boosting algorithm. In

this section, we present the construction process of AdaBoost. Suppose a two-class problem,

the training dataset is

{(x1, y1), (x2, y2), ..., (xn, yn)},

where yi ∈ {−1, 1} for all i = 1, 2, ..., n. We train a sequence of K weak classifiers using differ-

ent weighted training data in each step. Suppose the weight of the ith observation in kth step
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is w
(k)
i . To start with, we fit the first classifier, G1(X), where each observations in the training

dataset are treated equally. So, the original weights of all observations are set to same, says

w
(1)
i = 1

n
for all i = 1, ..., n. Then, G1(X) is built in a way equals to one no weights applied,

and we measure its performance using the error rate,

error1 =
1

n

n∑
i=1

I (yi 6= G1 (xi)),

Where I is an indicator function, such that

I (yi 6= G1 (xi)) =


1, if yi 6= G1 (xi)

0, otherwise.

Next, we build the second classifier G2(X), where the observations misclassified by G1(X) will

be more concentrated by adding more weights on them. In AdaBoost Algorithm, when building

the second classifier G2(X), all observations misclassified observations by G1(X) will be given

new weights

w
(2)
i = w

(1)
i ×

1− error1

error1

,

for all i such as G1(xi) 6= yi ; the weights of observations correctly classified by G1(X) will

maintain the same(w
(2)
i = w

(1)
i , for all i such as G1(xi) = yi ). As long as every base classifier is

better than random classifier, whose classification rate is 0.5, then 1−error1
error1

> 1, so it is ensured

that the ones misclassified by G1(X) will obtain bigger weights in the next classifier. In the

first step, the error rate for the first classifier G1(X) is just error1, because the weights of every

observations are set to same at the beginning, whereas their weights changed after the first

step, so the error rate for second classifier, G2(X), will be a weighted error rate,

error2 =

∑n
i=1w

(2)
i I(yi 6= G2(xi))∑n

i=1w
2
i

.
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Algorithm 1 Adaboost.M1.

1: Initialize each observations’ weights

w
(1)
i = 1

n
, i = 1, 2, ..., n

2: for k=1 to K do

3: Use the current weights, w
(k)
i , of each observation to build a classifier

Gk(X)

4: Calculate the weighted classification error rate of Gk(X)

errork =

∑n
i=1w

(k)
i I(yi 6= Gk(xi))∑n

i=1 w
(k)
i

,

5: Calculate the weight for Gk(X)

αk =
1

2
log(

1− errork
errork

)

6: Update the weights of every observations for the next iteration

w
(k+1)
i = w

(k)
i ×

1− errork
errork

7: end for

8: Output ensemble classifier, G(x) = sign
{∑K

k=1 αkGk(X)
}
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Then, we get a updated ensemble model by combining the weighted classifiers G1(X) and

G2(X), denote

G(K)(X) =
K∑
k=1

αkGk(X).

Then, the ensemble classifier can be written as,

G(X) = sign
{
G(2)(X)

}
= sign

{
2∑

k=1

αkGk(X)

}
,

where αk = 1
2

log(1−errork
errork

), which are the weights for each base classifier. Through repeating

this building process for K times, we get a sequence of ‘weak’ classifiers G1(X), ..., GK(X), and

their weights α1, ..., αK . At last, we combine these weighted base classifiers to get the final

Adaboost ensemble classifier

G(X) = sign
{
G(K)(X)

}
= sign

{
K∑
k=1

αkGk(X)

}
.

It is easy to find that the weights of each base classifier, αk, is determined by classification

performance of the kth classifier Gk(X). The base classifiers whose correct classification rate

is higher will have a bigger influence on the final ensemble classifier. The setting of weight

in AdaBoost algorithm make it equal to fitting a forward stepwise additive model using the

exponential loss function

L(y,Gk(x)) = exp{−yGk(x)},

where the response y ∈ {−1, 1}. See the prove in appendix.
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2.4.2 Boosting Trees

In this section, we present the Boosting Trees, where decision trees are used as those ’weak’

base classifier, and the ensemble model is a combination of weighted decision tree built by

using boosting algorithm. In CART, we discussed the constructing process of tree using the

Gini index as the criterion, but in Boosting Trees, it will be a little different. For a two-class

and exponential loss problem, suppose we wish to fit a classification tree, Tk(X,Θk), then, each

tree minimize the sum of exponential loss,

Θ̂k = argmin
Θ

n∑
i=1

w
(k)
i exp{−yiTk(xi,Θk)}.

However, same as the normal decision tree, global optimizing is computational expensive, so

we also use the greedy approach, which is using the exponential loss as the splitting criterion

to build each tree from top to down.

To improve the performance of trees, we build a large tree first and use the bottom-up proce-

dure to prune the tree in CART. However, it is not necessary in Boosting Trees. Because each

classifier is ‘weak’, so for each of them, just a slightly better than a random classifier, which

means a small tree is good enough. Secondly, the trees are build sequentially in boosting, the

performance of the ensemble model will be improved by further iterations. If we build a strong

classifier, especially at the beginning, the performance of the ensemble model will potentially

be worse [1]. Thirdly, the building big trees is computational expensive. So, in Boosting Trees,

the depths of each tree are small. A good strategy is to specific a same depth value for every

tree in boosting. It has been shown that the depth of tree is also limit the level of interaction of

trees, the model works well using the depth between 4 and 8 normally, and using depth bigger

than 6 will unlikely bring too much improvement [1].

To improve the performance of Boosting Tree, shrinkage technique is also applied. One of

the most straightforward way is to scale down the contribution of each ‘weak’ classifier. For

example, let’s introduce a shrinkage parameter, γ, to the Boosting Tree algorithm, which makes

the ensemble model

G(X) = G(k)(X) = γG(k−1)(X) +Gk(X).
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We can see the influence of each classifier, Gk(X), is scaled down by γ. In practice, the shrink-

age parameter, γ ∈ (0, 1), is also known as the learning rate, which control the ‘learning speed’

of the boosting ensemble model. When the shrinkage parameter is small, each classifier’s contri-

bution is small and more classifiers are needed to capture the structure of data, so the ‘learning

speed’ of the ensemble model is slow. On the contrary, if the shrinkage parameter is big, the

‘learning speed’ is fast and less iterations are needed.

In applications, slower learner, which is a boosting algorithm with lower learning rate and

big number of iterations, gives better performance compared to faster learner, but the cost is

computational time and resource. At the same time, with a lower learning rate, the ensemble

model will overfit the data slower. For big datasets, or complex structured datasets, slow learn-

ing rates are recommended [33]. Normally, we specified a learning rate first, and then using

model selection techniques to choose the number of iterations needed.

2.5 Support Vector Machine

In this section, we will discuss the support vector machine algorithm, which is a supervised

learning technique firstly proposed by Corinna Cortes and Vapnik in 1990s [44][45][46], and it

became popular since then [1].

2.5.1 Maximal Margin Classifier

In this section, we discuss the Maximal Margin Classifier which is a separating hyper-plane

that farthest from the training observations.

Suppose a two classes problem, we have a training data set with p predictors, (xi, yi), i=1,2,...,n,

where xi = (xi1, xi2, ..., xip) are the predictors of the ith observation, and yi ∈ {1,−1} is its the

response. Then, the predictors span a p-dimensional spcae, Rp. This space can be divided into

two subspaces by a hyper-plane which is defined as

{(x1, x2, ..., xp) ∈ Rp : x1β1 + x2β2 + ...+ xpβp + β0 = 0} ,
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where β0, β1, β2, ..., βp are a sequence of real numbers. It is easy to show that β = (β1, β2, ..., βp)

is the norm of the hyper-plane. When β is unit vector, the hyper-plane can be written as

{
x ∈ Rp : xTβ + β0 = 0

}
,

where β represent the norm of the hyper-plane, and β0 represent the location of the hyper-

plane. In the following part, we denote β is a unit vector in Rp, and β0 is a real number, then,

any hyper-plane in Rp can be described by {β, β0}. For any point x = (x1, x2, ..., xp) ∈ Rp, its

signed distance to hyper-plane {β, β0} is

xTβ + β0.

