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Abstract 

The study of elliptic curves is an important part of modern cryp­
tography. In this report we consider the properties of singular elliptic 
curves over the field Zp, showing that they can always be factorized, 
that their equations always take a given form and that there are always 
p + 1 ± 1 points satisfying this equation over the field Zp. 
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1 Introduction 

This report looks into the various properties of elliptic curves, with a partic­
ular focus on trying to count the number of points on elliptic curves in Zp 
and investigating the properties of singular elliptic curves. The study of el­
liptic curves is an important part of modern cryptography, particularly with 
referance to the "Discrete Logarithm Problem", which is used for ElGamal 
and Diffie-Hellman encryption [2, Sec. 7.5]. Finding a computationally fast 
method for calculating the number of points on an elliptic curve would have 
a variety of advantages in the field of cryptography. Efficient algorithms for 
calculating the number of points have been investigated, such as the SEA 
algorithm [4] and the use of a Gaussian Normal basis [7], however all require 
significant amounts of computer time, and are limited in there capabilities. 
Such algorithms are well outside the scope of this report. The first section 

1 
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of this report gives a precise definition of an elliptic curve, before examining 
it's group function, its relationship to the DLP, and some standard equations 
pertaining to individual elliptic curves. Section two uses an original proof to 
count the number of points on a singular elliptic curves. Section three uses 
a change of variables to rewrite an equation for a singular elliptic curve into 
another form, and considers the implications of this further. In section four 
we look at several questions raised by our previous investigations before going 
on to prove that all elliptic curves must take the form suggested in section 3, 
and that all curves of this form can be factorized. Finally we consider briefly 
weather it would be possible to make a singular elliptic curve into a group 
by simply removing the singularity. 

1.1 What is an elliptic curve? 

Elliptic curves equate a second degree polynomial of one variable to a third 
degree polynomial of another over some field IF. They are usually written as 
y2 = x3 + bx + c, a form which can generally be reached through an appropri­
ate linear change of variables that preserves all major properties of the curve. 
We will go through an example of one such change of variables later in the 
report. Figure 1 depicts a representation of two example elliptic curves over 
the real numbers: 
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Figure 1 

Elliptic curves can be defined over the real numbers, complex numbers, 
Modular field, or in fact any field, as all fields have both a an addition and a 
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multiplication operation. An elliptic curve £ is said to be the set of all points 
within a field IF that satisfies the equation y2 = f(x) with the addition of a 
point at infinity, where f(x) is some cubic function of x, that is 

£ := {(x, y) E IFI(y2 = f(x)) U oo }. 

This construction is incredibly useful for cryptography, particulary when 
defined over the field ZP, where Zp denotes the field of integers modulo p. 
The field of integers modulo p is the set of integers k satisfying 0 ::::; k < p, 
with the usual modulo addition and multiplication rules, and the additional 
rule that a and b are considered equal as long as a - b is some multiple of p. 

Example 1 On the field z7 5+4=9=2, also z7 5 X 4 = 20 = 6 = -1. Of 
note is the fact that 5 x 3 = 15 = 1, hence it can be said that 5_1 = 3. 

For our modula arithmetic to work properly we require that p be prime. 
This allows all numbers (except zero) to have a multiplicative inverse and 
also prevents such bizarre behavior as (x- 3) x (x- 45) = (x- 24) 2mod147 
(the particular importance of this example will become apparent later). Also, 
for the sake of simplicity, I will assume that p > 3 for the rest of this report. 
Elliptic curves can be defined over the fields Z2 and Z3 , however several of 
the proofs in this report depend on 2 and 3 having well defined inverses, thus 
we will avoid these fields. 

Some elliptic curves contain a "singularity", or "repeated root". When 
drawn over the real numbers a "singularity" is represented as the graph 
crossing itself. Singularities are points that have "multiplicity". Having a 
square factor on the right hand side of your elliptic curve will result in a 
singularity at that point. 

Example 2 The curve y2 = x(x + 1)2 has a singularity at the point ( -1, 0). 

It is impossible to take a tangent line at a singularity, because the singularity 
will either be a isolated point where there is no definable tangent, or a crossing 
point, where there are two equally valid tangent lines. 

1.2 A Few Specifics 

It is important here that we clarify a few specific details for later on in 
the report. Often in other articles "elliptic curves" will be spoken of only 
referring to curves of the given description of that are non singular. This is 
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important to those texts so that elliptic curves can always be referred to as a 
group. Here I speak of both non singular and singular elliptic curves. What 
I refer to here as singular elliptic .curves would be discounted completely in 
other texts. 

