
Distributed Extreme Programming:

Extending the Frontier of the Extreme Programming

Software Engineering Process

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Science

in the

University of Canterbury

by

Malcolm Maxwell Williams

Examining Committee
Dr Neville Churcher (University of Canterbury) Supervisor

Dr Richard Pascoe (University of Canterbury) Co-supervisor

University of Canterbury

2003





For my wife, Kemie; my children: Shaune´e, Shomari and Malik Amani

who made the greatest sacrifice of affording me time

so that I could explore my dreams.





Abstract

Extreme Programming (XP) is inherently collaborative, which makes it amenable

to Computer Supported Cooperative Work (CSCW) support. The collaboration

enabling tools and techniques used in XP, such as whiteboards, index cards and

co-location, are adequate for their immediate purposes. However, they do not

allow sufficient information to survive beyond the end of projects. Long term

consequences of their use include the risk of inadequate software maintenance,

and limitation of the process’ scalability. In this thesis, we explore the opportu-

nity to address these risks by means of a desktop-based client/server experimental

groupware application. We exploit existing metaphors and characteristics of XP,

such as the ‘information radiator’ and the natural hierarchical arrangement of the

primary project concerns, in order to reduce the gap between user’s mental model

of normal XP and CSCW enabled XP. We use XML, relaxed-WYSIWIS and a

message passing communications system to allow users to interact with the same

or different aspects of a project’s information space—theProject Document—

while they collaborate on essential project planning and coordination activities of

the Planning Game. We conclude that our choice of deployment architecture and

selection of aspects of XP which are augmented offer relevant and more sophisti-

cated support for XP teams than do web-based approaches reported in literature.





Table of Contents

Chapter 1: Introduction 1

1.1 The Evolution of Software Engineering Processes: A Gentle In-

troduction . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2: Extreme Programming 11

2.1 XP Philosophy and Values . . .. . . . . . . . . . . . . . . . . . 12

2.2 XP Stakeholders: The XP Team . . . . . . . . . . . . . . . . . . 14

2.3 XP Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Project Management . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Application Development . . . . . . . . . . . . . . . . . 18

2.4 XP Tools, Activities & Artefacts. . . . . . . . . . . . . . . . . . 21

2.5 XP Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 3: Investigating Computer-based Support for Extreme Pro-

gramming 28

3.1 Why Computer-based Support for XP? . . . .. . . . . . . . . . . 28

3.2 Enabling Technologies for Computer-based Support of XP . . . . 31

3.3 Computer-Supported Co-operative Work plus XP . .. . . . . . . 33

3.3.1 Challenges facing CSCW support for XP . .. . . . . . . 35

3.3.2 Why CSCW support for XP? . . . . .. . . . . . . . . . . 36

3.3.3 CSCW Support for Dispersed XP Teams . .. . . . . . . 37

3.4 Related Work on CSCW support for XP . . .. . . . . . . . . . . 38

3.4.1 Developing a Tool Supporting XP Process . .. . . . . . . 38



3.4.2 A Feasible User Story Tool for Agile Software Development 39

3.4.3 Process Support for Distributed Extreme Programming

Teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.4 Support for Distributed Teams in eXtreme Programming . 41

3.4.5 Distributed Extreme Programming . . . . . . . . . . . . . 42

3.4.6 Section Summary: An Analysis of Existing CSCW sup-

port for XP . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Our Approach: Custom Desktop-based client/server CSCW Group-

ware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Motivation of our research . . . . .. . . . . . . . . . . . 44

3.5.2 Why use a desktop-based client/server approach? . . . . . 45

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 4: Computer-based Support for XP Activities 48

4.1 XP Concerns, Relationships and Activities .. . . . . . . . . . . . 48

4.1.1 Aspects of Computer-based Support for XP. . . . . . . . 49

4.1.2 Relationships between XP Project Concerns Explained . . 53

4.1.3 The Ebb and Flow of XP Projects . . . . . . . . . . . . . 55

4.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 5: The CSCW Enabled Information Radiator 62

5.1 The Big Picture: A Tool called PAM . . . . . . . . . . . . . . . . 62

5.1.1 Of Relaxed CSCW and Informal Feedback. . . . . . . . . . 67

5.2 A Day in the Life of PAM . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 User Interaction with PAM . . . . .. . . . . . . . . . . . 72

5.2.2 Navigation in the PAM client User Interface . . . . . . . . 73

5.2.3 Common Operations . . . . . . . . . . . . . . . . . . . . 75

5.2.4 User Story Elicitation . . . . . . . . . . . . . . . . . . . . 77

5.2.5 User Story Scheduling . . . . . . . . . . . . . . . . . . . 78

5.2.6 Story Decomposition .. . . . . . . . . . . . . . . . . . . 81

5.2.7 Handling Spikes . . . . . . . . . . . . . . . . . . . . . . 83

5.2.8 Handling Tests . . . . . . . . . . . . . . . . . . . . . . . 85

ii



5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 6: PAM : Configuration and Component Architecture 87

6.1 Deployment Architecture . . . . . . . . . . . . . . . . . . . . . . 87

6.2 PAM Server Sub-system . . . .. . . . . . . . . . . . . . . . . . 89

6.2.1 The Server Driver . . . . . . . . . . . . . . . . . . . . . . 91

6.2.2 Runtime Repositories . . . . . . . . . . . . . . . . . . . . 91

6.2.3 Persistence Manager . . . . . . . . . . . . . . . . . . . . 92

6.2.4 The Data Store . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.5 Test Broker . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 PAM Client Sub-system . . . . .. . . . . . . . . . . . . . . . . . 96

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Chapter 7: The Connectivity Middleware 98

7.1 Requirements of the Middleware . . . . . . . . . . . . . . . . . . 98

7.2 Why use a message-passing middleware? . .. . . . . . . . . . . 101

7.3 The CAISE message-passing middleware . . . . . . . . . . . . . 101

7.3.1 Registering as a CAISE Client . . . . . . . . . . . . . . . 105

7.3.2 PAM Message Processing System . . . . . . . . . . . . . 106

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 8: PAM Client User Interface 109

8.1 The Clover Design Model . . . . . . . . . . . . . . . . . . . . . . 112

8.2 Information Sharing Strategy . . . . . . . . . . . . . . . . . . . . 112

8.3 Support for Relationships and XP Activities in the User Interface . 113

8.3.1 Artefact related and Common Activities of XP . . . . . . 115

8.4 DXP Client GUI: The Underlying Principles . . . . . . . . . . . . 116

8.5 PAM Client GUI: The Architecture . . . . . . . . . . . . . . . . . 119

8.5.1 The Information Radiator Metaphor .. . . . . . . . . . . 120

8.5.2 User Interaction with the Project Document .. . . . . . . 120

8.6 Exposing the Awareness Mechanism . . . . .. . . . . . . . . . . 123

8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

iii



Chapter 9: Discussion and Future Work 126

9.1 Reflections of our Research: A Gentle Discussion. .. . . . . . . . 127

9.2 User Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.3 Opportunities for extending and enhancing PAM .. . . . . . . . 130

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Chapter 10: Conclusion 133

List of Figures 135

List of Tables 137

Appendix A: Screen Shots of the Prototype System 138

References 146

iv



Acknowledgments

First I would like to thank my supervisors Dr. Neville Churcher and Dr.

Richard Pascoe for their patience, guidance and keen interest in keeping me on

track to complete this thesis.

I also thank the following persons and organisations:

• My office mates for their interest, kind humour and encouragement. Yen-

Rong Sun for the pleasant personality and kindness. Behshid Ghorbani for

her kind and encouraging words. Also Hao Ding, Sung Bae and Fong Long

Chong for their encouragement.

• Carla Molloy and Dr. Surujhdeo Seunarine for their friendship and kind-

ness. Lynette Ling, Dr. Annette Jones, Dorita Knight and the rest of the

West Indian community for making me feel at home.

• Micheal JasonSmith, for always being frank with me. His tendency to not

be politically correct, gave me a safe and familiar place to get feedback

about my project. Joshua Savage for being ‘almost West Indian’ and a great

and patient listener.

• A special thank you to the Government of New Zealand, the New Zealand

Vice-Chancellors Committee, Commonwealth Scholarship and Fellowship

Plan and the Government of the Cooperative Republic of Guyana for af-

fording me the opportunity of this scholarship. A special note of thank to

Ms. Kiri Manuera.

• All of the members of the Software Visualisation Group: Dr. Neville Churcher,

Warwick Irwin, Carl Cook and Tony Dale; for their earnest interest in my

research, for listening and sharing of their knowledge.

v



• The Head of Department and staff of the Department of Computer Science

and Software Engineering, University of Canterbury, for creating the en-

vironment in which I have obtained a deeper appreciation for Computer

Science.

Praises and glory be to the Infinite Intelligence whose grace saved me, mended

my broken spirit and watched over my reconcilliation from the greatest loss I have

ever known, and kept me through this program.

vi



Chapter I

Introduction

Our research explores computer-based support for the Extreme Programming

(XP) software development process. Our goal is to support XP teams in their

activities in a lightweight unobtrusive manner in order to alleviate risks, such as

inadequate software maintenance and lack of scalability, that are associated with

XP. The risks arise from the routine use of simple manual tools and techniques,

such as index cards and whiteboards and co-location, on XP projects. We ex-

ploit the opportunities provided by traditional and relaxed Computer-Supported

Cooperative Work (CSCW) techniques in the development of a proof of concept

groupware application, called PAM, to address these risks. We developed PAM

using an iterative incremental prototyping approach, and each subsequent version

benefited from feedback obtained from informal user evaluations. Our research

concludes that PAM adequately addresses the risks of normal XP practices.

In the remainder of this chapter, we discuss the evolution of software devel-

opment processes with the aim of showing how and why XP has emerged as a

legitimate process. We also provide an overview of the problem which motivates

our research and how we have addressed it. Then we discuss the scope of our

research and how the thesis is structured.

1.1 The Evolution of Software Engineering Processes: A Gentle Introduc-

tion

Software Engineering deals with the development of large computer-based sys-

tems (Pressman 2001, Sommerville 2001). It is generally deemed to be essen-

tial to the development of high quality software and the success of development

projects. To achieve these goals, software engineering has the concept of apro-
1



"REAL" WORLD MODEL

Problem

Solution

Abstractions:

properties
behaviour

Analysis

Implementation

Architecture:

Data Structures
Algorithms

DesignTesting
Evolution

WHAT

HOW

Figure 1.1: The fundamental activities of software engineering processes.

cessat its core. Aprocess modelserves as a conceptual simplification of an actual

process, such as the Waterfall or Rational Unified Process (RUP) model. Four

fundamental activities are integral to all processes. These are analysis, design,

implementation and testing, illustrated in Figure 1.1 (Zelkowitz, Shaw & Gannon

1979).

Processes have evolved from the time the Waterfall model was first proposed.

Several factors, such as the need for rapid delivery of solutions imposed by the

‘software crisis’ and the dynamics of the modern economy, have influenced this

evolution. Nevertheless, the primary goal remains the development of high quality

software. We list some of the pervasive and modern influences below.

• More software is needed than the software community can adequately sup-

ply on time, within budget and free of errors.

• Advances in hardware technology are faster than in software. Old systems

will need to be updated to take advantage of new technology to maintain the

competitive edge in businesses.

• Increased time-to-market pressure. Because the new economy is in constant

flux, software required to meet specific requirements is often required im-

mediately. Delay in providing solutions often results in a system becoming
2



obsolete before it is delivered.

• System requirements are becoming increasingly more complex as software

and hardware advances generate more complex needs, such as virtual worlds,

military and medical software.

The evolution of processes is a history of the formulation, refinement and

branching of various approaches in response to emerging demands. Modern pro-

cesses have evolved along two conflicting approaches (Boehm & Turner 2003).

These can be classified into two broad categories: heavyweight and lightweight.

This classification indicates the nature of the management style, what activities

are emphasised, as well as the amount and nature of the intermediate artefacts

produced.

Heavyweight Processes

Heavyweight processes are characterised by their emphasis on rigour, reporting,

planning, the management function and adherence to strict rules concerning the

production of artefacts during development. These models are the result of the

emphasis on predictability, accountability and risk management. A SEP is con-

sidered heavyweight or high ceremony when there is a high overhead involved

in employing the process in terms of artefacts to be produced and especially the

management required to ensure that development progresses properly.

Heavyweight processes are suited for large software projects involving hun-

dreds of programmers and long time scales. Toward this end, the emphasis on the

role of management, predictability and documentation have resulted in rigid pro-

cesses that are often criticised for being bureaucratic. A popular heavyweight SEP

is Rational Unified Process (RUP), which was developed collaboratively at Ratio-

nal Software by Ivar Jacobson, James Rambaugh and Grady Booch (Wampler

2002).

Lightweight Processes

Lightweight Processes are characterised by their adaptive nature (Fowler 2003).

Lightweight processes work best with small teams. They are also called Agile
3



Software Development processes and are deliberately fashioned to address the

rapidly changing dynamics of the modern economy. In this manner, they are opti-

mised to accommodate to changing requirements. The primary aim of lightweight

processes is to get usable software to the customer quickly in small incremental

releases.

Lightweight processes include Scrum (Schwaber & Beedle 2001), Crystal (Cock-

burn 2002), Feature-Driven Development (FDD) (Coad, LeFebvre & De Luca

1999), Dynamic Systems Development Method (DSDM) (Highsmith III & Orr

2000) and the most popular, Extreme Programming (Beck 1999b). Lightweight

processes embrace a simple philosophy and harness the benefits of modern devel-

opment paradigms. Traditional concerns such as comprehensive documentation,

formal reviews and predictability are supplanted by customer involvement and

adaptability (Agile Alliance 2001).

The major criticism of Agile Methodologies is that the process is not suitable

for large development projects with hundreds of developers.

Extreme Programming

Extreme Programming (XP), which we dicuss in Chapter 2, came about as part

of process evolution. It is the most popular Agile Methodology (Agile Alliance

2001, Miller 2002, Van Der Vyver & Lane 2003). XP is a disciplined yet radical

process, that uses commonsense proven techniques in its approach to software

development (Paulk 2001, Miller 2002, McBreen 2003). Nevertheless, software

is developed using the same concepts highlighted in Figure 1.1, even though they

are often named differently. This is further discussed in Chapters 2 and 4.

The work of many software practitioners and experts from other fields—Boehm

(1988), Jacobson (1994), Alexander (1979), Lakoff & Johnson (1998) and

others—has influenced XP’s approach (Beck 1999a). For example, with respect

to the radical aspects of XP, the assertion that high-impact decisions must be made

by occupiers of a structure, (Alexander 1979), influenced the involvement of the

customer and their decision making power. Further, the use of a system metaphor

(Chapter 2.3, page 20) to aid collective understanding of the software being de-

veloped was influenced by Lakoff & Johnson (1998).

XP’s radical approach optimises it for collaborative development. It is amenable
4



to the current OO paradigm and several tools and frameworks have been devel-

oped to support this process, such as JUnit (ObjectMentor 2001, Beck & Gamma

1998) for the important intensive testing practice. XP is grounded in four values

and twelve practices which address many of the problems faced by conventional

processes, such as responsiveness to changing requirements and need for rapid

delivery. Nevertheless, XP has shortcomings which have long term consequences

for the process.

1.2 The Problem

The simple tools used in XP, such as index cards and the common whiteboard, pro-

vide inadequate support for the collaboration inherent in the process (Section 3.1,

page 28). Though they are effective with small co-located teams, their use has

long term consequences. Our research explores computer-based support for XP

as a means of addressing some of these consequences. The following are the

specific issues we attempt to address in our research.

1. Provision for persistence of XP project concerns

2. Augmentation of the inherent collaboration of XP activities

3. Relaxation of the co-location constraint

4. Support for distributed knowledge sharing about the state of the project.

Provision of computer-based support, to complement or replace existing sys-

tems, impacts on the deployment environment. It is desirable that the impacts be

positive. However, at times the impact is negative. For example, the new tool

introduced may impose restrictions on the normal work flow or otherwise change

users mental models of existing processes and protocols. In this regard, the ma-

jor objective of our research is to fit our prototype system into the context of XP

projects so that we do not break the XP process.
5



PAM
Build/Test

Broker

Ant
Java SDK PAM

Repository

CVS

PAM
Client

PAM
Client

Ant
CVS
Xemacs
Java SDK
...

Ant
CVS
Xemacs
Java SDK
...

PAM
Server

"broadcast"

User A User B

Integration
Server

Figure 1.2: PAM Deployment Architecture. The dotted lines indicate existing XP
channels of communication, while the bold lines indicate the channels we have
added with our prototype system.

6



1.3 The Solution

Theoretically XP and CSCW complement each other. XP by virtue of its simple

process model and inherent collaboration practices—values people and interac-

tions over processes and tools—is amenable to rapid application development and

distributed software development. CSCW is a research area concerned with the

study and development of computer-based tools to support group work. Tech-

niques, developed as a part of CSCW researches, have been used successfully

in groupware applications to support individuals collaborating on group decision

making activities, recreation and so on. Tools such as Microsoft NetMeeting,

ICQ and Napster are examples of groupware. They are essentially used for tele-

conferencing, communication and recreation respectively. These tools indicate

the wide application and novelty of groupware.

We presupposed that CSCW support for XP is beneficial for both co-located

and dispersed XP teams. Our solution is implemented as a computer-based dis-

tributed system. It is a lightweight, specific instance of support for collaborative

software development, using XP as the process model. CSCW techniques are used

to facilitate the human-computer interaction requirements. The underlying group-

ware communication is by means of a third party messaging framework called

CAISE (Cook & Churcher 2003a). The system is deployed as a desktop-based

client/server groupware application. Figure 1.2 illustrates the deployment of our

groupware. The figure also shows how it fits into the context of existing XP envi-

ronments.

Our prototype system provides support for XP project planning and coordina-

tion (the Planning Game). XP activities can be broadly categorised into project

management and program development. Program development in the dispersed

context is relatively well supported by tools such as CVS, WikiWiki and so on.

Project management tools also exist—for example, Microsoft Project and Mr.

Project. However, these tools’ support for distributed, real time project manage-

ment is limited. In achieving its goal, our system emphasises project coordination

through production, communication and coordination mechanisms. Figures 1.3

and 1.4 are snapshots of the user interface.

The design of the interface is based on the Clover Model (Sire, Chatty, Gaspard-

Boulinc & Colin 1999). This model breaks down the functional requirements
7



Figure 1.3: Snapshot Release Management GUI

of groupware into three activities: production, communication and coordination.

Production encompasses the creation and maintenance of critical XP data such

as User Stories, Release and Iteration schedules. In addition, there is support

for client and server side builds and testing. A communication utility supports

pair, group and inter/intra-project chat. The coordination mechanism is facili-

tated through lightweight awareness techniques. This includes awareness of the

location of users in the same session as well as real time updates of changes to

the project and session. To describe the underlying philosophy of the aware-

ness mechanism we introduce the concept of ’What You Know Is What I Know’

(WYKIWIK)—that is, each application, by means of real time updates, obtains

and maintain knowledge of the current state of the project. These areas of em-

phasis, in combination with the metaphors in, and of the user interface—a CSCW

enabled information radiator—offer relevant and appropriate support for project

planning and coordination activities of XP teams.

Informal evaluation of our experimental groupware suggests that it offers rele-
8



Figure 1.4: Snapshot implementation of Project Desktop metaphor

vant and appropriate support for co-located and dispersed XP teams. Our research

also provides a framework for addressing the XP scalability issue. Further, it

provides the basis for future comparative evaluation of the distributed XP envi-

ronment contrasted with standard XP and traditional, non-XP environments. We

anticipate that these evaluations will provide empirical evidence to support the

promotion of XP as a strategy to enhance the teaching of Object Oriented Tech-

nology in academia, and provide the basis for the adoption of XP in industry.

1.4 Thesis Structure

This thesis provides a phenomenological description of our research and imple-

mentation of computer-based support for the Extreme Programming process. In

Chapter 2 and 3 we discuss the Extreme Programming process and Computer

Supported Cooperative Work (CSCW). We show how CSCW complements the

inherent collaboration in XP and what challenges are faced when considering

computer-based support for the process.
9



In Chapter 4 we present an analysis of the XP process. We developed several

models and extract from these the activities that are essential to XP teams deriving

benefits from computer based support. In the next chapter, Chapter 5 we present

our groupware from the perspective of the functionality it offers users.

In chapters 6, 7 and 8, discussed the architecture of the system from three per-

spectives: (1) Configuration and Component Architecure, (2) the Connnectivity

Middleware and (3) the User Interface Architecuture.

We then wrap up our discussions with reflection of our research and recom-

mendations of how it can be exended by future work.

10



Chapter II

Extreme Programming

“I don’t think that the most promising ideas are on the horizon. They are

already here and have been here for years but are not being used properly.”

— David L. Parnas (Eickelmann 1999).

Extreme Programming1 (XP) was developed by Kent Beck and others in 1996

(published in 1999) and first used on the Chrysler Comprehensive Compensa-

tion (C3) project to rewrite the Daimler-Chrysler payroll package (The C3 Team

1998, Williams & Kessler 2000). XP is a radical approach to software develop-

ment, and this is embodied in its practices (Section 2.3). The approach demands a

high degree of discipline from developers and the continuous involvement of the

customer (Section 2.2) for the duration of the project. XP derives its name from

the extreme levels to which it takes established industry best practices. For ex-

ample, development is test-driven (test-first programming), up-front design is re-

placed by incremental ‘just-in-time’ design (any design not immediately needed

is deferred) and formal reviews are supplanted by pair programming (page 19).

Consequently, design and review span the entire project rather than being done

periodically or at dedicated stages of the process.

XP is structured around a philosophy, four values and a set of twelve practices

(discussed in Sections 2.1 and 2.3 respectively). The twelve practices are consid-

ered to be enabling practices (Fowler 2001). XP is adaptive, and over the duration

of a project teams are encouraged to adapt the process until it fits the development

1There has been a recent increase in the documentation about XP. The facts presented in this
chapter about XP were obtained from a number of sources: books, articles, XP advocates and
the Internet. Some of the primary sources are: (Beck 1999b, Beck 2002, Marchesi, Succi,
Wells & Williams 2002, Beck & Fowler 2000, Wake 2001, Jeffries, Anderson & Hendrickson
2001, Auer & Miller 2001, Newkirk & Martin 2001, McBreen 2002, Wells 2001, Fowler 2001)

11



situation, circumstance and purpose of the project. The process is well suited for

small teams and vague or rapidly changing requirements (Beck 1999b).

XP addresses many practices at Levels 1 and 2 of the Capacity Maturity Model

(CMM), which it is considered to complement (Paulk 2001). (CMM was formu-

lated by the Software Engineering Institute (SEI), as a model to measure, help and

encourage organisations to improve their software development process (Paulk,

Curtis, Chrissis & Weber 1993, Software Engineering Institute 1995).) Paulk

suggests that at Level 2, Requirements Management is addressed by User Stories,

on-site customer and continuous integration. At Level 3, Organisation Process

Focus is addressed at the team rather than the organisation level. Whereas CMM

emphasiseswhathas to be done, XP focuses onhow.

In the following sections we discuss the XP process. This discussion high-

lights the issues addressed and characteristics exploited in our prototype system.

2.1 XP Philosophy and Values

The values central to XP are (1) simplicity, (2) communication, (3) feedback and

(4) courage. These values are inter-related and complement each other. For exam-

ple, communication and feedback supports common understanding of the vision

and state of the project. The values are important to XP’s philosophy—that is, that

for software projects to experience improvement the values must be observed. The

four values also contribute to a development culture and attitude that is conducive

to the goal of predictable, sustained, and sustainable delivery of software. This

combination of culture and attitude—a particular mindset in essence—forms the

basis for the discipline necessary for practicing XP. The philosophy and enabling

practices (Section 2.3) optimise XP for eventual success of projects through pre-

dictable, sustained, and sustainable delivery of software (McBreen 2002).

Simplicity

Simplicity is rigorously advocated by XP and is most obvious in the process model

itself (Section 2.5), as well as in the design and documentation artefacts (Sec-

tion 2.4). For example, refactoring (page 21) reinforces simplicity by frequently

and steadily exploring opportunities for improving the design of existing source
12



code and keeping it clean. The process of achieving and maintaining simplicity is

plagued with contradicting issues long-term and short-term issues such as produc-

ing maintainable code and ensuring predictability in the process respectively. XP

addresses these by focusing immediate effort on the current development concern

only.

We exploit XP’s simplicity in PAM, our proof of concept, computer-based

support for XP (See Chapter 5). The independence, small granular size and dis-

creteness of artefacts, such as User Stories, are exploited in order to relax some

CSCW protocols (Chapter 3). In addition, the natural hierarchical arrangement of

schedules and artefacts forms the basis of the User Interface (UI) model (Chap-

ter 8).

Communication

Communication is an integral part of XP projects. The various skills and expertise

of the customer, developers and management are combined into a greater creative

effort. The sustainability of this effort relies on open and abundant communica-

tion, one immediate benefit of which is quality of feedback.

PAM supports both direct communication (such as synchronous chat) and in-

direct communication (such as awareness of the actions of other users and asyn-

chronous messages by means persistent notes). These facilities play significant

roles in supporting co-located and dispersed XP teams.

Feedback

Feedback spans the entire process from the Planning Game (Section 2.3) through

to customer acceptance and delivery of the software (or cancellation of the project).

It is important for collective understanding and transparency of the development

effort. Adequate and frequent feedback ensures that a high level of control is

maintained in the process. This is essential to steering the project, that is, under-

standing the impact, interference and influence of each aspect of the project as it

progresses.

Feedback comes from customer evaluation of the intermediate artefacts and

released increments of the software, test results and so on. With feedback ev-
13



eryone has the opportunity to be aware of the state of the product and process.

Feedback thus supports informed decision making.

In the PAM system, all project data is treated as constituting a singleProject

Document(Chapter 8, page 120). We use persistence, real time updates and

awareness techniques to advise customers and developers of changes to theProject

Document.

Courage

Courage is essential for progress in the face of uncertainty and doubt. It nullifies

the greatest detractors of creativity; that is, lack of confidence and doubt at both

the individual and team level. Simplicity, communication and especially feedback

play important roles in encouraging and sustaining the courage value.

Courage is a characteristic of emotional intelligence. Emotional intelligence

is that human characteristic/skill that enables people to maintain harmony in inter-

personal relationships, play and work; in collaborative activities (Goleman 1995).

We believe it is a critical work place attribute. Change is typical of projects. Esti-

mates will be inaccurate, requirements will change, systems will crash and so on.

In such situations, we believe, the collective emotional intelligence of a workforce

makes the difference between project breakdown or temporary schedule creep.

2.2 XP Stakeholders: The XP Team

A whole team approach is used on XP projects. They all share the risks of the

project and are, therefore, considered stakeholders. Everyone involved is equal,

but has various roles and responsibilities. This represents a collaboration of busi-

ness and technical skills in the developing software. None of these roles is nec-

essarily the exclusive property of one individual. There is no designated spe-

cialist, only contributors with special skills and knowledge. PAM supports XP

team collaboration. For example, PAM supports co-located and dispersed users

working together on activities such as when User Stories are being assigned to Re-

leases/Iterations (Section 5.2.5, page 80). The following list outlines the primary

roles and primary responsibilities involved in XP development.

