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Abstract 

 

Introduction: Ultrasound assessment of swallowing has been documented as reliable in both 

healthy and dysphagic participants. In addition, there is evidence of good correlation with 

‘gold standard’ videofluoroscopic swallowing study (VFSS).  Despite this, ultrasound has not 

translated into clinical practice.  This may be due to the cost and accessibility of ultrasound 

devices as well as the time required to analyse images offline.  Recent innovations have 

produced inexpensive, wireless, portable ultrasound technology, which has the potential for 

increased access and immediate results.  This project explored a number of components of 

inter- and intra-rater reliability using portable ultrasound. Reliability of measures, from 

images acquired, selected and measured online in a pressured clinical environment, was 

compared with reliability of measurement of pre-selected images offline.  The project 

additionally made preliminary assessments of the validity of ultrasound against the gold 

standard of VFSS. 

 

Methods:  

Participants: Eight patients, aged 33-96 with mixed aetiologies were recruited following 

referral for a clinical VFSS. 

Instrumentation: A curvilinear Clarius™ultrasound device, wirelessly connected to an iPad, 

was used to acquire images during dynamic swallowing gestures - hyoid excursion and 

thyrohyoid approximation as well as images for measures of tongue thickness at rest.  A 

linear Clarius™ transducer was used to collect measures of cross-sectional area of submental 

muscles at rest. 

Data acquisition and measurement: Ultrasound data were independently collected by two 

investigators within the same day.  The primary investigator completed ultrasound 
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concurrently with VFSS for the purposes of validity assessment.  Subsequent ultrasound 

analysis was completed by a co-investigator immediately following.  Online measurements of 

ultrasound images were completed during the exam, using Clarius™software on an iPad.  

Offline analyses of ultrasound were completed by two raters with a minimum of eleven days 

between measures.  VFSS measures were completed offline by rater one, using ImageJ 

software on a large screen.  

Reliability assessment: Inter-rater reliability was calculated with intraclass correlation 

coefficient (ICC) based on linear mixed effects model analyses (in R software).  Effect of 

data acquisition on reliability was explored by calculating online inter-rater ICC and 

comparing with offline inter-rater ICC.  Effect of environmental, equipment and time 

constraints on online measurement was explored by calculating ICC of online and offline 

measurement of the same pre-selected acquired images. 

Validity assessment: Hyoid excursion and thyrohyoid approximation during liquid and puree 

swallowing were concurrently assessed using ultrasound and the ‘gold-standard’ 

instrumentation, VFSS.  Pearson correlation coefficients were calculated in order to make a 

preliminary assessment of correlation between assessment methods.  

 

Results:  

Reliability: Inter-rater reliability of online acquisition and measurement ranged from poor (< 

.50) to moderate (.50 –.75).  ICC values for online and offline measurement of the same 

images were moderate (.50 –.75) for dynamic measures, and excellent (>.90) for static 

measures.  Inter- and intra-rater reliability for offline measures was good (>.75) to excellent 

(>.90) for hyoid excursion and static morphometry measures and moderate (.50 –.75) for 

thyrohyoid approximation.  
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Validity: Pearson coefficient of correlation calculations for hyoid excursion were moderate 

(r=0.76; p=0.001) for puree bolus and excellent for liquid bolus (r=0.92; p=0.03). Thyrohyoid 

approximation was found to have a moderate but insignificant, relationship between 

modalities for both puree and liquid bolus (r=0.61; p=0.11).  

 

Conclusion: The high reliability for offline measurement of ultrasound images is comparable 

to previous studies using sophisticated instrumentation.  Reduction in reliability is noted 

when measuring the images online within the context of a clinical environment compared 

with offline measurement.  Online data analyses may be affected by the pressure and lighting 

of a clinical environment paired with lower resolution of the device, size of the screen and 

use of a touch screen for measurement.  Further reduction in reliability of dynamic 

swallowing measures is noted when data acquisition is added, this may be due to different 

techniques by examiners as well as variance in patient performance. 

The findings suggest that it is important to further explore methods of improving reliability of 

data acquisition as well as immediate online analysis before clinical translation of ultrasound 

assessment of swallowing is achieved.  

Preliminary data on validity of the portable ultrasound device indicates high correlation 

between assessment methods (ultrasound and VFSS) for hyoid excursion only. Analysis of a 

larger cohort is required to provide a robust assessment of the validity of ultrasound images 

collected with this technology for both hyoid excursion and thyrohyoid approximation. 
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List of Abbreviations 

 

CI  confidence interval  

CT   computed tomography  

FEES  fibreoptic endoscopic evaluation of swallowing 

GH  geniohyoid 

ICC   intraclass correlation coefficient 

LAB   left anterior belly of the digastric 

MRI   magnetic resonance imaging 

Q-Q-plot quantile-quantile plot 

RAB   right anterior belly of the digastric 

SEM  standard error of measurement  

SD  standard deviation 

UES  upper oesophageal sphincter 

VFSS   videofluoroscopic swallowing study 

i1 

                                                           
1
 This thesis was prepared using British spelling conventions. However, direct quotes may contain American Spelling. Additionally the 

acronym ‘UES’ (upper esophageal sphincter) is strongly represented in the literature, therefore UES rather than UOS (upper oesophageal 
sphincter) was used. 
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Introduction 

 

The estimated time taken to translate clinically valid research into practice is 17 years 

(Balas & Boren, 2000).  While it is difficult to accurately estimate the true time lags in 

knowledge translation (Morris, Wooding, & Grant, 2011), it is clear that translating research 

into day to day clinical practice is challenging (Grimshaw, Eccles, Lavis, Hill, & Squires, 

2012; Neta et al., 2015; Riley, Glasgow, Etheredge, & Abernethy, 2013).  Barriers to 

knowledge translation in public healthcare are extensive (Riley et al., 2013) and include 

engagement of the key stakeholders, resourcing, training, varied methods for knowledge 

translation, variable review of clinician behaviour and infrequent links and collaboration 

between research establishments and clinical environments (Jones, Roop, Pohar, Albrecht, & 

Scott, 2015; O'Connor & Pettigrew, 2009). 

 

Clinical practice should be supported by policies for implementing evidence-informed 

practice (NHS Executive, 1997; Haynes & Haines, 1998).  Knowledge and evidence gathered 

from peer-reviewed research should be the key driver of service delivery, decision making 

and strategic direction in clinical environments (Chassin, 1990).  This approach provides 

clinicians with the assurance that they are providing consistent, safe and effective 

intervention, leading to the best possible outcomes for patients (Haynes & Haines, 1998).  

 

Clinical research and strong relationships between healthcare environments and 

research establishments, such as universities, have the potential to support the diffusion of 

research findings and act as a catalyst to knowledge translation in the healthcare environment 

(Légaré et al., 2011; Sackett, 2000).  Clinical research that is generated in the field of 
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swallowing and swallowing disorders has potential to positively impact clinical practice and 

patient outcomes.  

 

Dysphagia is defined as “an impediment to the normal passage of swallowed material 

between the mouth and the stomach”  (Spechler, 1999, p. 233).  Oropharyngeal dysphagia is 

restricted to “difficulty in effective passage of solids or liquids from the oropharynx to the 

upper oesophagus” (Hurwitz, Nelson, & Haddad, 1975, p. 313).  Oropharyngeal dysphagia is 

a common consequence of a wide variety of medical conditions and represents a substantial 

health issue affecting people across the lifespan (Cook & Kahrilas, 1999).  It is prevalent in 

the elderly population and a feature of many acute and progressive neurological conditions 

(Groher & Bukatman, 1986; Siebens et al., 1986).  Accurate diagnosis of dysphagia is critical 

to ensure appropriate management and rehabilitation of swallowing, in order to reduce 

mortality and morbidities associated with the condition such as dehydration (Leibovitz et al., 

2007), malnutrition (Foley, Martin, Salter, & Teasell, 2009) and pulmonary compromise 

(Marik & Kaplan, 2003). 

 

A comprehensive clinical examination of swallowing is critical to provide valuable 

information on a person’s swallowing ability and in order to make judgement of risk 

(Carnaby, 2012; Daniels, Huckabee, & Gozdzikowska, 2019; McCullough & Martino, 2013), 

however some of the findings need to be interpreted with caution (Baylow, Goldfarb, 

Taveira, & Steinberg, 2009; Brates, Molfenter, & Thibeault, 2019; Horner & Massey, 1988; 

Leder & Espinosa, 2002; Mann, Hankey, & Cameron, 2000; Martino, Pron, & Diamant, 

2000; McCullough, Wertz, & Rosenbek, 2001; Splaingard, Hutchins, Sulton, & Chaudhuri, 

1988).  Some of the most severely dysphagic patients can be the least obvious on clinical 

assessment due to the lack of sensory awareness and lack of cough response to food or fluid 
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entering the airway (McCullough et al., 2001).  Splaingard et al. (1988) demonstrated only 

42% of patients who were aspirating were identified using clinical observation.  Horner and 

Massey (1988) reported that while the vast majority of dysphagic patients, who did not 

aspirate, complained of dysphagia; over half of those who were observed to aspirate, did not.  

More recently, improvements have been made to the clinical swallowing evaluation, 

especially in identifying high risk patients, by the addition of tools such as the cough 

challenge (Miles et al., 2013; Perry, Miles, Fink, & Huckabee, 2019) and qualitative 

measures, with normative data to compare against, such as the Test of Masticating and 

Swallowing Solids (TOMASS, Huckabee et al., 2018).  However diagnosis depends on 

instrumentation (Huckabee, Macrae, & Lamvik, 2015).  There is little dispute in the literature 

that readily accessible instrumental swallowing assessment methods are required in order to 

achieve differential diagnosis of dysphagia, to identify the impact of compensatory strategies 

and to recommend rehabilitation plans (Baylow et al., 2009; Daniels, McAdam, Brailey, & 

Foundas, 1997; Logemann, 1997; Logemann et al., 2008; Mann et al., 2000; Vose & 

Humbert, 2018).  

 

Options for instrumental swallowing assessment include videofluoroscopic study of 

swallowing (VFSS) and fibreoptic endoscopic evaluation of swallowing (FEES).  The ‘gold 

standard’ for accurate diagnosis of oropharyngeal dysphagia is widely considered to be VFSS 

(Costa, 2010; Logemann, Rademaker, Pauloski, Ohmae, & Kahrilas, 1998) in large part due 

to its longevity; however, it comes with challenges and limitations.  These include exposure 

to ionising radiation and difficult accessibility for many of the most vulnerable patients, such 

as those in critical care environments (O'Neil-Pirozzi et al., 2003; Perry & Love, 2001).  

FEES, while relatively portable, is invasive and though the procedure is often well tolerated 

(Leder, Sasaki, & Burrell, 1998; Warnecke et al., 2009), it does carry a low risk of 



4 
 

complications such as epistaxis, syncope and laryngospasm. Therefore, it must be completed 

where access to medical attention can be guaranteed (Nacci et al., 2016; Warnecke et al., 

2009).  

 

An alternative option for instrumental assessment of swallowing that may address 

some of the limitations of VFSS and FEES, is ultrasound (Chi‐Fishman, 2005).  Ultrasound is 

a low risk, non-invasive tool that uses high frequency sound waves to acquire real time 

images of key structures (Venables, 2011).  Ultrasound was first used to visualise the tongue, 

larynx, velum and submental muscles in research in the 1970s for the purpose of assessing 

speech sound production (Hamlet & Reid, 1972; Shawker, Sonies, & Stone, 1984).  This 

progressed to use in the assessment of swallowing function in the 1980s (Sonies, Parent, 

Morrish, & Baum, 1988) and, since that time, assessment of swallowing using ultrasound has 

been investigated by a number of researchers (Ahn et al., 2015; Chi‐Fishman, 2005; Huang, 

Hsieh, Chang, Chen, & Wang, 2009; Kuhl, Eicke, Dieterich, & Urban, 2003; Macrae, 

Doeltgen, Jones, & Huckabee, 2012; Manabe et al., 2015; Miura et al., 2014). Research using 

ultrasound assessment of key swallowing features has been conducted on both healthy and 

dysphagic participants and yet despite reasonable results in both validity and reliability 

(Hsiao, Chang, Chen, Chang, & Wang, 2012; Kuhl et al., 2003; Macrae et al., 2012), this tool 

has not yet been translated into clinical environments.  

 

Fundamental to this study is the hypothesis that while there are many possible reasons that 

ultrasound has not translated into clinical practice for dysphagia assessment; one of these 

may be due to limited clinical access to the instrumentation that is found in many research 

labs.  However, recent technological advances have resulted in the development of small 

pocket-sized, portable ultrasound devices that cost much less than standard ultrasound 
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equipment.  The use of these small portable devices could provide a readily accessible, non-

invasive tool to screen and identify which patients to refer on for ‘gold standard’ instrumental 

swallowing assessment, where VFSS is a limited resource.  Portable ultrasound would be 

especially useful in screening patients who have difficulty accessing VFSS such as those who 

are severely physically impaired and require ambulance transfers. There is additional 

potential to compliment VFSS in supporting differential diagnosis of specific impairments of 

swallowing, such as reduced hyolaryngeal excursion and later it may be useful as a tool to 

measure change over time, for example, to ascertain the impact of an implemented 

rehabilitation programme.  

 

This research focussed on the reliability of portable ultrasound assessment of 

swallowing in patients with dysphagia.  Several components of reliability were explored in 

order to provide information that would be likely to impact knowledge translation of 

ultrasound technology into clinical practice.  This study was part of a larger project exploring 

the validity of ultrasound assessment of swallowing using the same hand-held portable 

instrumentation in both healthy adults and dysphagic patients.  
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Literature Review 

Swallowing and Dysphagia  

 

Swallowing is defined as “an orderly physiological process that transports ingested 

material from the mouth to the stomach”(Dodds, 1989, p. 171).  “The goal of swallowing is 

to complete this process safely and efficiently in order to maintain adequate nutrition, 

hydration, and quality of life” (Vose & Humbert, 2018, p. 281).  Swallowing is a complex 

neurophysiological task which involves the bilateral and symmetrical coordination of both 

contraction and inhibition (Ertekin & Aydogdu, 2003) of thirty-one pairs of striated muscles 

(Dodds, Stewart, & Logemann, 1990).  It is mediated by a complex distributed neural 

network including multiple cortical centres (Gordon, Hewer, & Wade, 1987; Huckabee, 

Deecke, Cannito, Gould, & Mayr, 2003; Mihai et al., 2014; Miller, 1982), sub-cortical 

structures (Daniels et al., 1997; Mihai et al., 2014), the brainstem (Dodds et al., 1990; Kessler 

& Jean, 1985) and seven peripheral afferent and efferent cranial nerve pathways (Daniels et 

al., 2019; Dodds et al., 1990; Hamdy et al., 1997).  A healthy person will spontaneously 

swallow their accumulated saliva approximately two to three times per minute while they are 

awake (Murray, Langmore, Ginsberg, & Dostie, 1996); they increase this frequency when 

eating or drinking. Many of these swallows, particularly the spontaneous swallows of saliva, 

occur without significant conscious awareness or input (Dodds, 1989; Ertekin, 2011); 

however, for some people, swallowing function can be or become impaired and therefore 

does not function in such an effective and sub-conscious manner.  

