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Abstract

Rangeland ecosystems cover 3.6 billion hectares globally with 239 million hectares

located in the United States. These ecosystems are critical for maintaining global

ecosystem services. Monitoring vegetation in these ecosystems is required to assess

rangeland health, to gauge habitat suitability for wildlife and domestic livestock, to

combat invasive weeds, and to elucidate temporal environmental changes. Although

rangeland ecosystems cover vast areas, traditional monitoring techniques are often

time-consuming and cost-inefficient, subject to high observer bias, and often lack

adequate spatial information. Image-based vegetation monitoring is faster, produces

permanent records (i.e., images), may result in reduced observer bias, and inherently

includes adequate spatial information. Spatially balanced sampling designs are

beneficial in monitoring natural resources. A protocol is presented for implementing a

spatially balanced sampling design known as balanced acceptance sampling (BAS),

with imagery acquired from ground-level cameras and unmanned aerial systems

(UAS). A route optimization algorithm is used in addition to solve the ‘travelling

salesperson problem’ (TSP) to increase time and cost efficiency. While UAS images

can be acquired 2–3x faster than handheld images, both types of images are similar

to each other in terms of accuracy and precision. Lastly, the pros and cons of each

method are discussed and examples of potential applications for these methods in

other ecosystems are provided.

Introduction

Rangeland ecosystems encompass vast areas, covering

239 million ha in the United States and 3.6 billion ha

globally1 . Rangelands provide a wide array of ecosystem

services and management of rangelands involves multiple
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land uses. In the western US, rangelands provide

wildlife habitat, water storage, carbon sequestration, and

forage for domestic livestock2 . Rangelands are subject to

various disturbances, including invasive species, wildfires,

infrastructure development, and natural resource extraction

(e.g., oil, gas, and coal)3 . Vegetation monitoring is critical

to sustaining resource management within rangelands and

other ecosystems throughout the world4 , 5 , 6 . Vegetation

monitoring in rangelands is often used to assess rangeland

health, habitat suitability for wildlife species, and to catalogue

changes in landscapes due to invasive species, wildfires,

and natural resource extraction7 , 8 , 9 , 10 . While the goals

of specific monitoring programs may vary, monitoring

programs that fit the needs of multiple stakeholders while

being statistically reliable, repeatable, and economical are

desired5 , 7 , 11 . Although land managers recognize the

importance of monitoring, it is often seen as unscientific,

uneconomical, and burdensome5 .

Traditionally, rangeland monitoring has been conducted with

a variety of methods including ocular or visual estimation10 ,

Daubenmire frames12 , plot charting13 , and line point

intercept along vegetation transects14 . While ocular or visual

estimation is time-efficient, it is subject to high observer

bias15 . Other traditional methods, while also subject to high

observer bias, are often inefficient due to their time and cost

requirements6 , 15 , 16 , 17 . The time required to implement

many of these traditional methods is often too burdensome,

making it difficult to obtain statistically valid sample sizes,

resulting in unreliable population estimates. These methods

are often applied based on convenience rather than

stochastically, with observers choosing where they collect

data. Additionally, reported and actual sample locations

frequently differ, causing confusion for land managers

and other stakeholders reliant upon vegetation monitoring

data18 . Recent research has demonstrated that image-based

vegetation monitoring is time- and cost-effective6 , 19 , 20 .

Increasing the amount of data that can be sampled within

a given area in a short amount of time should improve

statistical reliability of the data compared to more time-

consuming traditional techniques. Images are permanent

records that can be analyzed by multiple observers after

field data are collected6 . Additionally, many cameras are

equipped with global positioning systems (GPS), so images

can be geotagged with a collection location18 , 20 . Use of

computer-generated sampling points, accurately located in

the field, should reduce observer bias whether the image is

acquired with a handheld camera or by an unmanned aerial

system because it reduces an individual observer’s inclination

to use their opinion of where sample locations should be

placed.