• Customer: provides the requirements, sets priorities and steers the project.
14



• Developers: transform the requirements into working software. This role

can be divided into specialized roles. A single person can take on more than

one role depending on the project circumstances. Specialized developers

are:

1. Programmers who estimate feature costs, write source code and exe-

cute tests

2. Testers who help the Customer define the customer acceptance tests,

and execute tests

3. Analysts who helps the Customer to define the requirements.

• Manager: This role is divided into three specialised areas. One person may

assume all of the roles. The specialised roles are:

1. Manager – provides resources, handles external communication and

coordinating activities.

2. Coach – helps the team understand the XP process, keeps the team on

track: acts as mentor, conflict facilitator, and keeps the system vision

and metaphor real

3. Tracker – watches over the development process in order to offer guid-

ance, where necessary, of how to adapt the process to fit existing cir-

cumstances.

2.3 XP Practices

The XP philosophy, values, culture and attitude—the mindset—are supported by a

set of enabling practices, which complement one another to define the XP process.

These practices can be separated into two broad categories based on their role in

the process: (1) Project Management and (2) Application Development. In the

following subsections we discuss these practices as a precursor to how they are

addressed in PAM. We categorise the twelve practices in Table 2.1.

PAM provides support for the Project Management aspects of XP, with em-

phasis on the Planning Game and project coordination (Chapter 3).
15



Project Management Application Development

Planning Game

On-site Customer

Use Coding Standard

40-hour Work Week

Small Releases

Intensive Testing

Pair Programming

System Metaphor

Continuous Integration

Refactoring

Simple Design

Collective Code Own-
ership

Table 2.1: The twelve practices of eXtreme Programming.

2.3.1 Project Management

Planning Game

Planning Game is the term used in XP terminology to describe project planning.

In XP, project planning is used to steer the project as it progresses. The goal in this

regard is adaptability. This contrasts with the goal of predictability in traditional

process planning, which maps out a course of action for the project, from start to

finish. There are two key aspects of steering an XP project: (1) Release Planning

and (2) Iteration Planning. PAM is designed to support these aspects.

During Release Planning, the Customer lays out the plan for the project from

the business’ perspective. The desired features of the system are first presented

to the programmers, who estimate their costs. Each feature is written down on a

5”× 3” index card (see Figure 2.1(a) on page 22). The description of the feature

is called a User Story (page 22). The cost is a measure of difficulty in terms of

how many ‘ideal programming days’ are necessary to encode the User Story. An

‘ideal programming day’ is a day in which there are no interruptions or delays.

The customer uses the estimates and their knowledge of which features have the

greatest potential return on investment, and prioritises them accordingly.

The project duration is divided into a number of Releases of about two to

three months each. The highest priority User Stories with a sum cost nearest
16



equal to, but not exceeding the number of ‘ideal programming days’ in a Release

are assigned to the first and subsequent Releases in order. The initial Release Plan

is imprecise and is refined regularly as the project progresses. The first step in this

regard is Iteration Planning.

At the start of the Iteration Planning activity the User Stories assigned to the

current Release are allocated to short term schedules of about two to three weeks,

called Iterations. A detailed plan for transforming the User Stories into working

deliverable software is mapped out for the first Iteration. Iteration Planning takes

place at the start of each subsequent Iteration. As part of the latter Iterations, the

Customer presents the User Stories desired for the immediate Iteration as well as

those from failed Acceptance Tests (page 23).

Each User Story in the current Iteration is broken down into Tasks (page 23),

a number of which define what has to be done to implement the feature in a spe-

cific User Story. Developers then take responsibility, or sign up, for Tasks. The

Developers responsibility is to ensure that the Task gets implemented. Each Task

is estimated by its assignee, independent of the cost of the User Story from which

it was derived. This improves the accuracy of the cost estimates per User Story.

The Task costs are added and compared with the Iteration velocity, which is the

amount of work accomplished in the previous Iteration in ideal programming days

(for the first Iteration the velocity is estimated). In order to balance the total Tasks

cost with the Iteration velocity the Iteration is adjusted by (a) reassigning User

Stories to the next Iteration or (b) bringing forward User Stories from the next

Iteration. When the Iteration plan is complete programming commences for that

Iteration.

We will refer to this discussion of the Planning Game in Chapters 4 and 5

where we abstract the aspects of XP that we support in PAM, and discuss how the

aspects are implemented as system features respectively.

On-site Customer

A customer2 representative—the “Customer”—is required to be co-located with

the developers. The Customer steers the project from the perspective of the busi-

2Kent Beck corrects the perception that the ‘Customer’ refers always to a single person; in his
forward inQuestioning Extreme Programmingwritten by McBreen (2002).

17



ness’ priorities, in addition to being available for enquiries, clarifications and con-

firmation of any ad hoc issues. Co-location allows the Developers get feedback

about issues they find vague or confusing. This prevents the Developers from

making assumptions.

Coding Standard

XP attaches extreme importance to source code. Developers comply to a coding

standard. This practice supports the pair programming and collective ownership

practices by enforcing consistency in the source code. All the code in the system

appears as if written by the same programmer. XP does not advocate any specific

standard, provided that a consistent standard is used.

40-Hours Work Week

Developers are encouraged to work 40-hours a week. Overtime is allowed when

it is beneficial to the project. It is not used as a strategy to correct schedule creep.

(Schedule creep is addressed immediately by reexamining the iteration plan and

making the necessary adjustments for the next Iteration.) This practice guards

against programmer burn out. It ensures that development progresses at a sustain-

able pace.

2.3.2 Application Development

Small Releases

At the end of each Iteration one or more User Stories, or version, of the software

is completed. The working, tested version is handed over to the Customer for

evaluation and/or to be released to the end users. Business value is obtained by

the Customer every Iteration and project visibility is guaranteed.

This practice empowers the Customer to make informed decisions about the

project, such as whether to cancel the project if progress is not satisfactory, and/or

what is the next best step to bring more business value. The small and frequent

release practice is supported and kept reliable by means of the intensive testing

practice, as described in Intensive Testing below.
18



Collective Code Ownership

The XP team owns the code—that is, ownership is collective as opposed to indi-

vidual. In this way, everyone takes responsibility for the code and feels free to

refactor or make changes, as needed. This practice aims to improve code quality

and reduce defects. It makes code modification/refactoring easy and helps with

knowledge transfer within the Team. Further, it supports refactoring. Any piece

of code can be refactored by any pair of programmers to improve the design of

the source code.

Intensive Testing

XP is based on test-driven development. Developers write repeatable Unit Tests to

automate testing of the integrity and functions of source code features before the

actual source code is written. All tests are required to pass once the source code is

written. Whenever code is released to the project repository, the tests collected for

the project are executed. This provides immediate feedback if new code breaks

the system. Apart from unit testing, periodic acceptance tests are conducted to

help the customer determine whether or not the system being developed meets

their satisfaction (see Subsection 2.4, page 23).

In PAM we support both local and server side testing (page 85).

Pair Programming

All code is developed by pairs of programmers who sit side by side and share

the same computer system. Two roles are defined in this collaboration: (1) driver

and (2) observer. Developers are allowed to switch between roles as needed. The

driver has control of the input devices, while the observer has the role of a ‘real

time’ reviewer. The observer keeps track of what the driver is doing and assists

with corrections where necessary, in addition to thinking about the source code

design.

Pair programming also serves to communicate knowledge throughout the team.

Pairs switch between tasks and, therefore, specialised knowledge is shared. As

the developers learn, their skills improve and they become more productive and

valuable to the team and to the company. Though pair programming may seem
19



a desirable aspect of XP to support with computer-based tools, we do not. We

explain our reasons in Subsection 4.1.1.

System Metaphor

The system metaphor is the combination of a common vision of how the intended

system will work and a collection of names and naming convention. The sys-

tem metaphor is used to promote efficient communication within the team. The

system metaphor is a description that is tailored to educe how the system being de-

veloped works. For example, “this program is a dynamic single-page information

radiator” may be a metaphor. This is the metaphor used to guide the develop-

ment of PAM. We use ‘dynamic’ to mean that anyone can make changes to the

Project Document, and that those change(s) will be available to other users of

PAM. “Information radiator” is the metaphor used by Cockburn (2002) to de-

scribe, collectively, the whiteboard, index cards and flipcharts used to keep track

of XP projects. XP team member refer to the information radiator in order to be

updated about the state of the project.

The system metaphor is refined as the project progresses and the software

evolves to reflect the system requirements. Metaphors are useful because they

allow the team to conceptualize abstract problem domains from mappings to fa-

miliar concrete domains/concepts.

Continuous Integration

The software being developed—the system—is always kept integrated. As each

User Story is completed, the source code is integrated into the latest release (after

passing all tests). Integration takes place at least twice daily for each pair of

programmers. Continuous integration is essential to keep the software reliable

and support small releases. It also provides early feedback about what effects new

code has on the system.

PAM supports continuous integration by making available up to date knowl-

edge of the current state of the project. For example, developers may refer to PAM

to update or determine which tests have failed.
20



Refactoring

Refactoring, (Fowler 1999) or continuous source code design improvement, com-

plements the Simple Design practice. As the project progresses, refactoring is

used to improve the software design. Refactoring aims to remove duplication,

while increasing cohesion and lowering the coupling of the code. Intensive test-

ing is very important to refactoring. The Unit Tests verify that refactoring does

not break the system.

PAM supports refactoring indirectly through the feedback provided by the test-

ing mechanism.

Simple Design

All software is built to the simplest possible design. Simple is used to mean that

the design maps to the functionality of the current version. Design is not done for

future anticipated needs, and XP teams are encouraged to maintain this practice

based on courage and the belief that “You Are Not Going to Need IT” (YAGNI).

Simple Design in XP, like the project planning aspects, is neither a one-off nor

up-front activity. Design is carried out for the duration of the project.

Design is incorporated in Release and Iteration Planning, in the decomposition

of User Stories into Tasks, and in the programming and refactoring of the source

code. No extra work is done with respect to anticipated functionalities. This prac-

tice supports the pair programming and the on-site customer practices. It focuses

the pair and customer on the current important issue only. The incremental, iter-

ative nature of XP development also lends itself to a deeper understanding of the

system. This is necessary for good design, which in turn is essential to sustaining

an XP project.

2.4 XP Tools, Activities& Artefacts

XP Activities (Chapter 4) are actions that create or transform project artefacts,

such as the coding task transforms a Task into source code artefact(s). Artefacts

are the tangible things produced as part of the project, such as Release and Itera-

tion Plans, User stories, Tasks, Source Code and so on. Tools are the devices used

by XP teams to facilitate the activities of the process.
21



In this section we describe the key XP artefacts and, the activities and tools

which are used to create/transform them. We refer to these later (in Chapters 5

through 8) when describing the implementation of PAM.

• User Stories: A User Story is a concise expression of a discrete feature

of the system that will be discussed with the aim of transforming it into

software. User Stories are the primary input into the XP process. Each User

Story is written down on a 5”× 3” index card. Figure 2.1 depicts sample

User Stories created as part of the development of PAM (Figure 2.1(a)) and

during an informal evaluation session (Figure 2.1(b)).

At the inception of a project, a number of User Stories are prepared by the

Customer as part of the Planning Game. As the project progresses new User

Stories are included to reflect changing requirements, better understanding

of specific features and/or when a large User Story is split (divided into at

least two smaller User Stories).

(a) A User Story card typical of normal XP (b) A User Story card from the PAM System

Figure 2.1: Sample User Story cards.

Programmers and the Customer collaborate to prepare User Stories. The

Customer is responsible for writing and prioritising the User Stories, while

the programmers estimate their costs. This collaboration usually takes place

with the cards spread out on a flat surface, such as a desktop. We use the

desktop metaphor and emulate aVirtual Desktopin the client UI of PAM

(Section 8.4, page 8.4).
22



• Tasks: A Task (sometimes called anEngineering Task(Jeffries et al. 2001))

is an explicit description of a programming task that has to be done to im-

plement a part of a specific User Story. Tasks, like User Stories, are written

down on index cards. Tasks are obtained by decomposing User Stories as

part of Iteration Planning. This is done as a collaborative brainstorming

activity between Developers and the Customer. Programmers ask the Cus-

tomer to elaborate on aspects of User Stories so as to clear up any ambigui-

ties.

• Unit Tests: A Unit Test is a test case or suite written to test the functionality

embodied in a source code module, such as a Java class. Unit Tests are

created by the Developers, using frameworks such as JUnit (ObjectMentor

2001, Beck & Gamma 1998). They are written prior to the actual source

code that they test. This is called test-first development. The Unit Tests

source files are stored in the source code repository along with the system’s

source code.

In PAM we maintain collections of path names of the Unit Tests, relative

to the root of the project tree in the repository (CVS in our implementa-

tion). We refer to these collections asResources. We employ the same

strategy to handle Acceptance Tests and Source Code—Implementation re-

source (page 111). Our implementation of PAM is based on the assumption

that the project’s root directory in the repository is named after the project.

We use these resources as input into a Test Execution mechanism which

executes local and server side Unit Tests on behalf of a user.

• Acceptance Tests:The Customer writes Acceptance Tests for each User

Story. The Acceptance Tests describe what the system is expected to do,

with respect to User Stories implemented, in order to gain the Customers

acceptance. The tests outline what inputs will be used and how the system

is expected to respond to the input.

Developers automate the Acceptance Test by writing appropriate programs.

The actual and expected results are automatically compared. In this way,

Acceptance Tests can be executed on the server or locally in the same way
23



as unit tests. Acceptance Tests may be executed using the Test Execution

mechanism utility with prepared build files.

• Source Code:A Source Code file is a complete description, in a particular

programming language, of the algorithm(s) and data structures necessary to

achieve the specific goal(s) of Tasks, and in turn User Stories. All code is

written by pairs of programmers.

Programming is an application development activity which is outside the

scope of our research. PAM keeps track of source code files. This informa-

tion is used in the Test Execution utility.

• Test and Defects Metrics:Tests and defects metrics are records obtained

from executing Unit and Acceptance Tests, and also customer feedback

from the use of released software.

• Release Plan:The Release Plan outlines what User Stories will be imple-

mented over what period; usually of two to three months. It is a general

high-level outline of the project schedule.

The entire team collaborate to produce the Release Plan.

• Iteration Plan: The Iteration Plan is more detailed than the Release plan.

It outlines what User Stories will be implemented on a two to three week

basis. Information available from the Iteration Plan may include the Tasks

from User Story decomposition, who specific Tasks are assigned to, new

Task estimates, what adjustments were done to make the Iteration realistic

and the details of the Iteration velocity.

• Spike: A Spike is an exploratory experiment to obtain information to use

in decision making when faced with uncertainty. A Spike may be consid-

ered as an activity or as a result. Spikes are categorised as architectural,

estimate and solution spikes. Examples of spikes in these categories are:

the appropriate architecture for the system, the difficulty of implementing a

User Story or a Task, and alternative algorithms respectively.
24



In normal XP, the by-products of spikes are thrown away after the spike is

conducted. The information obtained from the spike is used as appropriate—

to guide the project (if a metaphor is obtained) or to choose between al-

gorithms (if one alternative proved to be more appropriate for the specific

circumstance).

• Application development tools:Predominantly, the tools available for XP

are related to application development. XP’s project management approach

is not amenable to current project management tools. In addition, this is

a reflection of the extreme importance XP attaches to application develop-

ment activities.

Tools used on XP projects are often simple and manual such as index cards,

whiteboards and desktops. These tools are used to support collaboration by

bridging the gap between developers and customer during planning activi-

ties and to store the state of the project. Even though they are effective for

their immediate purposes, they are susceptible to hazards (see Section 3.1).

Computer-based tools are used in XP for application development activities.

These tools include compilers, editors, versions systems such as CVS, test-

ing frameworks such as JUnit and debuggers. The lightweight requirement

of our solution requires that developers must be able to use the application

development tools of their choice, rather than restrict them to proprietary

tools.

Some of the tools used in XP support collaboration—for example, CVS, the

index cards and the whiteboards allow developers and the customer to share

information. However, the collaborative support offered is inadequate for

dispersed teams. PAM adds automated support for the manual tools used

in XP. Its architecuture (see Figure 6.1, page 88) complements the existing

computer-based tools and benefits both co-located and dispersed teams.

2.5 XP Process Model

Figure 2.2 shows the high-level abstraction of the XP process model (Wells 2001).

Release Planning, Iteration, Acceptance Testing and Small Releases are depicted
25



Figure 2.2: XP Project Model

along the critical path. As described in the preceding sections and Chapter 4, these

activities are made up of other specific discrete activities. Composite activities,

such as Iteration Planning, are usually illustrated using separate diagrams to reveal

their details (available atwww.extremeprogramming.org). The feedback loops

in Figure 2.2 are indicative of the iterative nature and the continuous validation

inherent in XP. In Chapter 4 we combine these various perspectives and illustrate

the XP process using a Finite State Diagram, which we used as part of our activity

analysis.

2.6 Summary

Extreme Programming is a legitimate disciplined software engineering process. In

this chapter, we discussed the details of the primary concepts involved in the XP

process. We indicated what concepts are addressed by our prototype experimental

tool, PAM, to augment the collaboration inherent in XP. These concepts will

be referenced through this thesis as we describe the the various aspects of our

research and the implementation of PAM.

The discussion in this chapter provides the basis for Chapters 3 and 4. We

highlighted in this chapter that in order for our prototype system to be lightweight,

we must allow developers freedom to use application development tools of their
26



choice. In Chapter 3 we discuss the issues involved in providing computer-based

support for XP. We show how XP’s inherent collaboration is complemented by

existing group-oriented computer technology. We also discuss why we do not

explicitly support application development activities. In Chapter 4 we describe

our activity analysis of XP, during which we abstract the activities (collaborative

and critical to the process), which offer the greatest potential to benefit XP teams

through support from computer-based solutions.

27



Chapter III

Investigating Computer-based Support for Extreme

Programming

“The ‘human system’ and the ‘tool system’ are equally important in computer-

supported cooperative work”— (Engelbart & Lehtman 1988)

In the preceding chapters we discussed how XP emerged as a development

process. We highlighted that XP is people/group-oriented and inherently col-

laborative. In this chapter, we discuss the reasons why these characteristics and

group-oriented computer technology have been exploited in the development of

PAM. We discuss: (1) why we believe computer-based support for XP will gen-

erate value for XP teams whether or not they are co-located; (2) alternative im-

plementation of computer-based support; (3) CSCW and existing technologies

which support our research; (4) related research; and finally, (5) our desktop-based

client/server approach and motivation for research.

This chapter highlights the two forms of communication required to meet the

needs of PAM: (1) point-to-point and (2) broadcast communication. Point-to-

point communication is required for critical data management operations which

change the state of the project. On the other hand, broadcast is needed for inter-

personal and transient communication such as with chat.

This discussion in this chapter highlights several strategic decisions, which

will be referenced in later chapters.

3.1 Why Computer-based Support for XP?

The collaborative nature of XP imposes a need for specialised tools. Computer-

based support for the Planning Game, which is highly collaborative and loosely
28



structured, has potential to benefit XP teams. We believe that co-location, whether

real or simulated, is important during project planning activities. Many important

decisions are made during the Planning Game activity. However, the normal XP

practice is to write down the results on index cards (for example, the system fea-

tures in the form of User Stories). These are then pinned to a common whiteboard,

called the information radiator.

Index cards and the whiteboard are simple tools. Simple tools, nonetheless,

are sometimes not acceptable to many people. Developers may want more flexi-

bility, power of expression, automatically generated code, information to support

maintenance and so on. The use of simple tools is testimony to the emphasis

on simplicity in XP. Though they serve their immediate purpose—for exam-

ple, User Stories bridging the gap between the business oriented and technical

team members—their use in the Planning Game has serious long term conse-

quences. In this regard, several researches have criticised XP for having short-

comings (Nawrocki, Jasinski, Walter & Wojciechowski 2002, Keefer 2002).

Some of the long term consequences of the normal XP Planning Game practice

are:

1. Inefficient traceability: ‘Paper offices’ are subject to hazards such as fad-

ing, misfiling, illegibility and fire. In addition, normal XP relies on face-to-

face oral communication. Therefore, tracing relationships between paper-

based artefacts from mental recall is time consuming and high risk because

a team member may forget important issues and decisions.

We do not advocate replacing the team whiteboard, but, rather aim to aug-

ment it (see Chapter 5). Project management tools (for example, MicroSoft

Project) can be employed to alleviate the problem of inefficient traceabil-

ity. However, current project management tools do not readily fit into XP

environments due to their focus on predictability, which is contrary to XP’s

philosophy.

2. Little provision for software maintenance and evolution: Insufficient

information is carried over from an active project to the maintenance stage

once development is complete. In the worst case, User Stories are destroyed

once the project is complete. At other times they are given back to the
29



customer (Jeffries et al. 2001). The state of a past project, at a specific time

during its development, would be difficult to reconstruct on the whiteboard,

especially if the whiteboard is in use by another project.

3. Informal ‘grapevine’ decisions are lost to the project: Many impor-

tant decisions are made informally and with a throwaway approach on XP

projects. These include the results, intermediate decisions and artefacts ob-

tained from executing spikes. Artefacts produced during spikes are repro-

duced, if necessary, in the real project. Where the results of spikes are in-

tangible, such as with spikes used to determine the suitability of alternative

techniques, they are not recorded.

4. Memory overhead: Besides the whiteboard, information pertaining to an

XP project mostly resides in the memory of the XP team. XP schedules

(Releases and Iterations) are intangible collective concepts, and there are

a number of points during a project where critical decisions are made (see

Subsection 4.1.2, page 55). This makes recalling knowledge about previous

schedules and decisions pertaining to the project tedious and high risk. An

example of this is to recall the reason(s) which lead to a User Story being

split.

Tools, such as Concurrent Version Systems (CVS), Computer Aided Software

Engineering (CASE) applications, Computer Aided Design (CAD) and project

management applications, have been developed to support software engineers.

However, these tools usually address generic tasks and information exchange,

rather than offer collaborative support for dispersed teams (Churcher & Cerecke

1996). Typically, these tools do not offer support for specific processes. Further,

they may inhibit the spontaneity that XP tools educe. For example, the simplicity

of User Stories cards encourages discussion of their details during requirements

elicitation.

Our research investigates computer-based support for XP. This form of sup-

port is valuable for co-located as well as dispersed teams because in addition to

support for the Planning Game, computer-based support offers benefits for project

coordination and persistence of project artefacts. Emergent benefits to be derived
30



are: (1) timely feedback of the state and dynamics of the project, (2) freedom

of deployment of stakeholders, and (3) opportunity to enhance XP’s scalability.

The success of computer-based support depends on the selection of appropriate

technology and end-user satisfaction. We discuss enabling technologies in Sec-

tion 3.2.

Tools that have been developed to relax the co-location requirement of XP are

highly likely to be, and so far have been, in the form of computer-based solu-

tions (Kircher, Jain, Corsaro & Levine 2001, Maurer & Martel 2002, Sch¨ummer

& Schümmer 2001). Nevertheless, we note that manual methods such as employ-

ing a runner/courier service between desks/offices/locations or setting up a ded-

icated position or department to coordinate, schedule and integrate project work

and artefacts are alternatives to computer-based support. It should be noted that

these latter manual approaches are highly inefficient.

3.2 Enabling Technologies for Computer-based Support of XP

An immediate question faced by our research is whether or not computer-based

support will break XP. This question increases in significance as the separation

of the team grows wider in space and in time, as the team move from the ‘same

room’ (co-located) setting to being increasingly geographically dispersed. We

believe that the process is not broken so long as the philosophy and values of XP

are maintained. The remainder of this chapter relies on this assumption.

Computer-based support raises other issues. The most pressing issues are: (1)

How will artefact evolution be coordinated and maintained? (2) How will project

scheduling be coordinated? (3) Is persistence required, and if yes, then what form

of persistence? (4) What degree of security is appropriate, without compromising

XP’s shared ownership practice? and (5) How will collaboration within the Team

be supported? These questions highlight the need for adequate technological sup-

port. On other hand, issues concerning Human Computer Interaction (HCI), er-

gonomics and the diverse make up and subjectivities of XP teams raise the need

for consideration of the social impact. The criteria we use for technological suit-

ability are: (1) the technology must be adaptable in order to fit XP’s values and

philosophy, and (2) the technology must not put remote teams (indirect commu-

nication) at any major disadvantage to co-located teams (direct communication).
31



The technologies which offer the greatest potential are:

1. Internet: e-mail, web pages, Wiki (Leuf & Cunningham 2001) and so on.

2. Custom groupware application based on Computer-Supported Collabora-

tive Work (CSCW) support.

An examination of the relative strengths and weaknesses of these technologies

leads us to eliminate Option 1. The primary reason for this is that these tech-

nologies do not adequately support highly interactive synchronous collaboration.

In addition, they are subject to the penalties of asynchronous communication.

For example, even though Wiki provides shared access to data, the underlying

technology makes little provision for resolution of conflicting updates. Further,

communication cycles in asynchronous communication—for which they are best

suited—is non-deterministic. Thus users may experience irregular time-delayed

updates.

The dynamics of XP projects require more responsive technology. Individu-

ally, web-based technologies offer inadequate tool support for XP. Furthermore,

although these technologies complement each other when combined, research by

Kircher et al. (2001) has shown this to have shortcomings (Section 3.4).

Option 2 offers the best potential to provide computer-based support for XP.

Therefore, we designed PAM around desktop-based CSCW support (Section 3.3).

Computer-based solutions however, impact the environment in which they are de-

ployed. Our analysis of the impact of computer-based support of XP suggests

that it presents threats, as well as opportunities to enhance the XP process. The

threats to XP predominantly arise from the risks involved in simulating/replacing

(in the context of our research we use the term ‘augment’ instead) direct human-

to-human communication and collaboration. The conflict between the social pro-

tocols used in normal team interactions and the rule-based collaboration enforced

by artificial protocols imposes these threats. For example, the shared ownership

practice in normal XP will conflict with strict locking protocols that are used in

relational database systems.

Ironically, opportunities may be obtained from the artificial protocols that

impose rules of engagement when using computer-based support. Where these
32



rules may be found to be restrictive, they can also be harnessed to coordinate and

streamline progress. For example, locking protocols can be used to handle con-

current access to shared data in a DBMS. While locking goes against the nature

of XP, it may be used to coordinate change and updates in the distributed setting.

When computer-based support encourages wider separation, XP practices that

are highly dependent on co-location—that is, pair programming, on-site Customer

and shared ownership—will be increasingly affected. Other XP practices suscep-

tible to the impacts of computer-based support are: use of a coding standard and

extensive testing. Further, if the computer-based support makes collaboration dif-

ficult or otherwise unnatural for XP teams, then the susceptible practices risk be-

ing compromised. This may happen if the team decides to use workarounds or

drop them all together.

3.3 Computer-Supported Co-operative Work plus XP

CSCW deals with the study of group work and the development of computer-

based tools to support group work (Bannon & Schmidt 1989). CSCW research

has resulted in the development of several tools to support interactive group work.

