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ABSTRACT
Critically ill patients often experience stress-induced hyperglycemia. This research
demonstrates the effectiveness of a simple automated insulin infusion for controlling
the rise and duration of blood glucose excursion in critically ill patients. Heavy
derivative controllers derived from a simple, two-compartment model reduced blood
glucose excursion 79-89% after a glucose input in proof-of-concept clinical trials.
Modelled performance is very similar to clinical results, including a strong correlation
between modelled and actual insulin consumed, validating the fundamental models
and methods. However, the need for additional dynamics in the model employed is

clearly illustrated despite capturing the essential dynamics for this problem.

Keywords: Biomedical Control, Physiological Models, PD Controllers, Non-linear

Models.



1. INTRODUCTION
Diabetes is a disorder of the metabolism whereby insufficient insulin is produced by
the beta cells, and as such, blood glucose cannot be transported out of the blood. Lack
of insulin results in blood glucose levels remaining dangerously high, which untreated
over time leads to costly complications, including kidney failure, blindness, nerve
damage, heart attack and stroke. Over 120 million people are affected by diabetes
worldwide, and this number is expected to rise to 300 million by the year 2025

(Thomsen et al., 2001).

Critically ill patients often experience stress-induced hyperglycaemia and high levels
of insulin resistance, even if they have no history of diabetes (Capes et al, 2000;
Christensen, 2001; Ousman, 2002; Umpierrez et al, 2002; Bloomgarden, 2003; Finney et
al, 2003; Van den Berghe et al, 2001, 2003). Hyperglycaemia can lead to an increased
risk of further complications such as severe infections, myocardial infarctions (Capes
et al, 2000), polyneuropathy, and multiple-organ failure (Van den Berghe et al, 2001).
Tight glucose control has been shown to reduce Intensive Care Unit (ICU) patient
mortality by as much as 45% (Van den Berghe et al, 2001). Current protocols lack the
consistency to ensure tight control of blood glucose levels, while automated

algorithms are still in their infancy.

While ICU patients are often sedated and in a highly monitored state, they are
extremely diverse in the causes and dynamics of their hyperglycaemia. As a result,
their response to a glucose input can vary significantly due to equally extreme
variations in insulin levels, effective insulin utilization, glucose absorption and a

variety of other factors. Hence, these trials represent a fairly extreme test of the ability



of the models and control systems developed, and highlight the need for simplicity in

a clinical environment.

Automated treatment promises better control of blood glucose with higher consistency
and an associated reduction in diabetes related complications. Existing insulin pumps
and emerging non-invasive and semi-invasive glucose monitoring systems may be
easily interconnected to realise a closed loop system. Ultimately, the control unit
should be able to automate 90 — 95% of the day-to-day insulin care. Therefore, the
goal is to control the essential dynamics rather than all of the dynamics and

exceptional behaviours.

Years of research on modelling and managing diabetes have led to no shortage of
theoretical automated solutions (e.g. Ollerton, 1989; Kienetz and Yoneyama, 1993;
Fisher, 1991; Furler et al, 1985). However, due to either the complexity of the
proposed implementation, models that are not physiologically verified, or lack of
required data these solutions have not been trialled. Several researchers have
examined the analysis and automation of insulin administration as reviewed by
Lehman and Deutsch (1996). In each case, the focus has been on controlling absolute
blood glucose excursion rather than the shape of the glucose curve, as is done in

heavy derivative control (Chase et al, 2002).

Practical solutions that have reached implementation have been applied primarily to
ambulatory diabetic individuals and less often to the more difficult, hyperglycaemic
critically 1ill patient who may not be insulin resistant when healthy. Those

implemented in the critical care environment have been based on a sliding scale



format to determine the insulin input as a function of blood glucose level alone (e.g.
Chee et al, 2002; Van den Berghe et al, 2001, 2003). These approaches merely add
consistency in a semi-automated fashion to the selection of insulin infusion level by
medical staff. Since glucose level alone is the determining factor the control
implemented is essentially pure proportional. To the best of the author’s knowledge,
no model based automatic control methods have been clinically trialled for critical

carc.