I also often refer to a linear change of variables. Here I refer to a change 
of variables that does not effect the j invariant, Discriminant, number of 
points, or relationship between the points for an elliptic curve under the 
group operation (to be described later). A change of variables may scale or 
transpose any variable in such a way as to not change these properties. One 
such change of variables would for instance be setting y' = 3y + 2, or some 
such other linear transformation. 

Another important concept is that of "isomorphism". Two groups are 
consider isomorphic if there is some renaming of variables such that the ele­
ments of the group relate to one another the same way under there standard 
group operation. 

Example 3 N, S, E and W can be renamed 6., \,7,t> and <1 respectively. The 
two sets { N, S, E, W} and { 6., \7, t>, <1} can be considered Isomorphic. 

For a more rigorous definition of Isomorphism please refer to [6, chapter 6]. 

1.3 DLP 

The use of elliptic curve in cryptography is based upon what is known as the 
DLP, or discrete logarithm problem. 

The DLP takes the form 3"' = 81,"' =7. In the real numbers this type 
of question can be easily solved by taking logarithms of each side, however 
when working in other groups it becomes very difficult. For instance, raising 
36 in the field Z7 gives 1, which can be (relatively) easily calculated. TI·ying 
to compute "' for 5"'mod17 = 2 is much more computationally difficult, and 
generally requires an exhaustive search of all powers of 5. The DLP is most 
easily used over finite cyclic groups such Zp under multiplication. These are 
used because all cyclic groups have an element a such that all group elements 
are powers of a, thus meaning that"' is defined for all elements (they all have 
a discrete logarithm base a). Any finite group however can be effectively used 
for the DLP. If using a non-cyclic group the only disadvantage is that not 
all elements will have a defined discrete logarithm. Because of the way the 
DLP is constructed this is not a significant problem. 
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1.4 The Group Law 

One such group that can be used for the DLP is that formed by an elliptic 
curve. In order for us to use the curve in such a manner we must first define 
the group operation. We denote the standard group operation for an elliptic 
curve as EB (pronounced "oat", or "oh-plus"). For elliptic curves over the 
real numbers EB is defined as follows: 
-Step 1: Choose two points on your elliptic curve, P and Q. 
-Step 2: Draw a straight line L through P and Q. 
-Step 3: Find the point where L crosses your elliptic curve, label this R'. 
Reflect R' through the x axis, giving a point with the same x value, but the 
opposite y value. This point must be a solution to the curve, for we know 
that if (x,y) is a solution, so to must (x,-y), as +y and -y have the same 
square. 

·l!. 

Figure 2 
Pig~.tre :3 

We now say that R = P EB Q. 
There are several special cases that must be considered: 
If P is directly above or below Q then the line will not cross the curve again. 
In this case we say P EB Q = oo, and also that P = -Q. 
If one of the points chosen is oo then we say oo EB P = P. oo is the groups 
identity element. 
If P = Q then instead of drawing a line between the two points (which we 
can no longer do) we instead take a tangent to the elliptic curve at P. (see 
fig 3) In this case we can either write P EB P = R or 2P = R. 
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The EB operator is currently defined geometrically over the real numbers, how­
ever when working over more abstract fields we will require a more abstract 
definition. 

Definition 4 Let£ be the set {(x,y) E JFI(y2 = x3 +ax+ b) U oo} 
Let P and Q both be elements of the set£, written as (xp, yp) and (xQ, YQ) 
respectively, where Xp, yp, XQ and YQ elements of JF. The Sum of P and Q, 
written as P EB Q is the point R E £, written as (xR, YR) such that: 

If P = oo then we define P EB Q = oo EB Q = Q = R 
If Q = oo then we define P EB Q = P EB oo = P = R 

If Xp i- XQ then we define mas: m = (yp- YQ) x (xp- XQ)-1. then 

YR = -yp- m(xR- xp). 

(1) 

(2) 

If Xp = XQ then either yp = YQ or YP = -YQ· If yp = -yQ then we 
define P EB Q = oo = R. If yp = YQ then P = Q and we must compute the 
"tangent line" . The exact definition of a 'tangent line" on a generalized field 
is outside the scope of this paper, but can be found here: [5, chap3.1]. For 
now let us just consider the tangent on a generalized field to be a very close 
analogy to tho tangent of a point over the real numbers. It can be computed 
in exactly the same way. First find the slope of the tangent line m: 

then calculate the x and y coordinates of R by 

YR = -yp- m(xR- Xp). 