These tools include: (1) communications tools such as e-mail, newsgroups, bul-

letin boards and teleconferencing, and (2) group decision support systems such

as shared editors and computer-mediated conference tools. CSCW is concerned

with issues such as group awareness, communication and coordination of group

activities, concurrency control and shared information space for production, in-

volved in supporting group work with computers. The multi-user and interactive

computer-based tools based on CSCW study are called groupware. Ellis, Gibbs

& Rein (1993) define groupware as “computer-based systems that support groups

of people engaged in a common task (or goal) and that provide an interface to a

shared environment”.

CSCW researches have identified two major influences which impact on the

success of CSCW and groupware: group member separation and people factors.

Separation has two facets which are described by Nunamaker, Dennis, Valacich,

Vogel & George and Rodden (1991) to be: (1) the form of interaction—the time

dimension—and (2) the geographical dispersion of the group members—the spa-

tial dimension. This is illustrated in the matrix in Figure 3.1. People factors
33



Same Place Different Place

Same 
Time

Different 
Time

Face-to-face

Synchronous 
Awarness

Asynchronous 
Awareness Asynchronous 

Awareness

E-mail
Web page

NetMeeting
Chat

E-mail
Web page

Figure 3.1: CSCW Time-Location Matrix

involves group politics, individual’s emotion, personality and how people work in

groups.

CSCW is used in a variety of time/location settings. For example, CSCW is

used in ‘masked’ face-to-face meetings where the participants are co-located but

anonymity of contribution to the discussion is necessary, as well as in wider dis-

tributed contexts where the major purpose is usually getting together irrespective

of geographical divide. E-mail and newsgroups are examples of CSCW in use

where synchronous communication is not highly important. On the other hand,

video-conferencing and chat are examples of CSCW use in situations where asyn-

chronous communications is inappropriate.

CSCW is not the only way to support groups working with shared data and

goals. Multi-user systems, such as Computer-Aided Design (CAD) and Database

Management Systems (DBMS), such as Oracle, also offer this support. CSCW

and the latter differ in the protocols they employed to access the shared data and

to perform tasks (Session and Floor Control, Section 3.3.1). CSCW groupware

provides awareness information as well as access to shared data. DBMSs, on

the other hand, are mainly concerned with secure access to the shared data. Strict

locking protocols are used in DBMSs to handle concurrency. Concurrency mecha-

nisms are often more flexible in CSCW and may be supported by social protocols.

To achieve successful CSCW support across the various time/location settings,
34



specific techniques are required. These techniques impose challenges that need to

be addressed. We discuss some important challenges in Subsection 3.3.1.

3.3.1 Challenges facing CSCW support for XP

In the preceding section we established that CSCW offers the most potential for

computer-based support for XP. Nevertheless, CSCW groupware applications

face certain challenges. The significant challenges are:

• Group Member Accessibility: Accessibility is determined by the separation

of members by location and time. This influences what can be done, when

and how. Communication may be synchronous or asynchronous. For ex-

ample, the Planning Game requires adequate synchronous communication

mechanisms. Annotation of User Stories requires a persistence mechanism

so that notes can be available asynchronously.

• Acceptability of Groupware: This is a general problem faced by groupware.

Groupware tools should not get in the way of work or put remote users at

a disadvantage to co-located users. Groupware that does not augment the

group often fails.

We attempt to address these issue by designing PAM so that it is unobtru-

sive, lightweight, and fits into the context of XP projects.

• Interoperability: Groupware systems typically augment group work. They

must fit into the context of the domain in which they are deployed. Conse-

quently, groupware must facilitate interoperability with existing and antici-

pated future systems.

The architecture of PAM supports easy reuse/sharing of data (Chapter 6).

We use an XML (Bray, Paoli, Sperberg-McQueen & Maler 2000) data store

to achieve this goal.

• Awareness: Groupware applications are required to provide mechanisms for

explicit and implicit communication. Part of the information content of the

communication is used to facilitate awareness. This comes in many forms,
35



such as telecursors that indicate user’s position in a shared desktop. The

challenge lies in selecting and developing suitable awareness mechanisms

appropriate for specific groupware.

We provide awareness information in PAM such as the location of users in

theProject Hierarchy(see Figure 5.2, page 64).

• Session and Floor Control: Groupware systems may provide mechanisms

to prevent unauthorized access and avoid conflicting changes by enforcing

protocols for floor and session control. Session control deals with access

rights to the shared data. On the other hand, floor control deals with permis-

sions to perform certain tasks. For example, editing of collaborative objects

may only be allowed by one person at a time.

In order to comply with XP’s team approach and shared ownership prac-

tices, we have relaxed floor control protocols.

• Privacy: There is usually conflict between what data and how much of it

should remain private and shared in a groupware system. Issues of security,

anonymity and accountability influence privacy mechanisms.

In PAM, all project data is shared through replication. To maintain XP’s

shared ownership practice, we do not offer private access to the project data.

PAM is an information radiator for the project. Therefore, users who wish

to experiment with personal ideas may do so outside of PAM.

• Development and Training Costs: Applications cost money. In addition,

training is necessary for users. We do not explicitly address this issue in our

research.

3.3.2 Why CSCW support for XP?

Theoretically, CSCW complements XP. The collaboration protocols already in

use in XP only need to be augmented with CSCW techniques. CSCW techniques,

when appropriately adapted, support XP in such a way that neither its philosophy

nor values are compromised.
36



In addition to the benefits discussed in Section 3.1, there are other reasons

for supporting XP with CSCW. CSCW shares many characteristics central to XP.

For example, CSCW facilitates learning and group work, both of which are central

to XP. CSCW is primarily concerned with collaborative work. XP is inherently

collaborative and its practices are optimised to support collaboration (Chapters 2

and 4).

XP relies on a team approach and the collaboration within the Team is well

defined. Each team member (Section 2.2, page 14) has specific roles and respon-

sibilities. During activities team members adopt the role of ‘driver’ or ‘observer’

and use social protocols to coordinate their collaboration. Several drivers can

work in parallel without much difficulty. The incremental nature of XP and the

small granular sizes of the artefacts ensures that revert operations and/or correc-

tions are not expensive.

3.3.3 CSCW Support for Dispersed XP Teams

In the preceding sections we established that CSCW is an appropriate technology

for computer-based support of co-located XP teams. But there are situations when

it is necessary that the team be separated. The team may be separated when: (1)

teams are necessarily and arbitrarily dispersed, (2) team members are highly mo-

bile, (3) the on-site Customer is too expensive for the client (overseas clients es-

pecially), and (4) customer or a developer with specialised skill is shared between

projects. These circumstances demand relaxation of the co-location requirement.

However, consideration must be taken of the XP practices which are susceptible

to team separation.

The relaxation of the co-location requirement of XP has been termed “Dis-

tributed Extreme Programming” (DXP) by Kircher et al. (2001). The de facto

definition states that DXP is XP with certain relaxation on the close proximity

requirement of stakeholders.

CSCW offers appropriate technology to support DXP. Several researches

(Section 3.4) investigated CSCW support for dispersed XP teams (Pinna, Lorrai,

Marchesi & Serra 2003, Rees 2002, Maurer & Martel 2002, Maurer 2002, Kircher

et al. 2001, SourceForge.net 2003, Ellis 2000). Their general trend has been to de-

velop web-based tools and combine them with the utility of existing tools such as
37



NetMeeting, e-mail, web pages, Wiki technology and so on. Combining the utility

of disparate tools can be used to achieve common goals. However, this approach

suffers from consistency and interoperability issues. We believe that dispersed XP

teams can be supported by simpler means.

Compared with support for co-located teams, computer-based support for dis-

persed XP teams places extra demands on the supporting technology. Issues of

awareness, session and floor control, member accessibility and so forth (Sec-

tion 3.3.1), require keener attention and support. In this regard, we provide a

summary of some significant researches in the following section.

3.4 Related Work on CSCW support for XP

Various facets of XP have been prioritised in previous researches that offer support

for dispersed XP teams. Some (Subsection 3.4.2, for example) support just User

Story card management, while others (Subsection 3.4.1) have attempted more

holistic approaches. We provide a critical analysis of these solutions in this sec-

tion. This analysis also explains where our approach differs from and/or enhances

previous work.

3.4.1 Developing a Tool Supporting XP Process

Description: XPSwiki is a web-based tool developed to support the Planning

Game (Pinna et al. 2003). This tool is based on Wiki technology. Figure 3.2

displays a screenshot of some of its XPWiki pages. XPSwiki keeps track

of project changes by means of a versioning system. It also manages data

pertaining to releases, iterations, User Stories, Tasks and Acceptance Tests.

Navigation of XPSwiki pages follows the natural tree-structure of XP project

schedules and artefacts.

Critique: XPSwiki is a holistic approach to computer-based support for XP.

However, it is limited in some ways: (1) it lacks adequate provision for

synchronous interactive collaboration, which is central to XP; (2) it lacks an

awareness mechanism; (3) it makes no provision for integration and unit test-

ing; and (4) the Wiki technology used renders it susceptible to problems of

timely resolution of conflicting updates.
38



Figure 3.2: Screenshot of XPSwiki web pages.

Significant feedback was received from users of XPSwiki. This feedback sug-

gests that computer-based support for XP has the potential to promote the

adoption of XP in industry, as well as helping developers learn the Planning

Game.

3.4.2 A Feasible User Story Tool for Agile Software Development

Description: DotStories is a web-based tool developed to replace cardboard User

Story index cards (Rees 2002). DotStories supports multiple projects. Projects

are hosted as a collection of several web pages which define a User Story

group. User Stories are presented as “User Story Teglets” (Rees 2002), a

small rectangular area on a web page that facilitates direct manipulation, vi-

sualization of User Story cards and formatting features such as indenting, bold

and so on. Common User Story manipulation tasks such as create, edit, split

and delete are permitted. Teglets can also be grouped. DotStories support

projects with several hundred stories.

Critique: DotStories partially addresses distributed XP. It is essentially a single-
39



user tool with access to a collection of User Stories data. It does not support

collaboration. Teglets afford direct manipulation, but this is only available in

the client browser. Therefore, for group discussions involving more than two

persons, teglet print-outs or a projector is required.

DotStories is an alternative to the normal User Story cards. However, even

though Rees agrees that User Stories form the central work product of XP

to steer the process, we view the one-dimensional approach of DotStories as

limited in the context of the real needs of dispersed teams.

3.4.3 Process Support for Distributed Extreme Programming Teams

Description: Maurer & Martel (2002) introduced MILOS1, a process-support

environment for distributed XP teams. MILOS is web-based and offers sup-

port for project coordination, information routing, team communication and

pair programming (Figure 3.3). It was originally developed to support process

execution and organisational learning for virtual teams. MILOS includes fea-

tures such as a WorkFlow Engine that handles task management issues; Net-

Meeting to support the Planning Game and pair programming; a Personal To-

Do List, Help and user authentication. Common tasks such as create, delete

and editing are allowed on User Stories and XP Tasks.

Critique: MILOS also partially addresses distributed XP, but offers more utility

than Rees DotStories. MILOS also has limitations. First, the use of NetMeet-

ing restricts it to the Microsoft Windows platform. It also limits conference

participation to one-to-one sessions. Like DotStories, MILOS supports direct

manipulation of User Stories, in addition to Tasks. However, the manipulation

is not collaborative.

A significant finding from the use of this tool is that though video confer-

encing is desired, it is often unnecessary once the developers are already ac-

quainted.

1Minimally Invasive Long-term Organizational Support

40



Figure 3.3: Snapshot of MILOS depicting an active pair programming session.

3.4.4 Support for Distributed Teams in eXtreme Programming

Description: Schümmer & Schümmer (2001) developed a tool called TUKAN,

which supports distributed programming and the Planning Game. It is built

on top of the COAST2 (Schuckmann, Kirchner, Sch¨ummer & Haake 1996)

groupware framework. TUKAN offers virtual meetings, synchronous collab-

oration, communication channels and awareness information, such as where

a programmer is in a source file and the ‘distance’ of one programmer from

another with respect to potential conflicts. These, in addition to WYSIWIS

and several visualisation techniques, are employed to support distributed pair

programming (multiple persons in reality) and integration.

TUKAN virtual meetings use an ‘activity explorer’ in the Planning Game.

Common User Story tasks and annotations are permitted. Communication is

via audio and text chat.

2COAST supports highly interactive, synchronous applications and offers transaction-controlled
access to replicated shared objects and optimistic concurrency mechanism.

41



Critique: TUKAN offers a holistic approach to support for distributed XP. Re-

sults from this research suggests that distributed pair programming may lead

to a breakdown in strategic discussion. In addition, Sch¨ummer & Schümmer

(2001) present an in-depth analysis of the requirement for distributed, collab-

orative computer-based support for XP. This analysis highlighted communi-

cation, collaboration and coordination as essential requirements.

TUKAN does not offer direct manipulation of User Story cards. Through the

use of COAST, TUKAN offers better communication and collaboration than

tools that use NetMeeting. This is due to the use of replication, as opposed

to the application approach used in NetMeeting. Information is not avail-

able about TUKAN treatment of User Stories transformations. Nevertheless,

TUKAN demonstrates the feasibility of a holistic approach.

3.4.5 Distributed Extreme Programming

Description: Kircher et al. (2001) were the first to report an attempt to provide

computer-based support for distributed XP teams. Their support came in the

form of a tool called Web-Desktop. They claim that only four of the XP

practices are affected in a distributed environment: the planning game, pair

programming, continuous integration and the on-site customer. Kircher et al.

(2001) suggest that effective communication in teams does not necessitate co-

location. Communication can be supported through the use of technologies

such as video-conferencing, e-mail and chat. The objective of this original

research was to provide a working distributed environment that would keep

distributed XP teams in the realms of XP.

Web-Desktop uses the client/server architecture model. Downloadable appli-

cations from a dedicated server handle most developmental and management

processes. XP activities such as the Planning Game, pair programming, con-

tinuous integration and the on-site Customer are supported through the use

of existing tools: video conferencing, inter-operable NetMeeting, e-mail and

application sharing software with regular editors. CVS serves as the config-

uration management tool and integration is carried out directly from client

systems.
42



A number of challenges were encountered in this research. However these

provided useful insight into the challenges of CSCW support for dispersed

XP teams. The major challenges faced during this research were: (1) one-

to-one limitation of NetMeeting conferencing; (2) the inconvenience of using

simple text file for capturing user stories; (3) operating system interoperabil-

ity issues; (4) narrow bandwidth for conferencing; (5) lack of uniform access

to the source code repository; and (5) internationalization issues such as key-

board layout and character mapping in different countries.

Critique: The limitations of this approach were mainly due to interoperability

issues. Separate applications were used together for a common purpose. Since

no modifications were made to adapt these tools to fit the demands of their new

environment, it is not surprising that interoperability and cumbersome nature

of tools and artefacts became an issue.

This research demonstrates that existing tools can be used to support dis-

tributed XP teams. However, special consideration must be made in terms

of interoperability, applicability and flexibility of the selected tools.

The results appear to suggests that a flexible, custom tool would offer the best

potential to support distributed XP.

3.4.6 Section Summary: An Analysis of Existing CSCW support for XP

All of the solutions presented in researches have focused primarily on User Story

management and/or pair programming. This, we believe, stems from the fact that

User Stories drive XP development projects, and that pair programming is high-

lighted by Beck (1999b) as a vital part of XP. Further, these solutions (apart from

Web-Desktop) focused on support for specific tasks rather than the augmentation

of XP team collaboration.

The major drawbacks of these approaches include: (1) one-to-one collabora-

tion limitation imposed by NetMeeting, (2) overhead involved in setting up and

maintaining disparate tools, (3) irregular time-delayed updates of web-based so-

lutions using technologies such as wiki and (4) inadequate suport for synchronous

collaborative activities such as User Story elicitation during the Planning Game.
43



These researches, however, provided useful insight into CSCW support for

XP. Significant requirements, design issues, pitfalls and difficulties have been

reported. We use these to guide our design and implementation of PAM. Our

analysis of computer-based support for XP indicates that computer-based support

is required to be lightweight, consistent, fully collaborative, unobtrusive and must

support users’ choice of development tools.

3.5 Our Approach: Custom Desktop-based client/server CSCW Groupware

We implemented PAM as a desktop-based client/server groupware tool. Our im-

plementation decision is influenced by the findings of previous work, our analy-

sis of the activities of XP teams and close examination of XP’s project structure

(Chapter 4). A major objective of our approach is to support teams by enabling

them to sustain the XP philosophy and values irrespective of whether they are

co-located or not. We believe that the philosophy is more important than the prac-

tices. Nevertheless, we are cognizant that the practices are essential support for

the philosophy.

3.5.1 Motivation of our research

We question the overall benefit of the web-based approach used in the researches

discussed above. The support of composite activities and tools, such as pair pro-

gramming and User Story elicitation, appear to be the major thrust of these re-

searches. This task-oriented approach suggests that the interdependence of ac-

tivities, the various roles and responsibilities within the Team, and the purpose

of existing XP tools—User Story cards and the whiteboard, for example—were

not considered. Nevertheless, the drawback of these web-based tools may be at-

tributed to the limitations imposed by the immaturity of the technology.

We believe that the way XP activities are structured (or unstructured) is de-

liberate. For example, User Stories and the collaborative Planning Game bridge

the gap between the non-technical business-oriented Customer and the technical,

non-business oriented Developers, by providing a mutually understandable inter-

face to support requirement elicitation. It is imperative that new tools developed

to augment XP activities complement and integrate with existing tools and prac-
44



tices. Otherwise, their introduction will cause contradictions, such as interference

with the spontaneity of the normal XP User Story elicitation activity.

In previous researches, new metaphors and activity patterns were often intro-

duced to achieve certain ends. Rees’s Teglets, though they maintain the card

metaphor, sacrificed collaborative direct manipulation of the cards. The high de-

gree of individuality introduced by this tool, may result in a breakdown in the

normal XP communication. The opportunities for knowledge sharing, which the

Planning Game supports, may then be lost.

With PAM, our aim is to reduce the cognitive distance between the mental

models of the computer supported distributed XP environment and the real world

collaboration and coordination in normal XP. We expect that PAM will fit into the

natural flow of the normal XP environment.

3.5.2 Why use a desktop-based client/server approach?

Two dilemmas concerning the choice of appropriate deployment of PAM were en-

countered early in our research. These were whether or not to choose (1) Desktop-

based or Web-based platform and (2) Client/Server or Peer-to-Peer architecture.

Previous researches reveal that communication, coordination and collaboration

are essential to the success of computer-based support for XP. These issues have

caused much difficulty for web-based tools. Our decision to use a desktop-based

client/server approach is based on the following considerations.

Desktop-based versus Web-based

Web-based and desktop-based distributed systems have relative advantages and

disadvantages. There is also a significant difference in the capabilities of the tech-

nologies currently available to support these platforms. Web-based technology

has more reach (as in browsers and the Internet), but desktop-based technologies

offer more sophisticated support for HCI demands and novelty of groupware ap-

plications.

We use the desktop-based approach because it offered mature technology. The

primary reasons are:

1. To support highly interactive, collaborative activities such as Developers’
45



negotiation for taking Tasks responsibility (page 83) and planning meetings

when User Stories are negotiated, the spontaneity of the normal XP prac-

tices must be maintained.

2. Computer-based support is equally important for co-located and dispersed

teams.

3. Desktop-based applications, in combination with network technologies, pro-

vide a convenient way to prototype applications before optimising and port-

ing to the web.

4. We presupposed that the use of a desktop-based approach will provide in-

sight to guide the development of future versions of PAM for web-based

deployment.

Client/Server versus Peer-to-Peer

The other deployment dilemma faced was how to choose between client/server

and peer-to-peer architecture. In a peer-to-peer configuration, disadvantages may

be manifested as risks. Risks may include (1) asymmetric maintenance across

the project and (2) interleaved updates, which can lead to issues of data integrity

and availability. An advantage is the freedom of self-administration and keeping

data private. On the other hand, client/server deployment has the advantage of

central administration, but the concomitant disadvantage of having a single point

of failure.

We use the client/server architecture because it supports higher degrees of data

availability and integrity. Further, the client/server architecture is appropriate for

the replication information sharing technique (see Section 8.2). The client/server

architecture requires point-to-point communication for collaborating with client

applications. This is used for critical data management operations. On the other

hand, broadcast communication is required for communication of transient infor-

mation such as chat messages and awareness.
46



3.6 Summary

XP projects are vulnerable to the hazards of the ‘paper office’. This presents

many real and potential problems, such as, loss of information and inefficient

traceability. These consequences are mainly the result of inadequate techniques

used to keep track of XP project (in particular, the Planning Game). Several re-

searches have been carried out to alleviate these issues, in addition to relaxing the

co-location requirement.

Previous researches have been predominantly web-based. The web offers

wider dispersal of XP teams. However, the technologies available for web-based

applications are not sufficiently mature to support the highly collaborative group

work typical of XP projects. This has resulted in various degrees of success in

previous approaches.

Our approach differs from previous researches. We employ CSCW techniques

with a desktop-based client/server as opposed to a web-based approach. We high-

lighted that two forms of communication, point-to-point and broadcast, are re-

quired to satisfy the multifaceted communication requirements and operations in

the PAM groupware. In the following chapter we discuss the activities, people,

interactions and tasks supported by our PAM.

47



Chapter IV

Computer-based Support for XP Activities

In Chapter 3 we identified the benefits of CSCW support for both co-located and

dispersed XP teams. We discussed the reasons why support for the Planning Game

and project coordination take priority over support for development activities such

as pair programming and debugging. We developed several models of the XP

process based on information available from a variety of sources (see Chapter 2)

in order to understand the work flow and relationships that exist in normal XP. We

build on the previous chapters by using our model of the User Story life-cycle to

show the XP activities for which we provide CSCW support. We also discuss the

various roles and responsibilities of the XP Team, and finally, how they collaborate

to accomplish project goals.

The discussion of this chapter sets up (Chapter 6) in which we discuss im-

plementation details with specific emphasis on exploiting CSCW techniques. We

conclude that computer-based support for XP activities with the most collabora-

tion has the greatest potential to benefit XP teams.

4.1 XP Concerns, Relationships and Activities

We present various perspectives of the XP process in Figures 4.1 through 4.4 and

Table 4.2 through 4.4. We call these tables the Activity Tables. Each figure and

Schedules Artefacts
Analysis Design Implementation

Project User Story Task Source Code
Release Acceptance Test Test Case
Iteration Spike

Table 4.1: Classification of primary XP project concerns.

48



table highlights specific aspects of XP, such as the hierarchical arrangement of

its schedules and artefacts (Figures 4.2 and 4.3). The various activities, roles,

interactions, project concerns and constraints involved in an XP project are in-

terdependent. This is due, in part, to the process’ incremental, collaborative de-

velopment and intensive testing characteristics. We use the various perspectives

to complement one another in order to describe the relationship, project concerns

and activities involved in XP.

We have classified the primary project concerns in Table 4.1. In this table

and in Figure 4.3, the project concernTaskis a programming task derived from

decomposing User Stories during Iteration planning (Section 2.4, page 23).Test

Casedescribes code written to automate Unit and Acceptence Tests. We separate

this concept to highlight the relationship that exists between tests code and the

source code of the software under development. We introduce these project con-

cerns here because we reference them in the rest of this chapter and in Figure 4.3,

which describes other relationships that exist between them.

4.1.1 Aspects of Computer-based Support for XP

Our analysis of the Activity Tables shows that XP revolves around the transfor-

mation of User Stories. From these tables and Figure 4.4 we derived the life-cycle

of a User Story. We illustrate the life cycle in Figure 4.1. This figure shows how

features of the problem being solved are captured (that is, the process of story

elicitation) and processed until an incremental version of the system being devel-

oped is released. Further, when Figure 4.1 is cross-referenced with the Activity

Tables, it can be seen that most activities affecting the User Story life-cycle in-

volve collaboration between the Customer and Developers. The exceptions are

programming and integration activities.

We observed that the Planning Game activities (Table 4.2) always involve col-

laboration between the Customer and Developers. In Section 3.1 (page 28) we

discussed that the Planning Game practices put XP at risk, because of their long

term consequences. Further, the Planning Game is a Project Management activ-

ity, while programming and integration are aspects of Application Development

(Table 2.1, page 16). We believe that Application Development is adequately

supported with tools such as Concurrent Versions System (CVS). The separation
49



 Executing Spike  
[1-1, 2-2 ]

&
        [3-3]         

 Story
 Decomposition 

[3-4]  

                   

                                 

  select next iteration     

 Defining Task

                                   

 Story Elicitation 
[0-1]  

                                    

Writing

Estimating

Prioritorising

Story Scheduling
 

                                    

Assigning
to

Release
[1-2]

Assigning
to

Iteration
[2-3]

Selecting
story from
Iteration

Writing
Task

Estimating

Prioritorising

 Iteration Cost  
Computation

[3-4]

                    

                                          

Summing
cost of tasks

in
iteration

Removing
whole/part (Split)

Story from iteration

 Implementation 

                    

                                          

Writing 
Unit Tests

[4-5]

Writing 
Source Code

[4-5]

Executing
Unit Test

[5-6]

Acceptance Testing
[7-8] 

                                         

                                      

Drafting

Automating

Running
Automated 
Acceptance

Test

Integrating
in

Repository
[6-7]  

Releasing
Version 

[8-9] 

Architecture
Spiking

Estimate
Spiking

Solution
Spiking 

[4-4] 

A B

C

D

A    :    Total Task Cost   <   Iteration Velocity
B     :    Total Task Cost ==  Iteration Velocity
C    :     Total Task Cost  >   Iteration Velocity
D    :     New Requirement Introduced

Key

Figure 4.1: State Transition Diagram illustrating the life cycle of a User Story. The numbering of the composite states
correspond, broadly, to the transitions in Figure 4.4.

5
0



of activities, in combination with our analysis of the User Story life cycle pro-

vides an appropriate means for us to define the boundary of PAM. We conclude

that computer-based support for XP activities with the most collaboration has the

greatest potential to benefit XP teams.

Based on the preceding, we choose to provide computer-based support for

some aspects of the User Story life cycle. These are: (1) Story Elicitation, (2)

Story Scheduling, (3) Story Decomposition and (4) Unit and Acceptance Testing.

This selection is reflected in the composite states in Figure 4.1. We also keep track

of source code files produced as part of programming activities (Chapter 8) and

provide support for communication. These aspects of XP are supported in our

current version of PAM (Chapters 5 through 8). The features are:

1. Virtual Meetings: All of the aforementioned aspects of XP rely on com-

munication and feedback. Therefore, we provide communication support in

the form of: (1) a Chat utility, (2) a Virtual Desktop utility and (3) an inter-

active Sketcher utility. Collectively these utilities support Virtual Meetings.

Virtual meetings have potential to alleviate the problems experienced by

large and/or dispersed teams in normal XP, such as sharing a common desk-

top or whiteboard during planning sessions/discussions. (Session is used to

mean a period of collaboration involving informatoin sharing and working

towards a common goal). For example, the limited space available at a desk

or whiteboard may cause some members of the team to be unable to see the

artefacts. This may affect their ability to make meaningful contribution.

2. Collaborative XP Tools: In addition to the Virtual Desktop, we provide

collaborative tools to manage XP project concerns and keep track of the

project’s progress. They also support collaborative activities such as User

Story scheduling. Further, we facilitate all of the primitive activities, such

as writing User Stories, of the specific aspects—the composite activities—

selected for support. These tasks are highlighted in Figure 4.1 as the discrete

states of the User Story life cycle.