The points on one side of the hyper-plane {β, β0} can be written as

{
x ∈ Rp : xTβ + β0 > 0

}
, or{

x ∈ Rp : xTβ + β0 < 0
}
.

If p = 2, then Rp is normal 2-dimensional plane, and the hyper-plane is straight line. If p = 3,

then Rp is normal 3-dimensional space, and the hyper-plane defined is normal plane. If p > 3,

then this space is not visible.

In Maximal Margin Classifier, we suppose the train data is separable which means we can

construct a separating hyper-plane, such that all the observations belong to different class are

located on different side of the hyper-plane. Suppose (xi, yi) is the ith the observation in the

training data, where yi = 1 or −1, representing the two response classes. The data is separable

means existing separating hyper-planes {β, β0} exists, such that

Mi = yi(x
T
i β + β0) > 0, for all i = 1, 2, ..., n,

where Mi is a signed distance between the ith observation and the separating hyper-plane
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{β, β0}. It also suggest that every observation is on the correct side of the hyper-plane {β, β0}
in this case. Denote the width of margin of the separating hyper-plane {β, β0} is

M = M(β, β0) = min{Mi} > 0,

which is the minimum distance between observations and the hyper-plane. Then, every training

observation is on the correct side, and at least M units away from the hyper-plane. The width

of margin of a hyper-plane also describe how far the observations are separated by it.

When the training data is separable, there are always exist many hyper-planes separating

the data perfectly. Maximal Margin Classifier is the one which divide the training data as

much as possible. It can be written as

G(x; β̃, β̃0) = sign(xT β̃ + β̃0)

M(β̃, β̃0) = max
β,β0
{M(β, β0)} ,

which is the hyper-plane maximal its width of the margin with norm β and location β0.

2.5.2 Support Vector Classifier

In many cases, the training data can not be separated by any hyper-plane perfectly, so the

observations are overlap, which leads to there is no hyper-plane, such that all training obser-

vations belong to different class are located on different side. Then, Maximal Margin Classifier

not exists in these situations. Another problem is the Maximal Margin Classifier is determined

by the training observations on the margin, so the classifier will change dramatically if we just

add a new observation in the margin or change the observations on the margin. It suggests

that the Maximal Margin Classifier is very sensitive to some individuals in the training data.

To solve this problem, Support Vector Classifier is proposed, where some training observa-

tions on the wrong side of the margin of a hyper-plane is tolerated, and a measure of the

confidence of every training observation being classified correctly is introduced. Denotes slack

variables, εi ≥ 0, i = 1, 2, ..., n, representing the relative distance between the margin and

the ith observation, misclassified by the margin of the hyper-plane {β, β0}. Then, the signed
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distance between the ith training observation and the margin can be written as

yi(x
T
i β + β0) = M(1− εi),

where the hyper-plane is determined by the norm β and the location β0, M is the width of its

margin, and εi describes the relative distance. If εi = 0, then the ith training observation is on

the correct side of the margin. If εi > 0 then the ith training observation violated the margin. If

εi > 1, then the ith observation is on the wrong side of the hyper-plane, thereby it is misclassi-

fied by the classifier. In application, we set a positive number C as the tolerance limit, such that

C ≥
n∑
i=1

εi

to control the relative number of observations accepted on the wrong side of margin. The

Support Vector Classifier is the hyper-plane, which maximal its margin with a total tolerance

of C, and it can be written as

C(x; β̂, β̂0) = sign(xT β̂ + β̂0), such that

(β̂, β̂0) = max
β,β0
{M} , subject to

yi(x
T
i β + β0) ≥M(1− εi), for all i = 1, 2, ..., n,

∑n
i=1 εi ≤ C, εi ≥ 0, for all i = 1, 2, ..., n.

It can be find that the observations on the margin or on the wrong side of margin affect the clas-

sifier, these observations are called Support Vectors. Only the change of the Support Vectors

will affect the Support Vector Classifier, whereas the classifier will not change if we just change

the observations on the correct side of margin . When the total tolerance C = 0, no tolerance

allowed, then the Support Vector Classifier degrade to Maximal Margin Classifier. When C is

larger, the margin is wider because the restrictive condition is weaker, and the model will allow

cumulate C observations on the wrong side of the margin. At the same time, the amount of

Support Vectors, affecting the classifier, is big, which make the model more stable and have a

potentially lower variance and higher bias. In contrary, if C is small, then the margin is narrow
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and there are less amount of Support Vectors in the model. In this case, the classifier is more

flexible, and have a relative high variance and low bias.

2.5.3 Support Vector Machine

In Support Vector Classifier, the boundaries between the two classes is hyper-plane determining

by {β, β0}, and the classifier is

C(x;β, β0) = sign(xTβ + β0),

which is linear. However, it might be a poor setting when the boundary between the class are

more likely to be non-linear sometimes. To improve the Support Vector Classifier, Support

Vector Machine is proposed.

In Support Vector Machine, the boundary space is enlarged using high degree polynomial

or some other kernels. For example, let’s introduce the quadratic polynomial to the boundary

space. Then, rather than fitting a classifier in p predictors space

X1, X2, ..., Xp,

we can fit a classifier in 2p predictors space

X1, X
2
1 , X2, X

2
2 , ..., Xp, X

2
p .

In this case, the original ith observation in the training data, (xi, yi) = (xi1, xi2, ..., xip, yi), will

be modified to (x′i, yi) = (xi1, x
2
i1, xi2, x

2
i2, ..., xip, x

2
ip, yi), for all i = 1, 2, ..., n. The original pa-

rameters of the hyper-plane, {β, β0} = {β1, β2, ..., βp, β0}, will be modified to the parameters

of p-dimensional quadratic surface

{β′, β0} = {β11, β12, β21, β22, ..., βp1, βp2, β0} .
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Then, we can fit a Support Vector Classifier using the modified training data and parameter

space {β′, β0} in a exactly same way with a normal Support Vector Classifier. The Support

Vector Machine classifier is

C(x′; β̂′, β̂0) = sign(x′T β̂′ + β̂0), such that

(β̂′, β̂0) = max
β′,β0
{M} , subject to

yi(x
′T
i β

′ + β0) ≥M(1− εi), for all i = 1, 2, ..., n,

∑n
i=1 εi ≤ C, εi ≥ 0, for all i = 1, 2, ..., n.

We can see that the the boundary of the Support Vector Machine classifier is a quadratic sur-

face determined by
{
β̂′, β̂0

}
in this case. Similar, we can extend the Support Vector Machine

classifier by various way.

From the former part, we can find that the boundary of the Support Vector Machine clas-

sifier is determined by some kind of kernel function

K(x,β) = 0.

In Support Vector Classifier, the space of the classifier is given kernel function

K(x,β) = xTβ

Denote the inner product of two vector, zi = (zi1, zi2, ..., zip), zj = (zj1, zj2, ..., zjp) ∈ Rp, is

〈zi, zj〉 =

p∑
k=1

zik × zjk

Then, the kernel of Support Vector Classifier is 〈x,β〉. There are 3 popular kernel in Support

Vector Machine [1], which are:
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d - Degree polynomial :K(x,β) = (1 + 〈x,β〉)d,

Radial base :K(x,β) = exp (−γ|x− β|2),

Neural network :K(x,β) = tanh(ρ1〈x,β〉+ ρ2).

