
i 
 

The Yellow Creek Alluvial Fan 
Dynamics and Impact to Tourism 

Infrastructure in the Fox Valley 
 

A thesis  

submitted in partial fulfilment  

of the requirements for the Degree  

of 

 Master of Science 

In Environmental Science  

by  

Stefanie L. Tibbotts  

                                                                

 

 

 

 

 

 

 

University of Canterbury 

2018 

 



i 
 

Abstract  
 

Alluvial fans are dynamic depositional landforms that are susceptible to abrupt changes influenced 

by fluctuations in sediment supplies. In paraglacial environments alluvial fans display accelerated 

aggradation due to the extraordinary influxes of sediment into the system following glacier retreat. 

This thesis examines how a paraglacial alluvial fan in the Fox Valley has evolved over time, and 

assess the impact of fan dynamics on tourism infrastructure as well as probabilities of walking track 

closures. The study area is a significant tourism destination for the West Coast of New Zealand, with 

the Franz Josef and Fox Glaciers attracting 400,000 visitors to the area each year. Structure from 

motion (SfM), aerial imagery analysis, experimental physical modelling, binary regression statistics 

and chronological investigations using a Schmidt hammer, have all been incorporated into the 

methodology of this research.   

The findings of this research identified that between 2015-2017, there had been a mean elevation 

change of 1.94 m (+/- 30 cm) across Yellow fan, signifying a significant amount of aggradation that 

impacted the walking track locality. Noticeable changes on other fans within the valley displayed a 

similar aggrading trend, which has influenced the locality of the active Fox River channel, and has 

consequently increased the vulnerably of potential damage to infrastructure. The research also 

indicated that there is a 17.7% chance the glacier walking track could be closed on any given day 

linking track closure to rainfall events. Overall the significance of this research provides insight into 

the relationship between the dynamic paraglacial processes within the Fox Valley and impacts on 

tourism infrastructure.   
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Terminology  
 

 

Abandoned channels:      Channels that are no longer connected to mountains or active flow 
(Denny, 1967)  

Aggradation: Aggradation is the accumulation of sediment in river channel (Mugade & 
Sapakale, 2015). 

Apex:                                   The highest point of an alluvial fan, which is where the stream emerges 
from the mountains (Drew, 1873). 

Avulsion:                            
 

The relatively sudden displacement of a river channel (Jones & Schumm, 
1999). 

Base:                                   The term applied to the outermost or lower zone of the fan. This can also 
be referred to as the fan toe or the distal part of the fan (Blissenbach, 
1954; .Bull, 1977). 

Fan entrenchment:         The downcutting into the fan surface of a channel that is contributing 
sediment to the fan surface. Entrenchment usually occurs during fan 
construction (Wasson, 1977) 

Fan head:                          The area of the fan which is close to the apex (Blissenbach, 1954). 
Mid fan:                            The area between the fan head and the base of the fan (Blissenbach, 

1954). 
Paraglacial alluvial fan: A fan which is a product of an environment in the process of transition 

from predominantly glacial to predominantly fluvial conditions (Ryder, 
1971). Also see section 3.1 

Sheet flow:                      Is defined as relatively high-frequency, low-magnitude overland 
flow.occurring in a continuous sheet, restricted to laminar flow 
conditions and is not concentrated into channels larger than rills (Hogg, 
1982).  

Secondary alluvial fan: The alluvial fan at the base of a large primary fan, which consists mainly 
of reworked primary fan deposits (Blissenbach, 1954). 

Terminus:                       The glacier terminus (snout) is the end of a glacier at any given point in 
time Kumar, 2011).  
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Chapter 1: Introduction  
1.1. Introduction  
Alluvial fans are dynamic depositional systems that develop due to the differences between the 

upstream and downstream sediment transport capacity of a fluvial system, usually forming at the 

base of mountain fronts as rivers emerge from constrained catchments onto open plains (Clarke, 

2015; Ballantyne, 2002a). They are dynamic landforms that are susceptible to abrupt changes on a 

geomorphological time scale (decades to centuries), heavily influenced by sediment supply 

fluctuations that promote stages of aggradation or degradation (Kleinhans et al., 2013). The 

evolutionary stages of fan development provide considerable indications of environmental change, 

as development is controlled by fluctuations in climate, tectonics and base level (Nicholas, et al., 

2009). Extensive alluvial fan research has been conducted over the last 50 years exploring different 

depositional environments (e.g. Blissenbach, 1954; Pope & Wikinson, 2005), fan evolution (e.g. 

Harvey, 2005), time frames of fan development (e.g. White et al., 1998) and associated fans hazards 

(e.g. Jakob & Hungr, 2005). Whist, majority of literature has focused on arid and semi-arid regions 

(Lecce, 1990), there has been a noticeable shift towards alpine environments due to the dynamic 

nature of deglaciating landscapes.  

Paraglacial landscapes and landforms are defined as ‘non-glacial Earth surface processes, sediment 

accumulation, landforms, land systems and landscapes that are directly conditioned by glaciation 

and deglaciation’ (Ballantyne, 2002a, p. 1938). Upon deglaciation there is a large influx of surplus 

sediment into fluvial systems from the increase in slope instabilities. Rockslides, rock fall and rock 

avalanches are all enhanced in both their frequency and magnitude in a paraglacial setting, triggered 

by the influence of large precipitation events that are associated with these higher altitude locations 

(Cossart et al., 2008). The evolution of paraglacial alluvial fans are unique with an accelerated period 

of aggradation immediately following glacial retreat, known as the start of the paraglacial cycle 

(Ballantyne, 2002b). After deglaciation has been completed and the sediment supplies have been 

exhausted, the sediment yield rate of the fan will begin to normalise to the rates experienced before 

deglaciation, known as the end of the paraglacial cycle (Ballantyne, 2003). The life span of the 

paraglacial cycle is dependent on the amount of sediment available for erosion, geologic nature of 

the catchment, climate parameters and vegetation cover (Mercier, 2008). The life expectation is 

limited when sediment sources are exhausted, but this process can be prolonged for several 

centuries, or millennia, in areas that have sufficient sediment supply (Cossart & Fort, 2008). 
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Due to the gentle slopes, substantial drainage, good views and height above major river flood plains, 

alluvial fans have been attractive sites for anthropogenic development in mountainous regions (e.g 

roading, houses, walking tracks)(Welsh & Davies, 2011). While there are numerous amounts of 

management techniques available (e.g. levees, floodwalls, debris fences) (Philips & Williams, 2008) 

for infrastructure security, alluvial fans are dynamic landforms and susceptible to change. While 

mitigation measures are necessary they often give the illusion of stability and can promote 

subsequent infrastructural development without the potential hazards (Jakob & Hungr, 2005). 

New technologies for assessing topographic changes in geosciences are becoming readably available 

for researchers. Structure from motion (SfM), is an effective low cost topographic survey tool which 

was developed in the 1980s (Mackie, 2017). Since 2011, the use of SfM has become increasingly 

more popular throughout geosciences applications, with the ability to create high spatial resolution 

topographic outputs within an accuracy of 0.1 m of TLS derived data (Westoby et al., 2012). Due to 

the short duration and limited applications of this method, the potential for SfM applications is yet 

to be fully realised (Mackie, 2017).  

In this thesis, SfM technology will be used to examine the evolution of a paraglacial alluvial fan and 

assess the suitability of this method with physical laboratory modelling. The main focus of this thesis 

is to identify short term and long term changes to the Yellow Creek alluvial fan in the Fox Glacier 

Valley. In particular, assessing the interaction of fan dynamics and influences on tourism 

infrastructure within the valley.      
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1.2. Research Objectives  
This thesis will examine the paraglacial landforms within the Fox Glacier Valley. Specifically 

examining the alluvial fan properties and evolution of Yellow Creek.  

The objectives of this research are to; 

1) Examine how Yellow Fan has evolved in a paraglacial environment. 

2) Investigate the causation of walking track variability, assess the susceptibility of closure and 

to examine current valley management techniques. 

3) Investigate the use of SfM in field based applications and feasibility of using SfM in alluvial 

fan modelling.  

 

1.3. Thesis Structure 
This thesis is organised into seven chapters. The next chapter (chapter two) provides an overview of 

the Fox Valley study site. Chapter three provides background information of a paraglacial 

environment, alluvial fan characteristic and relevant literature to this research. Chapter four 

examines the methodology, data acquisition and processing techniques used for this research. 

Chapter five provides associated results and interpretations from research carried out. Chapter six 

provides a discussion of key themes identified within the results to meet objectives of this research 

and chapter seven provides a summary of key findings and perspectives of future research.  
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Chapter 2: Study Site 
 

This Chapter provides a general overview of the study site used for this research and provides site 

specific geologic, geomorphic and climatic parameters. 

2.1. The Fox Valley 
The Fox Glacier Valley is located within the Westland Tai Poutini National Park on the West Coast of 

New Zealand’s South Island (Figure 2.1).This National Park was established in the 1960s and spans 

over 131,600 hectares including the highest peaks of the Southern Alps, temperate rainforests, and 

rugged West Coast beaches (Stewart et al, 2016). The Fox Glacier and Franz Josef Glacier are the 

most well-known glaciers within New Zealand and attract approximately 400,000 visitors to the 

National Park each year (Wilson et al, 2014). The Westland District Council administers governance 

to the region, while the Department of Conservation (DOC) is responsible for the running and 

maintenance of National Park infrastructure and facilities (e.g. walking tracks, car parks and toilet 

facilities)(DOC 2001;Bosse, 2016). Accessibility to view Fox Glacier is from the glacier walking track 

within the valley that is regularly maintained by DOC. There are several viewpoints along the track 

(Figure 2.1b) that have been established to allow for partial track closures if required. The active 

geomorphology within the Fox Valley as well as rainfall, strongly influences the locality of the 

walking track (e.g. flooding, maintenance or rockfall), which requires ongoing maintenance and 

active management. 

The Yellow Creek alluvial fan (Figure 2.1c) has been specifically selected as the main focus for this 

research due to dynamic interactions between fan development and the glacier walking track. The 

presence of the glacier in the valley has dominated research interest, meaning that paraglacial 

processes and other landforms have been under researched. The Yellow Creek alluvial fan is fed by 

Yellow Creek, which has a width of up to 500 m and varies 90 m in elevation up fan from the fan toe 

(260 m a.s.l) to the apex (350 m a.s.l). The position of Yellow Creek is determined by the presence of 

a large planar structure, trending NNW-SSE, dipping 550 towards the WSW (Hovius, 1995). The 

Yellow Creek catchment is relatively steep and extends up to approximately 1300 m a.s.l towards the 

North side of the Fox Valley. Yellow Creek is a tributary to the Fox River which adjoins the Cook River 

12.5 km downstream. The majority of sediment transported by Yellow Creek, is eroded from the 

western side of the catchment, due to an abundance of sediment being supplied by the highly 

fractured bedrock and material from landslides.  Earlier observations by Hovius (1995), indicate that 

the Yellow Creek catchment prior to the 1960s, experienced intense erosion, where there were large 

areas of exposed surfaces and minimal vegetation. During the 1960s and 1970s, the catchment was 
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Figure 2.1: Research study site. A) Location of Fox Glacier within New Zealand. B) The Lower Fox Glacier valley with key features identified. C) 
The Yellow Creek Alluvial Fan.   

 

 

largely subdued to the erosion, which resulted in the construction of the first visitor carpark within 

the valley near the lower end of the creek. Following increased erosion within the Yellow catchment 

in the 1980s, a debris fan prompted the relocation of the carpark to its current location.  
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2.2 Geology 
New Zealand is a highly active geologic location due to ongoing interactions of the Pacific and 

Australian plates, which is signified by the active Alpine Fault on the West Coast of the South Island 

(Coates, 2002). The formation of the Southern Alps occurred in the Late Cenozoic as a result of the 

Pacific plate colliding with the Indo-Australian Plate, resulting in a tectonic uplift rate of 5-8 mm/yr 

(Fitzsimons & Veit, 2001). The regional geology of the West Coast is controlled by the by the 

boundary of the Alpine Fault. East of the fault are successive bands of metasediments, and close to 

the fault, uplift and erosion are pronounced, where marine sediments are being dragged up from 

large depths to form highly metamorphosed schist. The lithology within the lower Fox valley is 

predominately schist with sandstones and mudstones outcropping further up-glacier (Brook & Lukas, 

2012). 

2.3. Geomorphology  
The Fox valley is a glacial valley that has a characteristic U-shaped profile; the valley sides are 

extremely steep and close to vertical in places along the south side of the valley with glacial 

striations present on exposed bedrock surfaces in the steepest parts of the valley (Hovius, 1995)., 

The valley is still occupied by the Fox Glacier, and has a number of large depositional landforms (e.g. 

alluvial fans and debris fan) and an active outwash plain that is 250 m wide (Hovius, 1995). There are 

numerous catchments within the valley that are typical of a dendritic drainage system, which all 

drain into the Fox River (Figure 2.1b). The combination of steep terrain, highly weathered schist and 

extensive moraine deposits on the valley sides means that the valley slopes are relatively unstable.  

 

2.4. Glacial History  
The Fox Glacier is a temperate valley glacier located at 43030’S, 170010’E. It is New Zealand’s fourth 

largest glacier (Chinn, 2001), starting at 2700 m a.s.l., with an accumulation area that spans 25 km2 , 

the glacier flows steeply down into the narrow  Fox Glacier, terminating at 270 m a.s.l. Currently the 

glacier is ~12.5 km long  (Purdie et al, 2008; Anderson, 2003;Purdie et al, 2014).                                                      

Due to a fluctuating climate and warming trends, the Fox and Franz Josef Glaciers have overall been 

receding up the valley, but have also experienced minor re-advances at with approximately decadal 

regularity, which research has demonstrated is in part related to climate phenomena like the El Niño 

Southern Oscillation and regional temperature variability (Fitzharris et al. 2007; Mackintosh et al. 

