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ABSTRACT. A basic question in conservation biology is how to maximize future 
biodiversity as species face extinction. One way to approach this question 
is by measuring the diversity of a set of species in terms of the evolutionary 
history that those species span in a phylogenetic tree. Maximizing the resulting 
'phylogenetic diversity' (PD) is one prominent selection criteria for deciding 
which species to conserve. The basic PD optimization problem aims to find a 
k-element subset of a given species set that has maximum PD among all such 
subsets. In this paper, we consider a generalization of this problem, which 
arises in situations where we do not know the true tree, or where evolution is 
not tree-like. We show that a greedy algorithm gives a (l-e- 1 )-approximation 
to the general PD optimization problem, and that there is no polynomial-time 
algorithm that achieves a better approximation ratio unless P=NP. 

1. INTRODUCTION 

A central task in conservation biology is measuring, predicting, and maximizing 
future biodiversity. There are numerous ways to approach this problem. In 1992, 
Faith proposed to measure the 'phylogenetic diversity' (PD) of species sets and to 
use this quantitative tool as a selection criteria for preserving biodiversity [5]. PD 
is based on evolutionary distances in a phylogenetic tree; given a subset of taxa, 
the phylogenetic diversity of that subset is the sum of the distances (or lengths) 
of the edges of the evolutionary tree that connects this subset. Here, the distance 
assigned to an edge may refer to the amount of genetic change on that edge, its 
temporal duration, or perhaps other features such as morphological diversity. 

Given the phylogenetic tree of a species set X with lengths on its edges, in the 
basic PD optimization problem one selects a k-element subset of X that maximizes 
PD over all k-element subsets. Since this optimization problem assumes that the 
evolutionary history of the species in X is known, it cannot be used in situations 
where we do not know the true tree, or where evolution is not tree-like. In these 
cases, a more general biodiversity measure needs to be defined and, based on it, 
a more general optimization problem has to be formulated. Spillner et al. [13] 
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introduced the measure 'phylogenetic diversity for split systems', which can be 
used when considering species whose evolution is better represented by an unrooted 
network rather than a tree. In this paper, we give a different generalization of PD: 
'phylogenetic diversity for cluster systems' (PD'i&'). This measure is useful when 
the evolutionary history is best described by a rooted network [2], or when we do 
not know the true history, but we have a set of rooted trees (perhaps with different 
probabilities) and we want to maximize the expected PD. We consider the problem 
of finding a k-element subset of a given species set, that maximizes PD'i&' over all 
such subsets. A related optimization problem, based on phylogenetic diversity for 
split systems, is defined and studied in [13]. 

The paper is organized as follows. In the next section, we state some necessary 
preliminaries, including the formal definition of PD'i&' and an example of its appli­
cations, followed by the main result of the paper. Section 3 contains the proof of 
this result. 

2. MAIN RESULT 

· A rooted phylogenetic X -tree T is a rooted tree in which the root has degree at 
least 2 and all other interior vertices have degree at least 3, and whose leaf set is 
X. Such a tree is commonly used to represent the evolutionary history of a set 
of present-day species (the leaves) from their hypothetical common ancestor (the 
root). Let >. be a non-negative real-valued weighting on the edges of T. For a 
subset Y of X, the (rooted) phylogenetic diversity of Y, denoted by PD7(Y) or 
more briefly PD(Y), is the sum of the edge lengths of the minimal subtree of T 
that connects the elements in Y and the root of T [5, 6]. 

The following definition generalizes the above described notion of PD. Let X 
be a finite set, and let Crfi' be a collection of subsets of X. Furthermore, let w be 
a weighting function on 9f that assigns a non-negative real-valued weight to each 
member of Crfi'. For a subset A of X, we define the phylogenetic diversity of A relative 
to 'tf, denoted by PD'i&'(A), as the sum of the weights of the members of 9f whose 
intersection with A is non-empty. That is, we set 

(1) PD'i&'(A) = w(C). 
CE'i&': CnA/0 

To see that PD'i&' generalizes PD, consider the special case when X is the leaf 
set of a rooted phylogenetic X-tree T. A subset C of X is a cluster of T if there 
is an edge that has precisely C as its set of descendant leaves. Suppose that the 
edges of T have non-negative real-valued weights and let Crfi' be the set of all clusters 
of T. For a cluster C E Crfi', let w(C) be the weight of the (unique) edge of T 
whose associated cluster is C. It is easy to see that in this setting, the phylogenetic 
diversity of a subset A of X equals the phylogenetic diversity of A relative to 'tf. 
That is, for any A~ X, we have PD7(A) = PD'i&'(A). 
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In this paper, we consider the general case when ?&" is an arbitrary collection 
of subsets of a finite set. In the following, we define and feature an optimization 
problem that is based on PD,r. 