thus P EB Q = P EB P = 2P = R 

We do not need to worry about weather (2yp) = 0. This would require either 
2 = 0 or yp = 0. If yp = 0 then yp = -yQ, a case we have already consid­
ered. As always in this report we are assuming that we are not working in 
Z2 , and thus can safely assume 2 i- 0. (definition of group function sourced 
from [8, page 58,59]) 
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Now that EB has been clearly defined it can be shown that the set of points 
E together with the operator EB forms a group. oo is the groups identity el­
ement, all elements have an inverse under the group function (their mirror 
image through the x axis (x, -y)) and every possible pair of elements will 
add to give a third element of the group. The group operation is associative, 
and thus (P EB Q) EB T = P EB (Q EB T). Associativity can be proved through 
exhaustively going through the algebra, or for an alternative geometric proof 
see [5, chap 5.6 prop 4]. In addition to these basic properties the set of points 
on an elliptic curve also have the additional property of being commutative, 
that is P EB Q = Q EB P, thus meaning that the curve forms what is known 
as an abelian group. 
Because elliptic curves E defined over Zp are finite abelian groups they 
are good candidates for the DLP. The difficulty in calculating "" for an el­
liptic curve is much greater then that of calculating "" for the real num­
bers, or even for a modular field. This is because EB is much more com­
plicated then multiplication, and hence harder to reverse. ""p = T is not 
the kind of problem that is easily solved in your head. (See figure 4). 

Figure 4 

1.5 Order of Points and Curves 

Unlike the group formed by multiplication on a modular field there is no 
guarantee that a point Ton an elliptic curve is a multiple of a point P. This 
leads us to consider the idea of a points order. The smallest number >., such 
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that )..P = oo is said to be the order of a point, IPI. For non finite groups 
).. does not always exist, however every element P in a finite group G there 
exists some /\ such that )..p = I where I is the identity of the group. 

Proof Consider the group element Q. It is clear that if we keep adding Q to 
itself within any finite group we will eventually run out of elements, and at 
some time there must find j and k such that j Q = kQ. Now, for all elements 
in our group there must be an inverse under the group operation, therefore 
jQ E9 -(jQ) = kQ E9 -(jQ) = oo = (k- j)Q. Therefore there must exist 
some ).. = k - j such that >.Q = oo. 

Elliptic curves defined on Zp are finite groups, therefore all points have a 
finite order. We want points of high order, so that we maximize the possible 
values ofT for our DLP. We must avoid points of low order, for example 
points of the from (x,O) which have order 2 (See figure 5). 

// 
/ 

7 

--------------~--~ 

-3 -2 -l Q 

-W 

-15 

Figure 5 

2 

The total number of points on an entire curves is said to be the order of 
the curve 1£1. Lagrange's theorem ([6, Thnn. 7.1, page 137]) states that the 
order of any individual element in a group is a divisor of the total order of 
the group 

Example 5 If an elliptic curve has twelve points, then the order of any given 
point must be 1,2,3,4,6 or 12. 
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It is helpful if we can calculate 1£1, because the order of£ gives us information 
about the order of every single point, which we can then use to improve the 
efficiency of our cryptographie algorithms. Note, this concept of "order" 
makes no sense when spoken of over the real numbers, as there is a infinite 
number of points along the line. It does however make sense for £ defined 
over the field ZP. 

There is a formula given which can tell us the number of points of a given 
curve: 

1£1 = 1 + 2::)1~) + 1), (3) 
xEIF 

where f(x) denotes the cubic on the right hand side of the elliptic curve 
equation,lF denotes the given field and ?;? denotes the Legendre symbol. [1, 
page 1] 

The Legendre symbol is defined by: 
iff = + 1 if there exists z E lF such that v = z2 =1- 0 
iff = -1 if there does not exist z E lF such that v = z2 

iff = 0 if v = 0 [9] 

Example 6 Let us consider the Legendre symbol if it were to be taken over 
the real numbers. 
For all v > 0 there exists z with the property that z2 = v therefore i = + 1 
if v > 0. 
For all v < 0 there does not exist z such that z2 = v therefore i = -1 is 
v < 0. 

Example 7 Over the complex numbers there exists z such that z2 = v for 
all v, i = + 1 for all v =1- 0 

What Eqn.(3) is in effect saying is "take every possible x value. If your 
formula results in a square, add 2. If it results in a non square add nothing. 
If it results in 0, add 1." You end up going through manually and checking 
every single possible x value to determine if it gives you any y values. Finally, 
you add 1 on at the end to represent your oo point. 

