Helping TeachersBuild I TSwith Domain Schema

Brent Martin and Antonija Mitrovic

Intelligent Computer Tutoring Group
University of Canterbury, Christchurch New Zealand
{brent.martin, tanja.mtrovic}@anterbury.ac.nz

Abstract. Authoring ITS domain models is a difficult task u&ing many
skills. Tools such as ASPIRE that model domainagusintology reduce
the problem by allowing the author to work at ahbig level of
abstraction (and thus avoid low-level code writjing)t such tools tend to
be complex and the task is not intuitive for maepme. To overcome
this problem we have developed a frameworkdomain schemahigh-
level abstractions that describe the semantichefdbmain model for a
class of domains. Using domain schema reducesutferang effort to
one of describing only those aspects that are antquthis particular
domain; the schema provides the rest of the model. describe the
framework we have implemented and give some exampiedomain
types for which schema have been built.

1. Introduction

Intelligent Tutoring Systems increasingly show pisenas a technology that will
expand the horizons of education from those ableattend a bricks-and-mortar
institution to anyone with an Internet connectigkcting as an enhancement to
traditional distance learning offerings, they preenito augment laboratories and
tutorials by allowing students to practice the Iskihey are learning from home. In
recent years tutors such as the Geometry and Adgelbors, and the Addison-Wesley
database place suite (SQL-Tutor, ER-Tutor and NORMhave made it out of the lab
and into the classroom [1], [2].

Constraint-Based Modeling (CBM) [3] is an effectiapproach for building
Intelligent Tutoring Systems (ITS) that supporte thuilding of domain and student
models. Constraint-based tutors are effective: daample, students using our
database design tutor have shown significant gairlsarning after as little as one
hour of exposure to this system [4]. Also, CBM seekminimize the authoring effort
by requiring the author model only states, rathantsolution paths [5]. Nevertheless,
the task of building an ITS is still large. To reduthe authoring effort we have
developed a number of tools, including WETAS [6]JdaASPIRE, an authoring
system that allows the complete development off@&without ever writing a line of
code [7].
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ASPIRE makes it feasible for teachers with no pkioowledge to develop ITS, by
automating most tasks or providing GUI interfacdlevang the author to easily
define the elements of the final system, such a&s géneral domain parameters
(procedural versus non-procedural etc) and thectstrer of solutions that will be
submitted by the student. The most complex parthef authoring task, that of
modeling the domain, is achieved by creating amlogy of the domain concepts
using a custom graphical tool. ASPIRE was develofmedupport constraint-based
modeling. The domain model used by the final sysfeen the set of constraints) is
generated automatically from the ontology. ASPIR&pproactdramatically reduces
the effort required to build an ITS, but nonethelésis still a formidable task. In
particular, developing domain ontology is a prodéss does not come naturally to all
authors. For example, from a group of 12 studentthe 2006 e-learning summer
school at the University of Dublin, only half praghd usable domain models for a
simple hypothetical search engine language, of lwhialy one was completely
correct; the other half had considerable difficulfsasping the complexity of the
modeling task, while nearly all participants wereble to model the recursive nature
of the domain [8]. Also some authors have develogechains in ASPIRE entirely
independently, but others have required help. Thig common problem in ITS
authoring: the more general the tool, the hardés ib use. Many authoring systems
overcome this problem by being limited to a patdcuype of domain. For example,
Demonstr8 [9] is tailored for arithmetic.

Our goal for ASPIRESs that it be a tool for authoring ITS fany domain. To do
this it must be easily extensible. Since differanthors will have differing semantic
requirements it must be possible for new domairedypo be supported without
changes to the core ASPIR&stem. To facilitate this we have developed an
additional abstraction layedomainschemaDomain schema define the behavior of
ASPIRE for a subset of domains that share a common steuetad task type. New
schema can be added to ASPIRE at any time by ogedtie appropriate XML
documents and uploading them. The schema autorttaeauthoring process still
further by performing those tasks that are consisteross all domains of this type,
such as providing the main structure of the donosaitology. Authors then work with
the appropriate schema, rather than ASRIREctly.