3. Persistence and Session & Project Monitoring:In order to alleviate the

long term consequences of the Planning Game practices, we also support
51



Project

Iteration

Release

User Story [Scheduled]

Task

ImplemenationSourceCode

TestSuite

AcceptanceTest [3]

User Story [Un-Scheduled]

UserStory [Un-allocated]

Acceptance Test [2]

Acceptance Test [1]

Spike [A]

Spike [B]

Spike [C]

Spike [D]

Figure 4.2: Tree representation of XP project hierarchy. The labels in brackets
distinguish instances of the same type of concern.

persistence of project data. Persistence is responsible for ensuring that the

project data survives over the duration of a session and from one session to

another. The persistence mechanism resides on a server.

We also provide a monitoring system to keep track of activities that change

the state of the project. The monitoring system tracks changes such as when

and by whom project concerns are created and/or modified, and the session

in which the user(s) were participating.

4. Security System: This supports authentication of users dispersed over a

network. Ensuring that the shared ownership practice is not compromised

and at the same time making provision for reusability and sharing of data

involves a tradeoff in security. In our current implementation of PAM we

support both aims. We do not impose strict security session control proto-

cols. These considerations, however, are outside the scope of our research.

52



4.1.2 Relationships between XP Project Concerns Explained

In this and the following sections we describe the relationships that exist between

XP project concerns and activities. We discuss these here because we exploit them

in the user interface of PAM (Chapter 8, page 116).

Figure 4.2 shows that XP concerns exhibit a natural hierarchy. This is derived

from the Class Diagram in Figure 4.3, which illustrates another perspective. These

figures show that a Project is made up of Releases which in turn are made up of

Iterations. Each of these may be associated with mutually exclusive User Stories,

which are themselves related to Tasks and Acceptance Tests. A User Story must be

allocated to an Iteration before it can be associated with (decomposed into) Tasks.

Tasks and Acceptance Tests are implemented through programming operations to

produce source file Resources.

Figure 4.3 also highlights specialised concepts and relationships involved in

XP. For example, Acceptance Tests depend on Tasks to validate User Stories. The

region of the figure bordered by the rectangle, highlights operations. These oper-

ations are related to the Application Development aspect of XP. As stated above,

this aspect of the XP process is outside the boundary of our research. We include

the classes depicted in the shaded region to show the relationship between Re-

sources and the project concerns—Tasks, Acceptance Test and Spikes—to which

they are indirectly related in our implementation of PAM (page 111).

The classesProject, Release, Iteration, User Story, Task, Acceptance Test,

Spike, UnitTest Case andSource Code in Figure 4.3 correspond to the classes

classified in Table 4.1 and described in Chapter 2. The class namedOperation

is an abstract class that encapsulates the events and activities that are required to

implement and/or carry out the specific objectives that are specified in the Task,

Acceptance Test and Spike classes.

Figure 4.3 does not explicitly show the sequence of activities involved in a

project. We describe these activities in the following subsection, with the aid of

Figure 4.4 and the Activity Tables.
53



Project Release Iteration

User Story

Operation

Acceptance Test SpikeTask

Test Case
 TestType: String

Primitive File

** 11

Schedule Construct

SourceCode

Resource

Primitive Resource File

1

*

produces

uses

**

verifies

PrimitiveOperation

<<derive>>

Test
 TestType: String
 TestSuite: Collection
 TestTarget: Collection

0..*

1.. * 1..*

* *

1

0..1

1

*

<<uses>>

2..* 1

*

1

*

CodingOperation
 CodeType: String

**

*

0..1

*

11

1

Figure 4.3: UML Class diagram illustrating the relationships that exist among XP
project concerns.

54



0

9

6

5

4

3

2

1

Story 
Elicitation

7

8

Release 
Planning

Iteration
Planning

Story 
Decomposition

Programming

Unit
Testing

Integration

Acceptance
Test

Architectural
Spike

Spike
out

Spike
in

Spike
out

Refactor

Figure 4.4: Finite State Diagram illustrating the forward and feedback transitions
of the XP process. The state labels are for identification only.

4.1.3 The Ebb and Flow of XP Projects

XP is a highly iterative process in which progress is made in small steps. This has

two major effects: it makes problem localisation and correction relatively easy and

it increases the number of places/times at which critical decisions concerning the

project can be made. For example, the Customer is empowered to make decisions

like whether or not to cancel the project if progress is not to their satisfaction.
55



We model XP as a Finite State Diagram (FSD) in Figure 4.4 to illustrate the

primary XP activities that influence project state changes. Usually, XP is de-

scribed using separate diagrams, each of which usually addresses a specific aspect

of the process. Our FSD highlights the various states at which critical decisions

are made, such as at the beginning of Release and Iteration Planning (state 1 and 2

respectively), User Story decomposition (state 3) and after Acceptance Tests (state

8) are executed. The FSD also highlights that a decision to cancel the project may

be made at several states. This is a result of the quality of feedback obtained on

XP projects. However, the FSD does not show the low level task associated with

the transition activities. We use the Activity Tables to complement the FSD to

describe these primitive tasks.

The list of activities in the Activity Tables follows the main thread through

an XP Project. The tables show (1) the activities involved in each transition (for

example, transition ‘1 to 2’, “Release Planning”), (2) the pre and post-conditions

that cause and result from the transitions, and (3) the team members’ interactions

and the roles involved. It also shows what conditions may cause the project to

return to a previous state. This does not necessarily involve corrections. For

example, when an Iteration is complete, the project takes the transition ‘from 3

to 2’ to commence the next Release. This is in fact indicative of progress in the

process.

Spikes are shown with ‘Spike In’ and ‘Spike out’ states, which serve as con-

nection points to keep the diagram from being clustered. In the Activity Tables we

indicate Spike transitions with a single asterisk. The double asterisk indicates that

Acceptance Tests may be written for User Stories at any time prior to and during

the Iteration in which the User Story is implemented.

The Activity Tables show that XP is inherently collaborative, since all of the

activities involve some form of collaboration. The Release and Iteration Planning

activities (Table 4.2), which correspond to the Planning Game, involves the col-

laboration of customer and developers, and at times the entire team. In normal

XP, User Story cards support this collaboration. We posit that support for these

activities, because of the diversity of the collaborating participants, will benefit

the entire team. With adequate support everyone has the opportunity to know the

state of the project provided they can establish a connection to the PAM server.
56



Table 4.3 shows that apart from executing Acceptance Tests and writing new

User Stories, the programming, testing and integration activities are primarily car-

ried out by collaborating developers. As we stated in Chapter 2, page 25, appli-

cation development activities are adequately supported by existing tools such as

CVS, compiler and debuggers. In addition, there is ongoing research to investigate

support for distributed pair programming (Baheti, Gehringer & Stotts 2002, Hanks

2003).

57



State Actors Sequence of Activity Condition Collaboration
fr to Driver Observer Pre- Post- Manual DXP

0 1 C Team Write User Stories Project Initiated Collection of User Stories
√ √

1 4* D C Do Architectural Spike System Architecture unclear alternative architectures
√

6 1 D C Adopt a spike alternative spike executed Project architecture, metaphor
√

1 2 D C Estimate User Story cost user story exist
√ √

C Team Prioritise User Stories estimates available All stories well defined
√ √

C Team Define Release(s) sufficient stories to start project
√ √

C Team Assign Stories to Release release duration set Draft release plan
√ √

2 1 Team Revise release plan current plan impractical improved release plan
√ √

2 4* D C Do Estimate Spike Uncertainty wrt story cost spike solutions implemented
√ √

6 2 D C Update story estimate spike executed Improved estimates
2 3 D C Define Iteration(s) Release plan drafted Iterations per Release set

√ √
C D Assign Stories to Iteration previous iteration complete/full Draft iteration plan

√ √
3 2 Team Revise Iteration plan schedule creep up-to-date iteration plan

√ √
3 2 Team Commence next Release previous release complete Iteration plan initiated

√ √
3 4* D C Do Estimate Spike Uncertainty wrt story cost spike solutions implemented

√ √
6 3 D C Update story estimate spike executed Improved estimates
3 4 D C Decompose Story into Tasksiteration plan set collection of tasks

√ √
D C estimate tasks tasks defined initial task estimates

√ √
D C Iteration cost evaluated stories in iteration decomposed iteration cost

√
Iteration plan confirmed

√ √
C **Create Acceptance Test User Story complete Acceptance Test Defined

√ √
4 3 C D Revise Iteration plan Sum(task)6= Sum(story) estimate well defined iteration

√ √
4 3 Team Revise Iteration plan schedule creep adjusted iteration plan
4 3 Team Commence next Iteration previous iteration complete Story decomposition initiated

√ √

Table 4.2: Typical XP Features of the Planning Game (Release and Iteration Planning).

5
8



State Actors Sequence of Activity Condition Collaboration
fr to Driver Observer Pre- Post- Manual DXP

4 5 D D Write unit test Task defined test suite/case(s)
√

4 5 D D Do SpikeSolution Uncertainty wrt task algorithm alternative algorithms
√

4 5 D D Write source code Task defined
√

Unit test written source code module(s)
√

4 5 D D Write Acceptance Test Acceptance Test defined automated acceptance test(s)
√

4 5 D D Refactor existing code obsolete/complex code improved code/system design
√

4 5 D D Fix code errors Error/Bugs in code patched code
√

5 4 D D schedule refactoring code design needs updating improved/extended module
√

5 6 D D Execute Unit Test source code module written test results obtained
√

6 4 D D Schedule Bug/Error fix Unit Test failed task revisited
√

6 4 D D Schedule next task Unit Test pass task to encode selected
√ √

6 7 D D Integrate source code unit test pass new version of system
√

7 4 D D Schedule Bug Fix/refactoring Integration breaks current versionobsolete/bad module localised
√

7 4 D D Schedule next task Integration successful next task to encode selected
√

7 8 C D Run Acceptance test(s) New version ready Results of acceptance test
√

8 3 C D Write new User Story Changed requirement needed new user story added
√

8 4 D D Schedule Bug/Error fix Acceptance test reveal bug new task added
√

8 4 D D Schedule next task to encodeAcceptance Test passed new version
√

8 9 Team End project application inappropriate customer cancels project
√

8 9 Team End project application complete working software
√

Table 4.3: Typical XP Features of application development (Programming, Testing and Integration).

5
9



State Actors Sequence of Activity Condition Collaboration
fr to Driver Observer Pre- Post- Manual DXP

1 9 C Team End project application inappropriate customer cancels project
√

2 9 C Team End project application inappropriate customer cancels project
√

3 9 C Team End project application inappropriate customer cancels project
√

4 9 C Team End project application inappropriate customer cancels project
√

C D Common Operations
C D –change concern detail inaccurate updated concern

√
C D –remove concern no longer neededrefined project requirement/definition

√
C D –Split user story story too large refined user stories

√

Table 4.4: Common Operations of the XP process; including project termination criteria.

6
0



4.2 Summary

In this chapter we showed that the roles, activities, project concerns and relation-

ships involved in XP are interdependent. We presented various perspectives of

the process to illustrate and describe the various aspects of the interdependence.

For example, the Activities Tables, lists the set of activities that are carried out as

part of the XP process. Based on our analysis of these perspectives and consider-

ation of the long term consequences of the Planning Game practices, we decided

to provide support for specific aspects of a normal XP process, such as User Story

elicitation and User Story Scheduling. The support is implemented in our experi-

mental prototype system, PAM.

In the following chapter we describe PAM from a users perspective. This

description sets up the remaining chapters in which we discuss the design and

implementation issues and decisions.

61



Chapter V

The CSCW Enabled Information Radiator

In this chapter we introduce our prototype system, which we have named PAM.

PAM is a distributed system with a client/server architecture (Section 3.5, page 44).

We discuss the details of its deployment in Chapter 6. All XP team members in-

teract exclusively with the PAM client. A designated person (perhaps the Coach)

will be responsible for administrative tasks such as setting up projects and user

administration. We describe PAM as a CSCW enabled information radiator. This

description captures the metaphor used to guide the development of PAM and

emphasises PAM’s primary purpose.

In the preceding chapter we established the aspects of XP which are supported

by PAM. We described our analysis and explained why specific aspects were se-

lected. In this chapter, we describe how these aspects are supported by features in

the current version of PAM. First we discuss the fundamental user interface com-

ponents and metaphors, as well as related feedback from informal evaluations of

PAM. We believe that this will aid in making the ensuing discussion about the

use and utility of PAM clearer. We advise that PAM is not an Integrated Develop-

ment Environment (IDE). Further, PAM in its current version is an experimental

groupware application only, and is not intended for commercial use.

5.1 The Big Picture: A Tool called PAM

The user interface of the PAM client consists of three major components: (1) a

Project Hierarchy display, (2) a work area and (3) a communication utility (left,

center and right of Figures 5.1 and 5.3 respectively). These components cor-

respond to the three activities, coordination, production and communication, of

the Clover Design Model(Sire et al. 1999) for groupware applications (see Sec-

tion 8.1, page 112).

The components are part of a common window, thus forming a composite
62



Menu    MenuI                                                                                                            Help

Menu Bar

ToolBar

Project
Hierarchy

Work
Area

Commun-
ication

Status
Bar

Figure 5.1: Illustration of the prototype system User Interface model

interface in which they are deliberately kept together. This configuration reduces

the need for users to switch between windows in order to work and collaborate.

Anecdotal evidence reveals that switching between screens and windows ( for

example, an instance of NetMeeting and a separate collaborative text editor) is

distracting and counter-productive. This observation is supported by informal

tests (Laurillau & Nigay 2002). Nevertheless, independent single-window tools

can be supported.

The Project Hierarchy display reflects the natural hierarchical arrangement

of XP projects concerns. This is illustrated in Figure 5.2. The Project Hierarchy

is used in the UI for navigation and as part of the awareness mechanism, which

provides users with information on the location and activity of others. Together,

these functions assist in coordinating interaction between users and in the inter-

face. A user’s location is indicated in the Project Hierarchy by a list in brackets to
63



Figure 5.2: Snapshot of Project Hierarchy illustrating the breakdown of an active
project and the location of users.

the right of the element name. For example, Figure 5.2 shows that userswilliams

andjohnare working at the level of Project (COSC314) and Release REL000 re-

spectively. The user whose screen is being shown in the example, has logged in as

Malo (indicated by the first letter only,M) and is at Release REL000, along with

john. This scenario may be an indication thatjohn andmaloare collaborating on

some aspect of Release REL000. In this situationjohn’s andmalo’swork areas

will the same, whilewilliams’ will be different. Alternatively,johnandmalomay

be working in different views. This example indicate the flexibility of the floor

control protocol in PAM. This form of flexibility in groupware where users are

able to collaborate but are free to view different aspects of the shared information

space is referred to asrelaxed-WYSIWIS (What You See Is What I See)(Stefik,

Bobrow, Foster, Lanning & Tatar 1987). Tools which employ this technique are

termedcollaboration-aware(Lauwers & Lantz 1990). The awareness information
64



Figure 5.3: PAM client User Interface showing the Tree Hierarchy, Work Area
(currently used by the Virtual Desktop) and the Communication Utility compo-
nents.

helps to avoid conflicts.

In terms of navigation and coordination within the interface, when a user se-

lects a specific element in the Project Hierarchy, the context of that project concern

is brought into focus. This is evident in Figure A.2, which illustrates the Virtual

Desktop containing representations of the project concerns that are immediately

associated with Release REL000: Iterations ITR000 and ITR001 and User Sto-

ries US002 and US000. A user may follow another, to synchronise their screens,

by selecting the same element in their Project Hierarchy. Since there are three pos-

sible interfaces which may occupy the work area, users may use the Chat utility

to agree on a common view. This overhead may be alleviated by providing aware-

ness of which view each user is currently using (See Chapter 9, “Future Work”).

Such HCI elements are not crucial for our proof of concept system.

The communication utility is made up of two components: (1) aChat utility

and (2) a system activity notification panel, calledSystem Monitor Messages.

These are illustrated on the right of Figure A.2. The current version of the Chat

utility supports text chat (See Section 9, Future Work). The activity notification
65



panel to the bottom of the Chat interface keeps a log of activities affecting the

project and session state. Users are made aware of project state changes as they

occur and notification of when users join and leave the current session. In addition,

users may refer to System Monitor Messages to view the history of activities for

their session. This is another facet of the awareness mechanism.

The work-area is the main component of the PAM client UI. It serves as a

place holder for the three utilities primarily responsible for production. These are:

1. Virtual Desktop: We use the metaphor of a ‘Virtual Desktop’ (Reference

Section 8.4, page 116) to describe our emulation of the common desktop

used on XP projects during the Planning Game. In the Virtual Desktop,

collaborative objects (the shared information about a single project concern,

such as a User Story) are represented as cards (See Figure 5.3). The cards

support direct manipulation with remote feedback. They may be moved

around and grouped during meetings. For example, Figure A.8 shows users

john andwilliams negotiating for Tasks by moving them to a place of their

convenience in the interface. When a card is moved by a user, that user’s

name appears in the titlebar.

The Virtual Desktop supports filtering (See Figure A.5, Appendix A), Drill

Down (navigating from a parent concern to show its associated children in

the Virtual Desktop) and Common Operations (see Subsection 5.2.3).

2. Stacked Slates:We use the metaphor ‘stacked slates’ to describe the lay-

out of forms in the tabbed pane (Reference Chapter 8.4, page 116 and Fig-

ure A.3, Appendix A). The forms in the Stacked Slates are primarily used

to update the details of current data and, in the case of Release and Itera-

tions, to provide collaborative support for scheduling User Stories (Subsec-

tion 5.2.4).

The Stacked Slates also support navigation. This happens when a user

switchs between tabs, such as moving from the project level (Figure A.6)

to a specific Release, REL000 for example, (Figure A.7), by clicking on

the “GoTo. . . ” button. Navigation is alsosupported between levels—users

can move, for example, from Figure A.6 to Figure A.3 by clicking on the
66



“User Story” tab. Figure A.3 displays Tasks and Acceptance Tests which

are associated with User Story US001.

3. Sketcher: The current version of the Sketcher utility (Figure A.4, Ap-

pendix A) supports collaborative drawing of simple diagrams. Sketcher

is included as an example of the sort of tools that can be implemented in

future versions of PAM.

All of the preceding components and utilities complement each other to fulfill

the various aspects of PAM outlined in Section 4.1.1 (page 49). For example, The

Sketcher and the Virtual Desktop complement the communication utility to fulfill

Virtual Meeting aspect.

Before we discuss user interactions with these utilities, we will discuss some

UI issues.

5.1.1 Of Relaxed CSCW and Informal Feedback. . .

In our implementation of PAM we use relaxed-WYSIWIS to support users work-

ing with the same or various aspects of the sharedProject Document(page 121)

from different perspectives. Strict WYSIWIS is used for direct manipulation of

the cards in the Virtual Desktop and for User Story scheduling. XP projects typ-

ically have between 80 to 120 User Stories. If these User Stories are distributed

across ten Releases then there will be at approximately ten User Story cards be-

ing handled at a time. In addition, the small granular size and discreteness of the

collaborative objects, we believe, do not warrant the overhead involved in pro-

viding strict WYSIWIS capability for Common Operations. For example, a User

Story is only usually a sentence or two long and, thus, does not take long to cre-

ate or update. Consequently, character level strict-WYSIWIS is not needed. To

illustrate our point, we suggest the contrast of our User Story with a shared doc-

ument, such as a source code file, which is significantly larger. PAM provides

lightweight awareness of imminent Common Operations in order to alleviate the

lack of strict-WYSIWIS. Notification is provided in the System Monitor Message

panel (bottom-right of Figure A.4, Appendix A).

Feedback from informal evaluation of PAM reveals that the relationship be-

tween selected nodes in the Project Hierarchy and what appears in the Virtual
67



Desktop and the Stacked Slates is counter-intuitive (Reference Figure A.3, Ap-

pendix A). This observation is, however, skewed. While users of IDEs such as

Together ControlCenter (Borland Software Corporation 2003) express confusion,

infrequent IDE users do not. Frequent users of IDEs expect that the details of the

selected collaborative object will be displayed. However, in our implementation,

the relationship between the two components is ‘selected parent’–‘displayed chil-

dren’ (or ‘displayed descendants’ by menu option; see Figures 5.6(a) and A.5).

Here again, the small granular size of the artefacts and their discreteness is

the reason behind the interface design. The artefacts by themselves convey little

information. Compare, for example, the User Story in Figure 2.1(a) (page 22) with

Figure A.3 (page A.3). It is obvious that the contextual information in Figure A.3

provides much more useful information. Further, collaborative objects are not

frequently edited once created; especially after forming children relationships.

Formal user evaluation might appear to be the logical way to test PAM. How-

ever, this must be done in the context of long term studies. These studies must

first seek to determine whether the concept of distributed extreme programming

is valid. Provided that DXP is found to be valid, the next best step would be

to carry out an evaluation to compare client/server and web-based approaches to

DXP. These general evaluations will provide the basis for evaluation of PAM.

Evaluations of PAM could be conducted to determine the suitability of the

client/server architecture to support dispersed and co-located teams. Provided,

here again, that these evaluations attest to the suitability of the architecture, fur-

ther focused evaluations may then be considered. Focused evaluations will in-

vestigate specific aspects of the PAM system. HCI usability evaluations may be

carried out on individual clients. These may subsequently be extended to involve

collaborative usability. Nevertheless, proof of concept systems, such as PAM, do

not depend on these focused evaluations to assist validation.

In the current implementation of PAM, long term evaluation is supported by

means of the System Monitor logs (see Subsection 6.2.3, page 92). The logs are

stored in XML format and keep track of transactions as they changed the state of

the project. These logs may be used outside of PAM to analyse the evolution of

projects and to determine how PAM is being used.

For meaningful information to be obtained from evaluation of PAM, the eval-
68



uations must be carried out in the context of a reasonable size project of approxi-

mately six months duration with a team of between ten to twenty members. Tests

to determine whether PAM supports user queries, such as finding User Stories

given a search value, and the effectiveness of the awareness mechanism can be

carried out periodically. These evaluations will require substantial time and a sta-

ble human resources environment from which to draw participants.

The difficulties involved in the evaluation of PAM as a CSCW system arise

from the many issues that must be addressed. These are: (1) HCI issues of usabil-

ity and ergonomics; (2) distributed system issues such as concurrency, synchro-

nisation and efficiency of communication; (3) people factors, group dynamics

issues, individual needs and psychology, politics and so on; and (4) impact on

XP projects with regards to pair programming, shared ownership and so on (Ref-

erence Section 3.2, page 33). In addition, the size and duration of a test project

appropriate for a formal evaluation must be realistic. Insufficient resources would

have made it necessary for one or more of the preceding facets be left out, thus

compromising the rigour of the evaluation.

Instead, we conducted a number of informal evaluations involving a research

group of five members. Feedback about the usability the user interface were used

to guide subsequent versions of PAM. During these informal tests we observed

that users were sometimes inclined to work individually. This may be attributed

to the excitement of being the first one to break the system. However, we used this

as encouragement for our use of relaxed CSCW techniques. Feedback from these

evaluations also confirms reports from previous groupware evaluation researches.

What we learned fits with other expectations; that is, that consideration of the

socio-technical realities of a CSCW systems is concomitantly important to its

success and makes it difficult to evaluate (Engelbart & Lehtman 1988, Baker,

Greenberg & Gutwin 2001, Ross, Ramage & Rogers 1995, Grudin 1988).

Users examined the utility offered by PAM during informal evaluations. The

participants were from two separate groups. The first group consisted of graduate

Computer Science students who were involved in ad hoc testing of utilities such

as User Story elicitation (page 77) and signing up for Tasks (page 83). Feedback

from these tests were used to enhance the design of the user interface. The second

group was comprised of members of a graduate research group. Informal testing
69



with the second group was more structured.

In the latter evaluations, the research group collaborated in the Planning Game

activities for an Inventory Management System. (The collaborative objects shown

in the running example of the discussion about PAM features and support that fol-

lows were created as part of these evaluations.) In each evaluation session, one

participant adopted the role of customer and the others were developers. First the

participants engaged in User Story elicitation (see page 77). Several User Sto-

ries were created by the customer. Participants used the Chat utility extensively to

communicate with each other as the User Stories were negotiated. During Release

and Iteration planning (page 5.2.5) participants allocated User Stories to Releases

and Iteration respectively. User Stories in the first Iteration of the first Release

were then decomposed into Tasks (see Figure A.8). Participants used social pro-

tocols while using the Chat utility in order to coordinate their collaboration. All

of the utilities offered in PAM were used during the course of these evaluations

both as a matter of convenience and exploratory experiments. Feedback from

these evaluations suggest that PAM offers relevant and worthwhile support for XP

teams. In addition, feedback also suggested that some aspect of the user interface

stand to benefit from attention to HCI usability expectations.

In the preceding discussion we presented the fundamental UI components of

PAM and advised of some user feedback. We also discussed our reasons for using

informal instead of formal evaluation to test the utility of PAM. In the following

sections we describe how PAM supports group work on XP projects.

5.2 A Day in the Life of PAM

The PAM client is instantiated by running a shortcut script (the script contains the

Uniform Resource Locator (URL) address of the PAM server) or from the com-

mand line. At startup, the user is presented with the dialog in Figure 5.4(a). The

user supplies authentication data in the logon screen and clicks ‘OK’ to request

authentication and permission to access projects maintained on the PAM server.

Upon successful authentication by the PAM server, the projects to which the user

has access rights are returned to the client application and displayed in the Virtual

Desktop. There they are displayed in the form of cards (Figure 5.4(b)). The user

then selects and loads a project.
70



Type of collaborative object Amount

User Stories 100
Releases 8
Iterations (10 per Release) 80
Tasks (10 per User Story) 1000
Unit Test per Task 1000
Acceptance Test per User Story 100

Total: 2288 @ 1kb = 2.288 MB

Table 5.1: Breakdown of XP project in terms of project concerns to compute
Project Document size.

When a project is loaded, the current session and project state on the server are

replicated on the client system. The session state consists of awareness informa-

tion such as who is in the current session, their location in the Project Hierarchy,

temporal information such as which User Stories are marked for reassignment

(See Figures A.6 and A.7, Appendix A) and so on. We discuss the awareness

mechanism in Chapter 8. The project state consists of theProject Document,

which we anticipate will typically have an approximate maximum size of 2.5 MB

(We discuss the concept of theProject Documentin Section 8.5.2, page 121). Ta-

ble 5.1 shows the breakdown of project concerns for an example reasonable sized

XP project. We chose the data replication sharing approach for strategic purposes.

It differs from shared desktop and shared application approaches. We discuss the

reasons in Section 8.2, page 112.

(a) Login Screen. (b) Virtual Desktop showing Project cards.

Figure 5.4: Snapshots depicting login form and available projects.

71



While the preceding happens in the background, the user is presented with the

Project Hierarchy, Virtual Desktop and communication composite interface. The

exact display depends on the current state of the loaded project. For new projects,

one node—the loaded Project—appears in the Project Hierarchy and no cards

are displayed in the Virtual Desktop. For projects in progress, all of the project

concerns are listed as nodes in the Project Hierarchy and cards for each concern

immediately related to the Project, such as Releases and unallocated User Stories

(see Figures 4.2 and 5.2), are displayed in the Virtual Desktop.

