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Current theories for predicting the sound insulation of orthotropic materials are limited to a small

range of infinite panels. This paper presents a method that allows for the prediction of the sound

insulation of a finite size orthotropic panel. This method uses an equation for the forced radiation

impedance of a finite size rectangular panel. This approach produces an equation that has three

nested integrals. The long numerical calculation times were reduced by using approximate formulas

for the azimuthally averaged forced radiation impedance. This reduced the number of nested inte-

grals from three to two. The resulting predictions are compared to results measured using two sam-

ple sizes of four different thicknesses of plywood and one sample size of another three different

thicknesses of plywood. Plywood was used for all the tests because it is somewhat orthotropic. It

was found during testing that the Young’s moduli of the plywood were dependent on the frequency

of excitation. The influence of the frequency dependent Young’s moduli was then included in the

prediction method. The experimental results were also compared with a simple isotropic prediction

method. VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4940125]

[MV] Pages: 520–528

I. INTRODUCTION

A large number of prediction methods exist for the pre-

diction of the sound insulation of various different partitions.

A number of authors have explored the prediction of the

sound transmission loss based on single leaf panels (Cremer,

1942; London, 1949; Sewell, 1970). This was also expanded

to incorporate double leaf partitions (London, 1950; Sharp,

1978). A major assumption made in a number of these early

models was that the panel was of infinite extent. This condi-

tion is obviously not met in any real laboratory situations.

Despite the large quantity of research that has been

undertaken by a wide range of authors, there are still signifi-

cant gaps in the current understanding of sound insulation

behaviour. Two comparative studies by Hongisto (2002,

2006) showed that the majority of the commonly used pre-

diction methods were relatively limited in their applications

and did not yield accurate results when compared to experi-

mental results from a range of different partitions.

Furthermore, the evaluated models were all limited to the

prediction of partitions built using isotropic materials. An

equivalent study has not been performed on prediction

schemes that allow for orthotropic material properties.

Several other approaches have been utilised by different

authors to predict the sound insulation of single and double

leaf partitions. These include finite element analysis

(Trevathan, 2005; del Coz Diaz et al., 2007; del Coz Diaz

et al., 2010), statistical energy analysis (Crocker and Price,

1969; Fahy, 1994; Steel and Craik, 1994; Craik, 1996), and

transfer matrix methods (Sastry and Munjal, 1995; Lee and

Xu, 2009). These methods have achieved various levels of

success, but were not investigated in the research presented

here.

Several prediction methods presented by Hansen (1990,

1991) allow for the prediction of the sound insulation of

highly orthotropic materials, corrugated sheets, for example.

These materials are highly orthotropic; the stiffness in the

hard direction that can be upward of ten times the stiffness

in the soft direction. This has the effect of introducing two

critical frequencies that are relatively widely separated. In

contrast, plywood has a lower but still significant variation

between the hard and soft stiffness parameters, causing the

two critical frequencies to be closer together. This separation

of the two critical frequencies results in two coincidence

dips, with a region of reduced sound transmission loss

between them.

A recent review of the vibro-acoustics of orthotropic

laminates is D’Alessandro et al. (2013). This review referen-

ces the papers of Guyader and Lesueur (1978a,b, 1980),

along with many other papers. Two more recent papers on
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the sound transmission loss of orthotropic panels are those of

Woodcock and Nicolas (1995) and Kuo et al. (2008).

Much of the recent research on orthotropic panels has

studied panels with honeycomb cores rather than the solid

ply cores considered in this paper, but there are many simi-

larities in behaviour. Orrenius et al. (2010) compared theo-

retical predictions and experimental measurements of the

wave number and sound reduction index of honeycomb core

panels used in aircraft fuselages and train floors. Feng and

Kumar (2012) studied the fact that current theories usually

predict too low a sound reduction index in the critical fre-

quency region. Cherif and Atalla (2015) have compared the-

oretical predictions of a general laminate model for wave

number, damping loss factor, modal density, radiation effi-

ciency, and sound reduction index with measurements often

made with a number of different experimental techniques.

They also derived the properties of an equivalent orthotropic

panel model from the general laminate model. This equiva-

lent orthotropic panel model was used to calculate the sound

reduction index and gave better agreement with experiment

for the thicker of the two honeycomb panels. The equivalent

orthotropic model is used in this paper with measured

properties.

The last two papers cited above each compare their the-

oretical predictions with two small sample size honeycomb

core panels of different thickness. This paper compares its

theoretical predictions with seven small sample size ply-

wood panels of different thickness and four large sample

size plywood panels of different thickness. Because plywood

is not highly orthotropic, this paper also compares the exper-

imental results with a simple isotropic model.