Prior work in tightly controlling elevated blood glucose levels using heavy derivative
control employed a physiologically verified three compartment model based on the
work of Bergman et al (1985). Performance was shown to improve with decreased
sensor lag and sampling period and the controlled solution outperformed the
simulated normal human response at a sample period of 1 minute (Lam et al, 2002).
The primary feature of derivative weighted control is the focus on controlling the
shape of the blood glucose curve rather than the absolute magnitude of blood glucose.
This approach adds robustness because it can more readily account for varying rates
of glucose absorption and other patient specific behaviours. The research presented
here develops this heavy derivative control approach to a proof-of-concept clinical
trial with Intensive Care Unit (ICU) patients. Results are compared to predicted
values to verify the modelling methods and overall approach to controlling blood

glucose.



2. CLINICAL TRIAL METHOD
The proof-of-concept clinical trials conducted effectively simulate a true feedback
control system with a 15-minute sampling period, which works well and represents a
realistic level of system performance (Chase et al, 2002, 2003; Lam et al, 2002). They
are designed specifically to test the effectiveness of the heavy derivative control
methods under variable glucose inputs and to verify the simulations of the essential

dynamics and design that led to them.

Qualifying patients had to be stable, have elevated blood glucose levels over 8
mmol/L (average blood glucose in a healthy individual is 4.5 - 5 mmol/L), have an
arterial line and a nasogastric feed, and be expected to remain in the ICU for at least
three days. In addition, patients with morbid obesity (BMI > 35 kg/m?) or
neuromuscular blockade were not considered. The clinical trials are a two-day
procedure for each participant. The first day of the trial measures the uncontrolled
glucose regulatory system response and the second day implements active insulin

control. The Canterbury Ethics Committee granted ethics approval for these trials.

2.1 Clinical Trial Day One:

The trial begins at 0700 hours at which time the patient is fasted for four hours. Blood
glucose readings are taken every hour to determine a basal blood glucose level. At
1100 hours, blood is taken for C-peptide and blood insulin tests to screen for insulin
contamination and determine the basal insulin level, respectively. The patient is then
given a 75g oral glucose tolerance test (OGTT) glucose dose over one minute via the
nasogastric tube. Plasma glucose is measured at 15-minute intervals until 1500 hours.

Paired samples are taken, with one analysed using a bedside Glucocard™ Test Strip 2



glucose testing kit and the other sent to the laboratory for comparison. The error in the
absolute readings are approximately 7% for the Glucocard™ Test Strip 2 tests, and
3% for the laboratory tests at typical elevated blood glucose levels (Phillips et al,

1994; Peters et al, 1996).

2.2 Clinical Trial Day Two:

The procedure is repeated as per day one, however short acting soluble insulin with
0.2U/ml in 0.9% saline is infused via an intravenous cannula using a Graseby 3500
syringe pump. Plasma glucose is measured at 15-minute intervals as previously and
the insulin infusion rate is manually adjusted every 15 minutes according to the heavy
derivative control algorithm. This approach is designed to specifically test the
algorithm. Hence, only glucose measurements were made to simulate a practical

implementation and eliminate the impact of any specific equipment.

3. MATHEMATICAL MODELLING
Implementing tight glucose control in critically ill patients via a fully automated
insulin infusion system requires a simple model of the glucose regulatory system that
accounts for the relationship between intravenous infusion of exogenous insulin and
the measured blood glucose level. The initial physiologically verified model
employed originated from the work of Bergman et al. (1985), utilizing the concept of
a remote compartment for the transport of insulin between the subcutaneous infusion

site and its utilization to reduce blood glucose levels.

Intensive care unit (ICU) patients have direct arterial/venous lines that bypass the

subcutaneous compartment in the three compartment model, and require only two



compartments. The first compartment models insulin uptake into the blood, and the
second models blood glucose level and insulin mediated transport of glucose from the

blood. The model is shown schematically in Figure 1 and defined:

G=-p,G-S,1(G+G,)+P(t) (1)
I=—n(I+1,)+ult)V, (2)

where G (mmol/L) is the concentration of the plasma glucose above basal level, G
(mmol/L). I (mU/L) is the concentration of the plasma insulin above basal level, I
(mU/L). u(f) (mU/min) is the exogenous insulin infusion rate, P(¢) (mmol/L/min) is
the exogenous glucose input, V; (L) is the volume of distribution, and » (min™) is the
rate constant associated with the interstitial transfer of insulin to be utilised. pi (min™)
and S; (L/mU/min) are patient specific parameters, where pg s the fractional clearance
of plasma glucose at basal insulin, and S; is insulin sensitivity as described by
Bergman et al (1985). The model is therefore patient specific and is adapted to each

person before a controller is developed.