In practice, we treat the tolerance C, the degree of kernels as the tuning parameters of the

Support Vector Machine, and use cross-validation to choose best of them.

In this chapter, we discussed the basic ideas and features of some statistical learning algo-

rithms. We also describe the conceptions of model complexity in some these algorithm, which

will be further discussed in the next chapter. In the following part of this thesis, we will focus

on the model selection methods and how to find out the one with potentially best prediction

ability using observed data. At last, we will investigate how the data size affect the predic-

tion performance of these algorithms and check whether do we always need a large data set to

construct a good model.
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Chapter III

Model Selection & Learning Curves

3.1 Model Selection

In previous chapter, we introduced some widely used statistical learning algorithms. Many of

these algorithms have are involved tuning parameters to control the model complexity. More

complex models can potentially fit the data better, but have a potential risk of over-fitting the

data. If the models are too simple, they cannot fully capture patterns in data, called under-

fitting the data. Validation approaches are commonly used to estimate predictive performance

and to select the best tuning parameters. In this chapter, we will discuss the bias and variance

trade-off, and validation approaches for model selection. In section 3.3, golden section search

optimization is introduced. In the third part of this chapter, we conclude with learning curves,

which are used to describe the relationship between the model performance as a function of

training data size.

3.1.1 Bias, Variance and Model Complexity

In linear regression, the coefficients are estimated by minimizing the mean squared error

MSE =
n∑
i=1

(
yi − f̂(xi)

)2

,

where yi and f̂(xi) are the observed and predicted response of ith observation respectively.

The MSE is called the training error, because it is computed using training data. However,

we are not really interested in training error, because it is always possible to train a very com-

plex model with very small training error. Hence, training error is not a testing measure of

a model’s predictive performance and an independent testing set of observations is required.
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Unfortunately, an independent testing data set is not available in most cases.

Consider a statistical learning problem with response vector Y , predictor matrix X and es-

timated model f̂(X) using the training data τ . which is a sample from the population T . The

test error is defined as

ErrT = E
[
L
(
Y, f̂(X)

)
|τ
]
,

where L(Y, f̂(X) is a pre-defined loss function, which typically is mean squared error for regres-

sion problems or mis-classification rate for classification problems. The test error is expected

average over the randomness brought by the prediction model f̂(X) and training data τ ran-

domly sampled from the population.

In linear regression, we assume that the Y = f̂(X) + ε, where f̂(X) is linear function of

predictors X, ε is an error term with mean 0 and variance σ2
ε and the error is measure by

squared error. Then, the expected error of an unseen observation, X = x0, is

ErrT (x0) = E
(

(Y − f̂(x0))2|X = x0

)
= [E(f̂(x0))− f(x0)]2 − E[f̂(x0)− E(f̂(x0))]2 + σ2

ε

= Bias2 + Variance + Irreducible Error.

The first term is the squared bias of the model, which is the average difference between the

prediction and the true mean. The second term is the variance of the model f̂(x0). The third

term is the irreducible error, such as the measurement error, unless σ2
ε = 0, which means every

observation is exactly on a line.

If we fit a polynomial regression model, where no interaction terms considered, the sum of

squared residual of polynomial model is smaller than it of linear model, which is shown in Ap-

pendix I. It suggests the more complex models fit the training data better than simple models,

but more parameters or complexity introduced, so they will potentially has higher variance and

low bias.
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In many statistical learning algorithms, the model complexity is controlled by tuning parame-

ters. Tuning the parameters of statistical method is a process of pursuing a trade-off between

the model bias and variance.

3.2 Resampling Methods

The basic idea of resampling is to draw samples from the data repeatedly, and fit the model to

each sample and evaluate the model fitting and obtain much stable models for some algorithms.

This can be a computationally expensive process in the past, because the model need to be

fit a model more times, but now, with the improvement of computation ability of computers,

resampling methods are very common.

In application, we are always interested in assessing the goodness of a model fitting, which

can be measure by error rate(for classification problems) or mean squared error(for regression

problems). A common idea is to calculate the error of the model fitting by the data used to

training the model. In statistical learning, this error is called training error. However, the

training

3.2.1 Validation Approach

In validation approach, we randomly separate the original dataset into two parts, the training

dataset and testing dataset. The training dataset is used to build the model, and the testing

dataset or validation set is used to evaluate the model’s predictive performance. There are

two main drawbacks for validation approach. Firstly, it is likely to overestimate the prediction

error of the model, because we just used a proportion of the whole available data to train

the model, which is likely to be worse than the one using the whole data. The second, this

approach is vulnerable to the subset chosen to train the model. Because the model might

change dramatically if different observations are chosen to be training data.

3.2.2 Leave-One-Out and K-fold Cross-Validation

To overcome the problems of validation approach, leave-one-out cross-validation (LOOCV) uses

a similar method. In LOOCV, one suggestion is used to test the model, and the others are used

to construct the model. This is repeated for each observation and the average performance
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is calculated. The advantage of LOOCV is that it has low bias, because the models are fit

using n − 1 observations every time, nearly the entire training data set. However, LOOCV is

potentially expensive when n is large, because the model is fitted n times. In addition, the n

training sets that are used are very similar. As a result, the models are highly correlated which

leads to high variance.

In K-fold cross-validation, we randomly separate the training data into K groups, called folds,

with approximately equal size. Then, keep one fold as the validation set and use the other folds

training data to fit the model. Next, repeat this approach K times, using the fold once as a

validation set. The K-fold CV error is average of them. K-fold CV is same with LOOCV when

K = n, so LOOCV is a special case of K-fold CV.

The choice of K used in K-fold CV is also a trade-off between bias and variance. When

K is big, the size of data used to fit model is close to the full training data size, and each

training set is more similar. This means the models are similar, so the bias is small but the

variance is quite big. When K is small, the bias is high but the variance is low. Typically,

10-fold cross validation is used for model selection application [1].

3.3 Golden Section Search

In last section, we discussed some resampling methods which can be applied in model selection

and to find tuning parameters in algorithms. However, using resampling to evaluate every

possible value of a tuning parameter can be computationally expensive. In this study, Golden

Section Search is used when there is only one tuning parameter involved.

Golden Section Search is an optimization technique for finding an extreme point of a strictly

unimodal function. It is a efficient way to find location of the extreme value through reducing

the considered interval progressively. When there is only one tuning parameter in the statisti-

cal learning model, we can apply the Golden Section Search to find the best tuning parameter

which gives the minimum K-fold cross validation error.

Suppose the cross validation error of tuning parameter α is CV(α), where α ∈ [a, b]. We

assume CV(α) is an unimodal function and apply Golden Section Search to find the best α

which gives the smallest cross validation error. Denote x1, x2 ∈ [a, b], such that x1 < x2 and
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||b− x1||
||x1 − a||

=
||x1 − a||
||x2 − x1||

.

Then, we have

CV(x1),CV(x2) < min (CV(a),CV(b)).

If CV(x2)−CV(x1) > 0, then the minimum can not locate in (x2, b) because CV(α) is a strict

unimodal function. So the minimum must be located in interval (a, x2). If CV(x2)−CV(x1) < 0,

similarly, the minimum can not locate in (a, x1), So the minimum must be located in interval

(x2, b). The Golden Section Search choose the interval in a way such that the proportional

length divided by the points {a, x1, x2} or {x1, x2, b} are same. So we also need to let

||b− x2||
||x2 − x1||

=
||b− x1||
||x1 − a||

.

Then, it is easy to show

θ =
||b− x1||
||x1 − a||

=
1 +
√

5

2
.