The prediction methods presented herein are built on the

work undertaken by Ordubadi and Lyon (1979). The original

publication by Ordubadi and Lyon presented a method for

predicting the sound transmission loss of infinite orthotropic

panels. In the article, plywood was also utilised as a test ma-

terial due to its orthotropic nature. Ordubadi and Lyon

(1979) achieved reasonable agreement between the meas-

ured and predicted results, although their prediction method

did not use frequency dependent material properties or the fi-

nite size of the panel. This paper uses the radiation imped-

ance of a finite size rectangular panel and an approximation

to that radiation impedance with both constant and frequency

dependent Young’s moduli.

II. MODEL DEVELOPMENT

The blocked incident sound pressure on the source side

at the surface of the rectangle specimen mounted in an infi-

nite rigid baffle is 2pi due to the pressure doubling that

occurs at the blocked surface for the plane wave sound wave

with root-mean-square sound pressure pi incident with an

angle of incidence h to the normal to the specimen, and with

an azimuthal angle / to the x axis. The transverse vibration

of the specimen is accounted for by its radiation impedance

Zwðh;/Þ. The root-mean-square normal velocity vðh;/Þ of

the specimen is

v h;/ð Þ ¼ 2pi

Zp h;/ð Þ þ 2Zw h;/ð Þ ; (1)

where Zpðh;/Þ is the bending wave impedance of the plate.

The incident sound intensity Iiðh;/Þ in the direction

normal to the specimen is

Ii h;/ð Þ ¼ jpij2 cos hð Þ
q0c

; (2)

where q0 is the ambient density and c is the speed of sound

of the compressible fluid on either side of the specimen. The

cos ðhÞ occurs because the projected area of the specimen

seen from an angle of incidence of h is proportional to

cos ðhÞ.
The transmitted sound intensity Itðh;/Þ in the direction

normal to the specimen is

It ¼ Re Zw h;/ð Þ½ �
���� 2pi

Zp h;/ð Þ þ 2Zw h;/ð Þ

����
2

: (3)

The sound transmission factor sðh;/Þ is

s h;/ð Þ ¼ 4q0c Re Zw h;/ð Þ½ �
jZp h;/ð Þ þ 2Zw h;/ð Þj2 cos hð Þ

¼
Re

Zw h;/ð Þ
q0c

� �
���� Zp h;/ð Þ

2q0c
þ Zw h;/ð Þ

q0c

����
2

cos hð Þ
: (4)

The total incident diffuse field sound intensity Idi is

Idi ¼
ðp=2

0

ð2p

0

Ii h;/ð Þsin hð Þ d/ dh

¼ jpij2

q0c

ðp=2

0

ð2p

0

cos hð Þsin hð Þ d/ dh ¼ p
jpij2

q0c
: (5)

The total transmitted diffuse field sound intensity Iti is

Idt ¼
ðp=2

0

ð2p

0

s h;/ð ÞIi h;/ð Þsin hð Þ d/ dh

¼ jpij2

q0c

ðp=2

0

ð2p

0

s h;/ð Þcos hð Þsin hð Þ d/ dh: (6)

The sin ðhÞ term occurs in Eqs. (5) and (6) because the

amount of solid angle at an angle of h to the normal to the

specimen is proportional to sin ðhÞ. The diffuse field sound

transmission factor sd is

sd ¼
Idt

Idi
¼ 1

p

ðp=2

0

ð2p

0

s h;/ð Þcos hð Þsin hð Þ d/ dh

¼ 1

p

ðp=2

0

ð2p

0

Re
Zw h;/ð Þ

q0c

� �
����Zp h;/ð Þ

2q0c
þ Zw h;/ð Þ

q0c

����
2

sin hð Þ d/ dh:

(7)
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If the principal orthotropic axes and the sides of the rec-

tangular specimen are parallel to each other and to the x and

y axes, then by symmetry, the range of integration over the

azimuthal angle / can be reduced from the full circle to one

quarter of the circle

sd ¼
4

p

ðp=2

0

ðp=2

0

Re
Zw h;/ð Þ

q0c

� �
����Zp h;/ð Þ

2q0c
þ Zw h;/ð Þ

q0c

����
2

sin hð Þ d/ dh:

(8)

The sound reduction index R is

R ¼ �10 log
10
ðsdÞ: (9)

Thus, in order to derive an expression for the transmis-

sion coefficient of a partition, expressions for both the bending

wave impedance and the radiation impedance must also be

derived. The bending wave impedance of an orthotropic panel

can be derived from the panel’s equation of motion given by

Leissa (1969). This yields the following expression for the

orthotropic impedance as used by Ordubadi and Lyon (1979):

