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Abstract 

Following an introductory chapter on constructive mathematics, Chapter 2 contains 

a detailed constructive analysis of the Toeplitz-Hausdorff Theorem on the convexity 

of the numerical range of an operator in a Hilbert space. It is shown that the results 

in the chapter are the best possible with constructive methods. 

The rest of the thesis deals with the constructive theory of not-necessarily­

commutative Banach algebras. Chapter 3 discusses the Spectral Mapping Theorem 

in that context, again showing that the results obtained are the best possible. Chap­

ter 4 deals with the question, "Are positive integral powers of a hermitian element 

of a Banach algebra hermitian?". A major problem that has to be overcome is to 

find the 'right' constructive definition of hermitian, since there is no guarantee in 

constructive mathematics that the state space of a Banach algebra is nonempty; 

this forces us to work with approximations to the state space, rather than the state 

space itself. 

In the final chapter, these approximations are used to give careful estimates that 

lead us to a proof of Sinclair's Theorem that the spectral radius of a hermitian 

element equals its norm. 

The thesis has two appendices: one describing the axioms of intuitionistic first­

order logic, and the other giving a proof of the Spectral Theorem for normal oper­

ators on a separable Hilbert space. 
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Chapter 1 

Introduction 

A Mathematical Renaissance 

1.1 A brief historical development 

The search for truth in science has always brought about differences in opinion 

among scientists. As a part of science, mathematics. has its share of different views 

and philosophies about its foundations. For some philosophers, truth is absolute; 

for others, it is relative. One of the principle features of most sciences is objectivity. 

It is widely believed that mathematics is an objective affair. However, there are 

some that have treated mathematics as a matter of almost extreme subjectivism. 

According to the Platonist philosophy of mathematics, mathematical realities 

exist as perfect Platonic forms, and every mathematical statement has an associated 

truth value even though we may· never be able to determine that value within our 

preferred formal system. A good example of this is the Continuum Hypothesis 

relative to the formal system ZFC (Zermelo-Fraenkel set theory plus the Axiom of 

Choice). 

A completely different philosophical approach is taken by Logicism, which re-
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gards mathematics as simply a part, an offspring, of Logic. Later in this chapter we 

will discuss a different view where mathematics is thought to precede Logic! 

One of the most popular philosophies, that marked a very important chapter 

in the history and philosophy of mathematics in the early twentieth century, was 

Formalism. The leading formalist of his time, I?avid Hilbert (1862-1943) had a 

strong conviction that mathematics is nothing but a process of manipulating symbols 

according to a set of specified rules, and that a formal mathematical system is 

acceptable if it can be shown to be free from contradiction. A major drawback of 

this approach to mathematics is that meaning is redundant. In Bishop's words, 

. . . Hilbert tried to show that it was all right to neglect computational 

meaning) because it could ultimately be recovered by an elaborate formal 

analysis of the techniques of proof. ([8, page 513]) 

However, Hilbert's program of proving the formal consistency of mathematics was 

doomed to failure and finally put to rest by the incompleteness theorem of the young 

Kurt Godel (1906-1978). According to Davies, 

In spite of its superficial plausibility) the formalist interpretation of math­

ematics received a severe blow in 1931. In that year the Princeton mathe­

matician and logician Kurt Godel proved a sweeping theorem to the effect 

that mathematical statements existed for which no systematic procedure 

could determine whether they are true or false. This was a no-go theorem 

with a vengeance) because it provided an irrefutable demonstration that 

something in mathematics is actually impossible) even in principle. The 

fact that there exist undecidable propositions in mathematics came a 

great shock) because it seemed to undermine the entire logical foundation 

of the subject. ([35, pages 100-101]) 

Despite the downfall of Formalism, it played an important role in the history of 

the foundation of mathematics, particularly in the period 1925-1930 where we have 

the peak of the "foundational crisis" (see [37, page 234]; an interesting exposition 

of this crisis can also be found in [68]). In the next section we discuss major issues 

in this foundational crisis in mathematics. 
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1.2 Questioning tradition 

Those who were deeply engaged in mathematical foundational matters during the 

early years of the twentieth century were stunned to learn the new philosophy of 

mathematics (and life )-Intuitionism (INT)-propounded by the Dutch mathe­

matician Luitzen Egbertus Jan Brouwer (1~81-r966). This revolutionary view of 

mathematics was introduced in Brouwer's doctoral dissertation [33] of 1907. To 

Brouwer, mathematics is nothing but a purely human intellectual affair; it is a free 

creation of the human mind. Basically, mathematics in Brouwer's terms is based 

on intellectual constructions, and that is how mathematical objects are brought to 

life. They do not exist waiting to be found; their existence is realised by construc-

tions performed by the human mind. This view contrasts sharply with the Platonic 

approach; as Dummett puts it, 

... the platonistic picture is of a realm of mathematical reality) exist­

ing objectively and independently of our knowledge) which renders our 

statements true or false. On an intuitionistic view) on the other hand) 

the only thing which can make a mathematical statement true is a proof 

of the kind we can give: not) indeed) a proof in a formal system) but 

an intuitively acceptable proof, that is) a certain kind of mental con­

struction. Thus) while) to a platonist) a mathematical theory relates to 

some external realm of abstract objects) to an intuitionist it relates to 

our own mental operations: mathematical objects themselves are mental 

constructions) that is) objects of thought not merely in the sense that 

they are thought about) but in the sense that) for them) esse est concipi. 

They exist only in virtue of our mathematical activity) which consists 

in mental operations) and have only those properties which they can be 

recognized by us as having. ([38, page 7]) 

An essential feature of INT is that mathematics precedes logic, which is the 

opposite of what the logicists believed. In fact, a consequence of Brouwer's view 

of mathematics as a process of mental construction was his rejection of the logical 

Principle of the Excluded Third, 
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P or not P 

-in other words, any mathematical statement is either true or false. One must 

not forget that this principle is one of the cornerstones of elassicallogic and hence 

of classical mathematics (CLASS). Brouwer believed that the Principle ofthe Ex-

eluded Third and even certain weak forms of it all6w us to make moves and decisions 

that are highly nonconstructive in nature. This was a very practical and realistic 

observation. 

Accepting Brouwer's views meant abandoning a substantial part of classical 

mathematics, at least in its standard form. From a formalist point of view, Brouwer's 

approach to mathematics was unacceptable, since the working formalist was unin­

terested in questions of meaning, and preferred to work in a formal system which 

apparently allowed one to prove more theorems. 

Though Brouwer fiercely attacked CLASS, his philosophy of mathematics was 

hard to understand, and made little positive impact on the majority of mathemati­

cians of his time. His most famous pupil, Arend Heyting (1898-1980), was able to 

make Brouwer's work more accessible to the nonspecialist by formalising the axioms 

of intuitionistic logic1 . It is important to point out that Brouwer's work on intu-

itionism paved the way for later development and progress in modern constructive 

mathematics (CM). 

In [30], Bridges and Richman discuss various varieties of constructive mathe­

matics. 2 Their experience of practising CM has led those authors to the informal, 

philosophy-free view that 

CM is nothing but mathematics based on intuitionistic logic. 

Based on Brouwer's view of mathematics as being an affair of the intellect, the 

varieties of CM are bound together by their strict notion and interpretation of 

lSee Appendix A. 

2Beeson in [3] also gives a thorough exposition of the various varieties of eM. 
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mathematical existence. Accordingly, when you prove that an object exists in eM, 

you have to show how to find, or at least how to approximate, it. In CLASS, one 

can easily get away with it by showing that a contradiction can arise when assuming 

nonexistence. Generally, to prove in CLASS that x exists, it is enough to show that 

-,x implies a contradiction. 

Perhaps the most famous example of th'is classical approach to mathematical 

existence is Hilbert's existential proof of his famous Basis Theorem, where he es-

tablished the existence of the basis by means of an indirect (contradiction) proof. 

His proof disappointed a number of mathematicians as they were expecting a proof 

which provided enough information from which one could actually construct the 

desired basis. 

In CM, then, 

existence means constructibility. 

With this notion of mathematical existence in mind, one can easily see that to write a 

proof in CM is analogous to coding a computer program in some specified language. 

From a philosophical point of view, the treatment of existence in CM is realistic in 

the sense that existence is synonymous with constructibility / computability. 

An interesting point about conceptual and constructive proofs has been made 

by Goodman (and others): 

It is interesting to see that conceptual clarity and constructivity both lead 

to their own characteristic kinds of increased generality. A conceptual 

proof will often show that the hypothesis of the theorem can be weakened) 

and that therefore the theorem is true about more structures than we 

thought at first. A constructive prooh on the other hand) uses weaker 

logical and existential assumptions) and therefore may show that the the­

orem is true in more frameworks than we thought at first. ([41, page 

138]) 
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We end this section with a brief discussion of the Russian school of construc-

tivism (RUSS) initiated by Andrei Andreyevich Markov (1903-1979) during the 

period 1948-1949. The program of the Russian school can be seen as a recursive-

function-theoretic approach to mathematics: in essence, RUSS is recursive construc-

tive mathematics. The notion of Markov algorith'Tf1'-equivalent to that of a partial 

recursive function-provides the basic tool for the mathematical practice of RUSS. 

Its practitioners operate with a fixed programming language, and believe that a 

mathematical object exists if it can be produced by a Markov algorithm. Among 

the various varieties of constructive mathematics, RUSS is unique because it accepts 

"Ix E R(.(x::; 0) =} x > 0), 

a principle which is named after Markov. In section 1.5, we will see that this principle 

is considered dubious, even essentially nonconstructive, by most mathematicians 

from other schools of CM. 

1.3 Bishop's mathematics 

Modern CM started when Bishop's monograph Foundations of Constructive Anal­

ysis [5] appeared in 1967. This book brought about a different meaning to how we 

understand, appreciate, and look at mathematics both in CLASS and CM. Bishop 

single-handedly developed analysis in a fashion suitably approachable by anyone 

who is familiar with classical analysis. One is not required to understand Bromr~~:fI~~ 

intuitionism when reading Bishop Js mathematics (BISH). Bishop did not commit to 

any of the special principles of INT or to the recursive framework of RUSS: he devel-

oped his mathematics based on a primitive, unspecified notion of algorithm and the 

Peano properties of the natural numbers, and adhered to the strict interpretation 

of 'existence' as 'computability'. 

In [7], Bishop addressed the requirement of 'computability' as the 
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Fundamental Constructivist Thesis: Every (representation of) an 

integer can be converted in principle to decimal form by) a finite) purely 

routine) process. 

We take note of the careful usage of the phrase 'in principle' in the preceding quote. 

This also points to the fact that the efficiency or complexity of the 'finite ... routine', . 
or algorithm, is not part of the issue. The important point is our being able to 

produce a finite routine at least in principle. Of course, in a practical situation a 

computer programmer values the efficiency of an algorithm, but that is a different 

matter. The only thing that matters to Bishop is to be able to perform the com-

putation in principle; in particular, he must know in advance that the computation 

will terminate, meeting its specification, at some stage. 

Bishop showed by example that we can do mathematics constructively without 

distorting the spirit of analysis that an ordinary working mathematician of CLASS 

is accustomed to. As Richman writes: 

Bishop showed that one could adopt a thoroughgoing point of view and 

still do mathematics as it is usually understood. He did this by appropri­

ating standard mathematical symbolism to carry constructive meaning) 

rather than introducing a specialized notation) and by developing large 

areas of rather sophisticated mathematics in a constructive manner. His 

book can be appreciated by mathematicians unfamiliar with logic or recur­

sive function theory) and avoids the more bizarre intuitionistic notions 

of choice sequence and bar induction. ([57, page 385]) 

There are several reasons why BISH may be preferable among varieties of CM, 

but we single out perhaps the most important one: BISH is compatible with CLASS, 

INT, and RUSS. A theorem in BISH is automatically a theorem in INT, RUSS, and 

CLASS, which can be regarded as models of BISH whose common core is BISH 

itself. This BISH has a remarkable richness of multiple interpretability. 

We end this section with some remarks of Bishop concerning INT and RUSS. In 

his view: 
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Many mathematicians regard the theory of computation as a branch of 

recursive function theory. It is true that many constructivists) for in­

stance the school of Markov in Russia) are recursivists. Brouwer) of 

course was not. The recursive constructivists seem to be motivated by 

the desire to avoid such vague terms as ilrule )) and ((set)). Their math­

ematics is forbiddingly involved and laborious) a great price to pay for 

the precision they hope to attain ... .In. my opinion) the positive contri­

butions of recursive function theory to both constructive mathematics 

and the more concrete aspects of the theory of computation are the con­

struction of counterexamples) but here again' impressions are somewhat 

misleading. The methods of Brouwer) now largely neglected) are more 

suitable for providing counterexamples in most cases of interest than are 

the methods of recursive function theory. ([8, page 514]) 

He went on to comment that: 

The movement he [Brouwer] founded has long been dead) killed partly by 

compromises of Brouwer)s disciples with the viewpoint of idealism) partly 

by extraneous peculiarities of Brouwer)s system which made it vague and 

even ridiculous to practicing mathematicians) but chiefly by the failure 

of Brouwer and his followers to convince the mathematical public that 

abandonment of the idealistic viewpoint would not sterilize or cripple the 

development of mathematics. Brouwer and other constructivists were 

much more successful in their criticisms of classical mathematics than 

in their efforts to replace it with something better. ([5, page ix]) 

Brouwer was deeply engaged in foundational debates about mathematics and the 

creativity of the human mind. For him, mathematics only dealt with the objects 

that were given meaning by his philosophy of intuitionism. On the other hand, a 

practitioner of BISH finds that mathematics can be carried out with intuitionistic 

logic on any reasonably defined mathematical objects, not just some class of so-

called constructive objects. 
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1.4 Interpreting the connectives and quantifiers 

Since we will be doing mathematics based on intuitionistic logic, it is worth recalling 

the standard constructive interpretations of the logical quantifiers and connectives. 

It will become clear that some, if not most, of these constructive interpretations are 

very different from their classical interpretations.· 

In the following, P and Q are any given statements. 

• 1\ (and) To prove P 1\ Q, we must have a proof of P and a proof of Q. 

• V (or) To prove P V Q, we must have either a proof of P or a proof of Q. 

• =? (implies) To prove P =? Q means there is an algorithm that transforms a 

proof of P into a proof of Q. 

• -, (not) To prove -, P, we must show that P implies a contradiction (such as 

0=1). 

• ::J (there exists) To prove ::J aP(a), we must compute a and demonstrate that 

P(a) holds. 

• \;j (for all) A proof of \;j a E AP(a) is an algorithm that, applied to each element 

a of A and to the data showing that a belongs to A, proves that P( a) holds. 

As we mentioned earlier, these constructive interpretations enabled Heyting to pro­

duce a complete list of the axioms of intuitionistic logic. In the next section, we 

shall see the impact of intuitionistic logic, which leads to the rejection of some trivial 

principles of classical mathematics and classical logic. 

The interpretation of P 1\ Q is similar to the classical treatment. Classically, to 

prove P V Q it suffices to establish -, ( -,p 1\ -,Q); but proving the latter is not enough 

to prove the former in CM. Why? Generally, in CM it is not possible to decide, 

from a proof of -,( -,P 1\ -,Q), which of the alternatives P, Q holds. The constructive 
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interpretation of V is well tied to the notion of decidability in CM; one of the main 

features of CM is being able to make decision and the constructive interpretation 

of V captures it all. 

Finally, to prove :3 x E A P(x) in CLASS, it suffices to show that ,V x,P(x); 

classical existence is equivalent to the impossibilit:y of nonexistence. In CM to prove 

:3x E AP(x) we must construct an object ~ (at least in principle), show that ~ 

satisfies the conditions for membership of A, and then show that P(~) holds. 

1.5 Common sources of nonconstructivity 

In this section, we discuss some of the common principles that bear the seeds of 

nonconstructivity in mathematics. Most of these principles are classically trivial. 