If CV(x2)− CV(x1) > 0, we consider CV(x3), where x3 ∈ (a, x1), such that

||x2 − x1||
||x1 − a||

=
||x1 − a||
||x3 − x1||

,

and compare CV(x2) and CV(x3) to determine the next interval. The reason of letting x3 ∈
(a, x1) is the length of interval (a, x1) is bigger than it of (x1, x2), therefore, it is more efficient

to consider the value in the bigger interval. We continue this process till some stopping criteria

applied. For example, the stopping criteria can be the length of interval to be considered. if

its length is smaller than some threshold, we stop the algorithm.

Mathematically, the above setting ensure the interval length shrink by same proportion in each

step, and the proportion of the location of point θ = 1+
√

5
2

is called the Golden Ratio. In this

32



thesis, we used golden section search to find the optimal number of neighbours in KNN. This

give similar results comparing to the normal approach, but smaller the number of neighbours

need to be considered, hence safe more computational resources.

3.4 Learning Curves

A learning curve is used to describe the relationship between the knowledge gained and the time

cost. It was introduced by Hermann Ebbinghaus in 1885 in psychology. In statistical learning,

learning curves are used to represent the relationship between the performance of statistical

learning algorithms and the amount of the data used in training the model.

A learning curve satisfies three conditions. I) It is a positive and increasing function of the

number of observation. II) It is a concave down function. III) The learning curve is bounded.

For classification problems, it is straightforward to state that the accuracy can not beyond

100%.

3.4.1 Learning Curves Fitting

In this section, we consider fitting a learning curve. Denote the accuracy of a statistical learning

model is Acc and the number of training observations n. Frey and Fisher (1999) use the power

law function Acc = a×n−b to fit the learning curve of C4.5 decision tree, where a > 0 and b > 0

are the parameters to estimate. Their work showed that power law is a potentially suitable

family to fit learning curves. John and Langley used Acc = a− b×n−c to fit learning curves for

Naive Bayesian classifiers. Gu and Hu [38] compared the performance of several families, shown

in Table 3.1, and found that the 3-parameter power law family, Acc = a − b × nc, performed

better. Some studies showed the learning curves are not well behaved, because there might be

a sudden increase in the learning curves, especially in the small samples part [39]. However,

there are many studies showed the learning curves behaved well in large data sets [40]. The

reason might be that the variation of the learning curves is relative large on small sample sizes.

Because the variance of model constructed using small sample size can be big, which make the

estimated learning curves are less reliable in former part.

To improve learning curves fitting methods, many studies dedicate to find good sample sizes

schedules to fit learning curves more efficiently. For example, John and Langley [42] proposed

a progressive sampling schedule nk = n0 + k × nα, where the performances of the models us-
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Model Name Formula Remarks

2-Parameters
Power Law

Acc = a× nb
a > 0, b > 0

Logarithm Acc = a+ b× log (n)

a > 0, b >
0, c > 0

3-Parameters
Power Law

Acc = a− b× n−c
a > 0, b >
0, c > 0

Vaper Pressure Acc = exp {(a+ b/n+ c× log n}

a > 0, b >
0, c > 0

MMF Model Acc = (a ∗ b+ c× nd)/(b+ nd)

a > 0, b >
0, c > 0

Weibull Acc = a− b× exp {−c× nd}

a > 0, b >
0, c > 0

Table 3.1: Candidate Families of the Learning Curves

ing a linear scheduled sample sizes were considered when fitting a learning curve, such as a

sequence of sample sizes {100, 200, 300, 400, ...., N}. The drawback of this schedule is obvious.

When the full training data size is large, a huge number of sizes need to be considered which is

computational expensive. Alternatively, Foster and David showed geometric sampling sched-

ules, nk = n0 × nkα, is more robust [40]. So, in this thesis, we considered the performance of

algorithms in geometric sampling schedules, where the models used a geometric sequence of

sample sizes, such as a sequence of sample size {100, 200, 400, 800, 1600, ...., N}.

34



Chapter IV

Simulation Study

4.1 Simulation Study

In this study, our goal was to investigate how the number of training observations affects per-

formance of different statistical learning algorithms (discussed in Chapter 2), and whether this

relationship can be described using a 3-parameter Power Law learning curve describe in section

3.4. This study is done by three shared computing environments. The first had 2 x Intel®
Xeon® CPU E5-2667 @ 2.90 GHz (boost up to 3.50 GHz) – total of 12 cores, 24 threads of

execution with 192GB of RAM. The second had 1 x Intel® Xeon® CPU X5670 @ 2.93GHz

(boost up to 3.33 GHz) – total of 6 cores, 12 threads of execution with 48 GB of RAM. The

third had 2 x Intel® Xeon® CPU E5-2690 v3 @ 2.60GHz (boost up to 3.50 GHz) – total of

24 cores, 48 threads of execution with 128GB of RAM. All the simulations and analysis were

performed using R [52].

Parallel computing in this simulation was performed using the packages doParallel [53] and

foreach [54]. At each run, a sample was selected from training dataset, a classifier built, accu-

racy measured and the processing time record. We call this a “job”. The results of jobs done

by one “worker” were recorded in a “.csv” file, and multiple “workers” output their results to

several “.csv” files in parallel. A number of “jobs” were assigned to “worker” in advance, and

the “worker” output the results when every new job finished during the running. There are

a few advantages of this strategy. Firstly, all the results will be recorded automatically once

they are finished, so an interrupt, for example a sudden power outage, will not destroy the

results. This is important because the some of the “jobs” may takes days or weeks. Secondly,

the progress of the simulation can be monitored by the output file. Because the running time

of each job is recorded, the remaining running time can be roughly predicted. Thirdly, the

maximum number of ‘workers’ on different sized jobs can be estimated within the limitation

of memory. An example of R code to display parallel computing in this study can be found
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in Appendix III. More details and applications of parallel computing packages doParallel and

foreach can be found in [53] [54].

4.2 Simulation Setup

In this simulation study, we considered classification problems. The models’ performances are

measured using the classification rates on independent test data, which were not used in the

training process. We will consider sample sizes that follow a geometric schedule number of ob-

servations, 0.01%, 0.02%, 0.04%, 0.08%, . . . of the total, until to the full training data. For each

sample size, simple random sample (without replacement) was used to choose the observations

from the full training dataset. We selected 50 samples for each sample size and reported the

averaged performances. We considerd 8 algorithms, which are K-Nearest Neighbours (KNN),

Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector

Machine (SVM), Classification Tree (CT), Bagging, Random Forest (RF) and Boosting Trees

(BTs).

For LDA and QDA, no tuning parameters needs to be considered. We used the functions

lda and qda in the package MASS [55] to train and evaluate these models.

For KNN, we used the function kknn in the package kknn [56]. Euclidean distance was

used in the model, and all the predictors were normalized to mean 0, deviance 1 to make them

have the same influences. The tuning parameter, K, was chosen using golden section search

approach described in section 3.3.

For CT, we used the package rpart [57]. The minimum number of observations in every

terminal node is set to 50. The tuning parameter, tree’s depth, was chosen by 10-fold cross

validation. Details of it can be found in section 2.3.2.

In Bagging, we used the function randomForest in the package randomForest [58]. Each

tree in Bagging should be fully built. However, in this package, the maximum depth of each

tree is 32. So, the maximum depth of 32 was used, and we set the number of trees to 500.

The model was evaluated using the out of bag error, which determined whether we needed to

construct more trees. We stopped adding additional trees to the forest, if the variance of out-
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bag-error over the past 50 trees was smaller than 0.0001. Because it suggests the performance

the random forest tends to be stable, adding more tree can not improve the model further.