Zp h;/ð Þ ¼ k4
0 sin4 hð ÞB0 /ð Þ � qsx

2

ix
; (10)

where k0 is the wave number of the incident wave, qs is the

surface density of the panel, x is the angular frequency of

excitation, and B0ð/Þ is the complex bending wave stiffness

per unit width of the panel. The influence of the panel’s in-

ternal damping is included in the stiffness parameter using

the following equation:

B0ð/Þ ¼ ðBx cos4ð/Þ þ By sin4ð/Þ
þ 2H sin2ð/Þ cos2ð/ÞÞð1þ igÞ; (11)

where Bx and By are the bending wave stiffness per unit

width in the orthotropic principal axes directions, H is a pa-

rameter for the orthotropic stiffness behaviour, and g is the

damping loss factor of the panel.

The frequency dependence of the bending stiffness

properties can be incorporated by modifying Eq. (11). This

yields the following expression:

B0ð/Þ ¼ ½Bxðf Þ cos4ð/Þ þ Byðf Þ sin4ð/Þ

þ 2Hðf Þ sin2ð/Þ cos2ð/Þ�½1þ ig�; (12)

where f is the frequency of excitation. In this paper, it was

assumed that the damping loss factor was independent of fre-

quency. The value of Hðf Þ is assumed to be the geometric

mean of the two orthotropic bending stiffness values, as

given by

Hðf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bxðf ÞByðf Þ

q
: (13)

The bending stiffnesses per unit width B0 are derived

from the Young’s moduli E using the following equation:

B0 ¼ Eh3

12 1� l2ð Þ ; (14)

where h is the thickness of the specimen and l is Poisson’s

ratio, which is assumed to be 0.3 in this paper.

The dynamic Young’s moduli of the test samples were

measured in the two directions parallel to the grain of the

wood plies using free-free beams that were excited via force

impulses. The resonant frequencies and half power band-

widths of the modes of a number of different length beams

were measured. This measurement technique allowed the

frequency dependence of the Young’s moduli of the ply-

wood to be measured. The frequency dependent Young’s

moduli were found to be approximated reasonably using a

best fit exponential decay with increasing frequency. The

generic expression for this model of Young’s modulus is

given by

Eðf Þ ¼ Eie
�Qf ; (15)

where Eðf Þ is the frequency dependent stiffness, Ei is the

stiffness at zero frequency, and Q is the rate of reduction of

the stiffness parameter.

The accuracy of the model used for the frequency de-

pendent Young’s moduli has a significant impact on the pre-

dictions for the overall sound insulation. The method used to

measure the dynamic Young’s moduli in the research

described in this paper provided relatively narrow bands of

widely spaced clusters of data. The models for the frequency

dependent Young’s moduli were constructed from this data.

This yielded models that may have had significant sources of

error. This is one of the possible reasons why poor agree-

ment may be obtained between prediction and experiment in

some cases. The damping loss factor was also observed to

vary with frequency, but this variation did not have a clear

pattern that could be modelled effectively. Incorporating a

frequency dependent damping loss factor would have a sig-

nificant effect on the predicted sound insulation in and above

the critical frequency region.

The finite specimen size was accounted for by using the

equations for the finite panel traveling wave radiation imped-

ance given by Davy et al. (2015a,c). These equations involve

one numerical integration and are based on the work of

Rhazi and Atalla (2010). Calculating the sound reduction

index, when the numerical integration is used to calculate

the finite size radiation impedance, requires the numerical

evaluation of three nested integrals. This means large com-

putational times especially at higher frequencies. Thus, the

approximate equations of Davy et al. (2015a,b) for the azi-

muthally averaged finite size radiation impedance were also

used to calculate the sound reduction index. It should be

noted that the use of these approximate equations means that

the finite size radiation impedance is assumed to be constant

as a function of azimuthal angle. The use of these approxi-

mate equations reduces the number of nested integrals that

have to be numerically evaluated from three to two, and sub-

stantially speeds up the calculations. The numerical integra-

tions were performed using MATLAB’s inbuilt adaptive
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numerical integration function, integral, which uses adaptive

Simpson quadrature.

Because plywood is not highly orthotropic, a simple iso-

tropic model (Davy, 2009a) was also used to calculate the

sound reduction indices. The Young’s modulus used was the

geometric mean of the Young’s moduli in the two ortho-

tropic principal axes directions. It was noted that the low fre-

quency sound reduction indices calculated with the isotropic

model were systematically slightly lower than those calcu-

lated using the orthotropic methods described above.