Aside from being time-consuming, costly, and subject to

high observer bias, traditional natural resource monitoring

frequently fails to adequately characterize heterogeneous

rangeland due to low sample size and concentrated sampling

locations21 . Spatially balanced sampling designs distribute

sample locations more evenly across an area of interest

to better characterize natural resources21 , 22 , 23 , 24 . These

designs can reduce sampling costs, because smaller sample

sizes are required to achieve statistical accuracy relative to

simple random sampling25 .

In this method, a spatially balanced sampling design known

as balanced acceptance sampling (BAS)22 , 24  is combined

with image-based monitoring to assess rangeland vegetation.

BAS points are optimally spread over the area of interest26 .

However, this does not guarantee that points will be ordered

in an optimal route for visitation20 . Therefore, BAS points

are arranged using a route optimization algorithm that solves

https://www.jove.com
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the travelling salesperson problem (TSP)27 . Visiting the

points in this order determines an optimal path (i.e., least

distance) connecting the points. BAS points are transferred

into a geographic information system (GIS) software program

and then into a handheld data collection unit equipped

with GPS. After BAS points are located, images are taken

with a GPS-equipped camera as well as an unmanned

aerial system operated using flight software. Upon entering

the field, a technician walks to each point to acquire

1 m2  monopod-mounted camera images with 0.3 mm

ground sample distance (GSD) at each BAS point while a

UAS flies to the same points and acquires 2.4 mm-GSD

images. Subsequently, vegetation cover data are generated

using ‘SamplePoint’28  to manually classify 36 points/image.

Vegetation cover data generated from the analysis of ground-

level and UAS imagery is compared as well as reported

acquisition times for each method. In the representative

study, two adjacent, 10-acre rangeland plots were used.

Finally, other applications of this method and how it may be

modified for future projects or projects in other ecosystems is

discussed.

Protocol

1. Defining area of study, generating sample
points and travel path, and field preparation

1. Definition of the area of study

1. Use a GIS software program to draw a polygon

graphic(s) around the area(s) of interest. This study

was conducted on two 10-acre plots within a grazing

allotment in Laramie County, WY, USA (Figure 1).

2. Ensure that those areas that are not intended to

be within the sample frame are excluded from

the polygon (e.g., water bodies, building structures,

roadways, etc.). This will ensure that images will not

be taken of these areas later.

3. Convert the polygon graphic into a shapefile feature

(.shp) in the GIS software program and ensure the

shapefile is created in the desired coordinate system.

https://www.jove.com
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Figure 1: A depiction of the study areas of interest. This location is on a grazing allotment south of Cheyenne in Laramie

County, WY, USA (Imagery Source: Wyoming NAIP Imagery 2017). Please click here to view a larger version of this figure.

2. Generation of the BAS points and optimizing the travel

path
 

NOTE: The code is attached as

‘Supplemental_Code.docx’.

1. Use the R package ‘rgdal’29  to convert the GIS

polygon into a Program R readable file.

2. Use the R package ‘SDraw’30  to generate the desired

number of BAS points. This study used 30 BAS points

per study area, though future research should be

conducted to determine the optimal sampling intensity

for areas of various size and vegetation composition.

3. Use the R Package ‘TSP’27  to order the BAS points.

Visiting the points in this order minimizes the time

required to obtain samples at the BAS points.

3. Preparation for handheld imagery acquisition

1. Use the R package ‘rgdal’ to transfer the points from

step 1.2.1 back into the GIS program.

2. Edit the attribute table of the shapefile so the point ID

field accurately reflects the optimized path order.

3. Transfer the GIS polygon and point file into the GIS

software running on a handheld unit.

4. Ensure that the correct projected coordinate system

for the area of interest is in place.

4. Preparation for UAS imagery acquisition

1. Use the R package ‘rgdal’ to transfer the points from

step 1.2.1 back into the GIS software program.

2. In the GIS software program, use the Add XY

Coordinates tool to create and populate latitude and

longitude fields in the waypoint attribute table.

3. Export the waypoint attribute table containing

Latitude, Longitude, and TSP columns to *.csv file

format.

4. Open the *.csv file in an appropriate software

package.

https://www.jove.com
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5. Sort waypoints by TSP identifier.