2017) (Figure 2.2) (Coates et al, 1991). As glaciers recede, they not only shorten in length but also 

thin (Purdie et al, 2015). This combination of shortening and thinning results causes in the 

surrounding landscape to respond through paraglacial processes, including destabilisation of glacially 
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eroded slopes that were previously supported by larger ice volumes (see section 3.1)(Purdie et al, 

2015; Ballantyne, 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Weather and climate  
The Westland region of the South Island is deemed the wettest region of New Zealand (Macara, 

2016). The spatial distribution of rainfall on the West Coast is dependent on the elevation, exposure 

to rain bearing airflows from the west, and the orographic effect of the Southern Alps (Figure 2.3) 

(Henderson and Thompson, 1999; Klik et al, 2015; Macara, 2016). The weather conditions 

experienced on the west coast are dependent on dominant wind flows. Westerly flows experienced 

on the West Coast are associated with depressions in the south of the country and generally move 

towards the east, resulting in heavy rain. Unstable conditions are also associated with westerly 

flows, due to the change from predominate westerly to a south westerly flow, with dramatic 

clearances and showers re-developing. Northerly flows form between an anticyclone and a 

depression, which are usually accompanied by prolonged rainfall that can reach torrential intensities 

in the Southern Alps. The majority of the rain that occurs on the west coast is from winds that have a 

northerly component with a mild temperature. Fine weather conditions are associated with south 

easterly flows (Macara, 2016). Storms frequently occur on the west coast, where large quantities of 

rainfall are received over 24 hours (eg. 200 mm/day), and result in frequent flood events. In some 

Figure 2.2: The changes in glacier lengths overtime (Purdie pers. Comm, 2018).  
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Figure2.3: Median annual rainfall (1981 -2010) for the West Coast 
region of New Zealand (Macara, 2016). 

instances, it is the intensity of rain events on the hourly scale, rather than the total amount of 

rainfall that can have the great impact on waterbodies (Davies et al, 2011).  

Locally, in terms of mean annual rainfall in the Fox valley, there are currently no weather stations as 

NIWA ceased monitoring in 1994. However, the data gathered between 1966 and 1994 showed a 

mean annual precipitation amount of 4691 mm (Purdie et al, 2008). The nearest active weather 

stations are in the Franz Josef, with a mean annual precipitation between 1981 and 2010 is 5751 mm 

(Macara, 2016).    
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Figure 3.1: Paraglacial landforms and processes (Mercier, 2007) 

Chapter 3: Background 

Information 
In addition to primary research completed for this thesis, it is also highly valuable to review previous 

research relating to the specific features discussed throughout. The aim of this chapter is to provide a 

brief introduction to paraglacial environments, dynamic characteristics of alluvial fans, as well as 

providing an overview of existing literature within the Fox Valley.   

3.1. Paraglacial environments 
When the term ‘paraglacial’ was introduced in the early 1970s, it was used to describe the response 

of a fluvial system to the rapid sediment adjustments from glacial and non-glacial conditions. 

Specifically, the large quantities of readily available glacial sediment and the reworking of this 

sediment during and after deglaciation (Wilson, 2009; Ryder, 1971; Church & Ryder, 1972). Over the 

past 35 years the meaning of the term has been extended to include adjustments of mountain rock 

walls and coastal environments (Wilson, 2009; Wyrwoll, 1977; Forbes & Syvitski, 1994). As a result, 

Ballantyne (2002a, p. 1938) has redefined the term ‘paraglacial’ to be ‘non-glacial Earth surface 
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Figure 3.2: Exhaustion model paraglacial sediment release (Ballantyne, 2002b)  

processes, sediment accumulation, landforms, land systems and landscapes that are directly 

conditioned by glaciation and deglaciation’. This recognising that glaciation and deglaciation impacts 

a range of geomorphological processes and landscape components as opposed to just the fluvial 

system (Wilson, 2009).  Landforms and land systems that are regarded as paraglacial features 

include; debris cones, alluvial fans, valley fill deposits, rock slopes, sediment mantled slopes, glacier 

forefields, glaciolacustrine systems and coastal systems (Figure 3.1) (Slaymaker, 2009).  

The paraglacial concept cannot be pinpointed by processes (Ballantyne, 2003), even though the 

expression of ‘paraglacial processes’ has been now in common use (Andre, 2009). Rather it focuses 

on the accelerated conditions of accelerated geomorphological activity after glacier retreat 

(jakobizaga, 2011).  A common discussed feature following deglaciation of a landscape is the supply 

of additional sediment sources, such as unstable rock walls or glacigenic sediment storages, which 

are highly susceptible to erosion (Ballantyne, 2002b).          

 A term commonly used in literature to describe this phenomena is the paraglacial cycle. This is used 

to describe the extraordinary sediment supply that exceeds the rate of debris produced by 

weathering in a paraglacial environment (Ballantyne 2002b). It was first discussed by Ryder and 

Church (1972), in which following deglaciation, sedimentation rates are accelerated with the surplus 

supply of sediment. Over a sufficient timeframe, once the sediment supplies are exhausted, the 

sedimentation rates will start to decline and return to background sediment release rates. The 

timeframe for this sedimentation process, has been widely discussed and has resulted in the 

creation of numerous sediment exhaustion models (e.g. Ryder & Church, 1972; Harbor & 

Warburton; 1993; Forbes & Taylor, 1987). As a result, an idealised sediment exhaustion model has 

been created by Ballantyne (2002b) (Figure 3.2), which assumes that the rates of sediment release is 

dependent only on sediment availability. That sediment sources are not replenished and that the 

rate declines exponentially overtime (Iturrizaga, 2011). 
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Figure 3.3: a conceptual diagram of an alluvial fan (Rachocki, 1981). 

Sequentially, paraglacial landforms and land systems all have different response and recovery times 

depending on the spatial scale, making it hard to distinguish an exact overall timeframe (Slaymaker, 

2011). Paraglacial environments are landscapes that have been active since the last glacial maximum 

(Church & Ryder, 1972), which in New Zealand occurred 19000 years ago (Suggate & Almond, 2005).  

 

3.2 Alluvial Fan Characteristics  

3.2.1 Alluvial Fans  

 Alluvial fans are depositional systems that develop due to disparity between the upstream and 

downstream sediment transport capacity of a fluvial system (Clarke, 2015). The term alluvial fan has 

been used to describe these landforms, due to the fan like shape produced and the contributing 

fluvial process (Figure 3.3). Other processes that may contribute to fan formation include, debris 

flows and snow avalanches. Debris flow activity on fans is highly sporadic and irregular based on the 

availability of unconsolidated materials and occurrence of intense rainfall within a catchment (Beaty, 

1990).  A complex fan formation, also known as a composite fan may incorporate a range of 

sediments from mudflows, debris flows or glaciofluvial, lacustrine, fluvial and aeolian derived 

processes (Ballantyne, 2002a).  
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deposits characteristically exhibit parallel bedding, generally low roundness, although can increase 

down fan in some instances and a decreasing particle size towards the fan base (Rachocki, 1981). 

Fans have also been distinguished to have a slope generally less than 150, but are often less than 50, 

anything steeper than 150 could be considered a debris cone (Ballantyne, 2002a).   

 

3.2.2 Fan dynamics  

 Alluvial fans are dynamic landforms, the evolution of which is determined by both external 

(allogenic) environmental parameters (e.g. climate, tectonics, drainage basin size and base level 

change), and internal (autogenic) process-form feedbacks (e.g. the change between sheet flow and 

channelized flow states) (Clarke, 2015; Nicholas et al, 2009). Development of alluvial fan systems has 

long been investigated within the geomorphological and sedimentological literature, however, it can 

be often difficult to isolate the influence of each contributing environmental parameter (Hartley et 

al., 2005). Alluvial fan physical modelling has been largely used within literature to try establish 

relationships and observe the evolutionary processes of fan development (e.g. Clarke, 2015; Clarke 

et al., 2010; Hooke, 1968; Schumm et al., 1987). However, the understanding of autogenic controls 

on alluvial fan evolution remains limited, in particular the relationship between flow width and 

depth and sediment transport and how these may alter in response to changes in fan morphology 

(Clarke et al,. 2010).  

Climatic changes appear to be the primary control of fan development, with periods of excess 

sediment supply leading to fan sedimentation through aggradation and progradation (Harvey, 2005). 

This is a result of the fluvial system readjusting to changes in precipitation, solar energy inputs, 

changes in base level and changes in vegetation (Kleinhans et al., 2012). Paraglacial alluvial fans form 

as a response to a change of climate, where there is ample sediment available (see section 3.1). They 

experience initial aggradation at high rates due to the large sediment input, followed by incision and 

terrace development as sediment inputs decline and the base level is lowered by regional uplift 

(Ballantyne, 2002a).  

Stabilisation of fans occur when either the main channel becomes entrenched in the fan, or the 

sediment ceases to be supplied, which is signified by the establishment of vegetation (Carryer, 

1966). Many alluvial fans that exhibit fanhead trenches can still aggrade in their distal zones but are 

stable up fan (Harvey, 2002). Late stages of fan development are largely influenced by the maturity 

of the fan and the beginnings of features that occur in the late stages of fan development (e.g. 

effects of varying base levels, tectonic movements, slumping of unconsolidated material and 

secondary alluvial fans)(Blissenbach, 1964).                                                                                                                                                                                                                      
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Figure 3.4: The different flow zones on an alluvial fan (French, 1989).  

3.2.3 Hydrology and Channel Dynamics   

The fluvial system is a complex response system with two main components, the morphological 

system of channels, floodplains, deltas and the cascading system of the flow of water (Piegay & 

Schumm, 2005). The channel dynamics on alluvial fans are similar to and often compared to a 

braided river system (Blair & McPherson, 2009). Fans have three different zones of hydraulic 

processes (Figure 3.4), zone one is the main channel zone near the apex, signified by one active 

channel that is usually incised signifying stability of the upper fan. Zone two is the braided zone 

where the channels are unstable and create multiple smaller channels that are prone to avulsion 

episodes. Zone three is the sheetflow zone found far down the fan, where the flow spreads laterally 

and is very shallow (French, 1987).  
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3.2.4 Alluvial Fan Environments 

Alluvial fans are commonly found in arid and semiarid regions with tectonically active mountains, 

resulting in an abundant supply of sediment (Lecce, 1990). However, alluvial fan development is not 

confined to these particular areas and can occur in humid temperature regions, alpine 

environments, the humid tropics, paraglacial, periglacial, Arctic and Antarctic environments (De Haas 

et al, 2015; McPherson, 2009; Harvey, 2011). Extensive alluvial fan research has been carried out 

over the last 50 years. However, some alluvial fan environments have been more intensively 

research compared to others, the formation of alluvial fans remains similar, and it is just the scale of 

the fan that is different (Lecce, 1990). Many different studies suggest that processes leading to fan 

deposits differ little between humid and arid environments or between arctic and subtopic 

environments. Fans from periglacial regions were also found to be relatively similar to fans 

developed in other climates, although periglacial fans have been largely understudied (De Haas et 

al., 2015).    

McEwen et al., (2011), suggests that a small amount of alluvial fan research had been completed on 

explaining alpine fan morphology and development in terms of nature, magnitude, frequency and 

the dynamics of different process regimes. The majority of studies done on an alpine environment 

(e.g. Krostaschuk et al.,1986; Decaulne et al., 2007; Hornung et al., 2010; Crosta & Frattini, 2004; 

Cavalli & Marchi, 2008;  Marchi et al., 2010) focus on glacier-fed fan development, whether this be 

as a result of glaciation or deglaciation (e.g. paraglacial processes). For example, Horung et al., 

(2010), explored the relationship between sediment fluxes  and the development of a fan during the 

Holocene in Switzerland, concluding that the sediment fluxes had declined overtime reflecting 

reductions of sediment production within the source catchment (paraglacial cycle).  

3.2.5 Influence on Evolution and Shape Variations    

The factors that influence fan morphometry are; the supply of water, sediment from the feeder 

catchment and allogenic environmental parameters (Al-Farraj & Harvey, 2005). More specific factors 

identified by Kochel (1990) and Weissmann & Fogg (1999) that affect the fan morphology include; 

 The nature of dominant depositional processes (e.g. fluvial, hyper concentrated flood flow, 

debris flow) 

 Frequency of depositional events 

 The rate of recovery or revegetation of hillslopes and fan surfaces following deposition 

events 

 Source basin lithology  

 The degree of topographic restriction or the deposition site where fans are constructed  
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 Post deposition modifications of fan sediments by other geomorphic processes (e.g. the 

cutting of the fan toe by an active river at the base of the fan) 

 Sequences that form in response to changes in accommodation space caused by base level 

or base profile changes 

3.2.6 Time scale  

The time scale of fan development are largely varied and largely dependent on availability of 

sediment. Most alluvial fans were formed during the last glacial age, with more recent fan 

development occurring in paraglacial environments (see section 3.1), although frequent debris flows 

can form steep and small alluvial fans (Ono, 1990). For example, alluvial fan development in north 

and central Japan occurred mainly in the early half of the last glacial age, between 90000 and 40000 

years ago, where the fans formed through glacial/interglacial climatic changes when there was an 

abundance of sediment available (Ono, 1990).  

 

3.3 Hazards 

3.3.1 Alluvial Fan Hazards  

A natural hazard results from climatic, tectonic or other geomorphic events of natural processes that 

continuously reshape the landscape in order to maintain the equilibrium between endogenous and 

exogenous processes, therefore they are not isolated events but tend to recur (Kritikos, 2013). 

Predominate hazards associated with alluvial fans are flooding and debris flow events. Alluvial fan 

floods typically do not exhibit the same predictable behaviour compared to normally encountered 

river floodplains. This is due to unpredictability of flow paths and large availability of sediment 

within the catchment (Philips & Williams, 2008). The FEMA (1989) has identified the following 

characteristics of flood and debris hazards which are commonly associated with alluvial fans; 

 High velocity flows that can produce significant hydrodynamic forces on structures. 

 Significant erosion/scour  

 Inundation of the fan area 

 Flash flooding  

 Unpredictable flow paths with the potential of channel avulsion 

 Hydrostatic and buoyant forces 

 Large sediment influxes and deposition depths from a single debris flow event 
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3.3.2 Glacier Hazards  

Hazards associated with glaciers include sea-level rise, landslides and mass movements (see section 

3.3.3), changes to streams and glacier outburst floods (Clague, 2013). The melting of glaciers 

contributes to the current sea level rise of about 3 mm/yr., if all the glaciers were to disappear sea 

level would rise by several tens of centimetres, but would still have a detrimental effect on low lying 

coastal areas (Larsen et al., 2007). Glacier outburst floods occur when large bodies of water become 

trapped, within, beneath or at the margins of glacier and subsequently drain suddenly causing down 

valley floods (i.e. Jökulhlaups) (Clague, 2013).  

 

3.3.3 Paraglacial Hazards 

Hazards in paraglacial environments include rockslides, rock fall and rock avalanches due to the 

landscape relaxation processes immediately following ice retreat in areas associated with glaciation 

(Hewitt, 2006). The unloading pressure on the material results in an increase in instability, due to the 

steep slopes and geological parameters associated with different rock types and jointing. Rockslides, 

rock fall and rock avalanches are all enhanced in both their frequency and magnitude in a paraglacial 

setting, triggered by the influence of large precipitation events that are associated with these higher 

altitude locations (Cossart et al., 2008). For example, from August 20-23, 2005, in the European Alps, 

a large storm with extremely high rainfall intensities caused major river erosion, flooding events and 

triggered landslides, debris flows and rock fall (Hilker et al., 2009).  