1.6 A Couple Important Quantities 

Aside from a curves order there are two more quantities to note that are 
associated with a curve. There is the discriminant of a curve, and the j-
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invariant. The discriminant of the curve, ~' tells us the geometric shape of 
the curve if its equation were to be graphed over the real numbers and is 
written as ~ ( t') = -16( 4a3 + 27b2), where t' := y2 = x3 + ax + b. Curves 
with positive discriminant have two disconnected pieces, when graphed over 
the real numbers. Curves with negative discriminant are represented as one 
continuous line when drawn over the real numbers. Curves with Discrimi­
nant 0 are singular, and thus have at least one point at which the tangent 
line can not be defined. (See figure 6, also referance [8, page 47,48]) It is 
important to note, that because the tangent line can not always be sensi­
bly defined for singular graphs the EB operation does not make sense. It 
is for this reason that singular curves are unable to form groups as non­
singular curves can, and thus have limited use in the field of cryptography. 

"t:.>O ::l:;b.=O 
I / 

·r r ·r(~,··l'c,(< r .~.,---,--.-::t, -~---c--..,-

, ::1 

~~ / 

,, .Ll<O/,/ , 

,; 

Figure 6 
The second important variable associated with t' is it's j-invariant. This 

is a value which will stay the same under any change of variables. It is defined 
as 

. 1728(4a)3 

J(t') = -16(4a3 + 27b2) • 
(4) 

For any elliptic curve on an algebraically closed field two elliptic curves having 
the same j invariant is enough to prove that there is some linear change of 
variables that takes one to the other, and thus that they are isomorphic. j 
is undefined for singular elliptic curves. [8, page 50] 

2 Order of Singular Elliptic Curves 

In this section we will use an original proof to find the number of points over 
a singular elliptic curve. 

The general formula for the number of points on an elliptic curve that is 
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able to be factorized, over the field Zp is 

1£1 =p+l + I: (kx- a)(jx- b)(lx- c) 
(5) 

x=O ... p-1 

This is simply a rearrangement of Eqn. (3). 
The Legendre symbol is completely multiplicative in its first argument, that 
is ~n = 11f x i. Because of this the case of a singular factorized curve yields 
interesting results: 

p+l+ I: (kx- a)(jx- b)
2 

= p+l+ L 
Zp 

x=O ... p-1 x=O ... p-1 

It can be seen that (jxz-b)
2 

will always be +1, except when jx- b = 0. 
p 

When jx-b = 0 we find (jx;W = 0, thus the value corresponding to jx-b = 0 
p 

must be removed from our sum. This greatly simplifies our expression for 
1£1. We now have 

1£1 =p+l+ I: (kx- a) 
(7) 

x=O ... p-1,jx-bi'O 

let kx- a= w. It can be seen that for all x there exists some w satisfying 
kx- a= w. Simply rearrangement will give x = k-1 (w +a), thus it can be 
seen that for all w there exists x. The function taking x to w is a bijection. 
Thus, as we know that as x spans the set of all possible values in Zp, so too 
must w. If we replace the expression kx- a in our equation with w, and then 
sum for all values of w instead of x, we will get the same result. We are 
summing up over the same values but in a different order. Thus: 

(kx- a) I: ;. 
w=O ... p-1,jk-1(w+a)-bi'O p 

(8) 
x=O .. . p-1,j -bi'O 

Before we can continue with our proof, we will need to prove the following 
lemma: 

Lemma 8 Exactly half of the elements of the set Zp \ {0} are Square. 
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Proof We will first show that every square in Zp, other then zero, has two 
distinct roots. Let r 2 = s2

• Lett be an element in our field such thats = r-t. 
This results in: 

r 2 = s2 = (r - t) 2 = r 2 
- 2rt + t2 

because every element in our field must have an additive inverse we can say 
0 = 2rt- t 2 therefore +2rt = t 2

• Now we must consider two possible cases, 
either t = 0 or t =f. 0 . If t =f. 0 then t-1 exists and thus:2rtt-1 = t 2t-1 

therefore 2r = t. This value oft leads to the conclusion s = r - 2r = -r. 
The other case to consider is t = 0. In that case s = r- 0 = r 
Thus for any square number s2 there are two possible roots, +r and -r. 
Next we must prove that these two roots are distinct. If +r = -r then 
( +r) + ( -r) = 2r = 0 This would only be possible if either 2=0 or r = 0. 
Recall that we assumed p > 3 at the beginning of this report, thus 2 =/:- 0. 
Also the case where r = 0 can be ignored because 0 was discounted at the 
beginning of this lemma. Thus +r =f. -r. 

Because every non-zero square has two distinct roots, there must be ex­
actly twice as many roots as squares. Therefore the number of squares must 
be exactly half the number of possible non-zero roots. Therefore half of all 
non-zero elements in a finite field must be square. 