6. Open Mission Hub app.

7. Create arbitrary waypoint in Mission Hub.

8. Export arbitrary waypoint as *.csv file.

9. Open *.csv file in a spreadsheet program and delete

arbitrary waypoint keeping column headings.

10. Copy TSP-sorted waypoint coordinate pairs from step

1.2.3 into relevant columns in *.csv file from step

1.4.8.

11. Import *.csv file from step 1.4.10 into Mission Hub as

a new mission.

12. Define the settings.

1. Check the Use Online Elevation box.

2. Specify Path Mode as Straight Lines.

3. Specify Finish Action as RTH to enable the

drone to Return to Home after the mission is

complete.

13. Click on individual waypoints and Add Actions by

specifying the following parameters: Stay: 2 s (to

avoid image blur); Tilt camera: -90° (Nadir); Take

Photo.

14. Save mission with an appropriate name.

15. Repeat process for additional sites.

2. Field data collection and postprocessing

1. Recording vegetation observed or expected in the study

area

1. Prior to acquiring images, create a list of vegetation

observed within the study area. This can be done on

a handwritten sheet or on a digital form to aid in photo

identification later. It may be beneficial to include

species that are likely to be expected in the area in

the inventory even if they are not observed in the field

(e.g., species within reclamation seed mixes)18 .

2. Ground-based image acquisition

1. Attach a camera to a vertical monopod and point

the camera down approximately 60°. The area of

the image can be determined using the lens and

resolution (megapixel) specifications of the camera

and setting the monopod to a standard height. The

height of the monopod coupled with the camera

specifications will determine the ground sample

distance (GSD). In this study, a 12.1-megapixel

camera was used and the monopod was set at a

constant 1.3 m above the ground to obtain Nadir

images at ~0.3 mm GSD18 .

2. Tilt the monopod forward so the camera lens is in

a Nadir position, and the angled monopod is not

viewable in the image.

3. Adjust the height of the monopod or the zoom on

the lens to achieve a 1 m2  frameless plot size (or

another desired plot size). For the most common 4:3

aspect ratio cameras, a plot width of 115 cm yields a

1 m2  image field of view. There is no need to place

a frame on the ground; the entire image is the plot.

If adjusting the zoom on the lens to accomplish this,

use painter’s tape to prevent accidental changes in

the zoom setting.

4. If possible, set the camera to shutter-priority mode

and set the shutter speed to at least 1/125 s to avoid

blur in the image; faster if it is windy.

5. Locate the first point in the optimized path order.

https://www.jove.com
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6. Place the monopod on the ground at point 1 and tilt

the monopod until the camera is in Nadir orientation.

Ensure the operator's shadow is not in the image.

Hold the camera steady to prevent motion blur.

Acquire the image.
 

NOTE: A remote trigger cable is useful for this step.

7. Check image quality to ensure successful data

capture.

8. Navigate to the next point in the optimized path order

and repeat the acquisition steps.  

3. UAS image acquisition

1. Prior to launching the UAS, conduct a brief

reconnoiter of the study area to ensure no

physical obstacles are within the flight path. This

reconnaissance exercise is also useful to locate a

fairly flat area from which to launch the UAS.

2. Ensure weather conditions are suitable for flying

the UAS: a dry, clear day (>4.8 km visibility) with

adequate lighting, minimal wind (<17 knots), and

temperatures between 0 °C–37 °C.

3. Follow legal protocols. For example, in the USA,

Federal Aviation Administration policies should be

followed.

4. Utilize Mission Hub software (Figure 2) and a mission

execution application accessible via mobile devices

(Figure 3).

5. Collect UAS imagery at each BAS point as described

in step 1.4.

6. Verify that all images were acquired utilizing the

mobile device prior to changing locations.

 

Figure 2: The user interface of Mission Hub. The map depicts the drone flight path along a series of 30 BAS points across

one of the study sites while the popup window shows image acquisition parameters at each waypoint. Figure 2 is specific to

Site 1, though it is similar in appearance to Site 2. Please click here to view a larger version of this figure.

https://www.jove.com
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Figure 3: The waypoint flight mission in Litchi’s mission execution application running on an Android smartphone.