Examination of the isotropic model showed it was ignoring

the fluid loading on the specimen. The fluid loading on the

specimen is not significant for specimens with high sound

insulation, but has a significant effect for specimens with low

sound insulation at low frequencies like the thinner plywood

specimens studied in this paper. The fluid loading was incor-

porated in the isotropic model by replacing Eq. (42) of Davy

(2009a) with Eqs. (8) and (12) of Davy (2009b). The square

root of A in Eq. (12) of Davy (2009b) was replaced with the

length l of the side of the equivalent square given by

l ¼ 2lxly
lx þ ly

; (16)

where lx and ly are the lengths of the sides of the rectangular

specimen.

III. EXPERIMENTAL METHOD AND RESULTS

The sound insulation of a range of plywood partitions

were measured for comparison with the predicted results. The

partitions tested were all single leaf systems that were tested

in two sizes of sound insulation facilities. The test samples

were installed between a reverberation room and a semi-

anechoic room, and the intensity method was used for evaluat-

ing the sound transmission loss (ISO, 2000). The two sample

sizes used were: 4.8� 2.4 m (12 m2) and 0.95� 1.55 m

(1.5 m2), and the thicknesses measured were 7, 9, 12, and

21 mm. Plywood samples of size 0.95� 1.55 m (1.5 m2) with

thicknesses of 15, 17, and 19 mm were also measured.

The small samples were clamped into a test frame using

a steel box section and bolts around the perimeter. This

resulted in an unsupported panel that had no studs present.

The frame the sample is installed within is a heavy timber

construction that is, in turn, bolted to a heavy concrete wall.

The test aperture had a total depth of 550 mm, and the sample

arrangement resulted in a source room niche depth of

350 mm.

The large samples were screwed and glued to a timber

frame that was bolted into a test aperture. The edges and the

joints between the panels were sealed with tape and silicone

sealant. The test aperture had a total depth of 370 mm, and

the sample arrangement resulted in a source room niche

depth of 160 mm.

The same reverberation room was used for both sample

sizes. It has a volume of 216 m3. Six stationary diffusing

panels ensure the sound field is sufficiently diffuse. The

total two-sided area of the diffusing elements is 13% of the

total boundary surface area of the room. The total surface

area of the reverberation room boundaries and diffusing

elements is 305 m2. The receiving room for the small size

samples was a small semi-anechoic room with a volume of

9 m3 and a surface area of 26.4 m2. This room is lined with

sound absorption on all the surfaces except the floor, which

is covered in deep pile carpet. The semi-anechoic receiving

room for the large sample sizes has a volume of 200 m3 and

a surface area of 236 m2. This receiving room is lined with

sound absorptive materials on the walls and roof. The sound

absorption in this room is increased by the addition of

numerous hanging sound absorbers, resulting in a sound

absorptive “tunnel.” This is projected out from the sound

insulation sample to increase the absorption of the emitted

sound. The floor directly in front of the sample is also

treated with a large number of sound absorptive panels that

are laid down to reduce unwanted reflections. The large

semi-anechoic room is a rectangular parallelepiped. The

reverberation room and the small semi-anechoic room

would be rectangular parallelepipeds except for the fact

that one of their walls is angled so that it is not parallel with

its opposite wall.

The sound pressure level was measured in the reverbera-

tion source room using six Br€uel and Kjær (Nærum,

Denmark) type 4189 half inch microphones. The source

room was excited using a Br€uel and Kjær 4269 sound source.

The transmitted sound was measured on the receiving room

side using a Br€uel and Kjær intensity probe and Br€uel and

Kjær Pulse data acquisition equipment.

The intensity on the receiving room side was measured

by performing two full surface scans at 150 mm from the

sample surface, one horizontally and one vertically. The dif-

ference between these two scans was evaluated and the mea-

surement was repeated if the difference was greater than one

decibel in any of the one-third octave bands evaluated. The

pressure-intensity index was also evaluated for each scan. If

the pressure-intensity index was >10 dB in any one-third

octave band, the scan was repeated. This procedure was

repeated five times for two source locations, yielding a total

of ten sound insulation measurements. These were then aver-

aged to provide the final sound insulation.

In order to perform predictions of the sound insulation of

the different thickness plywood, their properties were

required. Different estimates of these properties were made

for each thickness of plywood. The Young’s moduli in both

orthotropic directions and the damping loss factor were eval-

uated using dynamic methods. The density was measured

directly. It was found that the Young’s moduli of the plywood

were heavily dependent on the frequency of excitation.

The dependence of the Young’s moduli on the fre-

quency was found to be predicted with reasonable accuracy

using an exponential decay. This decay curve was fitted to

the frequency dependent stiffness values. An example of the

curve for 12 mm plywood is shown in Fig. 1. This exponen-

tial function was incorporated into the equation for the sound

transmission loss as a frequency dependent parameter.

However, there is some scatter about the curves of best fit.

