Prediction Validation of Two Glycaemic Control Models in Critical Care

Ulrike Pielmeier, J. Geoffrey Chase, Steen Andreassen, Birgitte Steenfeldt Nielsen, Pernille Haure, Geoffrey M. Shaw

Hyperglycaemia in the ICU

- Dysfunctional glucose regulatory mechanisms, due to stress
- Prevalent in critical care (10-65%) [Krinsley, 2003; Umpierrez 2003]
- A marker of severity of illness
- Associated with increased:
 - Mortality
 - Sepsis
 - Myocardial infarction
 - Polyneuropathy
 - Multiple-organ failure

Treatment recommendations vary

Hyperglycaemia in the ICU

- Treatment:
 - insulin
 - reduction in total glucose
 uptake [Patino et. al., 1999]
- Treatment recommendations vary

(medical records of 2030 consecutive adult patients)

[Umpierrez, 2002]

Model-based blood glucose control

- Predictive control to:
 - Simulate outcomes of therapeutic interventions
 - Help on scheduling of blood glucose measurements

blood

Give advice on insulin and/or nutrition

- Aim
 - Ensure patient safety
 - Facilitate treatment
 - Reduce clinical burden

The models

GlucoSafe model

- Aalborg, DK
- Composite physiological model
- Based on work by Van Cauter et.al. (1992), Arleth et.al.(2000), Lotz et. al.(2005)
- Tested with retrospective patient data
- Clinical testing in preparation

CC model

- Clinically validated (SPRINT + several trials)
- Good glycaemic control in 400+ general ICU patients:
 - 54% measurements in the range 4.4-6.1 mmol/l
 - 0.02% < 2.2 mmol/l (2% by patient)
 - 35% reduction in hospital mortality (P=0.02)

[Chase, 2008]

This study validates GlucoSafe using clinical data and in comparison to the CC model

The GlucoSafe model

Patient specific parameters:

insulin sensitivity

pancreatic insulin production

The CC model (SPRINT protocol)

- Patient specific parameter: insulin sensitivity
- pancreatic insulin production assumed largely suppressed

[Wong et al, 2006, Chase et al, 2004, Hann et al, 2005 - a work in progress...]

Patient data

- Retrospective data from 11 hyperglycaemic patients
 - 5 trauma ICU patients (Aalborg, "DK" cohort)
 - 6 medical ICU patients (Christchurch, "NZ" cohort pre-SPRINT)
 - DK less critically ill than NZ
 - Effectively 2 <u>different</u> cohorts
- Mean sampling interval:
 - DK: 221 min
 - NZ: 154 min
- Mean % (4-7 mmol/l):
 - DK: 41 %
 - NZ: 38%
- 4 diabetic patients
 - 2 type 2
 - 2 type 1

Model prediction algorithm

- Prediction errors "ordered" by hourly prediction interval
- Root mean square (RMS) calculated for each interval

RMS % error prediction

RMS Prediction Error Summary

- Median errors over all time periods can vary significantly by patient
 - $-5.4\% \rightarrow 12.2\%$ for GS
 - -16.8 → 9.7% for CC
 - GS tends to overpredict with predominantly positive errors
 - CC more even with some larger outliers extending range.
- Prediction errors are felt to be a better predictor of clinical utility than fitting errors as they represent or illustrate the model as it would be used

Conclusions

- GlucoSafe is expected to be a safe and effective model for glycaemic control in intensive care
- Prediction accuracy and time to act depends on patient cohort (level of critical illness)
- The Future: advice, customization of models to cohort, influence of enteral glucose absorption, pancreatic secretion under insulin infusion...

. . .

Thank you for your attention

MCBMS 2009

12.08.2009 - 14.08.2009

RMS mmol/L Prediction Error

~1.41*Meas. Error At intercept

When to measure as a patient or cohort specific metric

User interface to support clinical control based on RMS