We will give some well known examples demonstrating how untrustworthy they are 

in CM. Upon rejecting these principles, it follows that any statement proved to be 

equivalent to, or implying, any of them is regarded as essentially nonconstructive. 

The first principle is the 

Law of Excluded Middle (LEM): For any given statement P, either P is true 

or P is false. 

Bearing in mind the constructive interpretation of logic discussed in section 1.4, we 

see that the rejection of LEM is closely connected with the fact that the property 

VnP(n) V ,VnP(n) 

need not hold in CM even when P(n) is a decidable property of natural numbers 

n. Much of the reasoning we normally encounter in CLASS is based on LENI. 

Applications of LEM make life easier, especially in the case of existential proofs. 

Consider the theorem: 

There exist irrational numbers rand s such that rS is rational. 
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Following a simple argument given by Bishop in [7, page 6], consider the real number 

J2v'2. By virtue of LEM, either J2v'2 is rational or J2v'2 is irrational. In the former 

case, if J2v'2 is rational, then simply take r = s = J2 and we are done. In the 

latter case, if J2v'2 is irrational, then take r = J2v'2 and s = J2. Then rand s are 

irrational and r S = J2v'2'v'2 = 2 which is rational.. A closer look at this proof shows 

that under LEM we have proved there are numbers rand s satisfying the claim but 

there is no hint at all on how to actually finding the two numbers! 

A binary sequence is a finite routine that assigns to each positive integer 

an element of {O, I}. The next three principles deal with such sequences and are 

classically trivial and special cases of LEM. 

Limited Principle of Omniscience (LPO): If (an) is a binary sequence, then 

either an = 0 for all n or else there exists n such that an = 1. 

Weak LPO (WLPO): For any binary sequence (an), either an = 0 for each n, 

or else it is impossible that an = 0 for each n. 

Lesser LPO (LLPO): If (an) is a binary sequence containing at most one term 

equal to 1, then either a2n = 0 for each n, or else a2n+1 = 0 for each n. 

It appears that Brouwer was responsible for first drawing attention to the noncon-

structive nature of LPO and LLPO ([67, page 6]) though under different names; we 

have chosen to use the names given by Bishop ([9, page 22]). None of these three 

omniscience principles can be derived within Heyting arithmetic, and each is false, 

even classically, in recursive mathematics ([30, Chapters 1,3,7]). 

The following, due to Richman ([59, page 135, Section 3]), is a succession of ever 

weaker omniscience principles, LLPO being the special case N = 2. 

LLPON (N = 2,3, ... ): If (an)~=o is a binary sequence with at most one term 

equal to 1, then there exists j, where 0 ~ j ~ N - 1, such that akN+j = 0 for 

all k. 
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For illustration, suppose that we can prove LPO constructively. Then, applying 

it to the binary sequence (an) defined by 

if 2k is a sum of two primes for 2 ~ k :::; n + 1, 

otherwise, 

we can either prove the Goldbach Conjecture-every even integer greater than 2 is 

a sum of two primes-or else find an even integer greater than 2 that is not a sum 

of two primes. 

It is well known that each of the following statements is equivalent to LPO. 

• \;j x E R (x = 0 V x =I- 0). 

• Law of Trichotomy: \;j x E R (x < 0 V x = 0 V x > 0). 

• Least-upper-bound Principle: Each nonempty subset of R that is bound­

ed away has a least upper bound. 

• Every real number is either rational or irrational. 

Similarly, each of the following is equivalent to LLPO. 

• \;j x E R(x =2: 0 V x ~ 0). 

• If x, Y E Rand xy = 0, then x = 0 or y = o. 

• Intermediate Value Theorem: If 1 : [O,lJ -7 R is a continuous function 

with 1(0) < 0 < 1(1), then there exists x E (0,1) such that 1(x) = 0 . 

Another, more controversial, omniscience principle is 

Markov's Principle (MP): If (an) is a binary sequence for which it is contra­

dictory that all terms be 0, then there exists n such that an = l. 
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Though accepted and freely used in RUSS, MP is considered a form of unbounded 

search and is considered highly nonconstructive in both INT and BISH. 

CM is often identified, wrongly, with its rejection of the full-blooded 

Axiom of Choice (AC): If A, B are sets, and S is a nonempty subset of Ax B 

such that for each a E A there exists b. E B· with (a, b) E S, then there exists 

a function f : A -+ B (called the choice function) such that (a, f ( a)) E S for 

all a E A. 

From its introduction by Zermelo in 1908, AC was regarded with unease by many 

mathematicians; it was rejected outright by the intuitionists. Much later, in 1978, 

Goodman and Myhill in [43] showed that AC implies LEM. So AC cannot be used 

in any coherent constructive mathematics. However, most mathematicians in CM 

use the Principle of Countable Choice-the special case of AC in which A is 

the set N of natural numbers-and the Principle of Dependent Choice: 

If ao E A, and if for each a E A there exists at E A such that P (a, at), 

then there exists a mapping f : N -+ A such that f (0) = ao and 

P (f(n), fen + 1)) for each n E N. 

A final comment: working in CM means working with fewer axioms and principles. 

This is not the case with CLASS. The rejection of many classically innocent, trivial 

principles brings extra challenge in CM. This does not mean that CM is an attempt 

to replace everything in CLASS but one can view CM as some sort of mathematical 

revival where numerical meaning and computation are highlighted and considered 

part of one's main focus. In the preface to his book [5, page x], Bishop wrote: 

We are not contending that idealistic mathematics is worthless from the 

constructive point of view. This would be as silly as contending that 

unrigorous mathematics is worthless from the classical point of view. 

Every theorem proved with idealistic methods presents a challenge: to 

find a constructive version, and to give it a constructive proof 
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1.6 Examples 

A useful method for establishing the nonconstructivity of a given proposition P 

in CM is by means of examples in which we show that P entails, or is equivalent 

to, some highly nonconstructive principle. Such Brouwerian counterexamples 

serve as a good measure of what to expect and what we can hope for in CM. Further 

discussion of the role of Brouwerian counterexamples in CM can be found in [30, 

page 3]. 

Our first example is from the real number line. We show that the statement 

Every real number is either rational or irrational. 

entails LPO. 

Brouwerian Example 1.6.1 Let (an):=o be an increasing binary sequence, and 

define a real number by 

_ ~l-an 
x-6 I' 

n=O n. 

Suppose that either x is rational or x is irrational. Ifx is rational, then Ix - el > 0, 

so there exists N such that 

~ (~ _ 1 - an) O. 
6 I I >, 
n=O n. n. 

whence an = 1 for some n ::::; N. If x is irrational, then, clearly, an = 0 for all n. 

That is, either an = 1 for some n or an = 0 for all n which is LPO. / / / 

Later, in Chapter 2, we shall investigate the convexity of the numerical range 

vV(T) = {(Tx, x) : x E H, Ilxll = I} 

of a bounded linear operator T on a Hilbert space H. Our next example shows that 

the statement 
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The numerical range of a selfadjoint operator on a 2-dimensional complex 

Hilbert space is convex. 

implies LLP03 . First we need a lemma. 

Lemma 1.6.2 If A, fJ, are complex numbers satisfying the equations 

4 Re (AfJ,*) + 21fJ,1
2 I, 

IAI2 + 1fJ,1
2 -. I, 

then IAI ~ 1/5 and 1fJ,1 ~ 1/5. 

Proof. If 1fJ,1 < 1/5, then 14Re (AfJ,*) I < 4/5 and so 

a contradiction; whence 1fJ,1 ~ 1/5. 

On the other hand, if IAI < 1/5, then 14 Re (AfJ,*) I < 4/5 and so 

4 Re (AfJ,*) + 21fJ,12 > 2 (1 _ IAI2) - ~ 
. 5 

> 2 (24) _ ~ 
25 5 

> I, 

a contradiction. Hence IAI ~ 1/5. Q.E.D. 

We now return to our Brouwerian counterexample. 

Brouwerian Example 1.6.3 Let H be a 2-dimensional complex Hilbert space, x 

and y unit vectors in H, and (an) a binary sequence with at most one term equal 

to 1. Define 
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and define a selfadjoint operator T on H by 

Ty - (t, a3ni ~ + t, a3nHi nE + t, asn+2nE) x, 

Tx = Ex + ( - t, a3ni E - t, aSnHi n~ + t, asn+2nE) y. 

For a unit vector z = AY + fJ,X the equation . 

1 1 1 
(Tz, z) = 2(Tx, x) + 2 (Ty., y) = 2~ (1.1) 

reduces to 

If a3N +1 = 1, we must solve the equations 

21fJ,1 2 
- 4N 1m (AfJ,*) 1, 

IAI2 + 1fJ,12 - 1. 

We then have 

If a3N+2 = 1, we must solve the equations 

21fJ,1 2 + 4N Re (AfJ,*) 1, 

IAI2 + 1fJ,1 2 1. 

In this case, we have 

1 1 21 3 IRe (AfJ,*) I = 4N 1 - 21fJ,1 :s; 4N' 

If a3N = 1, we must solve the equations 

21fJ,1 2 
- 4Im (AfJ,*) 1, 

IAI2 + 1fJ,1 2 - 1. 
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In this case we must have IAI ;:::: 1/5 and IfLl ;:::: 1/5, by Lemma 1.6.2 (applied with 

A replaced by - iA) . 

N ow suppose that we have found a unit vector z = AY + fLX satisfying equation 

(1.1). Either IAfL*1 < 1/25 or AfL* -=I O. In the first case we see from the foregoing 

arguments that an = 0 for each n. In the sec(~md case either Re (AfL*) -=I 0 or 

1m (AfL*) -=I O. To handle the first of these alternatives, we choose l/ such that 

iv < IRe (AfL*)I· If a3n+1 = 1 for some n > l/, then IRe (AfL*) I ::; 4~ < iv' a 

contradiction. It follows that if a3n+1 = 0 for all n ::; l/, then a3n+1 = 0 for all n. 

Hence 

'in (a3n = 0) V 'in (a3n+1 = 0) V 'in (a3n+2 = 0). (1.2) 

Finally, assuming that 1m (AfL*) = 0, and choosing a positive integer l/ such that 

11m (AfL*) I > 4
3
v we see that if a3n+2 = 0 for all n ::; l/, then a3n+2 = 0 for all n; 

whence statement (1.2) holds in this case also. This completes the proof that the 

statement about convexity of the numerical range of T implies LLP03 . / / / 

Now let B be a commutative Banach algebra, and B' its dual. A character of 

B is a bounded homomorphism of B onto C, and that the character space (or 

spectrum) of B is the set 

~B = {u E B': u(e) = 1,u(xy) = u(x)u(y) for all X,y E B}. 

Following [10, page 452] and [21, pages 150-151], our next example shows that the 

statement 

The spectrum of every separable commutative unital Banach algebra is 

compact. 

implies WLPO. 
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Brouwerian Example 1.6.4 Let (an)~=o be an increasing binary sequence. Let 

B be the algebra consisting of all sequences x = (xn)~=o of complex numbers for 

which 
00 

Ilxll = L (1 - an) IXnl (1.3) 
n=O 

exists. We define the elements x and y = (Yn)~o to be equal if Ilx - yll = O. Then 

B is a Banach space equipped with norm given by (1.3). Moreover, if we define the 

product of any two elements x and y of B by 

xy = (t XiYn-i) 00 , 

~=o n=O 

then B is a Banach algebra with identity e = (1,0,0, ... ). Let 

If an = 1 for some n, then the character space ~B of B consists of the single element 

X f---+ Xo. On the other hand, if an = 0 for all n, then to each complex number ~ 

with I~I :s; 1 there corresponds an element u~ of ~B defined by 
00 

n=O 

Suppose ~B is compact. Since the mapping u f---+ lu(z)1 is uniformly continuous 

relative to the weak* topology on the unit ball of B' it maps ~B to a totally bounded 

subset of R; whence 

R = sup {lu(z)1 : u E ~B} 

exists. Either R > 1 or R < 2. In the first case, we have an = 0 for all n. In the 

second case, we cannot have an = 0 for all n. / / / 

1.7 Short guide to the Thesis 

The analysis in the rest of this thesis is carried out within the framework of Bishop's 

constructive mathematics. Following this introductory chapter, there are four ad-
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ditional chapters, two appendices, list of references, table of symbols, and an index 

for quick referencing. Throughout the thesis, we have tried to adopt most of the 

commonly used standard symbols of classical functional analysis. 

Familiarity with standard classical Hilbert space theory is assumed throughout 

the whole of Chapter 2. Similarly, we assume fam)liarity with both standard (clas­

sical and constructive) Banach algebra theory in Chapters 3, 4, and 5. 

Chapter 2 deals with an in-depth constructive analysis of a classical proof of the 

Toeplitz-Hausdorff Theorem. 

Some of the standard notions in constructive Banach algebra theory which we 

need in the rest of the thesis are provided in Chapter 3. The highlight of the chapter 

is a constructive proof the Spectral Mapping Theorem. 

In Chapter 4 we investigate the question of whether the square of a Hermi­

tian element of a Banach algebra is Hermitian or not. Positive elements are also 

discussed. 

Chapter 5 shows that, although we cannot necessarily construct elements of the 

numerical range of a Banach algebra, we can work successfully with approximations 

to the numerical range. A consequence of the approximation process is a constructive 

proof of Sinclair's Theorem. 



Chapter 2 

Convexity of the Numerical Range 

2.1 Introduction 

Recall that the numerical range of an operator T on a Hilbert space H is the subset 

of the complex numbers given by 

W(T) = {(Tx,x) : x E H, Ilxll = 1}. 

The classical Toeplitz-Hausdorff Theorem says that: 

If T is an operator on a Hilbert space, such that the adjoint T* exists, 

then W(T) is a convex subset of C. 

Several proofs of this theorem are considered 'computational' ([46, pages 317-318]), 

but in fact none seems to fit the formal concept of being computational in eM. The 

main aim of this chapter is to find conditions which ensure constructively that VV (T) 

is convex. The following analysis is motivated by and based on the Halmos-de Boor 

proof on pages 317-318 of [46]. The final products are Theorems 2.4.3 and 2.4.5 

which we show, by means of Brouwerian examples, to be the best we can hope for 

in a constructive setting. 
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The proof of our main result, Theorem 2.4.3, depends on our ability to decide 

that if -1 :S a :S I, 0 :S c:S I, and b E R, then the quadratic equation 

(2c(1 - a) + 2b - 1) t 2 
- 2 (c(l - a) + b) t + c = 0, 

has a root in [0,1]. For convenience, we write 

a - c(l - a) + b, 

Pc(t) (2a - 1)t2 
- 2'at + c, 

so that equation (2.1) is just Pc(t) = O. The quadratic formula gives 

L -
a - va2 - 2ac + c 

2a-1 
a + va2 - 2ac + c 

t+ = 2a -1 

as standard solutions to equation (2.1) in the case 2a - 1 -=I O. 

2.2 Analysis of the Halmos-de Boor proof 

(2.1) 

We now take a closer look at the classical Halmos-de Boor proof of the Toeplitz­

Hausdorff theorem. This proof proceeds as follows. 

Let x and y be unit vectors in H, and write 

~ = (Tx, x) and TJ = (Ty, y) . 

We must show that the line segment, t~ + (1 - t)TJ (0 :S t :S I), joining ~ and TJ 

lies entirely inside W(T). To this end, the proof is split into a number of steps as 

follows. 

(i) The problem is trivial when ~ = TJ. Assuming that ~ -=I TJ, reduce to the case 

where ~ = 1 and TJ = O. 
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(ii) Writing T = A + iE, where A = ~ (T + T*) and E = 2\ (T - T*), further 

reduce to the case where 

(Ex, x) = 0 = (Ey, y) and Re (Ex, y) = O. 

(iii) Writing 

h(t) = tx + (1 - t)y (0 :S t :S I), 

observe that h(t) never vanishes since the vectors x and yare linearly inde-

pendent. 

(iv) Expanding (Eh(t), h(t)), show that (Th(t), h(t)) is real for every t E [0,1]. 