The next section briefly introduces constraint-ldasmodeling (CBM), and
describes two CBM authoring systems. Section tlngtines how domain schema
work, with an implemented example in the area @fauing images. In section four
we show how the approach can be generalized to dtmain types. We conclude in
Section five and discuss our long-term goals; teatad distributed ITS via the
semantic web, and to disconnect the domain modet the modeling and reasoning
approaches.

2. Constraint-Based Modeling, WETAS and ASPIRE

CBM is based on the theory of learning from perfance errors [10]. It models the
domain as a set of state constraints, where eat$traint represents a declarative
concept that must be learned and internalized bdfer student can achieve mastery.
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Constraints represent restrictions on solusitaties and take the form:

If <relevance condition> is true for the studensslution,
THEN <satisfaction condition> must also be true

The relevance condition of each constraint chedksther the student’s solution is in
a pedagogically significant state. If so, the $atigson condition is checked. If it
succeeds, no action is taken; otherwise the studl@st made a mistake and
appropriate feedback is giversyntactic constraints check that the solution is
syntactically correct. Converselgemanticconstraints check whether the student’s
solution has solved the problem, usually by conmgpit to an “ideal” solution
supplied by the teacher. The constraints impli@iyode semantics by testing for all
of the different possible encodings of the semagtitcept they are attempting to test.
The student is thus permitted to use a differeablem-solving strategy to the author,
or even to mix strategies, provided no fundamestahain concepts are violated.

WETAS is a constraint-based web-enabled tutoring endiatgrovides all of the
domain-independent functions for text-based ITSs implemented as a web server,
written in Allegro Common Lisp, and using the Alie§erve Web server [11].
WETAS performs as much of the implementation as possib&egeneric fashion. In
particular, it provides the following functions:gimem selection, answer evaluation,
student modeling, feedback, and the user interféke.author need only provide the
domain-dependent components, namely the structiireh®@ domain (e.g. any
curriculum subsets), the domain model (in the fowh constraints), the
problem/solution set, the scaffolding informatioifi §ny), and possibly an input
parser, if any specific pre-processing of the inputequired. WETASas been used
to build several tutors, including EER-Tutor [2]dafollect-UML [12]. It has also
been used for four years by a graduate Univerdiygscin Intelligent Tutoring
Systems at the University of Canterbury.

ASPIRE is a high-level authoring tool that autorsattee encoding of constraints
based on an ontology that the author provides \gaaghical ontology editing tool.
Unlike WETAS, at all stages in ASPIREe author interacts with a GUI tool when
authoring the domain; no additional files are reegli ASPIRES a general tool that
has been used to build tutors across a varietyoofaihs, such as basic accounting,
thermodynamics and solid mechanics. However, thBIRE approach can still be
improved in at least two ways. First, the authos lile control over the interface;
any non-standard user-interaction must be providadbespoke applets which are
uploaded into ASPIRE. Second, authoring in ASPIREstill far from a trivial
exercise. In particular, the task of ontology attipis specialized and difficult. We
hypothesized that we could make it easier to buwitdologies by providing an
ontology schema that reduces the ontology vocaptitaonly concepts required for a
particular subset of domains, thus making the aighgob much more
straightforward. We combined this with the abiltty specialize ASPIRE’student
interface for such domains. Finally, we further bimesized that the semantic
interpretation of the ontology for all domains ofgaven subset would also be the
same. The combination of ontology schema, interf@mog ontology semantics is a
domain schema
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Fig. 1. Example tutor for critiquing x-ray images.

3. Domain Schema

A domain schema is a collection of documents thestcdbe parts of the domain
model that will be common to all domains of the sageneral type, such as critiquing
a set of images. The documents tell ASPIR&wv to perform many parts of the
authoring process that would be otherwise performadually. The documents are:

¢ Ontology schema (XML) and ontology generation r@}¢SLT)
¢ Constraint generation rules (XSLT)

¢ Solution structure generation rules (XSLT)

e Student interface (HTML, with optional Java applets

In the following sections we will use an examplemdin type to illustrate how
domain schemas work: for this domain type the stugeshown a set of two or more
images and is asked to choose the one with a ylarticharacteristic and to identify
features in the image that support their choicés @bmain type could apply to many
different subject areas (domains), such as: whidtve buildings is lonian; which x-ray
image is better quality; which forest is the mamtndged by acid rain; which painting is
by Van Gogh; which x-ray shows an intestinal atriet The interface consists of an
applet for displaying, panning and zooming imagespntrol for selecting one of the
images and a list deaturesthat may or may not contribute to the decisiom;each
feature the student will select an appropriatgure valueFigure 1 shows this interface
in action for an example of this domain type: x-{payver.

