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ABSTRACT 

It is a well established fact that in some circumstances, lists of what appear to 
be random numbers, show a striking non-uniform distribution of digits. In many 
instances, these numbers arise relative to a system of units. In such cases there is 
an underlying assumption of scale invariance, by which is meant that the choice 
of units may well be arbitrary. In this paper we consider the general problem 
of scale invariance from the point of view of certain means on suitable function 
spaces. This is then applied to give a simple explanation for the distribution of 
first significant digits. 

1. Introduction 

It has long been realized that lists of numerical data, which could include physical 
constants or statistical data in a very general sense, exhibit the surprising property that 
the distribution of the first significant digit is not uniform over the set {1, 2, ... , 9}. In 
fact, a much better approximation is given by the probabilities Pk = log10 ( 1 + t) for 
k = 1, ... ,9. 

Many attempts have been made to resolve what some see as a paradox (see e.g. 
Scozzafavva [4] and the references therein for a more detailed history and analysis of 
this problem). The more successful of these were based around two ideas. Firstly that a 
countably additive probability measure was a root cause of this "paradox" and secondly, 
that whatever probability idea was used, it should reflect the fact that many numbers, 
such as physical or chemical constants, are given relative to a system of units and to a 
large extent these systems are arbitrary. (As an example, the speed of light might be 
one of the numerical constants but could be expressed in miles per hour or metres per 
second. Obviously the first significant digit of that constant depends on the system of 
units chosen.) This second notion leads to the idea of invariance under rescaling. 
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The idea that countable additivity can be dispensed with, is not really so alarming. 
Number theorists are well used to using probabilities on the integers, which probabilities 
are only finitely additive and which nonetheless allow them to give perfectly rigorous 
interpretations of propositions such as "the probability that two randomly chosen positive 
integers are co-prime is ~." It is an inescapable fact that, to require a probability measure 
on the reals (or integers) to also have certain invariance properties (such as shift or scale 
invariance), then countable additivity is the price which it is necessary to pay. 

In this paper we take the view that scaling is most easily described in terms of a 
group action on the set of reals. This leads to the problem of finding finitely additive 
set functions ( called means rather than probabilities because they will not be assumed 
countably additive) which are invariant under the group action. It turns out that even 
showing that such means exist is not trivial. Fortunately, we can appeal to results in 
amenable group theory to quickly obtain the required existence results. 

Such means will assign to every bounded, measurable function, an "average" value. In 
particular they will give a density to measurable subsets of the reals. The main aim 
of this paper is to show that the set of reals with first significant digit k, has density 
Pk = log10 (1 + l) no matter which scale invariant mean we use. We contend that this 
result is necessary if we are to assign any meaning to scale invariance. Without it, the 
density of this set would depend on which mean is chosen and there seems no clear 
reason to choose one rather than another. 

2. Existence of scale invariant means on R 

As mentioned above, scaling is best thought of in terms of a group action. Here, the 
underlying set is R, the set of reals, taken with the usual Lebesgue measure dx. Scaling 
is achieved by multiplication with positive reals, so that we also need to consider the 
group R + under multiplication. On this set therefore we need to take not the usual 
Lebesgue measure, but the group Haar measure ~t. Note therefore that if cp E L1(R) 

00 00 

then 11¢111 = J lc/Jn(x)ldx, but for 'If E L1(R+) we must define ll'l/;111 = J l'l/;(t)l~t. 
-00 0 

The context will always make it clear which case we are considering. 

Although much of what follows applies to integers rather than the reals, it seems profitable 
to deal with the more general real case. Wherever possible we emphasize the group 
action of R + on R in the belief that much of this paper could be generalized to the more 
general setting that this implies. 
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DEFINITION 2.1. A mean m on L00 (R) is a bounded linear functional satisfying 

(i) (m, !) 2: 0 if f 2: 0 and 

(ii) (m, 1) = 1. 

Clearly a mean defines a "finitely additive" probability measure, i.e. a density, on Borel 
subsets of R. 

The group G = (R+, ·) acts on R via a : x --+ ax. 
This group action extends to an isometric action on L00 (R) via a : f --+ fa where 
Ua)(x) = f(ax) and also on L1(R), a: <p--+ </>a where now </>a(x) = acp(ax). 

Using the same notation in both cases should not cause any confusion as it will always 
be clear which space is being acted upon. While the L00 (R) definition is natural, the 
different L1 (R) definition is forced on us if we want an isometry as well as the following 
duality result which we would expect 

(2.1) 

For the same reason, if 1/J E L1 (R +) then we have to define 1/Ja by 1/Ja ( t) = 1/J( at). 