Hence the function 

t 1-+ -,-(T_h-,-,-( t )_, h~( t..:...:....) ) 
IIh(t) 112 

is real-valued and continuous on [0,1]. Since its values at 0 and 1 are, respec-

tively, 0 and I, we conclude from the Intermediate Value Theorem that the 

range of this function is [0,1]. 

A closer look at the foregoing steps reveals the following motivation for our 

constructive analysis in the sequel. 

~ In Step (i), we cannot hope constructively to be able to make the decision 

that for any two complex numbers ~ and TI, either ~ = TI or ~ i= TI· 

~ The problem with Step (ii) occurs where a certain complex number z is multi­

plied by a complex number /\ of unit modulus to obtain Re (AZ) = 0; perhaps 

surprisingly, this cannot be done constructively for a general Z E C. 

~ In Step (iii) we need to prove, for each t E [0,1]' not just that -, (h(t) = 0) 

but that h(t) i= 0 in the stronger sense that Ilh(t) II > 0; note that this sense 

is stronger unless we are prepared to accept the constructively dubious MP. 
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~ The biggest problem occurs in Step (iv) with the application of the Interme-

diate Value Theorem: the best conclusion we have, constructively, using the 

Halmos-de Boor argument as it stands, is that the range of the mapping 

t f----+ (Th(t), h(t)) 

Ilh(t)ll2 

is dense in [0, 1], which only enables us to assert that the closure ofthe segment 

joining (Tx, x) and (Ty, y) lies in vV(T). For the conclusion of the classical 

Intermediate Value Theorem to hold constructively, the continuous function 

must satisfy one of a number of additional hypotheses, one of which is that 

the function be a polynomial. 

Proposition 2.2.1 If f : [0,1] -+ R is a polynomial function such that f(O) < ° 
and f(l) > 0, then there exists x E [0,1] such that f(x) = 0. ([10, page 63, Problem 

17]). 

2.3 Finding a root of Pc(t) 

The main emphasis of this section is on the process of locating a root of 

Pc(t) = (2a - 1)t2 
- 2at + c 

in [0, 1]. A typical situation that we have to deal with below is one in which, for 

a certain parametrised family (Px) x2:0 of polynomials, we know that the equation 

Px (t) has a root if either x > ° or x = 0. Since we cannot assume that for any x 2. ° 
either x > ° or x = 0, we compute a Cauchy sequence1 of approximate solutions to 

the equation Px(t) = 0, the limit of which is an exact solution. 

IThe construction of the Cauchy sequence depends on the constructively valid proposition: if 

a and b are any real numbers with a < b, then for each real number x, either x > a or x < b 

([16, page 48, (4.9)(v)]). This technique is commonly used in CM, and is illustrated in the proof 

of Lemma 2.3.1. 
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Lemma 2.3.1 Let I = [0,1]' and let (fe)eEI be a family of mappings of I into R 

such that 10(0) = O. Suppose that there exist strictly decreasing sequences (On):;=l 

and (en):;=l in (0,1) converging to 0, such that if 0 < x ::; On, then Ix(t) = 0 for 

some t E [0, en]. Then for each c E [0,01) there exists tEl such that le(t) = O. 

Proof. Given c E [0,01), construct an incre,asing'binary sequence (An) such that 

An = 0 =? c < On+1, 

An = 1 =? c > On+2. 

Without loss of generality, we may assume that A1 = O. If An = 0, choose tn E 

[0, en +1] such that ion+! (tn) = O. If An = 1- An-1' then On+2 < c < On, and so there 

exists tn E [0, en] such that Ie (tn) = 0; in this case we set tk = tn for all k 2: n. 

Then (tn) is a Cauchy sequence in [0,1]; in fact, Itm - tnl ::; 2en for all n 2: 2. Hence 

(tn) converges to a limit teo E [0, e1] C I. If Ie (teo) =1= 0, then An = 0 for all n; so 

c = 0 = teo and therefore Ie (teo) = 10(0) = 0, a contradiction. Hence, we conclude 

that Ie (teo) = O. Q.E.D. 

At first glance, the next lemma seems trivial; but in fact that is not the case. 

If p(x) is a monic quadratic polynomial with roots t1 and t2 given by the standard 

quadratic formula, then max{tl, t2} and min {t1' t2} are also solutions to p(x) = O. 

The problem here is that we may be unable to decide whether max {t1' t2} = t1 or 

max {t1' t2 } = t2 . 

Lemma 2.3.2 Let p(x) be a monic quadratic polynomial with real roots t1 and t2 

given by the standard quadratic formula. Then It I ::; max {lt11 , It2 1} for any real 

root t of p. 

Proof. Write p(x) = x2 + (3x + "/. Let t be a root of p, so that 

p(x) = (x - t) (x - tf) 
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where -/3 = t + t' and I = tt'. Suppose that It I > max {Itll ,lt21}. Then since 

we have 

whence it'l < max {Itll , It21}. It follows that p( x) has three distinct roots: namely, 

t, t', and at least one of tl and t2 . This is absurd. Hence It I :::; max{ltll, It21}. 

Q.E.D. 

Lemma 2.3.3 For each c > 0 there exists 0 > 0 such that if -1 :::; a < 1, Ibl < 0, 

0:::; c < 0, and t is a real root of equation (2.1), then It I < c. 

Proof. Recall that a = c(l - a) + b. If 0 < 0 < 1, Ibl < 0, and 0 :::; c < 0, then 

and therefore 

lal < 0(1 - a) + 0:::; 30 

la2 - 2ac + cl < lal 2 + 21alc + c 

< 902 + 602 + 0 

< 160. 

Furthermore, if 0 < 0 < 1/12, then 

1 
12a - 11 2 1 - 21al > 2' 

and so the solutions Land t+ of the quadratic equation (2.1) satisfy 

max {IL I, It+l} :::; 2 (Ial + la2 - 2ac + ci) < 2 (30 + 160) = 380. 

Applying Lemma 2.3.2, we see that It I < 380 for every real root t of equation (2.1). 

Given c > 0, we now need only take 0 = min {1/12, c/38}. Q.E.D. 
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Lemma 2.3.4 Let -1 < a < 1 and b < 0 < c < 1/4. If ibi > 3c/2, then 

O<L<l. 

Proof. We first note that 

that 

and that 

Since 

3 
2a - 1 = 2c(1 - a) + 2b - 1 < 4c.- 3c - 1 < -4' 

a - c = c(l- a) + b - c = -ac + b < c + b < 0, 

2a - c = 2c(1 - a) + 2b - c < -3c + 4c - c = O. 

it follows that va2 - 2ac + c is real, that 

a - va2 - 2ac + c :S a - (c - a) = 2a - c, 

and therefore that 

a - va2 - 2ac + c 2a - c 
L = > > O. 

2a -1 - 2a-1 

On the other hand, since 0 :S c:S 1/4 and 2a - 1 < 0, 

0 < a 2 
- 2ac+ c 

- a
2 

- 2c (a -~) 
< a

2 
- ~ (a -~) 

- (a-D' 
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and therefore 

Hence 

2a- 1 . 
L < ,2 

2a -1 

and therefore L < 1. Q.E.D. 

Lemma 2.3.5 If -1 ::; a ::; 1, b > 0, and 0 ::; c < 1, then Pc(t) = 0 for some 

t E [0,1). 

Proof. Since b is positive, so as a. Then for every c E (0, I), 

Pc (c1
/
2

) = (2a -1) c - 2ac1
/

2 + c = 2a (c - C
1

/
2

) < O. 

But Pc(O) = c > 0; so by Proposition 2.2.1, there exists t E (0, C
1

/
2

) with Pc(t) = O. 

We now apply Lemma 2.3.1 to show that for every c E [0,1) there exists t E [0,1) 

such that Pc(t) = O. Q.E.D. 

Proposition 2.3.6 Let -1 ::; a ::; 1, b E R, and 0 ::; c ::; 1. Then Pc(t) = 0 for 

some tin [0,1]. 

Proof. Given c E [0,1]' since Pc(O) = c and Pc(l) = c -I, we see from Proposition 

2.2.1 that if 0 < c < I, then there exists t E (0,1) such that Pc(t) = O. Clearly, 

Pc(t) = 0 has a solution t E [0,1] if c = 0 or c = 1. But what if, as can happen in 

the constructive context, c is close to, but not necessarily distinguishable from, one 

of the numbers O,I? We consider only the case where 0 ::; c < I, as the other case, 

o < c ::; 1 is handled similarly. 

In light of Lemmas 2.3.4 and 2.3.5, we need only deal with what happens when 

b is also near O. To this end we use Lemma 2.3.3 to construct a decreasing sequence 

(0)~=1 of positive numbers converging to 0, with 01 < 1/4, such that if Ibl < On and 
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o :::; c < 6n , then It I < lin for every solution t of equation (2.1). Given c E [0,1), 

define an increasing binary sequence (An) such that 

Without loss of generality, we may assume that Al = O. If An = 0, set tn = O. If 

An = 1 - An-I, then we have three cases to deal ~ith. In the first case, b < -6n+1 

and so, by Lemma 2.3.4, there exists tn E (0,1) such that Pc (tn) = 0; in the second 

case, b> 6n+1 and so, by Lemma 2.3.5, there exists tn E [0,1) such that Pc (tn) = 0; 

in the third case, c > 6n +2 and so, by the observation at the start of this proof, 

there exists a solution tn of equation (2.1) in (0,1). In each of these three cases, we 

set tk = tn for all k 2': n, an we note that Itnl < n~I' since An-l = 0 and therefore 

max{lbl, c} < 6n-l. This completes the inductive construction of tn. Since Itnl < n~1 

for each n 2': 2, (tn)~=1 is a Cauchy sequence and so converges to a limit too E [0,1]. 

If Pc (too) =1= 0, then An = 1 for all n; whence c = 0 = too and Pc (too) = Po(O) = 0, 

which is absurd. We conclude that Pc (too) = O. Q.E.D. 

2.4 The main results 

We prove in this section our main results, Theorems 2.4.3 and 2.4.5; but first we 

need the following two lemmas. 

Lemma 2.4.1 Let x and y be unit vectors in H, and let 

h(t) = tx + (1 - t)y (O:::;t:::;l). 

If 0:::; t :::; c < 1/2, then Ilh(t)11 > 1- 2c and 

1IIIh(t) 11-
1 h(t) - YII < 1 4c . 

- 2c 
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Proof. We have 

Ilh(t) II > (1 - t) Ilyll - tllxll 

> 1-c:-c: 

- 1- 2c:. 

Since Ilh(t) II ~ 1, it follows that 0 ~ 1 - Ilh(t) II < 2c:; whence 

1IIIh(t) 11-1 h(t) - YII = Ilh(t) 11-1 Iltx + (1 - t) Y - Ilh(t) II yll 
1 

< 1 _ 2c: (tllx - YII + 11 - Ilh(t) III Ilyll) 
1 

< 1 _ 2c: (2c: + 2c:) 

4c: 
-

1- 2c: 
Q.E.D. 

Recall that a mapping f : X --+ Y between metric spaces is sequentially 

continuous if, whenever (xn ) is a sequence converging to x in X, we have f (xn ) --+ 

f(x); and that if f is sequentially continuous and X is complete, then f is strongly 

extensional in the sense that f(x) -1= f(y) implies that x -1= y ([51, Theorem 1]). 

Lemma 2.4.2 Let T be a sequentially continuous operator on a Hilbert space H, 

let x and y be unit vectors in H such that (Tx, x) -1= (Ty, y), and write 

h(t) = tx + (1 - t)y (0 ~ t ~ 1). 

Then h(t) -1= 0 for every t E [0,1]. Moreover, ifT is bounded, then inf Ilh(t)11 > O. 
tE[a,l] 

Proof. Let I be the identity operator on H and replace T by T - (Ty, y) I. We 

may assume that (Ty, y) = o. If 0 < t < 1, then 

(T(l~tX)'l~tX)= (l~t)2 >0= (T(-y),-y); 

As the quadratic form induced by T is sequentially continuous, l~tX -1= -y and 

therefore tx + (1- t)y -1= o. If either 0 ~ t < 1/3 or 2/3 < t ~ 1, then Lemma 2.4.1 
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yields Ilh(t)11 > 1/3. Putting these three possibilities for t together, we conclude 

that h(t) =1= 0 for all t E [0,1]. 

Now consider the case where T is bounded and not just sequentially contin-

uous. Choose 6 > 0 such that if Ilzll :::; 1, Ilz'll :::; 1, and liz - z'll < 6, then 

I (Tz, z) - (Tz', z') I < 1/9. If t E [1/4,3/4], then . 

T --x --x - >-
\ ( 

t ) t) t
2 

1 
1 - t ' 1 - t - (1 - t)2 - 9' 

so as (T( -y), -y) = 0, we have 111~tX + yll 2: <5 and therefore 

<5 
Ilh(t) II 2: (1 - t)<5 2: 4' 

Taking this with the cases 0 :::; t < 1/3 and 2/3 < t :::; 1, we see that Ilh(t) II 2: 

min {1/3, 6/4}. Q.E.D. 

We now prove our first main result. 

Theorem 2.4.3 Let T be a selfadjoint operator on a Hilbert space H, let x, y be 

unit vectors in H such that (Tx, x) =1= (Ty, y), and let 

h(t) = tx + (1 - t)y (O:::;t:::;l). 

The for each c E [0,1] there exists t E [0,1] such that 

(T (1Ih(t) 11-1 h(t)) , Ilh(t) 11-1 h(t)) = c(Tx, x) + (1 - c) (Ty, y). 

Proof. Let x and y be unit vectors in Hand 0 :::; c:::; 1. We need to find t E [0,1] 

such that 

(T (1Ih(t) 11-1 h(t)) , Ilh(t) 11-1 h(t)) = c(Tx, x) + (1 - c)(Ty, y). (2.2) 

Since (Tx, x) =1= (Ty, y), we can find complex numbers A and p such that 

((AT + pI) x, x) = 1 and ((AT + pI) y, y) = 0; 
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in that case 

c=A(c(Tx,x)+(l-c)(Ty,y))+f-l, 

so if there exists t E [0,1] such that 

((AT + f-lI) (1Ih(t) 11-1 h(t)) " (1Ih(t) 11-1 h(t))) = c, 

then equation (2.2) holds. Thus we need only consider the case where 

~ = (Tx, x) = 1 and fl = (Ty, y) = o. 

For convenience, write a = Re (x, y) and b = Re (Tx, y). Using routine computation 

with inner products, we see that 

c = (T (1Ih(t)II-1 h(t)) , Ilh(t)II-1 h(t)) = Ilh(t)II-2 (Th(t), h(t)) 

if and only if Pc(t) = O. It follows from Proposition 2.3.6 that there exists t E 

[0,1] such that c Ilh(t)112 = (Th(t), h(t)). Since T, being selfadjoint, is sequentially 

continuous ([26, Theorem 4]), it follows from this and Lemma 2.4.2 that equation 

(2.2) holds with z = Ilh(t) 11,-1 h(t). Q.E.D. 

Corollary 2.4.4 Let T be a bounded operator with an adjoint T* on a Hilbert 

space H, and x, y unit vectors such that (Tx, x) =F (Ty, y) and (Tx, y) =F (T*x, y). 

Then for each c E [0,1] there exists a unit vector z E H such that 

(Tz, z) = c (Tx, x) + (1 - c) (Ty, y) . 

Proof. Write T = A + iB with A = ~ (T + T*) and B = ~ (T - T*). Then 

(Bx, y) =F 0 so (as on page 22, Step (ii)) there exists a complex number I such that 

iii = 1 and Re (B (rx) ,y) = o. Set 

h'Y(t) = t(rx) + (1 - t)y. 
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Then (as on page 317 of [46]) (Bh,(t), h,(t)) = ° for all t; so (as on page 22, Step 

(iv)) (Th,(t), h,(t)) = (Ah~((t), h,(t)). Also, (Tx, x) = (A (-yx), IX) and (Ty, y) = 

(Ay, V). Applying Theorem 2.4.3 with A replacing T and IX replacing x, for each 

c E [0,1] we obtain t E [0,1] such that 

(T (II h, ( t ) 11-1 h, ( t)) , II h, ( t) 11-1 h, ( t)) = (A (II h~ ( t) 11-1 h, ( t )) , II h, ( t) 11-1 h, ( t) ) 

= c(A(-yx) 'IX) + (1- c) (Ay,y) 

= c (Tx, xJ + (1 - c) (Ty, y) . Q.E.D. 