Problem: OPTIMIZING PD FOR CLUSTER SYSTEMS 
Instance: A finite set X, a collection ?&" of subsets of X, a non-negative (real­
valued) weighting w on ?&", and a positive integer k. 
Goal: Find a subset Y of X of size k that maximizes PD,r amongst all such subsets. 
Measure: The PD,r score of Y. 

In the case when¥'? is the collection of.clusters of a rooted phylogenetic X-tree, 
OPTIMIZING PD FOR CLUSTER SYSTEMS is just the basic PD optimization problem 
and is solvable in polynomial time using a greedy algorithm [10, 14]. However, as 
we will soon see, OPTIMIZING PD FOR CLUSTER SYSTEMS is NP-hard in general. 

One of the reasons why we are interested in solving the above problem is high­
lighted in the following example. 

Example. Let X = { a, b, c, d} and consider the edge-weighted rooted phylogenetic 
X-trees shown in Fig. 1. Assume that we do not know the true evolutionary history 
of the species in X, but we know that either Ti or 0, represents it each with 
probability 1/2, say. Consider the basic PD optimization problem with k = 2; that 
is, the problem of finding a 2-element subset of X that has maximum PD among 
all 2-element subsets. If Ti was the true tree, { a, c} would be the optimal solution. 
However, if 0, was the true tree, the best 2-element subset would be {b, d}. In such 
a situation, it may be safer to choose a subset that maximizes the expected future 
PD; that is, a 2-element subset of X that has maximum expected PD among all 
such subsets. Let W ~ X be of cardinality 2 and let JE[PD71 ,72 (W)] denote the 
expected PD of W with respect to the probability distribution on the two trees. 
Then, we have 

1 1 
lE[PD71 ,72 (W)] = 2 PD71 (W) + 2 PD72 (W). 

Consider now the cluster sets of Ti and 0,. These are 

?&"1 = {{a},{b},{c},{d},{b,c},{a,b,c}} 
and 

?&"2 = {{a},{b},{c},{d},{a,d},{b,c}}, 
respectively. For i E {1, 2}, let Wi assign to a cluster in ¥f'i the weight of the edge 
corresponding to that cluster in T;,. For example, w 1 ( { d}) = 1, W2 ( { d}) = 4, and 
w2 ({a,d}) = 2. It is easy to see that lE[PD71 ,72 (W)] can be written as 

(2) w(C), 
CE'ir: CnW#0 

where?&"= ?&"1 U ¥'?2, w(C) = iw1(C)IcE'iri + iw2(C)JcE'ir2 , and IcE'irt takes the 
value 1 if C E ~ and O otherwise. Since the right hand side of (2) is the PD,r 
score of Wunder the above specified X, ¥'?, and w, the problem of maximizing the 
expected PD is equivalent to solving OPTIMIZING PD FOR CLUSTER SYSTEMS for 
our particular instance. A quick check of all 2-element subsets of X shows that the 
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unique optimal solution is {b, c}; this subset has the highest expected PD among 
all 2-element subsets of X or, equivalently, it maximizes PD~ over all such subsets. 

p p 

a 

c 

b c 

FIGURE 1. Two edge-weighted rooted phylogenetic X-trees 7i and 
~, both rooted at p. 

The process described in the example also works in general when we are given a 
finite set of rooted trees with an arbitrary probability distribution on them; maxi­
mizing expected PD always leads to an instance of OPTIMIZING PD FOR CLUSTER 
SYSTEMS. Furthermore, maximizing expected PD is equivalent to the problem 
WEIGHTED AVERAGE PD ON t (ROOTED) TREES. For t = 2, this problem is 
solvable in polynomial time [4]. Fort ~ 3, it is NP-hard [13], and so OPTIMIZING 
PD FOR CLUSTER SYSTEMS is also NP-hard. However, the main result of this 
paper, Theorem 2.1, shows that there is a sharp approximation algorithm for it. 