For each domain type the ontology will have the esdrasic form. Thentology
schemadefines this form by specifying concepts commomltalomains of this type
(typically the top of the ontology hierarchy), amikscribing the types of other
concepts that the author can create and the nedfiip between these and the
common concepts. Figure 2 shows part of the onyologan ITS of the domain type
“critique images”, in this case the x-ray power @im viewed using ASPIRE’s
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ontology editor. All ontologies for this domain g/ontain the “feature”, “image”
and “selection” concepts. The “feature” concepthien specialized for the actual
features that the student will look for in this ddm The author can also specify
abstractfeatures if they wish; these are used for addifigrination that is common
to more than one of the actual features. In figuitbe actual features are “anatomical
detail”, “background” and “soft tissue”; abstraeafures are “contrast technique” and
“brightness technique”. Each feature is then furthgecialized intdeature values
which are the values the student can choose betwsmh as “more anatomical
detail” and “lighter soft tissue”. The “image” camt is used to describe the images
being shown to the student, in terms of the featpresent in this image (whether or
not they contribute to the correct answer). Finale “selection” concept represents
the choice the student must make between images.

The ontology schema is shown in Figure 3. The stquart of this ontology
schema describes the two concept types the authorcieate (feature and feature
value). For each it also describes the attribufethat concept the author will be
required to provide; in this casefe@ature can have two feedback messages (one—
hint—to use when the student has overlooked thisifeaand the other—wrong—for
when the feature has been erroneously used). 8inila feature valuehas a
summary and detailed feedback message, and angthsitive) to be displayed as
reinforcement when the student has correctly aresivéhe question. Finally, the
author can specify that one concept is an examplanother; in figure 2 “more
anatomical detail” is an example of “low contrasthnique”. Once the author has
filled in the details for the features and featuatues, the information is saved as an
XML document and converted to a standard ASPIRBlogy using XSLT.

The ontology is then converted to constraints usimg{ML transform. This XSLT
encodes the semantic interpretation of the ontglbgyspecifying how each concept
should be turned into one or more constraints.tkerdomain type under discussion
the constraint generation rules are as follows:

high mAs

lowr mAs

brightness technigue

Fig. 2. Ontology for x-ray power

1. Correct selection: for each “selection” concept check the studentdwgplied
the correct selection value
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2. All features specified: For each feature, if a value is specified in tteal
solution, the student must also have specifiedueva

3. No extraneous features: for each feature, if the student has specifiedlaey the
ideal solution must also specify a value

4. Correct feature value: If the student has specified a feature value,arewas
required, is it the same as that in the ideal goiut

5. Feature value supports selection: if the student has selected a feature value that
is present in their chosen selection, check tleasdhection is correct.

For each constraint the hint and feedback mesqégethe concept from which it is
generated) are incorporated into boilerplate texgive the actual messages the user
will see when the constraint is violated. For tti@amain type the semantics are very
straightforward; other domain types are more cormfsdee Section 4).

The domain schema also defines how to generate thenontology the solution
structure (i.e. what the student must submit) dred default interface, again using

<! -- Default ontology, inserted directly - >
<baseOntology>
<concept id="1" label="selection' name="'selection ' abstract="false'>
<property name='value' id='value' type='Any"' u nigue="false’
max-cardinality="1" min-cardinality="1'/>
</concept>
<concept label="feature' name="feature’ abstract= 'true"></concept>
<concept id="2' label="image' name="image' abstra ct="false>
<attribute name="input" value="author"/>
<property name='name' id='name' type='Any" uni gue='false' />
<property name='URL'id='"URL' type='Any" uniqu e='false' />
</concept>

</baseOntology>

<l-- concept types that the author can create -->

<conceptType name="feature" label="Feature" input=" true"
propertyOf="image">
<attribute name="name" label="Name" type ="text"/ >
<attribute name="abstract" label="Abstract?" type ="boolean"/>
<attribute name="negativeHint" label="Hint" type= "text">
<attribute name="negativeWrong" label="Wrong" typ e="text"/>