We now prove the second main result of this chapter. 

Theorem 2.4.5 If T is a bounded operator on a Hilbert space with an adjoint, 

then the closure of VV(T) is convex. 

Proof. Given that c > ° and c E [0, 1], we seek a unit vector z such that 

I(Tz, z) - c(Tx, x) - (1 - c)(Ty, y) I < c. (2.3) 

If I (Tx, x) - (Ty, y) I < c, we may take z = x. Thus we may assume that (Tx, x) =1= 

(Ty, y). 

We first consider the case where T is selfadjoint. Define a function j : [0,1] -7 R 

by 

j(t) = 1 (T (1Ih(t)II- 1 h(t)) , Ilh(t) 11-1 h(t)) - c(Tx, x) - (1 - c) (Ty, y) I· 

Since T is bounded, it is straightforward to show, using Lemma 2.4.2, that j is 

uniformly continuous on [0,1]; so 

m = inf{j(t) : 0::; t ::; 1} 

exists. It follows from Theorem 2.4.3 that if m > 0, then .( (Tx, x) =1= (Ty, y)) and 

therefore (Tx, x) = (Ty, V); whence, trivially, m = 0, a contradiction. We conclude 

that m = 0; whence equation (2.3) holds with z = Ilh(t) 11-1 h(t) for some t E [0,1]. 
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We now consider the general case. Write T = A + iE, where A = ! (T + T*) 

and B = ~ (T - T*) are bounded selfadjoint operators, and let E > O. Noting that 

(Ax, x) = (Tx, x) =1= (Ty, y) = (Ay, y) 

and that A is bounded, we see from Lemma 2.4.2 that 

0< r = inf {llh(t)11 : 0:::; t :::; I}. 

Either Re (Bx, y) =1= 0 or IRe (Ex, y) I < r2E. In the first case we apply Corollary 

2.4.4 to obtain a unit vector z such that equation (2.2), and therefore equation (2.3), 

holds. In the second case we apply the first part of the proof with T replaced by A 

to obtain t E [0,1] such that 

Since 

1 
I(A (1Ih(t)II-1h(t)), Ilh(t)II-1h(t)) - c(Ax,x) + (1- c)(Ay,y)1 < "2E. 

1 
I (B h ( t), h ( t) ) I = 2t (1 - t) IRe (B x, y) I :::; "2 r2 E, 

(Tx, x) = (Ax, x), and (Ty, y) = (Ay, y) it follows that 

I (T (1Ih(t)II-1 h(t)) , Ilh(t) 11-1 h(t)) - c (Tx, x) + (1 - c) (Ty, y) I 

< I (A (1Ih(t) 11-1h(t)) , Ilh(t) 11-1 h(t)) - c (Ax, x) + (1 - c) (Ay, y) I 

+ Ilh(t)II-2 1(Bh(t), h(t))1 

1 1 < -E+r-2 -r2 E 
2 2 

E. 

Since E is arbitrary, the required conclusion follows. Q.E.D. 

2.5 A limiting example 

Having proved our main results we now turn to answering some questions concerning 

the best we can hope for in a constructive context. In particular, is it possible to 
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remove (or at least weaken) some of the hypotheses of Theorems 2.4.37 Perhaps it 

is not necessary and does not bear any great practical value but it is interesting to 

know that under certain reasonable conditions we can remove the hypothesis that 

(Tx, x) =I=- (Ty, y) from Theorem 2.4.3. To show that we can do this, we need a 

lemma that examines the behaviour of the roots of Pc(t) in [0,1] when b is large and 

positive. 

Lemma 2.5.1 For each positive integer n there exists Kn > 0, independent of the 

parameters a and c of PC) such that if b > K n ) then 0 ::; L ::; lin. 

Proof. Noting that 0: 2 b - 2, we see that if b is large and positive, then so are 0: 

and 20: - 1, and also 0:2 
- 20:c + C < 0:2

; whence 

0: - J 0:2 - 20:c + c 0: - 0: 
L = > = O. 

20: -1 20: - 1 

Furthermore, since for such b, 

we have 

0: - (0: - c1/ 2) c1/ 2 1 
L< = < . 

20: - 1 20: - 1 - 2b - 5 

Thus it is enough to set Kn = n!5. Q.E.D. 

Returning to Theorem 2.4.3, we remove the assumption that (Tx, x) =I=- (Ty, y), 

and instead assume that (Tx, y) =I=- (Ty, y) (x, y). For convenience, write 

5 = I(Tx,y) - (Ty,y) (x,y)1 > 0, 

~ = (Tx, x), and 71 = (Ty, y). If necessary replacing T by T - 711, we may assume 

that 71 = O. Fix c E [0,1]. Take Kn as in Lemma 2.5.1, and construct an increasing 

binary sequence (An)~=l such that 

An = 0 =} I~I < K;:15, 

An = 1 =} I~I > K;:~15. 
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If /\2 = 1, then we are back in the case already covered by Theorem 2.4.3; so we 

may assume that A2 = O. If An = 0, set Zn = y. If An = 1 - An-l, then n 2: 3 and 

we can chose, E C such that 1,1 = 1 and 

b = Re (~-l (T (,x) , y)) = I~I-l 0 > Kn. 

Writing h'Y(t) = t (Ix) + (1 - t) y, and applying Lemma 2.5.1 with ~-lT replacing 

T and ,x replacing x, we compute t E [0, lin] such that 

satisfies 

(Tz, z) = c (T (Ix), ,x) = c~. 

Setting Zk = z for all k 2: n, we see from Lemma 2.4.1 that 

and Ilzk - yll < 

vectors in H. 

4 
n-2' 

2 1 
Ilh(t) II > 1 - -;; 2: "3 

This completes the construction of a sequence (zn) of unit 

Since Ilzm - znll :::; n~2 whenever m 2: n 2: 3, (zn) is a Cauchy sequence and 

therefore converges to a unit vector Zoo E H. Suppose that (Tzoo, zoo) i= c( Then 

An = 0 for all n; whence ~ = 0, Zoo = y, and 

(Tzoo, zoo) = (Ty, y) = 0 = c~, 

a contradiction. It follows that c~ = (Tzoo, zoo) E W(T). 

Let us now look at a consequence of the classical Intermediate Value Theorem 

(which, as we noted in Chapter 1, is equivalent to LLPO). Let T be a selfadjoint 

operator on a Hilbert space H, and let x and y be unit vectors in H. Write ~ = 

(Tx, x), a = Re (x, y), b = Re (Tx, y), and 

h(t) = tx + (1 - t)y (O:::;t:::;l). 
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As before, we may assume that (Ty, y) = O. Routine computation with inner 

products shows that 

(T (1Ih(t) 11-1 h(t)) , Ilh(t) 11-1 h(t)) = c(Tx, x) + (1 - c) (Ty, y) (2.4) 

if and only if 

p(t) = (2c(1 - a)~ + 2b -~) t 2 
- (2c(1- a)~ + 2b) t + c~ = O. 

Since p is continuous and 

p(O)p(l) = c(c-1)e:::; 0, 

the classical Intermediate Value Theorem implies that there exists t E [0,1] such 

(2.4) holds. Thus under LLPO we can remove the hypothesis (Tx, x) =j:. (Ty, y) 

from Theorem 2.4.3. 

Studying the proof of Theorem 2.4.5 reveals that the convexity of W(T) can be 

established provided that for any complex numbers z we can compute a complex 

number, with iii = 1 such that Re ,z = O. We can do this with the aid of LLPO 

as follows. Under LLPO, either Re z ;:::: 0 or Re z :::; 0; Thus the continuous function 

f defined on [O,7r] by f(t) = Re (eitz) satisfies f(O)f(7r) :::; O. An application of the 

classical Intermediate Value Theorem shows that there exists 7 E [O,7r] such that 

f(7) = 0; so Re,z = 0 where, = eiT
. 

We have already shown, in Brouwerian Example 1.6.2 of Chapter I, that the 

convexity of the numerical range of a selfadjoint operator on a 2-dimensional Hilbert 

space implies LLP03 and so is essentially nonconstructive. To end the chapter, we 

now show that statement: 

If T is a selfadjoint operator on a 2-dimensional complex Hilbert space 

H, if x, yare unit vectors in H such that c(Tx, x) + (1- c) (Ty, y) belongs 

to vV(T) for each c E [0,1]' and if h(t) = tx + (1- t)y for each t E [0,1]' 
then for each c E [0,1] there exists t E [0,1] such that 

(T (1Ih(t) 11-1h(t)) , Ilh(t) 11-1h(t)) = c(Tx, x) + (1 - c) (Ty, y) 
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implies LLPO. 

Brouwerian Example 2.5.2 Let H be a 2-dimensional Hilbert space, and x, y 

orthogonal unit vectors in H. Given a binary sequence (an)~=l with at most one 

term equal to 1, define 
. 

CXJ 

~ = L a2n +~2n+l. 
n=l n 

With Kn as in Lemma 2.5.1, define a selfadjoint operator T on H by 

Ty ~ (t, a2ne + t, a2n+1Kn<) x, 

Tx ~ <x + (t, a2ne + t, a2n+lKn<) y 

Given c E [0,1]' consider the problem of finding a unit vector z E H such that 

(Tz, z) = c(Tx, x) + c(Ty, y) = c~. (2.5) 

Writing z = >.y + p,x, with 1>'1 2 + 1p,1 2 
= 1, we see that equation (2.5) can be reduced 

to 

which is satisfied by taking>. = vr=c and p, = i vic. Thus c(Tx, x) + (1- c) (Ty, y) 

belongs to vV(T). 

Next, writing b = Re (Tx, y) and taking c = 1/2, we see that equation (2.5) 

becomes 

1 
2bt2 

- (~+ 2b) t + 2'~ = 0, 

which, if ~ =1= 0, can be rewritten as 

2b 2 ( 2b) 1 yt - 1 + Y t + 2' = 0 (2.6) 
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If a2N = 1, then equation (2.6) becomes 

1 
2~t2 - (1 + 2~)t + 2" = 0, 

whose solution in [0, 1] is 

On the other hand, if a2N+1 = 0, then equation (2.6) becomes 

whose only solution in [O,lJ is 

1 + 2Kn - VI + 4K; 
L = 4Kn . 

We proceed with our analysis as follows. First, noting that 

lim 1 + 2~ - VI + 4~2 = lim 1 _ 1 
~-+o+ 4~ ~-+o+ 1 + 2~ + VI + 4~2 2' 

we find r > ° such that if I~I < r, then 

1 + 2~ - VI + 4~2 3 -----'---- > -
4~ - 8' 

Secondly, observing that 

1
. 1 + 2Kn - VI + 4K;. 1 
1m = lun = 0, 

n-+oo 4Kn n-+oo 1 + 2Kn + VI + 4K; 

so we compute a positive integer N such that 

1 + 2Kn - VI + 4K; 1 
4Kn <"8 

for all n 2: N. Now suppose that equation (2.4) has a solution t = T E [0,1]' and 

consider aN. If ak = 1 for some k :::; N, then either an = ° for all even n or else 

an = ° for all odd n; so we may assume that ak = ° for all k :::; N; we may also 
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assume that I~I < r. Either T > 1/8 or T < 3/8. Consider the first case, and 

suppose that a2n+1 = 1 for some n with 2n + 1 > N. Then b = Kn~ =f. 0, so 

1 + 2Kn - )1 + 4K; 1 
T= 4Kn <"8' 

a contradiction; hence ak = 0 for all odd k > N €1nd therefore for all odd k. Now 

consider the case T < 3/8, and suppose that a2n = 1 for some n with 2n > N. Then 

b = e =f. 0, and 

1 + 2~ - )1 + 4~2 3 
t- >-- 4~ - 8' 

since I~I < r; this contradiction ensures that ak = 0 for all even k > N and therefore 

for all even k. / / / 



Chapter 3 

A Spectral Mapping Theorem 

3.1 Introduction 

Recall that a unital Banach algebra B is a complex algebra with a multiplicative 

identity e and a norm 11·11 that satisfy the following conditions: 

• Ilell = 1, 

• B is a Banach space relative to the norm 11·11, 

• Ilxyll :::; Ilxllllyll for all x and y in B. 

Much of the elementary classical theory of Banach algebras carries over virtually 

unchanged into the constructive setting. Nevertheless, there are substantial prob­

lems with even some of the elementary aspects of the theory, such as the compactness 

of the spectrum (see Brouwerian Example 1.6.4 of Chapter 1). Relatively little work 

has been carried out in constructive Banach algebra theory, despite Bishop's insight­

ful and technically demanding developments in [5] and [10], and the recent work of 

Bridges in [18, 19, 21] and Bridges and the author in [25]. 

Before going further, we need to define some terms that will be used frequently. 

Throughout this chapter, we reserve the letter B to denote a unital complex Banach 
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algebra. For each a E B we write 

R( a) = {A E C : a - Ae has two-sided inverse} 

to denote the resolvent set of a, and 

O'(a) = {A E C : VA' E R(a). (A =f. A')} 

for the spectrum of a. 

Our main goal in this chapter is to analyse constructively the classical Spectral 

Mapping Theorem: 

If p is a monic polynomial of degree at least 1, then 0' (p( a)) = p (O'( a)). 

A typical classical proof of this theorem, as in [52, page 82]' relies on the decomposi­

tion of p(z) - A, where A E C, into linear factors, and the observation that p(a) - Ae 

has no inverse if and only if at least one of its corresponding factors has no inverse. 

This type of proof does not work constructively, since we cannot be sure of deciding 

which of the factors has no inverse. 1 In this chapter, guided by the classical proof, 

we prove that p(O'(a)) C 0' (p(a)), provide a constructive substitute for the opposite 

inclusion, and show that our result is the best possible. 

3.2 The inclusion p(a(a)) c a (p(a)) 

Our proof of the first inclusion, p (O'(a)) CO' (p(a)), of the Spectral Mapping Theo-

rem is based on some elementary constructive semigroup theory. 

An inequality on a set X is a binary relation =f. on X with the following 

properties: 

x=f.y =? ,(x=y), 

x =f. Y =? Y =f. x. 
-------------------------

IThis is a simple consequence of the fact that, given two real numbers x and y whose product 

is 0, we may not be able to decide which of x or y equals 0 ([16, page 44]). 
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If also 

\:Ix,yEX(x=y v xi-y), 

we call the inequality discrete. The complement of a subset Y of a set X with 

an inequality is the set 

rvY = {x EX: \:Iy E Y(x i- y)}. 

The standard inequality on a normed space X is given by 

xi- y if and only if Ilx - yll > O. 

In this case the statement xi- y is equivalent to ,(x = y) if and only if we assume 

MP. In the case where X = R, it is shown in [10, page 26, (2.17)] that the standard 

inequality satisfies the special property 

(x i- y) :::} \:Ix E R (x i- z V z i- y) . 

Let S be a semigroup with an identity e and an inequality i-, and let inv(S) be 

the set of invertible elements of S. The inequality on S is said to be quasi-discrete 

if 

\:Ix E S(x i- e V x E inv(S)). 

A discrete inequality on a semigroup S is clearly quasi-discrete. A more inter­

esting example of a quasi-discrete inequality occurs when S is the multiplicative 

semigroup of a Banach algebra B with an identity e. In that case, for each x E B 

. either 0 < lie - xii or lie - xii < 1, so either xi- e or x has a two-sided inverse.· 

We write x ~ S to mean, (x E S). Furthermore, we assume that the operations 

of multiplication on the left and on the right are strongly extensional, in the 

sense that, for example, if ax i- bx, then ai-b. 
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Lemma 3.2.1 Let S be a semigroup with identity e and a quasi-discrete inequality, 

and let a be an element of S such that a ¢: inv( S). Then 

v xES (ax -# eVe E rv Sa) 

and 

Vx E S(xa -# eVe E rvaS). 