Unique waypoint IDs are shown in purple and represent the relative order in which images were taken at various points in

the study area. The numbers at each waypoint, such as 7(6), indicate the integer values of heights above the ground at

which images were taken (first number) and heights above the home point or drone launch site (second number). Notice the

distances between successive waypoints that are labeled on the map. Figure 3 is specific to Site 1, though it is similar in

appearance to Site 2. Please click here to view a larger version of this figure.

4. Ground-level image postprocessing.
 

NOTE: Directions are available at www.SamplePoint.org

in the tutorial section; a supplemental .pdf file is attached.

1. Download images onto a computer with USB cable or

SD card.

2. Ensure images were taken at correct locations.

Various software exists to place images into the GIS

software based on the metadata within the geotagged

images.

3. If the images were acquired in multiple study areas,

store them in separate folders for image analysis.

5. UAS image postprocessing

1. Transfer images saved on a removable microSD card

from the UAS to the computer.

2. Repeat steps 2.4.2 and 2.4.3.

3. Image analysis

NOTE: All Steps can be found in the ‘tutorial’ section on

www.SamplePoint.org; a supplemental ‘tutorial.pdf’ file is

attached.

1. In SamplePoint, click Options | Database Wizard |

Create/Populate Database.

2. Name the database based on the study area.

3. Navigate to the folder containing the desired study area

samples and select those to be classified.

4. Click Done.

5. Click Options | Select Database and select the *.xls file

that SamplePoint generates based on the image selection

(this will be in the image).

https://www.jove.com
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6. Confirm the correct number of images were selected in

the database when prompted by SamplePoint.

7. Select the desired number of pixels to be analyzed

within each image. This can be done in a grid pattern

or randomly. This study used a 6 x 6 grid to select a

total of 36 pixels, though more or fewer pixels per image

can be classified depending on the desired measurement

precision for classification. A recent study found 20–30

pixels per image is adequate for sampling large areas31 .

The grid option assures pixels will be in the same position

if the image is reanalyzed, whereas the random option will

randomly generate pixels each time an image is reloaded.

8. Create a custom Button file for species classification.

This list can be generated from the vegetation list

recorded in the field prior to image acquisition, or it

can be based on other information pertinent to the

study area (e.g., seed mix list on reclaimed sites, or

ecological site description information, etc.). Ensure a

button is created for Bare Ground or Soil and other

potential nonvegetation items that may be encountered,

such as Litter or Rock. Creating an Unknown button is

recommended to allow the analyst to classify species at

a later date. The Comment Box in SamplePoint can be

used to note the pixels that used this option. Additionally,

if the image resolution is not high enough to classify

to species levels, creating buttons for functional groups

(e.g., Grass, Forb, Shrub) is beneficial.

9. Begin analyzing the images by clicking the classification

button that describes the image pixel targeted by the red

crosshair. Repeat this until SamplePoint prompts “That is

all the points. Click next image.” Repeat this for all images

within the database.
 

NOTE: The Zoom feature can be used to help with

classification.

10. When all the images in the database are completely

analyzed, SamplePoint will prompt “You have exhausted

all the images.” At this point, select OK and then click

Options | Create Statistics Files.

11. Go to the folder containing the database and open the

*.csv file that was just created to ensure that the data for

all images are stored.

4. Statistical analysis

1. Chi-square analyses to determine differences between

sites

1. Because the same number of images (primary

sampling units) and pixels (secondary sampling

units) are collected and analyzed at both sites, the

comparison between the two sites can be considered

a product of multinomial design.

2. Using the *.csv file created in step 3.11, calculate

the sum of points classified for each classification

category.

3. Perform chi-square analysis on the point sums. If

Site 1 and Site 2 are similar to each other, an

approximately equal number of pixels classified as

each cover type will be evident on both sites18 .

2. Regression to compare UAS versus ground-level images

1. Using the *.csv files created in step 3.11, copy and

paste the average percent cover from each image and

align the UAS image data with the ground-level image

data.