<relationship name="exampleOf" label="Example Of"
type="specialisation" range="feature">

<conceptType name="featureValue" label="Feature v alue">
<attribute name="name" label="Name" type ="text ">
<attribute name="summary" label="Summary feedba ck" type="text"/>
<attribute name="detail" label="Detailed feedba ck" type="text"/>
<attribute name="positive" label="Positive feed back" type="text"/>
<relationship name="exampleOf" label = "Example of"

type="specialisation" range="featureValue"/>
</conceptType>
</conceptType>

Fig. 3. Ontology Schema for “critique images” (in XML)
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XSLT. By default the solution structure consistsatifnon-abstract concepts. In the
case of the domain type under discussion, eachepbraf type “feature” becomes a
field in the student solution. The feature values ased to create the appropriate
interface widget (e.g. a set of radio buttons) thatstudent will use to select values.
The default interface displays controls for theirensolution structure. The author
may then specialize the interface by specifyingciwhparts of the solution structure
are to be used for a given type of question indoisain, and they may override how
it will be displayed. For example, in this domaypé the author can specify that for
certain questions only the “soft tissue” and “andital detail” features will be
presented to the student, and that they will beessmted using combo boxes. This
allows the same domain model to be used for atyasig(related) tutoring tasks.

4. Other Domain Types

We are using domain schema to develop VIPER (Mirtmstructional and Practice
Educational Resource) in conjunction with the Gbhisrch Polytechnic Institute of
Technology (CPIT). For this project there are fidemain types, all of which are
visual: critique images; label an image; identiffeature in the image (i.e. point to it);
perform measurements on an image; experiment Wihparameters of an image. In
all cases the domain model is feature-based, and assult the semantics are
straightforward. Another domain type we are devielpfis programming languages. In
this type of tutor the student is given a taskedfggm where they must write a snippet of
code in free text form. The ontology for this typlel TS describes the grammar of the
language being used. For example, consider theidaheriting logical expressions. In
this domain each concept represents some pare d¢ditiguage (e.g. “conjunct”); concept
properties represent the “part-of’ relationshipwesn a concept and the language
constructs that make up that concept; for exammgengunct consists of an expression,
followed by “and” followed by a second expressiof)e constraint generation rules for
checking semantics of this domain type are asvistio

1. Concept necessary: for each concept, if it appears at least oncénénideal
solution, it must also appear in the student smti

2. Concept superfluous: for each concept, if it appears at least oncherstudent
solution, it must also appear in the ideal solytion

3. All concept instances present: for each instance of each concept in the ideal
solution where the student solution contains atleae instance of this concept,
there must exist an equivalent instance in theesiigblution;

4. No concept instances superfluous: for each instance of each concept in the
student solution where the ideal solution containkast one instance of this
concept, there must exist an equivalent instanteeiideal solution;

5. Correct components: for each concept instance in the student soluticed|
but one component is equivalent to an instanceh@ itleal solution, the
remaining component must also be equivalent.
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For the logical expressions domain the author deserach of the concepts in the
same way as they would describe a grammar in BNfweer, this is not sufficient
because they also need to define equivalence. kamme, “dog and cat’ is
equivalent to “cat and dog”. They do this by defmiadditional concepts. In the
previous example, conjunction is defined twicehwithe definition being the exact
reverse of the other. Each concept can then spanifiis equivalent to” relationship
with another. In some cases the concept will betbatdoes not already appear in the
grammar. For example, for logical expressions wedwfine de Morgan’s law:

(AOB)= AOB 1)

We specify this law by defining both de Morgan fermnd indicating they are
equivalent. The constraint generation rules thenthis information as follows. First,
whenever a concept detected in one solution (keyideal solution) is being looked
for in the other solution (i.e. the student soln}jathe default logic is to look for the
exact same concept instance in both solutions. Meryéf the concept instance is an
example of a concept for which an equivalent fowists, the constraint will instead
check that either the same concept instance enisthe other solutionor an
equivalent concept instance exists. Second, wheckaty for a particular concept
instance, the constraint will also check whethdoiitns part ofanother concept that
takes part in an equivalence relationship, andalternate form exists in the other
solution. If so, the check is dropped. For exampteen checking for all “and”s, if the
“and” in question is part of a De Morgan form ahd student used the alternate form,
the check for “and” will be dropped. We are curhgmtvaluating this domain type in
the areas of logical expressions, Java and SQLs &pproach is also potentially
useful for natural languages, provided the domsisauifficiently constrained. We are
also exploring this possibility.