Proof. Fix xES. Either ax -# e or ax is invertible. In the latter case, a has right 

inverse x(ax)-l. Moreover, for each s E S, either e -# sa or sa is invertible. The 

second alternative implies that a has left inverse (sa)-ls; whence a has inverses on 

either side and therefore a two-sided inverse, w.hich contradicts the assumption that 

a¢: inv(S). We conclude that if ax is invertible, then e E rvSa. 

The second part of the lemrria is proved similarly. Q. E. D. 

Proposition 3.2.2 If a E rvinv(B), then ax -# e for all x E B. 

Proof. Either ax -# e or lie - axil < 1. In the latter case, we have 

which implies that a is invertible, a contradiction. Q.E.D. 

Proposition 3.2.3 Let S be a semigroup with identity and ,a quasi-discrete in­

equality and, let a be an element of S such that a ¢: inv(S). Then 

as n Sa C rvinv(S). 

Proof. Suppose that a ¢: inv(S) and x E; as n Sa, and consider y E rv inv(S). 

Then there exist b, c E S such that ab = x = ca. By Lemma 3.2.1, either y-1x = 

(y-1c) a i= e and therefore x -# y, or else, as we may assume, e E rvaS. Then 

e -# a (by-l) = (ab)y-l = xy-l, 

and so y = ey -# (xy-l) y = X. Q.E.D. 
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Corollary 3.2.4 If S is a semigroup with identity and a quasi-discrete inequality, 

and a is an element of S such that a t/:. inv(S), then a E rvinv(S). 

Proof. Apply Proposition 3.2.3, noting that a E as n Sa. Q.E.D. 

We are now in a position to prove the first half of the Spectral Mapping Theorem. 

Theorem 3.2.5 Let a be an element of unital Banach algebra, and p a non constant 

polynomial over C. Then p (cr(a)) C cr (p(a)). 

Proof. Let rEp (cr(a)). Then there exists A E cr(a) such that r = p (A). If 

p(z) = Co + ... + cnzn, then 

Note that for each k, 

ak - Ake _ (ak- 1 + ak- 2A + ... + Ak-l)(a - Ae) 

_ (a - Ae)(ak- 1 + ak- 2 A + ... + Ak- 1). 

So p(a) - p (A) E (a - Ae) B n B (a - Ae). Since a':"'- Ae t/:. inv(B), it follows from 

Proposition 3.2.3 that p(a) - p (A) E rvinv(B) and hence that p (A) = r E cr (p(a)). 

Q.E.D. 

3.3 The inclusion a (p(a)) C p(a(a)) 

We now aim to show that the second inclusion of the Spectral Mapping Theorem 

holds constructively under some additional hypotheses on the element a of B. 

We need a digression into subsets of R N. Recall that a subset S of a metric 

space (X, p) is: 

., located if the distance 

p (x, S) = inf {p(x, s) : s E S} 
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exists for each x in X; 

• totally bounded if for each c > 0 there exists a finite c-approximation Y to 

X, in the sense that Y is a subset of X such that for each x in X there exists 

yin Y with p(x, y) < c; 

• locally totally bounded if each bounded subset is contained in a totally 

bounded set in X; 

• compact if it is complete and totally bounded. 

A compact set is locally totally bounded, and a locally totally bounded set is located. 

Hence compact sets are located. Furthermore, any located subset of a locally totally 

bounded set is locally totally bounded ([30, page 33, (4.11)]). 

We write an inequality of the form P (x, S) < r to mean that there exists s E S 

such that p( x, s) < r; in this usage we do not require the distance expression P (x, S) 

to exist as a real number. Likewise, we write 

~ P (x, S) ::; r to mean that p(x, s) < r + c for each r > 0 and each s E S; and 

~ P (x, S) > 0 to mean that there exists r > 0 such that p( x, s) 2': r for each 

s E S. 

vVith these interpretations, we define the metric complement of S in X to be 

X - S = {x EX: p(x, S) > O} . 

For convenience if PI and P2 are distance expressions, we denote their (possibly 

fictitious) supremum by PI V P2. This notation is intended to capture the equality 

{r E R : r > PI V PI} = {r E R : r > PI and r > P2} . 

Let D be a subset of a metric space X. We say that 
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• a subset K of 0 is well contained in 0, written K ceO, if there exists 

f> 0 such that if p(x,K)::::; f, then x E 0; 

• K approximates 0 internally to within c > 0 if K ceO and p (x, aO) < 

c for each x E 0 - K (where, as usual, ao denotes the boundary 0 n ",0 of 

0); 

• 0 is approximated internally by sets of type T if for every c > 0 it can 

be approximated internally by a set of type T; 

• 0 is coherent if 0 = -(",0). 

If 0 is approximated internally by sets of type T, we write Kc to denote a set of 

type T that approximates 0 within c. The most important types we deal with are 

located and compact. 

In order to discuss the second inclusion of the Spectral Mapping Theorem, we 

state, without proof, a number of results from [32]. 

Proposition 3.3.1 Let 0 be a subset ofRN whose interior 0° is the metric com­

plement of a located set L c '" Sl. Then 0 is approximated internally by located 

subsets. 

Proposition 3.3.2 Let 0 be a subset of RN that is approximated internally by 

located subsets. Then ",0° is located, and 0° is coherent. 

A subset K of a Banach space has the boundary crossing property if x E K 

and y E '" K, then for each c > 0 there exists a point z E K whose distance from 

the segment joining x and y is less than c. 

Proposition 3.3.3 A located subset K of a Banach space has the boundary cross­

ing property. 
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Proof. Let x be an element of the Banach space. If K is located, then for each 

c > 0 either p (x, K) > 0 or p (x, K) < c. In the former case, x E -K C r-vK. In 

the latter case, there exists y E K such that p(x, y) < c. It follows that K U -K 

is dense and so as K U r-vK. An application of Proposition 8 of [32] completes the 

proof. Q.E.D. 

Proposition 3.3.4 If D be a coherent subset of a Banach space such that both oD 

and r-v D are located, then D is located. 

Proof. Notice that r-v D U -(r-vD) is dense. The coherence of D means - (rvD) C D, 

so D U r-v D is dense. The conclusion follows from this and Proposition 11 of [32]. 

Q.E.D. 

We now apply the foregoing results of this section to the spectrum and resolvent 

set of an element of our unital Banach algebra. 

Proposition 3.3.5 The following are equivalent conditions on an element a of a 

unital Banach algebra B. 

(i) CT(a) is compact and R(a) is coherent. 

(ii) R(a) is approximated internally by located sets. 

If either, and hence each, of these conditions holds, then a necessary and sufficient 

condition for R( a) to be located is that OCT( a) be located. 

Proof. The equivalence of (i) and (ii) can be established by taking D = R(a) in 

Propositions 3.3.1 and 3.3.2, and note that if CT(a) is located, then, being closed in 

R N , it is compact. Assume (i). Then as CT(a) is located, CT(a) U -CT(a)-that is, 

r-v R(a) UR(a)-is dense in RN. Since oda) = oR(a), an application of Proposition 

3.3.4 shows that R(a) is located if and only if oCT(a) is located. Q.E.D. 
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A border for a compact subset K of C is a totally bounded subset r of K such 

that B (z, p (z, r)) c K for each z E K. The importance of borders for us rests in 

the following result where 

m (f, K) = inf {IJ(z)1 : z E K}. 

Proposition 3.3.6 Let K be a compact subset of C, r be a border for K, and f 

a differentiable function on K such that m(f, r) > m (f, K) = O. Then there exists 

z E K such that J(z) = 0 ([10, page 156, (5.8)]). 

Proposition 3.3.7 Let 0 be an open subset of C such that ",0 and 80 are com­

pact. Then 80 is a border for ",0. 

Proof. Let K = '" 0, fix Zo E K, and write r = p (zo, 80). For each t E [0,1] write 

Zt = tzo + (1 - t)z, 

the line segment joining z and zoo Assume z E 0, and choose 0 > 0 such that 

B(z,30) c 0; then r 2:: 30. An application of Proposition 3.3.3 enables us to 

compute ( E 80 and t E [0,1] such that I( - ztl < O. Since ( E K = K, we have 

Hence I z - Zt I > 20 and therefore 

I Zo - (I < I Zo - Zt I + I ( - Zt I 

I z - Zo I - I Z - Zt I + I ( - Zt I 

< r - 20 +0 

- r-o, 

a contradiction since Izo - (I 2:: p (zo, 80) = r. It follows that --, (z EO). Since 0 is 

open, we conclude that Z E ",0. Q.E.D. 
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Corollary 3.3.8 Let a be an element of a unital Banach algebra B such that cr(a) 

and ocr(a) are compact. Then ocr(a) is a border for cr(a). 

Proof. Take D = R(a) in Proposition 3.3.7. Q.E.D. 

Before we prove the main result of this section, we state the following well known 

results. The first of which is a constructive version of the Fundamental Theorem 

of Algebra ([10, page 156, (5.10)]). 

Theorem 3.3.9 If the polynomial p( z) = aozn + ... + an has degree at least k, then 

there exist complex numbers Zl, ... ,Zk and a polynomial q such that 

p(z) = (z - Zl) ... (z - Zk) q(z) (Z E C). 

The next result is Bishop's Lemma ([10, page 92, (3.8)]), which is trivial in CLASS 

but very useful in constructive analysis. 

Lemma 3.3.10 Let S be a complete, located subset of a metric space X, and 

x EX. Then there exists XES such that if p(x, s) > 0, then p (x, S) > 0 .. 

Now we have our main result. 

Theorem 3.3.11 Let a be an element of a unital Banach algebra B such that 

R( a) is approximated internally by located sets and ocr ( a) is located (and hence 

compact). Let p be a nonconstant monic polynomial over C, and let A be an 

element of cr (p(a)) n rvp (ocr(a)). Then A E P (cr(a)). 

Proof. In light of Proposition 3.3.5, cr(a) is compact and R(a) = -cr(a). By 

Corollary 3.3.8, ocr ( a) is a compact border for cr( a). If the degree of p is n, then, by 

the Fundamental Theorem of Algebra, there exist complex numbers AI, ... ,An such 

that 

(Z E C). 
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For every Z E oo-(a) , since p(z) =1= A, we have Ak =1= z (1 ::; k ::; n). By Bishop's 

Lemma, Ak E C - oO"(a) for each k; whence m (p - A, oO"(a)) > O. On the other 

hand, if 

. 
then for each k, Ak E -O"(a) = R(a) and so CL - Ake is invertible; whence p(a) - Ae 

is invertible, a contradiction. Thus, 

and therefore m (p - A, O"(a)) = O. It now follows from Proposition 3.3.6 that there 

exists ( E O"(a) such that p (() - /\ = O. Hence A E P (O"(a)). Q.E.D. 

The next corollaries follow trivially. 

Corollary 3.3.12 If A E P (oO"(a)), then A E P (O"(a)). 

Corollary 3.3.13 If R(a) is approximated internally by located sets and oO"(a) is 

compact, then A E P (O"( a)) for each A in the dense subset 

0" (p(a)) n (p (oO"(a)) U rvp (oo-(a))) 

of 0" (p(a)). 

3.4 A limiting example 

We end this chapter with an example that our conditions for the inclusion 0" (p( a)) C 

p (0-( a)) are the best we can hope for. 

Brouwerian Example 3.4.1 Let B be a unital Banach algebra containing an ele-

ment a whose resolvent set is the exterior of the closed unit disc D in C and whose 

spectrum is that disc. Let (E [-1/4,1/4]' and define 

p(z) = (z + 1 - ()(z - 1 - () (z E C). 
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Suppose that p(a) is invertible. Then both a - (-1 + () e and a - (1 + () e are 

invertible, so -1 + ( E -D and 1 + ( E -D; this implies that ( < 0 and ( > 0, 

which is absurd. Hence p( a) is not invertible, and therefore -, (0 E R (p( a))). Since 

R(p(a)) is open, we conclude that 0 E rvR(p(a)) = 0" (p(a)). 

Now suppose that p ((0) = 0 for some (0 ED. ,Either (0 > -1/2 or (0 < 1/2. In 

the first case, if (0 =I- 1 + (, then the quadratic equation p(z) = 0 has three distinct 

roots, which is impossible; so 1 + ( = (0 E [-1,1] and therefore ( < O. Similarly, in 

the second case, -1 + (= (0 E [-1,1] and so ( 2: O. Thus the proposition, 

If a is an element of a unital Banach algebra such that R( a) is ap­

proximated internally by located sets and 80"(a) is located (and hence 

compact), and if p is a nonconstant monic polynomial over C, then 

0" (p(a)) C p (O"(a)). 

entails 

v x E R (x 2: 0 V x::; 0) , 

an equivalent of LLPO ([30, pages 4 and 53-54]). . / / / 



Chapter 4 

Powers of a Hermitian Element 

4.1 Introduction 

Is the square of a Hermitian element is Hermitian? The answer is classically affirma­

tive, but what is the constructive situation? In this chapter we answer this question 

by proving, eventually, that positive integral powers of a Hermitian element of a 

Banach algebra are indeed Hermitian. Our proof depends on an investigation of the 

character space, the state space, and extreme points. 

4.2 Preliminaries 

With reference to Chapter 7 of [10], we first recall some facts about the dual space 

XI of a normed linear space X. 

An element I of XI is normable if its norm 

II I II = sup { I I (x) I : II x II :::; 1} 

exists. If XI is separable, and (Xn)~=l is a dense sequence in the unit ball 

X~ = {I E Xl : '\Ix E X (II (x)1 :::; IIxll)} 
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of X', then the weak* topology on X' is induced by the double norm, defined by 

00 

Illflll = L 2-
n If (xn)1 (f E X'). 

n=l 

Double norms defined by different dense sequences in X are equivalent on XL and 

XUs weak* compact. Moreover, for each x E X the mapping f ~ f (x) is uniformly 

continuous on X~ with respect to the double norm. 

In the remainder of this thesis, B will denote a complex unital Banach 

algebra with identity e. 

The state space of B is the set 

VB = {f E B': f(e) = 1 = Ilfll}· 

For each t > ° the set 

V~ = {f E B' : II f II :::; 1, 11 - f ( e) I :::; t} 

is a t-approximation to VB. 

Proposition 4.2.1 FOI all but countably many t > 0, V~ is a nonempty, weak* 

compact subset of B'. 

Proof. Since the mapping f ~ 11 - f (e) I is uniformly continuous on B~ relative 

to the double norm, we see from Theorem 4.9 of [10, page 98] that for all but 

count ably many t > 0, V t is either empty or weak* compact. An application of 

Corollary 4.5 ;f [10, page 341] shows that for such t, V t is nonempty and therefore 

weak* co:rp.pact. Q.E.D. 

We say that t > ° is admissible if V~ is weak* compact. Note that 

VB = n {V~ : t > ° is admissible}, 
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the intersection of a family of nonempty, weak* compact sets that is descending in 

the sense that if 0 < t' < t, then vll c Vl Being the intersection of a family of 

complete sets, VB is complete relative to the double norm. 

In the remainder of the thesis, when the context is clear we write 2:;, V, and V t 

to mean 2:;B, VB, and V~, respectively. 

We introduce the following definitions. 

• V is firm if it is compact and Pw (vt, V) '-7 0 as t -+ 0, where Pw is the 

Hausdorff metric on the set of weak* compact subsets of B~. 

• An element x of B is Hermitian if for each c > 0 there exists t > 0 such 

that 11m f (x) I < c for all f E vt; we denote the set of all Hermitian elements 

of B by Her(B). 

• An element x of B is positive if for each c > 0 there exists t > 0 such that 

Ref(x) ~ -c and Ilmf(x)1 < c for all f E vt; we then write x >0. 