 

Dysphagia or disordered swallowing is an interruption to safe and effective 

swallowing between the mouth and the stomach (Seaman, 1976).  Oropharyngeal dysphagia 

is restricted to difficulty in transferring a bolus between the mouth and oesophagus (Bulat & 



7 
 

Orlando, 2005; Hurwitz et al., 1975).  The reported incidence of oropharyngeal dysphagia 

varies considerably across patient populations.  Considering stroke alone, up to 78% will 

present with dysphagia (Martino et al., 2005).  Parkinson’s disease has an incidence of up to 

90% (Sapir, Ramig, & Fox, 2008).  Reports also indicate that dysphagia can occur in up to 

50% of elderly people (Clavé & Shaker, 2015) and up to 60% of people living within 

residential care facilities (Cook & Kahrilas, 1999; Siebens et al., 1986).  These statistics 

indicate a large proportion of the population are affected by dysphagia, highlighting the need 

for effective identification and management.  

 

The impact of dysphagia can be significant. It is associated with dehydration, 

nutritional compromise and aspiration, where food or fluid enter the airway, which can lead 

to respiratory complications including aspiration pneumonia, choking and even death 

(Berzlanovich, Fazeny-Dörner, Waldhoer, Fasching, & Keil, 2005; Croghan, Burke, Caplan, 

& Denman, 1994; Martin et al., 1994).  Dysphagia and it’s complications not only present 

health consequences for the individual but data are beginning to quantify the impact on length 

of hospital stay and the resultant significant financial implications on stretched public 

healthcare (Allen, Greene, Sabido, Stretton, & Miles, 2019; Altman, Yu, & Schaefer, 2010; 

Langmore, Skarupski, Park, & Fries, 2002; Marik & Kaplan, 2003; Niederman, McCombs, 

Unger, Kumar, & Popovian, 1998), highlighting the need for accessible swallowing 

assessment and treatment options. 

 

Stages of Swallowing 

 

Swallowing combines both voluntary and involuntary elements and, for ease of 

conceptualisation, is often separated into phases of swallowing.  These classifications vary in 



8 
 

number and description (Dodds, 1989; Dodds et al., 1990; Miller, 1982), however, four 

stages of swallowing can be considered as pre-oral, oral, pharyngeal and oesophageal 

(Daniels et al., 2019). 

 

Pre-oral (Anticipatory) Stage 

 

The pre-oral phase involves the anticipatory elements that occur when a person first 

sees, smells or anticipates food or fluid (Leopold & Kagel, 1997).  Depending on the 

stimulus, anticipatory saliva will be generated and the vocal folds may even begin to close for 

early airway protection (Ohmae, Logemann, Kaiser, Hanson, & Kahrilas, 1995).  

 

Oral Stage 

 

The oral phase of the swallow begins as the bolus reaches the oral cavity.  Complex 

inhibition and excitation of paired muscle groups is required for the jaw, lips, tongue, cheeks 

and palate muscles to respond appropriately to the type of bolus and delivery method 

(Leopold & Kagel, 1997).  Fluids delivered via a cup will require different muscle responses 

to solid foods on a fork.  For a solid food bolus, the mouth must first open by contracting the 

jaw opening muscles, (mylohyoid, geniohyoid, anterior belly of the digastric and lateral 

pterygoid), while relaxing the jaw closing muscles (masseter, medial pterygoid, and 

temporalis; Daniels et al., 2019; Fuller, Pimentel, & Peregoy, 2012; Palmer, Rudin, Lara, & 

Crompton, 1992). Contraction of the accessory facial muscles, (zygomaticus, risorius and 

quadratus labi superioris) may be required to retract the lips to allow larger boluses to enter 

the oral cavity (Daniels et al., 2019). As the bolus enters the mouth, the jaw and lips 

(orbicularis oris) will close to prevent anterior spillage. The posterior tongue elevates to 
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contact the velum which creates a glossopalatal seal to prevent premature spillage of the 

bolus into the pharynx (Dodds, 1989).  Solid foods require bolus preparation; the tongue 

manipulates the food within the mouth, mixing food with saliva for lubrication and placing it 

in a position for the teeth to break down the food into smaller fragments using lateral and 

rotary jaw movement (Mistry & Hamdy, 2008).  The cheek muscles (buccinators), support 

the tongue to maintain position of the bolus, preventing it from falling into the lateral sulci 

while preparing it into a manageable state for the pharyngeal swallow (Ertekin & Aydogdu, 

2003).  Sensory feedback from receptors within the oral cavity monitor the progress of bolus 

preparation, influencing and modifying the motor sequence accordingly (Ertekin & Aydogdu, 

2003; Mistry & Hamdy, 2008).  

 

Preparatory vocal fold adduction (Ohmae et al., 1995; Shaker, Dodds, Dantas, Hogan, 

& Arndorfer, 1990) and halting of respiration will often occur prior to bolus transfer into the 

pharynx (Martin-Harris et al., 2005).  Once a cohesive bolus is formed, the glossopalatal seal 

is volitionally released and the tongue propels the bolus into the oropharynx by squeezing 

against the palate. The base of the tongue drops to allow the onward passage of the bolus and 

the tongue blade pushes the bolus into the hypopharynx.  As the bolus reaches the region of 

the anterior faucial arches and ramus of the mandible, the oral stage ends (Logemann et al., 

1998).  Sensory receptors signal the nucleus of the tractus solitarius in the medulla which 

elicits pharyngeal swallowing (Jean, 2001).  Swallowing for ingestion requires cognitive 

input along with cortically processed sensory information in order to modulate the brainstem 

motor response for each specific bolus type (Daniels et al., 2019). 
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Pharyngeal Stage 

 

Variability in the position of bolus at time of onset within the healthy population leads 

to debate as to the reference point for onset and completion of the pharyngeal phase (Chi-

Fishman & Sonies, 2000; Hiiemae & Palmer, 1999; Martin-Harris, Brodsky, Michel, Lee, & 

Walters, 2007; Perlman, Booth, & Grayhack, 1994; Robbins, Hamilton, Lof, & Kempster, 

1992; Shaw et al., 1995).  For example, Hiiemae and Palmer (1999) studied a small sample of 

ten young healthy adults and found on analysis of their VFSS’ that with harder foods it was 

not unusual for the bolus to dwell in the valleculae for 8-10 seconds prior to eliciting the 

pharyngeal swallow.  However for the purposes of classification only, the pharyngeal stage 

can be considered as beginning once the pharyngeal swallowing response is initiated, as 

identified by the onset of hyolaryngeal excursion (Young, Macrae, Anderson, Taylor-

Kamara, & Humbert, 2015).  

 

During the pharyngeal phase of swallowing a number of biomechanical events occur 

within approximately one second (Daniels et al., 2019; Kahrilas, Logemann, Lin, & Ergun, 

1992).  Velopharyngeal closure is achieved by elevating the soft palate (levator palatini, 

musculus uvulae), closing the nasopharynx and increasing pharyngeal pressure which 

supports bolus transition (Dodds et al., 1990; Perlman, Schultz, & VanDaele, 1993).  As the 

bolus descends toward the valleculae, the base of tongue retracts to the posterior pharyngeal 

wall (styloglossus, posterior belly of the digastric, glossopharyngeus and stylohyoid), 

providing direct pressure on the descending bolus and, along with sequential top to bottom 

pharyngeal constriction and shortening, supports bolus transition and clearance into the 

oesophagus (Cerenko, McConnel, & Jackson, 1989; Kahrilas et al., 1992). 
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In order to protect the airway while swallowing, four levels of laryngeal valving 

occur, which progress superiorly in a bottom to top sequence (Shaker et al., 1990). The true 

and false vocal folds adduct, the arytenoid cartilages move medially and tilt anteriorly to 

approximate the epiglottis, the larynx ascends and the epiglottis inverts. (Ekberg, 1982; 

Ohmae et al., 1995; Shaker et al., 1990; Van Daele, McCulloch, Palmer, & Langmore, 2005; 

Vose & Humbert, 2018).  In conjunction, supraglottic shortening, achieved in part by 

contraction of the suprahyoid muscles as well as the thyrohyoid muscle, allows for 

thyrohyoid approximation and compression of the quadrangular membrane, closing the 

anterior laryngeal vestibule (Daniels et al., 2019).   

 

Published research on the mechanism for epiglottic inversion typically cites 

hyolaryngeal excursion as the primary facilitator (Ekberg, 1982; Fink, Martin, & Rohrmann, 

1979; Logemann et al., 1992).  Hyolaryngeal excursion refers to the synchronistic elevation 

of the larynx and displacement of the hyoid bone in both an anterior and superior direction 

(Matsuo & Palmer, 2008).  Fink et al. (1979) completed frame by frame analysis of 

cinefluorograms, finding that epiglottic inversion occurs at the time of maximal elongation of 

the hyoepiglottic ligament which pulls the base of the epiglottis in an anterior trajectory 

resulting in deflection of the passive structure. This finding was replicated by Ekberg (1982) 

and much of the work completed on swallowing physiology and rehabilitation since has 

followed this understanding (Mepani et al., 2009; Shaker et al., 2002; Watts, 2013; Yoon, 

Khoo, & Liow, 2014).  However, more recently Pearson, Taylor, Blair, and Martin‐Harris 

(2016) used computer software to map anatomical landmarks on VFSS studies completed 

with dysphagic patients, attempting to evaluate the impact of various muscle groups on 

epiglottic inversion.  Their findings indicate that tongue base retraction and laryngeal 

elevation alone result in the passive movement of the epiglottic inversion, indicating hyoid 
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displacement, while correlated, is not the facilitator.  While this debate is important when 

considering which muscles we should consider when providing rehabilitation, assessment of 

hyolaryngeal excursion remains a critical indication of swallowing safety, as it has previously 

been consistently correlated with airway closure (Ekberg, 1982; Mepani et al., 2009; Shaker 

et al., 1990).  

 

The hyolaryngeal complex (see Figure 1) is a group of structures consisting of the 

laryngeal cartilages (epiglottis, thyroid, cricoid, arytenoids, cuniforms and corniculates), 

hyoid bone and the muscles and ligaments connecting them (Fuller et al., 2012; Pearson, 

Langmore, Louis, & Zumwalt, 2012).  Hyolaryngeal excursion is achieved by the contraction 

of the suprahyoid muscles (posterior belly of the digastric and stylohyoid) and the collective 

submental muscles which attach to the mental symphysis of the mandible and hyoid bone 

(mylohyoid, geniohyoid, anterior belly of digastric; see Figure 2).  Additionally the larynx is 

elevated towards the hyoid by contraction of the thyrohyoid muscle (Fuller et al., 2012). This 

combination displaces the hyolaryngeal complex in a superior and anterior trajectory (Cook 

et al., 1989; Ertekin & Aydogdu, 2003; Mepani et al., 2009).   Recent evidence also indicates 

the longitudinal pharyngeal muscles (salpingopharyngeus, palatopharyngeus and 

stylopharyngeus) provide a supporting role in this displacement of the hyolaryngeal complex 

(Pearson et al., 2012).  
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Figure 1: The hyolaryngeal complex: Includes: 1. hyoid, 2. thyrohyoid muscle, 3. thyrohyoid membrane, 4. thyroid 

cartilage,5. cricothyroid membrane, 6. cricoid cartilage and 7. cricopharyngeus. 8. Trachea and 9. Oesophagus. Elevation of 

this complex helps to protect the airway and open a relaxed upper oesophageal sphincter. Reprinted with permission  

(Pearson Jr & Zumwalt, 2014) 

 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

Figure 2: The Submental Muscles. Reprinted with Permission (Pearson Jr, Griffeth, & Ennis, 2019) 

 

The cricopharyngeus muscle attaches to the hyolaryngeal complex, therefore, its 

anterior and superior displacement along with the relaxation of the cricopharyngeus muscle 

itself, contributes to the opening of the pharyngoesophageal segment to allow free bolus 

transit into the oesophagus (Cook et al., 1989; Crary, Carnaby, & Groher, 2006; Ekberg, 

1986; Jacob, Kahrilas, Logemann, Shah, & Ha, 1989; Kahrilas, Lin, Rademaker, & 
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Logemann, 1997; Matsuo & Palmer, 2008; Sivarao & Goyal, 2000; Vandaele, Perlman, & 

Cassell, 1995).   

 

The literature presents significant variability on the normative data for the degree of 

superior and anterior movement of the hyoid bone and thyroid cartilage during swallowing 

(Molfenter & Steele, 2011)  This may, in part, be due to variability in the method for 

quantification.  Some researchers used frame by frame analysis of hyoid excursion (Bingjie, 

Tong, Xinting, Jianmin, & Guijun, 2010; Ishida, Palmer, & Hiiemae, 2002; Logemann et al., 

2000; Logemann, Pauloski, Rademaker, & Kahrilas, 2002; Paik et al., 2008), while others 

compare a rest frame with a frame representing maximum displacement position (Dantas et 

al., 1990; Dodds et al., 1988; Kim & McCullough, 2008; Perlman, VanDaele, & Otterbacher, 

1995).  Another source of variability may be number and type of boluses presented, some 

studies presented a single swallow of each bolus texture/size (Ishida et al., 2002; Kang et al., 

2010; Kendall & Leonard, 2001; Paik et al., 2008), whereas others used two of each (Dodds 

et al., 1988; Kim & McCullough, 2008; Logemann et al., 2000; Logemann et al., 2002).  

Variations may also be found across age range of participants (Kendall & Leonard, 2001; 

Kim & McCullough, 2008; Logemann et al., 2000).  For example Kim and McCullough 

(2008) found a reduction in anterior displacement of the hyolaryngeal complex in healthy 

adults over 70 years old compared to those between the ages of 21 and 51.  However, no 

differences were found for superior displacement as a function of age.  Logemann et al. 

(2000) assessed a much older cohort and found men over 80 years old displayed significantly 

reduced maximum anterior and posterior hyoid displacement compared to men under 30 

years, citing reduced muscle reserve as the likely cause.  Conversely, Kendall and Leonard 

(2001) found that with small boluses, adults over 65 years demonstrated increases in hyoid 

displacement however; this was not replicated with large bolus size.  The author hypothesised 
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that this may be a compensation for a reduction in duration of hyolaryngeal excursion noted 

as people age; a compensation which cannot be sustained for larger boluses.  Ishida et al. 

(2002) assessed a small sample size of 12 healthy adults and reported that superior hyoid 

displacement was highly variable particularly with solids compared to liquids, while there 

was no bolus effect for anterior displacement.  This research also identified a discrepancy 

between the amplitude of upward displacement of the hyoid between the male and female 

subjects, hypothesising that the significantly lower resting position of the larynx noted in 

male subjects may explain this.   