When the project is fully loaded, the user becomes an active participant in

the session. The user can then interact with the rest of the system—that is, other

participants and PAM. Goals are achieved through users performing operations.

We discuss these in the following section.

5.2.1 User Interaction with PAM

PAM supports XP by:

• Alleviating the long term consequences of the normal Planning Game by

providing persistence of project data. This alleviates issues that may arise

from practices such as the use of a temporal whiteboard (see Section 3.1,

page 29).

• Relaxing the co-location requirement by providing support for dispersed

teams.

• making the project whiteboard—the information radiator—conveniently ac-

cessible. This supports collective understanding of the current state of the

project, tracking and historical cross-referencing.

• Augmenting the stand-up meetings by means of Chat, Virtual Desktop util-

ities and shared data.

• Allowing customers to monitor the project whether they are on-site or not.

• Supporting server-side unit testing with real code, as well as client-side test-

ing (mock objects most often used for client-side tests).
72



To obtain these values users are required to carry out operations in the PAM

environment. Though other clients may be implemented differently, operations

such as create, edit, delete, annotate and viewing the properties of project con-

cerns are common to all collaborative objects. We refer to these operations as

Common Operations. In the following subsections, we describe how a user nav-

igates the PAM client user interface. We then describe how Common operations

are performed. Finally we describe how other artefact and project state specific

operations—for example, assigning a User Story to a Release and the splitting of

User Stories—are performed.

5.2.2 Navigation in the PAM client User Interface

The fundamental components of the PAM client user interface provides various

views of theProject Document. For example, the Virtual Desktop depicts the

project as a collection of cards. The Project Hierarchy, on the other hand, as a

hierarchical arrangements of nodes, while the Stacked Slates depict the project

as a collection of forms. The work area can be occupied by only one of these

production views at a time. This reflects a compromise between the reducing

the overhead of users switching between screens and having access to multiple

perspectives of the document simultaneously.

In Section 5.1 we describe how a user may navigate the Project Hierarchy and

Virtual Desktop. We also described the parent-children relationship between the

Project Hierarchy and Virtual Desktop on one hand, and the Project Hierarchy

and Stacked Slates on the other. These views are synchronised. For example,

if the Current Parent Artefact is Release REL000 then the collaborative objects

associated with REL000 will be displayed in the Virtual Desktop or the Stacked

Slates, whichever is visible. If the user navigates the interface and brings another

project concern into focus while using the Stacked Slate view, the Virtual Desktop

will be populated to show the immediately associated project concerns.

Synchronisation of the views is internal to a PAM client. Views are not explic-

itly synchronised between clients. This is a deliberate departure from the use of

strict-WYSIWIS (Section 5.1, page 5.1). Users manually synchronise their views

when they need to share the same view. We discuss this design decision in Chap-

ter 8. Suffice to say, it supports flexible use of the interface. Nevertheless, the
73



client application may be extended to provide a strict “follow me” mode such that

collaborating users may be directed through the interface by a designated leader.

The equivalent is available in PAM through the use of social protocols and Chat.

Navigation and operations are also supported in the client through the follow-

ing components.

Toolbars: There are two types of toolbars in PAM: (1) the application toolbar (see

Figures 5.1 and 5.3) and (2) the toolbars on the Stacked Slates and individ-

ual forms (see Figure A.7). The application toolbar allows a user to switch

between the production views, as well as hide/show the communication view

and/or the Project Hierarchy (either or both result in the work area being allo-

cated more screen real estate). The form toolbars offer support for the Com-

mon Operations, such as save, revert, add note and so on. They also support

visiting the next or previous tab in the Stacked Slates.

Menus: PAM has has an application menubar and popup menus that are available

in the Virtual Desktop and Project Hierarchy. Actions performed in the appli-

cation toolbar are also available in the menubar. The use of the popup menus

is discussed in the next section, “Common Operations”.

Icons: Icons are used in the menus and toolbars. However, the important icons

are those used in the Project Desktop, cards and tabs of the Stacked Slates.

These icons are depicted in Figure 5.5, which is a cutout from the Stacked

Slates. The icons represent the names listed, in addition to the Implementa-

tion, Acceptance Tests and Unit Tests resources respectively. These icons are

used, similarly, in the Project Hierarchy.

Figure 5.5: Icons in the client user interface

74



(a) Popup menu of the Project Hierarchy (b) Popup menu of the Virtual Desktop

(c) User Story data input form

Figure 5.6: Snapshots showing menus and and example of a form used in Com-
mon Operations.

5.2.3 Common Operations

Common Operations are permitted from three places in the PAM client: the Vir-

tual Desktop, the Project Hierarchy and the forms in the Stacked Slates. We use a

User Story to illustrate how these operations are performed.

Create: To create a User Story, the user defines the User Story in the client in-

terface and then commits it to the system. This process is initiated with a

right mouse click on either (1) the Project, Release or Iteration node in the

Project Hierarchy, or (2) the Virtual Desktop. This action displays the menu

in Figures 5.6(a) and 5.6(b) respectively. The user selects the appropriate

menu option—“New User Story”, for example—to display the form in Fig-
75



ure 5.6(c). The User Story is defined by filling out the form with appropri-

ate details. The user uses the menu bar to commit (“Save”) or alternatively,

“Cancel” the operation.

The User Story becomes a collaborative object and part of the system when

it is saved. The definition is sent (Section 7.3, page 104) to the PAM server

where it is added to the User Story repository (see Subsection 6.2.2, page 91).

The server then broadcasts (page 104) the new User Story to all connected

PAM clients, including the sender. In so doing, the state of the project is

shared in real time.

Remote stakeholders are alerted to the creation of the new User Story—the

changed project state—by means of the awareness mechanism. Awareness

is provided in these ways: (1) an entry is recorded in the System Monitor

Messages panel (See Figure 5.7), (2) a User Story card is added to the Virtual

Desktop, (3) a coloured node is added to the Project Hierarchy (we use the

colours green, red and black to indicate new, recently updated and regular

nodes respectively), and (4) if the new User Story has a child association

with an Iteration, a row is added to the table in the Iteration tab of the Stacked

Slates to reflect this relationship.

Figure 5.7: Snapshot of System Message Monitor

All project concerns may be created similarly, with the exception of the

Project concern. The Project is created from the Virtual Desktop only, and by

the Administration (most likely the Coach). The menus in Figure 5.6 display

enabled/disabled options depending on what type of collaborative object can

be added as a child of the Current Parent Artefact, that is, the selected ele-

ment in the Project Hierarchy (see bottom left of Figure 5.3, page 65). For
76



example, only User Stories can be added as immediate children of the project

object (see Figure 4.2, page 52).

Alternatively, once a project is in progress and Iterations have been defined,

User Stories can be added directly to an Iteration through the Iteration tab of

the Stacked Slates form (see Figure A.7). The User Story definition is first

created, then committed. The other collaborative objects may be created in

the same conditional manner from the relevant tab.

Edit: Edit operation on a User Story is initiated by a right mouse click on the

User Story node in the Project Hierarchy or the User Story card in the Virtual

Desktop or by using the menu bar in the “Iterations” tab of the Stacked Slates.

Committing changes is similar to committing new User Story definitions.

Delete: Delete operation is permitted only from the Project Hierarchy. The project

concern being deleted must not have children associations.

Annotate: A Note Editor is available to add notes to collaborative objects. Each

note has sender, receiver, date and description data. Notes are added by right

clicking on the card in the Virtual Desktop or selecting ‘Add Note’ from the

toolbars available in forms. Adding a note is a form of editing, and, therefore,

treated similarly.

View Properties: While forms in the Stacked Slates display details of collabo-

rative objects, the Tree Hierarchy shows only the name and/or ID and the

Virtual Desktop shows only a subset of the details. To view the details of a

collaborative object displayed in the Virtual Desktop or the Project Hierar-

chy the user right clicks on the collaborative object representation and selects

‘View Properties’ from the popup menu.

5.2.4 User Story Elicitation

User Stories form the first input into an XP project. They are usually accompanied

by an architectural spike, which experiments with alternative architectures and

develops a metaphor for the system (See Figure 2.2, page 26). In the normal

XP Planning Game, the Customer is guided by the Developers in developing the
77



User Stories for the project. The Customer and Developers use social protocols

in face-to-face meetings to flesh out the details of User Stories. Once consensus

is obtained on the detail, the Customer writes a User Story on an index card and

adds it to the project.

PAM supports collaborative story elicitation. It encourages the use of social

protocols and facilitates meetings through the Chat and Sketcher utilities. Story

Elicitation through PAM involves the Common Operations. The Customer may

collaborate with Developers using the Chat utility to discuss User Story descrip-

tions. Alternatively, the Customer may create some User Stories independently,

and then meet with the Developers to discuss them. During elicitation, User Sto-

ries are created, edited, deleted and/or annotated as described in the preceding

subsection. In addition, each User Story cost is estimated and then prioritised.

Estimating is done by the Developers and prioritising is done by the Customer.

Both of these activities constitute Edit operations. During the process of estimat-

ing a User Story, the Developers may execute a Spike to improve the accuracy of

the estimate.

When the Team is satisfied with the elicited User Stories, they are scheduled.

We discuss the Story Scheduling process next.

5.2.5 User Story Scheduling

Story scheduling is an activity of Release and Iteration Planning (Section 2.3.1,

page 16). The Customer assigns User Stories to Releases by order of their prior-

ity. The resulting distribution of User Stories and Releases makes up the Release

Plan. Iteration Planning, unlike Release Planning, is a three part process during

which the Team: (1) set up Iteration and assign User Stories, (2) decompose User

Stories into Tasks, and (3) review and adjust Iteration based on the Iteration ve-

locity. We describe part (1) below and show how PAM supports (2) is supported

in Subsections 5.2.6. Item (3) is not automated in PAM but is supported.

Setting up the schedules: PAM supports collaborative User Story scheduling. In

order to schedule User Stories Releases are first created. This allows Iterations

to be created within Releases (Figure 4.3, page 4.3 illustrates the composition

association between the schedule constructs). Single Release and Iteration
78



Figure 5.8: Release Form Tab illustrating the process by which User Stories are
assigned to a Release. It also shows the two step process of creating Releases (the
black circle with form cutouts).

collaborative objects can be created from the popup menu in the Virtual Desk-

top or Project Hierarchy. In this case, the Project or a Release node must first

be selected in the Project Hierarchy. Alternatively, one or more Releases can

be created using the Project tab in the Stacked Slates. The Stacked Slates im-

poses constraints on the order in which collaborative objects may be added.

That is, the appropriate parent object must first exist.

As Figure 5.8 shows, the process for creating multiple Releases and Itera-

tions is similar (see also Figures A.6 and A.7). The user clicks the “Cre-

ate Releases”/“Create Iteration” button. The button label changes to show

“Save/Cancel”. The associated text box prompts the user to enter an amount.

The user then commits the Releases/Iterations to the system.

Awareness of new Releases and Iterations takes place in a similar manner to a
79



‘create’ Common Operation. In this case Releases and Iterations are added to

the Project and Release tabs respectively.

Assigning User Stories to Schedules: When the schedules are set up, User Sto-

ries can be assigned to them. The user does this using the Stacked Slates. It

should be noted that although it is possible to provideDrag-and-Dropopera-

tion to assign User Stories in the Project Hierarchy and Virtual Desktop, we

do not. The reason is twofold. In PAM, the chances of missing the target with

a Drag-and-Drop operation is higher than in a single-user application because

other users will be changing the structure of the Project Hierarchy and the

layout of cards in the Virtual Desktop. Further, undo operations are difficult

in distributed applications.

Secondly, in normal XP, User Stories are moved back and forth between

schedules before a final decision is made. We support this activity by al-

lowing a User Story to be in transit. This is illustrated in Figure 5.8. The in

transit User Stories, coloured in magenta, were moved from the Project level

to Release REL000. Users are free to move between Releases in the table to

view the User Stories that they have been allocated. The user may also move

User Stories between the Project and other Releases/Iterations.

To move User Stories between schedules, the user must perform four tasks.

The user will: (1) select the target schedule in the table (User Stories currently

assigned to, or in transit in the selected target schedule appear in the list on the

right), (2) select a User Story in the left hand list and (3) click on the appropri-

ate direction button located between the lists to move the selected User Story

(or all) to the list on the right, where it/they are coloured magenta. Finally,

the user will (4) commit the in transit User Stories to the target schedule. We

illustrate this process in Figure 5.8 (the numbers indicate the steps).

We use WYSIWIS to support the activities involved in scheduling User Sto-

ries. When a User Story is moved between schedules, all PAM clients in the

session are updated in real time. Users who have their views synchronised

see the User Stories as they are moved from one list to the other. Further, any

user in the session has the right to commit the assign operation. PAM clients
80



joining the session while User Stories are in transit will be updated with ap-

propriate session state information from the server. Consequently, the project

and session state is consistent irrespective of when a client joins the session.

Creating Iterations and assigning User Stories to Iterations is performed in the

same way. In this case, however, the unassigned User Stories from both the

Project and the current Release (See Figure A.6) are displayed in the left hand

list of the Release Tab. When there are in transit User Stories in the current

Release, they appear in the left hand list, coloured in magenta. The awareness

of in transit User Stories is transparent across both Project and Iteration tabs.

Figures A.6 and A.7 shows User Story with short nameSystem Performance,

appearing in both the Project and Release Tabs because it has been moved to,

and is in transit, in Release REL000.

The use of relaxed-WYSIWIS allows users to collaborate while assigning

User Stories to schedules or to join the activity at any time and still be up-

dated appropriately. In the current version of PAM the awareness of in transit

User Stories is limited to the Project and Release Tabs. This mechanism may

be enhanced in future versions (see Chapter 9).

5.2.6 Story Decomposition

Story Decomposition is the second major aspect of Iteration Planning. In normal

XP, User Stories are decomposed one at a time, but in PAM several User Stories

may be decomposed simultaneously (see page 5.2.6). The Customer and Devel-

opers further analyse and discuss each User Story, in order to define the Tasks

needed to implement it. When the Tasks are defined, they are estimated by the

Developers.

Next, the Iteration cost is calculated (see Section 2.3.1, page 17). The total

cost of all the Tasks in the current Iteration is compared with the current Iteration

velocity, or with the number of ‘ideal programming days’ in the Iteration if it is the

first Iteration. If the total Task cost is greater than the Iteration cost, then one or

more stories are reassigned to the next Iteration or a User Story is split; whichever

balances the Iteration. On the other hand, if the total Task cost is less than the

Iteration velocity, then one or more User Stories are brought forward from the next
81



Figure 5.9: Snapshot of User Story Decomposition Form

Iteration (see state “Iteration Cost Computation” in Figure 4.1, page 50). When

the Iteration Plan is set, the Developers ‘sign up’—that is, take responsibility—for

a number of tasks (see Subsection 2.3.1, page 17). This constitutes the Iteration

Plan.

Defining Tasks: PAM allows several User Stories to be decomposed simultane-

ously. However, the Team will need to use social protocols to structure the

discussion and activity. We do not impose floor control, though this could be

added to clients if desired.

User Stories may be decomposed in three ways: (1) in the Virtual Desktop,

(2) from the Project Hierarchy and (3) in the User Story Tab of the Stacked

Slates. In order to collaborate, the users follow the driver by synchronising
82



their screen and location based on the location of the driver in the Project

Hierarchy, with the aid of the Chat utility. We consider decomposition in the

Stacked Slates. The user—in this case the Customer—selects the User Story

from the combobox labeled ‘Select User Story’ (see top of Figure 5.9). The

observers synchronise their location. The user—in this case the Developer—

then performs a create Common Operation with the user of the toolbar. Notes

may also be added to Tasks. Alternatively, Tasks are created from the Project

Hierarchy or in the Virtual Desktop as described in Subsection 5.2.3 Common

Operations.

Signing up for Tasks: Signing up for Tasks can be done in the Stacked Slates

or in the Virtual Desktop. The Virtual Desktop is more convenient, because

it supports users—in this case the Developers—negotiating for Tasks. Dur-

ing the signing up activity, all interested Developers synchronise their Virtual

Desktop by selecting, in the Project Hierarchy, the relevant ancestor of the

Tasks to be negotiated. If the ancestor is not also the parent of the Tasks, then

the user will use the “Show Descendants” menu option (see Figure 5.6(a))

in the Project Hierarchy to show descendants of the selected project concern.

Each User then filters their display for Tasks only (see Figures A.5 and A.8),

after which they group Tasks of interest by dragging them to a location within

the Virtual Desktop. When a card is dragged in the Virtual Desktop, the name

of the user dragging the card is displayed in the title bar of the card. Fig-

ure A.8 show usersjohn and williams negotiating for Tasks TSK001 and

TSK 000 respectively (this is from the perspective of user Malo). A Devel-

oper takes responsibility for a Task by means of an Edit Common Operation

(future versions of PAM will support multiple select and drag, as well as a

“Take ownership” operation. See Section 9).

5.2.7 Handling Spikes

In PAM, spikes are treated as a special type of Task. AT the project level, architec-

tural spikes are manifested as a special purpose User Story with associated Tasks.

That is, a User Story is created to describe the objective of the spike. One or more

Tasks are then created to define what has to be done to obtain the results of the
83



Figure 5.10: Snapshot of User Story Decomposition Form

spike and so on. Results from the spike are recorded as notes of the User Story.

The process involved in performing Common Operations on Tasks is the same for

spikes.

Why do we provide support for Spikes?

Information obtained from spikes (Section 2.4, page 24) is useful for historical

referencing, project planning and coordination. Executing spikes involves activi-

ties of Application Development and thus are external to PAM. However, they

may be documented in the normal way as Tasks. An example of the useful-

ness of recording spike results, regardless of the throwaway practice, follows.

Architectural spikes conducted in the initial stage of the development of PAM

compared several middleware alternatives such as CORBA, Java RMI and JGK

(later renamed CAISE). Though the source code and design artefacts from these

experiments have been discarded or survive only in the form of documentation,

Chapter 7 serves as a record of the spike results.
84



(a) Illustration ofbuild.xmlfile generated by PAM.

(b) Illustration of the feedback from server-side execution tests defined in the
above Figure.

Figure 5.11: Snapshot of Ant file and results screens.

5.2.8 Handling Tests

PAM supports the execution of local and server-side Unit Testing. Figure 5.10

depicts a snapshot of the Test Execution utility. The Test Execution utility uses85



the information— relative path names to files stored in the CVS repository on the

server—maintained by Implementation and UnitTest collaborative objects. For

example, Figure 5.10 shows that theMoney.javafile is an Implementation file,

while theAllTestsSuite.javaandSampleTest.javaare examples of JUnit test suite

and test case respectively (see also Figure A.5, card ID IMP000 which is coloured

peach). The Test Execution utility uses Apache Ant build system.

Users may select to use a prepared Ant build file or to generate one in the Test

Execution interface by selecting Implementation classes and the Unit Test cases

(suites) to test them and requesting that that a build file be created. The generated

build file is displayed in the utility (see Figure 5.11(a)). The user may then run the

test locally or on the server. In the case of a server side build and test, feedback

is returned by the server and presented to the user in text format in the utility

interface (see Figure 5.11(b)).

Acceptance Testing may be carried out similarly. However, in the current

implementation, Acceptance tests can only work with prepared Ant build files.

5.3 Summary

In this chapter we presented our proof of concept desktop-based groupware appli-

cation. We use the XP ‘information radiator’ metaphor and describe our group-

ware system to be a CSCW enabled information radiator, which we call PAM.

We discussed informal evaluations which were carried out to guide the de-

velopment of PAM. These evaluations examined the utility offered by PAM and

found that PAM offers relevant support for XP teams.

We also discussed the requirements of formal evaluations of PAM. This dis-

cussion highlighted that for formal evaluations of PAM to be meaningful, evalua-

tion of the concept—DXP—on which PAM is base has to first be evaluated. Other

aspects of PAM, which require long term evaluations, are required to be carried

out before addressing the focused HCI usability issues. Though these evaluations

are important, our proof of concept application does not depend on them.

PAM satisfies the aspects of XP which were identified in Chapter 4 to be ben-

eficial to computer-bases support. In the latter part of this chapter we presented

these utilities from the perspective of users. In the following chapter, we address

the implementation details of PAM.
86



Chapter VI

PAM: Configuration and Component Architecture

So far, we have discussed the potential benefits that computer-based support

offers XP teams (Chapter 3). We also showed that CSCW is an appropriate tech-

nology to provide this support. In the preceding chapter, we presented PAM—the

CSCW Enabled Information Radiator—a proof of concept experimental group-

ware application. We described the utilities provided and showed how users in-

teract with PAM to augment and extend the reach of the collaboration inherent in

XP. In the design and implementation of PAM, we employed a mix of traditional

and relaxed CSCW protocols to achieve specific ends. For example, while we use

relaxed-WYSIWIS for Common Operations, we use more traditional WYSIWIS

to assign User Stories to schedules and direct manipulation of cards in the Virtual

Desktop (Section 5.2, pages 75 and 78). In Chapter 4 we discussed our analy-

sis of the XP process and showed how we determined the activities that offered

the greatest potential to return value from computer based support. In this in and

subsequent chapters, we discuss the design and system architecture of PAM.

We discuss the architecture of PAM from the perspective of its configuration

and components, connectors and interface in this chapter, and Chapters 7 and 8

respectively.

6.1 Deployment Architecture

PAM is implemented as a desktop-based client/server distributed system (Sec-

tion 3.5). As discussed, this architecture offers the flexibility required to support

the multi-faceted needs of computer-based support for XP. These include lower-

ing risks of data loss and integrity, and promoting efficient collaboration by means

of awareness and adequate support for communication. In addition, it supports

achievement of specific goals (for example, User Story elicitation) by linking
87



PAM
Build/Test

Broker

Ant
Java SDK PAM

Repository

CVS

PAM
Client

PAM
Client

Ant
CVS
Xemacs
Java SDK
...

Ant
CVS
Xemacs
Java SDK
...

PAM
Server

"broadcast"

User A User B

Integration
Server

Figure 6.1: PAM Deployment Architecture

individuals, groups and collaborative objects involved in project state changing

activities.

Figure 6.1 illustrates the deployment of the PAM. This figure shows how PAM

complements the existing tools and communication channels used on XP projects.

The dot–dash lines indicate the channels of communication used for operations
88



such as retrieving a copy of source code from the repository. The integration

server and the versions system—CVS—are tools typically used on traditional XP

projects. The integration server is used to integrate new code into the latest good

release of the system. The versions system allows users to work on the same

project code, and assists them to identify and resolve conflicts when they occur.

Despite shortcomings, such as the asynchronous feedback about conflicts and the

overhead involved in resolving them, versions systems satisfy their purpose.

As depicted in Figure 6.1 we have added to the XP environment: (1) the PAM

server and repository, (2) PAM clients, (3) the Build/Test Broker. These sub-

systems are discussed in the remainder of this chapter. The solid lines indicate the

communication channels that support critical data management operations involv-

ing PAM client interaction with the PAM server and repository. The dotted line,

“broadcast”, highlights the transient communication between clients such as chat

and lightweight awareness such as the in transit state of User Stories (page 78).

Broadcast communication in the PAM environment complements the face-to-face

communication in XP, in addition to supporting real time awareness of project

state changes. The two forms of communication highlighted here, meet the com-

munication needs of PAM, and are discussed in Chapter 7.

6.2 PAM Server Sub-system

The primary components of the server sub-system are: (1) a Server Driver, (2)

runtime Repositories, (3) a Persistence Manager, (4) a Build/Test Broker and (4) a

Data Store (See Figure 6.2). The main purpose of the server is to provide a central

point for maintaining the state of projects and brokering server-side operations for

clients such as updating the Data Store, maintaining session state information, and

user authentication.

The PAM server supports multiple projects simultaneously. Though these

projects are independent, there is a communication channel between them. Users

may use this channel to communicate across projects. The data and awareness

information is project specific. PAM’s support for several projects allows a single

large project to be divided up into smaller ‘XP-sized’ projects. PAM allows each

user to have access rights to several projects, but allows them to working with

one at a time on a given server. We posit that this may be a way to address XP’s
89



                                                                 Main  PAM Server                                                          

Data  Store
(XML Files)

 

   Interface
Component

 Y      

    Remote PAM Server

  Remote
   Server
    Driver 

  A Remote
  Repository

      CAISE
  Middleware

Artefact, Schedule
     Relationship
    Repositories 

    Server       
     Driver  

  
Persistence Manager 

  Interface
Component

         X   

Top Level
Application   

PAM -Client

      Test
    Broker    

      System Monitor   
             XML
Data Access Object    

Figure 6.2: PAM System Architecture

90



scalability issue (see Chapter 9).

6.2.1 The Server Driver

The Server Driver is the interface between the PAM clients and the components

of the PAM server. Messages received by the Server Driver are forwarded to

the relevant server component for processing (see Subsection 7.3.2). Figure 6.2

illustrates the Server Driver and its associations in the PAM environment.

6.2.2 Runtime Repositories

There are three broad categories of repositories in the server.

1. Schedule Repositories: these maintain collections for Projects, Releases and

Iterations

2. Artefact Repositories: these maintain collections for User Stories, Tasks,

Acceptance Tests, Unit Tests and Implementation artefacts

3. Relationships: this repository maintains collections of parent-child associa-

tions between XP concerns for each project.

A repository is a collection of sets of a specific type of project concern, such

as User Stories and Tasks, for a number of projects. In each repository the sets of

project concerns are mapped each to the project to which it belongs. Repositories

are responsible for storing the results of Common Operations (page 75) performed

on clients, and broadcasting the resulting project state change(s) to other clients.

They also use the Persistence Manager to handle data storage on their behalf.

Relationships between XP concerns are maintained as collections of Relation-

ship objects. Relationship objects encapsulate specific details about the parent and

child in each parent/child association of the Project Hierarchy. For example, a Re-

lationship object has been created for the association between Project COSC314

and Release REL001 in our examples in Chapter 5. The collection of relationship

objects for a project serves as the data model for the Project Hierarchy component

in the PAM client.
91



The ‘Project Repository’ serves a dual purpose. First, it provides the services

of a regular repository for Projects handled by the server. In addition, it handles

user authentication, a need which arises from the association between users and

the projects to which they have rights.

6.2.3 Persistence Manager

The Persistence Manager provides an interface to the Data Store. It uses two

components to carry out the actual storage and retrieval of data. These are: (1)

the System Monitor and (2) an XML Data Access Object (DAO). The System

Monitor manages data pertaining to the configuration management, instrumenta-

tion and the incremental changes to the project state, while the DAO manages data

pertaining to theProject Document. The Persistence Manager insulates the rest of

the server system from the raw representation of the data.

System Monitor

PAM’s server-side System Monitor component is responsible for maintaining records

of activities on the server. These records are stored as log files: (1) Transaction

Log, (2) Debugging and Performance Log, and (3) Usage Log. The Transaction

Log maintains records of activities which affect the state of the project, while

the Usage Log contains information about when each user joins or leaves a PAM

session and so on. These logs are maintained as separate files on the server.