In RF, we used the function randomForest in the package randomForest [58]. The max-

imum depth of each tree was set to 32. The number of trees will be set to 500, and then

the model was evaluated by the out of bag error. We stopped adding trees, if the variance of

out-bag-error over the past 50 trees was smaller than 0.0001. Because the random forest is not

very sensitive to the number of variables considered at each split (Mtry), it was set to
√
p,

where p is the number of predictors. In random forest, more memory was required to store

large numbers of trees. However, because these trees are built independently, so it is possible

to break down the process. For example, in this simulation, we applied an updating strategy

for large datasets. We built one tree and record its predictions for the testing data, and then

deleted it to clear the memory. Repeating this process 500 times to get a prediction was more

memory usage friendly than training all tree in once.

In BTs, we use the function gbm in the package gbm [59]. We considered depth 1, 2, 4

and 6. The shrinkage parameter were set to 0.001. The number of trees tried was set to 5000

at first and the optimal number of trees was chosen using 10-fold cross validation [33]. We

stopped adding trees when the variance of the cross validation error made by last 50 trees was

smaller than 0.0001.

The SVM approach used the function tune in the package e1071 [60]. The kernel consid-

ered were linear, polynomial and radial basis. The degrees considered were 1, 2 and 3. All

these tuning parameters were chosen using 10-fold cross validation.

The learning curves were fitted using function nls in the package stats [52]. In our study,

we only used the 3-Parameter Power Law function, Acc = a−b×n−c, to fit the learning curves.

The models were determined by non-linear least square estimates of the parameters a, b and

c. In the fitting process, the function SSasymp was used to display a self-starting non-linear

square asymptotic regression model, where the “start points” for each parameters and the max-

imum iterations were set manually to ensure converge. More details of this function can be

found in [52].
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4.3 Data Sets Details

In this study, we considered 3 datasets from the UCI repository [4]. The first dataset is from

high-energy physics, HepMass [4]. The goal is to classify the signatures of exotic particles,

where 1 is for “signal” and 0 for “background”. The predictors are consist of low-level kine-

matic features, high-level kinematic features and particle mass. All the predictors are numerical.

There are 7,000,000 observations in training set and another 3,500,000 observations in the test-

ing set. In simulation experiment, a number of training observations were sampled from the

training set to learn the classifier, and its performance was measured using the whole indepen-

dent testing set.

The second dataset is called YearPredictionMSD [4]. The problem is to predict the re-

lease year of songs using audio features. The predictors are extracted from the timbre features

from The Echo Nest API [41]. All the predictors are numerical. We divided the release year

into two groups. The first group were the songs released after 2000, and the second group were

the songs released before 2000. The first 463,715 examples in the data set were used for training

model, and rest 51,630 examples for testing the model performance, which is recommended by

the publisher.

The third dataset is called PokerHand [4]. The prediction variable is the score of a poker

hand. We divided the scores into two levels, “Poker Hand” for the ones with scores bigger

than 0, or “None” for scored equal to zero. Then, the problem becomes whether the statistical

learning algorithm can identity a poker hand. The proportion of each class is approximately

same. Because we wish to investigate how the number of training observation affect the model

performance, we used the original testing data (with 1,000,000 observations) for training data,

and the original training data (with 25010 observations) for testing data.

4.4 Simulation Results

4.4.1 Sampling Size vs. Model Accuracy

In the following graphs, the Y axis represents the classification rate and the X axis represents

the number of training observations used in a log scale. The mean and variability of the esti-

mated classification rate on each sample size were displayed using a sequence of box plots.
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Figure 4.1 - Figure 4.4 show the simulation results of data set, HepMass. In Figure 4.1,

we compared LDA and QDA. The average performance of LDA is better than QDA on every

sample size. Hence, the linear classifier is better than the quadratic classifier in this case. In

addition, the variance of LDA is also smaller than QDA. The reason might be that there are

more parameters in QDA leads to the bigger variance of the QDA models (as illustrated in

section 4.1). When the sample size increased, the average classification performance increased

and the variance decreased for both LDA and QDA. However, the improvement of classifier’s

accuracy got smaller for both algorithms when more training observations were given. After

about 15,000 observations given, the performance of both the algorithms tend to be flat, and no

gain for more observations given. This is because the LDA and QDA classifiers are constructed

using estimated means and variances (or covariances). As a result, in this case, full data might

not be necessary to construct a model with acceptable accuracy using LDA or QDA approaches.
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Figure 4.1: The performance of LDA and QDA in dataset HepMass

Figure 4.2 illustrates the performances of CT, Bagging and RF. The Random Forests had better

predictions than a single classification tree or Bagging Trees, given same number of training
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observations. Furthermore, the variances of prediction performance of Random Forests are also

smaller than a single classification tree or Bagging on all sample sizes. As illustrated in section

2.4.2, Random Forests make improvements by bagging and decorrelating the trees, which make

their performed better and variance lower. With the number of training observations grown,

the averaged accuracy of all these 3 algorithm increased, but the gains get smaller. After given

11200 observations given, adding more observations only get slight gains. For example, the

difference between the averaged accuracy of random forest using 20,000 and 2,000,000 is just

around 1%, which is extremely small. It suggests that using full data may not make too much

difference in this case.

700 2800 11200 44800 358400 2867200

0.
78

0.
80

0.
82

0.
84

0.
86

0.
88

Sample Size

R
at

e

700 2800 11200 44800 358400 2867200

0.
78

0.
80

0.
82

0.
84

0.
86

0.
88

700 2800 11200 44800 358400 2867200

0.
78

0.
80

0.
82

0.
84

0.
86

0.
88

CT
RF
Bagging

Figure 4.2: The performance of CT, Bagging and RF in dataset HepMass

Figure 4.3 shows the performance of Boosting Trees. When the number of training observations

increased, the variance of model performance became smaller. We also can see the algorithm

reached its limit given about 200,000 training observations. What is interesting is that the

classification rate decreased when more than 358,400 training observations used. The reason

may be that the parameters were not chosen correctly. In Boosting Trees, lower learning rate

and more trees are necessary to capture the patterns of data when a large amount observations
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are used in training [33]. When the number of observations increase, the pattern of data tends

to be more complex. Because all trees in boosting are “slow learners”( only with depth of 1,2

or 4), far more trees are needed to capture these patterns even using the same learning rate.

Otherwise, the performance of the algorithm might be even worse given more data. However,

we did not change learning rate and number of trees for large sample size, because it is too

computationally expensive.
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Figure 4.3: The performance of Boosting Trees in dataset HepMass

Figure 4.4 shows the estimated mean of classification rates of the algorithms on various sample

size. The coloured lines are learning curves fitted by the 3-Parameter Power family functions.

The learning curves fit the data well. The performance of CT, Bagging and RF increased

faster than other algorithms, given more observations. It is because these tree based methods

can make better use of the additional information to construct classifiers with more complex

boundaries. These classifiers can capture the patterns of data better. The Support Vector Ma-

chine with 3 degrees radial kernel also performed well. Except Boosting trees, the prediction

performance of all other algorithms increased with more training data given, but only slightly
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Figure 4.4: The averaged performances of the algorithms in dataset HepMass

when sample size is big. For instance, for SVM, the mean rate using 700 observations was about

82.7%, and it reached to nearly 84 % using 2800 observations, over 1 % gained. However, the

difference of SVM using 10,000 and 1,000,000 observations is only about 1%.

Figure 4.5 - Figure 4.8 show the simulation results of data sets YearPredictionMSD, and we

find what happened in this dataset is similar to dataset HepMass. In Figure 4.5, we can find

that the classification rate increased for both algorithms when given more training observations,

but reached their limit quickly. The variances of QDA classifiers are bigger than LDA, because

there are fewer parameters to be estimated in LDA.