Figure 1 shows the fundamental physiological inputs to Equation (1), specifically
insulin and glucose. The insulin inputs on the left side are broken into endogenous, or
basal, insulin production, /3, and exogenous insulin input, u(?), with their
compartment dynamics defined by Equation (2) resulting in the insulin input, /(z). The
glucose inputs in the bottom of the figure are similarly categorised as endogenous,
basal production from the liver, G, and exogenous input, P(?), with no additional
compartment dynamics. Equation (1) is the pharmaco-dynamic equation for the

utilisation of insulin and removal of glucose in the blood plasma and at interstitial



sites in this simplified model, and its output is the net change of blood glucose from

basal levels, G(2).

Additional model dynamics linking the two compartments in Equations (1) and (2)
may be needed, however any missing dynamics would influence S; and the insulin
utilisation term with little effect on the ability to derive an appropriate controller that
acts on blood glucose rise. More specifically, the upward rise of glucose concentration
over the first 45-60 minutes does not depend heavily on this term, and it is this rise

that the heavy derivative control focuses on limiting.

Hence, a second aspect of this research is to determine from the clinical results
whether this simple control model lacks the complexity to sufficiently capture the
essential dynamics required for model-based blood glucose control. Given the
difficulty of modelling the dynamics of hyperglycaemic critical care patients due to
their lack of diabetes history, high glucose intolerance and hyper-insulinemia, the
simplest realistic model was used with the goal of adding critical dynamics as they

became apparent from clinical results.

Controller parameter determination is therefore accomplished in three steps. First,
data is gathered from an uncontrolled oral glucose tolerance test (OGTT). Second, the
patient specific parameters, pg and S; are obtained using unconstrained optimisation
designed to minimise the difference between modelled and test behaviour. Finally,
given a model that fits the error bounds of the uncontrolled patient data, particularly
the initial rise, proportional-derivative (PD) control gains, K, and K, are developed

using a second unconstrained optimisation to find derivative weighted gains that



minimise the magnitude and duration of blood glucose excursion from the patient's

basal level for the same OGTT input.

3.1  Parameter Determination

The total amount of glucose infused simulating an OGTT is 412 mmol, a value
obtained by converting 75g of glucose and assuming the patient has the glucose
evenly distributed in a ;= 12L fluid volume with rate constant n = 0.16 (Furler et al,
1985; Bergman et al, 1985). To account for the different rates of uptake, the peak of
the simulated exogenous glucose infusion profile, P(z), is set at approximately 80% of
the time required for the patient’s uncontrolled OGTT peak glucose reading, and
modelled as a continuous lognormal function. Hence, the simulated and actual uptake
rates for uncontrolled OGTT will be similar and the total glucose input will be

identical.

A continuous function is fitted to the patient's uncontrolled, day one, OGTT data
using a log-normal function, which captures the fundamental dynamics of such data

well (Lam et al, 2002). This function is used to derive a function, G,asien, Which can

be discretised for optimisation into a series of time points, G pasiens, to enhance the

number of points available for data fitting, where G paiens includes the actual data

points taken at the proper times. This approach effectively augments the data taken

and smoothes out some of the noise. Similarly, the same data points can be obtained

from a simulation of Equations (1) and (2), a set labelled G , to enable a comparison
between model and data in the optimisation routine. Unconstrained optimisation using
Matlab is then used to determine S;and pg so that the square error defined below is

minimised.



R= (apatie”t - E”I)T (Epatient _Em)-‘r e Pi¢ 4 eS¢ 3)

where C is a large positive constant (e.g. 1000 for this model), defined to ensure that
pc and Sy remain positive. These exponential terms add the constraints pg > 0 and S; >
0, creating an unconstrained optimisation problem, since meeting these terms are zero

when the constraints are satisfied, and lead to a very large penalty otherwise.