The main result of the paper is the following. 

Theorem 2.1. OPTIMIZING PD FOR CLUSTER SYSTEMS is an NP-hard optimiza­
tion problem. However, it 

(i) can be approximated by a polynomial-time greedy algorithm with approxi­
mation ratio 1 - e-1; and 

(ii) cannot be approximated in polynomial time with an approximation ratio 
better than 1 - e- 1 unless P = NP. 

The proof of (i) uses the fact that PD~ is a submodular set function. The greedy 
algorithm that actually gives the above-named approximation ratio is described in 
[8] in a more general setting. We briefly outline the algorithm here in the language 
of this paper. 

Algorithm: GREEDY(X, 'ef', w, k) 
Input: A finite set X, a collection 'ef' of subsets of X, a non-negative (real-valued) 
weighting w on 'ef', and a positive integer k. 
Output: A subset of X of size k. 

Step 1 Let S be the empty set and set counter c = 0. 
Step 2 If c = k, STOP and return S; otherwise, select an element z of X -S that 

maximizes PD~(S U {z}) - PD~(S) among all elements of X - S (with 
ties settled arbitrarily). 
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Step 3 Set S = SU {z} and c = c+ 1, and return to Step 2. 

GREEDY always produces a solution whose value is at least 1- (1- k- 1 l times 
the optimal value. This bound can be achieved for each k and has a limiting value 
of 1 - e- 1 [8). 

Remark. It would be interesting for future work to explore extensions to Theo­
rem 2.1 (i) that allow costs to be assigned to the taxa. More precisely, suppose 
that each taxon has an associated positive real-valued cost associated with its con­
servation, and there is total budget B available to allocate. Then an extension 
to OPTIMIZING PD FOR CLUSTER SYSTEMS is to select a subset of taxa to con­
serve that maximizes the PD score subject to the constraint that the sum of the 
costs of the taxa conserved does not exceed the budget B (OPTIMIZING PD FOR 
CLUSTER SYSTEMS corresponds to the special case where all costs take the value 
1). Recently, variations on the PD optimization problem on trees that allow taxon 
costs have allowed pseudo-polynomial time exact algorithms and polynomial-time 
approximation.algorithms [3, 11]. 

3. PROOF OF THEOREM 2.1 

We noted prior to the statement of Theorem 2.1 that OPTIMIZING PD FOR 
CLUSTER SYSTEMS is NP-hard. Thus, the rest of this section establishes parts (i) 
and (ii). To prove Theorem 2.1 (i), we first verify the following lemma. 

Lemma 3.1. Let 'if? be a collection of subsets of a finite set X and let w be a non­
negative real-valued weighting on the elements of'(!. Then, P D'tf' is a submodular 
set function. That is, for any subsets A and B of X, we have 

(3) 

Proof. Let A and B be arbitrary subsets of X. Apply Eqn. (1) to A, B, AU B and 
An B, and partition '(! into three sets as follows. For i E { 0, 1, 2}, let 'iff'i consist of 
subsets in 'if? whose intersection is non-empty with exactly i sets in { A, B}. Consider 
now the following cases. For a subset CE 'if/0 , the weight w(C) affects neither side 
of (3). For CE '(fl, w(C) appears exactly once on both sides of (3). Finally, for 
C E '(!2 , w(C) appears exactly twice on the right hand side and at most twice on 
the left hand side. Noting that w is non-negative completes the proof. D 

Proof of Theorem 2.1 (i). It is shown in [8) that a greedy heuristic can be used to 
approximate the following problem with approximation ratio 1 - e- 1. Let S be a 
finite set and z be a real-valued function defined on the power set of S. Assume 
that z is submodular and non-decreasing and that z(0) = 0. The problem is to 
find a subset of S of size at most k that maximizes z amongst all such subsets. We 
complete the proof by showing that OPTIMIZING PD FOR CLUSTER SYSTEMS is a 
special case of this problem. Take X as the finite set and PD'tf' as the real-valued 
function on the power set of X. That is, set S = X and z = PD'tf', By Lemma 3.1, 
PD'tf' is submodular. It is easy to see that PD'tf' is also non-decreasing: for any subset 
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A of X and for any element a in X -A, we have PD'i&'(A U {a}) - PD'i&'(A) ~ 0. 
Finally, PD<&(0) = 0. Theorem 2.1 (i) now follows. D 

Before proving Theorem 2.1 (ii), we formally state the problem MAX k-COVER 

and the definition of a type of approximability preserving reduction, called £­
reduction. 