This scatter is thought to be one of the reasons for the differ-

ences between the predicted and measured sound insulation.
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IV. COMPARISON OF PREDICTIONS WITH
EXPERIMENTAL RESULTS

The sound insulation of 7, 9, 12, and 21 mm thick ply-

wood for the two different sample sizes and of 15, 17, and

19 mm thick plywood for the smaller sample size was pre-

dicted using four different methods described in Sec. II.

Some of the differences between these methods are shown in

Table I. The “isotropic” method was the simple isotropic

method of Davy (2009a), modified as described in Sec. II, to

include the effects of fluid loading. The “numerical imp.” is

the orthotropic method presented in Sec. II using numerical

integration to calculate the radiation impedance, where imp.

is an abbreviation for impedance. The “approx. imp.”

method is the orthotropic method presented in Sec. II using

approximate formulas for the azimuthally averaged radiation

impedance. These first three methods all use values of the

Young’s moduli that are constant with frequency. The vari-

able E method is the approx. imp. method used with

Young’s moduli that vary with frequency according to best

fit equations derived as described in Sec. II.

The comparison of these theoretical predictions with the

experimental results is shown in Figs. 2–12. The four predic-

tion methods agree well with each other for frequencies

below the critical frequency region, although the predictions

of the isotropic model for the large specimen size for all but

the 21 mm thick plywood do appear to be slightly but sys-

tematically lower than the other predictions in this frequency

range. With the exception of the large 21 mm specimen, the

agreement between theory and experiment in this low fre-

quency range is also reasonable.

The numerical imp. method and the approx. imp.

method agree very well with each other across the whole of

the frequency range. This is the reason why the approx. imp.

method was used as the basis for the variable E method.

Except around the critical frequency region, the numerical

imp. method and the approx. imp. method also agree well

with the isotropic method, except for the small systematic

departure described above, which occurs at low frequencies

for the larger and thinner plywood specimens.

The variable E method agrees better with the experi-

mental results in the critical frequency region for the 7 and

FIG. 1. (Color online) Measurements of the frequency dependent Young’s

moduli of 12 mm plywood and the associated curves of best fit used for pre-

dicting the frequency dependent Young’s moduli.

TABLE I. The names of the prediction methods used in this paper and the

differences between them.

Prediction Orthotropic Approximate Variable

method radiation Young’s

impedance moduli

Isotropic No Yes No

Numerical imp. Yes No No

Approx. imp. Yes Yes No

Variable E Yes Yes Yes

FIG. 2. (Color online) Comparison of the measured and predicted sound

insulation of a 7 mm thick plywood panel measuring 0.95 m wide by 1.55 m

high.

FIG. 3. (Color online) Comparison of the measured and predicted sound

insulation of a 7 mm thick plywood panel measuring 4.8 m wide by 2.4 m

high.
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9 mm thick plywood samples. With the exception of the

large 21 mm specimen, the variable E method appears to

require the use of a larger damping loss factor in order to

make it agree with the experimental results above the critical

frequency region. Thus, again with the exception of the large

21 mm specimen, the use of Young’s moduli, which do not

vary with frequency, gave better agreement above the criti-

cal frequency region.

All the prediction methods overestimated the depth of

the critical frequency dip in the experimental data and did

not always exactly predict the frequency of the minimum of

the critical frequency dip, although the variable E method

performed better in this regard than the other three methods

in the cases of the 7 and 9 mm thick plywood. With the

exception of the 7 mm thick plywood specimens, as

expected, the isotropic method predicted narrower critical

frequency dips than the other orthotropic prediction methods

or the experimental measurements.

With the exception of low frequency values for the large

21 mm thick specimen, all the prediction methods performed

reasonably well when predicting the changes in sound insu-

lation due to the changes in specimen area. The predicted

results using the same method for the small and large speci-

men sizes of the same thickness converge above the critical

frequency region. This trend agrees with the measured

results.

All the experimental results showed ripple in the low

frequency region and this was more pronounced in the case

FIG. 4. (Color online) Comparison of the measured and predicted sound

insulation of a 9 mm thick plywood panel measuring 0.95 m wide by 1.55 m

high.

FIG. 5. (Color online) Comparison of the measured and predicted sound

insulation of a 9 mm thick plywood panel measuring 4.8 m wide by 2.4 m

high.

FIG. 6. (Color online) Comparison of the measured and predicted sound

insulation of a 12 mm thick plywood panel measuring 0.95 m wide by

1.55 m high.

FIG. 7. (Color online) Comparison of the measured and predicted sound

insulation of a 12 mm thick plywood panel measuring 4.8 m wide by 2.4 m

high.
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of the thicker specimens. Apart from possible experimental

uncertainty, the authors are unsure why this phenomenon

occurred.