2. Perform regression analysis in a database program.

https://www.jove.com
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Representative Results

UAS image acquisition took less than half the time of ground-

based image collection, while the analysis time was slightly

less with ground-based images (Table 1). Ground-based

images were higher resolution, which is likely the reason

they were analyzed in less time. Differences in walking path

times between sites were likely due to start and end points

(launch site) being located closer to Site 1 than Site 2 (Figure

1). Differences in acquisition time between platforms was

principally due to the UAS flying speed being 2–3x faster than

the technician walking speed (Figure 4).

Acquisition Time (mm:ss)/Site Analysis Time (mm:ss)/Site Analysis Time (mm:ss)/Image

Ground-level UAS Ground-level UAS Ground-level UAS

Site 1 18:24 8:14 45:14 47:28 1:31 1:35

Site 2 21:26 8:12 44:58 46:50 1:30 1:34

Mean 19:55 8:13 45:06 47:09 1:31 1:35

Table 1. The amount of time taken for image acquisition and analysis. The start and end times for image acquisition

were recorded when the technician and UAV left and returned to the launch point. Image analysis time was based on the

start and end of image classification. Time to create flight paths and custom button files in SamplePoint were not recorded.

 

Figure 4: Aside from waypoint 1, the UAS was able to reach all other waypoints accurately. The handheld imagery

was far less accurate than the UAS at reaching waypoints, likely a combination of human error and a lower-quality GPS on

the handheld equipment. Figure 4 is specific to Site 1, though performance on Site 2 was similar. Please click here to view a

larger version of this figure.

https://www.jove.com
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Site 1 and Site 2 were significantly different (p < 0.0001) from

each other in terms of vegetation cover, regardless of which

image acquisition method was utilized (Table 2). Measured

from both UAS and ground-level images, soil, fringed sage,

and crested wheatgrass were different between sites (Table

2).

Method Soil Meadow

Brome

Thistle Fringed Sage Crested

Wheatgrass

Rock Litter

UAS (28.46)* (1.71) (0) (9.92)* (55.86)* (0.18) (3.69)

Handheld (31.67)* (1.85) (0.09) (8.84)* (53.1)* (0.09) (4.35)*

Table 2: Which categories drove significant differences between Site 1 and Site 2 when images were collected with

the UAS and the handheld camera. In both instances sites were significantly different (p < 0.0001). Individual categories

with a * are those that were responsible for the differences. Numbers in parentheses indicate the proportion of the chi-square

statistics that were accounted for by each category.

All correlation coefficients were strong (>0.5). Litter on both

sites was the weakest correlation between UAS vs. ground-

level images with a 0.52 correlation coefficient on Site 1

and a 0.58 correlation coefficient on Site 2. This could be

due to GSD differences and it being more difficult to assess

live or dead litter with coarser GSD. All other ground cover

categories had correlation coefficients greater than 0.8 in Site

2 and greater than 0.9 in Site 1 (Figure 5 and Figure 6). Site

1 had higher correlation coefficients than Site 2, likely due to

Site 2 being more heterogeneous than Site 1.

https://www.jove.com
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Figure 5: Correlation plots for Site 1. The x- and y-axes represent percent total percent cover for each category. Please

click here to view a larger version of this figure.

 

Figure 6: Correlation plots for Site 2. The x- and y-axes represent percent total percent cover for each category. Please

click here to view a larger version of this figure.
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Discussion

The importance of natural resource monitoring has

long been recognized14 . With increased attention on

global environmental issues, developing reliable monitoring

techniques that are time- and cost-efficient is increasingly

important. Several previous studies showed that image

analysis compares favorably to traditional vegetation

monitoring techniques in terms of time, cost, and providing

valid and defensible statistical data6 , 31 . Ground-level image

acquisition can be conducted 7–10x faster than line point

intercept18 , 31 . This study and a recent study20  demonstrate

that UAS imagery can be collected in 2–3x less time than it

takes to acquire handheld imagery. Aerial images obtained

from unmanned aerial systems or vehicles are becoming

increasingly popular to assess a wide variety of environmental

issues33 , including habitat destruction and quality34 , 35 , and

other forms of vegetation surveys20 , 36 . However, direct

comparison of vegetation monitoring from ground-based and

UAS-acquired images is not well studied20 . These results

suggest UAS and ground-based image analysis accuracy

and precision are similar. Accounting for both acquisition and

analysis, the UAS platform was faster than ground-based by

10 min/site. Because travel costs are the most expensive part

of large-scale vegetation monitoring programs4 , the ability to

rapidly collect monitoring data is critical. The permanence of

an image allows for analyses to be conducted long after it is

collected6 , which suggests that the methods proposed here

could allow for robust amounts of data to be collected in short

periods of time with the ability to analyze field data at a later

date and potentially by multiple individuals or interest groups.