With this Lemma we are able to state that 'l:::w=O ... p-1 ¥f = 0, as we are 
p 

summing over P;1 square terms, P;1 non square terms and a single 0 term. 
Thus perfect cancelation occurs and our sum totals to zero. Now, to finally 
complete our equation: 

"'"" w "'"" w w 1£1 =p+1+ 6 Z =p+1+ 0 z--(Z)jk-l(w+a)-b=O 

w=O ... p-1,jk-l(w+a)-b#0 P w=O ... p-1 P P 

kbj-1 - a 
1£1 = p + 1 + 0- z 

p 

(9) 

Now, assuming that kbj-1 -a =f. 0 we have lEI = p + 1 =f 1. If kbj-1 -a = 0 
then our equation must is of the form y2 = (kx- a) 3

• 

Theorem 9 All curves of the from (kx- a)(jx- b)2 have p + 1 =f 1 points 
{assuming jx- b =f. kx- a). All curves of the from (kx- a)3 have p + 1 
points. 



Properties of Unworldng elliptic curves 13 

3 Writing singular curves using an equation 
in a different form 

3.1 Change of form 

Elliptic curves are not generally written with the right hand side of the 
equation factorized. Most equations relating to elliptic curves assume that 
they are not factorized. (One such equation is that of the j invariant). As 
such, having information about singular curves in there factorized form is 
of limited use. It would be most useful to have a general form for singular 
curves for several reasons. Firstly, anyone wanting to do cryptography will 
know which curves to steer clear of. Secondly, given what we know about 
the order of singular elliptic curves we may be able to find some use for them 
further down the track, for instance, can we transform them into some form 
of non-singular curve while still retaining the same number of points? 
It is obvious that all curves of the form: y2 = ( kx - a) ( mx - b) 2 , are singular, 
as they contain the repeated root x = bm-1, however this is not the standard 
form in which elliptic curves are presented- a curve could very easily factorize 
to this form and be completely unrecognisably in any other. 
The general form used for elliptic curves on a modular field by both Silverman 
and Deming (and presumably most others) is y2 = x3 + sx + t. All elliptic 
curves can be written in this form through some linear change of variables, 
as long as the prime base is greater then 3 [8, 47-51]. We must make two 
further assumptions for this change of variables to work. Firstly, that our 
singular curve can be full factorized (it may be possible to have singular 
curves that can not be factorized, in which case they will not be represented 
by this change of variables). Secondly we must assume that k is a square on 
the field we are working in. 

So, now our task is to find a suitable linear change of variables such that: 

y2 = ( kx - a) ( mx - b )2 = y2 = x3 + sx + t 
The first step in this is to remove the k and m terms from the equation. 

This can be done by defining: a'= a X k-1 and b' = b x m-1 Both multiples 
are then pulled out the front of the equation:y2 = m 2k(x- a')(x- b') 2

. The 
m and k terms can now be removed by setting y' = y x m-1~ Thus: 
y'2 = (x- a')(x- b') 2

• Now we will expand our factorization: 

y'2 = x3 
- (2b' + a')x2 + (b'2 + 2a'b')x - a'b'2 . 
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In order to remove our x2 term from the equation we will need to use the 
change of variables x' = x - g. This results in the equation 

x'3 + sx' + t = (x- g)3 + s(x- g)+ t = x3
- 3gx2 + 3lx + l + sx- sg + t 

Now, by matching coefficients we will be able to determine s, g and t and 
hence determine an appropriate change of variables. For the sake of easy 
notation we will now drop the ' from both a and b. First let us match the x2 

coefficients: 
-3gx2 = -(2b + a)x2 

----+ g = 3-1 (2b +a) 

With this information we are then able to calculate s. 

3g2x + sx = (b2 + 2ab)x----+ 3-1 (2b + a) 2 + s = b2 + 2ab 

----+ 3s = 3b2 +6ab- (2b+a)2 = 3b2 +6ab- (4b2 +4ab+a2
) = -(b2 -2ab+a2

). 

Thus we can conclude that 

Now that we have both s and g we can substitute their values into the 
constant terms in order to calculate t: 

Now, multiplying through by 27, and rearranging to make t the subject we 
get: 27t = -27ab2 + (2b + a)3 

- 3(2b + a)(b- a) 2 

= -27ab2 + (8b3 + 12ab2 + 6a2b + a3
) - 3(b- a)(2b2

- ab- a2
) 

= -27ab2 +8b3 + 12ab2 + 6a2b+ a3
- 6b3

- 3 + 3ab2 + 3a2b+ 6ab2
- 3a2b- a3

• 

By using lots of cancelation we are able to simplify that to 

This gives us the final result: 

(10) 

Normally we would like to calculate the J-invariant of the elliptic curve, to 
determine whether or not our two elliptic curves are isomorphic, however this 
invariant is not defined for singular curves, and thus can not help confirm 
our change of variables. 
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3.2 The Twist Function 

It is interesting to note the similarities between Eqn. (10) and that of theM. 
Deuring "twist" operation [3, page 2]. The twist operation takes two inputs, 
first, an elliptic curve <P defined over lF, second some arbitrary non 0 element 
c of lF. A curve <P with p + 1 + t points is transformed into a different curve 
\II with p + 1 ± t points using the twist operation. Assuming c =/: 1 these two 
curves will not be isomorphic. 