By changing the discretisation of Gpuiens, certain points in the model solution and the
continuous function Gpuiens can be constrained to match more accurately. Typically,
several extra time points around the peak of the glucose response curve are added to
ensure the rise and inflection of the glucose curve are adequately captured. It is this
rise and inflection that are critical for effective control of the blood glucose rise, as it
is this portion of the curve that instigates the vast majority of the controlled insulin

infusion input.

3.2 Control Design

The controller determines the amount of exogenous insulin, u(?), infused. The model
is set to run with a 15 minute sampling interval to match the clinical trial program. A
heavy derivative proportional-derivative (PD) controller is employed:

u(t) = max[0,U,(1+K (G +G,,,. )+ K,G)] (4

prime

where Uy (mU/min) is the basal insulin infusion rate typically equivalent to

approximately 1U/hr, K, is the proportional gain and K, the much larger derivative



gain (Lam et al, 2002). More specifically, the proportional gain is typically 20-50x
smaller than the derivative gain so it dominates the control input during the rise and
fall of blood glucose. Finally, G, (mmol/L) is an offset term to the proportional
control input, so a high basal glucose level, Gp, can be controlled to a lower target
blood glucose level, G, by increasing G,ine, the difference between the target blood
glucose level (G;) and the actual, elevated basal blood glucose level (Gj).
Gprime = GB - Gt (5)
When G,inme 1s more positive, the proportional feedback term is greater. The ‘max’

function, with argument “0”, in Equation (4) ensures that negative insulin demands,

encountered as blood glucose falls, are treated as a zero input.

It is important to note that the PD controller defined in Equations (4) and (5) is non-
linear. More specifically, it only provides insulin for positive control inputs and does
nothing when “negative insulin” is commanded. Per the work in Lam et al (2002), the
use of derivative focused PD control in this way helps predict glucose surges, such as
after a meal or OGTT input, and therefore provide the proper insulin, which in this
case is much like a bolus injection. Similarly, when the glucose is falling the
derivative is negative and no insulin is therefore commanded, which would destabilise
this system by adding insulin to already falling blood glucose levels and resulting in
hypoglycaemia. Therefore, this non-linear PD controller effectively avoids
destabilising inputs with a derivative focused PD controller for this process, even
though a small lag may occur between intravenous insulin infusion and its utilisation

to reduce blood glucose.



The control gains are determined by minimising the objective function (R) defined:

R-cla®-ale@ -6l ©
C,G(1) G(T)+e™ +e™¢

where C;, C, and C are positive constants that weight each of their respective terms.
The G(7) terms are the measured glucose data and in Equation (6) are used to

minimise the area between the blood glucose levels from the measured data and the
target blood glucose levels, G,. Similarly, the G(7) terms in the objective function

minimise the slope of the output glucose levels, reducing oscillation in the blood
glucose response curve, a problem that can occur if the gains are too large. The
exponential terms in the objective function ensure that K; and K, remain positive,
using the same approach as in Equation (3). The control gains are patient specific,
however typical ranges for K; and K, found in this study are (0.1-3) and (10-40)
respectively with a typical ratio of approximately 25 of K to K. Overall, optimisation
is employed not to find a best solution but to efficiently search a large domain of

possible control gains.

Where a proportional controller only infuses significant insulin at elevated blood
glucose levels, heavy derivative control predicts the approaching high blood glucose
level from the steep gradient and infuses insulin pre-emptively, thus enabling a faster
response to increasing blood glucose levels. This approach is similar to a healthy
response to increasing blood glucose levels, where gastrointestinal hormones

stimulate an anticipatory increase in insulin concentration in preparation for glucose



and amino acids to be absorbed from a meal creating an initial insulin spike (Guyton

and Hall, 1996).