 

3.4 Anthropogenic Influences 

3.4.1 Urbanisation on Alluvial Fans 

Alluvial fans are commonly used as sites for development in mountainous regions. This is due to 

their gentle slopes, substantial drainage, good views, and they are generally above the flood range 

of major rivers (Welsh & Davies, 2011). Despite the positives around developing infrastructure on 

fans, there are dynamic landforms and have associated hazards. For Example, the town of 

Antofagasta (Chile), experienced a significant flooding event from 42 mm of rain that fell within 

three hrs. Subsequently, 100 people were killed and extensive damage was caused (Mather & 

Hartley, 2005). In New Zealand, Aoraki/Mount Cook village is situated on the Black Birch fan. In the 

1960s an upgrade was needed on the oxidation ponds and they were built out of sight on the fan. As 

a result this required river control work to keep the Black Birch stream to the southern side of the 

fan, which gave the illusion of stability and promoted subsequent infrastructural development. The 

stream is continuously constrained by earth works to prevent avulsion (Jakob & Hungr, 2005). 
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 3.4.2 Typical mitigation structures 

The dynamic nature of alluvial fans provides numerous floodplain management challenges due to 

the unpredictability of flow paths and delivery of large amounts of sediment (see section 3.3.1) 

(Welsh & Davies, 2011). Typical mitigation structures identified by Phillips & Williams (2008) for 

alluvial fan management include the following; 

 Levees and floodwalls 

 Channelization or straightening of the main channel  

 Debris and detention basins  

 Drop structures  

 Debris fences 

  Local diles  

 Street orientation  

 Elevating structures  

 Floodplain zoning.  

Protection measures that provide whole fan protection include levees, channelization, detention 

basins and debris basins or dams (FEMA, 1989). While these management techniques are widely 

used, they are designed for long term solutions on urbanised fans (Phillips & Williams, 2008).   

 

3.5 Tourism in the Fox Valley 

3.5.1 Tourism to the Area 

The Westland Tai Poutini National Park is home to the Franz Josef and Fox glaciers and is one of the 

South Island’s most iconic tourism destinations (Wilson et al., 2014). In 2013, a total 418,466 

international tourists visited the wider West Coast region. The majority of whom visited the glaciers, 

with 283,374 tourists staying on overnight trips in the West Coast region (Statistics New Zealand, 

2014). A survey conducted by Wilson et al (2014) found that majority of visitors visited both glaciers, 

whist the remainder were just going to visit one of the two. Over the past four decades fundamental 

challenges have arisen for Nature-Based tourism industries due to climate change (Espiner et al., 

2017). Nowhere in New Zealand are these changes most evident than at the Fox and Franz Josef 

Glaciers (Wilson et al., 2014).  For example, in 2013/2014, the increase in slope instability from the 

retreat of both the Franz Josef and Fox Glaciers, resulted in the suspension of walk on glacier guided 

tours. Currently, the only way to access the glaciers is from air, which is highly weather dependant 

and provides continuous challenges for tourism satisfaction and businesses in the area (Stewart et 
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al., 2016). Tourism in the Westland area is increasingly significant for the surrounding townships and 

livelihoods of locals. A survey completed by Stewart et al (2016), found that the glaciers are 

perceived as a high commodity and extremely influential to the area. For example two stakeholders 

responses where; ‘the glaciers are first and foremost the reason why people stop at Franz and Fox’ 

(DOC), ‘if the glaciers were not here, these towns would not be either’ (Franz Josef activity operator) 

(Stewart et al., 2016).  

3.5.2 Current Management Plans 

In accordance with the New Zealand National Park act 1980 and policy for National Parks 1983, the 

Westland Tai Poutini National Park Management Plan (NPMP) 2001-2011 was established for the 

management of the park. Under the jurisdiction of the plan it is DOCs responsibility to ensure all 

objectives are meet and maintained. For example, in section 4.3.13a of the management plan, DOC 

must inform park visitors and concessionaries of potential natural hazards in the park in order to 

create an awareness and understanding of natural hazards, whist it is still recognised that visitors 

will be primarily responsible for their own safety (DOC, 2001). This is currently achieved within the 

valley through the use of hazard warning signs (Figure 3.5) and visitor information boards through 

recommendations from Espiner (1999).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Rockfall hazard sign used within the Fox Valley (Dyer, 2017) 



19 
 

In a response to the Franz Josef and Fox Glacier recession, DOC undertook a partial review of the Tai 

Poutini NPMP (DOC, 2013). The review sought stakeholder feedback on ongoing issues (e.g. aircraft 

access, extending access roads, upgrading walking tracks) to help compensate for increased 

distances to the glacier termini. The amendment that was released sought to balance the aspirations 

of commercial businesses accessing the glacier, alongside recreational groups who were concerned 

about increasing disturbance from aircrafts and vehicles (Stewart et al., 2016; DOC, 2013).  

The flexibility of the 2001- 2011 NPMP was identified in the 2012 review as to not being flexible 

enough to cope with the current speed of the glacier changes. When the plan was first approved in 

2001, it was not anticipated how dramatic the rate of glacier retreat would be and subsequent 

problems with losing walking access to the glacier (DOC, 2013). Subsequent adaptive management 

strategies have been incorporated in the amended 2014 NPMP and include the use of ‘near 

terminal’ terminology as descriptive end points of the routes. Enabling appropriate end points to be 

selected when walking tracks are constructed maximises visitor safety and enables the track end 

points to change the glaciers retreat or advance. The construction of the walking tracks within the 

valley has also been specified to be unsurfaced, to ensure that ongoing maintenance and 

reinstatement of tracks is at a minimum following flooding events (DOC, 2013).  
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Chapter 4: Methodology Data 

Acquisition and Processing     
 

This chapter provides details of the methodological approach used including a description of the 

research methodology, data acquisition in the Fox valley, processing of data and associated 

limitations.   

 

4.1 Structure from Motion (SfM)  
 

4.1.1 General Method Overview 
Over the last decade a technological revolution in geomatics has transformed the way digital 

elevation modelling has been incorporated with geomorphological terrain analysis (Westoby et al., 

2012). Geosciences frequently use three-dimensional (3D) topographic information to quantify 

landforms and landform properties, specifically conceptualising changes from observations and the 

use of numerical models (Carrivick et al., 2016). Through new methods of acquiring topographic 

data, technological advancements, higher quality spatial resolution, and the ability to match the 

scale of topographic data with the spatiotemporal scale provide greater details of landform 

morphology (Carrivick et al., 2016). This enables the quality of digital elevation models (DEMs) to 

have larger spatial extents, improved accuracy and greater resolution outputs (Westoby et al., 

2012). Current topographic data survey methods such as traditional ground surveying, terrestrial 

laser scanning (TLS), and remote sensing provide a substantial digital output. However, these 

methods are often restrictive for data acquisition with high costs or lack practicality in rugged 

environments.  

A new topographic tool, Structure for Motion (SfM), creates high resolution 3D models from a series 

of overlapping offset two-dimensional (2D) images (Figure 4.1) with appropriate processing software 

(Mackie, 2017). SfM compatible software, such as Agisoft Photoscan, 123D Catch/ReCap and 

Autodesk ImageModler, use algorithms to identify and pixel-match features based on luminance and 

colour gradients from overlapping digital images, as well as calculating camera orientation and 

location from the different positions of multiple matched features (Carrivick et al., 2016). However, 

SfM only provides relative camera locations and scene geometry, which as a result, the generated 

point cloud output is in an arbitrary coordinate system. To create spatially relevant SfM derived 

outputs, image collection is required and images must be processed in conjunction with a 
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Figure 4.1: An example of how SfM works with camera positions in regards to overlapping of 2D imagery. 
Multiple images are captured from a range of angles and positions of the targeted surface to ensure optimal 
imagery overlap (Bemis et al., 2014). 

georeferencing system (i.e. ground control points (GCPs)) (Szeliski, 2011). Successful georeferencing 

and scaling of the point cloud requires a minimum of three GCPs with XYZ coordinates (Carrivick et 

al., 2016).    

Gruen (2012) states that the pixel matching phase of a SfM workflow is the most important function 

and is affected by image quality, lighting conditions and surface characteristics (i.e. texture). In 

agreement, Mosbrucker et al., (2017) has identified that in terms of SfM accuracy for camera 

collaboration, point density, and DEM outputs, it is the pixel- level detection within the source 

imagery that is key.  When working in the physical environment and at large scales, lighting 

conditions, changes in shadow length, surface albedo, and distribution of camera positions can also 

affect the quality of 3D models produced (Carrivick et al., 2016). Westoby et al., (2012) and Gienko 

and Terry (2014), found that the accuracy of SfM derived 3D models is highly correlated with the 

number of points used to reconstruct a surface (i.e. point density). 

 

SfM is a relatively low-cost and effective method that can capture complex topography in a variety 

of environments. Additionally, data acquisition for SfM is easy with multiple techniques available 

(e.g. Ground base hand-held device, Unmanned Aerial Vehicle (UAV), helicopter). The method can 

be applied over a great range of spatial scales (10-2 to 106 m2), where the accuracy of a survey in 

some circumstances is comparable to that from modern TLS. Associated disadvantages with using 

SfM include errors arising from the control of the surveyor; the post field collection processing, 
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Figure 4.2: DJI Phantom 4 drone used for airborne survey of the Yellow Creek alluvial fan.  

which as a result the survey output is not known until a later date and dependant on number of 

imagery, the processing time can be a long process (Carrivick et al., 2016).  

The relevance of using SfM for this research is based on the advantages associated with this method 

and previous geomorphic applications of SfM. SfM derived DEMs have been used to investigate 

landslide displacement, landslide expansion, identifying flow kinematics such as flow rate, scarp 

erosion and sediment accumulation (Niethammer et al., 2011; Lucieer et al., 2014). SfM is the 

primary method used within this research and will be used to address objectives one and three.  

4.1.2 Data Acquisition  
Acquisition of imagery for SfM processing took place on the 15th November 2017, with the use of a 

DJI Phantom 4 drone (Figure 4.2). For the purpose of undertaking an airborne survey of Yellow Creek 

alluvial fan, the flight paths were pre-planned using the Map Pilot application compatible with DJI 

software. This ensured optimal use of flying time in accordance to battery life and to allow the entire 

fan to be included. Five flight paths were established across Yellow Creek (Figure 4.3), with a flying 

height of 60m from each take-off location to optimise imagery overlapping for a more detailed SfM 

output with post-field processing. Prior to completing the flights, seven yellow ground targets were 

randomly distributed across the fan to provide ground control (Figure 4.4). Each GCP target was 

surveyed with a Trimble R8 Global Navigation Satellite System (GNSS) using the real time kinematic 

mode (RTK) in a New Zealand Transverse Mercator 2000 (NZTM2000) coordinate system.  The GNSS 

base station was set up on the lower reaches of the fan in conjunction with a base control set up at 
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Figure 4.3: Screenshot of completed flight paths for drone survey from Map Pilot. The first flight path has been 
highlighted in orange with the orange dots representing the boundary of flight one. The purple dot within the 
image displays the drone location. The green dot represents the starting point for imagery capture and the red 
dot represents the finishing location for that particular flight.  

the Land Information New Zealand (LINZ) benchmark in the Fox village (at the junction of Cook Flat 

road and SH6).   

Operating a drone within a National Park requires some flight restrictions to be observed 

(http://www.caa.govt.nz/rpas/), in particular, with the large amount of helicopter flights in the 

valley, the drone could not be flown during the early evening until all scheduled flights had been 

completed in the valley. Completing the drone survey in the early evening meant that there was a 

low amount of foot traffic in the valley, reducing the risk of possible incidents or disturbance of 

visitors. Due to the early evening drone survey, lighting conditions were dull and have the potential 

to impact on pixel matching. 
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Figure 4.4: Mapped ground control points used for drone survey. 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A DEM from November 2015 was supplied by Dr Sam McColl (Massey University) from previous 

work in the valley (Figure 4.5). The Fox2015 DEM was also generated by SfM, being produced from 

an aerial survey of the whole Fox valley using helicopter mounted cameras. The survey was 

completed in NZTM2000 at ellipsoidal heights using the same base control of the LINZ benchmark in 

the Fox village.  

Figure 4.5: Fox Valley November 2015 DEM supplied by Dr Sam McColl.  
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Table 4.1: Coordinates (NZTM) used for height conversion of Fox2105 DEM using the LINZ conversion tool.  

Easting Northing Ellipsoid Height Converted Orthometric Height Difference

1361264.985 5180007.234 417.556 405.354 12.202

1361840.455 5179998.503 540.67 528.396 12.274

1361272.129 5179420.652 256.544 244.31 12.234

1361833.31 5179427.002 274.77 262.469 12.301

12.253

4.1.3 Data Processing and Associated Limitations  

The processing of data was completed using Agisoft PhotoScan professional v1.2.6 (64 bit) and 

ArcMap 10.4.1. The workflow of processing the drone captured imagery to a SfM derived DEM 

output is summarised in Figure 4.6. In terms of accuracy, the photo alignment was processed on a 

high setting to generate 323,545 points for the point cloud and subsequently 58,616,898 points for 

the dense point cloud, producing a high quality DEM. From the 7 GCPs distributed on the fan (Figure 

4.4), only 4 points were identified within the imagery and used for the SfM processing. The GCPs 

that were not used were within close proximity of other GCPS, which can cause issues with 

processing alignment if the point distribution is not great enough, so as a result they were 

disregarded. 

To be able to use the November Fox2015 DEM to generate an appropriate DEM of difference with 

the November Fox2017 DEM, the height projection for the Fox2015 DEM was first adjusted from 

height above ellipsoid to orthometric height. The Fox2015 DEM was first input into ArcMap 10.4.1, 

where using the clipping tool, it was reduced to the Yellow Creek fan area. Coordinates for each 

corner were extracted and converted into meters above sea level using the LINZ online coordinate 

conversion tool (http://apps.linz.govt.nz/coordinateconversion/index.aspx?Advanced=1).                                                                                                                      

The selected coordinate input and output were both set to NZTM, with the height coordinate 

systems set to Ellipsoidal for the input and New Zealand Vertical Datum 2009 for the output.                  