 

This variability in normative data for hyoid displacement is important to note when 

considering what measurement is used to identify normal from abnormal.  Some researchers 

have suggested that calculating percentage change between rest and maximum hyoid 

excursion may provide superior information to absolute distance travelled (Kuhl et al., 2003; 

Macrae et al., 2012; Mepani et al., 2009). 

 

Co-ordination of breathing and swallowing is said to be precisely timed to prevent the 

bolus from being aspirated (Selley, Flack, Ellis, & Brooks, 1989).  However in a study 

exploring breathing and swallowing patterns at various ages, the timing and co-ordination 

was found to vary amongst healthy adults (Martin-Harris et al., 2005). This discrepancy 

indicates that while a period of swallow apnoea is essential for airway protection (Jean, 1984; 

Selley et al., 1989), some variability still allows for swallowing without airway invasion.  

Martin-Harris et al. (2005) found that apnoea duration varied from 0.5-10 seconds, however, 

the median period of apnoea was found to be 1 second.  Martin-Harris et al. (2005) identified 

four different respiratory patterns straddled this period of apnoea when swallowing.  The 

dominant respiratory pattern was an expiration/expiration pattern (swallowing mid 
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expiration) found in approximately 70% of participants, while roughly 20% presented with 

expiration/inspiration pattern, 4-5% displayed an inspiration/expiration pattern, and 

inspiration/inspiration was seen in just 2% of participants.  Similar findings were discovered 

in research conducted by Kelly, Huckabee, Jones, and Carroll (2007) with a mid-expiration 

swallow pattern found in almost 60% of participants, yet the percentage of their participants 

presenting with an inspiration/expiration pattern (16%) was higher than in the study by 

Martin-Harris et al. (2005).  The dominance of the mid-expiration swallowing pattern is 

hypothesised to be useful to clear traces of airway penetration using post-swallow expiration 

(Widdicombe, Addington, Fontana, & Stephens, 2011).  The pharyngeal stage of swallowing 

ends with the cricopharyngus muscle relaxing and the bolus entering the oesophagus 

(Robbins et al., 1992). 

 

Oesophageal Stage 

 

The oesophageal stage of swallowing begins as the bolus passes through a relaxed and 

distended cricopharyngeus muscle into the oesophagus (Christrup, 1964).  The oesophagus is 

made up of striated muscle which converts to smooth muscle at roughly the level of the aortic 

arch (Goyal & Chaudhury, 2008).  Sequential top to bottom peristaltic waves propel the bolus 

through the oesophagus, the lower oesophageal sphincter relaxes and the bolus empties into 

the stomach (Goyal & Chaudhury, 2008; Miller, 1982). 

 

Oesophageal transit time in healthy adults is said to be approximately 13 seconds 

(Imam, Shay, Ali, & Baker, 2005; Kahrilas, Dodds, & Hogan, 1988; Torrico, Corazziari, & 

Habib, 2003) with prolonged oesophageal clearance being identified where bolus remains 

beyond 20 seconds (Torrico et al., 2003). A recent study by Miles, Clark, Jardine, and Allen 
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(2016) found that there was overall increased oesophageal transit time and greater variance 

with 20ml fluid boluses in healthy older adults (60-98 years old).  Their research also 

revealed differences across bolus consistency; they found significant variability in the 

oesophageal transit time across all ages for both barium pills and dense barium paste, 

indicating that transit time for solids may be much longer in the healthy population (Miles et 

al., 2016).  The oesophageal phase of swallowing is completed once the bolus tail is cleared 

from the oesophagus and the lower oesophageal sphincter closes preventing reflux of gastric 

contents (Palmer et al., 1992). 

 

Instrumental Assessment of Swallowing  

 

Accurate diagnosis of dysphagia is critical to ensure appropriate management and 

rehabilitation of swallowing.  Diagnosis depends on instrumentation (Daniels et al., 1998; 

Huckabee et al., 2015; Leder & Espinosa, 2002; Leder et al., 1998; Martino et al., 2000; 

McCullough et al., 2001; Miles, McFarlane, Scott, & Hunting, 2018; Splaingard et al., 1988).  

Clinical evaluation of swallowing has been compared with instrumental assessment in a 

number of studies (Daniels et al., 1997; DePippo, Holas, & Reding, 1992; Leder & Espinosa, 

2002; Linden, Kuhlemeier, & Patterson, 1993; Mann et al., 2000; McCullough et al., 2001; 

Splaingard et al., 1988).  Many of these studies illustrate the risks of reliance on clinical 

evaluation alone relative to accurate identification of physiology impairments, pharyngeal 

residue and airway penetration/aspiration. 

 

Identification of aspiration on clinical evaluation poses significant challenges for 

clinicians.  Some of the most severely dysphagic patients are likely to be the least obvious on 

clinical evaluation (Horner & Massey, 1988; Splaingard et al., 1988). A study by Leder and 
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Espinosa (2002), investigated 49 stroke patients with clinical examination of swallowing and 

then by FEES. They found that clinical evaluation underestimated the risk of aspiration on 

the most severely dysphagic patients and overestimated it on those patients with low risk.  

Silent aspiration (aspiration without a cough response), can be impossible to detect on clinical 

evaluation alone. In a study by Daniels et al. (1998) 67% of consecutively admitted stroke 

patients (n=55) were found to silently aspirate during VFSS.  Furthermore, Miles et al. 

(2018), who assessed 180 mixed aetiology patients referred for FEES, demonstrated that 

while patients were less likely to aspirate on thickened fluids they were more likely to cough 

in response to aspiration of a thin fluid and to silently aspirate a thickened fluid.  This novel 

finding indicates that patients with dysphagia do not have the same physiological reaction to 

aspiration of fluids of different consistencies and highlights the value of instrumental 

assessment to accurately assess the safety and benefits of diet modification.  

 

Critically, instrumentation supports differential diagnosis in order to guide successful 

management and rehabilitation of dysphagia.  Reliance on clinical evaluation alone has the 

potential to steer clinicians towards management and compensation for dysphagia rather than 

diagnosis and remediation, for example the prescription of diet and fluid modifications. Over-

prescription of thickened fluids can have negative outcomes, as they are often not well 

tolerated by patients (Logemann et al., 2008), and as a result can further exacerbate 

dehydration (Murray, Miller, Doeltgen, & Scholten, 2014).  Instrumental assessment of 

swallowing provides objective data to treat dysphagia and guide rehabilitation with targeted 

exercises or protocols (Daniels et al., 2019; Elmståhl, Bülow, Ekberg, Petersson, & Tegner, 

1999; Linden, 1989). A study completed by Perry et al. (2019) implemented a management 

protocol in stroke patients with dysphagia, which increased the appropriate onward referral 

for VFSS prior to initiating oral intake. This resulted in significantly improved outcomes for 
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patients with dysphagia whereby 81% of patients returned to a standard diet and 67% went 

home within three months compared to 55% and 55%, respectively, prior to the 

implementation of the protocol. 

 

Clinically, the most commonly used options for instrumental assessment of 

swallowing are FEES and VFSS.  FEES uses “a flexible laryngoscope to view the pharyngeal 

and laryngeal structures before during and after deglutition”(Rommel & Hamdy, 2016, p. 54).  

VFSS is defined as “a dynamic continuous radiological examination of the anatomy and 

function of the oral cavity, pharynx and UES opening that includes lateral and frontal views 

while swallowing” (Rommel & Hamdy, 2016). FEES and VFSS both provide a snapshot 

objective assessment of swallowing function.  Endoscopic assessment using FEES provides a 

reasonably portable, objective assessment of functional swallowing and is useful to identify 

airway penetration and aspiration over a full meal (Hiss & Postma, 2003; Leder et al., 1998).  

However, FEES does not allow for visualisation of the oral stage of swallowing, or 

visualisation or quantification of critical physiological elements of swallowing such as 

epiglottic deflection, hyolaryngeal excursion or thyrohyoid approximation.  This limits the 

clinical ability to provide targeted rehabilitation.  In addition, the procedure requires an 

invasive endoscopic view of swallowing, which is not always tolerated well by patients (Aviv 

et al., 2000; Nacci et al., 2008) additionally it must be completed where access to medical 

attention can be guaranteed given the small risk of complications such as epistaxis, syncope 

and laryngospasm (Nacci et al., 2016). 

 

The gold standard for validation of emerging tools is considered by many to be VFSS 

(Costa, 2010; Logemann, 1998).  While VFSS and FEES are now both considered highly 

valuable and complementary (Langmore, 2003), VFSS allows for frame by frame analysis, 
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providing spatial and temporal information about swallowing biomechanics, thus it remains 

the most reliable instrumentation to provide accurate differential diagnosis supporting 

appropriate rehabilitation planning (Daniels et al., 1998; Vose & Humbert, 2018). 

 

Despite its benefits, VFSS has a number of limitations, including challenges with 

patient access and availability, and exposure to ionizing radiation (Logemann et al., 1998; 

Perry & Love, 2001).  There is an on-going need to balance the duration, frame rate and 

image resolution required for VFSS with radiation safety issues inherent in prolonged studies 

or repeated exposure to fluoroscopic imaging (Bonilha et al., 2013).  This is particularly 

limiting when used for assessment of the benefits of rehabilitation, where multiple studies 

may be indicated to assess change.  

 

In addition to these limitations, clinical interpretation of VFSS is often reliant on a 

clinician’s subjective interpretation and analysis of the study, which have been shown to have 

poor inter-rater reliability (Sia, Carvajal, Carnaby-Mann, & Crary, 2012; Wilcox, Liss, & 

Siegel, 1996).  It is possible to complete specific biomechanical measurements from VFSS 

imaging (Kim & McCullough, 2008; Leonard, Kendall, McKenzie, Gonçalves, & Walker, 

2000; Leonard & McKenzie, 2006; Logemann et al., 2000) but these have not translated well 

into standard clinical practice, possibly due to the time required for analysis and requirements 

for specialist training and software (Baijens, Barikroo, & Pilz, 2013).  Access to radiographic 

imaging is also an issue in many speech-language therapy departments due to competing 

demands for imaging and physical constraints on the most vulnerable of patients, such as 

those with severe mobility issues, significant fatigue or those in intensive care units (O'Neil-

Pirozzi et al., 2003).  Identification and development of alternative or complementary 
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methods of instrumental swallowing assessment, such as ultrasound, that address some of 

these limitations would be of significant clinical value. 

 

Reliability of VFSS Measurement of Biomechanical Swallowing Features  

 

VFSS has been used by multiple researchers to produce quantitative objective 

measurements of key biomechanical swallowing features such as hyolaryngeal excursion and 

thyrohyoid approximation (Ekberg, 1986; Kim & McCullough, 2008; Leonard et al., 2000; 

Leonard & McKenzie, 2006; Logemann et al., 2000; Sia et al., 2012; Thompson et al., 2014; 

Wang, Chang, Chen, Lin, & Hsiao, 2010).  Good inter-rater reliability for these displacement 

measures has been consistently reported.  Leonard et al. (2000) reported excellent inter-rater 

reliability amongst four raters for hyolaryngeal displacement (r > 0.90) and high reliability 

for hyoid to larynx approximation (r = 0.75) in 15 healthy participants.  Similar high inter-

rater reliability (r = 0.83, p <0.01) and intra-rater (r = 0.88, p <0.01) was reported by Kim and 

McCullough (2008) for hyoid excursion in eight healthy participants, inter-rater (r = 0.83, p 

<0.01) and intra-rater (r = 0.88, p <0.01).  Sia et al. (2012) analysed VFSS studies of 10 

patients with dysphagia and reported good reliability of both hyoid excursion and laryngeal 

displacement (intra-rater ICC > 0.92, inter-rater ICC = 0.77), however, this was only based 

on two videos as a 10% sample of the twenty videos analysed. Thompson et al. (2014) used 

the co-ordinates of anatomical landmarks on 80 VFSSs to assess key kinematic measures and 

found excellent inter-rater reliability amongst six raters (ICC = 0.90 - 0.97). 

 

While good reliability has been well reported, various methods for measurement have 

been used across studies.  For measurement of hyoid excursion several studies have used 

cervical vertebra as a reference point to account for postural changes by participants during 
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the study (Kendall & Leonard, 2001; Kim & McCullough, 2008; Leonard et al., 2000; 

Logemann et al., 2000; Paik et al., 2008), while others have not accounted for postural 

changes in the same way (Ekberg, 1986; Wang et al., 2010).  Thompson et al. (2014) 

indicated that measuring hyoid excursion in reference to the stable reference point of the 

mandible was the superior choice, as it most accurately represents underlying functional 

anatomy. 

 

Much of the research uses a marker of known diameter which allows for image 

calibration to be completed post-hoc, accounting for image distortion, participant movement 

and magnification (Leonard et al., 2000; Logemann et al., 2000; Paik et al., 2008).  Other 

researchers have used the average length of cervical vertebra (15mm) as a calibration tool 

based on estimates made from skeletons (Kim & McCullough, 2008).  Sia et al. (2012) 

explored the impact of image rotation and location of calibration marker and found that 

location of calibration marker did not have an impact on measurement reliability but that 

image rotation affected horizontal displacement measures, thus indicating that 

methodological differences must be considered when comparing across studies.  Finally a 

study by Nordin, Miles, and Allen (2017) found that experience using objective VFSS 

measures dramatically increased the reliability over a short eight week period, (ICC = -31.05- 

.60 in week one, ICC = .71 to .98 in week eight) regardless of years of experience. These 

findings indicate the importance of training packages and practice to achieve reliable 

measures.   
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Ultrasound  

 

Ultrasound or ultrasonography is a method of imaging tissues using the reflected 

energy from high frequency sound waves inaudible to human hearing (Venables, 2011).  

Ultrasound transducers generate ultrasonic pulses to create sound waves, the frequency of the 

sound wave depends on the frequency of the ultrasonic pulses (Thorsen & Lakin, 2010).  

Medical devices typically use frequencies ranging between 2 -10 MHz (Aldrich, 2007; 

Kundra, Mishra, & Ramesh, 2011).  As an ultrasound beam travels through tissues, reflection 

of the sound waves occurs at interfaces between tissues which have different acoustic 

impedance, producing an echo; this echo is received by the transducer and an ultrasound 

image is generated (Kundra et al., 2011; Venables, 2011).  Distinct two dimensional 

boundaries are able to be visualised as a result of the acoustic shadow cast by these boundary 

changes in tissue surfaces (Watkin, 1999).  Weak echos, which show up as grey, occur where 

tissues have similar acoustic impedance such as the difference between soft tissue and water 

(Aldrich, 2007).  Distinct boundaries are more obvious where tissue boundaries have 

different acoustic impedance such as soft tissue and bone (Kossoff, 2000). 