Theorem 10 Given the curve <P := y2 = x3 +ax+ b, the twist of <r>, \II is 
defined as \II := y2 + x3 + axc2 + bc3 . If c is square then \II has p + 1 + t 
points, just like <P. If c is non-square then \II has p + 1 - t points. [? j 

Proof I<PI = 1 + p + L:xElF(f~)) = p + 1 + t. let w := y2 = c3 (x3 +ax+ b), 

thus IWI = 1+p+ L:xElF(c
3

xjex)). Because the Legendre symbol is completely 
multiplicative in its first argument (see 2) we can say 

thus because~= 1 we have: IWI = 1+p=fl:xElF(f~)) where =f is determined 

by w· 
From W we can get to \II by defining x = d, thus absorbing several of the 

c terms. Thus: \II:= y2 = c3 (x3 +ax+b) = c3x3 +c3ax+c3b = x3 +c2ax+c3b 
and I \II I = p + 1 ± t 

Because the twist operation allows us to take a curve with a known 
number of points (p + 1 + t) and change it to one with p + 1 =f t points through 
a simple transformation I had hoped that we would be able to go from a 
singular curve, and change into a non singular one, with a known number 
of points. This would be useful, as the resulting curve could be used for 
cryptography because it was non singular, but would also have a well defined 
number of points. Unfortunately this doesn't work. This is because the twist 
of a curve has discriminant proportional to the discriminant of the original 
curve. Since all singular curves have discriminate 0, the twist operation will 
still always result in a discriminant of 0, and hence a singular curve. We 
show that the discriminant of a twisted elliptic curve is proportional to that 
of the original by simply looking at the relevant formulas: 
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<I> : = y2 = x3 + ax + b, 
\]i := y2 = x3 + c2ax + c3b, 
6(<I>) = -16(4a3 + 27b2

). 

Where \]i is the twist of <I> 

16 

By simply substituting our new values into the discriminant equation we 
get: 

6(w) = -16(4(c2a)3 + 27(c3b) 2
). 

6(w) = -16c6(4a3 + 27b2
). 

The discriminant of the twist is thus proportional to the discriminant of 
the original elliptic curve, thus singular curves can not be twisted into non 
singular ones, as the twist must necessarily have discriminant 0. 

4 Questions Raised 

Given the above formula for a singular elliptic curve, several question come to 
mind about what this implies. Is this form of elliptic curve always singular? 
Do all singular curves take this form? Is the cubic on x always able to be 
factorized, or do there exist singular curves with no proper factorization in 
the field ZP? 

4.1 On the possibility of non-singular curves of this 
form 

The first question can be answered easily by calculating the discriminant: let 
Y := y2 = x3 - 3-182x + 2 x 27-183 , be the general form of the curve we have 
found. 

6(1) = -16(4a3 + 27b2
) = -16(4 X -3-382x3 + 27 X 22 

X 2T283x2
) 

= -16( -4 X 27-186 + 4 X 2T186
) = 0 

Hence all elliptic curves of the form Y must be singular. 
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4.2 On the possibility of singular curves of other forms 

The second question- weather or not all singular elliptic curves must take 
this form - will need a little more work. In our rearrangement of variables we 
only proved that all factorisable elliptic curves with square k could take this 
form, this does not preclude the existence of other singular curves that do not 
take this form. We will return then to our standard formula for all elliptic 
curves. Let 0 be any singular elliptic curve, written as 0 := y2 = x3 +ax+ f3 
with the property 6.(0) = 0 
It can be shown that all possible 0 must be equivalent to 1. 
First, we use the property J(O) = 0 to find a relationship between a and {3. 