The average offset height of 12.253 m (Table 4.1), was subtracted from the clipped Fox2015 DEM 

using the raster calculator tool, thus converting the heights into orthometric.                                                                                        

With the completed height conversion, the raster calculator tool was used to subtract the Fox2015 

DEM from the Fox2017 DEM to generate a DEM of difference to establish fan evolution over a two 

year period.  

 

 

 

 

http://apps.linz.govt.nz/coordinateconversion/index.aspx?Advanced=1
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Processing limitations associated with this methodology include; 

 The height conversion of the Fox2015 DEM.  

 Possibility of DEM alignment discrepancies between Fox2015 and Fox2017 

 GCP accuracy of with Trimble, vertical and horizontal estimates are 8cm and 5cm 

respectively. 

  Associated SfM processing errors with the x-axis (5.55 cm), y-axis (4.20 cm), z-axis (1.47 cm) 

and total error (7.11 cm). Individual error estimations of each GCP used within the 

estimations provided in the Yellow Creek processing report (Appendix A).  
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Figure 4.6: Overall SfM workflow, adjusted from Mackie (2017).  
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4.3 Aerial Photograph Analysis  
 

4.3.1 General Method Overview 
Digital photogrammetry is well used in geosciences across a variety of spatial scales, including a 

combination of aerial and ground-based platforms to assess the rapidly changing surfaces of, for 

example, glaciers, braided rivers, coastal systems and landslides (Carrivick et al., 2016). With the 

increasing availability of open source data and high resolution aerial imagery, the use of aerial 

imagery is valuable for interpretation of past environments and geomorphic changes (Gomez et al., 

2015). This method was used in conjunction with SfM to address objectives one and two in this 

research.   

4.3.2 Data Acquisition  
Acquisition of photographs of the Yellow Creek alluvial fan and other landforms of interest within 

Fox valley was performed on each site visit to the Fox valley. The photographs acquired within the 

valley were used for the analysis of small scale changes and feature identifications, whereas the 

aerial photographs acquired were used to identify larger scale landform and valley changes.                                                                                                

The acquisition of aerial photographs used within this research include imagery from Google Earth 

with the available timeline function, LINZ, New Zealand basemap imagery through ArcGIS, three web 

cameras operating in the valley and personal imagery captured and provided by Prof. Stefan Winkler 

(University of Würzburg) and Dr Trevor Chinn (Alpine & Polar Processes Consultancy/Lake Wanaka).  

Currently there are three Snowgrass Solution web cameras operating in the fox valley installed and 

utilised by Fox Glacier Guiding and DOC (http://www.snowgrass.co.nz/cust/fox_glacier/index.html ).                                                                                                        

The cameras are situated on the surrounding slopes to capture images from the lower and middle 

regions of the valley and glacier. The camera utilised for this research is the lower valley camera, 

where six different locations are captured at regular intervals daily. The locations captured include; 

Yellow Creek, Straight Creek, Gun barrel and the carpark, which are sites of significant interest in this 

research.  Imagery from the web cameras were collected at appropriate monthly intervals or after 

large weather events.  

4.3.3 Data Processing and Limitations  
Data analysis has been completed by comparing the collected imagery identifying and annotating 

key indicators of geomorphic change over time on Yellow Fan and the Fox Valley as a whole, for 

example sediment deposition and erosion. Imagery captured within the valley was orientated by 

using key landmarks e.g. walking track marker posts or large boulders, to be able to make 

observational comparisons of change over time.  Aerial imagery provided an overview of the valley 

http://www.snowgrass.co.nz/cust/fox_glacier/index.html
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allowing analysis of track changes, channel avulsions, areas that experienced episodes of accretion 

or erosion after a significant rainfall event and establishment of vegetation.  

A number of limitations of aerial photograph analysis at this study site need to be highlighted. Due 

to the location of the site being so close to the Main Divide there is a lack of imagery over a 

continuous timescale. The rugged terrain surrounding the valley, isolated locality of Fox Glacier 

within a National Park, minimal infrastructure and low population in the surrounding area limits the 

practicality of regular aerial surveys.  The weather on the West Coast is extremely variable. As a 

result, capturing imagery from the web cameras was not always viable due to cloudy or raining 

conditions. The visible spectrum of Google Earth imagery captured by satellites is similarly 

influenced by cloud coverage, impacting image clarity and availability. While aerial photograph 

analysis is a method widely used, earlier imagery is not to the same pixel quality standards as 

present day, thus making it difficult to establish small scale observational changes.  

 

4.4 Sedimentological and Chronological Investigations 
 

4.4.1 General Method Overview 
To address research objective one, a number of methods investigating the geochronology and 

sediments on Yellow fan were undertaken. They include the use of the Schmidt hammer, clast 

analysis and notations of depositional features observed on the fan.  

The Schmidt hammer yields an inexpensive and instant measure of bedrock and boulder surface 

hardness. It is widely used for estimating the mechanical properties of rock material (Aydin & Basu, 

2005). Geomorphic research frequently uses the Schmidt hammer for relative surface exposure 

dating on a wide range of different landforms through the Holocene and sometimes beyond. Its 

application based on the relationship between the degree of surface weathering and the time period 

a rock surface has been exposure to the atmosphere (Goudie, 2006). The rebound value (R-value) 

retrieved by the Schmidt hammer is measured on a scale between 0 and 100 and provides a 

measure for the magnitude of the rebound when a spring-loaded plunger impacts on the rock 

surface with a calibrated energy (Stahl et al., 2013; Goudie, 2006; Shakesby et al., 2006). 

Subsequently, the R-value can be used to compare the relative age of different surfaces tested as it 

should theoretically reflect the time-dependant surface weathering if applied on the same rock type 

(Stahl et al., 2013). Previous alluvial fan research conducted by White et al., (1998), has displayed 
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Figure 4.7: A Sneed and Folk diagram used to plot a particle’s shape using the three axes a,b and c. Letter a,b and c 
represent the long, intermediate and short orthogonal axes of each particle respectively (Graham & Midgley, 2000)  

the use of determining relative ages of fan segments using the Schmidt hammer, which is the 

objective of applying this method to the Yellow Creek alluvial fan.  

Clast shape is an important source of information as it reflects both the physical properties of the 

source material and subsequent modification by weathering, erosion and transport (Benn & 

Ballantyne, 1994). Many methods of clasts analysis are in use, however, Benn and Ballantyne (1993), 

suggested to standardise clast analysis using the Sneed and Folk ternary diagrams as it provides a 

sufficient representation of clast shapes without bias or distortion in comparison to other diagrams. 

As described by Graham and Midgley (2000), the Sneed and Folk (1958) diagram employs a 

triangular plot where the ratios of the long, intermediate and short orthogonal axes of a particle are 

plotted (Figure 4.7). This method is used in glacial environments to determine if sediments have 

been transported actively in the zone of traction at the glacier bed or passively transported 

englacially or supraglacially (Graham & Midgley, 2000; Bennet et al., 1997). As determined by Brook 

and Lukas (2012) and Evans et al., (2010), when determining the origin and transport history of 

clasts, a single lithology should be used. Thus, minimising the ambiguity within a data set making it 

difficult to determine different transport histories.  

 

 

 

 

 

 

 

 

4.4.2 Data Acquisition  
Data acquisition took place on the 27th and 28th February 2017 with the Schmidt hammer and clast 

analysis sites indicated in Figure 4.8. As well as the sites indicated in Figure 4.8, additional 

observations were made at each site to identify general depositional features, evidence of channel 

reactivation and identifying sediment supply.  
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Figure 4.8: Schmidt hammer and clast analysis sites. Schmidt hammer sites indicated by yellow 
numbering and clast analysis sites indicated by blue stars.  

A mechanical L-type Schmidt hammer (with an impact energy of 0.735 Nm was used for 

measurements (Proceq, 1997). At each site, 10 schist boulders were selected at random with five 

rebound measurements collected on each boulder. All measurements were taken perpendicular to 

the foliation avoiding quartz veins, moss, lichens and fractured covered patches. On large boulders 

that did not move during sampling were tested.  

A clast shape box was used to measure the long, intermediate and short orthogonal axes of each 

clast. At each clast analysis site, 50 small to large pebble samples were collected and measured at 

random from the outcrops surface to ensure remobilised clasts were not incorporated. The 

roundness of each clast was also recorded using the visual classification approach of Krumbein 

(1941) and Power (1953).  
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4.4.3 Data Processing and Limitations 
The processing of the Schmidt hammer data involved calculating the average of each of the 10 

individual boulders was calculated as well as an overall average for the site, the standard deviation 

and the 95% confidence interval. Limitations of using this method include the possibility of rebound 

measurements collected from boulders that had been remobilised and that this particular alluvial 

fan is too young to exhibit age differences of significant range detectable by the resolution 

achievable by the instrument.  

The processing of clast measurements was completed in Microsoft Excel using the Sneed and Folk 

triangular diagram, Tri-plot v1.4.2 retrieved from 

(http://www.lboro.ac.uk/microsites/research/phys-geog/tri-plot/). The measured axes were entered 

into the shape spread sheet were the ratios are projected automatically onto the triangle diagram.                                         

It is acknowledged that some sampling bias may exists with clast selection as it was at random and 

there was no systematic sampling executed. Due to samples being pulled out of the outcrop, some 

of the original selected samples would not detach, and as a result another sample was selected.  

 

4.5 Meteorological and Track Closure Analysis  
 

4.5.1 General Method Overview 
To better understand the role that rainfall has on environmental management and fan dynamics 

(research objective two), investigations of the relationship between rainfall and track accessibility 

have been explored. Due to the large amounts of rainfall (5751 mm/yr (Macara, 2016)) and variable 

weather the Fox valley receives (see section 1.2.4), DOC regularly maintain accessibility to the 

terminal viewpoint and in some instances have to close the track for safety reasons. 

4.5.2 Data Acquisition 
The rainfall data was acquired from the national climate database from the National Institute of 

Water and Atmospheric Research (NIWA) (https://cliflo.niwa.co.nz/). The two rain gauges closest to 

the Fox valley from the national climate database are located in the nearby Franz Josef valley 

(stations 4060 and 24926). Stations 4060 at a height of 155 m provides daily rainfall information 

from 2001- 2016, and 24926 at a height of 80 m provides daily rainfall information from 2003 to 

present. Both station’s daily rainfall amounts were extracted and downloaded. DOC also provided 

rainfall data from 2009-2016, which was used to supplement the NIWA data. 

http://www.lboro.ac.uk/microsites/research/phys-geog/tri-plot/
https://cliflo.niwa.co.nz/
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Viewpoint Location Distance From The Glacier (m) Description

Terminal 450 The closest viewpoint to the glacier, located at the top of a slope

Photograph Point 500 The viewpoint is after the White Creek footbridge

Yellow Creek 750 An old viewpoint location in the middle of Yellow Creek fan

Riverbed lookout 1000 Within the valley riverbed, has an information board on the valley

Carpark 1500 The furthest Viewpoint to the glacier on the walking track

Table 4.2: Fox Glacier viewpoints used by DOC along the valley walking track 

Track closure information acquired from DOC provided the following information from the 11th May 

2001 until the 29th may 2017;  

 Date  

 Fox Glacier access status 

 Access road status  

 View point location and associated distance from the glacier 

 Staff member that completed the daily valley check (eg. Ranger 1).                                                                                         

The Fox Glacier track access status provides notes on the conditions of the walking track and 

includes other specific information such as rockfall events or areas to monitor. The view point 

distance provided information indicating where the available viewpoint to look at the glacier is on a 

particular day (Table 4.2).  

 

4.5.3 Data Processing and Limitations  
Due to the availability of three rain gauges close to the study site, an assessment of reliability was 

first completed to establish which rain gauge information would be most appropriate to use. The 

rain gauge information from Fox Valley has a strong positive relationship with an R-squared value of 

0.9 against the Franz Josef rain gauges. As a result, the Franz Josef rain gauges were used for this 

study, due to the availability of a larger data set and the daily rainfall amounts are sourced from a 

calibrated and maintained automated weather system (AWS) and therefore should be more 

accurate.  

The two weather stations at Franz Josef both overlap the walking track data series from DOC, 

however, no individual station covers the whole time period 2001-2017. Station 24926 is currently 

still used by NIWA and the most appropriate station to use for the study. To establish a complete 

rainfall data set for the time frame (2001- 2017), a linear regression analysis was conducted between 

stations 4060 and 24926 to subsequently estimate 2001-2003 rainfall values from the 4060 station 

data (Figure 4.9). 
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Figure 4.9: Linear regression between weather stations 24926 and 2060. The output equation has been used to 
establish rainfall values for the 24926 station, during 2001-2003 from applying the equation to original 4060 values. 

 

 

 

 

The walking track accessibility data was assessed and classified by totalling the daily viewpoint 

locations for each year (Appendix B), as well as classifying if the track was open or closed (1= open, 

0= closed). The track was allocated open if the track was at the terminal view point and was 

allocated closed if the track was at photograph point, riverbed lookout, Yellow Creek, the carpark or 

closed for any given day. Allocation of open and closure locations has been based on the ability to 

view the glacier. Due to the glaciers current position, the terminal viewpoint is consistently the best 

location for visitors. Whilst other locations may provide a glimpse of the glacier, this is largely 

weather dependant. The daily rainfall amount and track allocation was then analysed in IBM SPSS 

using a binary regression, assessing the predictability and relationship of rainfall against tack closure 

with the Nagelkerke R square value (0 -1). The Nagelkerke R square value is similar to a normal R 

squared value, where the relationship is stronger the closer the value is to 1. Additionally, for each 

day the track was closed cumulative rainfall totals for 48 hrs and 72 hrs prior to closure, were 

calculated to assess relationships of cumulative rainfall against track closure.   