Figure 4.6 shows the performance of CT, Bagging and RF. The classification rate of all these

3 algorithms improved with given more training observations given, but the gains get smaller.

For example, the difference between the RF average rate using 4,000 and 40,000 is just around

2%. As an improvement of Bagging Trees, RF is better than Bagging and CT in terms of rate

and variance.
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Figure 4.5: The performance of LDA and QDA in dataset YearPredictionMSD
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Figure 4.6: The performance of CT, Bagging and RF in dataset YearPredictionMSD
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Figure 4.7 shows the performance of Boosting Tree, which it similar to what happened in dataset

HepMass. We can see the algorithm reach its limit given about 200000 training observations.

When more observations given, the rate of Boosting Tree decreased. As illustrated in dataset

HepMass, the parameters were not chosen correctly for large size, but we did not adjusted it

because of high computational cost.
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Figure 4.7: The performance of Boosting Trees in dataset YearPredictionMSD

Figure 4.8 shows the estimated mean of classification rates of the algorithms. The coloured

lines are learning curves fitted by the 3-Parameter Power family functions. The estimated

learning curve fit the data well, especially when the number of training observation is big. It

suggests the learning curve might be more reliable with large amount sampling size. Except

Boosting trees, the prediction performance of all other algorithms increased with more training

data given, but only slightly, especially when the sample size was large. The mean rate of all

algorithms were nearly flat over 5,000 training observations given. So, using the full data might

not be necessary.
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Figure 4.8: The averaged performances of the algorithms in dataset YearPredictionMSD

Figure 4.9 - Figure 4.12 show the simulation results of data sets, PokerHand. From Fig-

ure 4.9, we can the both LDA and QDA did not works well, because the goal in this dataset is

to recognize the “hands” of the data, poker hands or non poker hands, but it is hard for LDA

or QDA algorithms. For instance, in LDA, the classifiers were built using the estimated pooled

variances and means of the classes, and they can not distinguish the observations which has

a pair of same ranks, so the “single pair” hands will never be recognized by the algorithms,

no matter how many observations given. As a result, we did not find any gains in LDA using

more observations. The rates of QDA increased with more observations used, and reached its

limit around 25,600 training observations given. It suggests QDA recognized some “hands”.

For example, the “single pair” and “two pair” might be recognized by QDA, because all these

“hands” has same ranks, which means the correlations between some of their ranks are equal

to “1” , then it can be recognised by QDA. As a result, If we do not know what are the possible

form of these pattern, parametric methods, such as LDA and QDA, might be bad choice dealing

with this sort of problems.
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Figure 4.9: The performance of LDA and QDA in dataset PokerHand
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Figure 4.10: The performance of CT, Bagging and RF in dataset PokerHand
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Figure 4.11: The performance of Boosting Trees in dataset PokerHand
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Figure 4.12: The averaged performances of the algorithms in dataset PokerHand
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From Figure 4.10, RF, Bagging and CT works well, compared to LDA and QDA. The tree based

methods can recognise the poker hands well. Increasing the number of training observations

improved the performance of all these 3 algorithms. The classification rate of RF was better

than Bagging and CT, and reached over 90% using the whole training set with smaller variance.

In Figure 4.11, the classifiers are the boosting trees. The performance increased at first, and de-

crease after given 25000 observations. The reason is same with previous results, the parameter

setting need to take the data size into consideration, otherwise, using more observations could

give even worse results. However, we did not adjusted because of the limited computational

resources.

4.4.2 Sample Size vs. Computational Usage

In this simulation, we also consider the computational usage of different algorithms using dif-

ferent sample sizes. The results are shown in Table 4.1, Table 4.2 and Table 4.3. Please note

that different machines have different properties, computational abilities and environment. In

addition, the structures of different data sets will also make a difference in processing time and

memory occupation. So, these results only can be used to measure the relative computational

usage for different algorithms using different training data sizes.

We can find the LDA and QDA are extremely efficient to implement, because the classifiers

are only determined by estimated means, variances (pooled variance for LDA) and proportion

of each class. Single tree (CT) also can be built quickly, and the Bagging and RF took longer.

KNN and SVM are time consuming, and both of the algorithms are very sensitive to the sample

size, especially SVM. The reason is the tuning parameters need to be tuned in both approaches

which is very time consuming. However, if we have bounds potential best ranges for the tun-

ing parameters, the computational time can dramatically decrease. Table 4.1, Table 4.2 and

Table 4.3 showed that Increasing number of training observations prolong the computational

time dramatically for all algorithms (except LDA and QDA), but only small gains in model

performances. For example, the Table 4.1 shows the computational time of different algorithms

using different sample size in dataset HepMass, and we can see that the computational time

for SVM using 0.1 % (or 7,000) observations is around 40 mins and over 2 weeks for 10 % (or

700,000) observations, but the prediction accuracy gain is only about 1%.
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Another main barrier is the limited RAM of the computer(s). In the simulation study, we find

the memory usage of some algorithms are very high, such as RF, Bagging and KNN, but only

a small amount of memory required by CT, SVM and Boosting trees. This affect the number

of cores we can use in parallel. For instance, for dataset HepMass, using about 70,000 ob-

servation to train a SVM classifier just used around 1GB of RAM, but over 10 GB of RAM

for RF and 8 GB for KNN. In addition, the sensitivities of memory usage for some algorithms

are various. For dataset HepMass, fit a SVM classifier with 700,000 training observations

just used less than 5GB of RAM, but over 40GB for RF. However, because the trees are built

independently using bootstrapped samples, we can break them down to save memory. For

example, when the sample size was very large, we built one tree and record its predictions for

the testing data, and then deleted it to clear the memory. Repeating this process 500 times to

get the same results with building all 500 trees in once. But not all algorithms can be break

easily, such as KNN.
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Models
Sampling Fractions

0.01% 0.1% 1% 10% 100%

LDA 21 sec 22 sec 25 sec 54 sec 6 mins
QDA 31 sec 32 sec 36sec 49 sec 5 mins

KNN 8 mins 30 mins 4 hours > 2 days > 2 weeks
CT 8 sec 10 sec 40 sec 12 mins 3 hours
BTs 10 mins 20 mins 1 hour 15 hours 3 days

Bagging 2 mins 4 mins 18 mins 3 hours >1 day

RF 2 mins 3 mins 10 mins 2hours 1 day

SVM 2mins 40 mins >1 day > 2 weeks � 2 weeks

Table 4.1: The averaged computational time of every job (including model construction and
testing using the specified size of data for once) for data set HepMass.

Models
Sampling Fractions

0.1% 1% 10% 100%

LDA 2 sec 3sec 10 sec 1mins
QDA 1 sec 3 sec 20 sec 2 mins

KNN 15 sec 21 mins 1 day 1 week
CT 1 sec 7 sec 2 mins 45 mins

BTs 18 sec 1 min 25 mins 20 hours
Bagging 2 sec 40 sec 20 mins 8 hours

RF 1 sec 20 sec 8 mins 3 hours
SVM 31 sec 2 hours > 1 day > 2 weeks

Table 4.2: The averaged computational time of every job (including model construction and
testing using the specified size of data for once) for data set YearPredictionMSD.