Simulation by Lam et al (2002) have shown that the heavy-derivative control method
results in an infusion profile similar to a bolus with a background infusion as
commonly done by diabetics. This bolus with a background infusion also mimics the
post-prandial first and second phase insulin release exhibited by healthy individuals
(Del Prato et al, 2002). An infusion that is proportional to blood glucose level alone
will infuse insulin when blood glucose is still above the desired level but dropping
rapidly, leading to an increased risk of hypoglycaemia (Lam et al, 2002). Pure
proportional control will also not mimic the initial sharp, bolus-like, first-phase
insulin release that occurs in normal individuals following a glucose input or
challenge, as proportional control is strictly a function of the slower rising glucose

level that initially starts at the basal level.

4. CLINICAL RESULTS AND DISCUSSION
Table 1 gives the patient age, condition, insulin levels, Gp, peak glucose levels, and
patient specific parameters, pg and S;, from day one of the trial. The four patients
display a diverse range of glucose responses to the OGTT from relatively flat to
extremely volatile. The insulin sensitivity values, S;, are of the same order or higher
than existing data for sub-cutaneous delivery (Bergman et al, 1981; Avogaro et al,
1989). However, sub-cutaneous infusions can be subject to up to 20% losses in
transportation (Kraegen and Chisholm, 1984). These losses are typically accounted
for by a reduced value for S;, and for intra-venous infusion, the higher values might be

expected.



Patient 1 was a 67 year old female subject in the ICU for three days suffering from
kidney failure. The kidneys can remove up to 30% of effective insulin, so kidney
failure is an “insulin sparing” condition that can lead to a flatter glucose response
(Charpentier et al, 2000). The patient was both hyperglycaemic and somewhat hyper-

insulinemic as well as indicated by a basal insulin level of 70 pmol/L.

Figure 2 shows the measured and model predicted glucose response for day one
(uncontrolled) and day two (controlled). The measured data is presented with the 7%
error associated with GlucoCard™ 2 (Arkray Inc, 2001) measurements. The
magnitude and duration of blood glucose excursion from the basal level are reduced
over 50%. The target sub-basal glucose level of 5.5 mmol/L was not fully reached, as
the relatively low proportional control is not effective as the tail of the glucose
response curve flattens off. This result is an example of the need for gain scheduling
or a modified control approach in this flatter response regime. Note also that the
uncontrolled response is relatively flat for an OGTT, which is a result of the patient's

relative hyper-insulinaemia.

Overall, the automated algorithm provided rapid, effective control of the OGTT input
and the simulated controlled response was an extremely good match for the measured
data, as seen in Figure 2. The difference in day one and day two basal levels is due to
changes in feeding and insulin administration over the night between the OGTTs.
Finally, the patient’s blood glucose concentration began to increase steadily back to

10 mmol/L after the controlled day two test when hospital staff returned to their



sliding scale protocol, showing the need for, and effectiveness of, automated methods

for tight glucose regulation.

Patient 2 was a 48 year old male tetraplegic with Acute Respiratory Distress
Syndrome (ARDS). This patient’s history exhibited an extremely variable response to
most medications and this experience was reiterated during the trial. As shown in
Figure 3, the patient’s glucose absorption was much faster on day two, due to delayed
gastric emptying on day one. The response on day two also shows the possible effect
of an unmodelled insulin accumulation dynamic at 200 minutes. The faster day two
gastric emptying and insulin accumulation dynamic were manually modelled with the
result shown by the dashed line in Figure 3. The day two simulations also include the
sensor error shown in Figure 3. Local hospital protocol generally sets the maximum
insulin infusion rate at 6U/hr, however, due to the high glucose levels and large
derivative, G following the OGTT dose, the control algorithm commanded up to
37U/hr for a given 15 minute period. A constant infusion rate of approximately 6U/hr
was required to maintain the final steady state blood glucose level, and along with the
relatively low S; in Table 1, indicates this patient’s high insulin resistance. The result
is an insulin profile that looks very similar to an insulin injection combined with a
steady background infusion, matching current treatment protocols (Lam et al, 2002;

Pickup and Keen, 2002).