J(O) = 0 = -16(4a3 + 27{32
) :. -27{32 = 4a3 

4a3 x ( -3)-3 = {32 
:. f3 = -3-1 x 2aV -3-1a 

Now, for the expression under the square root sign to be square it is necessary 
that a= -q23-1 • Substituting this relation into our expression gives: 

0 := y2 = x3 +ax+ f3 = x3 
- 3-1q2x - 3-1 x 2m/ -3-1a 

0 := x 3
- T 1q2x- 3-1 

X 2 X -q23-1~ = x 3
- 3-1q2x + 3-3 X 2 X q3

, 

Therefore 0 = 1 as needed. 
Thus it has been shown that all curves of the form 1 are singular, and all 
singular curves take this form. 

4.3 On the possibility of factorization 

The final question we are considering here is weather or not all possible 
singular curves are able to be factorized. We have a formula for all singular 
curves. Because no linear change of variables affects an equations ability to 
be factorized all we have to do is find a general factorization for our general 
equation. 

1 := y2 = x 3
- 3-1J2x + 2 x 2T1J3

. 

Working with 27-1 in the middle of our formula causes trouble, so to make 
our jobs easier, we should start by bringing this out the front. 
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Now, using Maple to give us a quick hand we can determine that 

Thus it is shown that all curves of the form Y can be factorized, therefore all 
singular curves can be factorized. This is a very useful result, as many of our 
previous results ran on the assumption that the singular curve in question 
could be factorized . 

The final assumption that was previously made and needs explanation is 
the assumption that k was square, and thus could be removed via a suitable 
change of variables on y (beginning of 3). With this factorization of our 
singular curve we can see that no problem arises. The x coefficients from 
each bracket come out the front of our equation giving 33 x 27-1 (3-1 x 28 + 
x)(3-1 x 8- x) 2 . Any form of singular equation must have k such that it 
can be transformed to this form under a liner change of variables. As can be 
seen, the factor out the front is canceled completely, thus all Singular curves 
can be written in a factorized form where the x coefficients are 1. 

5 The GroupS 

So, we have the following rather interesting results regarding singular curves. 
• All singular curves have form Y, all curves of this form are singular 
• All singular curves can be fully factorized. 
• All singular curves have order p + 1 ± 1. 
However, singular curves are not able to be used in cryptography. It is 
clear that the singularity is what causes singular curves to be unsuitable for 
cryptography, and so the logical question to ask is "can we easily get rid of 
the singularity?" 
Let D denote the singular point (3-18, 0) on the curve 

Y := y2 = x3
- 3-182x + 2 x 27-183 = 2T1 (28 + 3x)(o- 3x)2 

The question "is does the setS= {{(x,y) E IFIY} U {oo} \ {D}} form a 
group under the operation EB?" The biggest issue to consider when removing 
elements from a group is that the group will no longer be closed. It is 
important to note that what we are removing D is not actually a group, 
however it is still important to consider issues of closure. Does there exist 
some P and Q in S such that P EB Q = D, where D is not in S? I will prove 
here that there exists no such P,Q. 
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Proof Let P,Q be points that are solutions to the equation Y on the field 
lF, such that P = (xp, yp ), Q = (xQ, YQ)· We then find the equation for the 
line passing through both points to be y = m(x- Xp) + yp. This line will 
cross the curve when: 

For P EB Q = D it is necessary that x = XD = 3-16 and y = YD = 0. 
Substituting these values into Eqn (2) gives YD = -yp-m(xD -Xp) therefore 
YP = -m(3-18- xp) 

Substituting into Eqn.(ll) gives: 
0 = m2 (3-18- Xp ) 2 - 2m2(3-18- Xp ) 2 + (3-128 + Xp )(3-18- Xp ) 2 

Now assuming that Xp =1- 3-18 we can divide through by (3-18- Xp) 2
, thus 

leading to: m 2 = (3-128 + Xp) 

Eqn. (1) states that XD = m 2 - Xp- XQ. Substitution gives gives 3-18 = 
3-128 + Xp- Xp- XQ therefore XQ = 3-18. If our previous assumption that 
Xp =1- 3-18 is correct then Q=D, however if it isn't correct then P = D, either 
way there can be no two points in S such that P EB Q = D . .Q. <!!.::0. 

It would be good to prove that the set S, with the operator EB formed a 
group, however it still remains to be proved that the operator remains asso­
ciative. All proofs of this that I have read stipulate that the curve must be 
non-singular, although hopefully the removal of the singular point is enough 
to get these proofs to work. This must be rigorously proved before S can be 
considered a group, although initial investigations are positive. 