Models
Sampling Fractions

0.01% 0.1% 1% 10% 100%

LDA < 10 sec < 10 sec < 10 sec < 10 sec < 10 sec
QDA < 10 sec < 10 sec < 10 sec < 10 sec < 10 sec

KNN 12 sec 1 min 15 mins 6 hours > 1 day

CT < 10 sec < 10 sec < 10 sec 12 sec 3 mins

BTs < 10 sec 12 sec 1 mins 10 mins 8 hours
Bagging < 10 sec < 10 sec 1 min 10 mins 3 hours

RF < 10 sec < 10 sec 1 min 10 mins 3 hours
SVM < 10 sec 20 sec 20 mins 10 hours 2 days

Table 4.3: The averaged computational time of every job (including model construction and
testing using the specified size of data for once) for data set PokerHand.
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Chapter V

Conclusion

In this thesis, we studied how the number of training observations affect the performance of

some popular statistical learning algorithms. Three datasets were considered. In dataset Pok-

erHand, the learning algorithms need to learn the rules of ‘poker hands’. So, if the algorithms,

such as the classification trees and random forests, has the potential to learn these rules, their

classification rates increased significantly given more training observations, although the gains

tends to be smaller. However, if the algorithms do not have the ability to learn the rules, such

as LDA and SVM, giving more training observations will not bring too much benefits. So, in

different applications, background knowledge can help us to choose more efficient algorithms,

and just giving an inefficient algorithm more training observations might not bring too much

benefit. In datasets HepMass and YearPredictionMSD, the simulation study showed that

the gain of using large number of training observations is limited. All algorithms are tend to

converge to their limit given enough training data, and more training observations can not

bring too much gain.

Through comparing the performance of the algorithms, we find that the methods that can

produce classifiers with complex boundary perform well when there are many training obser-

vations, such as classification trees and the random forests. This reveal the fact that the big

datasets are more likely to have more complex feature and patterns, as a result, more powerful

algorithms, which can construct classifiers with complex boundaries and learn the patterns

efficiently and automatically, are preferable.

The main challenge of this thesis was the limited computing resources. Besides the number

of cores, the amount of memory storage required for some algorithms increased exponentially

with the number of observations. Displaying even a simple statistical learning method on

larger dataset can be challenging. Through monitoring the computational usage of different
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algorithms on various sizes of training data, we found LDA, QDA and the single classification

tree approach (CT) were more computationally efficient in terms of computational time and

memory usage. The memory usage of Boosting Trees and SVM were relative small, but far

more computational time required. Random forest and Bagging Trees can be processed faster

than SVM, but more memory required. However, the whole process of them can be easily

break down because the trees were built independently using bootstrapped samples, such as

the ‘updating’ approach used in this study.

Compared to the other algorithms considered in this study, we would like to recommend the

Classification Tree and the Random Forest in big data situations, because both of them are

able to construct classifier with complex boundary capture the complex patterns of big data

efficiently. In addition, the computational time of them is relative short. For users with lim-

ited computational resources, classification trees (CT) are recommended. Otherwise, Random

Forests are preferred, because they have a stronger ‘learning’ ability, compared to CT, but more

powerful computers required.

In this thesis, we showed that increasing the number of observations improved the perfor-

mance of the algorithms, but the gain tends to be very small, especially when the sample size

is already very large. For example, in dataset HepMass, the accuracy improvement of the

model using large data taking about 2 weeks is only about 1%, comparing to the one using

smaller data which just took about half an hour. In addition, for some ensemble methods, such

as Boosting Trees, more base classifiers and lower learning rate are required when the data

is large. Without adjusting these parameters, boosting methods can even give a worse result

given more observations. However, using lower learning rate can be extremely computational

expensive. So, in applications, using large dataset might be not necessary to get a model with

acceptable accuracy. Learning curves, which is used to describe the relationship between the

sample size and model accuracy, are discussed. In our study, the 3-parameter Power Law func-

tions fit the learning curves well, although more datasets and algorithms need to be further

considered.
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5.1 Future Research

In this thesis, we considered 3 classification datasets. It would be interesting to extend the

simulation study to consider more datasets and more algorithms. In addition, future research

can also consider the regression problems.

Learning curves provide way to describe the relationship between the sampling size and model

accuracy. However, we also need to look at the variations of them. One potential direction for

further research is whether can we mathematically prove this the relationship can be described

as function families.

It would be interesting and valuable to investigate whether can we use the learning curves

to predict the required number of observations to get a model with good prediction perfor-

mance. That is, fitting a learning curve using small samples and determining the number of

training observations required.
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Appendix I

In this section, we showed why the sum of squared residual of the polynomial regression is small

than that of the linear regression. Consider a linear regression problems with n observations

and p predictors. Denote the vector of response Yn×1, the design matrix Xn×p and vector of

residuals εn×1. Suppose X is a full rank matrix and rank(X) = p then

Y = Xβ + ε,

and Least Squared Estimate of coefficients are β̂ = (XTX)−1XTY. So the sum of squared

residual

εTε = [Y−Xβ̂]T [Y−Xβ̂]

= YTY− 2YTXβ̂ + β̂TXTXβ̂

= YTY−YTXT (XTX)−1XY

= YT [In −XT (XTX)−1X]Y

= (n− p)YTY

where In is the n×n identify matrix and p = rank(X). If we fit a polynomial regression, denote

new design matrix A and rank(A) = p′, then because span(X) ∈ span(A), so p′ > p. So the

new sum of squared residual of it will be (n− p′)YTY, which is smaller than (n− p)YTY.
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Appendix II

The reason of setting in boosting

In this section, we will discuss the reason of the setting in AdaBoost algorithm. In general,

the AdaBoost algorithm is equal to fitting a forward stepwise additive model using the expo-

nential loss function

L(y,Gk(x)) = exp{−yGk(x)},

where the response y ∈ {−1, 1} .

Suppose after kth iterations, the current weighs for each observations are wki , i = 1, 2, ...., n,

and we have a sequence of weak classifiers and their weights, {G1(X), α1},
{G2(X), α2},...,{Gk(X), αk}. Then, the current ensemble classifier is

G(k)(X) = α1G1(X) + α2G2(X)+, ...,+αkGk(X).

the total error of G(k)(X) based on exponential loss function is

Ek =
n∑
i=1

exp{−yiG(k)(xi)},
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which is the weighted sum of loss for each observation. So, for observations correctly clas-

sified by Gk(X), yi = Gk(xi)⇒ yiGk(xi) = 1, and for the misclassified observations by Gk(X),

yi 6= Gk(xi) ⇒ yiGk(xi) = −1. To investigate the reason of settings for weights and the rela-

tionship between the iteration steps, let’s consider the total loss of G(k+1)(X), given G(k)(X).

Ek+1 =
n∑
i=1

exp{−yiG(k+1)(xi)}

=
n∑
i=1

exp{−yi[G(k)(xi) + αk+1Gk+1(xi)]}

Let wk+1
i = exp{−yiG(k)(xi)}, then,

Ek+1 =
n∑
i=1

wk+1
i × exp{−αk+1yiGk+1(xi)}

=
∑

yi=Gk+1(xi)

wk+1
i × exp{−αk+1yiGk+1(xi)}+∑

yi 6=Gk+1(xi)

wk+1
i × exp{−αk+1yiGk+1(xi)}

=
∑

yi=Gk+1(xi)

wk+1
i × exp{−αk+1}+

∑
yi 6=Gk+1(xi)

wk+1
i × exp{αk+1}

=
n∑
i=1

wk+1
i × exp{−αk+1} −

∑
yi 6=Gk+1(xi)

wk+1
i × exp{−αk+1}+∑

yi 6=Gk+1(xi)

wk+1
i × exp{αk+1}

=
n∑
i=1

wk+1
i × exp{−αk+1}+

∑
yi 6=Gk+1(xi)

wk+1
i × [exp{αk+1} − exp{−αk+1}]
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From the equation above, we can find that in terms of Gk+1(X), minimizing Ek+1 is equivalent

to minimizing
∑

yi 6=Gk+1(xi)
wk+1
i , which is the sum of a fuction wk+1

i (which will be shown as

the ith observation’s weight at the k + 1th step) of the observations misclassified by Gk+1(X).