Patient 3 was a 75 year old male with a head injury. Uncontrolled data from day one,
in Figure 4 shows the patient behaves essentially as a Type 1 diabetic, although not
previously diagnosed. Insulin level tests confirmed this assumption with a very low

insulin level of 3 pmol/L. The controlled glucose response simulation does not



capture the unmodelled dip in the glucose profile at 180 minutes, or the initial
stronger glucose rise, further illustrating how the simple insulin utilisation dynamics
in Equation (1) are not necessarily fully adequate. These results indicate that some
insulin appears to accumulate, or take a slower path, in a remote compartment before
utilization, as shown by the dashed line in Figure 4 generated using an approximation
of this dynamic in the model. This slower acting insulin accumulation has been

recently proposed by other researchers (Hovorka et al, 1998; Cobelli et al, 1998).

Patient 4 was a 59 year old female with sepsis and infection. Day one of the trial gave
an almost flat glucose response curve, implying the patient was both hyperglycaemic
and (potentially) hyper-insulinaemic. However, the insulin level test was potentially
infected as shown by the high insulin laboratory test measurement in Table 1. With
the lack of a significant increase in glucose levels from basal and resulting low
derivative values, the insulin infusion was effectively constant on day two. The sub-
basal target glucose level (G; = 5.4 mmol/L) was chosen 1 mmol/L below the patient’s
day two basal level of G = 6.4 mmol/L and the control algorithm proved efficient at
obtaining this slightly reduced level. Figure 5 also shows an initial dip in the
measured data and simulation output on both controlled and uncontrolled data that

may be attributed to an unmodelled delay in glucose uptake.

A comparison between the predicted and actual insulin dose for all four patients is
shown in Table 2. The total insulin infused over four hours differed from the
predicted insulin infusion total by no more than 10.4% with an average error of
approximately 3% over the four trials. This strong correlation helps validate the

fundamental models and methods employed, despite potential missing dynamics that



must be added. Where the model tends to under predict insulin consumption, it can be
attributed to one of at least three factors. First, the discrete 0.2 U/mL insulin infusion
levels are not the analogue values available in the model. Second is that for large
doses, such as with patient 2, some insulin may be “lost” along the length of the
infuser tubing or in physiological saturation dynamics that are not modelled. Third,
the patient specific parameters, pg and S;, may change over the trial period due to drug

interactions or natural fluctuations.

To determine control effectiveness, blood glucose excursion is quantified as the sum
of the area under the measured blood glucose curve above the basal glucose level, as
illustrated in Figure 6, where A; and A4, denote the blood glucose excursion on day
one and two, respectively. The ratio between the controlled, A4,, and uncontrolled
areas, A;, quantifies the effectiveness of the controller. The reduction in basal glucose
level from the beginning, Gz, to the end of day two, Gaginay, measures the
improvement obtained as the controller aims for the lower target basal glucose level.
Figure 6 illustrates both performance metrics. For the first four patients the excursion
from basal blood glucose level is reduced 79 - 89%, and the basal glucose level is

reduced 12 - 41% with specific values given in Table 3.

The unmodelled accumulator dynamic noted in most of the clinical results has four
potential causes. The first possible cause is the physiological battle between the
body's desire to return to the (elevated) basal level and the controller's attempts to
hold it down, as best seen in Figure 2. The second possibility is that the demand for
insulin in the blood is secondary to those of the brain and liver, such that meeting

these demands first causes a reduction in useful insulin in the blood and a later over



reaction. Third, saturation in transport or utilisation could also lead to a delayed
response as seen in these trials. Lastly, it is believed that insulo-penic, or very low
insulin level, patients can develop lipo-toxicity, suppressing insulin release from any
active beta cells. Therefore, when exogenous insulin is infused these beta cells are
free to release endogenous insulin not initially accounted for (Del Prato et al, 2002).
Further tests will help clarify the specific causes of this dynamic, and improve the

models and clinical trial methods employed.

A second limitation of the proof of concept trials performed that should be noted is
the lack of intermittent plasma insulin samples. This data would have aided any model
verification, despite using a well-established model. It should be noted that the
primary goal was to test the control algorithm, which used only glucose
measurements as inputs to the controller, and that plasma insulin levels are not
typically able to be determined as rapidly as glucose samples in a clinical
environment. The latter aspect points to the potential for estimation of plasma insulin

levels as a possible avenue to achieve better control.