• An element f of B' is a positive linear functional if f (x) > 0 for each 

positive element x of B; we then write f ~ o. 

Our main aim in this chapter is to prove the following. 

Theorem 4.2.2 Let a be a Hermitian element of a complex unital Banach algebra 

B that has firm state space. Then an is (i) Hermitian for each positive integer n 

and (ii) positive for each even positive integer n. 

But first we need some technical results which we establish in the next section. 

4.3 Technical results 

The following is a constructive version of the Hahn-Banach Theorem ([10, page 

342]). 
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Theorem 4.3.1 Let Y be a linear subset of a separable normed linear space X, 

and v a nonzero linear functional on Y whose kernel is located in X. Then for each 

c > 0 there exists a normable linear functional u on X such that u(y) = v(y) for all 

y in Y, and Ilull ::::; Ilvll + c. 

Lemma 4.3.2 Let E be a finite-dimensional su6space of a normed space X, and 

a a unit vector in E. Let 0 ::::; t < 1, and let f be a linear functional on E such that 

II f II ::::; 1 and 11 - f ( a ) I ::::; t. Then there exists a normable linear functional ¢ on X 

such that II¢II = 1, 11- ¢(a)1 ::::; 2t, and If(x) - ¢(x)1 ::::; til xii for each x E E. 

Proof. Since E is finite-dimensional, f has a norm, and so ker (1) is located in 

E; whence ker (1) is finite-dimensional and therefore located in X. By the Hahn­

Banach Theorem, there exists an extension f~ of f to an element of XI such that 

1 ::::; Ilf~11 < 1 + t. Let ¢ = Ilf~II-I p. Then ¢ E XI, II¢II = 1, and for each x E E, 

Moreover, 

If(x) - ¢(x)1 /f(x) _lIf~II-I f~(x)/ 

/l-llf~II-I/lf(x)1 
t . 

< 1 + t Ilfllllxll 

< tllxll· 

11 - ¢(a)1 ::::; 11 - f (a)1 + If(a) - ¢ (a)1 ::::; 2t Q.E.D. 

Lemma 4.3.3 Suppose that the state space of B is firm. Let A be a Banach 

subalgebra of B, let {Xl, ... ,XN} be a finitely enumerable subset of A with Xl = e, 

and let c > O. Then there exists an admissible t > 0 such that for each f E AI with 

II f II ::::; 1 and 11 - f (e) I ::::; t, there exists 9 E VA with 

(4.1) 
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Proof. We first prove the result in the case where {Xl, ... ,XN} is a linearly inde-

pendent subset spanning a finite-dimensional subspace E of A. Given c > 0, choose 

t E (0, c/2) such that 

~ V~ is weak* compact and 

~ for each ¢ E v~t there exists v E VB with 

.(1 ::; k ::; N) . (4.2) 

Given f E A' with Ilfll ::; 1 and 11- f (e)1 ::; t, apply Lemma 4.3.2 to the restriction 

jD of f to E, to construct ¢ E v~t such that If(x) - ¢ (x)1 ::; t Ilxll for each X E E. 

Choose v E VB such that (4.2) holds. The restriction g of v to A belongs to VA, and 

for 1 ::; k ::; N, 

If(xk)-g(Xk)1 - Il(Xk)-V(Xk)1 

< If (Xk) - ¢ (xk)1 + I¢ (Xk) - v (xk)1 

< c, 

as we wanted. 

It remains to remove the condition that {Xl, ... ,XN} be linearly independent. 

We proceed by induction, noting that the case N = 1 is dealt with by the work of 

the previous paragraph. Suppose that the desired conclusion holds for all sets of N 

vectors in A with N < v, and consider Xl, . .. ,Xv in A. We may assume that c < 1. 

Rearranging the indices 1, . .. ,v if necessary, we can find m ::; v such that 

~ Xl,'" ,Xm are linearly independent and span an m-dimensional subspace Y 

of A, and 

~ p (x k, Y) < c / 4 for m + 1 ::; k ::; v. 
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Let 

c = sup {t IAil: tAiXi <; 2} 
By the first part of the proof, we can find an admissible t > ° such that for each 

! E Vl there exists g E VA with 

(1 ::; k ::; m) . 

Fix such! and g, consider k with m + 1 ::; k ::; l/, .and choose AI, ... ,Am E C such 

that 

m 

Xk - LAjXj <~. 
j=l 

Then 112:::;:1 AjXj II ::; 2, so 2:::T=lIAjl ::; c. Hence 

If (Xk) - 9 (xk)1 <; (J - g) (t AiXj) + (j - g) (Xk -t Ai xi ) 
m m 

< L IAjll! (Xj) - g (Xj)1 + 2 Xk - L AjXj 
j=l j=l 
m 

< ~IA'I~+~ L J 2c 2 
j=l 

< C. 

Thus (4.1) holds for N = l/, and our induction is complete. Q.E.D. 

Lemma 4.3.4 Let (K>.hEL be a nonempty family of totally bounded subsets of a 

metric space X, and let K = n>'EL K>.. Suppose that for each c > ° there exists 

A E L such that for each x E K>. there exists y E K with Ilx - yll < c. Then K is 

totally bounded. If also each K>. is complete, then K is compact. 

Proof. Given c > 0, choose A E L as in the hypotheses. Let {Xl, ... ,XN} be a 

finite c-approximation to K>., and for each n choose Yn E K such that Ilxn - Ynll < c. 

Let Y EKe K>.. Then there exists n such that Ily - xnll < c and therefore 

Ily - Ynll ::; IIY - xnll + Ilxn - Ynll < c + c = 2c. 
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Thus {Yl, ... ,Yn} is a 2c-approximation to K. Since c > 0 is arbitrary, K is totally 

bounded. If also each K)., is complete, then K is an intersection of complete sets 

and so is complete; whence it is compact. Q.E.D. 

Proposition 4.3.5 If the state space of B is firm, then so is the state space of 

every separable Banach subalgebra of B. 

Proof. Let A be a separable Banach subalgebra of B, (xn)~=l a dense sequence 

in the unit ball of A, and III· III the corresponding double norm on A'. Given c > 0, 

choose N such that I:~=N+1 2-n < c. Using Lemma 4.3.3, choose t > 0 such that 

~ V~ and Vi are weak* compact, 

~ for each f E Vi there exists 9 E VA such that 

(1 :::; k :::; N) . (4.3) 

Let f E Vi, and choose 9 E VA such that (4.3) holds. We have, in A~, 

00 

n=l 
N 00 

L 2-n If (xn) - 9 (xn)1 + L 2-
n If (xn) - 9 (xn)1 

n=l n=N+l 
N 00 

< L2-nc + 2 L 
2-n 

n=l n=N+l 
< 3c. 

It follows from Lemma 4.3.4 that VA is weak* compact. It is then clear from the 

foregoing that Pw (Vi, VA) --+ 0 as t --+ O. Q.E.D. 

4.4 Extreme points of the state space 

Let K be a convex subset of a normed space, and let Xo E K. We say that Xo is 
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• a classical extreme point of K if 

Vx, Y E K (xo = ~ (x + y) ~ x = y = xo) ; 

• an extreme point of K if 

. 
'lie > 0 35 > 0 V x, Y E K (II Xo -' ~ (x + y) II < 5 ~ II x - y II < c) . 

An extreme point is a classical extreme point, and the converse holds classically. 

The proof of the following result is very similar to that given in [50, page 38] for 

the special case where B is a Banach algebra of functions; we include it for the sake 

of completeness. In the following, recall that ~B is the character space of B. 

Proposition 4.4.1 Let A be a commutative, unital Banach algebra generated by 

Hermitian elements, and 

KO = {f E AI : f ~ 0, f ( e) ::; 1} . 

Then every classical extreme point of KO is an element of ~B. 

Proof. Let ¢ be a classical extreme point of KO. We want to show that ¢(xy) = 

¢(x)¢(y) for all x, y E B. Considering first the case where y = e, define an element 

?/J of AI by 

?/J = (1 - ¢(e)) ¢. 

Then ?/J(x) = (1 - ¢(e))¢(x) ~ 0 for each positive x E B. Also, for each x ~ 0, 

(¢ +?/J) (x) = ¢(x) + (1 - ¢(e)) ¢(x) = (2 - ¢(e))¢(x) ~ 0 

and 

(¢ -?/J) (x) = ¢(x) - (1- ¢(e)) ¢(x) = ¢(e)¢(x) ~ O. 
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Thus 1jJ ~ 0 and ¢ ± 1jJ ~ O. F\lrthermore, 

(¢ + 1jJ) (e) = ¢(e) + (1 - ¢(e))¢(e) :::; ¢(e) + (1- ¢(e)) :::; 1 

and 

(¢ - 1jJ) (e) = ¢(e) - (1- ¢(e))¢ce) = [¢(e)]2 :::; 1. 

Therefore ¢ ± 1jJ E KO, and so 1jJ = 0 since ¢ is a classical extreme point of KO. 

Next consider the case where 0 :::; y :::; e. Define 1jJ E A' by 

1jJ(x) = ¢(xy) - ¢(x)¢(y). 

Then 

(¢+1jJ) (e) - ¢(e) + 1jJ(e) 

- ¢(e) + ¢(y) - ¢(e)¢(y) 

- ¢(e)(l- ¢(y)) + ¢(y) 

:::; l. 

Also, if x ~ 0, then 

(¢+1jJ) (x) - ¢(x) + 1jJ(x) 

- ¢(x) + ¢(xy) - ¢(x)¢(y) 

- ¢(x)(l - ¢(y)) + ¢(xy) 

~ 0 

and 

(¢ - 1jJ) (x) - ¢(x) - 1jJ(x) 

- ¢(x) - ¢(x)¢(y) + ¢(xy) 

- ¢(x) [x(e - y)] + ¢(xy) 

~ o. 
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Thus ¢ ±?jJ E KO, and hence ?jJ = o. 

In the case where y E Her (B), there exists s > 0 such that 

1 
0< sy + - e < e. - 2-

To see this, compute s > 0 such that IlsY11 < 1/2 .. Then for each f E VA we have 

whence 

1 1 
Isf(y)1 ::; sllyll ::; "2 = "2 f(e); 

for each f E VA' Now, by the work in the preceding paragraph, 

s¢(xy) + t¢(x) ¢(x(sy + te)) 

¢(x)¢(sy+te) 

- ¢ (x)( s¢ (y) + t¢ (e) ) 

s¢(x)¢(y) + t¢(x). 

Hence s¢(xy) = s¢(x)¢(y) and therefore, as s > 0, ¢(xy) = ¢(x)¢(y). Taking the 

case x = y and using induction, we now see that 

Hence 

¢ (xyn) = ¢(x)¢(yt (x E A, y E Her (A), n ~ 1). (4.4) 

We now consider the general case. Fix x E A, YEA, and E; > O. By our hypothe-

ses, A is generated by Hermitian elements. So we can find a complex polynomial 

p = p (aI, a2, ... ,an) in Hermitian elements aI, ... ,an E A such that Ily - pil < E;. 
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By (4.4), we have ¢(xp) = ¢(x)¢(p). Hence 

I¢(xy) - ¢(x)¢(Y)1 ::; I¢ (xy - xp)1 + I¢(xp) - ¢(x)¢(p) I 

+ I¢(x)¢(p) - ¢ (x) ¢(Y)I 

< Ilxy - xpll + 0 + 1¢(x)II¢(p - y)1 

< Ilxlllly -.-: pil + Ilxllllp - yll 

- 211xlilly - pil 

< 211xlic· 

Since c > 0 is arbitrary, we conclude that I¢(xy) - ¢(x)¢(Y)1 = 0 and therefore that 

¢(xy) = ¢(x)¢(y). Q.E.D. 

Lemma 4.4.2 For each t E (0,1), if 0 < ex,j3 ::; 1 and 1 - ~ (ex + m < t/2, then 

ex > 1 - t and 13 > 1 - t. 

Proof. If 1 - ~ (ex + 13) < t/2, then 

so both HI - ex) < t/2 and ~ (1 - 13) < t/2. Hence ex > 1 - t and 13 > 1 - t. 

Q.E.D. 

Proposition 4.4.3 If the state space V of B is firm, then every extreme point of 

Vis a character of B. 

Proof. Let 111·111 be the double norm corresponding to a dense sequence (Xn ):'l in 

the unit ball of B with Xl = e. Noting that V c K O, we show that every extreme 

point of V is also one of K O
• Accordingly, let fa be an extreme point of V, and let 

c > O. Choose 61 E (0, c) such that if f, 9 E V and III~ (f + g) - folll < 61, then 

Illf - gill < c. Then choose an admissible t > 0 such that Pw (vt, V) < 61/2. Finally, 

choose 62 > 0 such that if f, 9 E B' and Illf - gill < 62, then If(e) - g(e)1 < t/2. 
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Now let 

and consider f, g E K O with III ~ (j + g) - fa III < o. Since 

I ~ (j + g) ( e) - 11 = I ~ (j ~ g) ( e) - fa (e) I < ~, 
we have 11 - f (e)1 < t and 11 - g(el < t, by Lemma 4.4.2; whence f, g E V t , and 

therefore there exist f', g' E V such that Illf - f'lll <: 01/2 and Illg - g'lll < 0l/2. We 

now have 

III~ (j' + g') - folll < III~ (j + g) - folll + ~ Illf - 1'111 + ~ Illg - g'lll 

Hence III f' - g'lll < 6, and therefore 

Illf - gill::; Illf - 1'111 + 1111' - g'lll + Illg - g'lll < 6 + 01 < 26. 

Since 6 > 0 is arbitrary, this completes the proof that fa is an extreme point, and 

therefore a classical extreme point, of K O• By Proposition 4.4.1, fa is a character of 

B. Q.E.D. 

We now state a constructive version of the Krein-Milman Theorem ([10, 

page 363, (7.5)]). 

Theorem 4.4.4 Let x be a point in a compact convex subset K of a separable 

normed space X over R. Then for each 6 > 0 there exist extreme points Xl,"" Xn 

of K, and nonnegative numbers Cl, ... ,Cn with 2:~=1 Ci = 1, such that 

n 

X - LCiXi < 6. 

i=l 
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Proposition 4.4.5 If V is weak* compact, then every element of V is a convex 

combination of characters of B. 

Proof. It is easily shown that V is convex. An application of the Krein-Milman 

Theorem shows that V is the closed convex hull of its extreme points; so we can 

apply Proposition 4.4.3. Q.E.D. 

Corollary 4.4.6 If the state space of B is firm, then the character space of every 

separable commutative Banach subalgebra of B is rtonempty. 

Proof. Let A be a separable commutative Banach sub algebra of B. Proposition 

4.3.5 shows that VA is firm; in particular, it is compact and so has extreme points. 

By Proposition 4.4.3, those extreme points are characters of A. Q.E.D. 

One more lemma will take us to the proof of our main result. 

Lemma 4.4.7 Let V be firm. Then a E Her (B) if and only if f(a) E R for each 

f E V; and a is positive if and only if f (a) ;::: 0 for each f E V. 

Proof. We deal only with the criterion for positivity, since the Hermitian case is 

similar but simpler. If a is positive, then for each c > 0 there exists an admissible 

. t> 0 such that Reg(a) ;::: -c and IImg(a)1 < c for all 9 E V t . If f E V, then f E V t 

and so Re f (a) ;::: -c and 11m f (a) I < c. Since c > 0 is arbitrary, we conclude that 

f ( a) = Re f (a) ;::: O. 

Conversely, suppose that f(a) ;::: 0 for each f E V. Since there exist admissible 

numbers t > 0 such that Pw (V, vt) is arbitrarily small, we can choose an admissible 

t such that for each 9 E V t there exists f E V with Ig(a) - f(a)1 < c. It now follows 

that for each 9 E V t , 

IImg(a)J ~ 11m f(a)1 + Ig(a) ~ f(a)1 ~ 0 + c = c 

and 

Reg(a) > Ref(a) - c;::: 0 - c = -c. 