Calculating lSI is much easier then calculating 1£1 for a generalized elliptic 
curve, hence suggesting Sis possibly more suitable for cryptography, however 
there are several issues which must be considered: 
• Is the operator EB associative over S? 
• Is S isomorphic to some group that we already have? 
• Are there any obvious fast algorithm for solving the DLP on S. 
IF all of these issues can be overcome then we will have a mathematical 
object very well suited for use with the DLP, and thus useful in the field of 
cryptography. 
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6 Conclusion 

In this report we have covered the basic arithmetic of elliptic curves as well 
as their application to cryptography through the DLP. Although it is non­
singular curves that are used in cryptography we here considered their singu­
lar counterparts. We found original proofs showing that singular curves over 
a finite field have p + 1 ± 1 points, and proved that all singular curves can 
take the form Y. We then considered weather the set of non singular points 
over a singular curve can be used to form a group, and thus allow us to use 
singular curves for cryptography. 

References 

[1] Ahmet Tekcan Betiil Gezer and Osama Bizim, The number of rational 
points on elliptic curves and circles over a finite field, 1. 

[2] Jahannes A. Buchmann, Introduction to cryptography, 1999. 

[3] Thomas A. Schmidt Erkay Sava§ and Qetin K. Koc;, generating elliptic 
curves of prime order, 2. 

[4] Mireille Fouquet and Franc;ois Morain, Isogeny volcanoes and the sea al­
gorithm, ANTS-V: Proceedings of the 5th International Symposium on 
Algorithmic Number Theory (London, UK), Springer-Verlag, 2002. 

[5] William Fulton, Algebraic curves, an introduction to algebraic geometry, 
2008 (originally published 1969. 

[6] Joseph A. Gallian, Contemporary abstract algebra, 2002. 

[7] Hae Young Kim, Jung Youl Park, Jung Hee Cheon, Je Hong Park, 
J ae Heon Kim, and Sang Geun Hahn, Fast elliptic curve point count­
ing using gaussian normal basis, ANTS-V: Proceedings of the 5th In­
ternational Symposium on Algorithmic Number Theory (London, UK), 
Springer-Verlag, 2002, pp. 292-307. 

[8] Joseph H. Silverman, The arithmatic of elliptic curves, 1986. 

[9] Eric W. Weisstein, Legendre symbol from mathworld a wolfram web re­
source. 


	Abstract
	1. Introduction
	1.1 What is an elliptic curve?
	1.2 A Few Specifics
	1.3 DLP
	1.4 The Group Law
	1.5 Order of Points and Curves
	1.6 A Couple Important Quantities

	2. Order of Singular Elliptic Curves
	3. Writing singular curves using an equation in a different form
	3.1 Change of form
	3.2 The Twist Function

	4. Questions Raised
	4.1 On the possibility of non-singular curves of thisform
	4.2 On the possibility of singular curves of other forms
	4.3 On the possibility of factorization

	5. The Group S
	6. Conclusion
	References


 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset -12.94, -3.99 Width 35.83 Height 843.92 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         2
         CurrentPage
         28
              

       CurrentAVDoc
          

     -12.9375 -3.9884 35.8267 843.918 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     0
     21
     0
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 2 to page 21
     Mask co-ordinates: Horizontal, vertical offset -7.96, -3.99 Width 32.84 Height 845.91 points
     Mask co-ordinates: Horizontal, vertical offset 557.30, -3.99 Width 40.80 Height 845.91 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         2
         SubDoc
         21
              

       CurrentAVDoc
          

     -7.9615 -3.9884 32.8411 845.9084 557.3043 -3.9884 40.8026 845.9084 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     1
     21
     20
     20
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 14.17 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Up
     14.1732
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     1
     21
     1
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 14.17 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Up
     14.1732
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     1
     21
     1
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 14.17 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Up
     14.1732
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     1
     21
     1
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 8.50 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Up
     8.5039
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     2
     21
     2
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 8.50 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Up
     8.5039
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     4
     21
     4
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 8.50 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Up
     8.5039
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     6
     21
     6
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 8.50 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Up
     8.5039
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     8
     21
     8
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 8.50 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Up
     8.5039
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     10
     21
     10
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 8.50 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Up
     8.5039
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     11
     21
     11
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move down by 17.01 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Down
     17.0079
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     11
     21
     11
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 8.50 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Up
     8.5039
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     11
     21
     11
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 8.50 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Up
     8.5039
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     12
     21
     12
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 8.50 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Up
     8.5039
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     14
     21
     14
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 8.50 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Up
     8.5039
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     16
     21
     16
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 8.50 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
     Fixed
     Up
     8.5039
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     18
     21
     18
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: none
     Shift: move up by 8.50 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1180
     267
    
     Fixed
     Up
     8.5039
     0.0000
            
                
         Both
         2
         CurrentPage
         13
              

       CurrentAVDoc
          

     None
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     20
     21
     20
     1
      

   1
  

 HistoryList_V1
 qi2base