Finally, the use of an OGTT to obtain patient specific parameters adds significant
time and complexity, especially for a practical implementation. While the OGTT does
provide a useful set of data on the patient specific glucose-insulin response a similar
result can be seen with an insulin challenge using a fixed insulin bolus in the range of
1.5-2U. The OGTT and the insulin challenge provide similar data about the
hyperglycaemic patient specific metabolic system response that can be used to fit the
endogenous glucose removal and insulin sensitivity parameters pg and S;. Another

approach would be to use a default set of parameters based on data from the literature



and then adapt these values as the trial progressed to obtain better accuracy between

predicted and actual results from insulin and/or glucose inputs.

5. CONCLUSIONS

The research has succeeded in demonstrating tight feedback controlled blood glucose
level regulation in response to a glucose input in critically ill patients using a heavy-
derivative controller. The first four trials show a good level of correlation between the
simple model and patient data, verifying the basic models and methods employed. In
particular, the model's ability to capture the insulin dose to within 10% of actual
values validates the fundamental assumptions made. More specifically, heavy
derivative control has been demonstrated to be effective in practice and to match the
essential dynamics encountered reasonably well, resulting in reductions in glucose
excursion of up to 89% and basal glucose reductions of up to 41%. However, the
results have also clearly demonstrated the need for additional dynamics in the system
model. Hence, the simple glucose-insulin system model employed captures the
fundamental dynamics well for these relatively short tests, but is likely too simple for
long-term effectiveness over several hours or days. Finally, it has been shown that
glucose challenges can be managed effectively and basal values reduced for the
difficult hyperglycaemic critical care patient using this very simple feedback control

method.

Additionally, two simple measures for capturing the effectiveness of automated
glucose regulation are introduced. The comparison of blood glucose excursion area,

for a given input, is seen to capture the essential details of the magnitude and duration



of the blood glucose excursion from the patient's basal level. Secondly, many ICU
patients have elevated basal blood glucose levels so that comparing the final basal
value that the controller achieves is a simple measure of the controller's ability. Future
developments include model development, parameter estimate improvements
including the use of insulin challenges instead of the OGTT, and enhancement of the

control systems employed with an emphasis on adaptive control methods.
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e Vo G =-p,G-S,(G+G,)I(t)+P(r)
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Figure 1: Two compartment glucose-insulin system model with /(?) and P(z) inputs to
blood plasma with measured blood glucose change output, G(#). Each input to the

plasma is broken into exogenous and endogenous sources.
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Table 1: Patient Summary and Day One Results

Basal . Patient Specific
Glucose Peak Insulin Parameters
Patient Age Condition G ’ Glucose Level Diabetic Type
B (mmol/L) | (pmol/L) P Si
(mmol/L) (min) | (L/mU/min)
. Hyperglycaemic,
1 67 'F(;‘lil?lerz 9.5 115 70 0.1549 0.0317 and
hyperinsulinemic
2 8 | :t‘riﬁiéic 125 24.5 59 00187 | 1.1x10" Type 2
3 75 Head Injury 13.8 22.1 3 0.0074 0.0036 ~Type 1
295 Hyperglycaemic,
epsis . . infecte . . an
4 59 Sepsi 10.8 11.8 (infected 0.1 0.0025 d
sample) hyperinsulinemic




Table 2: Comparison between predicted insulin and trial insulin infused

Day two clinical Percentage

Patient Model predicted . . . difference

. . trial total insulin .

total insulin (U) (U) between predicted
and infused (%)

1 4.50 4.43 -1.6
2 38.24 42.65 10.4
3 4.90 4.50 -8.9
4 8.90 8.07 -10.0




Table 3: Comparison of Glucose Excursion for Controlled vs Uncontrolled Data

Day one — OGTT Day two — Clinical Trial
Patient Gg Gg Gs final Ay/A,
(mMol/L) Ar (mMol/L) Az (mM(ol/I)g Gaitinan/ G
1 9.6 292 7.2 60 6.1 0.85 0.21
2 12.5 1524 11.6 172 6.9 0.59 0.11
3 13.1 1082 11.1 196 7.9 0.71 0.18
4 10.8 170 6.4 23 5.6 0.88 0.14