 

Ultrasound brightness-mode (B-mode), also known as grey scale imaging, produces a 

rapid sequence of two dimensional images that allow motion to be viewed in real time, and as 

such, is a useful modality to visualise dynamic body movements, such as swallowing 

(Aldrich, 2007; Ardakani, 2006; Kossoff, 2000).  Transducer type impacts the field of view 

produced on ultrasound; linear transducers produce a rectangular image and are typically 

used for imaging of superficial structures, curvilinear transducers produce a wedge shaped 

view and are typically used for visualising deeper structures (Kundra et al., 2011).  Electronic 

callipers within most ultrasound systems can be used to measure the distance between key 
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structures as well as make two-dimensional and three–dimensional estimate measures of 

muscles (Arts, Pillen, Schelhaas, Overeem, & Zwarts, 2010).  

 

Ultrasound has the potential to offer quantifiable instrumental assessment of key 

elements of swallowing biomechanics (Chi‐Fishman, 2005).  Recent technology has 

developed highly portable devices, increasing accessibility to some of the highest risk and 

most vulnerable patients who are unable to access outpatient clinics.  Ultrasound has the 

potential to augment diagnostic information, while eliminating some of the challenges faced 

by FEES and VFSS, as it is non-invasive and does not use ionising radiation (Barnett et al., 

2000; Jain, 2008; D. L. Miller, 1991).  Diagnostic ultrasound has been used since the 1970s 

in phonetic research to examine the tongue shape used in different speech sounds (Keller & 

Ostry, 1983; Minifie, Kelsey, Zagzebski, & King, 1971; Morrish, Stone, Sonies, Kurtz, & 

Shawker, 1984; Sonies, Shawker, Hall, Gerber, & Leighton, 1981; Stone, Morrish, Sonies, & 

Shawker, 1987; Watkin & Zagzebski, 1973).  Ultrasound assessment of swallowing has 

progressed over a similar timeframe (Shawker et al., 1984; Skolnick, Zagzebski, & Watkin, 

1975; Sonies et al., 1988).  In the 1980s, Sonies et al. (1988) first examined timing of normal 

oropharyngeal swallowing with frame by frame analysis of the motion of the tongue, as well 

as hyoid bone movement from initial rest to final rest position during swallowing. 

 

Research using b-mode ultrasound imaging creating ‘real-time’ video suggested that 

ultrasound may provide an accurate measurement of quantifiable temporal and spatial 

measures such as hyolaryngeal excursion and thyrohyoid approximation, offering insights 

into these swallowing biomechanics (Chi‐Fishman, 2005).  In addition to measurement of the 

kinematic, biomechanical swallowing events, research comparing ultrasound measurement of 

muscle morphometry with both magnetic resonance imaging (MRI) and computed 
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tomography (CT) has shown good agreement.  This suggests that ultrasound is a valid and 

reliable method to measure the cross-sectional area of muscles (Alanen, Falck, Kalimo, 

Komu, & Sonninen, 1994; Macrae, Jones, Myall, Melzer, & Huckabee, 2013).  Ultrasound 

may therefore allow for differentiation between healthy and myopathic muscles (Chi-

Fishman, Hicks, Cintas, Sonies, & Gerber, 2004).  Other studies have used ultrasound 

assessment of overall tongue thickness as an indicator of deterioration in muscle mass 

associated with progressive neurological or neuromuscular diseases, such as amyotrophic 

lateral sclerosis (Nakamori et al., 2016; Tamburrini et al., 2010) and Duchenne muscular 

dystrophy (Van den Engel-Hoek et al., 2013). 

 

Reliability and Validity of Ultrasound Measures of Swallowing  

 

When reviewing the published reliability data for ultrasound assessment of 

swallowing, it is important to consider which components impact measurement of reliability. 

Clinical translation of a tool into standard clinical practice requires a clear understanding of 

each of these components.  Reliability of ultrasound has several variables that should be 

considered, including: image acquisition by the clinician, image selection (from the acquired 

images) for analysis, measurement of the selected image, and the impact of measurement 

environment (online immediately within the clinical environment using the internal 

calibration of the system, or offline from stored images using specific technology for 

measurement).  Where analysis is completed offline it is also important to know if this is 

from video, where image selection is required, or from stored pre-chosen still images, (see 

Figure 3 for summary).  This is particularly important for the purposes of knowledge 

translation, as ultrasound may be completed by a number of different clinicians and the 

impact of image acquisition on reliability is, therefore, an important consideration. 
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Figure 3: Schematic of the components for consideration in reliability of ultrasound assessment of swallowing  

 

Some studies describe all components when assessing reliability.  For example, 

Huang et al. (2009) reported on reliability of acquisition by different technicians, and 

indicated that the dynamic images were stored, implying that image selection and 

measurement by the two raters were completed offline.  While Hsiao et al. (2012) also 

reported on acquisition by different technicians, they did not make it clear whether each 

examiner was expected to select the image for analysis or whether images were measured 

from pre-selected still frames. It is therefore difficult to compare reliability of ultrasound 

across existing studies, given the variance in reported methodology.  

 

One of the key benefits of ultrasound instrumentation is the opportunity for immediate 

online measurement and calculation using the internal calibration, which is intrinsically 

relative to the settings of the image acquisition.  Review of the published research using 

ultrasound for swallowing assessment has demonstrated that most completed ultrasound 

calculations offline from stored images (Ardakani, 2006; Chi-Fishman & Sonies, 2002; Feng 

et al., 2015; Kuhl et al., 2003; Lee, Lee, Kang, Im Yi, & Kim, 2016; Macrae et al., 2012; 
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Macrae et al., 2013; Yabunaka et al., 2012; Yabunaka et al., 2011).  One study that performed 

VFSS, FEES and ultrasound simultaneously on a small sample (n=8) of healthy subjects, 

indicated that their ultrasound measures were completed on the ultrasound monitor using 

internal calibration, however, they were not explicit about whether the measures were made 

live/online or offline (Komori, Hyodo, & Gyo, 2008).  A number of the studies using 

ultrasound for assessment of swallowing do not explicitly outline whether their calculations 

were completed online using the internal calibration system or whether the data captured 

were in fact measured offline from stored images (Ahn et al., 2015; Chen, Hsiao, Wang, Fu, 

& Wang, 2017; Hsiao et al., 2012; Huang et al., 2009; Tamburrini et al., 2010).  Analysis of 

the reliability of online assessment using ultrasound would be of great value when 

considering the translation of this tool into standard clinical practice, as one potential barrier 

to the clinical translation of dynamic swallowing measures may be the time required to 

complete these measures offline.  

 

In addition to the reliability of ultrasound, it is also important to consider validity.  

Information on validity is necessary to identify whether the instrumentation provides you 

with the information that is required from it (Portney & Watkins, 2000).  The validity of 

ultrasound assessment of kinematic swallowing measures can be measured by exploring the 

association between measures made on a validated tool, such as VFSS, against ultrasound 

measures (Chen et al., 2017; Hsiao et al., 2012).  For measures of muscle morphometry, the 

association between ultrasound and imaging techniques such as MRI is completed.  When 

considering validity of ultrasound measures as compared with VFSS, only correlation should 

be considered, as the exact measure of the same biomechanical feature may differ, due to the 

nature of the images acquired.   
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Ultrasound Assessment of Hyoid Excursion  

 

Measurement of both lingual imaging and swallowing using ultrasound was initially 

fraught with concerns over errors as a result of transducer-imposed restriction on jaw 

mobility, and measurement errors resulting from technician movement during data collection 

(Sonies et al., 1988).  Ultrasound transducer position must be maintained relative to the head, 

in order to ensure accurate measures of swallowing kinematics are obtained and to control for 

movement artefact (Chi‐Fishman, 2005).  A number of researchers developed various 

head/transducer stabilisation systems to ensure a participant’s head remained stable in order 

to achieve good reliability h(Peng, Jost-Brinkmann, & Miethke, 1996; Stone & Davis, 1995).  

However the need for head support systems does pose challenges in terms of translation of 

this assessment method into standard clinical practice.  Further research exploring other 

methods to minimise measurement errors resulting from transducer or head movement during 

data collection have been employed; however, these still required careful design and head 

positioning (Gick, Bird, & Wilson, 2005; Scarborough, Waizenhofer, Siekemeyer, & Hughes, 

2010).  

 

More recent use of an anatomic reference point has been found to eliminate the need 

for head stabilisation while maintaining good reliability (Chen et al., 2017; Hsiao et al., 2012; 

Lee et al., 2016; Macrae et al., 2012; Perry, Winkelman, & Huckabee, 2016). In each of these 

studies electronic callipers were used to measure the distance between the mandible, as a 

reference point that remains relatively stable to the hyoid, first at rest, prior to the initiation of 

swallowing, and again when the hyoid bone is at maximal anterior displacement.  

Calculations from rest to maximal excursion represent hyolaryngeal displacement.  Research 

conducted by Perry et al. (2016) specifically compared ultrasound measures of hyolaryngeal 

excursion using a head stabilisation system with the hand-held method.  In both conditions, 
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the mandible was used as a stable reference point.  The researchers repeatedly assessed 24 

healthy adults over 51 years old, within and across sessions, using both methods, resulting in 

a total of 720 measures.  Overall they found no significant difference in mean measurement 

of hyolaryngeal displacement across methods.  Additionally they found that use of the fixed 

transducer reduced the movement flexibility required for clear echoic reflection off tissues 

when swallowing. This inflexibility resulted in almost 6% of the images being of poor quality 

and unable to be analysed, compared with less than 1% of the hand held images (Perry et al., 

2016).   

 

Reliability data for measurement of hyolaryngeal displacement using ultrasound are 

encouraging, (published data is summarised in Table 1).  Macrae et al. (2012) collected data 

on five healthy participants and measured inter-rater reliability using ICC.  The authors 

calculated ICC values of 0.86 for both rest and maximal displacement; intra-rater reliability 

was found to be higher with an ICC value of 0.95 for rest and 0.98 for maximal displacement.  

As part of a larger study, Hsiao et al. (2012) analysed reliability data from assessment of ten 

of 40 healthy participants and reported high intra-rater ICC values for hyoid excursion at 0.92 

and 0.84 for the two examiners and inter-rater reliability ICC values between raters at 0.80.  

Hsiao et al. (2012) calculated the absolute distance travelled across subjects, whereas Macrae 

et al. (2012) and Lee et al. (2016) calculated percentage change in addition to absolute 

change.  Macrae et al. (2012) found that a reduction in the variance of measurement was 

found when calculating percentage change compared to absolute change.  These reliability 

statistics are encouraging and indicate that further assessment of hyolaryngeal excursion 

using ultrasound in a clinical environment would be of value.  
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Table 1: Summary of Published Reliability Data for Hyoid Displacement as Measured 

by Ultrasound using Mandible as Anatomic Reference Point 

Authors & 

year  

Measure  Participants  Reliability 

components
2
  

  

No of 

raters  

Intra-

rater ICC 

Inter-rater 

ICC 

Macrae et 

al. (2012) 

Absolute and 

percentage 

displacement  

5 healthy 

subjects  

Image selection and 

offline measurement 

from stored images 

3 0.90 

0.93 

0.64 

0.70 

Hsiao et al. 

(2012) 

Absolute 

displacement 

10 healthy 

subjects  

Data acquisition and 

measurement (not 

specified if 

online/offline)   

2 0.927 

0.842 

0.806 

Chen et al. 

(2017) 

Absolute 

displacement  

10 dysphagic 

patients  

Image measurement 

(not specified if 

online/offline)    

2 0.996 

0.959 

0.892 

 

Validation of ultrasound assessment of hyolaryngeal excursion has been explored in a 

variety of ways in the literature.  Hsiao et al. (2012) completed ultrasound evaluation of 40 

healthy participants, 30 stroke patients with dysphagia, and 30 stroke patients without 

dysphagia.  Ultrasound measures of hyoid excursion in dysphagic patients (mean 1.3 cm) 

were significantly less than both healthy controls (mean 1.7 cm) and stroke patients without 

dysphagia (mean 1.6 cm).  Hyolaryngeal movement below 1.5 cm was determined to be the 

cut-off point for tube-feeding-dependent dysphagia, with a calculated sensitivity and 

specificity of 73.3% and 66.7%, respectively.  Lee et al. (2016) explored validation of 

hyolaryngeal displacement using ultrasound by comparing it against key indicators of 

dysphagia. They assessed fifty-two patients identified as having dysphagia on VFSS and 

rated their penetration-aspiration scale (PAS) with thin fluids and later measured their hyoid 

excursion on ultrasound and analysed the images offline.  This study found that a reduction in 

hyoid excursion, as assessed by ultrasound, correlated with an increased PAS rating.  Hyoid 

excursion in the group who did not aspirate (n=21, 15.9±2.7 mm) was significantly greater 

                                                           
2
  Reliability components include: acquisition, image selection, measurement online/offline 
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than those who demonstrated airway penetration (n=20, 11.5±2.8 mm) or aspiration (n=11, 

8.0±1.0 mm) however, reliability was not explored.   

 

These data suggest that under research conditions ultrasound analysis of hyolaryngeal 

displacement, using an anatomic reference point, can result in high reliability and validity 

against VFSS. Reliability data in both healthy and dysphagic participants is promising and 

therefore has the potential to provide useful information on the degree of dysphagia.   

 

Ultrasound Assessment of Thyrohyoid Approximation  

 

Measurement of this biomechanical feature of swallowing has been evaluated using 

ultrasound in both healthy and dysphagic individuals.  Kuhl et al. (2003) measured 

thyrohyoid approximation using ultrasound on 42 healthy and 18 dysphagic participants; 

analysis was completed offline from stored images.  These researchers reported significantly 

reduced thyrohyoid approximation in the dysphagic patients, with a mean relative laryngeal 

reduction of 42% (± 10), compared with healthy volunteers who had a mean relative 

laryngeal reduction of 61% (± 3).  However, neither validity against VFSS nor reliability of 

these measures was investigated.  

 

 Huang et al. (2009) collected data on 15 healthy participants and 40 patients following 

stroke, 20 of whom were dysphagic and 20 who presented with normal swallowing.  A 

proportion of the dysphagic participants also underwent VFSS for validation purposes.  

Percentage change measures of thyrohyoid approximation in stroke patients were similar 

between ultrasound (40.4 +/- 7.1%) and VFSS (42 +/-16.1%).  Construct validity was 

provided by documenting greater thyrohyoid approximation in healthy individuals (47.2 +/- 
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4.9%) than in stroke patients with normal swallowing (42.6 +/- 8.3%, p = .02) and stroke 

patients with dysphagia (34.0 +/-10.9%, p = .02).  These measures produced a sensitivity of 

0.75 and specificity of 0.77 for detection of dysphagia, yet did not define specific functional, 

physiologic outcomes.  Finally, assessment of inter-rater reliability (summarised in Table 2) 

produced an ICC > 0.97 for measures in each of the groups, however, it was unclear whether 

the reliability was based on immediate online measurement or measurement of stored images 

offline. 