It is important to note that the position of the glacier view point has changed over time with glacier 

recession and the terminology used for view point locations. As a result, the distances for the 
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viewpoints stated are only specific to present day locations. Previous viewpoints have been 

categorised as the following; 1960 moraine or two minute walk with carpark, five minute walk with 

riverbed lookout and White Creek with photograph point. It is acknowledged that there is missing 

data for days in both the NIWA rainfall data set and the DOC valley check spreadsheet, however, due 

to the large data set the missing data accounts for an insignificant amount of days.                                                                                

While the relationship between the DOC and Franz Josef daily rainfall amounts is substantial, some  

discrepancies may exist due to localised weather effects.                                                                                          

The daily valley checks are done by different DOC staff, so there is likely to be variability within the 

details provided. Perspectives on conditions will be variable and on occasions, multiple checks per 

day were completed in the valley due to fast changing conditions. As a result, the waking track may 

have been open in the morning but closed later in the day. For the purpose of this research, if the 

valley was closed at any stage during the day, the whole day has been recorded as closed.                                                     

It is acknowledged that the causation of track closures is not entirely due to rainfall, and includes 

rockfall events and track maintenance. Which has subsequently been included for calculating 

likelihood of closure, but will be disregarded for rainfall analysis.                                                                                        

4.6 Experimental Alluvial Fan Lab Modelling  
 

4.6.1 General Method Overview 
Experimental physical models have been used in alluvial fan research for over 50 years, with 

experiments covering aspects of fan evolution and morphology, flow dynamics with regards to 

avulsion, flood hazard simulation, sequence stratigraphy, and identifying autogenic indications 

(Clarke, 2015).The use of physical models is becoming increasingly important to forecast fan 

behaviour for predicting the effects of anthropogenic causes to natural environmental variables that 

influence fan evolution, such as changes in the upstream sediment supply from the likes of 

damming, and the restriction of natural flooding processes by artificial levees (Reitz & Jerolmack, 

2012). It is virtually impossible to observe the influence of autogenic mechanisms on fan evolution 

solely with field techniques. In a natural environment it is difficult to isolate internal from external 

forcing. The typical time scale of fan change is usually too long and the preservation of stratigraphic 

profiles is limited (Clarke et al., 2010). Using physical models provides a scaled representation of the 

formation and evolution of landforms in controlled environments, where identification of 

relationships or features can be determined, which would have otherwise remained hidden (Clarke 

et al., 2010; Schumm et al., 1987). The use of physical modelling in this research is to assess current 

management techniques used on Yellow Creek and associated implications for fan development 
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Figure 4.10: a) Sandbox used for experiments. b) Inside view of sandbox, grid squares are 10 x 10 cm. c) Sediment feeder used. 

(Objectives one and two), as well as assess the viability of SfM in physical modelling (Objective 

three).  

 

4.6.2 Data Acquisition  
The series of lab models used for this research were completed in the Physical Geography Lab at the 

University of Canterbury. The alluvial fans were created in a sandbox with a ramp (at an angle of 

27.7 0), allowing sediment water to mix together and deposit at the base of the ramp (Figure 4.10). 

Sediment and water ratios used for different scenarios are summarised in Table 4.3, grain size 

distribution used in the models was -0.75 to 2 phi. Ten alluvial fans were created, seven of which 

were built for 15 minutes at speed 20 (ml/s-1), two for 30 minutes and one for 120 minutes at speed 

30 (ml/s-1). The sediment and water supply were stopped at 5 or 10 minute intervals to capture 

photographs for SfM processing. To capture the photographs used for SfM an Apple Iphone7 was 

used.  In regards to assessing the management techniques used by DOC, two models were run with 

time lapse cameras recording and set to speed 30. One model demonstrated the use of stop banks 

on an alluvial fan, whereas the second model looked at the deposition characteristics with a rock 

wall features at the toe (Figure 4.11).  

Finally, a model to simulate an alluvial fan developing over ‘dead ice’ was executed to explore the 

changes in fan shape post ice melting. This involved, building the fan for 20 minutes at a speed of 30, 

placing blocks of ice into the middle of the fan, and continuing to build the fan until the ice was 

covered with sediment. Time-lapse cameras were placed to film the changes over time.  
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Table 4.3: Table showing flow and sediment rates used for modelling, the water and sediment rates were 
repeated 5 times to get an average rate (Q represents the water discharge and Qs represents the sediment 
supply rate (all values are to 2dp)).  

Figure 4.11: Some of the alluvial fan models run. A) 15-minute model. B) 30-minute model. C) Stop bank model D) Rock wall 
model.  

 

4.6.3 Data Processing and Limitations  
The data processing for the lab simulations is similar to the SfM process workflow in Figure 4.6, 

however, step 5 required a different analysis approach. With majority of fan simulations stopped at 

5 or 10 minute intervals, a DEM was created for each stage of development for the 10 alluvial fans 

specified in section 4.6.2. The SfM derived DEMs for each fan, were put into ArcMap 10.4.1 and 

georeferenced to overlap one another. The ramp structure was used as the referencing feature due 

to remaining in the same location throughout simulations. Raster analysis was completed by using 

the raster calculator to create DoD (DEM of difference) to establish sediment changes. Screenshots 

were taken from the time-lapse cameras, specifically on the models that were used to assess 

management techniques on the fan and dead ice. The time lapse screenshots and other imagery 
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collected of management models were used for interpretation of changes experienced and how 

these relate to Yellow Creek. One of the challenges with using lab models is accurately representing 

real-world scales. Compared to existing modelling experiments, the duration of fan building was still 

in the sheet flow stage in most instances, were the changes were occurring more rapidly compared 

to real-world changes. The structures implicated on the fan were not to proportional scale, however, 

the overall objective of assessing how structures interact and endure fan evolution can still be 

acknowledged. In terms of SfM errors, the lighting in the lab and reflectivity of the water in the sand 

box may create some issues in terms of pixel matching, impacting on the accuracy of DEMs.  
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Chapter 5: Results  
 
This chapter presents the results and interpretation of the Yellow Creek alluvial fan properties 

investigated in chapter 4. The structure of this chapter is aligned with chapter 4. The fan changes 

obtained from SfM and aerial photography are presented first, followed by walking track 

location changes, sediment properties of the fan, meteorological influence on the valley, and lab 

modelling results.  

5.1 Structure from Motion                                                                                                                                                  

5.1.1 Interpretation of Fan Changes between 2015 and 2017      
The changes in elevation experienced on Yellow Creek fan between November 2015 and November 

2017 are shown in Figure 5.1. The average elevation change is 1.94 m (+/- 30 cm), resulting in a 

mean elevation rate of 0.97 m/y-1. Between 2015 and 2017, the fan has experienced large areas of 

aggradation. Across the vegetated areas of the fan (Figure 5.2), small changes of 1-2 m are 

noticeable. This is likely to have occurred from changes in vegetation growth, or movement of 

boulders through reactivated abandoned channels (Figure 5.1). The largest area of aggradation is in 

the active channel (Figure 5.2). The fan apex has experienced large accretion, where sediment has 

settled out of suspension and deposited alongside the banks (Figure 5.3). On the east side of Yellow 

Creek, there is a significant area of accretion, but, this is not a natural occurrence. As DOC is actively 

managing Yellow Creek, the fan morphology has been influenced by human modification. In this 

instance, a stop bank has been made to prevent channel avulsion towards the east side of the fan to 

protect the glacier walking track (Figure 5.4). The area of the fan that has experienced the greatest 

erosion is within the channel. This is likely to be the result of sediment excavated by DOC for stop 

bank material and re-deposition of material from large rainfall events. The west side of Yellow Creek 

is affected by the predominant accretionary development of the secondary fan due to the instigated 

stop banks (see section 5.2.1). The immediate areas around the slump and erosional scarps 

(between the different fan development stages (Figure 5.2)), on the fan show large changes in height 

(Figure 5.1). This could be the result of material becoming loose within the outcrop and 

subsequently fallen and deposited at the base of the scarp. Or could have been created from a 

shadowing effect from when the DEMs were created. Dependant on the angle of image capture, the 

scarps could have created shadows and subsequently caused discrepancies between the two DEMs. 
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Figure 5.1: The sediment changes on Yellow Creek fan between November 2015 and November 2017.  
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Figure 5.2: Identified features on Yellow Fan.  
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Figure 5.3: Sediment accumulation on the West side of Yellow Creek near the fan apex. A) Captured within the active channel 
looking down fan. B) Captured within the active channel looking up towards the apex.  Captured August 2016.  

Figure 5.4: Evidence of anthropogenic influences on sediment distribution. Captured August 2016.  
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5.2 Aerial Photograph Analysis                                                                                                                                                                                          

5.2.1 Long Term Fan Changes                                                                                                                                               
SfM analysis showed that the majority of the fan has aggraded over time. Historically the fan has 

experienced several sediment fluctuations, due to erosive and passive episodes from the Fox River 

(Figure 4.6). As the Fox Glacier experiences phases of advancement and retreat (see section 2.4), the 

influx of sediment into the valley system influences the location of the active Fox River channel from 

the formation of paraglacial landforms (e.g. alluvial fans). Yellow Creek in 2004 (Figure 5.5a), shows a 

dominating phase of aggradation indicated by limited vegetation, fresh sediment deposition and no 

evident channel entrenchment. With the lack of vegetation and stability, the main channel will be 

largely prone to avulsion events (Piégay & Schumm, 2005). The North side of the valley constituted 

as the dominant side for sediment accumulation in 2004, with the Fox River largely protruding to the 

south side of the valley after Straight Creek. There is evidence of a flooding event with a large 

erosional scarp cutting the fan toes of Yellow Creek, Straight Creek and Gunbarrel. Successive 

erosional scarps are evident in Figure 5.6b, that indicates another erosion event. However, The 

South side of the valley has recovered faster, with noticeably larger aggradation of Straight Creek. 

The large hummocky topography near the carpark is a large area of debris-covered ice that 

previously became detached from the glacier. The dead ice has disappeared since 2004 from the 

outwash plain, with the last remnants close to the car parks gone by 2007 (Purdie et al., 2014).    

Over the last 10 years, by contrast, Yellow creek has experienced some dramatic changes (Figure 

5.5). The upper fan has stabilised with large areas of established vegetation and distinct channel 

entrenchment through the middle of the fan. The fan has experienced significant erosion from 2004 

onwards creating large erosional scarps. There is evidence of channel reactivation on either side of 

the fan with fresh sediment deposition.  

One distinctive feature is a slump that has been forming on the top half of the west side of the fan. 

This slump has a large scarp that has slightly increased in height during the last two subsequent 

years (Figure 5.1). The formation of the slump has formed from either; a large seismic event in the 

area, a large erosive event of the fan toe causing the fan to slump forward on a bedding plan, or 

from the melting of potentially debris covered ice from underneath the fan (see section 6.1.3). 

Following large erosion events on Yellow fan, subsequent fan development has occurred with the 

formation of a secondary fan.   
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Figure 5.5: A) Yellow Creek fan in 2004 (Google Earth, 2018). B) Yellow Creek fan in 2015. The blue arrow in the image is indicated the scarp that 
has formed (LINZ, 2018). 

 

 

5.2.2 Short Term Fan Changes (2015 – 2018) 
The short term changes from both Straight Creek and Yellow Creek fans are shown in Figure 5.6. The 

main channel of Fox River is directed towards the North side of the valley, due to the large 

aggradation of Straight Creek. Yellow Creek also influences the course of the main channel with the 

fan encroaching on the river, but the predominant influence of the fan is on the northern side (near 

the carpark). The Yellow Creek and White Creek fans have experienced several erosional events 

within this short time frame. Large erosional scarps are evident on the fan toes, specifically in 

relation to more recent events (Figures 5.6c & 5.6d). The most recent flooding event that occurred 

on the 1st February 2018, has caused significant damage within the lower valley. A large amount of 

material has been eroded away from the North side of the valley, whist the South side has 

experienced sediment deposition (Figure 5.6d). The toe of Straight fan has experience small amounts 

of erosion with a significant amount of red coloured boulders eroded away. The red-coloured 

boulders are covered in a red coloured algae called ‘Trentepohlia’, which takes a few years to 

establish under stable conditions (John et al., 2002). Thus the red boulders are a sign of short term 

stability. The avulsion of the river further to the North side of the valley has created sediment 

deposition around the fan toe of Straight creek. Subsequently the smaller channel would be 

expected to be filled by sediment from Fox River because of low energy flow and from Straight 

Creek.  

The walking track has changed over this time frame, with the track moving progressively up the 

Yellow fan (Figures 5.6b & 5.6c). A section of the track that was considered relatively stable (see 
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Figure 5.6: Short term changes of the glacier side of Yellow fan in the lower Fox valley. The location of the active walking track is represented in yellow. 
A) Image captured 27 August 2015. B) Image captured 20 September 2015. C) Image captured 10 November 2017. D) Image captured 12 march 2018. 
(SS, 2018) 

Section 5.2.3) has been significantly eroded (Figure 5.6d). The location of the old walking track on 

Yellow fan has also been eroded away, leaving just the remnants of the most recent walking track.  

 

The short term geomorphic changes of the carpark side of Yellow Creek fan and Gunbarel are shown 

in Figure 5.7. The carpark side of Yellow fan is the most dynamic area of the fan regarding sediment 

accumulation and rockfall. Gunbarel has been continuously active during the observed time frame, 

with large boulders sprawling onto Yellow fan and the outwash plain. A large levee was constructed 

near the base of Gunbarel to protect the walking track from rockfall events (Figure 5.7b). The active 

flow of Yellow Creek is on the west side of the fan, which is reflected by the fan shape and growth 

direction. The active flow has most recently avulsed towards the East side (Figures 5.7c & 5.7d). This 

change is highly likely to have been influenced by anthropogenic factors with the construction of the 

new walking track. Yellow fan has had predominate aggradation throughout this time frame. As 

previously shown on Figure 5.7, the fan has also experienced several erosional events. The most 

recent event has resulted in the Fox River channel avulsing to the North side of the valley in this 

particular location. As a consequence, this has caused significant erosion of the North side of the 

valley with the levee eroded away and both Gunbarel and Yellow fan toes cut. The walking track has 

significantly changed over this time frame (Figure 5.7). The most recent walking track has been 

constructed to stay above the river floodplain and adjoins the remnants of an older walking track. 
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Figure 5.7: Short term changes of the carpark side of Yellow fan in the lower Fox valley. The location of the active walking track is represented in 
yellow. A) Image captured 20 August 2015. B) Image captured 10 November 2017. C) Image captured 12 March 2018. D) Image captured 5 June 
2018. (SS, 2018). 

 

5.2.2 Walking Track Changes          
 

The Fox Glacier walking track is frequently visited all year round. The detailed course of the track has 

to be adjusted frequently due to rockfall or flooding events. Without a complete record of track 

locations for the 2001-2017 time period, the use of available aerial photographs enabled track 

locations to be established for 2004, 2014 and 2015, with the 2017 location established with GPS. 

The Walking track length has varied over time with response to the changes of the glacier terminus. 

The 2004 track displayed the shortest track with the glacier viewpoint, at that time, close to the base 

of the slope of the current glacier viewpoint (Figure 5.8). Tracks in 2014, 2015 and 2017, all ended at 

the current glacier viewpoint location at the top of the slope, with the part of the track closest to the 

glacier remaining relatively constant throughout with minimal track variations. Track changes have 

largely be observed between the carpark and glacier side of Yellow Creek (Figure 5.8). Slope 

instability and reactivation of rockfall events on Gunbarrel since 2015 have resulted in track 

adjustments onto the active Fox River flood plain. The valley is susceptible to flooding during large 

rainfall events and the risk of meltwater outbursts from the glacier, DOC are constantly adjusting the 
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Figure 5.8: Fluctuations of the Fox Glacier walking track over time.  

track to lower risk areas. Aggradation that has occurred on the fan has proven to constitute a 

sufficient argument for track migration up the fan (Figure 5.9).    