Another example of a completely different domaipetyis arithmetic procedural
domains, such as multi-column addition. These carcdtered for by extending the
framework described as follows. First, for such dore the properties of a concept
must be able to be collections. For example, aritiaddproblem is made up of a
collection of columns; each column contains a caargollection of addends and a
sum. Second, the author must be able to specifiinagtic value restrictions for
properties. For example (again from multi-columditidn):

suni{n) = [carry(n) + SUM(addend$r1))] MOD 10 2)
carry(n) = [carry(n +1) + SUM(addendén + 1))] DIV 10 (3)

Note thatn is the column number (more generallyis the instance number). SUM
and DIV are built-in primitives. As well as givirthe formula for the restriction, the
author also specifies two associated feedback messane that describes what the
restriction means in words (used to correct thedestt when they violate the
restriction) and one that describes the dependenomplied by the RHS of the
restriction (used to indicate why the student sticwdt be specifying this value yet,
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because the restriction cannot be tested). Thetredmts are now generated from both
the concepts in the ontology plus the restrictiassfollows:

1. All values specified: For each concept instance, check whether thiarinst
has been completed, e..du have not filled in the sum for columh 8ote
that the restrictions imply dependencies betweamept instances, which
also need to be checked. If the dependent conasfatnices are not complete
yet this constraint will not be relevant.

2. Ordering: For each concept that is on the LHS of a resbctif the student
has supplied an instance of this concept, chedkitieanecessary parts in the
RHS have been specified and give the “dependentygt & not, e.g. 'You
cannot compute the carry for a column until youdhaempleted the column
to the right”

3. Correct value: For each concept that is on the LHS of a resbrigttest its
value, and give an error if wrong, e.@Heck your sum in column 3. The
sum should add up to the sum of addends in thismaol plus the carry, if
any’, or “Check the value of the carry in column 2. The cahguld be 1 if
the addends and carry in the next column to thietrégld up to 10 or moreé.

This logic is sufficiently general to apply to otheithmetic domains, such as fraction
addition.

6. Conclusions and Future Work

ITS authoring is a difficult task. Whilst generieaithoring tools such as ASPIRE
dramatically reduce the authoring effort requirelhmain authoring nevertheless
remains a specialized task. We have introducedragwork, called domain schema,
that allows a generic ITS authoring tool to beatatl to specific domain types to ease
the authoring process, but which is still generathie sense that it can be readily
extended to support new domain types. We are ubkisgframework in the VIPER
project to create an authoring environment suiteddmains where the student tasks
involve interacting with images. We have also shdww the approach is suited to
other very different domain types such as programgmanguages and arithmetic.
VIPER will be trialed by teachers at CPIT in midd30

Most (if not all) existing ITS tools are monolithithe student logs into the ITS
system, which then serves them content. This idiliect contrast with other web-
based educational content delivery approaches, hwlaie content-oriented In
content-oriented systems, learners seek out agptepducational content from any
source that their client software supports (e.gOB®!). In the ITS equivalent
teachers would develop exercises for their studevits complete them and submit
their answer to an appropriate reasoning engine@Vafuation. The reasoning engine
would be a lightweight expert system that can rules written in some standard
language (e.g. ruleML [13]). Each page of contemitains links to domain content in
a form similar to what we have just described: tlmemain is represented by an
ontology plus additional information indicating hdhe ontology should be used to
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generate evaluation rules. This would allow re-othe same ontology for different
types of evaluation. For example, the domain inftian for multi-column addition
described in section four is sufficient to genemateduction rules for a model-tracing
tutor [14]. Further, ontology could be cobbled tinge from existing ones, or
customized by overriding some parts. The framewsekhave described is a step
towards this because it separates the reasonieg, iuhtology and reasoning engine.

Intelligent tutoring systems are a promising taml delivering education remotely.
To date a key problem has been the effort requdelild such systems, even when
sophisticated authoring tools are used. Domainmahis a promising step towards
making ITS a realistic option for education practiers everywhere.
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