The log files are stored in XML format. Data contained in the Transaction

Log is useful for decision making regarding resource allocation, planning and so

on. For example, Transaction Log entries show what User Stories are created,

split, edited and so on. In this manner, the Transaction Log supports configuration

management. They provide audit trails of incremental changes to the project state.

These logs are valuable for long term studies of PAM and distributed XP.

The Debugging & Performance Log file stores instrumentation data. Instru-

mentation deals with performance issues in computerised systems. The Usage

Log is relatively simple and is primarily intended to provide human resource man-

agement information. On the other hand, it provides a means of analysing the way

XP is used in practice. During development, these log files provided information

that was used to locate problems and guide the incremental prototyping of PAM.
92



For example, during informal evaluation we used these logs to localise a recurring

runtime error. One participant’s activities severely stressed a particular user inter-

face component. This caused the system to crash, thus interrupting the evaluation

session. Prior to implementing the System Monitor, localisation of this problem

proved to be elusive. However, when the logs became available, an analysis of the

Performance and Usage logs revealed the problem.

System Monitoring offers many important benefits to users of PAM. It protects

users from the details of background processing, which would otherwise be done

manually. For example, it records how User Stories change over time. It also

helps the developer to keep track of how the system operates in the deployment

environment. This is needed since some scenarios in the deployment environment,

such as failure in the network and hardware or unpredictable network behaviour,

are not easily modelled in the development environment. This may result in some

aspects of the system escaping adequate testing prior to deployment.

Implementation of the System Monitor

We considered two alternative means of implementing the system monitoring

functionality: (1) the use of external utilities provided by the Operating System,

such as syslog on Unix OS, and (2) the implemention of the logging functional-

ity as part of the server sub-system. Option (1) imposes deployment constraints,

which has potential to affect PAM’s platform independence. Therefore, we imple-

ment the monitoring functionality as part of the PAM server.

PAM is implemented in Java version 1.4.1. Thejava.util.loggingpackage

provides an API that supports flexible logging of events in an application. We use

this framework to implement the System Monitor. In Figure 6.3 we illustrate the

Java Logging Framework.

In the Java Logging Framework aMessageoriginates in an application’s com-

ponent, for example a PAM repository, and is passed to theLoggerobject. The

Loggercreates aLogRecord, fills in the details of the Message and passes it to the

Handler. TheHandleruses a formatter to format the LogRecord—in PAM, as an

XML file. The formatted LogRecord is then passed to an output stream such as

a socket or bytestream. TheFilter filters LogRecords according to their level of

severity.
93



Formatter

Logger Handler Data
Store

Filter

Message

Log Record

IO
Stream

Figure 6.3: Java Logging Framework used in PAM

The log files are stored in XML format. The entries in the log file are stored

asRecordelements. EachRecordhas the elements level, sequence, date, logger

and message contained in aLog . We include below an example of an log Record.

The self-documenting, tag based format of XML makes the logs’ data amenable

for use by external programs and also for direct examination by humans.

<record>

<level>INFO</level>

<sequence>39</sequence>

<date>Wed Nov 26 09:23:01 NZDT 2003</date>

<logger>transactions_server.datastore_monitor.SystemMonitor</logger>

<message>

<project>COSC314</project>

<parentArtefact>COSC314</parentArtefact>

<instruction>UPDATE_MODE</instruction>

<artefactAffected>US_004</artefactAffected>

<sender>cosc359.cosc.canterbury.ac.nz_1069791725654</sender>

<receiver>SERVICE_ID_USR</receiver>

<userName>john</userName>

<message>

</record>

We reuse the Java Logging Framework terminology in the tags of the log files.

Level describes the severity of the message being logged. Severity is denoted

by a description such as INFO, SEVERE or WARNING. TheSequencedenotes
94



the order in which the log entry is processed, beginning with a zero count. The

Dateelement captures the date and time of the logged event. TheLoggerelement

describes the system component in which the log entry originated. TheMessage

element—the data that is to be stored—is a description of the event/activity that

is being logged.

XML Data Access Object

PAM is independent of the specific features of the Data Store. This is achieved

with the use of the DAO design pattern (Sun Microsystems, Inc. 2003). The DAO

adapts the Data Stores API—in our case, a Document Object Model (DOM)—

to suit the way in which data is handled in PAM (Section 6.2.2). It also al-

lows the Data Store to be changed without having to rewrite data handling code

within PAM. For example, if an XP project team uses RDBMS, then they can re-

place/extend the current DAO to handle the specific RDBMS API. This enhances

the overall flexibility of PAM.

In the current version of PAM we use an XML DAO. The XML DAO han-

dles storage and retrieval of the project’s data stored in XML files on the server.

The XML DAO uses a validated DOM. The DAO retrieves the project data from

the XML files and stores it in the DOM. The DOM by virtue of its hierarchical

structure, maintains a tree of projects. Each project is stored as a hierarchical ar-

rangement of the projects concerns which is reflected in theProject Document.

Requests to store or retrieve data are made via the Persistence Manager.

6.2.4 The Data Store

The project data is stored as regular text files in XML format. We chose XML files

because: (1) XML offers an amenable format to reflect the natural hierarchy of

XP project concerns, (2) plain text files lend themselves easily to the lightweight

nature of PAM, and (3) XML can be easily read and interpreted by both humans

and external programs. These characteristics make it easy for PAM to support

reuse and sharing of the System Monitor’s log and project data with other XP tools

and applications. The XML files are stored within the PAM directory hierarchy.
95



6.2.5 Test Broker

In addition to local unit testing (Subsection 5.2.8, page 85), PAM also supports

unit testing on the server. We use the Apache Ant (The Apache Software Foun-

dation 2003) build system for both local and server side execution of builds and

tests, which is common on “real” XP projects. Nevertheless, other build systems

may be used in the place of Ant such asMake. TheBuild/Test Broker(see Fig-

ure 6.2) component of the server is the interface between the PAM system and

Ant. The Build/Test Broker sends feedback about the build and tests to the client

that initiated the request.

Test requests are sent to the server as messages. The message data contains

details of the source code to be tested and the unit test case or suites to use. (This

information is available in the client interface; see Subsection 5.2.8, page 85). The

Build/Test Broker uses this data to create an Ant build file—build.xml—and places

it a build directory on the server. It then loads Ant, which reads thebuild.xmlfile

and executes the instructions.

As the build and tests are executed, the feedback is sent to the client. Upon

completion of the build and test, the build directory is cleaned up and theTest

Broker reset to accept another test request. In the event that more than one use

attempts to use the Build/Test Broker, the second user is advised that a build is

currently being executed.

6.3 PAM Client Sub-system

The client sub-system consists of three main components: (1) the Top-Level Ap-

plication, (2) views for handling XP project concerns and (3) a communication

utility (Section 5.1, page 62). The use of the client interface and features is dis-

cussed in the preceding chapter and the principles used in their implementation

are discussed in Chapter 8.

The Top-Level Application component serves a dual purpose. First, it is the

interface between the CAISE middleware (Chapter 7) and the client interface com-

ponents. In this way, it separates a client from the rest of the PAM system. Sec-

ondly it provides a graphical user interface container for the interface components.

Messages received from the CAISE middleware are stored by the Top-Level
96



Application in a queue. We discuss the message processing mechanism in Sec-

tion 7.3.2. The Top-Level Application also has a System Monitor component

whose primary purpose is to log Debugging and Performance activities. The

method of storage is the same as the Server System Monitor. The use of these

logs are mainly for development and maintenance purposes.

6.4 Summary

In this chapter we discussed the details of PAM’s server and client sub-systems.

We described the functions and relationships between the major components of

each sub-system. The sub-systems collaborate to achieve the goals of the group-

ware, that is, to alleviate the long term consequences of the Planning Game, in

addition to supporting dispersed XP teams. We discussed the sub-systems inde-

pendently because they are decoupled. The transport mechanism, called CAISE,

supports communication between them adn is discussed in the following chapter.

Distributed systems help to solve some problems, such as in our particular

case, relaxing the co-location requirement of XP. However, developing distributed

systems introduces problems. These problems are often related to the messag-

ing/transport system that holds the distributed components together. An example

of such a problem may occur when a client sends a request to the server to reserve

some resource, and for any number of reasons the client is dropped from the sys-

tem without receiving a response. Messages sent between client and server can be

inexplicably lost. Components within the system can hang. These are some of the

things that can happen to disrupt a distributed system.

In the following chapter, we discuss the connectivity middleware which sup-

ports PAM. The middleware is based on message passing. We show how this

mechanism supports the communication needs of the PAM environment. We also

discuss why we use a message passing transport, as opposed to remote objects.

97



Chapter VII

The Connectivity Middleware

In this chapter we discuss the connectivity middleware that provides the com-

munications service between PAM sub-systems. Its role is to allow PAM’s sub-

systems to exchange data while hiding from them the complexity of the underlying

distributed environment—that is, the operating system and network technologies.

We have identified two fundamental types of communication requirement for

the PAM system. These are broadcast and point-to-point communication. In the

first case, the middleware must support broadcasting of non-critical transient data

such as that generated by the Chat utility. In the second case, it is required to

support communication between the clients and the server for critical data man-

agement operations such as when a new collaboration object is being added to the

system and must be stored in the repository (see Section 5.2.3, page 75). To meet

these needs we use a message passing middleware called CAISE (Cook 2003). In

the following sections we show how CAISE supports the communication needs

of PAM.

7.1 Requirements of the Middleware

We executed spikes to assess which available middleware offers the best potential

for supporting the communications needs of PAM (see Section 7.2). The criteria

listed below were used in the assessment.

1. It must provide a robust and reliable transport system: PAM supports

several projects, each with multiple users participating in collaborative ses-

sions. Certain operations in the PAM client interface, such as moving User

Story cards, generate many messages. The communication system is re-

quired to handle these situations while maintaining adequate performance
98



and reliability. We anticipate that each project supported by PAM will have

an average team size of eighteen members.

2. It must maintain knowledge of all online PAM sub-systems: Direct

point-to-point and broadcast communication are required to support the

multi-faceted needs of PAM. An example of point-to-point communication

is the transfer of user authentication data from the PAM client to the server.

Broadcast communication takes place when the sender does not need to

know to which client and/or server a message is being sent. This includes

chat messages and notification of updates from the server to all clients.

3. It must decouple PAM clients from PAM server(s): The server and client

sub-systems in PAM are logically and physically separate. PAM clients and

servers, excluding the main server, do not need to know about one another.

All they need to become a part of the PAM environment is the URL of the

main server. This is necessary for flexibility and scalability. It must be

possible for additional server services to be added to the PAM system or

for the secondary PAM servers to be moved to different physical systems

with little or no effect on the clients. For example, the Build/Test Broker

component (Section 6.2.5, page 96) may be separated from the main PAM

server, implemented as an additional server and deployed on a physically

separate system without PAM clients being affected (see Figure 6.2).

4. It must be lightweight: A major aim of PAM is for the system to be

lightweight. That is, it must fit into the context of a normal XP environment

with minimum negative effects. Consequently, it is essential that third-party

systems supporting PAM must facilitate this aim. The communication sys-

tem must, therefore, not impose a need for special configuration or require

proprietary component support in the depolyment environment.

In Table 7.1 we provide a summary rating of the criteria used to determine

the suitability of some available middleware. From the alternatives we choose

CAISE because it satisfies the main criteria—that is, lightweight, simplicity and

the flexibility of the communication mechanism. Though that table shows CAISE
99



Criteria CORBA

Ja
va

RM
I

RPC
CAIS

E

Maturity *** ** *** *

Robustness & Reliability *** ** ** **

Simple API ** ** * ***

Lightweight * * ** ***

Decouples client from server ** ** * ***

Flexibility of communication ** ** * ***

Table 7.1: Comparison of some available middleware.

has low rating for robustness and reliability we expect that these will be enhanced

as the middleware matures.

The greatest demand (from the perspective of PAM’s needs) on the connec-

tivity middleware is based on the need for a robust and reliable transport system.

This is especially important to PAM. PAM implements metaphors—for example,

the Virtual Desktop—that are used to emulate real world practices and activities of

normal XP (see Chapter 5). Consequently, the middleware is required to support

tasks such as moving a widget (for example, a User Story card) in one client ap-

plication space and have the movement reflected in other client application spaces

in real time. Such tasks generate streams of messages, which are dispatched to all

clients. In order to avoid “hot spots” and jerky processing (especially for GUI ren-

dering) dissemination and processing of messages must be quick. Less demand-

ing on the middleware’s robustness and reliability is the need to support broadcast

text chat messages, as well as awareness of the transit state of User Stories (see

Section 5.2.4, page 80).

The middleware is also required to handle the transfer of both large and small

data collections. For example, a large data collection transfer takes place when a

project’s state is being replicated on a client from the server. On the other hand, a

small transfer occurs when a chat message is being broadcasted.
100



7.2 Why use a message-passing middleware?

Different types of middleware are available. They differ in terms of their Applica-

tion Programming Interface (API), their functionality and the way in which they

work. The main types of middleware are Remote Procedure Call (RPC), Object

Request Brokers (ORB) and Message-Oriented Middleware (MOM). RPC works

by having a client invoke procedures of the server application. The client is tightly

coupled to the server because the code to call server procedures are complied in

the client. With ORB, on the other hand, clients invoke methods on server ob-

jects. These popular middleware are parts of standards, such as CORBA, and are

meant to guide the development of services and interoperable software. These

middleware are popular. We conducted spikes to examine the suitability of some

of them—CORBA, RPC and Java RMI—for the communication needs of PAM,

and found they do not adequately satisfy all criteria listed in Section 7.1. For ex-

ample, CORBA and RPC are not lightweight, and do not decouple the server and

clients respectively.

On the other hand, MOMs decouple clients from the server. They simply acts

as an intermediate and passes encapsulated messages to and on behalf of clients

and servers. For example, when a User Story is created, it is encapsulated in a

message along with aninsert instruction code and sent to the server. Messages

include data such as sender, recipient, payload and type or instruction code (see

Figure 7.2 for description of PAM message format). The recipient interprets the

message and performs the appropriate action(s). A messaging system also aids

in scalability; adding clients and servers does not incur changes to the messag-

ing system. It also aids in making the overall architecture robust; failure in one

component does not affect unrelated components.

Message-passing is the technique used in MOMs. It is simpler than the tech-

niques used in other middleware. The API for a message passing systems is often

easy to use and less complex than their remote procedure and objects counterparts.

7.3 The CAISE message-passing middleware

We use the CAISE (Cook & Churcher 2003b, Cook & Churcher 2003a) message-

passing middleware for the communication system in PAM. Figure 7.1 illustrates
101



           PAM Client         
        (CAISE client)
  

          PAM Server        
        (CAISE client)
   

            CAISE
   Messaging System 
 

Figure 7.1: CAISE-DXP Relationship

the relationship between the CAISE messaging middleware and PAM applications—

that is, the PAM client and server in the figure. CAISE also supports scalability;

adding clients and servers to the PAM environment does not necessitate changes

to the messaging system. Finally, it makes the overall architecture of PAM robust.

Failure of a client or additional server service does not affect unrelated consumers

of the specific service. CAISE also provides a simple API, which is easy to use.

Communication in the PAM environment is divided into point-to-point (client/

server) and broadcast communication. Point-to-point communication occurs, for

example, when a new project concern, such as a Task, is created and added to the

Task repository on the server. In such a communication, the client prepares a mes-

sage and sends it to the middleware with instructions to save it in the correspond-

ing repository. The middleware forwards the message to the server, which makes

arrangement for it to be saved. Broadcast communication, on the other hand, oc-

curs when, for example, a User Story is placed in transit in a Release or Iteration,

or when the server sends notification of a project state changing operation, such

as an insert, to all remote client applications. In the first case, the original client

application makes a request for the middleware to broadcast the new User Story

state, along with data about the schedule to which it is being allocated.

With respect to operation of PAM, the important CAISE functionalities are:

1. Registration of clients.CAISE maintains aRegistry of listeners. It treats

each application, called a “CAISE client”, as a listener (see Figure 7.1), re-

gardless of the role the specific application plays in the distributed system.

Each CAISE client has a Registry object which it uses to perform opera-
102



tions offered by the CAISE middleware API such as joiningChannels (see

Item 2, “Creation of distinct communication groups”) and so on.

In the PAM environment, the server and client sub-systems are CAISE

clients. The sub-systems use the CAISE API (see Item 4, “Flexible mes-

sage passing”) to pass messages by broadcast and point-to-point.

2. Creation of distinct communication groups. CAISE has two communi-

cation groups: (1)Meetings and (2)Channels (see Figure 7.3 and Subsec-

tion 7.3.1). AMeeting is a container concept. Channels, on the other hand,

are the actual communication pathways via which messages are passed. A

Meeting may contain any number of Channels. CAISE supports several

Meetings. CAISE clients may join and leave Meetings and Channels as

needed, and have their associations updated in the Registry accordingly.

PAM handles many projects. The first PAM client that requests to work on

a specific project creates aMeeting named after the project. Otherwise, it

would simply join theMeeting. Within the projectMeeting, twoChannels

are initially created: one for use by Chat utility, namedCONFERENCE, and

the other for communication with the server and other clients. The latter is

named after the project (COSC314, from our running example). Broadcast

and point-to-point communication are differentiated by means of the API

method called (see Item 4, “Flexible message passing”). SeveralChannels

may be created to support the use of the Chat utility by separate groups.

Messages arriving on theCONFERENCE channel are displayed in the Chat

utility irrespective of the channel to which the Chat utility is currently con-

nected.

3. Encapsulation of message objects.Messages are serialised and enclosed

in Envelopes. The sending sub-system passes theEnvelope to the CAISE

middleware, which forwards it point-to-point to the PAM main server or as

a broadcast message to clients on a specific channel (see Item 4, “Flexible

message passing”).

EachEnvelope contains information about theSender, Receiver, Channel,

and the data—a PAM defined message. The data in the Envelope may be
103



any serialisable object. In this regard, we use anXP Data object to encapsu-

late PAM messages (see Figure 7.2 for class representation). This message

encapsulates the collaborative objects, instructions, project, user and other

essential data elements that are used in communication between PAM sub-

systems. TheXP Data is serialised and placed in anEnvelope before being

passed to the CAISE middleware.

XP_Data
-xpDataObject: Object
-xpDataParentName: Object
-dxpInstructionCode: int
-senderID: int
-receiverID: int
-projectName: String
-currentUser: XP_Object
+getProject(): String
+getInstruction(): int
+getDataObject(): Object
+getSenderID(): int
+getReceiverID(): int
+getUserName(): String

Figure 7.2: XPData Class

TheEnvelope is collected by the Top-Level Application or Server Driver

(Subsections 6.2.1 and 6.3), where applicable, and extracted from the Mes-

sageQueue by theMessageProcessor (see Section 7.3.2). The recipient

information is examined and the Envelope is then passed to the appropriate

component for processing.

4. Flexible message passing.CAISE defines three methods in its API to ef-

fect its message passing. These are: (1)send, (2) sendToAll and (3)

sendToOthers. Thesend method requires the registered name of the recip-

ient CAISE client. This method is used to send an Envelope point-to-point.

The main PAM server’s name is known by the client sub-system. When a

PAM client sends an Envelope to the PAM server, the name of the client

is retrieved from the CAISE envelope. The PAM server uses this name to

communicate with the specific client. Otherwise it uses the CAISE API,

sendToAll andsentToOthers, to broadcast a single message to all clients

(for example, Chat messages) including the sender, and all other clients ex-

cept the sender respectively.

104



        PAM Application 

                                                                 CAISE server                                                                         

   CAISE client   

Registry Client Object Meeting Channel1 * * **

1

1

getRegistry(serverURL, clientName)

1

Figure 7.3: CAISE Architecture

7.3.1 Registering as a CAISE Client

Figure 7.3 illustrates the relationship between the internal CAISE concepts and a

CAISE client application. The server consists of the CAISE middleware and the

components of the PAM server sub-system. At startup the CAISE middleware is

loaded by the Server Driver. The Server Driver registers itself with CAISE and

proceeds to load the rest of the server components. It then waits for PAM clients

to join and/or for messages to broker.

PAM clients—and the PAM main server when it starts up—connect to CAISE

by first requesting a reference to theRegistry with agetRegistry() call. This

call passes as parameters, the URL of the system on which CAISE is running, and

a unique name by which each PAM client will be identified in theRegistry. The

PAM server uses the nameDXP SERVER, while each PAM client creates a unique

name from the local host URL and system time.

On the server, CAISE creates aClient object for each CAISE client and maps

it to the unique name supplied. Each CAISE client requests and maintains a one-

to-one association to their respectiveClient object. CAISE clients create and/or

joinsMeetings andChannels in the CAISE middleware with appropriate calls to

theRegistry object. Each CAISE client is responsible for maintaining a queue

for messages—Envelopes—sent to it by the CAISE middleware. We discuss in

the following section how these messages are processed.
105



Message
Handling

Transport
component

Registry

Middleware

Message
Generation

Applications

Figure 7.4: Illustration of PAM message handling architecture.

     Message    
      Queuing  

     Message 
   Processing  

1

1

(a) Message Handling Component

     Message    
    Packaging 

     Message 
      Delivery    

*

1

(b) Message Generation System

Figure 7.5: PAM Application Communication Components.

7.3.2 PAM Message Processing System

To complete the communications system, CAISE client applications implement

a message handling system to handle the pooling and processing of messages

receive from the middleware. This is illustrated in Figure 7.4.

The PAM message handling system (for clients and server) consists of two pri-

mary components: (1) a message queuing component and (2) a message process-

ing component (see Figure 7.5(a)). The message queue is updated with messages

sent from the middleware. The message processing component extracts a mes-

sage from the message queue, interprets the message and passes it to the relevant

components to carry out the operation(s)/service(s) requested.

We consider three main threads executing in the sub-systems. These threads

are: (1) GUIThread—the default thread for the Java GUI, (2) MessageQueuing—

the main application thread that observes the middleware, and (3) MessageProcessing—

the thread that retrieves messages from the queue maintained by the Message-
106



Queuing thread. When a PAM sub-system—server or client—is loaded into mem-

ory, threads MessageQueuing and MessageProcessing are created. MessageQueu-

ing waits on events from the middleware and MessageProcessing monitors the

MessageQueuing for arriving message(s). On receipt of a message, Message-

Queuing inserts the message into the back of the message queue. The Message-

Processing thread extracts the message from the front of the queue, identifies

which component it is meant for and passes it along accordingly. The Message-

Processing thread pools the queue intermittently. If there is a message in the queue

it is retrieved and processed; otherwise the thread sleeps. Figure 7.6 illustrates the

the pseudo-algorithm of the implementation of the messaging system.

It is possible for theMessageProcessing component to use a message priori-

tising scheme. For example, whereas messages that affect the project state can be

handled sequentially, transient messages, such as messages advising of the new

position of a User Story card, can be given high priority and processed quickly, or

even redirected to another thread for immediate processing.

PAM clients request services and respond to service requests by sending mes-

sages to the CAISE middleware. This is a relatively simple process. Figure 7.5(b)

illustrates the two primary components involved. The component which has to

send a message encapsulates the data in an XPData object, adds it to an Envelope

and uses theClient object to pass it to the middleware. The CAISE API method

used determines if the message is sent point-to-point or by broadcast. For ex-

ample, the Chat utility encapsulatesString objects in XPData objects and uses

thesend to have CAISE broadcast the message. Outgoing messages may origi-

nate from different parts of the PAM client system and occur arbitrarily in time.

Message
Queuing

(MQ)

Message
Processing

(MP)

Message Queue

               update(Message)
{

                    addMsgToQueue()

                        if(MP.isSleeping())
                   MP.wake()

}

                  loop(!MQ.isEmpty())
{

                    getNextMsg()
                      interpretMsg()

                    processMsg()

                      if(MQ.empty())
                          this.sleep()

}

Msg3 ... Msg2 ... Msg1

Figure 7.6: Pseudo Message Processing Routine

107



Therefore, we separate the sending of messages from the processing of incoming

messages.

7.4 Summary

In this chapter, we noted that there are two primary forms of communication re-

quired to support collaboration between the PAM sub-systems. In order to fulfill

these requirements we used a message passing middleware. Our choice of CAISE

was based on the results of a spike which was carried out in order to assess the

suitability of available transport technology to satisfy specific criteria based on the

objectives of the PAM environment.

In the next chapter we discuss the PAM client user interface. We examine the

principles used in the model and show what metaphors and characteristics of XP

were used to guide the design.

108



Chapter VIII

PAM Client User Interface

In this chapter we discuss the underlying principles of the User Interface (UI)

of the PAM client sub-system. As stated in Chapter 4 The UI supports manipula-

tion of project concerns, as well as collaboration and coordination of XP planning

activities—the Planning Game.

User interfaces are an important part of modern computer systems. They play

a significant role in the usability of these systems (Telles 1990, Nielsen 1993).

Usability is concerned with the issues of learnability, ease of use, memorabil-

ity, errors and user satisfaction, with respect to computer systems. In essence,

usability deals with the efficiency of supporting users in performing tasks and ac-

complishing goals. It is important because it encompasses user interaction with

the system, as well as the impact the system can have on users. Our design of the

client interface is influenced by these needs. In the long term user trials will guide

the evolution of the client user interface. At this moment, providing appropriate

functionality as proof of concept is our major goal.

The actions of any user of PAM impacts on other users. An action can poten-

tially change the state of the project or the session. Consequently, an awareness

mechanism (Subsection 5.2.3 and Section 8.6) forms an essential and important

part of PAM. Awareness plays a significant role in strengthening the overall us-

ability of PAM. In this regard, it plays a significant role in collaborative usability

since it helps users to coordinate their work while maintaining awareness of what

other participants are doing in the system.

The architecture of the PAM client UI is based on a philosophical approach to

the analysis of XP activities (Chapter 4), the Clover Design Model (Section 8.1)

and the Model-View-Controller (MVC) design pattern (Gamma, Helm, Johnson &

Vlissides 1994). The interface architecture supports multiple orthogonal perspec-
109



Menu    MenuI                                                                                                            Help

Menu Bar

ToolBar

Project
Hierarchy

Work
Area

Commun-
ication

Status
Bar

(a) DXP User Interface Model

(b) Implementation snapshot showing ‘Desktop’ Metaphor

(c) Implementation snapshot showing ‘Stacked Slates’ Metaphor

Figure 8.1: Illustrations of the UI Model and Screen shots after implementation.110



tives and means of performing tasks and interacting with theProject Document.

Figures 8.3 and 8.6 (pages 114 and 117) are the fundamental models of the per-

spectives which were obtained from our analysis of XP. We exploit the natural

hierarchical arrangement of the XP project concerns, and the simple, incremental

and iterative nature of the process, in the design of the UI.

We also take advantage of the similarity of activities involved in transforming

project concerns. In Chapter 5, we described these as Common Operations and

highlighted the activities that are common to both schedules and artefacts. The

common operations are exploited in the UI in order to maintain consistency in

performing tasks.

We use Java Swing widgets to implement views and interaction metaphors,

such as Virtual Desktop and Card metaphors, that are consistent with metaphors

used in normal XP. In combination with the connectivity middleware (Chapter 7)

and the PAM server, these views support the groupware activities of communi-

cation, production and coordination recommended by Calvary, Coutaz & Nigay

(1997). (We discuss the Clover Model in Section 8.1.) User interface support for

these activities are illustrated and discussed in Chapter 5. In Section 8.5, we dis-

cuss the principles that work together to emphasise the groupware activities in the

GUI. Figure 8.1(a) (repeated here for convenience) illustrates the UI framework,

which supports communication, a work area for production and a tree display to

facilitate some aspects of the overall coordination.