This action of R + on L1 (R) and L00 (R) extends to an action of L1 (R +) on these two 
spaces as follows: 

DEFINITION 2.2. 

(i). For 1/J E L1 (R +), ¢ E L1 (R) define the convolution type operation 

T?/J : L1(R) --+ L1(R) by 

00 

(T1fJ¢) (x) = ('1/J o ¢)(x) = J t'ljJ(t)cp(tx) ~t. 
0 

It is easy to check that 1/J o ¢ E L1(R) with 111/J o ¢111 :::; ll'I/Jll1 11¢111 · 

(ii). For 1/J E L1(R+), the dual map TJ: L00 (R)--+ L00 (R) is then given by 

00 

(TJJ)(x) = J 1/J(f )f(tx)~t· 
0 

or (using the definition of convolution above) 

TJf ={;of 
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where 1/J(t) = I1P( I). 

DEFINITION 2.3. A weight in L1 (R +) is a non-negative function 1/J such that ll1/Jll 1 = 1. 
We denote by W ( R+), the set of all weights in L1 (R +) . 

DEFINITION 2.4. A mean m on L00 (R) is (topologically) scale invariant 

if(m, ;/Jo f) = (m, f)for all f E L 00 (R) and weights 1/J E W (R +). 

The connection between this definition and what we would usually consider as scale 
invariance is provided by the following lemma. 

LEMMA 2.5. If m is scale invariant on L00 (R) then 

(m, fa) = (m, f) 

for all f E L00 (R), a E R +. 

Proof As is easily verified, 

Then if m is a scale invariant mean on L 00 (R) and f E L 00 (R) we have 

REMARK. That scale invariant means exist on L 00 (R) is not trivial. We show existence 
in two stages. Firstly we adapt a general result in amenable group theory (see e.g. 
Greenleaf [1], §1.3) to obtain a mean which is invariant under the group action. Secondly 
we use a technique of Namioka [2] which allows us to extend the construction to obtain 
scale invariant means, i.e. means invariant under the convolution product. 

Let G be the "ax + b" group, i.e. defined on R + xR with group operation 

(a, b)(c, d) = (ac, ad+ b). Then G is a semidirect product of two Abelian groups and so 
([1], theorem 1.2.6) there is a meanµ on L00 ( G) satisfying(µ, J9 ) = (µ, f) where g E G. 

Now if f E L 00 (R), define f E L00 ( G) by 

,.--. + f(t,x) = f(x), t ER ,x ER. 
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Then if a E R + it is easily seen that 

uJ = (f)a. 
Define v on L00 (R) by (v, f) = (µ, f). Clearly v is a mean. Further 

(v, fa)=(µ, uJ) = \µ, (f) a)=\µ, f) = (v, f) 

and v is invariant under the action of R + on L 00 (R). 

Fix h 2:: 0 in L00 (R). Define a linear functional ,\ on L1 (R +) by 

(>.,1µ) = (v,;/; oh). 

Clearly, ,\ is bounded and 'IP 2:: 0 ==> (>., 1µ) 2:: 0. 

Furthermore because it o h = ( ;/; o h) t, it follows that 

( >., 1Pt) = ( >., 1P) . 

By uniqueness of the Haar integral, there exists m(h) such that 
00 

(v, ;/;oh) = m(h) j 1µ(t) ~t. (2.4) 

0 

Clearly m(l) = 1, m(ah) = am(h) if a 2:: 0 and m(h1 + h2) = m(h1) + m(h2) for 
h1, h2 2:: 0. 
Som extends to a linear functional (which we can again write as m) on L00 (R) satisfying 

00 

(v, ;j; oh) = (m, h) J 1µ(t) ~t for all 1µ E L1 (R+), h E L00 (R). 

0 

Then for a weight 1µ E L1(R+) and f E L00 (R), 
00 

(m,;/;of) = (m,;/;of) j 1µ(t)~t 
0 

= (v,;/; o (;/;of)) 
00 

= (v, (1µ * 1µ) of) where (1µ * 1µ)(t) = j 1µ(s)1µ ( ~) dss E W(R+) 
0 

00 

J 
dt 

= (m, f) (1µ * 1µ)(t)t = (m, f). 
0 

So m is the required scale invariant mean. 
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3. Scale invariant functions 

We now consider those functions which have the same "average value" or mean, inde­
pendent of the choice of scale invariant mean. In this section we give a characterisation 
along similar lines to Wong ([5], theorem 7.3) in the case of amenable groups. 