In this paper, constant values of the damping loss factor

as a function of frequency were used. This was also the case

with the Young’s moduli, except for the variable E method. It

appears that a more accurate determination of the variability

of the Young’s moduli and the damping loss factor as a func-

tion of frequency is needed in order to improve the prediction

of the sound insulation of orthotropic panels like plywood.

V. SUMMARY AND CONCLUSIONS

This paper presents a method for predicting the sound

insulation of finite size rectangular single leaf orthotropic

panels that involves the numerical evaluation of two nested

integrals. This method was used with constant Young’s mod-

uli and an exact formula for the traveling wave radiation im-

pedance. This exact formula included one integral that needs

to be numerically evaluated and this led to the necessity to

evaluate three nested integrals. The method was then used

with constant Young’s moduli and an approximate formula

for the azimuthally averaged traveling wave radiation imped-

ance. This reduced the number of nested integrals to two and

substantially speeded up the numerical calculation. There was

very little difference between the sound insulation predictions

made using the exact formula and the approximate formula.

The predictions were compared with experimental sound

insulation measurements on small and large specimens of

four different thicknesses of plywood and on another three

FIG. 8. (Color online) Comparison of the measured and predicted sound

insulation of a 15 mm thick plywood panel measuring 0.95 m wide by

1.55 m high.

FIG. 9. (Color online) Comparison of the measured and predicted sound

insulation of a 17 mm thick plywood panel measuring 0.95 m wide by

1.55 m high.

FIG. 10. (Color online) Comparison of the measured and predicted sound insu-

lation of a 19 mm thick plywood panel measuring 0.95 m wide by 1.55 m high.

FIG. 11. (Color online) Comparison of the measured and predicted sound

insulation of a 21 mm thick plywood panel measuring 0.95 m wide by

1.55 m high.
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small specimens of other different thicknesses of plywood.

Reasonable agreement was obtained except in the critical fre-

quency region for all specimens and at low frequencies for

the large specimen of the thickest plywood. A simple iso-

tropic prediction method was also used to predict the sound

insulation. This simple isotropic prediction method agreed

well with the two previous predictions except in the critical

frequency region where none of the three predictions agreed

well with the experimental results. The simple isotropic pre-

diction method also slightly but systematically underesti-

mated the two previous predictions below the critical

frequency region for the large specimens of the three thinnest

plywood samples.

During testing of the material properties of the plywood

panels, it was observed that the Young’s moduli of the ply-

wood panels were dependent on the frequency of excitation.

Because of this observation, equations of best fit were derived

for the Young’s moduli. These equations of best fit for the

Young’s moduli were then used with the method presented in

this paper and with the approximate formula for the azimu-

thally averaged traveling wave radiation impedance. The

introduction of the frequency dependent Young’s moduli sig-

nificantly improved the predictions of sound insulation in the

critical frequency region for the thinner 7 and 9 mm plywood

specimens. It did not make as much difference in the critical

frequency region for the other plywood specimens as had

been expected. Above the critical frequency region, the use of

the frequency dependent Young’s moduli appeared to need

the use of a larger damping loss factor in order to agree with

the experimental results. The one exception to this was the

large 21 mm plywood specimen for which there was good

agreement in this high frequency range.

It appears that a more accurate assessment of the fre-

quency dependence of the Young’s moduli and the damping

loss factor may improve the prediction of the sound insula-

tion of mildly orthotropic panels like plywood. The simple

isotropic model worked better than expected except in the

critical frequency region where all the prediction methods

struggled, especially with the thicker plywood samples.

Cherif, R., and Atalla, N. (2015). “Experimental investigation of the accu-

racy of a vibroacoustic model for sandwich-composite panels,” J. Acoust.

Soc. Am. 137, 1541–1550.

Craik, R. J. (1996). Sound Transmission through Buildings: Using
Statistical Energy Analysis (Gower Aldershot, England), p. 261.

Cremer, L. (1942). “Theorie der schalld€ammung w€ande bei schr€agem

einfall” (“Theory of the sound attenuation of thin walls with oblique

incidence”), Akust. Z. 7, 81–104.

Crocker, M. J., and Price, A. J. (1969). “Sound transmission using statistical

energy analysis,” J. Sound Vib. 9, 469–486.

D’Alessandro, V., Petrone, G., Franco, F., and De Rosa, S. (2013). “A

review of the vibroacoustics of sandwich panels: Models and

experiments,” J. Sandw. Struct. Mater. 15, 541–582.

Davy, J. L. (2009a). “Predicting the sound insulation of single leaf walls—

Extension of Cremer’s model,” J. Acoust. Soc. Am. 126, 1871–1877.

Davy, J. L. (2009b). “Predicting the sound insulation of walls,” Build.