 

 

The track locations can also provide some details on previous geomorphic environments in the 

valley. The 2004 walking tracks reflects a relatively stable Gunbarrel and fan aggradation with the 

wider track around Yellow Creek. The 2014 track reflects a relatively stable Gunbarrel and Yellow 

Creek. In 2015, the position of the track reflects instability in the Gunbarrel area, attributed to a 

large avoidance zone and a stable Yellow Creek as the 2015 track adjoins the original 2014 track. 

Likewise in 2017, the position of the track reflects an unstable Gunbarrel similar to the 2015 track, 

however, displays a large amount of aggradation attributed to a wider track around Yellow Creek.   
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Figure 5.9: Walking track adjustments made up fan. This photo has been taken on the previous walking track, looking 
towards the new adjusted location away from the Fox River.  Captured in March 2017.  

 

5.2.3 Valley changes                
 

The lower valley, has experienced large amounts of aggradation in response to the retreat of Fox 

Glacier over the last several decades. The steep slopes and surrounding catchments have 

transported a significant amount of material into the valley. Availability of material is largely 

dependent on the sediment supply within the surrounding catchments. Mills Creek, Yellow Creek, 

Straight Creek and Boyd Creek all currently display highly erosive catchments through the lack of 

vegetation and large sediment abundance, due to landslides. Of these tributaries, the Straight Creek, 

Yellow Creek and Mills Creek currently have the most significant impact on the lower valley system, 

with each associated fan experiencing substantial aggradation, which has influenced the position of 

the Fox River. Mills Creek has experienced the most amount of change most recently. Where large 

fluxes of sediment have been transported down the system, resulting in the damage to walking track 

infrastructure (river walk look out and chalet lookout tracks) and immersed vegetation from 

substantial fan development (Figure 5.10). Subsequently development of the Mills Creek fan has 

forced the Fox River to the northern side of the valley floor, which consequently is towards the 
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Figure 5.10: Mills Creek alluvial fan that has developed over top of existing vegetation.  

valley access road. The areas of the valley experiencing large aggradation will continue to impact on 

the location of the Fox River, which will be problematic for existing infrastructure.  

                                                                                                                                                                                        

 

 

 

 

 

 

 

 

 

 

5.3 Sedimentological and Chronological investigations    
 

 5.3.1 Field Observations  
The fan is well established with an incised apex and three distinctive stages of development 

identified. The fan is fundamentally an alluvial fan, displaying the concave shape and has a slope of 

90. The sediment size ranges from a clay to a boulder and the deposits are grain supported and non-

cohesive as there is a very small amount of clay. The predominant lithology on the fan is schist. 

Majority of the material becomes progressively finer down fan, with the largest boulders observed 

at the fan apex. Depositional features observed on the Yellow Fan include;  

 Reactivation of abandoned channels (Figure 5.11) 

 Imbrication, present on natural levees (Boulder berms) and within outcrops from previous 

depositional events (Figure 5.12a) 

 Deposition of rockfall from Gunbarrel (Figure 5.2) 
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Figure 5.11: A) An example of a reactivated channel on the fan, indicated with a fresh deposit of sediment. B) Slump scarp on fan. The 
scarp is 2 m in height and the material is regularly reworked through gullies that were old abandoned channels. There has been a fresh 
deposit, with the blue arrow indication direction of flow.  

 Slump (Figure 5.11b)(Figure 5.2)  

 

The Yellow creek fan is comprised of fluvial and debris flow deposits. Fluvial processes are the 

dominant feature on the fan with large amounts of imbrication, finer material is at the top of the 

deposit and the material becomes finer towards the fan toe. Due to the Fox Valley experiencing 

large storm events or frequent heavy rainfall events and being a steep catchment, debris flows are 

common. Debris flow deposits are represented by a larger material at the top with no evident 

layering or depositional features, moderate to poor sorting and the deposits have mixed clasts 

orientations (Welsh & Davies, 2011).  An outcrop on the west side of fan from stage two, has a low 

energy deposit (Figure 5.12b). This deposit appears to be flat, has no imbrication, but does display 

Figure 5.12: Deposition features on yellow creek A) imbrication.  B) Low energy deposit, indicated by the red arrow.  
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Table 5.1: Clast roundness from each outcrop on Yellow Fan. 

laminated normally graded sediments, which is indicative of a glaciolacustrine deposit (Cofaigh & 

Dowdeswell, 2001). 

The slump feature that is located on in the east side of the fan (Figure 5.2) has fresh material along 

the base of the scarp. This indicates two features, the first of which is the accumulation of reworked 

material from old abandoned channels above the scarp, or material has become unstable and 

detached from the outcrop (Figure 5.11b). Secondly, the areas along the scarp that have fresh 

material, with no apparent abandoned channels or gullies nearby, demonstrate the growth of the 

slump.  

5.3.2 Clasts analysis        
 

Clast analysis on the Yellow fan showed that the deposits are predominantly fluvially derived with 

four out of the five sites, having sub-rounded clasts and one site having slightly more sub-angular 

clasts (Table 5.1). The site that displayed slightly more angular clasts was the outcrop at the slump, 

where the clasts are less susceptible to weathering compared to the other sites that were within 

gullies, which subsequently would be expected to be more sub-rounded due to fluvial processes.  

The shape of the clasts are shown in Figures 5.13 and Table 5.2. The dominant shapes of the clasts 

are platy, bladed or elongate, due to the dominant schist lithology of the clasts.                                                                              

The general mean size of the sediment across the fan is decreasing in the down fan direction. There 

are several larger boulders found down fan, however, the area is susceptible to debris flows and 

rockfall (Figure 5.2) that have caused deposition.                                                                                                                        

 

  

 

 

 

 

 

 



52 
 

Table 5.2: The shape of each clast from four outcrops on Yellow Fan.   

Figure 5.13: Tri-plot diagrams for the shape of each clast from four different outcrops on Yellow Fan. The red line on each 
plots is the C40 index. A) Is an outcrop that is from stage one of the fan. B) Is towards the apex and is from stage two of the 
fan. C) is the slump and is from stage two of the fan. D) Is from the bottom of the erosional scarp between stage two and 
three of the fan.  
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Table 5.3: Schmidt hammer measurements (n) taken, with the average (n) displayed reinforcing the difference development stages of Yellow 
fan. 

Outcrop Number Description of surface Average N Standard deviation 95% confidence interval

1 Upper surface of scarp 46.26 6.50 1.80

2 Lower surface of scarp 46.22 7.27 2.01

3 Lowest, new surface 50.6 7.13 1.98

4 Upper most surface 39.44 8.88 2.46

5.3.3 Chronological investigations      
 

To establish the evolutionary stages for the development of the Yellow Creek Fan, a Schmidt 

hammer was used and the results are displayed in Table 5.3. Due to the fan being relatively young, 

relative age dating for the different development stages have not been possible. Instead the results 

have been used to reinforce identified depositional stages of the fan (Figure 5.2). Historic imagery 

and interpretations of the valley indicate that the fan has been developing since the 1950s (see 

Section 2.1). Stage one of fan development (Figure 5.2) includes the upper most section of the fan 

below an old lateral moraine. The distinction of this stage has been from the dense well-established 

vegetation, erosion scarps above stage two and small rebound value (39.44) (Table 5.3). Stage two of 

fan development has been defined by less substantial vegetation, old walking tracks, and erosional 

scarps above stage three. Stage two of the fan has a large post depositional slump feature that has 

formed within the last 10 years (Figure 5.2). The slump on stage two can be confirmed to have been 

post depositional feature that has formed with the bottom half of stage two subsiding downward 

the Fox River. The rebound values from above and below the slump (Table 5.3), produced relatively 

similar values (46.26 & 46.22) indicating that material was deposited at the same time. Stage three 

has been identified as the current fan development stage, with freshly deposited material, lack of 

vegetation, active channel and highest rebound value indicating less weathering has occurred (50.6) 

(Table 5.3).                                                                                                                                     
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5.4 Meteorological conditions and track closure analysis                                                                                                                                                                                

5.4.1 Track accessibility     
Based on the closure criteria established in section 3.5.3, on any given day, visitors to the Fox Valley 

have a 17.7% chance that the glacier viewpoint is not accessible. Whilst this closure is an overall 

estimate, some years have experienced more viewpoint variability than others (Figure 5.14). The 

year with the least amount of days allowing visitors to the glacier viewpoint is 2009, followed by 

2008, 2010 and 2014. From the 11/9/08 – 28/9/09, there was no days that allowed a visitor to the 

terminal viewpoint, due to series of rockfall and flooding events that required a significant amount 

of track maintenance. The three months that have received the highest rainfall amounts have been 

identified for 2008, 2009, 2010 and 2014 (Table 5.4). There is a positive relationship between high 3-

monthly rainfall totals and long periods of track closure. Months that receive small amounts of 

rainfall can also have an impact on track access. This is partially due to large amounts of rainfall 

occurring over a short period of time. For example, the month of May 2012 received 218 mm total 

rainfall, half of which fell across 3 days, resulting in the track being closure for 4 days.  

Rockfall events in the valley occur majority of the time from large amounts of rainfall. However, if 

the material in the valley is unstable, rockfall is not always associated with heavy rain events. It may 

only take a small amount of rainfall to trigger the material. An example of this can be demonstrated  

 

Figure 5.14: The number of days at each viewpoint location from track restrictions for the Fox Glacier walking track from 
11th May 2001 until the 29th May 2017.   
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Table 5.4: The three highest monthly rainfall totals for the four years 
that displayed the highest viewpoint variability.  

Year Month Total rainfall (mm)

2008 September 882

November 937

December 566

2009 April 1024

August 1086

December 746

2010 January 911

September 843

December 1168

2014 January 689

April 653

November 934

by the rockfall hazard monitoring within the valley undertaken by DOC. On the 23rd April 2010, 30 

rocks, described in the hazard event register as ‘TV/basketball’ sized (i.e. 30-150 cm in diameter), fell 

down Gunbarel with an associated 6.4mm of rainfall received. Seven days prior to this event, only 

1.5 mm of rainfall had fallen, establishing that the conditions prior to this event were dry.  

Apart from flooding and rockfall, other reasons for the walking track closures or restrictions in Figure 

5.14, include;  

 High side streams/ high water levels 

 Icy/Ice grit conditions 

 Morning mower 

 Roadworks on the access road to the carpark 

 Ongoing track maintenance with heavy machinery in the valley  

It is acknowledged that there may be outliers within the data due to human error in recording the 

daily track status. 
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Table 5.5: SPSS variables in equation output from binary regression model. Values used in to calculate track closure 
probabilities in the logit model are indicated by the red circle.  

5.4.2 Rainfall and track closure relationships         
 

The binary logistical regression between rainfall and track closure statistically shows a weak 

relationship with a Nagelkerke R square value of 0.063. The model could only match 6.1% of the 

predicted track closures for daily rainfall, 9.7% for 48 hours and 14.5% for 72 hours of rainfall. The 

ability to determine any threshold value for rainfall and closure in this environment is difficult, due 

to the high frequency and large amounts of rainfall in the area. In some instances, the valley would 

receive over 150 mm in day, in which the track would still remain open to the terminal viewpoint. 

Thus, making it extremely difficult to determine a daily threshold value for predicting track closure 

from a valley management perspective. The establishment of the probability the track would remain 

open was then adopted using the logit model (Equation 5.1).  

………        𝑦 = 1 − (1/(1 + exp(−(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥 𝑅𝐹)))) 𝑥 100                       (5.1)                            

The parameters for this model are defined by the following; Y= the probability the walking track will 

be closed, the constant is the intercept output from the binary regression model as well as the 

variable using the SPSS output (Table 5.5). RF refers to the rainfall amount, which is either the 

cumulative rainfall amount for 24, 48 or 72 hours. Equations 5.2, 5.3 and 5.4 have been used to 

determine the probability outputs.  

 

                           𝑦 = 1 − (1/(1 + 𝑒𝑥𝑝(−(1.809 − 0.019 𝑥 24ℎ𝑟)))) 𝑥 100                        (5.2)                                                               

                         . 𝑦 = 1 − (1/(1 + 𝑒𝑥𝑝(−(1.998 − 0.016 𝑥 48ℎ𝑟)))) 𝑥 100                        (5.3) 

                          𝑦 = 1 − (1/(1 + 𝑒𝑥𝑝(−(2.174 − 0.015 𝑥 72ℎ𝑟)))) 𝑥 100                         (5.4)                                                 

.  
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Figure 5.15: Probability the Fox Glacier walking track will be closed from rainfall received over 24 hours. The 
rainfall data is representative from 2001-2017.  

The probabilities of the Fox Glacier walking track being closed with each specified rainfall amount 

are shown in Figures 5.15, 5.16 and 5.17. The probability the walking track is closed increases as the 

amount of rainfall increases. For example, if the Fox Valley receives 100 mm of rainfall over 24 

hours, there is a 50% chance that the walking track will be closed to visitors compared to a 30% 

chance of being closed with 50 mm of rainfall (Figure 5.15). The probability of track closure then 

decreases for the same amount of rainfall that has been received over a longer duration (e.g. 100 

mm in 24 hours vs 48 hours). For example, 100 mm rainfall received over 24 hours has a track 

closure probability of 50%, which then decrease to 40% if the 100 mm has accumulated over 48 

hours (Figure 5.16), and to 30% for accumulation over 72 hours (Figure 5.17).                                                                                                                                  

The probabilities generated from the logit model, provide a realistic representation for the 

probability the glacier walking track will be closed on any given day. For example, when there has 

been no rainfall, there is still a 10 – 15% probability the walking track could be closed (Figure 5.15). 

This is due to the fact that subsequent track closures can occur following rain events for track 

maintenance, which coincides with the 17.7% probability that on any day, visitors may not have 

access to the terminal viewpoint.  
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Figure 5.16: Probability the Fox Glacier walking track will be closed from rainfall received over 48 hours. The rainfall 
data is representative from 2001-2017 

Figure 5.17: Probability the Fox Glacier walking track will be closed from rainfall received over 72 hours. The rainfall 
data is representative from 2001-2017. 
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Figure 5.18: Lab modelling for stop bank scenario with A) demonstrating before interaction with the active channel and B) 
demonstrating an eroded stop bank after channel avulsion. Flow and deposition indicated with blue arrows.  