65 

Since c > 0 is arbitrary, we conclude that a 2: O. Q.E.D. 

At last we can give the Proof of Theorem 4.2.2. Let A be the (separable) 

closed sub algebra of B generated by the Hermitian element a and the identity e. 

By Proposition 4.3.5, the state space VA of A is firm. It follows from Proposition 

4.4.5 that for each f E VA there exist charac.ters U1, ... ,Um of A, and nonnegative 

numbers A1, ... ,Am, such that 2.::::1 Ai = 1 and Illf - 2.::::1 Aiudl is arbitrarily small. 

In particular, given a positive integer nand c > 0, we can choose the Ui and Ai such 

Hence 

m m 

i=l i=l 

m 

i=l 

c. 

Since c > 0 is arbitrary, Imf (an) = 0 for each f E V. We now see from Lemma 

4.4.7 that an is Hermitian. 

Moreover, if a 2: 0 and n is even, then, with f, Ui, and Ai as above, we have 

m m 

i=l i=l 
m 

i=l 

> -c, 

the last step following from Lemma 4.4.7. Since c > 0 is arbitrary, we have 

Ref (an) 2: 0 for each f E V; whence, again by Lemma 4.4.7, a 2: O. Q.E.D. 



Chapter 5 

Sinclair's Theorem-

5.1 Introduction 

In this chapter we discuss the spectral radius, spectrum, and approximations to the 

numerical range of an element of a unital Banach algebra. Our work, which is based 

on the classical treatment on pages 52-57 of [14], culminates in a constructive proof 

of Sinclair's theorem on the spectral radius of a Hermitian element. 

5.2 Preliminaries 

Let (xn)~=l be a dense sequence in our Banach algebra B, and 111·111 the corresponding 

double norm on B'. For all but count ably many t > a the set 

is (nonempty and) weak* compact ([10, Chapter 9, (1.3) and (2.7)]); furthermore, 

2.; = n {2.;t : t > a} . 

Since, as we showed by Brouwerian 1.6.4 in Chapter 1, 2.; is not weak* compact in 

general, we choose to work with the t-approximation 2.;t of 2.; for carefully chosen t. 
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We cannot assume in constructive mathematics that a closed ideal of a Banach 

algebra is contained in a maximal ideal, so we follow Bishop et al. ([10, page 453]) 

and work with finite linear combinations of given elements of B. The following two 

results illustrate the use of those approximations. 

Proposition 5.2.1 Let Xl, . .. , Xn be elemeI?-ts orB, and t, E positive numbers such 

that 

Then there exist a positive number 0 (depending on n, t, c:) and elements Yl,· .. , Yn 

of B such that X1Yl + ... + XnYn = e ([10, page 459, (2.6)]). 

We say that two sequences (xn) and (Yn) are equiconvergent if for each term 

am of one sequence, and each E > 0, there exists N such that bn < am + E whenever 

bn is a term of the other sequence with n 2: N. 

Proposition 5.2.2 Let (tn)~=l be a strictly decreasing sequence of positive num­

bers converging to 0, and for each X E B and each ri define 

II X II L; = sup {I f ( x ) I : f E ~tn} . 
tn 

Then the sequences (1IxllL;tJ ~=l and (1Ixnlll/n):l are equiconvergent ([10, page 

460, (2.9)]). 

5.3 A closer look at the spectral radius 

We define the spectral radius of an element x of B to be 

p(X) = sup {IAI : A E o-(x)}, 

where O'(x) is the spectrum of x. The classical spectral radius formula, 

p(x) = r(x) = inf Ilxnll l/n = lim Ilxnll l/n 
n-+oo 
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holds for any x E B; but there is no guarantee that either the supremum p (x)· or 

the infimum r (x) exists constructively. Nonetheless, we write r(x) < c to signify 

that Ilxnl11/n < c for all sufficiently large n, and p (x) < c to signify that IAI < c for 

all A E 0" (x). 

Proposition 5.3.1 If a E B and A E O"(a), ~hen for each n, 

Proof. Given any A E O"(a), suppose that IAI > 'ilali. Then 0 < IlaA-111 < 1; so 

e - a/\ -1 is invertible, and therefore 

This shows that A ~ O"(a), a contradiction. Hence IAI :::; Iiali. 
By Proposition 3.2.3, for each n ~ 2, 

an - Ane = (a - Ae) (an- 1 + ... + An-Ie) 

E (a - Ae) B n B (a - Ae) 

C rvinv(B), 

so An E 0" (an). It now follows from the preceding paragraph that IAnl :::; Ilanll and 

therefore that IAI :::; IlanI11/n. Q.E.D. 

Proposition 5.3.2 Suppose that p(a) exists and that R(a) is coherent, and let 

(, (0 be complex numbers such that 1(1 > 1(01 > p(a). Then 1(1 > Ilanl11/n for all 

sufEciently large n. 

Proof. For each z with Izl > p (a) we have 

z E -0" (a) = - rvR (a) ; 

but R (a) is coherent, so z E R(a) and therefore (a - ze)-l exists. Following Rudin's 

proofs in [62, pages 354-355], for each z with Izl > Iiall we see that 
(Xl 

(a - Z)-l = - L z-n-lan 
n=O 
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and that for each u E B', 

00 

u((a-ze)-l) = - Lz-n-1u(an). (5.1) 
n=O 

The uniqueness of the Laurent coefficients of the holomorphic function 

in the annulus {z : I z I > p ( a)} shows that the series on the right of equation (5.1) 

converges to u ((a - ze)-l) for all z with Izl > p (d). Since 1(01 > P (a), there exists 

f3 > ° such that for each n, 11(a-nanll ::; f3 and therefore Ilanll ::; f31(oln. It follows 

that Ilanl11/n ::; f31/nl(01. Choosing N such that f31/N < 1(/(01, we now see that 

Ilanl11/n < 1(1 for all n 2: N. Q.E.D. 

Proposition 5.3.3 If p(a) exists and {(: 1(1) p(a)} c R(a), then r(a) exists. 

Proof. By Proposition 5.3.1, p(a) ::; Ilanl11/n for each n. Given E > 0, we see from 

Proposition 5.3.2 that there exists n such that p(a) + E > IlanI11/n. Since E > ° is 
arbitrary, inf {llanI11/n : n 2: 1} exists and equals p (a). Q.E.D. 

The following corollaries are trivial. 

Corollary 5.3.4 If p(a) exists and R(a) is coherent, then r(a) exists. 

Corollary 5.3.5 If J(a) is compact and R(a) is coherent, then r(a) exists. 

5.4 Approximating the numerical range 

We define the numerical range of an element x of B to be the set 

V(x) = {f(x) : f E V}, 

where V is the state space of B. Since the constructive Hahn-Banach Theorem 

produces only approximately norm-preserving extensions of elements of B', we may 
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be unable to construct an element of V (x). To overcome this difficulty, we introduce 

the sets 

where t > 0, as approximations to the numerical range of x; we call Vt(x) the 
. 

t-approximation to V(x). For each admissible t > 0 and each x E B, the weak* 

uniform continuity of the mapping f f---+ f(x) on the weak* compact set V t ensures 

that Vt(x) is totally bounded. Also, 

V(x) = n {vt(x) : t > 0 is admissible} . 

In particular, V (x) is weak* closed. 

Proposition 5.4.1 The following are equivalent conditions on a complex number 

.\ and an element a of B. 

(i) There exists an admissible t > 0 such that p (.\, Vt(a)) > O. 

(ii) There exists z E C such that 1.\ - zl > Iia - zell. 

Proof. Assuming that p (.\, Vt(a)) > 0 for some admissible t > 0, first consider 

the case where p (a, Ce) > O. Define a normable linear functional fo on the 2-

dimensional space span { a, e} by 

fo (aa + (3e) = a.\ + {3 (a,{3EC). 

Choosing E > 0 such that 

-1 E (1 + 1.\ I) < p (A, V t (a)) , 
+E 

suppose that Ilfoll < 1+E/2. By the Hahn-Banach Theorem, there exists a normable 

linear extension f of fo to B such that 

f(e) 

f(a) -

fo(e) 1, 

fo(a) - .\, 
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and 11I11 :S 1 + c. Define g = lilli-I f. Then Ilgll = 1 and 

11- g(e)1 = 11 -11111-1 
l(e)1 = II-lilli-II :s 1 :c < t, 

so g E V t . Moreover, 

IA-g(a)1 - IA-:-IIIWQI(a)1 

- IA -11111-1 AI 

- 11 -11111-3.IIAI 

< l:c lAI 

< p(,\,vt(a)) , 

a contradiction. Hence, in fact, 

c 
111011 > 1 + 2" > I, 

so we can pick 0;, (3 E C such that (3 =1= 0 and Ilo(o;e + (3a)1 > II00e + (3all. Then 

Iia - (-0;(3-1) ell - 1(31-1110;e+ (3all 

so (ii) holds with z = -0;(3-1. 

< 1(31-1110(o;e+(3a)1 

- 1(31-110; + (3AI 

- IA-(-0;(3-1)I, 

vVe now remove the restriction that p (a, Ce) > O. Let 

0< c < min {I, p (,\, Vt(a))} 

and choose an admissible 
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Either p (a, Ce) > 0 and the preceding case applies, or else p (a, Ce) < c/3. In the 

latter case, choose z E C such that Iia - zell < c/3. Then for all 9 E Vtl we have 

c < 1>--g(a)1 

< 1>--zl+lz-g(ze)I+lg(a-ze)1 
. 

< 1>- - zl + Izl11 ~ g(e)1 + Iia - zell 

< 1>- - zl + (1 + Iiall) 11- g(e)1 + ~ 
'c < 1>- - zl + (1 + Iiall) t' + "3 

2c 
< I>--zl +"3' 

Hence 

c 
1>- - zl > "3 > Iia - zell , 

and again (ii) holds. 

Conversely, assume that there exists z E C such that 1>- - zl > Iia - zell, and let 

1 
c5 = 2 (1)- - zl - Iia - zell) > O. 

Choose an admissible t > 0 such that Izlt < c5 /2. Then for all f E V t we have 

Hence 

If(a) - zl < If(a) - zf(e)1 + Iz - zf(e)1 

< If (a - ze)1 + Izl11 - f(e)1 

< Iia - zell + Izlt 
c5 

< 1>- - zl - c5 + 2 
c5 

< 1>- - zl- 2' 

1>- - f(a)1 > 1>- - zl-If(a) - zl 
c5 

> 1>- - zl + 2 - 1>- - zl 
c5 

> -
2 
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It follows that P (A, Vt(a)) 2: 0/2. Q.E.D. 

Proposition 5.4.2 For each t > 0, 

Vt(a) C n B (z, Iia - zell + tlzl) . 
zEC 

Proof. If z E C, t> 0, and f E V t , then 

If(a) - zl ::; If(a - ze)1 + Iz111- f(e)1 ::; Iia - zell + tlzl Q.E.D. 

Corollary 5.4.3 For each element a of the Banach algebra B, 

V(a) = n B (z, Iia - zell) . 
zEC 

Proof. Let A E V(a). By Proposition 5.4.2, for each z E C and each admissible 

t> 0, 

IA - zl ::; Iia - zell + tlzl; 

so, letting t --* 0, we obtain IA - zl ::; Iia - zell. Hence 

V(a) C n B (z, Iia - zell) . 
zEC 

Conversely, if A E nzEc B (z, Iia - zell), then by Proposition 5.4.1, for each 

admissible t > 0 we have A E Vt(a) = Vt(a); whence A E V(a). Q.E.D. 

Proposition 5.4.4 If a E B, then a(a) C V(a). 

Proof. Let /\ E a(a), and suppose that P (A, Vt(a)) > 0 for some admissible t > O. 

Then by Proposition 5.4.1, there exists z E C such that Iz - AI > Ilze - all. Hence 

e - (z - A)-l(ze - a) is an invertible element of B. Let b be its inverse; then 

[e - (z - A)-l(ze - a)] b = e, 

so 

(z - A)b - (ze - a)b = (z - A)e. 
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Rearranging, we obtain 

(a - Ae) [b(z - A)-I] = e, 

so A E R(a), a contradiction. Therefore p (,\, Vt(a)) = 0 for each admissible t > 0, 

and so A E V(a). Q.E.D. 

Given a unit vector x in E, for each t > 0 we define the set 

vt,x = {f E E' : Ilfll ::; 1, 11- f(x)1 ::; t}. 

For each a E E, we then write 

vt,X(a) = {f(ax) : fEE', Ilfll ::; 1,11- f(x)1 ::; t}. 

If t > 0 is admissible, then Vt,x (a), being the range of the uniformly continuous 

mapping f f--+ f (ax) on the weak* compact set V t , is totally bounded. 

Proposition 5.4.5 If 0 < t < 1/ V2 and 2t is admissible, Ilxll = 1, a E E, and 

A E Vt,X(a), then there exists X E v2t(a) such that IA - XI ::; 3tllall. 

Proof. Fix A E Vt,X(a), and choose 9 E yt,x such that A = g(ax). Suppose, to 

begin with, that p (a, Ce) > 0, so that a and e span a 2-dimensional subspace Eo 

of E. Define a normable linear functional f on Eo by 

fo(Y) = g(yx) (y E Eo) . 

If y E Eo and Ilyll ::; 1, then 

Ifo(y)1 = Ig(yx)1 ::; lIyxll ::; Ilyllllxll = Ilyll < 1. 

Since also 

11- fo(e)1 = 11- g(x)1 ::; t, 
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it follows that 1 - t :::; 111011 :::; 1. By the Hahn-Banach Theorem, there exists a 

normable linear functional 1 on B such that 1 - t :::; 11111 :::; 1 + t, and such that 

l(Y) = lo(Y) for all Y E Bo. Now define ¢ E B' by 

¢ = 11111-1 1· 

Then II¢II = 1, 

¢(e) = 11111-1 lo(e) = 11111-1 g(x), 

and 

¢(a) = 11111-1 10(a) = 11111-1.\. 

Moreover, 

11- ¢(e)1 - 11-11111-1 g(x)1 

< 11-11111-11 + 1(1- g(x)) 11111-11 

< 11- _1_1 + 11- g(x)I_1_ 
l+t . 1-t 

t t 
< 1+t+1-t 

t 
-

1- t2 

< 2t, 

as 0 < t < 1/V2. Hence ¢(a) E V2t(a). Also, 

1.\ - ¢(a)1 - 111111¢(a) - ¢(a)1 

< 111111 - 111¢(a) I 

< tllall, 

so the proof in the case p (a, Ce) > 0 is complete. 

Now consider the general case. Since 2t is admissible, V2t (a) is totally bounded 

and hence located in B. Either p (.\, V2t(a)) :::; 2tllall or else, as we may assume, 
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p (,\ V2t(a)) > t Ilall. Then, by the first part of the proof, p (a, Ce) = 0, so a = ae 

and lal = IIall for some a E C. For any f E V2t we have 

1>- - f(a)1 1>- - af(e)1 

< 1>- - al + lal11 - f(e)1 
. 

< Ig( ax) -'- al + 2tllall 

< lallg(x) - 11 + 2tllall 

< 3tllall· Q.E.D. 

5.5 Sinclair's Theorem 

In this section we make use of our approximations to the numerical range to prove 

Sinclair's Theorem for Hermitian elements of a unital Banach algebra. Before we 

arrive at our main result, we dispose of some lemmas. 

Lemma 5.5.1 For each admissible t > 0 and each unit vector x E B, 

inf {Re >- : >- E Vt ( a )} :::; II ax II . 

Proof. First observe that the infimum in question exists, since Vt(a) is totally 

bounded. Choose an admissible e such that 

By Proposition 5.4.5, for each 9 E Vc,X(a) there exists X E Vt(a) such that 

Ig (ax) - XI:::; 3f: IIall. Thus 

inf {Re >- : >- E V t 
( a ) } < Re)..' 