Acoust. 16, 1–20.

Davy, J. L., Larner, D. J., Wareing, R. R., and Pearse, J. R. (2015a). “The

acoustic radiation impedance of a rectangular panel,” Build. Env. 92,

743–755.

Davy, J. L., Larner, D. J., Wareing, R. R., and Pearse, J. R. (2015b).

“Approximate equations for the radiation impedance of a rectangular pan-

el,” in Inter-Noise 2015, San Francisco, CA (Institute of Noise Control

Engineering, Reston, VA), p. 12.

Davy, J. L., Larner, D. J., Wareing, R. R., and Pearse, J. R. (2015c). “The

radiation impedance of a rectangular panel,” in Euronoise 2015
(Maastricht, The Netherlands), p. 6.

del Coz Diaz, J., �Alvarez Rabanal, F., Garc�ıa Nieto, P., and Serrano L�opez,

M. (2010). “Sound transmission loss analysis through a multilayer light-

weight concrete hollow brick wall by FEM and experimental validation,”

Build. Environ. 45, 2373–2386.

del Coz Diaz, J., Garc�ıa Nieto, P., �Alvarez, F., and Su�arez Sierra, J. (2007).

“Evaluation of the acoustic behaviour of the light concrete hollow bricks

by FEM and experimental validation,” in Proceedings of the CIATEA
Conference, Ediuno, pp. 27–29.

Fahy, F. J. (1994). “Statistical energy analysis: A critical overview,” Philos.

Trans. R. Soc., A 346, 431–447.

Feng, L., and Kumar, S. (2012). “On application of radiation loss factor in

the prediction of sound transmission loss of a honeycomb panel,” Int. J.

Acoust. Vib. 17, 47–51, available at http://iiav.org/ijav/content/volumes/

17_2012_1469441332161031/vol_1/233_firstpage_960501336384400.pdf.

Guyader, J. L., and Lesueur, C. (1978a). “Acoustic transmission through

orthotropic multilayered plates, part I: Plate vibration modes,” J. Sound

Vib. 58, 51–68.

Guyader, J. L., and Lesueur, C. (1978b). “Acoustic transmission through

orthotropic multilayered plates, part II: Transmission loss,” J. Sound Vib.

58, 69–86.

Guyader, J. L., and Lesueur, C. (1980). “Transmission of reverberant sound

through orthotropic, viscoelastic multilayered plates,” J. Sound Vib. 70,

319–332.

Hansen, C. H. (1990). “Sound transmission loss of fluted and corrugated

panels-damped and undamped,” in Interior Noise Climates (Australian

Acoustical Society, Perth), pp. 5.1–5.18.

Hansen, C. H. (1991). “Effect of size on the sound transmission loss of both

heavily and lightly damped orthotropic panels,” in INTER-NOISE
Conference Proceedings, Institute of Noise Control Engineering, pp.

263–266.

Hongisto, V. (2006). “Sound insulation of double panels-comparison of

existing prediction models,” Acta. Acust. Acust. 92, 61–78, available at

http://www.ingentaconnect.com/content/dav/aaua/2006/00000092/00000001/

art00008.

Hongisto, V., Lindgren, M., and Helenius, R. (2002). “Sound insulation of

double walls—An experimental parametric study,” Acta. Acust. Acust.

88, 904–923, available at http://www.ingentaconnect.com/content/dav/

aaua/2002/00000088/00000006/art00010.

ISO (2000). ISO 15186-1:2000, “Acoustics—Measurement of sound insula-

tion in buildings and of building elements using sound intensity—Part 1:

Laboratory” (International Organization for Standardization, Geneva,

Switzerland), pp. 1–20.

FIG. 12. (Color online) Comparison of the measured and predicted sound

insulation of a 21 mm thick plywood panel measuring 4.8 m wide by 2.4 m

high.