5.5 Experimental alluvial fan lab modelling  
 

5.5.1 Simulation of fan management and evolution  
The models completed in the lab were used to anticipate fan evolution based from management 

techniques used in the Fox Valley. Stop banks on Yellow Creek have been used to direct the flow 

towards the true right hand side of the fan (Figure 5.2). With the stop bank installed at an angle, the 

energy from the active channel erodes away the stop bank until it is breached and the channel can 

flow in its natural state (Figure 5.18). Whilst the lab fan is not to the correct scale of the Yellow fan, it 

successfully demonstrates what has been observed in the valley. Sediment aggradation has been 

directed towards the true right hand side of the fan, until recently where active channel has avulsed 

towards the left hand side. Avulsion of Yellow Creek has occurred from two possible scenarios. The 

first scenario is from the gradual erosion of the stop bank overtime or due to a large rainfall event 

where a debris flow has demolished the stop bank. Given the natural flow conditions of Yellow Creek 

the most likely situation to cause avulsions is from a debris flow or flooding events.  

A more recent management technique applied by DOC, involved the creation of a levee in front of 

Gunbarrel to minimise rockfall runout on to the walking track. The height of the levee dissipates out 

towards Yellow Fan, which has the potential to alter sediment deposition from Yellow Creek in large 

storm events. The lab modelling displayed that sediment deposition would occur around the levee 

and within the dugout depression, with the potential to erode the end closet to the active channel 

(Figure 5.19). As a result, this could impact on the functionality of the levee as a rockfall mitigation 

technique and provide ongoing maintenance with removal of the material that accumulated in the 

depression.  
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Table 5.6: Associated errors produced from the SfM processing report for one of the alluvial fan models.  

Figure 5.19: Lab modelling for levee scenario with A) demonstrating before sediment deposition and B) demonstrating post 
sediment deposition. Flow and deposition indicated with blue arrows. 

 

 5.5.1 SfM and lab modelling      
 

The digital elevation models produced via SFM processing of the experimental fans all had large 

errors meaning that they were not suitable for assessing the use of SFM at a laboratory scale (Table 

5.6). The errors in Table 4.4 are from one development stage, with the addition of combining the 

DEMs together, DoDs produced in ArcGIS would create too larger uncertainty given the size of the 

model. Factors for the uncertainty were derived from the lack of imagery overlap, high reflection of 

light on residual water, the clarity of imagery and interference from the ramp structure (e.g. 

Impacting on deposition and difficulties with image capture around the structure). Due to time 

constraints, these issues were not able to be resolved. For further investigation and improvements 

into using SfM in physical modelling, several steps should be taken into account. Firstly, the duration 

each simulation is run for should be increased, thus allowing for larger amounts of sediment 

accumulation in between SfM surveys to reduce errors. Increase the number of images taken whilst 

using a higher resolution camera for better pixel matching. Allow for the residual water to decrease 

to reduce the reflectivity as well as the sandbox placed in a more light appropriate area. Lastly, the 

sandboxed used in this experiment, may need the ramp structure adjusted so it has less interference 

with future SFM modelling.  
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Figure 6.1: Straight Creek alluvial fan, within the Fox Valley.  

Chapter 6: Discussion 
This chapter presents a discussion and analyses of the findings of this research and their wider 

application to the management of the Fox Valley.    

6.1 Formation Sequence of the Yellow Creek Alluvial Fan 

6.1.1 Rate of Change   
Since the 1800s, Franz Josef and Fox Glaciers have retreated by 3 km in length and 3–4 km2 in area, 

with the greatest overall loss occurring between 1934 and 1983 (Purdie et al., 2014). Following 

several small glacier advances since the 1990s (Figure 2.2), the glaciers are currently in a retreat 

phase. Alpine catchments, such as the Fox catchment, are sensitive to climate change and human 

impacts, which can be reflected within the geomorphology (e.g. deglaciation, aggradation and mass 

movements) (Carrivick et al., 2013). The Fox Valley, displays the following paraglacial features as a 

response to the morphogenic readjustment of the valley; rockfall, rock-slope failures, debris flows, 

alluvial fans, kettles (near the glacier terminus) and a braided river (Figure 3.1) (Mercier, 2008). 

Over the last two years, aggradation from the Yellow Creek and Straight Creek alluvial fans has 

affected the Fox Valley. The average elevation of Yellow Fan has changed by 1.94m (+/- 30cm) and it 

is unknown how much the Straight Creek Fan has changed. More recently, due to the different 

positions of the fans within the valley, it would be expected that Straight Creek Fan would have 

experienced more aggradation. This is because the fan is younger, lacks vegetation, lacks channel 

incision (i.e. the fan is unstable), has a continuous supply of sediment, and the landscape is 

responding to the effects of deglaciation (Figure 6.1) (Church & Ryder, 1972).     
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Figure 6.2: The Yellow Creek catchment, captured looking up catchment from the fans apex. Vegetated landslides within 
the catchment have been indicated by the orange circle.   

    

                                                                                                                                                                                      

Yellow Fan is currently in a stable period, with established vegetation, incised channels and has 

distinguishable evolutionary stages (Figure 5.2). It is likely the Yellow Fan developed during the last 

century between the 1940s-1950s dependent on the position of Fox Glacier at the time (Figure 6.4).  

The Yellow Creek catchment has a continuous supply of sediment from several landslides that have 

occurred over time. These landslides had a width of up to over 100 m, and depths of several tens of 

meters, which Hovis (1994) identified to contain tens to hundreds of thousands of cubic meters of 

material. While this observation was made several decades ago, there is still a substantial supply of 

material available within the catchment (Figure 6.2).  

When predicting the duration of sediment supply within a paraglacial system, Ballantyne (2003), 

describes the sediment supply to have a negative exponential function. The life time of the 

paraglacial cycle depends on the amount of sediment available for erosion, climatic parameters, 

geographic location and geologic nature of the catchment and vegetation cover (Mercier, 2008). 

After deglaciation has been completed and the sediment supplies have been exhausted the 

paraglacial cycle ends (Ballantyne, 2003). Cossart and Fort (2008), note that the life expectation of a 

paraglacial land system is limited. However, system adjustment can be prolonged for several 

centuries, or millennia, in areas that have sufficient sediment supply. In the Fox Valley, there is a 

sufficient sediment supply from the valley side walls and surrounding catchments typical in a 

paraglacial environment. Although, Carrivick and Rushmer (2008), suggest that the glaciofluvial 

discharges across the Fox Glacier outwash plain are insufficient for transporting paraglacial inputs 



63 
 

from the valley side walls (e.g. alluvial/debris fans). This means that the Fox Valley is transport 

limited and consequently a net aggradation zone. Episodes of aggradation are currently viewed in 

the valley, except when there are large storm events or subsequent glacier ice collapse events, 

where large influxes of material has entered the outwash plain. These events are apparent from 

imbricated boulder bars marginal to the main outwash plain (Carrivick & Rushmer, 2009). As the Fox 

Valley is a net aggradation zone, further fan development will occur until the next big storm event, 

which will result in fluxes of sediment down the Fox River.  

6.1.2 Paraglacial Alluvial Fans 
The importance of studying paraglacial landforms and sediments have been identified by Carrivick 

and Rushmer (2009) for three main reasons; 

 To understand the controls on water and sediment fluxes is important for management and 

conservation in glaciated regions. 

 To predict the future response of water and sediment from climate change. 

 To accurately understand geologic, geomorphic and sedimentological records in deglaciated 

regions.   

However, to gain a full understanding of a paraglacial environment, landforms should not be treated 

as binary features, but instead assessed as an interconnected landscape (Campbell & Church, 2003). 

This has been taken into account within this thesis. Paraglacial alluvial fans act as a sediment storage 

system and are classified as a primary paraglacial system (Ballantyne, 2002b). Generally, paraglacial 

fans will contain large amounts of till deposits, if the surrounding catchment is steep hillslopes 

(Campbell & Church, 2003). On Yellow Fan, there are noticeable till deposits that have been 

reworked, as well as a large amount of eroded bedrock.  Channel avulsions are common on Yellow 

Fan, which are a response to episodic flood events (McEwen et al., 2011). 

6.1.3 Possibility of Detached Ice underneath Yellow Fan 
A distinctive feature on the Yellow Fan is a slump in the mid-fan region (Figure 5.2). The 

development of the slump began on the west side of the fan between 2010–2014, where it has 

continually increased to up to 2 m in height. There are a few possible scenarios for the creation of 

slump feature on the fan. Firstly, this slump may have formed from a large seismic event. Given the 

close proximity to the alpine fault, this is feasible. However, there has been no recent seismic 

activity in the area to coincide with the slump. Secondly, the slump could be an alluvial fan terrace. 

Colombo (2005), suggests that segmented geometry on alluvial fans or several morphological breaks 

on the fans upper surface can indicate a terrace. These could have formed as a complex response to 

a change of an external variable (e.g. base level, climate, vegetation). Chronological investigation of 
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the fan, has found that the upper slump segment and lower slump segment of the fan were 

deposited at the same time (see section 5.3.3). As a result, the slump is not a terrace.  

The most probable causation of the slump is from the melting of debris covered detached glacial ice 

from underneath the fan. From the 1950s glacial retreat, a large amount of debris covered ice 

became detached and remained in the valley beside the carpark until 2012 (Figure 6.3). If there is 

sufficient debris cover on glacial ice, it acts as an insulator and slows down the rate of ablation 

(Mihalcea et al., 2006; Brook et al., 2013). A study by Purdie et al., (2014), discussed the fluctuation 

of the length of Fox Glacier, and identified potential areas that were reported to have had detached 

debris covered ice (Figure 6.4). The 1955 glacial retreat is when the ice was likely to have become 

detached and gradually buried underneath Yellow fan from aggradation. Mercier (1997), suggested 

that once the glacier retreats, leaving behind lateral moraines, the landscape can reshape quickly 

and the debris from the surrounding slopes can burry deposits of detached ice. Due to the formation 

of the Yellow Fan likely to have started around this period, it is highly likely that the fan could have 

formed over top of detached ice. Future investigations could be carried out on the fan with a 

thermal camera to detect if there is if any remnant ice remains buried under the fan, which would 

indicate the area will continue to experience slumping until all the ice has melted.  

Figure 6.3: Debris covered detached ice located beside the carpark. Photo captured from Yellow fan looking towards the 
carpark (Chinn, 2004).   
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Figure 6.4: Historic lengths of advance and retreat of Fox Glacier (Reproduced from Purdie et al., 2014, Figure 4, p48). 
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Figure 6.5: Monthly rainfall averages from 1981- 2010 for Franz Josef (Macara, 2016). 

6.2. Rainfall and the Impact on Track Closure  

6.2.1. The Relationship of Track Closure and Rainfall  
Establishing a relationship between track closure and rainfall is important given the frequency and 

amount of rainfall received in the area. On average, Franz Josef township receives 185 days of 

rainfall (>1 mm) per year with the mean annual rainfall for Franz Josef totalling 5751 mm. December 

has the highest monthly rainfall average of 659 mm (Figure 6.5) (Macara, 2016). As summer and 

spring receive the largest amounts of rainfall, management concerns arise around walking track 

accessibility during the peak tourist season. The walking track within the valley is vulnerable to 

flooding, rockfall and debris flow episodes (Figure 4.9). All of which require maintenance that can 

interrupt accessibility to the glacier terminal viewpoint. Storms that occur during summer months 

have the highest erosivity impact on material, further enhancing slope instabilities and erosion of 

material. On average these storms are 2.1 times more erosive than those that occur in winter (Kilk et 

al., 2015). Large rainfall amounts are also associated with these storms resulting in flooding of main 

rivers. For example, in March 1982, 650mm of rain was recorded over 72 hours in the Franz Josef 

Valley, causing the Wahio River to flood (Benn, 1990). The recurrence of storm events producing 

over 600 mm of rain in 72 hours is thought to be once every few years and storms producing 200 

mm in 24 hours occur about once a year (McSaveney & Davies, 1998). At Fox Glacier, the largest 

amount of rainfall accumulation recorded over 72 hours was 450 mm (Figure 5.17).  

 

 

 

 

 

 

 

 

Whilst the binary regression model produced a weak relationship between track closure and rainfall 

(see section 5.4), the probabilities of track closure in Figures 5.15, 5.16 & 5.17 show that there is a 

relationship. When there is an increase in the amount of rainfall, the probability of the walking track 

being closed also increases. This is valuable information for those responsible for the management 
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off public access into the valley, as it allows managers to anticipate whether the walking track is 

going to be closed. However ideally, establishing a trigger value for track closure would be required. 

A study completed by Bosse (2016) explored the recurrence interval for heavy precipitation events in 

the Otira Valley, to determine a threshold rainfall value to trigger walking track closures. Bosse 

(2016) concluded that DOC should close the track to the public before, during or after a rainfall 

event greater than 300 mm over 24 hours. Although the Otira Valley receives large amounts of 

annual rainfall, like Westland (Figure 2.3), this trigger value seems surprisingly high. When 

anticipating track closure before a rainfall event, an overestimation would be better than an 

underestimation, causing the least amount of inconvenience if the conditions were not as bad as 

first anticipated and the track was closed. Such an approach would be feasible in the Fox Valley, 

where daily track checks are completed and can be reassessed throughout the day, which is not the 

case for other tracks around New Zealand. Future research could focus on establishing storm 

recurrence intervals for the Fox Valley area. This would be beneficial to help establish a track closure 

trigger value in conjunction with the probabilities of track closure with specific rainfall amounts.  

6.2.2. Climate Change      
Glaciers are sensitive indicators of climatic variations on all time scales from inter-annual variations 

and decadal to millennia-long glaciations (Purdie et al., 2014). This sensitivity is reflected in dramatic 

length fluctuations at Franz Josef and Fox Glaciers during recent decades (Figure 2.2) (Purdie et al., 

2015).  With the mean global temperature expected to rise between 1.8 and 4 0C over the next 100 

years (IPCC, 2013), it is expected that deglaciation will continue. By 2090, the West Coast is expected 

to have 30 extra days per year where the maximum temperature exceeds 25 0C and the overall 

mean temperature rise is between 0.6 and 3.2 0C (Table 6.1)(MfE, 2018). Other climatic impacts 

from climate change are as follows; an increase in rainfall (Table 6.1) and an increase in extreme 

rainfall events, an increase in the frequency of westerly winds, an increase in intensity of storm 

events, and an increase risk of flooding and landslides (MfE, 2018). Moreover, the duration of snow 

cover is likely to decrease as well as a significant decreases in seasonal snowfall, which is likely to 

have detrimental impacts on New Zealand glaciers (Purdie et al., 2015).  
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Table 6.1: Predicated seasonal changes of temperate and rainfall by 2090 (MfE, 2018) 

 

 

 

 

 

 

 

 

 

With the current management challenges experienced with rainfall and walking track accessibility to 

view Fox Glacier, climate change impacts will likely result in more track closures. A study completed 

by Anderson et al., (2008), has predicted that under a mean climate change scenario (0.7- 1.4 0C), 

the Franz Josef Glacier will retreat 5 km and lose 38% of its mass by 2100. With the predicted 

ongoing deglaciation, the valley will remain in a high sediment yield phase in the paraglacial cycle. 