Notwithstanding the emphasis of people over the process, XP projects revolve

around the management: (a) of schedules and (b) of artefacts (see Chapter 4).

Schedule management deals with the handling of issues pertinent to the XP sched-

ule concepts: projects, releases and iterations. Artefact management deals with

the handling of tangible deliverables of the XP process such as User Stories and

Tasks, and resources produced and used by Unit Tests, Acceptance Tests and Im-

plementation operations. We use the concept of aResourceto serve as named

collections of pointers to the external resources that are stored in a file system.

For example, a Unit Test Suite is a collection of relative path names of Unit Test

source code stored in the project repository. Figure 4.2, page 52, illustrates the

Implementation, Unit Test SuiteandAcceptance Testresources as leaves in the

hierarchy.
111



The evolution of the project from inception to delivery of part or whole of

the functional software—or project failure—is the history of the coordination of

schedules, artefacts and resources. In the following sections, we build on Chap-

ter 4 to describe how collaboration between users and the evolution of schedules

and artefacts are supported in PAM. First we discuss the Clover Design Model

and the approach used in developing the UI model.

8.1 The Clover Design Model

Collaborative activities have been classified, based on the Clover Design Model,

into three categories: communication, production and coordination (Calvary et al.

1997). Different components of a groupware system, such as a multiuser toolbar,

may support all of these activities (Sire et al. 1999). In this model, communica-

tion handles information exchange. Coordination handles resource allocation and

maintenance of dependencies between tasks. Production is concerned with all the

actions that go into creating and maintaining a collaborative object. These activi-

ties map directly into features that PAM needs to support: communication, project

coordination, and creation and manipulation of shared XP concerns (Chapter 4).

The aspects of XP which we need to address, such as User Story elicitation

(Chapter 4), are best supported with a model that emphasises all of the preceding

groupware activities. We note that a major goal of PAM is to support project and

collaborative activities. We therefore, attempted to strengthen the coordination

component of PAM by means of the awareness mechanism.

8.2 Information Sharing Strategy

We use data replication to support information sharing in the PAM groupware

application (see Figure 8.2 for illustration of architecture). An alternative strat-

egy is to use shared application/desktop data sharing technique used by group-

ware such as the open source Virtual Network Computing (VCN)(Richardson,

Stafford-Fraser, Wood & Hooper 1998) developed by AT&T Laboratories Cam-

bridge. Other popular shared desktop applications are Microsoft NetMeeting. The

application sharing technique uses a low replication architecture and usually im-

poses strict floor and session control protocols in order to support collaboration.
112



This implies strict-WYSIWIS in the groupware, which makes application sharing

inappropriate for PAM (see Section 8.5.2).

Information sharing is needed in PAM (as with other distributed collaborative

applications) for: (1) shared project and session state, (2) consistency of data in the

PAM system and (3) client-side updates. The data replication technique used in

PAM satisfies these criteria. Further, it supports the extension of PAM to provide

offline processing and synchronisation (see Chapter 9).

8.3 Support for Relationships and XP Activities in the User Interface

We use the metaphor of aProject Hierarchyto describe the hierarchical arrange-

ment of project concerns because it captures the essential relationships between

them. While schedules exhibit a natural hierarchy only (Figure 8.3(a)), artefacts

also exhibit network relationships (Figure 8.3(b)). In our implementation of PAM

client interface, we exploit the hierarchical relationships. To achieve this, it is

necessary at times to introduce redundancy.

When we model conventional XP the redundancy only occurs at the point

where the project concerns are associated with actual source files and other real

resources (see Figures 4.3). For example, Tasks are associated with source code

files through unit testing and implementation operations. The effects of the re-

dundancy are mitigated because the real resources and operations are outside the

boundary of PAM. We separate the real resources from PAM by means of Re-

source abstractions. These abstractions are collections of pointers to the external

resources (see Figure 8.4). Figure 4.2 illustrate the hierarchy as a tree arrange-

Shared
Model

PAM
SERVER

PAM
CLIENT

Replicated
Model

Views Controller

PAM
CLIENT

Replicated
Model

ViewsController

Controller

Figure 8.2: Illustration of PAM replication model highlighting MVC architecture.

113



Project

Release 1

Iteration 1

Iteration 2

Release 2

Iteration 5

Iteration 6

Iteration 4

Iteration 3

(a) Hierarchical Relationship between
Schedules

User Story 1

User Story 2

Task 1

Task 2

Task 4

Task 3

SourceFile X

SourceFile Y

SourceFile Z

(b) Network Relationship between Artefacts

Figure 8.3: The mixed relationship models between schedules and artefacts

ment. The hierarchical arrangement of XP project concerns, lends itself easily to

being adequately visualised with a JTree Swing widget.

Where do Schedules get their Meaning?

A schedule is an intangible construct. The important properties of schedules in-

clude: identification, type, start date and end date, apart from its children. Of

course, extra data can be collected about this concept. These include, but are not

limited to: client, development firm, status, assigned resources, parent schedule

and children concerns. In PAM, management of the various schedules involves

similar activities. These activities are described in Chapter 2 and the Activity

Tables in Chapter 4.

The semantic of a schedule is dependent on its context. The context is de-

fined by its relationships with other schedules and the artefacts allocated to it.

For example, Figure A.7, depicts a ‘Stacked Slate’ view showing the context of

Release REL000. In this view it is evident that release REL000 has two Itera-

tions, ITR 000 and ITR001, of which Iteration ITR000 has two User Stories. In

addition, theSystem PerformanceUser Story is in transit in the REL000, along

with four other unallocated User Stories that can be allocated to either of the Iter-

Task Implementation SourceCode
1 * **

Figure 8.4: Task-Implementation-Source Code Relationship

114



Project

Release 1

Iteration 1

Iteration 2

Release 2

Iteration 5

Iteration 6

Iteration 4

Iteration 3

(a) Graph Representation (b) Tree Map Representation

Figure 8.5: Alternative views of a project’s schedule hierarchy, with two releases
and six iterations.

ations ITR000 or ITR 001. When we compare this with the specific data about

Release REL000 (ID, Short Name, Status, Start and End Dates) shown at the top

of Figure A.7, it can be seen that the context view provides much more useful

information.

A tree representation provides the context and relationships in the Project Hi-

erarchy. Figures 8.5(a) and 8.5(b) illustrate two possible ways in which the hier-

archy can be represented. The figure depicts graph and tree map (exaggerated for

effect) representations of a simple schedule hierarchy. We exploit these represen-

tations in the design of the user interface. For example, the Project Hierarchy is

based on the the representation in Figure 8.5(a).

8.3.1 Artefact related and Common Activities of XP

Our discussion in Chapter 4 revealed that some XP activities are common to all

project concerns. The schedules have similar activities, while the artefacts have

a significant amount of activities in common, such as create, edit and delete. We

described these as Common Operations in Chapter 5. Other activities carried

out on projects are running tests, decomposing User Stories into Tasks and so

on. These are specific to particular artefacts. The common activities provided us

an opportunity to generalise the user interface. In this way we gain consistency

in how project concerns are manipulated through the PAM client interface. For
115



example, editing of project concerns is carried out in the same manner, regardless

of the artefact under consideration.

In the following sections we look at the principles behind our model of the

user interface. We then combine these principles with support for awareness and

the activities to be supported to complete the user interface model.

8.4 DXP Client GUI: The Underlying Principles

The basis of the user interface is the extension of the metaphors behind the schemata

in Figure 8.5. We extend the tree metaphor (the trunk, branches and leaves) to rep-

resent the hierarchy of the project concerns. The visualization of this metaphor

(see Figure 5.2) provides a holistic view of the project. Specific details can be

brought into focus by addressing a specific component of the tree. We extend the

container metaphor of the tree map schema (Figure 8.5(b)) to represent a concep-

tual multi-layered perspective of the project. Each layer serves as a container for

concerns of one or more adjacent layers. For example, Figure A.5 depicts the

project layer in the Virtual Desktop containing project concerns from other layers

such as Release, Iteration and Tasks.

Two independent perspectives can be distinguished in the tree map metaphor.

These are illustrated in Figures 8.6(a) and 8.6(b). These figures expose the layers

of the hierarchy—that is, project concerns such as Project, Release, Iteration and

User Stories layers—in different ways. These perspectives are the basis for the

Virtual Desktop and Stacked Slates metaphors discussed below. In XP, the real

world equivalent of the project concern at these layers is discrete—for example,

an index card on which a Task is described.

We use the schema in Figure 8.5(b) as the basis of three metaphors for viewing

and manipulating aspects of the Project Document. The metaphors are: (a)Drill

Down(b) Stacked Slatesand (c)Virtual Desktop.

Figures 8.6(a) shows a top-down perspective of the tree map schema. The

top layer can be used to represent the project, while each subsequent layer can

be used to represent the Releases, Iterations, User Stories and so on. As shown,

the number of concerns at each subsequent layer increases as the number of lay-

ers increase. For example, there are three levels depicted in Figure 8.6(a), with

one, two and six concerns respectively. In addition, each element in the second
116



layer contains three concerns of the third layer. This containership relationship is

consistent with the arrangement of XP project concerns.

We note that the layers are naturally flat and two dimensional. We exploit

this metaphor by defining forms to display the context of concerns at five layers:

Project, Release, Iteration, User Story, Tasks and Resources. We implement these

layers as depicted in Figure A.7 using named tabbed panes. We use the metaphor

of Drill Down to describe the navigation from a specific concern to show a view of

its children associations. For example, aDrill Down operation is performed when

one moves from the project into one of its Releases. Figures A.6 and A.7 shows

thebefore andafter of the implementedDrill Down metaphor in use (a Drill Down

operation in the Stacked Slates view, from the Project level to REL000).

TheStacked Slatesand theDrill Down metaphor are used for depth-wise navi-

gation and construction of theProject Document. The top-down schema provides

an appropriate model for this implementation. Each layer in this model is a po-

tential form. The details on these forms may range from the details of a specific

concern to details about the layers adjacent to that concern. For example, Fig-

ure A.7 shows the Project level form depicting the Releases in the project, which

are from the next level. As each layer is visited, that layer is brought into fo-

cus and takes up the available work area. The collection of layers in this model

represents a stack of forms.

Constructing the hierarchy depth-wise corresponds to the process of planning

increasingly smaller schedules, beginning with the largest—the Project—and fin-

(a) Top Down View (b) Bottom Up View

Figure 8.6: Layers in the the project hierarchy; basis for drill-down and desktop
metaphors.

117



ishing with Iterations. After one iteration is complete, the next is commenced.

A Release is completed when all of the Iterations in it are complete. The next

release will then be traversed depth-wise to its first iteration, and the preceding

process repeated. These are examples of breath-wise navigation of theProject

Document. The Drill Down metaphor thus maps to the real world practices of XP

and its iterative nature.

We also use the metaphor of aVirtual Desktop. This too is an extension of

the tree map representation and is illustrated by the schema in Figure 8.5(b). The

underlying container metaphor maps to the real world XP practice of using the

open surface of a desk to lay out and discuss project concerns particularly User

Stories. The lowest layer depicted in the schema, maps directly to the Project,

which then serves as the desktop—container—into which the Releases, Iterations,

User Stories and so on are added. This metaphor supports direct manipulation of

the cards representing project concerns on theVirtual Desktop. In this manner, it

emulates the common XP Planning Game desktop. Further, it helps to reduce the

gap between user’s mental model of normal XP and CSCW supported XP.

TheVirtual Desktopmetaphor as implemented has a few shortcomings. Rep-

resenting all concerns asCardsin theVirtual Desktopencourages one to develop

the same cognitive model of schedules and artefacts. This is not consistent with

reality. De-emphasising the schedules may result in a more accurate model. This

can be achieved by using different representations for schedules, artefacts and re-

sources. In our implementation, we use colour to highlight the difference. The

Drill Down metaphor is used for navigation to expose the context of concerns

displayed in the current view. We use properties forms (see Figure 5.6(c)) to facil-

itate viewing of the details of specific project concerns (see Subsection 5.2.3 for

details).

The metaphors discussed here provide orthogonal perspectives of the project’s

arrangement and details. Each is suited for interaction with the project in specific

ways. For example, theVirtual Desktopsupports collaborative direct manipula-

tion of Cardsin theVirtual Desktop. This maps directly to the way the Planning

Game activity is conducted in normal XP. TheProject Hierarchymetaphor is

used for direct—pseudo-random—access to specific concerns. TheStacked Slates

metaphor is used to follow the work flow of XP, and may be used as a means of
118



   MODEL

Replicated 
repositories from

PAM server
  

VIEW

Virtual Desktop
Stacked Slates

Project Hierarchy
Sketcher

   

CONTROLLER

Data manipulation  
and 

business logics

Figure 8.7: Model-View-Controller Design Pattern used in PAM

developing understanding of the process.

The various views discussed thus far are independent. Combinations of them

offer tremendous potential to support navigation, viewing, editing (production)

and awareness in the user interface. The way in which these combinations work

together is the focus of the user interface architecture. This is discussed in the

next section.

8.5 PAM Client GUI: The Architecture

The PAM client is based on the MVC design pattern. Figure 8.7 illustrates the

separation of the model, view and controller components of the PAM client sub-

system. Java Swing widgets make up theViews. In our implementation, the views

are most often separate from the logic that manages the interactions of the client

application and enforces XP rules and constraints in the system. The logic objects

constitute theController. TheModel is made up of the data that is retrieved from

the server at startup and updated in real time for the duration of the session. The

MVC design pattern effectively separates presentation from content. It thus en-

hances the extensibility and flexibility of the PAM client. For example, another,

or novel, perspective of theProject Documentcan be added relatively easily to the

PAM client using the existing model.
119



8.5.1 The Information Radiator Metaphor

In the preceding section we discussed the principles of the client application

GUI. The spatial arrangement of the architecture is illustrated in Figure 8.1(a)

(page 110). TheProject Hierarchymetaphor is to the left of the screen. The

Work Areaserves as the base container to hold theVirtual Desktop, Stacked Slates

metaphors and the Sketcher Utility. To the right is the communications compo-

nent. Communication is integral to XP and, therefore, is an essential part of the

PAM client interface.

The client GUI is devoted to supporting the groupware activities of commu-

nication, production and coordination. TheProject Hierarchy, along with the

metaphors that fit into the work area, support production and some communi-

cation. For example, awareness information presented in theProject Hierarchy

(colour coded node status) and in theWork Area(movement ofCards) serve as

a lightweight communication and coordination mechanism. The communication

component—the Chat and System Monitor Messages panel—complements the

lightweight awareness (Section 8.6). This is manifested as support for indirect

human-to-human communication and the normal XP social protocols, which pro-

vide another mechanism for coordination. We discussed how users interact with

these metaphors in Chapter 5.

The main tools of normal XP used in the Planning Game are index cards,

whiteboards and flipcharts. These are usually set up so that they are visible to ev-

eryone, and act as “information radiators” (Cockburn 2002). The metaphors and

architecture discussed above, provide equivalent “information radiators” in addi-

tion to guaranteed persistence, traceability and support for arbitrarily dispersed

users.

8.5.2 User Interaction with the Project Document

Schedule and artefact manipulation—XP project activities— are not done in iso-

lation. PAM as we described in Section 8.1 is more of a hybrid distributed system

than a client/server. All project data, that is, all details pertaining to the current

software being developed with the exception of the source code files, are stored on

the server. We use the metaphor of aProject Documentto describe the complete
120



set of project data.

Software development deliverables are usually copious and discrete. This is

especially evident with source code files and documentation. Even though XP

significantly reduces the amount of documentation deliverables, still deliverables

such as User Stories, Tasks and source files remain to be managed. The Project

Document is dynamic and grows during the project. While using PAM, various

views of theProject Documentare referenced and changed by different users.

These actions sometimes conflict. Consequently, the PAM client interface model

includes support for flexibility when users are viewing different aspects of the

Project Document. Users are free to change their views without fear of affecting

other user’s ability to view or interact with other aspects of the project. This

flexibility is referred to as relaxed-WYSIWIS. We illustrate this with the following

example.

Suppose usersA, B andC are collaborating on an Iteration plan. They may

share the same view, such as the Release tab of theStacked Slated. If user C

prefers to use theVirtual Desktopor even wants to view a different aspect of the

project, he/she is free to switch views without obstructing or otherwise affecting

the collaboration ofA andB. A andB, however, are made aware of the presence

and location ofC in the Project Hierarchy(Section 8.6). This allows usersA

andB to infer C’s potential actions. Figure 8.8 illustrates this scenario. In this

model, users collaborate by combining the utility of PAM with the social protocols

already in use on XP projects. The users will communicate in order to agree on

which view to use for collaboration. They may then synchronise their views.

The real time updates propagated in PAM take care of synchronisation of the

information in the views.

Our collaboration model deviates from traditional CSCW protocols. Typically,

participants in a CSCW session collaborate on a single artefact such as a drawing

in a whiteboard application. The artefact is usually small and the elements in the

shared information space tightly coupled. Different views are thus not usually

required. For these applications, the common technique exploited is WYSIWIS

(What I See Is What You See). Collaborators typically share a common desktop or

application (Section 8.2). The individual small sizes and discreteness of elements

in the Project Document, the iterative nature of XP, the separation of projects into
121



PAM
Server

User
A

User
B

User
C

(a) Before: A, B and C using the same view

PAM
Server

User
A

User
B

User
C

(b) After: C using different view from A and
B

Figure 8.8: Illustration of project document viewing flexibility; while maintaining
collaboration.

small development units (Releases and Iterations) and the need for several differ-

ent views of theProject Documentto be in use simultaneously and unobtrusively

across the PAM environment makes strict WYSIWIS inappropriate for PAM.

We introduce the concept of “What You Know Is What I Know” (WYKIWIK)

to describe our implementation of relaxed-WYSIWIS. WIKIWIK works at the

PAM application level. Knowledge of the current state of the PAM system state is

maintained at this level by means of real time updates. All connected PAM appli-

cations thus share the same knowledge of the state of the PAM system—that is, the

project and session state—at every instance in time. This knowledge is translated

and made available to users through the awareness mechanism. The awareness

mechanism supports freedom to be in any view but still enables lightweight pe-

ripheral awareness of state changes. Collaborators using the same view are also

provided with lightweight awareness. The fine details of the state change are also

available. Remote users only need to switch explicitly to the view in which the

fine details are available, if they so desire. Lightweight, unobtrusive awareness is

facilitated through the use of low impact techniques, such as colour changes and

small discernible movement.
122



8.6 Exposing the Awareness Mechanism

In PAM, none of the activities supported are conducted in isolation (as is the case

with single-user applications). The actions of any user impact on the state of

the project or the session in which that user is working. Therefore, awareness of

what others are (a) about to do, (b) are doing and (c) have done, is essential to

the coordination component in PAM. The user interface is the primary means of

interacting with PAM and, therefore, the sensible place to facilitate awareness.

There are two types of state changes that affect PAM: (1) session state change

and (2) project state change. A session describes one or more PAM client applica-

tions connected to the DXP server to perform work. An example of a session state

change is a user joining or leaving an existing session. A project state change oc-

curs when user interaction results in a change in the Project Document such as an

insert, a deletion or an update. All client applications in the same project session

are updated with the state changes.

To facilitate system wide awareness of changes, we implemented mechanisms

for sending and receiving state change updates and for handing incoming updates.

The architecture and mechanics of sending and receiving state change updates

are discussed in Chapter 7. The mechanism for handling incoming updates is

responsible for updating client application data with changes received from the

server and for presenting appropriate awareness information to the system user.

The awareness information can be in the form of audio or visual cues, such as

changing of the colours of the nodes in the Project Hierarchy.

Unobtrusive collaboration is a major goal of PAM. PAM provides awareness

of the actions of remote participants. This includes awareness of the presence of

remote users in the Project Hierarchy and their actions. Lightweight awareness

of their intentions and actions, such as initiation of an update and commit opera-

tion, is supported in the communications utility by means of the Message Display

Panel (see Figure 5.7). This display can be examined for historical information as

enabling the viewer to keep abreast with a peripheral concern’s manipulation.

User’s actions affect specific concerns or their associations: a suitable place

to provide feedback about a users presence is therefore relative to the concerns in

the Project Hierarchy as a list (see Section 5.1, page 63, for details of how this

is manifested in the interface). The presence of the remote user in the Project
123



Hierarchy also aids inference about the next possible set of actions from which

they may select to execute. By looking at the tree, one can easily determine: (1)

who is working in the current session, (2) the artefact that each user is working

with and (3) the set of potential actions that each user can effect.

Awareness may also be supported in the Stacked Slates and Virtual Desktop.

Awareness in the currently implemented Virtual Desktop includes, feedback about

which user is moving a card and the movement of the card. This form of aware-

ness is exploited in activities such as Developers taking responsibility for Tasks

(see page 5.2.6). In future versions of PAM the visual cues and widgets used in

representing concerns and defining the forms may be upgraded to provide more

awareness feedback. For example, the use of multiuser scrollbars would allow the

size of the Virtual Desktop to be increased.

8.7 Summary

The approach we used in the analysis and design of the PAM client user interface

has resulted in the implementation of a UI that reflects the nature of conventional

XP and supports the unobtrusive collaboration of dispersed and co-located teams.

In the design of the user interface, we exploit existing metaphors and characteris-

tics of XP, as well as established design patterns. These design decisions are based

on the aspects of XP which, based on our activity analysis (Chapter 4), offered

the most potential to benefit XP teams if augmented with computer-based sup-

port. We also provide an awareness mechanism in PAM which supports dispersed

teams. The current implementation adequately supports the aspects necessary for

supporting XP teams.

The current PAM interface is experimental only. The separation of the PAM

client from the server and the means of communication between them allow addi-

tional new interface implementation to be added to the PAM environment. For ex-

ample, interfaces can be developed for use with Personal Digital Assistant (PDA)

without obstructing the existing system.

PAM is designed to complement normal XP. It is anticipated that users will

often swap between the PAM environment and normal XP practices, such as the

common whiteboard and desktop, as a matter of convenience. Therefore, in the

current implementation we place specific emphasis on supporting the maintenance
124



of the same mental model of the XP process when XP teams use PAM to comple-

ment their normal XP practices. In Chapter 5 we discussed the implementation of

these interfaces from the perspective of users of the system. The discussion and

the implementation illustrate the utility of the model discussed in this chapter, and

show how the mental models are maintained.

In the next chapter we recap our discussion of PAM and provide some feed-

back about the insights obtained during our research. We also discuss future work

for enhancing our support for XP.

125



Chapter IX

Discussion and Future Work

Our research was motivated by the opportunity to alleviate the co-location re-

quirement of the Extreme Programming process. We posited that relaxing this

constraint would benefit XP teams and enhance the scalability of the process. Ini-

tial analysis of the activities and needs of XP teams indicated that a high level

of support for time and space independent communication offers tremendous po-

tential for the achievement of our goals. In this regard, initial work centered on

executing spikes to select an appropriate connectivity middleware and the devel-

opment and investigation of collaborative tools which can be integrated to provide

support for dispersed XP teams (see Section 7.2).

During the course of our activity analysis (Chapter 4), it was evident that even

though computer-based support for co-located XP teams is beneficial, there was a

lack of such tools. We found that XP teams predominantly used available tools,

such as compilers, build systems and versions systems, for application develop-

ment activities. Thus there existed a need for project management support. How-

ever, current project management tools (for example, Microsoft Project) are not

well suited to XP.

We subsequently extended the scope of our development to include support

for production activities of XP. Several informal evaluations were conducted dur-

ing the incremental prototype development of the groupware. Feedback obtained

helped to guide development of subsequent versions. The result of our research is

a desktop-based client/server groupware application, which offers support for XP

project planning and coordination—the Planning Game. In addition to satisfying

the goals of our research, PAM also shows promise, with appropriate extensions

to support application development, as a valid integrated tool for collaborative

software development.
126



9.1 Reflections of our Research: A Gentle Discussion.

In Chapters 2 and 3 we discussed the XP process and CSCW. We described the

nature of XP and showed how the simple manual tools and techniques used on

XP projects to support collaboration, such as index cards, whiteboards and co-

location, put the process at risk. The primary risks identified were the potential

for inadequate software maintenance and lack of scalability of the process. These

shortcomings give rise to the need for specialised tools. We concluded that CSCW

is an appropriate technology with which to investigate computer-based support for

XP.

Analysis of the requirement and potential impact of computer-based support

for XP raised socio-technical issues. These include consideration of platform sup-

port, deployment architecture, usability, utility, capability and the potential impact

on the existing protocols typical of XP projects. Utility is important because it

is concerned with the return on investment in developing the system—that is,

whether or not PAM provides useful, worthwhile functionality. Capability con-

cerns whether it does what it is supposed to do. Usability deals with the efficiency

of supporting users of PAM in accomplishing tasks. Informal evaluations suggest

that PAM meets utility and capability satisfaction.

PAM is not meant to replace XP, but rather to complement it. Our desktop-

based client/server approach deliberately differs from the web-based approaches

reported (see Section 3.4) because our examination of their features shows that

they do not provide adequate support for XP teams so that they benefit from the

intent of XP activities (Chapter 4). For example, none of the web-based tools

allow direct manipulation of User Story cards. Direct manipulation of the cards

has been established as a critical aspect of the XP Planning Game activity and

is meant to educe spontaneity and bridge the gap between the Customer and the

developers. PAM fits into the context of XP environments (see Chapter 4 and

Section 6.1).

In Chapter 4 we analysed the activities and nature of XP and found that a

higher level of support for collaboration is needed than is provided in web-based

tools. We categorised XP project activities as application development and project

management activities. Both aspects involve XP team members working closely

together, which is indicative of the inherent collaboration in XP. Further, our
127



analysis shows that XP projects revolve around the creation and transformation of

User Stories.

We identified the highly collaborative aspects of the User Story life-cycle (for

example, User Story elicitation) and designed PAM to augment them. We found

that support for these aspects depend on broadcast and point-to-point communi-

cations. These forms of communication complement each other by supporting

transient information exchange, such as awareness of in transit User Stories, and

crucial data management operations respectively. We executed spikes to investi-

gate the suitability of some available middleware for the communications require-

ments of PAM. We assessed the connectivity middleware in Chapter 7 and provide

a summary rating of the criteria used to determine their suitability in Table 7.1.

We choose CAISE for the connectivity middleware because it satisfies the

main criteria—that is, lightweight, simplicity and the flexibility of the communi-

cation mechanism. Though the table shows CAISE has low rating for robustness

and reliability we expect that these will be enhanced as the middleware matures. In

keeping with our expectations, recent versions of CAISE has showed measurable

improvement. The maturity and development of CAISE is a result of a mutually

beneficial collaboration between our project and (Cook & Churcher 2003b) the

developers of CAISE. While CAISE provided the utility needed for our research,

our project provided a test environment for it. We reported on issues as the arose.

These were always handled within reasonable time.