< Re 9 (ax) + I 9 (ax) - )..' I 

< Ig (ax)1 + 3ellall 

< II ax II + 3ellall· 
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Since c is arbitrary, the required result follows. Q.E.D. 

For convenience we define 

/-1t = sup{Re A : A E Vt(a)}. 

Lemma 5.5.2 If t > 0 is admissible, a is positive number such that a/-1t < 1, and 

x is a unit vector in B, then 

1- a/-1t < II(e - aa)ill· 

Proof. Given A E V t (e - aa), choose f E V t such that 

A = f (e - aa) = f(e) - af(a). 

Then 

Re [A - (1- af(a))] = Re [(A + af(a)) - 1] = Re (J(e) - 1) 2': -t, 

since 11- f(e)1 :::; t. Hence 

Re A 2': Re (1- af(a)) - t 2': (1- a/-1t) - t. 

It follows from Lemma 5.5.1 that 

1- a/-1t - t:::; inf {ReA: A E Vt(e - aa)} :::; II(e - aa)xll· 

For each admissible c E (0, t), since /-1c :::; /-1t, we now have 

1 - a/-1t :::; 1 - a/-1c :::; II(e - aa) xii + c. 

Since c is arbitrary, the desired conclusion follows. Q.E.D. 

Lemma 5.5.3 Ift > 0 is admissible, then 

for each a > O. 

1 
-log Ilexp(aa)11 :::; /-1t 
a 
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Proof. First consider a > 0 such that aJ-Lt < 1. Applying Lemma 5.5.2, for each 

x E B we have 

Therefore, by induction, 

for each positive integer n. 

Now, for any a > 0 and for all sufficiently large n, we have £J.lt < 1; whence n 

Taking the limit as n --+ 00, we obtain 

exp (-aJ.lt) Ilxll ::::; Ilexp (-aa) xii· 

In particular, the choice x = II exp ( aa ) II yields 

from which the desired inequality follows. Q.E.D. 

Proposition 5.5.4 If a is Hermitian, then II exp(±iaa) II = 1 for all a E R. 

Proof. For the moment, take a > O. Given E > 0, choose an admissible t > 0 

such that IImf(a)1 < E for each f E V t
. Then as 

we have 

{Re f(ia) : f E vt} 

{-Imf(a) : f E V t
}, 

sup {ReA: A E Vt(ia)} ::::; sup {IImf(a)1 : f E vt} ::::; E. 
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Now replace a by ia in Lemma 5.5.3, to obtain 

~ log Ilexp (iaa)11 ::; c. 

Since c > ° is arbitrary, 

~ log II exp(iaQ,) II ::;' ° 
and therefore 

II exp(iaa)II ::; 1. 

Since -a is also Hermitian, it follows that 

II exp( -iaa) II ::; 1. 

Thus for each real a =1= ° we have II exp (iaa) II ::; 1; this inequality holds for every 

a E R, by continuity of the exponential function on B. Since 

1 = Ilell ::; II exp(iaa) 1lllexp( -iaa) II ::; 1 

we conclude that II exp(±iaa) II = 1. Q.E.D. 

Lemma 5.5.5 Let a be a positive number such that O"(a) C (-~ + a, ~ - a). 

Then 0" (sin a) C B (0, 1). 

Proof. The hypotheses allow us to choose r E (0,1) such that sinO"(a) cc B(O, r). 

Suppose that A E 0" (sin a) and IAI > r. Then P (A, sinO"(a)) > ° and so the mapping 

is holomorphic on some open set D well containing O"(a). It follows by the holo­

morphic functional calculus (see [52, page 206, Theorem 3.3.5]) that (sin a - Ae)-l 

exists as a two-sided inverse to sin a - Ae. Hence A¢:.O" (sin a), a contradiction. 

Therefore IAI ::; r, and so A E B(O, r). Q.E.D. 
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Recall that if Izl ::; I, then 

CXJ 

arcsin(z) - z + 1. . 1. Z3 + 1. . ~ . 1. Z5 + ... = ~ C zn 
- 23 245 ~n' 

n=l 

say. The holomorphic functional calculus on page 206 of [52, Theorem 3.3.5], and 

the remark on page 56 of [14], together show that if O"(a) cc B(O, I), then 

CXJ • 

arcsin a = ~ cnan. 
n=O 

It follows from Lemma 5.5.5 that 

CXJ 

arcsin(sina) = ~ cn(sinat. 
n=O 

Now arcsin(sin() = (for all (E [-~, ~J, and therefore for all (in some open set 

well containing <T(a). The functional calculus now ensures that arcsin(sin a) = a for 

all a E B. 

Proposition 5.5.6 Let a be a Hermitian and suppose that Ilanll l/n < ~ for some 

positive integer n. Then Iiall < ~. 

Proof. Note that O"(a) C (-~,~) and that, by Lemma 5.5.5, O"(sina) C B(O, 1). 

Taken with the remarks preceding this proposition, these facts show that 

CXJ 

a = arcsin(sin a) = ~ Cn (sin at. 
n=l 

By Proposition 5.5.4, Ilexp(±ia) II = 1 and hence II sin all::; 1. Since Cn is positive 

for each n, we have 

CXJ CXJ CXJ ( 1f ) n 1f 
Iiall ::; ~ Cn Iisinali

n 
::; ~ Cn = ~ Cn sin 2 = 2' Q.E.D. 

n=l n=l n=l 

Lemma 5.5.7 Let a be Hermitian and t > O. If there exists n such that II an Il lln < t, 

then Iiall < t, 

Proof. If Ilanll lln < t, then 
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Since fta is Hermitian, it follows from Proposition 5.5.6 that II ~all < ~. Therefore 

II all < t for each t > O. Q.E.D. 

Our last lemma is a curiosity. 

Lemma 5.5.8 Let (rn) be a decreasing sequence pfpositive numbers and NI a real 

number such that NI ~ rl. Suppose that for'each t > 0, ifrn < t then M < t. Then 

rn = NI for all n. 

Proof. Let c > 0 and take t = M - c. If r n < NI - c, then M < NI - c, a 

contradiction. Hence r n ~ NI - c for each n. Since c is arbitrary, we conclude that 

rn ~ NI for each n. But r n :s; rl :s; M for each n. Hence r n = M for each n. 

Q.E.D. 

We now prove our version of Sinclair's Theorem. 

Theorem 5.5.9 If a is a Hermitian element of the unital Banach algebra B, then 

Ilanll l
/
n 

= Iiall for every n. 

Proof. vVe first observe that (1Ianll l
/
n) ~=I is a decreasing sequence, and that 

II all ~ Ilanll l
/
n 

for each n. By Lemma 5.5.7, Iiall < t whenever Ilanll l
/
n < t for each 

t> O. The conclusion follows by taking rn = Ilanll l
/
n and NI = Iiall in Lemma 5.5.8. 

Q.E.D. 



Appendix A 

Intuitionistic Logic 

In section 1.4, the constructive interpretations of the connectives and quantifiers 

are discussed. These interpretations led Heyting to abstracting and formalising 

the axioms of intuitionistic logic. The axioms of the intuitionistic propositional 

calculus were first described by Heyting in [47]; other works of Heyting in axiomatic 

methods and Intuitionism can be found in [48]. Working with a fixed first-order 

language £, we adopt the primitive connectives V ( or), /\ (and), :::::} (implies), -, 

(not). We assume familiarity with basic notions of elementary classical logic. 

Propositional Axioms 

Note that by adding the Law of Excluded Middle, p V -'p, to the above list we 

get classical logic. 

1. p:::::} (p /\p). 

2. (p /\p) :::::} (q /\p). 

3. (p:::::} q) :::::} (p /\ r :::::} q /\ r). 

4. (p:::::} q) :::::} (( q :::::} r) :::::} (p :::::} r)). 

5. q:::::} (p:::::} q). 
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6. (p 1\ (p =? q)) =? q. 

7. p =? (p V q). 

8. (pVq) =? (qVp). 

9. ((p =? r) 1\ (q =? r)) =? (p V q =? r). 

10 .• p =? (p =? q). 

11. ((p =? q) 1\ (p =? .q)) =? .p. 

Predicate Axioms 

The following axioms can be added to the foregoing list to obtain the axioms of 

intuitionistic predicate calculus. We adopt the usual meanings of Y (for all) 

and::l (there exists). Furthermore, we take p [xlt] to mean the formula obtained on 

replacing every occurance of x in p by t in accordance wih standard conventions; 

see pages 57-67 of [11]. A generalisation of a formula p is any formula of the form 

YXl ... xnp, where Xl, ... , Xn are any variables (not necessarily distinct). 

1. YX(p =? q) =? (Yxp =? Yxq). 

2. Yx(p =? q) =? (::lxp =? ::lxq). 

3. p =? Yxp if X is not free in p. 

4. ::lxp =? P if x is not free in p. 

5. Yxp =? p[xlt] if t is free for x in p. 

6. p[xlt] =? ::lxp if t is free for x in p. 

7. All generalisation of 1-6. 



Appendix B 

A Spectral Theorem . 

Throughout, X denotes the compact product metric space rr~=l[-l, 1]; 7rn the 

projection map (Xk) I--t Xn of X onto [-1,1]; and P the real sub algebra of C(X) 

generated by the functions 7r n and the constant function 1. Note that P is dense in 

C(X) ([10, page 375, (8.19)]). 

Let A = (An)~=l be a sequence of commuting selfadjoint operators on H, and let 

P(A) be the real sub algebra of B(H) generated by the operators An and the identity 

operator I. Let p I--t p(A) be the unique algebra homomorphism ¢ : P ----)- P(A) 

such that ¢(1) = I and i.p (7rn) = An for each n. The mapping p I--t p(A) is called 

the canonical homomorphism of Pinto P(A). 

Given a complex polynomial 

N 

L 
of degree N in n variables, we define the corresponding polynomial p (A) by 

N 

p(A) = L Cil, ... ,inAil ... A~n. 
h, ... ,in=O 

Recall that a uniformly bounded sequence (Tn)~=l of operators on a Hilbert 

space H converges strongly to an operator T if Tnx ----)- Tx as n ----)- 00 for each 
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x E H. In that case, any common bound for the operators Tn is a bound for T. 

Additionally, if each Tn is selfadjoint, then so is T ([10, page 374]). 

Given a positive measure p on C (X), we say that a mapping f : X -+ C is 

p-integrable if both Re f and 1m fare p-integrable; in which case we write 

p(f) = p (Re f) + i P (1m f) . 

We then define notions like measurable and convergence in measure for complex-

valued functions, and spaces like LX) (p, C), analogously to their counterparts for 

real-valued functions. 

We state without proof two theorems, the first of which is a constructive Spec-

tral Theorem for selfadjoint operators ([5, 10]). 

Theorem B.O.I0 Let A = (An) be a sequence of commuting selfadjoint operators, 

with uniform bound I, on a separable Hilbert space H, let (en) be an orthonormal 

basis of H, and let p be the complete extension of the positive measure on X that 

satisnes 

00 

p(p) = L 2-n(p(A)en, en) (B.1) 
n=l 

for every pEP. Then the canonical homomorphism of Pinto P(A) extends to a 

bound-preserving homomorphism <p r---+ <p(A) of Loo onto an algebra of commuting 

selfadjoint operators on H, such that (B.1) holds for every <p E Loo. Moreover, if 

(<Pn)~=l is a bounded sequence of elements of Loo which converges in measure to an 

element <p of Loo , then the sequence (<Pn(A))~l converges strongly to <p(A). 

The pair (p, <p r---+ <p(A)) in Theorem B.0.10 is called the functional calculus for 

A relative to the orthonormal basis (en). 

The proof of the following Fuglede-Putnam-Rosenblum Theorem in [63, 

page 300] is essentially constructive as it stands. 
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Theorem B.O.11 If M, N, and T E B(H), T is normal, and 

NIT = TN, 

then M*T = TN*. 

We now state and prove a constructive Spectral Theorem for normal oper-

ators. 

Theorem B.O.12 Let N = (Tn)~=l be a sequenc~ of commuting normal operators, 

with uniform bound 1, on a separable Hilbert space H. For each n write 

(B.2) 

where 

Then 

is a sequence of commuting selfadjoint operators on H with uniform bound 1. Given 

an orthonormal basis (en) of H, let 

be the corresponding functional calculus for the family A. Let Leo (fJ" C) consist of 

all f : X ---+ C such that Re f, and 1m f belong to Leo (p" C). Then 

f r---t f (N) = Re f(A) + i 1m f(A) (B.3) 

is a homomorphism of Leo (p" C) onto a family of commuting normal operators in 

B(H). Moreover, 

eo 
p, (Re 1) + i fJ, (1m 1) = I: 2-n U (N) en, en) (j E Leo (p" C)). 

n=l 
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Finally, if (fnr::=l is a bounded sequence of elements of Loo (f-t, C) that converges 

in measure to an element f of Loo (f-t, C), then the sequence (fn (N))r;:=l converges 

strongly to f (N) in B(H). 

Proof. By the Fuglede-Putnam-Rosenblum Theorem, A is a sequence of com­

muting selfadjoint operators; moreover, the operators in A have common bound l. 

Note that since the operators of the form cp (A), with cp E Loo (f-t), commute with 

each other, so do the operators of the form f (N) ;vith f E Loo (f-t, C). 

Let f, 9 E Loo (f-t, C). Using the definition (B.3) and applying the functional 

calculus for A, we have 

(f + g)(N) 

and for any scalar a, 

Re (f + g)(A) + ilm (f + g)(A) 

- Re f (A) + Re 9 (A) + i (1m f (A) + 1m 9 (A)) 

- (Ref(A) +ilmf(A)) + (Reg(A) +ilmg(A)) 

f(N) + g(N), 

(af)(N) Re af(A) + i 1m af(A) 

aRef(A) + ailmf(A) 

- a (Ref(A) +ilmf(A)) 

- af(N). 
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Thus the mapping f f--+ f (N) is linear. Next we have 

f(N)g(N) - (Ref(A) +ilmf(A)) x (Reg(A) +ilmg(A)) 

- (Ref(A) Reg(A) - Imf(A) Img(A)) 

+ i (Ref(A) Img(A) + Imf(A) Reg(A)) 

- ([Re f Re 9 1 (A) - [1m flm 9 1 (A)) 

+ i ([Re f 1m 9 1 (A) + [1m f Re 9 1 (A)) 

- [Re f Re 9 - 1m f 1m g]( A) + i [Re f 1m 9 + 1m f Re 9 1 (A) 

- (Re f g) (A) + i (1m f 9 )( A) 

- (lg) (N), 

so f f--+ f (N) is a homomorphism. 

We compute 

00 

f-l(l) - L 2-n (f (N) en, en) 
n=l 

00 

- L 2-n ((Re f(A) + ilmf(A)) en, en) 
n=l 

00 00 

- L 2-n (Re f(A)en, en) + i L 2-n (1m f(A)en, en) 
n=l n=l 

- f-l (Re f) + i f-l (1m f) . 

Finally, let (lnr:=l be a bounded sequence in Loo (f-l, C) that converges in mea­

sure to an element f of Loo (f-l, C). Then the sequences (Re fn)~=l and (1m fn)~=l 

are bounded in Loo (f-l, R), and converge in measure to Re f and 1m f, respectively. 

It follows from the spectral theorem for selfadjoint operators that the sequences 

(Refn (N))~=l and (lmfn (N))~=l converge strongly to Ref (N) and lmf (N), 

respectively. Hence (In (N)) converges strongly to f (N). Q.E.D. 
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VMx) 

W(T) 

X' 

as 
I;B 

I;~ 

O"(X) 

O"a(T) 

r(T) 

111·111 

bounded linear operators on H 

Hermitian elements of B 

invertible elements of S 

resolvent of x 

state space of B 

t-approximation to VB 

numerical range of x 

t-approximation to VB (x) 

numerical range of T 

dual of X 

boundary of S 

character space (or spectrum) of B 

t-approximation to I;B 

spectrum of x 

approximate point spectrum of T 

nonspectrum of T 

double norm 
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