Rapid field data collection is important not only for time- and

cost-savings, but to ensure monitoring can be completed

during short periods where plant phenology renders them

readily identifiable (e.g., during blooming)18 . While repeat

photography has been utilized to study phenological trends

over time37 , 38 , the GPS capability of modern cameras and

UAS systems can be used to further ensure image acquisition

is occurring at the same location (or in very close proximity)

over time, enhancing the ability to understand short- and long-

term environmental changes.

Advantages of ground-level image collection compared to

UAS image collection are: (1) higher resolution imagery,

making species identification easier; (2) less concern about

wind conditions with a handheld unit than with a UAS; (3)

less preparation time needed for flight planning and field set

up; (4) less concern about structure avoidance when walking

than when flying; (5) less cost for equipment; and (6) less

training required to operate the equipment. Advantages of the

UAS include: (1) ability to fly at much higher speeds than

bipedal locomotion, therefore reducing time to collect data; (2)

higher spatial accuracy due to reduction of human error and

increased GPS speed; (3) no sampling location bias (e.g., a

technician may avoid an intended sample point if it is centered

in a puddle, or may adjust the camera angle slightly to include

more vegetation); (4) zero ground-disturbance sampling (e.g.,

obtaining quantitative data on an endangered plant species);

(5) easier sampling in difficult terrain (e.g., steep, muddy,

dense, or poisonous vegetation cover); (6) larger image size

(i.e., images acquired from 7.6 m AGL capture more area

than images acquired at 1.3 m AGL); and (7) consistent

data collection speed and consistency over time. This study

focused on two nearby locations on relatively unchallenging

terrain, allowing the technician to avoid fatigue. However, if

more walking or more difficult terrain was encountered, the

technician’s speed would likely decrease.

Coupling spatially balanced sampling designs with rapid

data collection devices like cameras should further increase

https://www.jove.com
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time- and cost-savings associated with a variety of

environmental monitoring programs. Although this study

focused on rangelands, spatially balanced sampling designs

are effective in other settings, such as clam bed monitoring39 ,

soil sampling40 , and reclamation monitoring18 , 20 . The

technique demonstrated within this manuscript is widely

applicable to vegetation monitoring in other terrestrial

ecosystems. It is, however, highly likely that modifications

to the method will be required in other ecosystems (e.g.,

vegetation height, density, and diversity will require different

image height and sampling intensities). Although only two

dimensions were utilized, BAS is capable of operating in

multiple dimensions22  and has been used for underwater

surveys41 . While coupling TSP with BAS and image analysis

may improve time efficiencies for these surveys, camera

techniques are likely to change in underwater surveys

compared to terrestrial studies, which rely on Nadir imagery.

The results reported here are based solely upon the

comparison of the images obtained using software specific

to this study (see Supplemental Table, ‘SoftwareUsed.xlsx’).

Given the wide-range of cost and capabilities available in the

GPS and UAS marketplace, additional cost-benefit analyses

to determine tradeoffs among different equipment and

software will be useful. For the purposes of this study, images

were also taken at predetermined heights based on a recent

study20 . Additionally, studies to determine optimal above-

ground image heights for vegetation monitoring will likely

benefit from future research and management. Finally, this

study was limited to one timepoint in a fairly homogeneous

vegetation community. Future studies in other ecosystems

and long-term studies will increase universal understanding

of advantages and limitations of UAS vegetation monitoring.

Sample sizes in this study were consistent with a previous

study18 , but more work is likely necessary to determine

optimal sampling units in different sized areas as well as in

different ecosystems.
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