Problem: MAX k-COVER 

Instance: A finite set S = {s1, ... , sn}, a collection .§: of subsets of S, and a 
positive integer k. 
Goal: Find a subset .ff:' = { F1, ... , Fk} of.§: of size k that maximizes the size of 
the set Uf=1 Fi. 
Measure: The cardinality of Uf=1 Fi, 

Feige [7] showed that no polynomial-time approximation algorithm for MAX k­
COVER can have an approximation ratio better than 1- e- 1 unless P = NP. 

Let II1 and II2 be two arbitrary optimization problems. An L-reduction [1, 9] 
from II1 to II2 is a pair of polynomial-time computable functions f and g, and a 
pair of positive constants a and f3 that satisfy the following properties: 

(I) If I is an instance of II1, then f(I) is an instance of II2 with 

opt(f(J)):::; a opt(!), 

where opt(J) and opt(f(J)) denote the size of an optimal solution to I and 
f (I), respectively. 

(II) If S is a feasible solution to f (I), then g(S) is a feasible solution to I with 

I opt(!) - c(g(S))[ :::; f3 [ opt(f(J)) - c(S)[, 

where c(g(S)) and c(S) is the size of g(S) and S, respectively. 

It follows from the definition that if II1 £-reduces to II2, and there is a polynomial­
time approximation algorithm for II2 with approximation ratio c, then there is a 
polynomial-time approximation algorithm for II1 with approximation ratio a(3E [9]. 

Proof of Theorem 2.1 (ii). We prove (ii) by giving an £-reduction with a= f3 = 1 
from MAX k-COVER to OPTIMIZING PD FOR CLUSTER SYSTEMS. By the previ­
ous remarks on MAX k-COVER and £-reduction, this will imply that OPTIMIZING 

PD FOR CLUSTER SYSTEMS cannot be approximated in polynomial time with an 
approximation ratio better than 1 - e-1 unless P = NP, as required. 

Let I be an instance of MAX k-COVER, and let R be an equivalence relation on S 
defined as follows. Two elements Si and Sj of Sare equivalent if and only if they are 
elements of precisely the same subsets in .ff:; that is, they satisfy Si E F ~ Sj E F, 
for all F in .ff:. Let [si] denote the equivalence class of si E S under R. We now 
give a function f that constructs from I an instance f (I) of OPTIMIZING PD FOR 

CLUSTER SYSTEMS; that is, it specifies a set, a collection of subsets of this set, 
a non-negative real-valued weight assigned to each subset in the collection, and a 
positive integer. Let .ff be the set and let C<f be the collection of subsets of .ff be 
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defined as follows. For each equivalence class [si] under R, there is a unique member 
C[s;J = { P E § : Si E P} of ?ff. Let the weight of Ors;] E ?ff be the cardinality 
of the equivalence class [si]· Furthermore, let the positive integer in instance f(I) 
equal k. Clearly, this construction can be accomplished in polynomial time. 

To prove (I), we show that opt(!) = opt(!(!)), and so a = 1. Suppose that 
§ 1 = {P1, ... , Pk} is an optimal solution to I. Then opt(J) = I uj= 1 Pjl· Trivially, 
§ 1 is a feasible solution to f (I). Moreover, § 1 n C[si] is non-empty precisely if 
uj=1 Pj contains Si, in which case [si] ~ uj=1 Pj. By the choice of weighting, it now 
follows that PD'if(§') = I uj=1 Pjl, and so opt(!) :::; opt(f(J)). By choosing an 
optimal solution to f (J) and reversing this argument, it is also straightforward to 
show that opt(!) 2: opt(f(J)), as required. 

For (II), let § 11 = { P 1, ... , pk} be a feasible solution to f (I). Setting g(§") = 
§ 11 gives a feasible solution to I with c(g(§")) = c(§") = I uj=1 PJj. This can be 
seen by arguments similar to those used in the proof of (I). Trivially, g is computable 
in polynomial time. Thus, (II) is satisfied with (3 = 1. This completes the proof of 
Theorem 2.1 (ii). 0 
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