 

Table 2: Summary of Published Reliability Data for Ultrasound Assessment of 

Thyrohyoid Approximation 

Authors 

& year  

Measure  Participant

s  

Reliability 

components  

No of 

raters  

Intra-

rater 

ICC 

Inter-

rater 

ICC 

Huang et 

al. (2009) 

 

Percentage 

displacement 

 

5 healthy 

subjects 

Data acquisition, image 

selection and 

measurement (not 

specified if online 

/offline) 

 

2 

 

0.974 

0.989 

 

0.983 

 

More recently Ahn et al. (2015) explored impact of positional change on measures of 

thyrohyoid approximation when assessed with ultrasound.  Twenty healthy participants were 

assessed in supine and sitting positions; each set of measures was taken three times by the 

same examiner and averaged.  They reported no significant difference in the percentage 

change between rest and maximum thyrohyoid approximation in supine (38.30 ± 4.52) or 

sitting position (38.44 ± 7.04). This study did not explore reliability using standard inter-rater 

reliability calculations, or specify whether measures were completed immediately online or 

offline form stored images.  However this research provides some assurance that the use of 

anatomical landmarks for thyrohyoid approximation measures may eliminate the need to 
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control for positioning, which is likely to improve the translation of this assessment tool into 

clinical practice.  

 

These data indicate some promising findings about reliability and validity of measures 

of thyrohyoid approximation using ultrasound, however, the research is limited and, therefore 

these measures require further investigation.  

 

Ultrasound Assessment of Mid-section of Tongue Thickness  

 

In addition to assessment of swallowing kinematics, ultrasound has been used for a 

number of measures of muscle morphometry.  The association between tongue thickness and 

dysphagia is gaining evidence (Hsiao et al., 2012; Nakamori et al., 2016; Tamburrini et al., 

2010; Tamura, Kikutani, Tohara, Yoshida, & Yaegaki, 2012).  Ultrasound offers a simple 

method to provide immediate quantifiable data in assessment of tongue thickness.  

 

Several studies have explored assessment of tongue thickness as a predictor of 

dysphagia.  Tamburrini et al. (2010) used ultrasound to assess nine patients with amyotrophic 

lateral sclerosis (ALS) for both tongue morphometry and functional tongue evaluation.  The 

participants additionally underwent VFSS for correlation measures.  The static evaluation of 

tongue thickness provided subjective evaluation of the presence or absence of tongue 

atrophy, and the researchers found that, the presence of tongue atrophy was associated with at 

least one dynamic swallowing abnormality on VFSS.  This assessment of tongue atrophy, 

made without quantifiable measures of tongue thickness or reliability analysis, demonstrated 

a preliminary indication that there may be a link between tongue morphometry and dynamic 

swallowing.    Nakamori et al. (2016) expanded on this research using ultrasound to 
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quantitatively assess tongue thickness in 18 patients with ALS compared with age matched 

healthy controls.  They found that tongue thickness was significantly lower in the ALS group 

(40.9 ± 1.0 mm, p = 0.016) compared with healthy participants (44.6 ± 0.7 mm, p = 0.004).  

Additionally they noted that tongue thickness progressively reduced with progression of the 

disease (p = 0.002).  A reduction in tongue thickness was found to be a predictor of 

dysfunction in the oral preparatory and oral transit elements of swallowing as assessed by 

VFSS, though reliability was not explored.  

 

The use of ultrasound for assessment of tongue thickness in an elderly population was 

explored by Tamura et al. (2012) who assessed 104 healthy elderly individuals between 70 

and 90 years old using ultrasound in the coronal plane.  This study explored tongue thickness 

correlated with measures of malnutrition, and reported a significant relationship between 

tongue thickness and nutritional status. Their study used several measures to evaluate 

nutritional status including: skinfold thickness of the triceps, arm muscle area, body weight 

and height. Their findings showed some correlation between tongue thickness and measures 

of nutrition, for example, arm muscle area (r= 0.424; p= 0), however, this finding was similar 

for body weight (r= 0.434; p= 0). It is therefore unclear whether these findings indicated that 

malnutrition may induce sarcopenia in the tongue or if tongue thickness is associated with the 

person’s overall size.  Their study did however report good intra-rater reliability of the tongue 

thickness measurement (ICC= 0.856, 95% CI: 0.741-0.924), it is unclear from the manuscript 

which reliability components were considered.  

 

Hsiao et al. (2012) combined two ultrasound measures in an attempt to predict the 

degree of dysphagia in patients following stroke. Their study included the difference between 

maximum tongue thickness and minimum tongue thickness during swallowing to determine 

maximum change in tongue thickness.  They used the ultrasound transducer in the sagittal 
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plane.  The authors claim that these measures, in conjunction with hyoid excursion estimates, 

can predict the need for tube-feeding in dysphagic patients.  Those with a tongue thickness 

change of less than 1.0 cm and hyoid bone displacement of less than 1.5 cm were likely to 

require tube-feeding.  Reliability of the tongue thickness change measures were calculated 

using ICC.  Intra-rater values were 0.758 and 0.661 and the inter-rater value was 0.685. These 

data indicate that there is potential for ultrasound measures of tongue thickness to predict the 

degree of dysphagia in a clinical setting.  However, the pathophysiologic link between tongue 

thickness and functional swallowing measures still needs to be elucidated; given the 

methodological variation across studies, further research is required in order to understand 

the meaning of these apparent correlations. 

 

Ultrasound Assessment of Cross-sectional Area of Submental Muscles  

 

It has been reported that the size of submental muscles can be increased by 

swallowing exercises in healthy subjects (Pearson, Hindson, Langmore, & Zumwalt, 2013; 

Watts, 2013).  The findings of a clinical case study reported by Huckabee et al. (2015) 

indicate that there is potential for ultrasound measurement of the submental muscles as an 

indicator of potential gains gathered from targeted submental rehabilitation exercises.  In 

addition to the potential benefits of quantifying increases in cross-sectional area of submental 

muscles as a result of targeted exercise, there is also potential for quantifying decreases in 

cross-sectional area caused by sarcopenia or muscle weakness.  Reduced cross-sectional area 

of the submental muscles has been proposed to be an accurate predictor of swallowing 

difficulties in older adults (Feng et al., 2012).  
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Measurement of the cross-sectional area of submental muscles with ultrasound (see 

Figure 5), has been shown to correlate highly with the gold standard of measurement using 

magnetic resonance imaging (MRI; Macrae et al., 2013).  Macrae et al. (2013) compared the 

measurement of bilateral anterior belly of the digastric on both ultrasound and MRI on 11 

healthy participants and found that while MRI measures were slightly larger than those made 

on ultrasound, there was high correlation between the methods (left: r = 0.909, p = 0.001; 

right: r = 0.776, p = 0.005).  Reliability was not investigated.  An additional finding from this 

study was that ultrasound was the superior tool of the two when used to measure the 

geniohyoid, as MRI was unable to allow for sufficient differentiation of the borders of the 

muscle.   

 

In order to maintain consistency of measures, the methods described in the literature 

for assessing cross-sectional area of submental muscles were reviewed.  Initially, Watkin et 

al. (2001) used a technique where a sweep of the submental muscles was completed from 

mandible to hyoid, the mid-point of the muscle was then calculated as the half-way point in 

the total number of still frames.  Both Macrae et al. (2013) and Perry et al. (2016) reported 

placing the transducer approximately mid-way between the mandible and the thyroid 

cartilage.  Perry et al. (2016) compared use of a fixed transducer to a hand held method and 

found very little difference between techniques; however, the authors indicated concerns 

regarding the degree of variability in measures, regardless of the method used.  

 

A study by Feng et al. (2012) explored the relationship between dysphagia and 

geniohyoid cross-sectional area.  They investigated the size of the geniohyoid, using CT 

scanning, in 40 young adults and 40 older adults, 20 of the 40 older adults were known to 

aspirate and 20 did not.  They found geniohyoid atrophy was associated with both ageing (p= 
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<0.05) and aspiration but only in the older male subjects (p= < 0.01), however they did not 

explore reliability.  Feng et al. (2015) later explored the relationship between geniohyoid 

measurement and hyoid excursion.  They reported that in a supine position maximal 

hyolaryngeal displacement, as measured with ultrasound, correlated with the size of the 

geniohyoid muscles.  However they were unable to replicate this finding in a seated position 

or when side lying; additionally reliability was not explored. The use of ultrasound to 

measure the cross-sectional area of submental muscles, as with measures of tongue thickness, 

may have implications for both the identification of swallowing disorders and outcome 

measures in dysphagia rehabilitation. 

 

Figure 4: Submental muscles in coronal plane.  

Left Image: line drawing, (adapted from Yasumoto, Nakagawa, Shibuya, Suzuki, & Satoh, 1993). 

Right image: ultrasound view captured with ClariusTM L7 Transducer. 

LAB: left anterior belly of the digastric; RAB: left anterior belly of the digastric; GH: geniohyoid; MH: mylohyoid 

 

 

To date, research using ultrasound assessment of swallowing kinematics has focussed 

on hyolaryngeal excursion and thyrohyoid approximation.  These measures have been chosen 

due to their significant role in the safety and effectiveness of swallowing.  Hyolaryngeal 

excursion allows for epiglottic deflection to assist airway protection whilst pulling open the 

upper oesophageal sphincter (UES) to allow bolus transfer through the pharynx into the 

oesophagus (Ekberg, 1982; Fink et al., 1979; Logemann et al., 1992).  Reduced hyolaryngeal 

excursion has been associated with aspiration risk and pharyngeal residue in both dysphagia 

and aging (Paik et al., 2008; Steele et al., 2011).  Therefore, accurate assessment of distance 
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travelled has significant clinical applicability.  Thyrohyoid approximation plays a critical role 

in supraglottic airway compression and thus, airway protection when swallowing (Dodds et 

al., 1990; Jacob et al., 1989).  Reduced thyrohyoid approximation has been associated with 

aspiration risk (Shaker et al., 2002).  Accurate measurement of thyrohyoid approximation 

provides additional, clinically valid data to support assessment and treatment of pharyngeal 

dysphagia. 

 

Submental muscles including geniohyoid, mylohyoid and anterior belly of digastric 

attach to the mental symphysis and the hyoid bone (Miller, 1986); their function is critical to 

both hyolaryngeal excursion and thyrohyoid approximation (Dodds, 1989).  Early data is 

beginning to demonstrate a link between size of these muscles and swallowing function 

(Feng et al., 2015; Feng et al., 2012; Hsiao et al., 2012; Nakamori et al., 2016).  Therefore, 

further exploration of reliability of ultrasound measures of submental muscle morphometry 

including both tongue thickness and cross-sectional area of submental muscles is of value.  

At present, there are encouraging data on the reliability of sophisticated ultrasound 

technology in the assessment of swallowing (Chen et al., 2017; Hsiao et al., 2012; Huang et 

al., 2009; Lee et al., 2016; Macrae et al., 2012).  However, no research has yet been published 

on the reliability or validity of portable ultrasound technology, which offers increased access 

for patients most at risk and also supports clinical translation.  
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Study Aims 

 

This study examined the intra- and inter-rater reliability of portable ultrasound 

measures in the assessment of swallowing. In the assessment of reliability, the impact of data 

acquisition, image selection and environmental factors on accuracy of online ultrasound 

measures was explored in comparison to the reliability of offline measurement.  Two 

kinematic swallowing measures were evaluated: hyoid excursion and thyrohyoid 

approximation during swallowing. In addition, two measures of tongue morphometry were 

evaluated: tongue thickness and the cross-sectional area of submental muscles.  Validity of 

portable ultrasound measurement against the ‘gold standard’ of VFSS was also explored in a 

small preliminary sample. This study was one of the first to compare portable ultrasound 

measurements with kinematic measurements made from images captured concurrently on 

VFSS. 

 

Hypothesis  

 

It was hypothesised that: 

 Portable ultrasound measures of hyoid excursion, thyrohyoid approximation, 

cross-sectional area of submental muscles and tongue thickness would 

demonstrate at least moderate inter- and intra-rater ICC reliability values. 

 Kinematic swallowing measures of hyoid excursion and thyrohyoid 

approximation derived from VFSS would correlate with those derived from 

ultrasound imaging.  
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Justification  

 

The ‘gold standard’ in swallowing assessment, VFSS, has limitations primarily in 

ease of quantifiable measurement, and clinical availability and accessibility for a number of 

populations.  Ultrasound imaging offers a non-invasive, easily accessible and more affordable 

method of assessment and reassessment, allowing direct quantification of swallowing 

kinematics and morphometry with no inherent risk.  Emerging research on this technique 

suggests quite reasonable reliability of measurement and validity against VFSS.  However 

these data have been derived using sophisticated instrumentation that is likely well outside 

the financial feasibility of most allied health services.  Perhaps, in part because of this, 

clinicians have resisted the implementation of ultrasound in clinical practice.  Recent 

technological advances have produced ultrasound instrumentation that is small, portable and 

is more affordable, within the reach of allied health resourcing, offering the opportunity for 

online measurements to be made in real time.  Thus translation into standard clinical practice 

may be feasible.  It is unknown if clinical use with this technology can match the reliability 

and validity of more sophisticated instrumentation used in prior experimental research and, 

thus, is a current obstacle to clinical translation.  
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Methodology 

Study Design  

 

This research was conducted as part of a larger health research council funded project 

exploring the translation of ultrasound imaging of swallowing to clinical dysphagia 

assessment and diagnosis.  Funding for the project was granted under the Research 

Partnerships for New Zealand Health Delivery Initiative.  Ethical approval was sought from 

the New Zealand Health and Disability Ethics Committee along with Waitematā District 

Health Board Maori and locality approval. 

 

The research consisted of three components: 

1. First, a prospective validation study of portable ultrasound assessment of 

swallowing against the ‘gold standard’ VFSS for measuring both hyolaryngeal 

displacement and thyrohyoid approximation during swallowing in dysphagic 

patients.   

2. Second, a prospective reliability study of the online portable ultrasound 

assessment of swallowing data on dysphagic patients between two independent 

speech-language therapists trained in the use of ultrasound.  

3.  Finally, a prospective reliability study of the offline measurement of ultrasound 

data gathered in these dysphagic patients.  

 

Training  

 

The primary investigator underwent training in the use of ultrasound for assessment of 

swallowing at the Rose Centre for Stroke Recovery and Research in Christchurch on two 
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separate occasions.  Rose Centre staff and students have a proven competency in the use of 

ultrasound for assessment of swallowing (Huckabee et al., 2015; Macrae et al., 2012; Macrae 

et al., 2013; Perry et al., 2016).  Training included clinical practice using ultrasound and 

observation of data collection in the laboratory.  A consensus guideline was developed 

amongst the researchers who would be collecting data using the hand-held ultrasound 

equipment.  The co-investigator was initially trained by the primary investigator, using the 

guideline developed at the Rose Centre to support the training.  A second training session for 

both the primary and co-investigators was conducted by the principal supervisor at the 

hospital site where data collection would occur.  This allowed problem solving around the 

logistics of data collection in a clinical environment within an allocated time slot.  This 

training closely replicates the typical training provided for the acquisition of new clinical 

skills within a standard workplace and was therefore felt to be appropriate in order to 

accurately comment upon clinical translation.  