Formal evaluations of PAM suggest that it offers adequate support with ben-

efits for both co-located and dispersed XP teams. We discussed the features of

PAM in Chapter 5 and show that they satisfy the aspects identified for support

in Chapter 4. The metaphors used in the client interface (Chapter6) are based

on existing XP metaphors and characteristics. For example, we use the metaphor

‘information radiator’ to describe PAM, since it provides up to date information

about the state of the project in a similar manner to the common whiteboard used

on XP projects. The natural hierarchical arrangements of XP project schedules

and artefacts are utilised in the Project Hierarchy and the Stacked Slates interface

components. The Virtual Desktop is an emulation of the common desktop used for

the Planning Game. Support for communication and coordination of users collab-

oration while working on theProject Document, in addition to the metaphors
128



used in PAM allows users to maintain the same mental model of the XP process

when they use PAM to complement the process.

Though PAM fulfills its primary purpose it is experimental only. In the fol-

lowing section we discuss how PAM can be refined and tailored to suit unique

needs.

9.2 User Evaluation

XP is a relatively simple process. Nevertheless, by comparison with CSCW stan-

dards it is complex. PAM combines CSCW and XP and therefore, demands non-

trivial evaluations for meaningful information to be obtained. Further, PAM is nei-

ther a technique nor an application that is independent of a wider context. Rather,

PAM is designed to complement and fit into the existing context of an intricate

group oriented problem domain.

Experimental design to evaluate PAM must take all of the preceding aspects

into consideration. In this regard, we suggest several evaluations each examining

a slice of the overall context, as opposed to individual aspects such as usability and

short term comparative analysis. We recommend that the goal of evaluations must

be to determine whether or not computer-based support for XP puts remote and

co-located teams using PAM, to complement XP, at significant disadvantage to co-

located teams practicing normal XP. We know that certain disadvantages exists.

For example, the inability to match the efficiency of face-to-face communication.

Evaluations, however, may be carried out to quantify these disadvantages. In this

regard, the best suited context will need to be examined. For example, the com-

parison of co-located groups working with and without the use of PAM, and also

dispersed XP teams using PAM compared with dispersed teams using conven-

tional methods. In view of the disadvantages we posit that a reasonable measure

of acceptability would be if the utility of PAM out-weights the shortcomings and

users are willing to pay live with it.

In Chapter 5 we provided a discussion of the issues that are essential for mean-

ingful evaluation of PAM. Several researches have been conducted with the aim

of supporting distributed XP teams (Section 3.4). Each of these approaches, how-

ever, has used different approaches. Opportunities thus exists for collaborative

comparisons and evaluations between different groups. Evaluation must be car-
129



ried out in the context of a reasonable size project of at least six months dura-

tion with teams of between ten to twenty members. Collaboration between re-

searchers also provide opportunities for international experiments. These inves-

tigates another context in which dispersed teams may be deployed—that is, in

separate countries and different time zones. The result of these collaboration has

potential to provide deeper insight into the real needs of XP and therefore enable

researchers to provide stronger support for distributed XP teams.

Rigorous meaningful evaluation of the usability, the appropriateness of PAM

system architecture and the impact of PAM on XP projects require much more

time and human resources than are available for our research. We consider us-

ability evaluations of PAM as premature. Further, elaborate usability tests are

considered to be a waste of resources, when meaningful tests can be carried out

informally with as little as five users(Nielsen 2000). Though necessary, their use-

fulness in the context of research is dependent on PAM having first been formally

evaluated and found to be beneficial to XP teams, and that the usability evaluation

is being conducted to determine what has to be done to enhance PAM’s utility and

capability. Provided that utility and HCI evaluations show that PAM is beneficial

to XP teams, evaluations of appropriateness of the system architecture and the

impact of computer-based support for XP may follow. Results from these latter

evaluations can be used to optimise PAM for commercially use.

9.3 Opportunities for extending and enhancing PAM

PAM is an experimental groupware application developed using ‘half-pair’ pro-

gramming (yours truly) and the XP approach as far as technically possible. We

used an iterative incremental prototyping approach. Each increment addressed

issues identified during informal evaluations and user testing. All of the imple-

mentation and testing was carried out by a single developer. Consequently, col-

laborative user interaction issues were only revealed during informal evaluations

and some may still remain. We discuss below, means of addressing these issues

that may enhance and/or extend PAM.

The PAM server provides a simple interface to PAM client applications which

decouples the clients from the server. This separation, in addition to the rela-

tively small size of theProject Document and the message passing connectivity
130



middleware, allows PAM to be extended. It is possible and feasible to develop ad-

ditional client interfaces for use with the current implementation without negative

impact. For example, new interface metaphors or interfaces for other platforms,

such as PDAs, may be developed to extend the availability project state infor-

mation. The PAM server accepts messages of a defined format. Each message

contains information such as sender, receiver, the data and instructions type. The

PAM server interprets the instruction code performs the appropriate actions. De-

velopers of new PAM client applications are only required to know the message

format and the codes used for communication and to obtain the project concern

class library. This library includes classes for each concern in addition to an ab-

stract class with the codes used in PAM.

Groupware applications are challenged to emulate the immediacy of co-located

groups. PAM faces similar challenges. The PAM client interface can be enhanced

by strengthening and extending the awareness mechanism. For example, in ad-

dition to showing user’s location in the Project Hierarchy, awareness to indicate

which view (Virtual Desktop, Sketcher or Stacked Slates) the user is in may also

be provided. The available space in the Virtual Desktop may be increased by

adding multi-user scrollbars. Session state change information, such as in transit

User Stories, are currently only available in certain views. This was done to illus-

trate the concept; however, the awareness mechanism may allow this information

to be available system wide. In addition, support for activities such as developers

signing up for Tasks may be enhanced with support for multiple select and drag,

as well as a “Take ownership” operation available in the Virtual Desktop.

The resources and time available for our research was not adequate both to de-

sign and develop PAM, and to design and conduct formal experiments. However,

the System Monitor (page 92) logs meaningful data about how the system is being

used. These logs are stored in XML format, which make them amenable to anal-

ysis both in and outside the PAM environment. The System Monitor logs can be

analysed to determine how PAM is being used and for metrics gathering. For ex-

ample, it can be used to track how User Stories are being created, edited and so on,

as well as to replay the evolution of User Stories (that is, the projects). Though the

logs do not support subjective evaluation, we posit that the quantitative analysis

which it supports offers equally important benefits.
131



9.4 Summary

This chapter presented a recapitulation of our research. We discussed our initial

motivation and how our research evolved as we gained further insight into the

XP process and the nature of support required. The feedback provided by infor-

mal user evaluations provided was a significant source of insight. We highlighted

the socio-technical intricacies of our experimental prototype system, PAM, and

made recommendations for meaningful rigorous evaluations. Further, we dis-

cussed means of extending and enhancing the current implementation of PAM.

132



Chapter X

Conclusion

This thesis investigated the opportunity of combining CSCW with XP as a

means of alleviating the shortcomings of the XP process. XP is a modern lightweight

process. It was developed to address the need for rapid delivery of working soft-

ware and adaptability to changing requirements. In order to facilitate these goals,

XP place the people above the process. In this regard, the process is optimised for

collaboration. The tools and techniques defined for the XP process are intended

to support the collaborative nature of XP activities. The tools which support ap-

plication development are adequate. On the other hand, the manual tools used for

project planning and coordination do not allow sufficient information to pass over

into the maintenance stage. These impose long term consequences on the process.

In addition, the co-location practice affects the scalability of the process.

The shortcomings of XP offers opportunities for computer-based support. CSCW

by virtue of its research emphasis and focus on development of computer-based

tools as resources to support group work was identified as an appropriate technol-

ogy to alleviate XP’s shortcomings. CSCW is appropriate because it complements

XP and offers techniques to augment the existing collaboration.

Analysis of XP activities shows that the most benefits are to be derived from

computer-based support for those activities with the highest levels of collabora-

tion. These were identified to be the activities associate with the Planning Game—

that is Release and Iteration Planning. In conventional XP these activities are

carried out with close cooperation of the customer and developers. Two major

forms of communication were deemed necessary for supporting XP teams with

computer based support: broadcast and point-to-point. Broadcast communication

is mainly used to handle transient non-critical information exchange between col-

laborators and for awareness. On the other hand, point-to-point is used for critical
133



data management operations.

We designed and developed a desktop-based client/server groupware applica-

tion as a proof of concept to support co-located as well as dispersed teams. We

exploited existing metaphors and characteristics of conventional XP, in order to

minimise the difference in user’s mental models of XP and CSCW supported XP.

Our groupware tool offers relevant and appropriate functionalities and addresses

the shortcomings of XP. We provide persistence for project data such as User

Stories and Tasks. In this regard, information about XP projects can now sur-

vive beyond the end of projects and be used in subsequent analysis of the process

itself. Support is provided which makes project state information available syn-

chronously and asynchronously. We describe our groupware as a CSCW enabled

information radiator.

Our groupware tools is experimental only. Therefore, there is opportunities

for enhancing and extending it. The awareness mechanism in the current version

is not fully optimised. Session control protocols may be added to allow collab-

orating pairs or groups to have a designated driver who can leads the rest of the

group through the information space. In addition, the data replication information

sharing technique can be enhanced to allow client side caching of project data and

offline work. This enhancement will also need to address synchronisation. The

emphasis of our research was to provide functionality. Therefore, improvements

can be made in terms addressing HCI issues in of the interface. Finally, planned

evaluations my be conducted to quantify the utility offered by our groupware.

Several informal evaluations were conducted during the course of the group-

ware’s development. Feedback from its use suggest that computer-based support

benefits XP teams. The client server architecture supports extension of our group-

ware. Additional interfaces, customised for specific needs can easily be added

to the environment without impact on the existing system. We conclude that our

approach addresses real needs of XP activities and teams, and look forward to

extending our work further in the future.

134



List of Figures

1.1 Fundamental Activities of Software Engineering . . .. . . . . . . 2

1.2 PAM Deployment Architecture. The dotted lines indicate existing

XP channels of communication, while the bold lines indicate the

channels we have added with our prototype system. .. . . . . . . 6

1.3 Snapshot Release Management GUI . . . . .. . . . . . . . . . . 8

1.4 Snapshot implementation of Project Desktop metaphor . . . . . . 9

2.1 Sample User Story cards. . . . . . . . . . . . . . . . . . . . . . . 22

2.2 XP Project Model . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 CSCW Time-Location Matrix . . . . . . . . . . . . . . . . . . . 34

3.2 Screenshot of XPSwiki web pages. . . . . . .. . . . . . . . . . . 39

3.3 Snapshot of MILOS depicting an active pair programming session. 41

4.1 User Story Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 XP Project Hierarchy . . . . . .. . . . . . . . . . . . . . . . . . 52

4.3 Class Diagram depicting XP relationships. . .. . . . . . . . . . . 54

4.4 Finite State Diagram representation of XP. . . . . . . . . . . . . . 55

5.1 Illustration of the prototype system User Interface model . . . . . 63

5.2 Snapshot of Project Hierarchy implementation. . . . . . . . . . . 64

5.3 Snapshot of PAM client User Interface . . . .. . . . . . . . . . . 65

5.4 Snapshots depicting login form and available projects. . . . . . . 71

5.5 Icons in the client user interface . . . . . . . . . . . . . . . . . . 74

5.6 Common Operations menus and forms . . . . . . . . . . . . . . . 75

5.7 Snapshot of System Message Monitor . . . .. . . . . . . . . . . 76

5.8 Release Stacked Slate Form . . . . . . . . . . . . . . . . . . . . . 79

5.9 User Story Stacked Slate Form . . . . . . . . . . . . . . . . . . . 82

5.10 User Story Stacked Slate Form . . . . . . . . . . . . . . . . . . . 84

5.11 Snapshot of Ant file and results screens. . . .. . . . . . . . . . . 85
135



6.1 PAM Deployment Architecture . . . . . . . . . . . . . . . . . . . 88

6.2 PAM System Architecture . . . . . . . . . . . . . . . . . . . . . 90

6.3 Java Logging Framework used in PAM . . .. . . . . . . . . . . . 94

7.1 CAISE-DXP Relationship . .. . . . . . . . . . . . . . . . . . . 102

7.2 Representation of XPData class . . . . . . . . . . . . . . . . . . 104

7.3 CAISE Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4 Illustration of PAM message handling architecture.. . . . . . . . 106

7.5 PAM Application Communication Components. . .. . . . . . . . 106

7.6 Pseudo Message Processing Routine . . . . . . . . . . . . . . . . 107

8.1 Illustrations of the UI Model and Screen shots after implementation.110

8.2 PAM Replication Architecture . . . . . . . . . . . . . . . . . . . 113

8.3 The mixed relationship models between schedules and artefacts . . 114

8.4 Task-Implementation-Source Code Relationship . .. . . . . . . . 114

8.5 Alternative views of a project’s schedule hierarchy, with two re-

leases and six iterations. . . .. . . . . . . . . . . . . . . . . . . 115

8.6 Layers in the the project hierarchy; basis for drill-down and desk-

top metaphors. . .. . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.7 Model-View-Controller Design Pattern used in PAM . . . . . . . 119

8.8 Illustration of project document viewing flexibility; while main-

taining collaboration. . . . . . . . . . . . . . . . . . . . . . . . . 122

A.1 Illustration of the prototype system User Interface model . . . . . 138

A.2 Snapshot of PAM client User Interface . . .. . . . . . . . . . . . 139

A.3 Snapshot of PAM Task Tab Pane Form . . .. . . . . . . . . . . . 140

A.4 Snapshot of PAM Sketcher Utility . . . . .. . . . . . . . . . . . 141

A.5 Snapshot of PAM Virtual Desktop Showing all decendants . . . . 142

A.6 Snapshot of Stacked Slates showing Release Slate.. . . . . . . . 143

A.7 Snapshot of PAM Stacked Slates showing Iteration Slate. . . . . . 144

A.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

136



List of Tables

2.1 The twelve practices of eXtreme Programming. . . . . . . . . . . 16

4.1 Classification of primary XP project concerns. . . . . . . . . . . . 48

4.2 Typical XP Features of the Planning Game (Release and Iteration

Planning). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Typical XP Features of application development (Programming,

Testing and Integration). . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Common Operations of the XP process; including project termi-

nation criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Breakdown of XP project in terms of project concerns to compute

Project Document size. . . . . . . . . . . . . . . . . . . . . . . . 71

7.1 Comparison of some middleware technologies. . . .. . . . . . . 100

137



Appendix A

Screen Shots of the Prototype System

Menu    MenuI                                                                                                            Help

Menu Bar

ToolBar

Project
Hierarchy

Work
Area

Commun-
ication

Status
Bar

Figure A.1: Illustration of the prototype system User Interface model

138



Figure A.2: PAM client User Interface showing the Tree Hierarchy, Work Area (currently used by the Virtual Desktop) and
the Communication Utility components, to the left, middle and right respectively.

1
3

9



Figure A.3: PAM client User Interface showing TabPanes.

1
4

0



Figure A.4: Sketcher Utility, with minimal features demonstrates simple diagram drawn collabotatively.

1
4

1



Figure A.5: PAM Desktop displaying all Decendands of the Project.

1
4

2



Figure A.6: PAM Stacked Slates displaying Release Slate.

1
4

3



Figure A.7: PAM Stacked SlatesDesktop displaying Iteration Slate.

1
4

4



Figure A.8: Task assignment

1
4

5



References

Agile Alliance (2001), ‘Agile alliance’, Internet URL. ”www.agilealliance.

com”.

Alexander, C. (1979),The Timeless Way of Building, Oxford University Press.

Auer, K. & Miller, R. (2001),Extreme Programming Applied: Playing to Win,

Addison-Wesley.

Baheti, P., Gehringer, E. & Stotts, D. (2002), Exploring the efficacy of distributed

pair programming,in D. Wells & L. Williams, eds, ‘XP/Agile Universe

2002’, pp. 208–220.

Baker, K., Greenberg, S. & Gutwin, C. (2001), Heuristic evaluation of group-

ware based on the mechanics of collaboration,in M. R. Little & L. Nigay,

eds, ‘Engineering for Human-Computer Interaction: 8th IFIP International

Conference, EHCI 2001’, Vol. 2254 ofLecture Notes in Computer Science,

Springer.

Bannon, K. J. & Schmidt, K. (1989), Cscw: four characters in search of a context,

in ‘Proceedings of the First European Conference on Computer Supported

Cooperative Work’, pp. 358–372.

Beck, K. (1999a), ‘Embracing change with extreme programming’,Computer

32(10), 70–77.

Beck, K. (1999b), Extreme programming explained: embrace change, Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, USA.

Beck, K. (2002),Test Driven Development: By Example, Addison-Wesley Pub

Co.
146



Beck, K. & Fowler, M. (2000),Planning Extreme Programming, Addison-Wesley.

Beck, K. & Gamma, E. (1998), ‘Test-infected: Programmers love writing tests’,

Java Report3(7), 51–56.

Boehm, B. (1988), A spiral model of software development and enhancement,in

‘Computer’, pp. 61–72.

Boehm, B. & Turner, R. (2003),Balancing Agility and Discipline: A Guide for

the Perplexed, Addison-Wesley.

Borland Software Corporation (2003), ‘Together controlcenter’, Internet URL.

”www.togethersoft.com”.

Bray, T., Paoli, J., Sperberg-McQueen, C. M. & Maler, E. (2000), ‘Extensible

markup language (xml) 1.0 (second edition)’, Internet URL. ”http://www.

w3.org/TR/2000/REC-xml-20001006”.

Calvary, G., Coutaz, J. & Nigay, L. (1997), From single-user architecture design

to pac*: a generic software architecture model for cscw,in ‘Proceeding of

the ACM CHI’97’, Addison-Wesley, pp. 242–249.

Churcher, N. & Cerecke, C. (1996), Groupcrc: Exploring cscw support for soft-

ware engineering,in J. Grundy & M. Apperley, eds, ‘OzCHI’96: Proceed-

ings of Sixth Australian conference on computer-human interaction’, IEEE

Computer Society Press, pp. 62–68.

Coad, P., LeFebvre, E. & De Luca, J. (1999),Java Modeling In Color With UML:

Enterprise Components and Process, Prentice Hall.

Cockburn, A. (2002),Agile Software Development, Addison-Wesley.

Cook, C. (2003), Computer-Supported Collaborative Software Engineering, PhD

thesis, University of Canterbury. Work in progress.
147



Cook, C. & Churcher, N. (2003a), An extensible framework for collaborative soft-

ware engineering,in ‘APSEC 2003: 10th Asia-Pacific Software Engineering

Conference’, IEEE press, Chiangmai, Thailand. accepted, to appear.

Cook, C. & Churcher, N. (2003b), A pure–java group communication framework,

Technical report, University of Canterbury.

Eickelmann, N. (1999), Software engineering notes.

http://www.acm.org/sigsoft/SEN/parnas.html.

Ellis, C. A., Gibbs, S. J. & Rein, G. L. (1993), ‘Groupware: Some issues and

experiences’,34(1).

Ellis, J. (2000), ‘Xpcgi’, Internet URL. ”http://xpcgi.sourceforge.net/”.

Engelbart, D. & Lehtman, H. (1988), ‘Working together’,BYTE13(13), 245–252.

Fowler, M. (1999),Refactoring: Improving the design of existing code, Addison-

Wesley. Fowler seems to be the authority on refactoring.

Fowler, M. (2001), ‘Is design dead’, Internet URL. http://www.martinfowler.

com/articles/designDead.html

Fowler, M. (2003), ‘The new methodology’, Internet URL. www.martinfowler.

com/articles/newMethodology.html

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1994),Design Patterns: Ele-

ments of Reusable Object-Oriented Software, Addison-Wesley.

Goleman, D. (1995),Emotional Intelligence, Bantam Books, New York.

Grudin, J. (1988), Why cscw applications fail: problems in the design and evalua-

tion of organization of organizational interfaces,in ‘Proceedings of the 1988

ACM conference on Computer-supported cooperative work’, ACM Press,

pp. 85–93.
148



Hanks, B. F. (2003), Tool Support for Distributed Pair Programming, PhD thesis,

University of California at Santa Cruz.

Highsmith III, J. A. & Orr, K. (2000),Adaptive Software Development: A Collab-

orative Approach to Managing Complex Systems, New York: Dorset House.

Jacobson, I. (1994),Object-Oriented Software Engineering, Addison-Wesley.

Jeffries, R., Anderson, A. & Hendrickson, C. (2001),Extreme Programming In-

stalled, Addison-Wesley.

Keefer, G. (2002), ‘Extreme programming considered harmful for reli-

able software development’, http://www.avoca-vsm.com/Dateien-

Download/ExtremeProgramming.pdf.

Kircher, M., Jain, P., Corsaro, A. & Levine, D. (2001), Dis-

tributed extreme programming, in ‘XP2001 - eXtreme Pro-

gramming and Flexible Processes in Software Engineering’,

http://www.xp2001.org/xp2001/conference/papers/Chapter16-

Kircher+alii.pdf.

Lakoff, G. & Johnson, M. (1998),Philosophy in the Flesh, Basic Books.

Laurillau, Y. & Nigay, L. (2002), Clover architecture for groupware,in ‘Proceed-

ing of the ACM CSCW’02’.

Lauwers, J. C. & Lantz, K. A. (1990), Collaboration awareness in support of

collaboration transparency: Requirements for the next generation of shared

window systems,in ‘Proceedings of the ACM CHI 90 Conference on Human

Factors in Computing Systems. ACM’.

Leuf, B. & Cunningham, W. (2001),The Wiki Way: Collaboration and Sharing

on the Internet, Addison-Wesley Pub Co.

Marchesi, M., Succi, G., Wells, D. & Williams, L. (2002),Extreme Programming

Perspectives, Addison Wesley.
149



Maurer, F. (2002), Supporting distributed extreme programming,in ‘””’.

Maurer, F. & Martel, S. (2002), Process support for distributed extreme program-

ming teams,in ‘””’.

McBreen, P. (2002),Software Craftsmanship, Addison-Wesley.

McBreen, P. (2003),Questioning Extreme Programming, Pearson Education, Inc.

Miller, R. W. (2002), ‘Demystifying extreme programming’, Internet URL. www-

106.ibm.com/developerworks/java/library/j-xp0813/

Nawrocki, J., Jasinski, M., Walter, B. & Wojciechowski, A. (2002), Extreme pro-

gramming modified: Embrace requirements engineering practices,in ‘IEEE

Joint International Conference on Requirements Engineering’.

Newkirk, J. W. & Martin, R. C. (2001),Extreme Programming in Practice,

Addison-Wesley Pub Co.

Nielsen, J. (1993),Usability Engineering, Morgan Kaufmann.

Nielsen, J. (2000), ‘Why you only need to test with 5 users’, Internet URL. www.

useit.com/alertbox/20000319.html

Nunamaker, J. F., Dennis, A. R., Valacich, J. S., Vogel, D. R. & George, J. F.

(1991), ‘Electronic meeting systems to support group work’,31(7), 40–61.

ObjectMentor (2001), ‘Junit’, Internet URL. ”http://www.junit.org/”.

Paulk, M. C. (2001), Extreme programming from a CMM perspective,in ‘XP

Universe’.

Paulk, M. C., Curtis, B., Chrissis, M. B. & Weber, C. V. (1993), ‘Capability ma-

turity model’, IEEE Software10(4), 18–27.
150



Pinna, S., Lorrai, P., Marchesi, M. & Serra, N. (2003), Developing a tool support-

ing xp process,in F. Maurer & D. Wells, eds, ‘XP/Agile Universe 2003’,

pp. 150–160.

Pressman, R. S. (2001),Software Engineering: A practitioner’s approach, 5 edn,

Mc Graw Hill.

Rees, M. J. (2002), A feasible user story tool for agile software development,in

‘APSEC’.

Richardson, T., Stafford-Fraser, Q., Wood, K. R. & Hooper, A. (1998), ‘Virtual

network computing’,IEEE Iternet Computing2(11), 33–38.

Rodden, T. (1991), ‘A survey of cscw systems’,Interacting with Computers

3(3), 319–353.

Ross, S., Ramage, M. & Rogers, Y. (1995), ‘Petra: participatory evaluation

through redesign and analysis’,Interacting with Computers7(4), 335–360.

Schuckmann, C., Kirchner, L., Sch¨ummer, J. & Haake, J. M. (1996), Designing

object-oriented synchronous groupware with COAST,in ‘Computer Sup-

ported Cooperative Work’, pp. 30–38.

Schümmer, T. & Sch¨ummer, J. (2001), Support for distributed teams in extreme

programming,in G. Succi & M. Marchesi, eds, ‘eXtreme Programming Ex-

amined’, Addison Wesley, pp. 355–377.

Schwaber, K. & Beedle, M. (2001),Agile Software Development with SCRUM, 1

edn, Prentice Hall.

Sire, S., Chatty, S., Gaspard-Boulinc, H. & Colin, F.-R. (1999), ‘How can group-

ware preserver our collaboration skills? designing for direct collaboration’,

Human-Computer Interaction – INTERACT’99.

Software Engineering Institute (1995),The Capability Maturity Model: Guide-

lines for Improving the Software Process, 1 edn, Addison-Wesley.
151



Sommerville, I. (2001),Software Engineering, 6 edn, Addison-Wesley.

SourceForge.net (2003), ‘Xplanner’, Internet URL. ”http://http://www.

xplanner.org/”.

Stefik, M., Bobrow, D. G., Foster, G., Lanning, S. & Tatar, D. (1987), ‘Wysiwis

revised: early experiences with multiuser interfaces’,ACM Transactions on

Office Information Systems5(2), 147–167.

Sun Microsystems, Inc. (2003), ‘Data access object’, Internet URL. java.sun.

com/blueprints/patterns/DAO.html

Telles, M. (1990), Updting and older interface,in ‘Proceedings ACM CHI’90

Conference’.

The Apache Software Foundation (2003), ‘The APACHE ANT project’, Internet

URL. ant.apache.org

The C3 Team (1998), Chrysler goes to “extreme”,in ‘Distributed Object Com-

puting’, pp. 24–2. Ann Anderson, Ralph Beattie, Kent Beck, David Bryant,

Marie DeArment, Martin Fowler, Margaret Fronczak, Rich Garzaniti, Den-

nis Gore, Brian Hacker, Chet Hendrickson, Ron Jeffries, Doug Joppie, David

Kim, Paul Kowalsky, Debbie Mueller, Tom Murasky, Richard Nutter, Adrian

Pantea, and Don Thomas are the C3 Team, Chrysler Corporation.

Van Der Vyver, G. & Lane, M. (2003), Using the new generation of is develop-

ment techniques in effective group learning: A pilot study of a team-based

approach in an it course,in ‘Informing Science and Information Technology

Education Conference’.

Wake, W. C. (2001),Extreme Programming Explored, Addison-Wesley.

Wampler, B. E. (2002),The Essence of Object-Oriented Programming with Java

and UML, Addison-Wesley.
152



Wells, D. (2001), ‘Extreme programming: A gentle introduction’, Internet URL.

www.extremeprogramming.org

Williams, L. & Kessler, R. (2000), ‘All i really need to know about pair program-

ming i learned in kindergarten’,Communications of the ACM43(5), 108–

114.

Zelkowitz, M., Shaw, A. & Gannon, J. (1979),Principles of Software Engineering

and Design, Prentice-Hall.

153