This will cause the valley to be continually susceptible to ongoing changes for the foreseeable future. 

For example, large fluxes of sediment will continue to enter the valley system through rock-slope 

failures, rock-mass movements and debris cone/alluvial fan formations (Ballantyne, 2002b). 

Increases in rainfall and storm intensities will continue to influence slope, where debris flows and 

rockfall events will be more frequent.  

6.2.3 Impacts on Tourism   
Currently, the Westland Tai Poutini National Park experiencing rapid environmental change, 

increasing the potential that the tourism viability of its glacier attractions will diminish overtime 

(Stewart et al., 2016). In the 2013/2014 summer season, glacial tourism experienced a major setback 

with guided walks on the lower glacier surface being suspended due to increased slope instability 

and rock fall susceptibility around the glacier terminus. As a result, visitors can now opt to pay for a 

helicopter hike to walk onto the glacier, or view the glacier for no cost from the terminal viewpoint 

in the valley (Stewart et al., 2016).   A study completed by Wilson et al., (2014), within the Fox Valley 

surveyed visitors to get an indication of overall satisfaction of their glacial experience. At the time of 

the survey in 2013, the terminal viewpoint allowed visitors to walk within 200 m of the glacier. 
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Surveying was completed across five days, in which one of the five days only allowed visitors to the 

600 m Yellow Creek viewpoint after heavy rain had increased rockfall risk. Only 30% of respondents 

that could reach the 200 m terminal viewpoint were satisfied with how close they got to the glacier. 

Whist 24.9% of respondents that could only reach the 600m Yellow Creek viewpoint were satisfied 

with how close they were able to get the glacier with 93.8% expecting to be able to get closer.                                                               

Over the last decade, the retreat of Fox Glacier has resulted in the terminal viewpoint becoming 

further away from the terminus. For example, from 2013, the terminal viewpoint was 200 m from 

the terminus compared to 2017, where the terminal viewpoint was 450 m from the terminus. Whilst 

the current terminal viewpoint of Fox Glacier provides substantial views, the expectations and 

satisfaction of visitors may not always be achieved. Particularly, if the viewpoint becomes 

increasingly further away from the glacier or if the walking track accessibility is limited (e.g. visitors 

are restricted to another viewpoint further down valley). The steep slopes and unstable debris up 

valley will make any future viewpoint relocations up valley highly unlikely. As a result, the distance 

between the terminal viewpoint and terminus will increase, which may have a negative impact on 

tourist satisfaction over the next few decades.  

On any given day there is a 17.7% chance that the glacier walking track will not be open to the 

terminal viewpoint (See section 5.4.1). As discussed in section 5.2.1, the months that receive the 

highest amounts of rainfall are December and January (Figure 6.5). Which coincides with the peak 

tourist season in New Zealand, due to it being summertime (see section 3.5.1). On the 1st of February 

2018, ex-tropical cyclone Fehi, hit the West Coast causing substantial flooding in the Fox valley and 

subsequent damage to infrastructure (Figure 6.6). As a result the access road and glacier were closed 

for a minimum of two months. When an event like this occurs, it is highly likely to cause economic 

loss to the local communities. However, as there is only helicopter access to be able to go on the 

glacier, this specific event would have had a less economic impact. In terms of helicopter 

accessibility onto the glacier, this is largely weather dependent, so summers that experience 

frequent rainfall events, will impact the number of people that can be accommodated by such tours.                                                                                                                                                                                              

While tourism in the Westland region is largely dependent on natural features and can be heavily 

impacted by weather conditions, Espiner et al., (2017) suggest that the region has displayed 

resilience to the current changing conditions and the tourism industry has been sustained despite 

vulnerabilities (e.g. natural disasters, changing climate and glacier accessibility).  

Difficulties that arise with managing a popular area that is extremely hazard prone, is an individual’s 

perception of a hazard and associated risk. Whilst tourism is a necessity for the area, the safety of 

the visitors is extremely important. A hazard can be defined as a set of circumstances which may 
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cause harmful consequences and risk is the likelihood of becoming harmed by a hazard (Espiner, 

1999). Due to the large influx of tourists into the area, mitigation measures are important tools to 

prevent harm to individuals. This includes reducing the track accessibility if needed. While tourists 

may not have a good experience if the walking track is closed, they may not be aware of or have 

been exposed to these specific hazards before. 

                                                                                                                                                        

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: A section of the Fox Glacier access road that was washed out from flooding (Huffadine, 2018). 
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6.3 Management in the Fox valley     
 

 6.3.1 Assessment of Current Management Practises   

As discussed in section 3.5.2, DOC is responsible for the management of the Fox Valley. One of the 

biggest challenges with managing such an active landscape, is that one extreme event (e.g. flooding, 

landslide or earthquake) can causing long term or permanent changes to the landscape, which in 

turn, causes on-going management challenges. For example, currently in the Fox valley, the 

activation of rockfall from the Gunbarrel, has created on-going management issues for visitor safety. 

Similar challenges are currently being faced in the Kaikoura region where ongoing issues with the 

slope stability and accessibility of State Highway one following the Kaikoura earthquake in Month, 

Year (KDC, 2017).  Thus, requiring the need for a high adaptive management strategy from 

environmental managers and surrounding users of the environment (Stewart et al., 2016).  

The current monitoring in the Fox valley undertaken by DOC includes; a hazard register (e.g. 

rockfall), daily valley checks (e.g. track conditions) and daily rainfall, from a rain gauge that is 

regularly checked. NIWA had an AWS in the Fox valley until 1994 when monitoring was ceased as a 

result of on-going issues (Purdie et al., 2008). The West Coast Regional Council (WCRC) is responsible 

for monitoring river conditions (e.g. river level, flow) on the West Coast. Several river monitoring 

programmes have been established on the major rivers on the West Coast, but due to resource 

constraints, not all rivers are monitored. The closest river to the Fox River that is monitored is the 

Waiho River near Franz Josef (WCRC, 2013). Due to the lack of monitoring at Fox, determining a 

flooding frequency pattern can be difficult. While the Franz Josef and Fox Glacier catchments are 

often regarded as having somewhat similar morphologies (e.g. Anderson et al., 2008; Purdie et al., 

2008), Carrivick and Rushmer (2009) have identified different river characteristics between the 

Waiho and Fox Rivers. Thus, making it difficult to determine a reliable flooding reoccurrence 

intervals in the Fox Valley (WCRC, 2013). The Fox Valley is prone to aggradation and is confined by a 

smaller outwash plain so is transport limited, whereas the Franz Josef is the complete opposite and 

has a greater transport capacity in flood events (Carrivick & Rushmer, 2009).  

Current management structures within the valley include; the use of hazard signs and information 

boards advising the visitors of their surroundings (Espiner, 1999), rockwalls and rockfall fallout pits 

to actively mitigate against rockfall, as well as stop banks to protect walking track infrastructure. The 

use of stop banks on Yellow Creek has enabled aggradation on the west side of the fan as well as 

protecting the walking track. While the purpose of these structures is to provide protection for the 
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Figure 6.7: Rockfall mitigation used in front of Gunbarel. A) The rockfall fallout pit. B) The rockwall dissipating towards Yellow Fan. C) Large 
area of rockfall.  

visitors along the walking track, it is important to explore any implications these structures may have 

on natural system evolution. The issue of using stop banks on Yellow Fan is that the fan is highly 

dynamic and prone to debris flows. As seen in section 5.2.1 and 5.2.2, the stability of the main 

Yellow Creek channel fluctuates. As the material builds up within the channel, the active stream 

becomes less channelized and more dynamic, resulting in avulsion episodes (Jones & Schumm, 

1999).   

The rockwall feature that was established in front of the Gunbarrel at the beginning of 2017 (Figure 

6.7), provides some protection to the walking track from and active rockfall. The rockwall was 

approximately 100 m in length and had a dissipating height from 8.5 – 3.7 m towards Yellow Fan. 

The dug out region in the northern side of the wall (Figure 6.7a), was 9.15 m wide and 1.6 m deep. 

This mitigation feature will successfully protect the track, but will need ongoing maintenance to 

ensure it functions properly. Issues that will arise without continued maintenance will result in the 

build-up of material within the dugout, that will create a ramp-like structure, that boulders could 

bounce off and subsequently fly or roll over the wall if momentum was sufficient (Evans & Hungr, 

1993). The amount of rainfall and sediment deposition will dictate how frequently the pit will need 

to be dug out in order for this structure to remain effective.  

Over the duration of this research, this rockwall structure has been eroded away from a large 

flooding event in the valley, as a result of a large storm that occurred in February. However, this 

does not make this information invalid, as DOC has installed a similar type of structure (Figure 6.8), 

which will still require ongoing maintenance. Whilst DOC is continually completing maintenance 
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work within the valley, large amounts of the work completed are unplanned. For example, between 

July 2016 and February 2017, 3025 hours of work was logged (e.g. daily valley check, planned track 

changes), of which, 375 hours were unplanned (O. Kilgour – Personal communication 26/3/17). The 

dynamics of a geomorphically active area make it difficult to manage for the long term. Due to the 

constant changes in the landscape and large supply of sediment still readily available (Ballantyne, 

2002b), it is sensible to implement structures that are effective, low cost and short term. Thus 

allowing for an adaptive management strategy and planning for the unknown (Stewart et al., 2016).  

6.3.2. Vulnerability of the area    
As discussed, the Fox Valley is a highly dynamic paraglacial environment, which is influenced by the 

availability and instability of sediment (Slaymaker, 2011). Due to the large amounts of rainfall 

received in the valley, the stability of the valley sides are increasingly susceptible to erosion and 

mass movement events (WCRC, 2013). Welsh and Davies (2011), identified Yellow Creek and Bullock 

Creek in the Fox Glacier valley to be vulnerable to debris flow events based on their catchment and 

climate criteria’s. Prior work completed in the valley by Hovius (1995), identified the following 

vulnerabilities within the Fox Valley;  

 Large rock avalanches from the Undercite Creek Catchment and adjacent steep rock faces. 

 Reoccurring debris flow and mudflows from the Yellow Creek catchment 

 Instability of channel sides below the Yellow Creek Fan 

 Slope instability between White Creek and the glacier terminal, both above and below the 

glacier walking track 

 Occasional debris flows from an unnamed catchment to the North West of the upper Yellow 

Creek catchment.  

 Debris avalanching in the lower valley from Gunbarrel 

 

Hovius (1995) concluded that Undercite Creek was the greatest area of concern, given the 

vulnerability to the access road and carpark infrastructure. Since this study, DOC has successfully 

managed the large rock avalanches from Undercite and has adopted the same technique for 

managing Gunbarrel (Figure 6.8).  
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Figure 6.8: A) Gunbarrel with current management technique. B) Undercite Creek management technique (SS, 2018) 
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Chapter 7: Conclusion  
7.1 Objectives Revisited     
This research successfully identified the evolutionary stages of the Yellow Creek fan (Objective 1), 

and developed some probability estimates linking track closure to rainfall events (Objective 2). 

Objective 3, to assess the feasibility of using SfM in alluvial fan modelling, was only partially realised, 

and although the research here was successful within the field more work is required in order to 

assess the use of SfM with physical modelling.  

 

7.2 Future Research Opportunities      
From this research, important questions regarding the behaviour and future stability of the Fox 

Valley have been highlighted. While there exists a reasonable body of research on paraglacial 

environments, the high sediment yields produced within the Fox Valley, create challenges for valley 

management. The popularity of glacier tourism and subsequently large visitor numbers to the Fox 

Valley, means that a more in depth investigation to establish flooding reoccurrence intervals would 

be desirable for future management planning. Future research opportunities in the Fox Valley 

include the following; 

 The establishment of a flow meter or a river monitoring programme, to assess maximum flow 

conditions and sediment transport capacities of the Fox River.  

 Investigating reoccurrence intervals for flood frequency and maximum rainfall events, to 

establish trigger values for track closure and to estimate the life span of mitigation structures.  

 To investigate further into tourism and visitor satisfaction from previous studies complete 

(e.g. Stewart et al., 2016; Wilson et al., 2013), identifying issues with the increasing distances 

between the glacier terminus and terminal viewpoint.  

 

Due to time constraints and other limitations that have been specified in section 5.5.1, the SfM 

alluvial fan modelling was only partially successful. Future research into using this method in a 

laboratory would be beneficial as it is an effective low cost method that is becoming increasingly 

more popular (Carrivick et al., 2016).   

 

 



76 
 

7.3 Summary 
The key findings of this research have been summarised below; 

 The Yellow Fan has developed in three stages, which has most likely to have begun 

immediately following the 1950s retreat of Fox Glacier. This conclusion was determined 

through a combination of photographic analysis and chronological investigations (see 

section 6.1).  

 There has been predominant aggradation on Yellow Fan between 2015 and 2017, with an 

average elevation change of 1.94 m (+/- 30 cm).  

 The slump on Yellow Fan has formed from the melting of debris covered ice that had 

become detached from the glacier during the 1950s retreat (see section 6.1).  

 On any given day, there is a 17.7% chance that the Fox Glacier walking track will be closed 

due to heavy rainfall, rockfall or track maintenance.  

 The amount of rainfall received in the valley significantly impacts on the walking track 

accessibility. When there is an increase in the amount of rainfall, the probability of the 

walking track being closed also increases.  

 December receives the highest monthly rainfall, which coincides with the peak tourist 

season and consequently has the potential to impact tourism in the area. A recent example 

of this was on the 1st of February 2018, ex-tropical cyclone Fehi, caused damage to 

infrastructure in the valley, subsequently restricting valley access for two months.   

 Adaptive management strategies are needed in a paraglacial environment. The high 

sediment yield and constant changes that occur make it difficult to establish longer term 

infrastructure or mitigation measures for hazards within the valley.  

 Finally, the use of SfM was successful in the field, however, was not in a laboratory 

environment due to user errors and requires future investigation.  
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