 

Participants 

Inclusion Criteria  

 

All participants were required to be over 18 years old and able to give informed 

consent, although, for patients with aphasia, this could be done using supported conversation 

where the treating speech-language therapist indicated it was appropriate.  Participants were 

appropriate for inclusion if they demonstrated either reduced hyolaryngeal excursion or 

reduced thyrohyoid approximation, identified perceptually by the primary investigator, 

during their standard care VFSS. 
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Exclusion Criteria  

 

Individuals who had undergone head or neck surgery or reported relevant allergies, 

such as allergy to barium, were excluded.  Men with large beards who were unwilling to 

shave were also excluded, as the ultrasound transducer was unable to make adequate contact 

with the skin surface for ultrasound data collection. 

 

Participant Recruitment  

 

Study participants were recruited from patients, identified as having dysphagia, who 

were referred for VFSS by a speech-language therapist as part of their usual care.  These 

were both in-patients and out-patients at Waitematā District Health Board.  All patients 

referred for VFSS were invited to participate in the study providing they met inclusion 

criteria. 

 

Prior to their standard care VFSS, the primary investigator advised potential 

participants of what participation in the research project would involve.  All potential 

participants received a Participant Information Sheet (see Appendix 1) and were offered an 

opportunity to consult with family/whānau and/or Māori cultural support prior to recruitment.  

Potential participants were advised that their decision to participate in the research would not 

affect their standard care and were given the opportunity to ask the primary investigator 

questions prior to giving their written consent using the study consent form (see Appendix 2).  

In circumstances where participants were unable to physically sign the consent form, for 

example due to a significant limb weakness, the participant provided verbal consent and 

written consent was gained via proxy. 
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Participants who did not demonstrate reduced hyolaryngeal excursion or reduced 

thyrohyoid approximation during their standard care VFSS, were then withdrawn from the 

study.  The primary investigator identified these features perceptually.  Where the movement 

of the hyolaryngeal complex appeared to be only mildly impaired or unclear, the co-

investigator was consulted for a second opinion, in order to reduce inclusion bias.  

 

Participant information gathered for the purposes of description included: likely 

aetiology for dysphagia, date of birth, age, ethnicity and handedness (see Data Collection 

Protocol, Appendix 3). Based on prior published data, a sample size of 20 was selected for 

the concurrent study on healthy participants; sample size for this study of patients with 

dysphagia was increased to 40 to allow for adequate statistical power in the presence of 

presumed greater variability in task performance. Inter- and intra-rater reliability data were 

collected on 20% (n=8) of participants. For the purposes of this Master’s thesis only data 

collected on those eight participants will be reported. 

 

Procedures 

 

Liquid barium contrast was prepared in a blender following a recipe of 100grams of 

X-Opaque–HD barium sulphate suspension formulation powder to 150ml water.  The pureed 

food bolus was prepared following a recipe of 100grams of Watties™ apple puree to 20 

grams of X-Opaque–HD barium sulphate suspension formulation powder, stirred until 

thoroughly dispersed. 
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A standardised bolus presentation protocol was used.  Participants were required to 

swallow a liquid barium bolus (5ml) and a pureed apple bolus mixed with barium (5ml) 

under VFSS, while the primary investigator concurrently assessed particular swallowing 

gestures using the Clarius™ handheld ultrasound in two different ultrasound recording 

positions (four swallows in total).  The examiner was positioned directly in line with the 

participant and presented the metered bolus using a syringe to minimise body or head 

movements.  Verbal cues were provided to the participant to maintain their head in a neutral 

position.  Where the participant moved during the assessment and/or image quality was low 

or partially obscured, the bolus was repeated.  Participants were never subjected to longer 

than an additional 120 seconds of radiation screening time as per the protocol approved by 

the New Zealand and Disability Ethics Committee.  All ultrasound measures, completed 

concurrently with VFSS, were captured by the primary investigator.  The primary 

investigator wore a full lead apron and sleeve, eyewear and glove.  Radiation monitoring was 

carried out using two radiation dosimeters, one worn under the lead apron and one worn 

outside.  These levels were monitored by a district health board senior medical radiography 

technician.  

 

Safety Assessments and Adverse Events  

 

The increased radiation dosage required by participants was considered to be minimal.  

Assessment by radiation physicists at the Rose Centre for Stroke Research and Rehabilitation 

did not highlight any safety concerns for data collection on healthy participants, patients or 

researchers, providing appropriate lead protection was worn.  No adverse events were 

experienced by participants in the study; however, two participants withdrew due to fatigue 

following their standard care VFSS.  
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Data Acquisition  

Ultrasound  

 

The ultrasound images were captured using curvilinear (C3: frequency range: 2-6 

MHz, depth: 3-30 cm) and linear (L7: frequency range: 2-6 MHz, depth: 3-30 cm) Clarius™ 

transducers, which connected wirelessly to an iPad for visualisation of images on the 

Clarius™ ultrasound application.  Agreed pre-settings available on the Clarius™, which were 

found to be most suitable for accurate imaging of each measure, were selected.  Depth and 

gain settings were adjusted with each individual, when required, to improve image clarity 

according to their specific anatomy.  This provided optimal visualisation of the acoustic 

shadows cast by key anatomical landmarks.  Participants were advised to maintain neutral 

head position and to avoid flexing their neck to accommodate the transducer.  Transducer 

position was maintained by the primary investigator throughout sonogram acquisition, with 

visual monitoring assuring consistent image quality.  Greyscale sonograms were obtained as 

individual video segments of 20 seconds to record each swallowing event or cross-sectional 

assessment of the submental muscles.  Video segments were reviewed online and frame 

selection for measurement was completed manually by the ultrasound operator on the iPad.  

Each still frame, both measured and un-measured, along with video segments were uploaded 

and saved in the Clarius™ cloud, a password protected website.  

 

Ultrasound Measurement of Hyoid Excursion  

 

A curvilinear (C3) Clarius™ transducer was pre-set to the ‘Abdomen’ examination 

type.  The transducer was generously coated with Aquagel™ for acoustic coupling and 

manually placed in the sagittal plane on the skin surface submentally; it was held 
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perpendicular to the floor of mouth with minimal pressure against the skin surface, thus 

providing a view of anatomical reference points, the mandible and hyoid, for hyoid excursion 

(see Figure 5).  Hyoid rest position was identified while the participant was holding the bolus 

in their mouth pre-swallow.  Participants’, who aspirated, coughed or those who required 

several swallows to clear a single bolus were found to have a great deal of difficulty returning 

to rest position and therefore a bolus hold position was considered most consistent.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Ultrasound image of hyolaryngeal rest position, depicting anatomical reference points   

 

Ultrasound Measurement of Thyrohyoid Approximation 

 

A curvilinear C3 Clarius™
 
transducer was pre-set to the ‘superficial’ examination 

type, generously coated with Aquagel™ for acoustic coupling and manually placed in a 

longitudinal position over the thyroid which allowed visualisation of the hyoid bone and 

thyroid cartilage.  Thyrohyoid approximation was recorded with the transducer held at the 

midsagittal plane overlying the thyrohyoid muscle with the image encasing the superior 
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aspect of the hyoid and the inferior aspect of the thyroid cartilage laterally.  In participants 

with a prominent thyroid cartilage, transducer position was moved slightly to one side to 

prevent the transducer from slipping during laryngeal excursion and to maintain visualisation 

of the acoustic shadow of the hyoid bone and the thyroid cartilage as anatomical reference 

points (see Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 6: Ultrasound image of thyrohyoid rest position, depicting anatomical reference points  

 

Tongue Thickness  

 

Tongue thickness was measured using sagittal imaging with a bolus hold in order to 

achieve a consistent measurement point, as coronal imaging has no clear method to manage 

accurate anterior-posterior positioning (Nakamori et al., 2016; Tamura et al., 2012).  The 

tongue thickness measure used a curvalinear (C3) Clarius™ transducer, pre-set to the 

‘Abdomen’ examination type, generously coated with Aquagel™ for acoustic coupling. The 

transducer was manually placed under the chin and held perpendicular to the floor of mouth 
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with minimal pressure against the skin surface, thus providing a view of anatomical reference 

points, the mandible and hyoid and tongue surface.  Tongue thickness was measured using a 

5ml puree bolus held anteriorly in the mouth, to support identification of the tongue surface 

as differentiated from the inferior surface of the palate.  Puree was chosen as this was most 

likely texture to be successfully held as a cohesive bolus anteriorly in the oral cavity by 

patients with oro-pharyngeal dysphagia, (see Figure 7). The 5ml bolus of pureed apple was 

measured using a syringe and given to the participant who was instructed to hold the bolus on 

their tongue to allow for measurement prior to swallowing.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

 
 

 

 

 

 

Figure 7: Ultrasound image of tongue thickness measurement, depicting anatomical and bolus hold reference points for 

measurement  

 

 Submental Muscle Cross-sectional Area 

 

A linear (L7) Clarius™ transducer was pre-set to the ‘small parts’ examination type, 

generously coated with Aquagel™ for acoustic coupling and manually placed under the chin, 

with minimal pressure against the skin surface.  For the measure of submental muscle cross-
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sectional area, the transducer was held in in a transverse position, overlying the bilateral 

anterior belly of digastric, mylohyoid and geniohyoid muscles.  In attempt to obtain images 

of the middle of the muscle, the transducer was moved anterior to posterior to find the largest 

and clearest boundaries of the floor of mouth muscles (see Figure 8).  It is acknowledged that 

the submental muscles are unlikely to be uniform in size along the anterior-posterior plane. 

However, choice of measured mid-point between mandible and hyoid did not always provide 

clear images so this method was chosen to provide most consistency, despite possible 

subjectivity in image selection.  In circumstances where not all of the submental muscles 

were visible within frame, the transducer was moved laterally to allow full view of the 

bilateral anterior belly of digastric muscles, taking care to maintain even lateral pressure and 

consistent anterior-posterior plane to minimise examiner error.  The participants were 

instructed to relax, keep their mouth closed and sit with their chin in a neutral position, 

without trying to accommodate the transducer by tilting their chin.  Once imaging was 

achieved the operator scrolled through the sonogram to identify an image where the borders 

of the muscles were clearest and the most consistent in size.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

   Figure 8: Ultrasound image of cross sectional area of floor of mouth muscles  
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VFSS Data Acquisition 

 

VFSS images were captured using a Toshiba Ultimax Fluoroscopy unit, using low 

dose continuous screening mode, which was digitally recorded at 30 frames per second using 

a Medi-capture USB 170 recorder (USB 170 Medicap).  A small metal disc of known 

diameter (18mm) was taped to the participants’ lateral face or spine to calibrate measurement 

for post-hoc analysis.  Each participant was required to sit upright in a chair throughout their 

assessment.  As VFSS was conducted concurrently with ultrasound; the primary investigator 

was required to sit on a small mobile stool, in order to successfully hold the transducer in 

position during the procedure.  For all simultaneous VFSS and ultrasound measurements the 

co–investigator monitored the VFSS images captured to ensure visibility of key anatomical 

markers and calibration disc were maintained, while the primary investigator captured 

ultrasound data.  The primary investigator gave the verbal command to start screening and 

stop screening to the medical radiography technician, based upon the acquisition of the 

ultrasound data. 

 

Inter-rater and Intra-rater Reliability Acquisition  

 

For the purpose of analysing inter-rater reliability of ultrasound acquisition and online 

image selection and measurement the co-investigator completed additional ultrasound 

evaluations on 20% of the 40 participants in the larger concurrent validation study (n=8), 

immediately after the primary investigator had completed their ultrasound data collection 

(concurrently with VFSS). This was usually completed in an adjoining clinic room but on 

occasion the VFSS suite was used.  Every fifth patient was pre-selected in order to prevent 

selection bias. 
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Inter-and intra-rater reliability of offline measurement was completed using pre-

selected still images acquired by the primary researcher of the same eight patients used in 

inter-reliability of online acquisition and measurement. Each investigator was blinded to the 

measurements made by the other investigator and their own measurements.  

 

The shortest gap between online data acquisition and measurement and offline 

measurement was 27 days.  Each rater measured all images offline twice with at least 11 days 

between offline measures. This time period was a replication of the time used for data 

collection on healthy individuals in a second concurrent project, allowing for comparison, 

and is considered long enough to ensure that recall of the previous measurement is highly 

improbable (Vaz, Falkmer, Passmore, Parsons, & Andreou, 2013).   

 

Data Extraction  

Ultrasound  

Ultrasound Measurement of Hyoid Excursion  

 

The reference point for the mandible was defined as the “point at which the shadow 

cast by the spine of the mandible intersected with the brightly echogenic cortical surface of 

the mandibular bone” (Macrae et al., 2012, p. 76).  A best fit line was drawn along the 

anterior border of the shadow of the hyoid bone in order to improve consistency of this 

reference point (see Figure 9).  The distance between the acoustic shadows cast by the mental 

spine of the mandible and that of the hyoid bone were calculated at both rest position and at 

maximum displacement of the hyoid.  Maximum hyoid excursion (see Figure 10) was 

measured where the hyoid bone reached maximal anterior displacement during each swallow.  
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The ultrasound operator selected these frames from the 20 second sonogram recording for 

online measurement purposes, with the ability to manually scroll backwards and forwards for 

accurate frame selection.  Maximum excursion of the hyoid bone was calculated as a 

percentage change between the rest frame and maximum distance frame, (max distance – rest 

distance/rest distance x 100).  

 

  
Figure 9: Hyoid displacement, rest    Figure 10: Hyoid displacement, maximum displacement   

 

Ultrasound Measurement of Thyrohyoid Approximation 

 

The visibility of the acoustic shadows cast by the hyoid and thyroid cartilage for 

thyrohyoid approximation was much more variable across patients than for hyoid excursion.  

Therefore, the reference point did need to vary across subjects, requiring the use of either the 

inferior shadow or superior shadow of the hyoid or thyroid cartilage at different times.  

However for each participant, the same visible reference point was used for both rest (see 

Figure 11) and maximum approximation (see Figure 12).  Measurement between the acoustic 

shadows cast by the hyoid and thyroid cartilage was made using the straight line 

measurement tool in both rest position and maximum approximation.  Maximum thyrohyoid 

approximation was calculated as a percentage change between the rest frame and maximum 

distance frame, (max distance – rest distance/rest distance x 100).  
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Figure 11: Ultrasound thyrohyoid approximation, rest                  Figure 12: Ultrasound thyrohyoid approximation, maximum displacement  

 

Tongue Thickness  

 

Measurement of tongue thickness was made by bisecting the distance between 

shadows cast by the mandible and the hyoid (see Figure 7).  One calliper was placed at the 

calculated mid-point of the line between the mandible and hyoid shadows to provide a 

consistent reference point.  The other calliper was placed at the posterior edge of the held 

bolus, which appeared as a triangle shape in the majority of cases.  The video segment was 

reviewed where context was required as viewing the bolus in transit allowed accurate 

placement of the callipers at rest.  