J. Acoust. Soc. Am. 139 (1), January 2016 Wareing et al. 527

http://dx.doi.org/10.1121/1.4908239
http://dx.doi.org/10.1121/1.4908239
http://dx.doi.org/10.1016/0022-460X(69)90185-0
http://dx.doi.org/10.1177/1099636213490588
http://dx.doi.org/10.1121/1.3206582
http://dx.doi.org/10.1260/135101009788066546
http://dx.doi.org/10.1260/135101009788066546
http://dx.doi.org/10.1016/j.buildenv.2015.05.042
http://dx.doi.org/10.1016/j.buildenv.2010.04.013
http://dx.doi.org/10.1098/rsta.1994.0027
http://dx.doi.org/10.1098/rsta.1994.0027
http://iiav.org/ijav/content/volumes/17_2012_1469441332161031/vol_1/233_firstpage_960501336384400.pdf
http://iiav.org/ijav/content/volumes/17_2012_1469441332161031/vol_1/233_firstpage_960501336384400.pdf
http://dx.doi.org/10.1016/S0022-460X(78)80060-1
http://dx.doi.org/10.1016/S0022-460X(78)80060-1
http://dx.doi.org/10.1016/S0022-460X(78)80061-3
http://dx.doi.org/10.1016/0022-460X(80)90302-8
http://www.ingentaconnect.com/content/dav/aaua/2006/00000092/00000001/art00008
http://www.ingentaconnect.com/content/dav/aaua/2006/00000092/00000001/art00008
http://www.ingentaconnect.com/content/dav/aaua/2002/00000088/00000006/art00010
http://www.ingentaconnect.com/content/dav/aaua/2002/00000088/00000006/art00010


Kuo, Y.-M., Lin, H.-J., and Wang, C.-N. (2008). “Sound transmission across

orthotropic laminates with a 3D model,” Appl. Acoust. 69, 951–959.

Lee, C. M., and Xu, Y. (2009). “A modified transfer matrix method for pre-

diction of transmission loss of multilayer acoustic materials,” J. Sound

Vib. 326, 290–301.

Leissa, A. W. (1969). “Vibration of plates,” Technical Report No. NASA-

SP-160 (NASA, Washington, DC), 362 pp., available at http://ntrs.nasa.

gov/search.jsp?R=19700009156.

London, A. (1949). “Transmission of reverberant sound through single

walls,” J. Res. Natl. Bur. Stand. 42, 605–615.

London, A. (1950). “Transmission of reverberant sound through double

walls,” J. Acoust. Soc. Am. 22, 270–279.

Ordubadi, A., and Lyon, R. H. (1979). “Effect of orthotropy on the sound

transmission through plywood panels,” J. Acoust. Soc. Am. 65, 133–139.

Orrenius, U. E., Wareing, A., and Kumar, S. (2010). “Prediction and control

of sound transmission through honeycomb sandwich panels for aircraft fu-

selage and train floors,” in The 17th International Congress on Sound and
Vibration (ICSV17) (International Institute of Acoustics and Vibration,

Cairo, Egypt), pp. 117–124.

Rhazi, D., and Atalla, N. (2010). “A simple method to account for size

effects in the transfer matrix method,” J. Acoust. Soc. Am. 127,

EL30–EL36.

Sastry, J., and Munjal, M. (1995). “A transfer matrix approach for evalua-

tion of the response of a multi-layer infinite plate to a two-dimensional

pressure excitation,” J. Sound Vib. 182, 109–128.

Sewell, E. (1970). “Transmission of reverberant sound through a single-leaf

partition surrounded by an infinite rigid baffle,” J. Sound Vib. 12, 21–32.

Sharp, B. H. (1978). “Prediction methods for the sound transmission of

building elements,” Noise Control Eng. 11, 53–63.

Steel, J., and Craik, R. (1994). “Statistical energy analysis of structure-borne

sound transmission by finite element methods,” J. Sound Vib. 178,

553–561.

Trevathan, J. (2005). “Sound transmission through walls: A coupled BEM/

FEM approach,” Ph.D. thesis, Department of Mechanical Engineering,

University of Canterbury, Christchurch, New Zealand, p. 664.

Woodcock, R., and Nicolas, J. (1995). “A generalized model for predicting

the sound transmission properties of generally orthotropic plates with arbi-

trary boundary conditions,” J. Acoust. Soc. Am. 97, 1099–1112.

528 J. Acoust. Soc. Am. 139 (1), January 2016 Wareing et al.

http://dx.doi.org/10.1016/j.apacoust.2007.08.002
http://dx.doi.org/10.1016/j.jsv.2009.04.037
http://dx.doi.org/10.1016/j.jsv.2009.04.037
http://ntrs.nasa.gov/search.jsp?R=19700009156
http://ntrs.nasa.gov/search.jsp?R=19700009156
http://dx.doi.org/10.6028/jres.042.053
http://dx.doi.org/10.1121/1.1906601
http://dx.doi.org/10.1121/1.382255
http://dx.doi.org/10.1121/1.3280237
http://dx.doi.org/10.1006/jsvi.1995.0185
http://dx.doi.org/10.1016/0022-460X(70)90046-5
http://dx.doi.org/10.3397/1.2832099
http://dx.doi.org/10.1006/jsvi.1994.1503
http://dx.doi.org/10.1121/1.412222

	s1
	l
	n1
	n2
	s2
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	s3
	s4
	f1
	t1
	f2
	f3
	f4
	f5
	f6
	f7
	s5
	f8
	f9
	f10
	f11
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	f12
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36