DEFINITION 3.1. A function f E L00 (R) is called scale invariant with mean a if 
(m, f) = a for all scale invariant means m E L~(R). 

It is useful to characterise such functions in a way which makes no reference to means. 
This leads to 

THEOREM 3.2. Let N be the closure in L00 (R) of functions ofthefonn 
n 

L fk - ;/;k o fk where fk E Loo(R) and 1Pk E W (R +). 
k=l 

Then f is scale invariant with mean a iff f - al E N. 

Proof Replacing fk by fk - al, we may assume that a= 0. Choose f EN and E > 0. 

Choose fk E L00 (R), 1Pk E W (R +) such that 

n 

f - I: (h - ,J;k O fk) < E. 

k=l 00 

Then if m is a scale invariant mean, 

and we deduce that (m, f) = 0 i.e. that f is scale invariant with mean 0. 

Conversely suppose that f is scale invariant with mean O but that f tf. N. Let M be the 
subspace generated by N and f. Then an element of M can be (uniquely) written as 
g + af with g EN and we can define a linear functional m on M by (m, g + af) = a. 
It is a standard result that m is bounded on M so that by the Hahn-Banach theorem, m 
can be extended to a bounded linear functional m on L00 (R). Note that (m, f) = 1. 

Since for f E L 00 (R) and 'lj; E W (R +) , f - ,(/; o f E N we have 

(m, {;of) = (m, f) for all f E L00 (R), 'lj; E W(R+). 
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Now, for f > 0, define 

and similar! y 

(m,+,f)= sup (m,h) 
O~h~f 

(m,-, f) = - inf (m, h). 
O~h~f 

Then (Shaeffer [3], p 72, Corollary 1), m± extend to bounded, positive linear functionals 
on L00 (R) with 

Further for f > 0, 

- + -rn-m -m,. 

(m+, fa}= sup (m, h) 
O~h~fa 

sup (m, h) 
O~ha-1~! 

sup (m, ha-1) by lemma 2.5 
O~ha-1~f 

= (m+ f) 

with a similar result for m-. 

So we can write m = a1m1 - a2m2 where a1, a2 are positive and m1, m2 are means 
invariant under the action of R +. 

Using the technique that led to equation 2.4, there exist scale invariant means n1, n2 
such that 

But then 

1 = (m, !) = \ m, ;/;of) 

= a1\ m1,;/; o !)- a2\ m2,;/; o !) 
= a1(n1, !) - a2(n2, !) = 0 

(as f is scale invariant with mean 0). This is a contradiction. 
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4. Weights converging to scale invariance 

Scale invariant means in L~(R) are highly nonconstructable and therefore difficult to 
deal with directly. We will find it much more convenient to look for sequences of 
weights in L1 (R +) which can be used to describe scale invariance. It is then possible 
to characterize, in terms of such sequences, those functions in L00 (R) which are scale 
invariant. In practice this characterisation is straightforward to apply and as an example, 
we will use it to illustrate the first digit problem. 

DEFINITION 4.1. Let ('l/Jn) be a sequence in W(R+). 
We say that ( 1/Jn) is. convergent to scale invariance if 

limll'l/Jn(t) -x *1Pn(t)ll 1 = 0 for all weights 1/J E W(R+). 
n 

(Here again the operator * is the convolution operation in the group algebra L1 (R +) .) 

EXAMPLE 4.2. Let 

on [i, n] 
otherwise. 

Then ( 1/Jn) is convergent to scale invariance. 

Proof Clearly 1/Jn is a weight in W (R +). 

Since functions in L1 (R +) can be approximated in norm by functions with sup­
port inside a compact interval [E, K] with O < E < K, it suffices to show that 
lim 111/Jn(t) - x * 'l/Jn(t)ll 1 = 0 for weight functions x E W(R+) with support in [E, K]. 

n 

We have 

I( 

'VJn(t) - X * 'VJn(t) = j x(s) ( 'VJn(t) - 'VJn ( ~)) dss 
f 

so that 
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For n > M = max ( j'f, J]?) it is readily seen (though tedious to calculate) that 

for all s E [E, KJ. So 

I( 

J llnslds 
111/Jn(t) - x * 1Pn(t)ll1 ~ x(s)-1 --

n n s 
€ 

--.o. 

This sequence ( 1/Jn) will be particularly useful when we consider the first digit problem. 