 

Submental Muscle Cross-sectional Area 

 

Using the freehand measurement tool on the Clarius™ application, the muscles of 

interest were traced to calculate the area (see Figures 13-15).  For the bilateral geniohyoid 

muscles they were calculated as a single unit. However, as differentiation between the 

mylohyoid and geniohyoid at the superior surface (see Figure 13) was frequently indistinct, 
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the mylohyoid at the superior border was always included in the measure while, left and right 

borders were excluded.  

 

 
 
 
 
 
 
 
 
 
 

 

 

Figure 13: Geniohyoid measured including superior border of mylohyoid  

 

 
Figure 14: Left anterior belly of the digastric               Figure 15: Right anterior belly of the digastric 

 

VFSS Data Extraction  

Post Hoc Analysis of VFSS 

 

The VFSS video segments for each participant were reviewed in real time and then 

frame by frame using GOM media player (GOMLab).  This software was chosen as the only 

frame by frame video analysis tool available which was compatible with the size and format 

of the VFSS video files captured using the Medi-capture USB 170 recorder.  

 

For each swallowing gesture, two still images were identified.  To measure hyoid 

excursion, one image represented rest position and the other represented the peak of 

hyolaryngeal excursion.  To measure thyrohyoid approximation, one image represented rest 
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position and the other represented maximal displacement of the thyroid relative to hyoid 

position.  Once the frame was selected, the still image was copied and saved as a Jpeg file in 

ImageJ, public domain software developed by the National Institute of Health to allow for 

measurement analysis (Schneider, Rasband, & Eliceiri, 2012). 

 

Using ImageJ analysis software, all still images were calibrated for measurement 

using the calibration disc which was taped to the participant’s lateral face or neck.  Given the 

positioning of the disc, calibration was undertaken using a circle measurement tool.  Natural 

tilting of the disc meant that measurement was made where the circle edges covered the 

largest diameter across, thus ensuring consistency.  Each frame measured was calibrated first 

to account for any potential participant movement that may have been made between rest 

position and maximum position.  Some images were adjusted in brightness or contrast using 

ImageJ, to improve identification and differentiation of either anatomical landmarks or the 

calibration disc. 

 

VFSS Measurement of Hyoid Excursion  

 

Hyoid excursion was measured using the same stable anatomical reference points as 

ultrasound to allow for correlation assessment to be made and to allow for small movements 

made by the participant during VFSS.  Rest position was identified as the first frame when 

the hyoid was at its lowest point in the bolus hold position, (see Figure 16).  Maximum hyoid 

excursion was identified as the point of maximal anterior superior displacement of the hyoid 

(see Figure 17).  The mandible landmark was mapped using the ImageJ freehand drawing 

tool as per the method described by Thompson et al. (2014).  The mandible was identified as 

the point “where the inferior line of the body of the mandible meets the symphyseal outline of 
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the mandible” (Thompson et al., 2014, p. 6).  The anterior inferior edge was used as the 

consistent point of the hyoid  (Thompson et al., 2014). 

 

The straight line tool was used to draw and measure a line between these two 

anatomical reference points for both rest position (Figure 16) and maximum displacement 

(Figure 17).  Maximum hyoid excursion was calculated as a percentage change between the 

distance calculated on the rest frame and the distance calculated on the maximum distance 

frame (max distance – rest distance/rest distance x 100).  

Figure 16: VFSS measure of hyoid excursion, rest           Figure 17: VFSS measure of hyoid maximum excursion  

 

VFSS Measurement of Thyrohyoid Approximation 

 

Thyrohyoid approximation was measured using the same anatomical reference points 

as ultrasound.  The anatomical reference point used for the hyoid was the anterior inferior 

edge (Thompson et al., 2014).  The thyroid landmark visibility was more variable across 

participants than the hyoid.  Where visible, the anterior inferior edge of the thyroid cartilage 

was used, otherwise the anterior aspect of the vocal folds was used (Leonard et al., 2000).  
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The video was used to a provide context for the consistent identification of the vocal fold 

landmarks, as they were not always visible on the still shots.  

 

The rest frame for thyrohyoid approximation was identified as the point where the 

thyroid and hyoid were at their lowest with the bolus in the hold position.  Maximum 

approximation was identified at the point where the thyroid cartilage and hyoid were most 

approximated.  If several frames showed the same distance between the two structures, the 

first frame of maximum approximation was used.  A straight line tool was used to draw and 

measure a line between these two anatomical landmarks at rest (Figure 18) and at maximum 

approximation (Figure 19). Maximum thyrohyoid approximation was calculated as a 

percentage change between the rest frame and maximum distance frame (max distance – rest 

distance/rest distance x 100).  

 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 18: VFSS measurement of thyrohyoid approximation, rest   Figure 19: VFSS measurement of thyrohyoid, maximum approximation 
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Data Analysis 

Descriptive Statistics  

 

Descriptive statistics included mean and standard deviation of each ultrasound and 

kinematic swallowing measure.  Measures were separated by bolus type.   

 

Reliability of Ultrasound  

 

This research considered two different levels of reliability (refer to Figure 3). 

1. Complete process required: Image acquisition, frame selection and measurement. 

2. Measurement alone.  

In addition, the impact of environmental factors, equipment and time constraints on 

reliability of immediate online measurement was explored. 

 

Inter-rater Reliability  

 

ICC values were calculated from online ultrasound data collected by the primary 

investigator and the co-investigator for each measure: hyolaryngeal displacement, thyrohyoid 

approximation, tongue thickness and cross-sectional area of submental muscles.  Inter-rater 

reliability therefore included the reliability components: image acquisition, frame selection 

and measurement on a portable device in a clinical environment.  
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Intra-rater Reliability  

 

ICC values were calculated from offline measurements of pre-selected ultrasound 

images, collected by the primary investigator for each measure: hyolaryngeal displacement, 

thyrohyoid approximation, tongue thickness and cross-sectional area of submental muscles.  

Therefore intra-rater reliability only included the measurement reliability component.  Still 

ultrasound images, without measurement detail, were saved into a folder with only the 

participant number and measurement label available to the reviewer.  The 20 second video 

segments of each image were also available where the reviewer required context of the 

swallowing event. This allowed identification of specific landmarks required for 

measurement, such as bolus position for tongue thickness and which echoic shadow to use for 

thyrohyoid approximation.  Each still image was saved as a Jpeg file in ImageJ then 

measured by each rater, using ImageJ analysis software. For measurement purposes, each still 

image was manually calibrated.   

 

The method of measurement for each image was identical to online ultrasound 

measures except a mouse was used for freehand and straight line drawing and measurement 

on a 23 inch screen whereas, a 9.7 inch iPad was used for online measures..  Intra rater 

reliability was calculated using each rater’s first measurement.  

 

Effect of Data Acquisition on Ultrasound Reliability  

 

Comparison of online inter-rater ICC with offline inter-rater ICC was used to explore 

the effect of ultrasound data acquisition on reliability.  Offline inter –rater ICC was calculated 
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using the data from the first of two offline measurements by both the primary investigator 

and the co-investigator.   

 

Effect of Environment on Ultrasound Reliability  

 

Effect of environmental factors, equipment and time constraints on reliability of 

immediate online measurement was explored by calculating ICC for rater one’s online and 

offline ultrasound measurements of the same pre-selected still frames.  This eliminates the 

variables of acquisition and frame selection.  The variables that are considered in the 

interpretation of this data are the difference between the measurement tools:  Clarius™ 

measurement application on a 9.7 inch ipad versus imageJ software used on a computer with 

a large 23 inch screen as well as the considerations of working in a clinical environment with 

time constraints and variable lighting.  The ICC measures for intra-rater reliability between 

online and offline measurement of ultrasound data calculation was based on the first of the 

two offline measurement occasions. 

 

Inter- and intra-rater reliability is analysed using the ICC as a relative measure of 

reliability.  This allows for comparisons to be made with results of other studies.  In order to 

quantify measurement errors in the units they are measured in, standard error of measurement 

(SEM) was reported as an absolute measure of reliability.  ICC measures were reported with 

confidence intervals to indicate the uncertainty with which they were estimated.  The 

between-subject variance was reported, as the ICC depends on the homogeneity of the sample 

(Bartlett & Frost, 2008).  R software (R Core Team, 2017) and Ime4 (Bates, Maechler, 

Bolker, & Walker, 2014) were used to perform linear mixed effect analyses of intra- and 

inter-rater reliability.  A two-way mixed effects model based on single measures was used to 
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analyse intra-rater reliability, while a two-way random effects model based on single 

measures was used for inter-rater reliability.  For intra-rater reliability, participant was 

entered as a random effect and measurement trial entered as a fixed effect.  For inter-rater 

reliability, rater and subject were entered as a random effect.  

 

The effect of bolus type on intra- and inter-rater reliability was tested for hyoid 

excursion and thyrohyoid approximation.  A likelihood ratio test allowed comparison of a full 

model, using bolus as a fixed effect, to a reduced model, in which bolus was not a fixed 

effect. Analysis was continued using the full model if a significant bolus effect was present, 

whereas the reduced model was continued where no bolus effect was identified.  As bolus 

visibility was required for measurement of tongue thickness, a separate ICC was calculated 

for each bolus type. Ultrasound measurement error was estimated using the width of the 95% 

confidence interval for mean values. Confidence intervals for each ICC were calculated using 

a bootstrap distribution to indicate the uncertainty with which they have been estimated.  

Homoscedasticity patterns were ensured using residual versus fitted plots. Visual inspection 

of residual quantile-quantile (Q-Q) plots allowed detection of possible deviation from 

normality.  For interpretation, criteria published by Koo and Li (2016) were used are 

summarised in Table 3 . The between-subject variance was calculated, as the ICC depends on 

the homogeneity of the sample (Bartlett & Frost, 2008).  SEM is reported as an absolute 

measure of reliability.   
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Table 3 

Guideline for Interpretation of ICC Values 

ICC value Interpretation 

< 0.5 Poor reliability 

0.50 - 0.75 Moderate reliability 

0.75 - 0.9 High reliability 

> 0.9 Excellent reliability 

 

Validity  

 

For assessment of validity of measurement of swallowing kinematics using portable 

ultrasound against the ‘gold standard’ of VFSS, the first of two offline ultrasound measures 

completed by rater one were correlated against the measures made from VFSS.  

Using offline ultrasound measures allowed for a fair comparison of portable ultrasound 

images against measures made from VFSS, which were completed offline.  Both measures 

were thus completed using the same size screen, identical measurement techniques on ImageJ 

software and a mouse rather than a stylus.  In addition, using offline ultrasound measures 

allowed better comparisons with data from other studies, which have been largely obtained 

from offline measurement. 

The association between measurement of swallowing kinematics derived from 

ultrasound and VFSS was calculated using a Pearson’s correlation coefficient (r; Udovičić, 

Baždarić, Bilić-Zulle, & Petrovečki, 2007).  A p-value was calculated to determine the 

strength of the evidence for an association.  If the coefficient of correlation was significant 

(p< .05) the correlation co-efficient value was interpreted as strong evidence, however if it 

was not significant (p> .05) the correlation coefficient was considered as weak evidence 

(Bartlett & Frost, 2008). 
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Analyses were performed using R software (R Core Team, 2017).  The assumptions 

of a Pearson’s correlation analysis were checked.  Scatter plots were generated using sample 

ultrasound and VFSS measurement data, to assess whether there was a linear relationship 

between the two variables.  In addition, residual versus fitted plots were used to assess 

linearity and to identify any variance patterns of the residuals.  Visual inspection of Q-Q plots 

was performed to assess normality of the data and a Shapiro-Wilk’s test was conducted.  If 

the assumptions were not met, a non-parametric Kendall’s correlation coefficient (tau) was 

calculated. For interpretation, criteria published by Dawson and Trapp (2004) were used (as 

depicted in Table 4). 

 

Table 4: Guideline for Interpretation of Pearson’s Correlation Coefficients 

Positive r-value   Negative r-value Interpretation 

0 to 0.25 or  0 to -0.25 Absence of correlation 

0.25 to 0.50  -0.25 to -0.50 Poor correlation 

0.50 to 0.75  -0.50 to -0.75 Moderate to good correlation 

0.75 to 1  -0.75 to -1 Very good to excellent 

correlation 

 

Agreement analyses were completed in order to quantify differences in measurements 

across methods, recognising that the methods used to measure ultrasound and VFSS are not 

identical (Giavarina, 2015).  If the assumption was met, the ‘95% limits of agreement 

approach’ was used (Bland & Altman, 1995).  This approach involved calculating the mean 

of the two values ± 1.96 times the standard deviations to provide a value range in which the 

two methods were estimated to lie within for the majority of participants. Thus creating 95% 

confidence intervals which express the uncertainty of these estimates (Giavarina, 2015).  Bias 

between ultrasound and VFSS was defined by assessment of the line of equality, (zero on the 
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Y-axis), noted if it did not lie within the 95% confidence interval of the mean difference 

(Bartlett & Frost, 2008; Giavarina, 2015).  If the assumption was violated, analysis was not 

further continued. To visualise agreement between measures derived from ultrasound and 

VFSS, a Bland-Altman plot was generated.  Here, differences between paired measurements 

derived from the two methods were plotted against the mean of these measurements (Altman 

& Bland, 1983). 
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Results
3
 

Participants 

 

For the validation study, 92 individuals agreed to participate in the research study.  

Fifty of these met the inclusion criteria for data collection, demonstrating either clinically 

impaired hyolaryngeal displacement or pharyngeal shortening, during their standard care 

VFSS.  Data collection was intended for 40 participants, however was completed with 43 of 

the 50 eligible participants.  This larger cohort of participants allowed compensation for 

potential errors in data capture, given the pressure of working within a time-constrained 

clinical environment and secondary to equipment error which plagued initial data collection 

(For example, incomplete visibility of the calibration disc and ultrasound cloud-based data 

capture errors).   

 

Of the 50 eligible participants, three participants became fatigued and the study was 

abandoned prior to completion of data collection.  One participant was excluded as his mild 

movement disorder was exacerbated by his attempts to remain still for ultrasound data 

collection.  One participant had a recessed chin and the ultrasound transducer did not make 

adequate contact for data collection.  One participant was unable to complete data analysis 

due to limited time availability in the VFSS suite and one participant was excluded due to a 

failure to record the VFSS to enable data analysis.  Of the 43 participants included in the 

study, 36 were male and seven were female.  These participants had a variety of underlying 

diagnoses.  Table 5 illustrates the likely aetiologies of dysphagia for all participants.  