Next, we consider αk+1. Let

∂Ek+1

∂αk+1

= 0,

We have

n∑
i=1

wk+1
i × e−αk+1 =

∑
yi 6=Gk+1(xi)

wk+1
i × [eαk+1 + e−αk+1 ]

αk+1 =
1

2
log

∑
yi 6=Gk+1(xi)

wk+1
i∑

yi=Gk+1(xi)
wk+1
i

.

If we define the weighted error rate of Gk+1(X),

errork+1 =

∑
yi 6=Gk+1(xi)

wk+1
i∑n

i=1 w
k+1
i

,

then,

αk+1 =
1

2
log

1− errork+1

errork+1

.

From the results above, we know how the weak classifiers, Gk(X) and their weights, αk are

determined. Next, we will consider wki , the weighs of each observation at each step in the

iteration. In the former setting, the weights of each observations are set to

wk+1
i = exp{−yiG(k)(xi)}.

So,

wk+1
i

wki
=

exp{−yiG(k)(xi)}
exp{−yiG(k−1)(xi)}
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wk+1
i = wki × exp{−αkyiGk(xi)}.

For the observations that correctly classified by the last weak classifier, Gk(X), satisfying

yiGk(xi) = 1. Meanwhile,

αk =
1

2
log

∑
yi 6=Gk(xi)

wki∑
yi=Gk(xi)

wki
= 0,

Because
∑

yi 6=Gk(xi)
wki = 0, when all of them are correctly classified by Gk(X). So, the weights

of the next iteration are

wk+1
i =wki × exp{−αk}

=wki

For the observations that correctly classified by the last weak classifier, Gk(X), satisfying

yiGk(xi) = −1. So, the weights of the next iteration are

wk+1
i = wki × exp{αk}.

Thus, we showed that AdaBoost algorithm is equivalent to fitting a forward stepwise additive

model, minimizing the exponential loss. Comparing to minimizing the classification rate, the

exponential loss is more sensitive estimated probabilities to each class. Friedman et al.(2000)

showed that the AdaBoosting ensemble model, G(x) = sign{
∑K

k=1 αkGk(X)}, is estimating

1

2
log

P (Y = 1|X = x)

P (Y = −1|X = x)
,

Which are the the half of the log of the odds. So the normal cut-point for the predicting

classification is 0.
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Appendix III

An Example of R code for Parallel Computing in SVM

l ibrary ( f o r each )

l ibrary ( doPa ra l l e l )

l ibrary ( e1071 )

l ibrary ( readr )

YPdata <− read csv ( ”/ scratch−network/y l i 2 2 6/Big data s e t s/YearPredictionMSD . txt ” )

YPdata$V1 <− as .numeric (YPdata$V1)

YPdata$V1 <−i f e l s e (YPdata$V1>=2000 ,1 ,0)

YPdata$V1 <− as . factor (YPdata$V1)

t r a i n <−YPdata [ 1 : 4 6 3 7 1 5 , ]

t e s t <−YPdata [ 463716 : 515345 , ]

##########################################################################

####### Spec i f y the ’ job ’ , and what need to be recorded (For SVM )######

##########################################################################

svm0 <− function ( s i z e s ) {
f <− matrix (ncol=7,nrow=1)

t iming <− proc . time ( )

index <− sample ( 1 :nrow( t r a i n ) , s i z e s , replace=F)

samples <− t r a i n [ index , ]

f [ 1 , 1 ] <− s i z e s

tune . out1 <− tune (svm , V1˜ . , data =samples ,

ranges = l i s t ( degree=c ( 1 , 2 , 3 ) , k e rne l =c ( ’ l i n e a r ’ , ’ polynomial ’ , ’ r a d i a l ’ )

) )

bestmod <− tune . out1$best .model
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degree1 <− as .numeric ( tune . out1$best . parameters [ 1 ] )

ke rne l 1 <− as .numeric ( tune . out1$best . parameters [ 2 ] )

CV Error <− 1−tune . out1$best . performance

Test Error <− mean(predict ( bestmod , t e s t ) == t e s t$V1)
f [ 1 , 2 ] <− CV Error

f [ 1 , 3 ] <− Test Error

Time <− (proc . time ( ) − t iming ) [ 3 ]

f [ 1 , 4 ] <−Time

f [ 1 , 5 ] <− date ( )

f [ 1 , 6 ] <− degree1

f [ 1 , 7 ] <− ke rne l 1

return ( as .matrix ( f ) )

}

##############################################################

####### Genearating the geometr ic sequence s i z e s o f data ####

###############################################################

a <− c (0 . 001∗2ˆ( seq (0 , log (1000)/log ( 2 ) ,by=1)) ,1)

b <− round(463715∗a )
b

#############################################################################

####### The s i z e s and repea t s to be run f o r each ’ worker ’ in t h i s run ######

#############################################################################

s i z e s <− b [ 1 : 5 ]

r epea t s <− 5

#####################################################

###### Spec i f y the number o f cores to be used ######

#####################################################

c l <− 10

r e g i s t e rDoPa r a l l e l ( c l )

#######################################################################

###### Spec i f y the d i r e c t i o n o f output f i l e s and t h e i r names ######

#######################################################################

f i l e 0 <− ’/ scratch−network/y l i 2 2 6/Resu l t s YearP/Pa r a l l e l r e s u l t s /YPdata 50 SVM’
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#################################################

###### The func t i on to run in p a r a l l e l ######

#################################################

m <−r epea t s
n <− length ( s i z e s )

r e g i s t e rDoPa r a l l e l ( c l )

f o r each ( index = 1 : c l , . combine=rbind ) %dopar%

{matrixAA <− matrix (ncol=7,nrow= m∗n)
colnames (matrixAA) <−c ( ’ Sampling . s i z e ’ , ’CV. Error ’ , ’ Rate ’ , ’Time ’ , ’ Date ’ , ’ Degree ’ , ’ Kernel ’ )

for ( i in 1 : m){
for ( j in 1 : n){

f i l e 1 <− paste0 ( f i l e 0 ,min( s i z e s ) , ’− ’ ,max( s i z e s ) , ’ Core ’ , index , ” . txt ” )

write . table (matrixAA , f i l e = f i l e 1 , row .names = F, col .names = T, sep=’ , ’ )

s i z e <− s i z e s [ j ]

matrixAA [m∗ ( j−1)+i , ] <− svm0( s i z e )

write . table (matrixAA , f i l e = f i l e 1 , row .names = F, col .names = T, sep=’ , ’ )

}
}
}

####################################################################

### Merging Resu l t s in to one f i l e wi th order o f sample s i z e s ####

####################################################################

l ibrary (data . table )

path0 <− ’/ scratch−network/y l i 2 2 6/Resu l t s YearP/Pa r a l l e l r e s u l t s / ’

f i l e s <− l i s t . f i l e s (path = path0 ,

pattern = c ( ’YPdata 50 SVM’ , ” . txt ” ) )

temp <− lapply ( paste0 ( path0 , f i l e s ) , f read , sep=” , ” )

data <− r b i n d l i s t ( temp )

data$Sampling . s i z e <− as .numeric (data$Sampling . s i z e )
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newdata <− data [ order ( Sampling . s i z e ) , ]

write . table ( newdata , f i l e = paste0 ( f i l e 0 , ’ ’ ,min( s i z e s ) , ’− ’ ,max( s i z e s ) , ” . txt ” ) ,

row .names = F, col .names = T, sep=’ , ’ )
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