THEOREM 4.3. Let (1/Jn) be a sequence of weights in W(R+) which is convergent to 
scale invariance and let f E L00 • Then 

f is scale invariant with mean a ¢:::::::} li~ 11 ,J;n o f - a 1 \ \ 
00 

= 0 

Proof Replacing f by f - al, we may assume that a = 0. 

Suppose first that f is scale invariant with mean 0. Fix E > 0 and by theorem 3.2, choose 

g1,g2, ... ,gN E Loo(R) andx1,X2, ... ,XN E W(R+) such that 

N 

f-L(gi-Xiogi) 
i=l 

Let M = max llgi 11 00 and choose K such that 
1-:;,.i~N 

00 

E 
< -. 

2 

E 
if n > K then 111/Jn(t) - (Xi* 1Pn)(t)ll1 < 

2
M N for i = 1 ... N. 
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Then for n > K, 

11.Pn ° ft <'. ifan o (/ - t, (g; - X; o g;)) = + ifan o t, (g; - Xi o g;) 

<'. ~ + t, (l 'Pn(t)g,("t) ~t - l 'Pn(t)g; c;:x)) ~t 

Conversely, suppose that H~in 111,bn of 11
00 

= 0. 

If m is a scale invariant mean, then 

and we deduce that (m, f) = 0. 

5. The first digit problem 

00 

We are now in the position of giving a concise statement of the first digit problem. 
Theorem 4.3 in particular allows us to derive the result very simply. 

THEOREM 5.1. Let Ak be the set of reals whose first significant decimal digit is k 
(k = 1, 2, ... , 9) and let fk be the characteristic function of Ak. 

Then for every scale invariant mean m, 
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To make the proof more transparent, we require the foillowiong simple lemma. 

LEMMA 5 .2. Let A be a set of reals, consisting of a ( doubly infinite) sequence of non 
overlapping intervals of constant length l, with successive intervals separated by gaps of 
constant length d. 

CX) 

(So, e.g. we can write A = LJ [(l + d)n + b, (l + d)n + b + d).) 
n=-oo 

Then if I is an interval of length L and k is the number of sub-intervals of A contained in I, 

L - 2l - d L + d 
----<k<--. z+d - -z+d 

Proof If there are k sub-intervals in I, there are also (at least) k-1 gaps in I. Considering 
the total length of these gives kl+ (k - l)d s; L, i.e. k s; ftJ. 

Furthermore, adding an extra sub-interval and a gap at each end, gives a set which now 
contains I. Therefore (k + 2)l + (k + l)d ~ L i.e. k ~ Lz!id. 

Proof of theorem 5.1 Fix k = 1, 2, ... , 9. Choose ( 'I/Jn) as defined in example 4.2. An 
easy calculation gives 

lnn 

- 1 J 1Pn o fk(x) = -- fk(xeu)du. 
2lnn 

-Inn 

Note that fk is the characteristic function of the set 

j=oo j=oo 

LJ (-10i(k+1),-10ik]u LJ [10ik,10i(k+l)) 
j=-oo j=-oo 

so that fk is an even function. So we may assume that x > 0. 

Then 

fk ( x e u) = 1 ¢=:;> u E [j ln 10 - ln x + In k, j ln 10 - ln x + In ( k + 1)) 

for some j E Z. 

These are intervals of length ln ( kk 1 ) and gaps ln ( f~) . So by lemma 5 .2 

(5.1) 

2 ln n - 2 ln ( ~) - ln ( ~) ( k + 1) Jln n 2 ln n + ln ui~) ( k + 1) 
ln(k+l)+ln(lOk) In,;-::::; fk(xeu)du:s;ln(hl)+ln(l.Qk_)ln ,;-

k k+ 1 _ ln n k k+ 1 
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i.e 

Inn 

( (lO(k+l))) (k+l) J ( ( lOk )) (k+l) 2111 n -111 k log10 -r- :S fk(xeu)d11, :S 2111 n + 111 k + 
1 

log10 -r- · 
-Inn 

and a little calculation gives 

l (lO(k+l)) Inn ( lOk) 
ll k ( lOk ) 1 J jL (k + 1) 111 k+~ ( lOk ) 

- 2111 n loglO k + 1 :S 2111 n fk(xe )du-loglO ~ :S 2111 n loglO k + 1 

so that 

1 

2111n 

for all x. 

-Inn 

J
inn . (k + l) 

fk(xeu)du - log10 -r-
-lnn 

By equation 5.1, 

and the result now follows from theorem 4.3 

1 ( 
lO(k+l)) 

n k ( lOk) < log --
- 2111n 10 k+l 
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