 

                                                           
3
 The author would like to acknowledge the assistance of Dr. Katharina Winiker in both data analysis and interpretation of 

data.   
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Of the 43 participants, every fifth patient completed reliability testing.  On one 

occasion, the participant that was due to have secondary reliability measures became too 

fatigued to endure same day evaluation, therefore the following participant completed 

reliability testing in their place.  Table 6 displays the likely aetiology of dysphagia for the 

participants who underwent reliability testing.  Of these eight participants, seven were male 

and all eight participants were right handed.  For the purpose of this Master’s study, only the 

data collected on these eight participants was analysed, thus providing assessment of inter- 

and Intra-rater reliability and preliminary indications of validity of pocket sized ultrasound 

against VFSS.  

 

     Table 5: Likely Aetiology of Dysphagia for Participants in Validity Study 

Aetiology  No of 

Participants  

             Ages  

Stroke  13 85,74,71,76,84,77,84, 

87,76,77,76,81,89 

Parkinson’s Disease  6 89,70,82,66,62,83 

Current / recurrent lower respiratory tract infection 6 79,86,88,74,92,81 

Inclusion body myositis 3 70,69,78 

Deconditioned/otherwise unwell  3 82,74,88  

Post abdominal surgery 2 91,88 

Myotonic dystrophy 1 62 

Motor neurone disease 1 53 

Traumatic brain injury 1 88 

Post spinal surgery 1 77 

Oesophageal cancer and vocal fold palsy  1 96 

Dysphagia of unknown cause 6 89,69,93,66,33,84 
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Table 6: Likely Aetiology of Dysphagia for Pre-selected Participants for Reliability 

Testing 
 

Participant  Aetiology  Age  

1 Myotonic dystrophy 62 

2 Stroke 89 

3 Inclusion body myositis 78 

4 Oesophageal cancer and vocal fold palsy 96 

5 Chronic cough, dysphagia of unknown cause 81 

6 Solid food dysphagia of unknown cause 33 

7 Parkinson’s Disease 83 

8 Deconditioned: Rectal cancer new onset dysphagia of unknown 

aetiology 

84 

 

Data Extraction 

 

Three video segments were unsuccessfully captured to the Clarius™cloud for offline 

data extraction purposes, due either to user error or equipment failure.  In these cases, the 

reviewer was not able to review swallowing context, e.g., visualisation of the movement of a 

shadow to identify a consistent reference point, where the still frame was unclear.  Of those 

missing, one was of hyoid excursion and two were of thyrohyoid approximation.  Thirty-

seven of a possible 40 videos were available for review. 

 

Reliability  

 

The sample size of eight limited assumption checking; where assumptions did not 

appear to be completely satisfied, the ICC was noted within square brackets [].  ICC data 

were reported for all measures.  Appendix 4 provides assumptions plots for review. 
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Descriptive Statistics  

 

Table 7 depicts descriptive statistics for rater one’s ultrasound data acquisition, frame 

selection and measurement online.   

Table 7: Descriptive Statistics for Online Ultrasound Measures 

Measure Bolus Mean (Standard Deviation) 

Hyoid excursion Liquid 26.70%
4
 (9.41) 

Puree 26.82% (11.31) 

 Liquid, puree 26.76% (10.05) 

Thyrohyoid approximation Liquid 54.27% (22.97) 

Puree 63.02% (12.56) 

 Liquid, puree 58.64% (18.45) 

Tongue thickness Apple sauce 53.54 mm (6.46) 

 GH - 159.22 mm
2
 (46.00) 

FOM
5
 LAB - 61.82 mm

2
 (18.32) 

 RAB - 61.51 mm
2
 (18.20) 

 

Inter-rater Reliability  

 

Table 8 depicts descriptive statistics for inter-rater reliability of online acquisition. 

This measure of reliability includes: ultrasound data acquisition, frame selection and 

immediate measurement (online).  Table 9 depicts descriptive statistics for inter-rater 

reliability of offline measurement only, using pre-selected still images. There was no bolus 

effect for inter-rater reliability for hyoid excursion or thyrohyoid approximation.  ICC values 

for inter-rater reliability of online data acquisition and measurement were found to range 

from poor to moderate with only one static measure, the left anterior belly of the digastric 

                                                           
4 % refers to percentage change from rest to maximum displacement for all values  
5
   FOM: floor of mouth, GH: geniohyoid, LAB: left anterior belly of digastric, RAB: right anterior belly of 

digastric 
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(ICC of .78), demonstrating good reliability.  ICC values for inter-rater reliability of offline 

measurement of pre-selected images were all found to have good to excellent reliability (ICC 

range from .78 to .99).  All reliability ICC values are depicted in Table 13 to enable visual 

comparison across conditions, reflecting different components of reliability.  

 

Table 8: Descriptive Statistics for Inter-rater Reliability of Online Acquisition of 

Ultrasound Measures (rater 1 and rater 2) 

Measure Bolus SEM  

(95% CI)  

Between-subject 

Standard Deviation 

Hyoid excursion 
Liquid, puree 10.23 %  

(7.90, 13.98) 

7.15 % change 

Thyrohyoid 

approximation 

Liquid, puree 14.55 %  

(11.19, 20.12) 

19.02 % change 

Tongue 

thickness  

Apple sauce [5.72 mm] 

(3.86, 8.19) 

0.00 mm 

FOM 

GH - [43.92 mm
2
] 

(28.30, 82.30) 

56.98 mm
2
 

LAB - 10.63 mm
2
 

(6.98, 19.09) 

19.82 mm
2
 

RAB - 14.17 mm
2
 

(9.19, 24.54) 

12.16 mm
2
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Table 9: Descriptive Statistics for Inter-rater Reliability of Offline Measurement
6
   

Measure Bolus SEM  

(95% CI)  

Between-subject SD 

Hyoid excursion 
Liquid, puree 3.75 % change 

(2.90, 5.13) 

8.28 % change 

Thyrohyoid 

approximation 

Liquid, puree 8.23 % change 

(6.33, 11.36) 

16.41 % change 

Tongue 

thickness  

Apple sauce 1.70 mm 

(1.10, 3.06) 

4.01 mm 

FOM 

GH - [4.96 mm
2
 

(3.26, 8.91) 

42.15 mm
2
] 

LAB - [8.23 mm
2
 

(5.39, 14.77) 

19.09 mm
2
]  

RAB - [3.75 mm
2
 

(2.44, 6.73) 

16.99 mm
2
] 

 

Intra-rater Reliability  

 

Tables 10 and 11 depict descriptive statistics for intra-rater reliability for rater 1 and 

rater 2, respectively.  This measure of reliability includes the measurement component only, 

completed offline from stored pre-selected still images.  There was no bolus effect for intra-

rater reliability of hyoid excursion and thyrohyoid approximation.  ICC values for intra-rater 

reliability of measurement of pre-selected images were found to be similar across both raters, 

all measures were within the good to excellent range, and these values are depicted in Table 

13.  

  

                                                           
6
 Based on first measurement occasion of rater 1 and 2 
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Table 10: Descriptive Statistics of Intra-rater Reliability Using Online/Offline 

Ultrasound Measures 

Measure Bolus SEM  

(95% CI)  

Between-subject SD 

Hyoid excursion 
Liquid, puree 3.82 % change  

(2.89, 5.11) 

8.51 % change 

Thyrohyoid 

approximation 

Liquid, puree [9.01 % change 

(6.81, 12.06) 

15.76 % change] 

Tongue 

thickness  

Apple sauce 0.66 mm 

(0.41, 1.11) 

4.34 mm 

FOM 

GH - 5.35 mm
2
 

(3.28, 8.98) 

41.26 mm
2 

LAB - [1.84 mm
2
]

 
 

(1.13, 3.08) 

21.71 mm
2
 

RAB - [6.24 mm
2
] 

(3.83, 10.47) 

19.70 mm
2
 

 

Table 11: Descriptive Statistics for Intra-rater Reliability of Rater 2 Offline 

Measurement of Ultrasound Measures 

Measure Bolus SEM  

(95% CI)  

Between-subject SD 

Hyoid excursion 
Liquid, puree 3.68 % change 

(2.78, 4.92) 

8.40 % change 

Thyrohyoid 

approximation 

Liquid, puree 9.55 % change 

(7.22, 12.77) 

17.77 % change 

Tongue 

thickness  

Apple sauce 0.30 mm 

(0.19, 0.51) 

4.52 mm 

FOM 

GH - 4.18 mm
2
 

(2.56, 7.01) 

44.02 mm
2
 

LAB - 2.85 mm
2
 

(1.75, 4.79) 

16.80 mm
2
 

RAB - 1.59 mm
2
 

(0.98, 2.67) 

16.84 mm
2
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Effect of Data Acquisition and Environment on Ultrasound Reliability  

 

Table 12 depicts the descriptive statistics of intra-rater reliability using online data, 

which includes data acquisition, frame selection and immediate measurement and the first 

offline measurement occasion of two completed.  The ICC measures for intra-rater reliability 

of online and offline measurement of ultrasound data when compared against the online data 

acquisition inter-rater ICC values demonstrates the impact of both acquisition and 

environment on reliability, both data sets are depicted in Table 13 to enable visual 

comparison. 

 

Table 12: Descriptive Statistics of Intra-rater Reliability Using Online/Offline 

Ultrasound Measures
7
 

Measure Bolus SEM  

(95% CI)  

Between-subject SD 

Hyoid excursion 
Liquid, puree 5.65 percentage change 

(4.27, 7.56) 

8.06 percentage change 

Thyrohyoid 

approximation 

Liquid, puree 11.85 percentage change 

(9.15, 16.19) 

15.43 percentage change 

Tongue 

thickness  

Apple sauce 3.29 mm 

(2.02, 5.53) 

4.37 mm 

FOM 

GH - 6.86 mm
2
 

(4.21, 11.52) 

42.45 mm
2
 

LAB - 4.53 mm
2
 

(2.78, 7.60) 

20.23 mm
2
 

RAB - 1.86 mm
2
 

(1.14, 3.13) 

17.91 mm
2
 

  

 

  

                                                           
7
 based on rater 1’s first offline measurement occasion 
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Table 13: Summary of ICC Values as a Relative Measure of Inter- and Intra-rater 

Reliability 

Measure Bolus Online Data 

Acquisition 

Inter-rater 

ICC (95% 

CI) 

Online/offline 

Intra-rater 

ICC (95% CI) 

Offline 

(R1) Intra-

rater ICC 

(95% CI) 

Offline 

(R2) Intra-

rater ICC 

(95% CI) 

Offline 

Inter-

rater ICC 

(95% CI) 

Hyoid 

excursion 

Liquid, 

puree 

.33 

(.00, .66) 

.67 

(.27, .87) 

.83 

(.52, .94) 

.84 

(.51, .94) 

.83 

(.49, .94) 

Thyrohyoid 

approximation 

Liquid, 

puree 

.56 

(.12, .82) 

[.63] 

(.19, .83) 

[.75] 

(.30, .91) 

.78 

(.40, .92) 

.78 

(.35, .91) 

Tongue 

thickness  

Apple 

sauce 

*
8
 

(.00, .65) 

.64 

(.00, .93) 

.98 

(.90, 1.00) 

.99 

(.98, 1.00) 

.85 

(.44, .97) 

 
GH  [.60]  

(.00, .90) 

.98 

(.93, 1.00) 

.98 

(.93, 1.00) 

.99 

(.96, 1.00) 

[.99] 

(.94, 1.00) 

FOM LAB  .78 

(.25, .94) 

[.99] 

(.97, 1.00) 

[.99] 

(.97, 1.00) 

.97 

(.89, .99) 

[.84] 

(.44, .96) 

 RAB  [.42]  

(.00, .85) 

[.91] 

(.93, 1.00) 

[.91] 

(.93, 1.00) 

.99 

(.96, 1.00) 

[.95] 

(.77, .99) 

 

Validity  

Descriptive Statistics  

 

Descriptive measures of mean and standard deviation of both ultrasound and VFSS 

measures of swallowing kinematics can be seen in Table 14.   

  

                                                           
8
 for this measure, data is based on estimates of variance only as the model is over fitted 
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  Table 14: VFSS and Ultrasound Measures: Mean and Standard Deviation 

Measure Bolus Mean (SD) for VFSS Mean (SD) for  

Ultrasound 

Hyoid excursion Liquid 22.65% (9.03) 24.17 % (9.61) 

Puree 24.57 % (8.83) 25.67 % (9.31) 

Thyrohyoid 

approximation 

Liquid 32.54 % (12.94) 49.87 % (21.70) 

Puree 30.29 % (12.50) 52.69 % (17.52) 

 

Correlation 

 

It was initially intended that online ultrasound data be used for assessment of validity 

of measurement of swallowing kinematics using portable ultrasound against the ‘gold 

standard’ of VFSS as it was hypothesised that that the success of online ultrasound 

measurement method would improve translation into clinical practice.  However, following 

reliability calculations, which demonstrated poor reliability of the online ultrasound 

measures; the first of two offline ultrasound measures were used instead 

 

The assumptions for Pearson’s correlation analysis were met for hyoid excursion and 

thyrohyoid approximation during liquid and puree swallowing.  The association between 

measurement using ultrasound and measurement using VFSS can be seen in Table 15.  There 

was evidence of an association between VFSS and ultrasound for hyoid excursion, the 

positive correlation was moderate for puree bolus and excellent for liquid bolus.  The p-

values at 0.001 and 0.03 for hyoid excursion of liquid and puree boluses respectively indicate 

the coefficient is significant (p<0.05).  Thyrohyoid approximation was also found to have a 
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moderate relationship between modalities for both puree and liquid bolus (r=0.61) but 

significance wasn’t reached (p=0.11).  

 

Table 15: Correlation between Ultrasound and VFSS Measurements of Hyoid 

Excursion and Thyrohyoid Approximation  

Measure Bolus Correlation Coefficient, p-value 

Hyoid excursion 

Liquid 

Puree 

r = 0.92, p ≤ .001 

r = 0.76, p = 0.03 

Thyrohyoid approximation 

Liquid r = 0.61, p = 0.11 

Puree r = 0.61, p = 0.11 

 

Agreement 

 

Assumptions for agreement analyses were met for hyoid excursion (liquid: p = .41, 

puree: p =.0518) and thyrohyoid approximation during puree swallowing (p = .10).  For 

thyrohyoid approximation, the assumptions were violated for liquid swallowing (p = .02). 

 

For hyoid excursion during liquid and puree swallowing, the upper limits of 

agreement for ultrasound measurements were calculated at 8.90 percentage change for liquid 

swallows and 13.54 percentage change for puree swallows.  The lower limits were calculated 

at -5.87 percentage change for liquid swallows and -11.33 percentage change for puree 

swallows.  Upper limits of agreement for ultrasound measurements of thyrohyoid 

approximation were calculated at 51.17 percentage change for liquid swallows and 49.92 

percentage change for puree swallows.  The lower limits were calculated at -16.49 percentage 

change for liquid swallows, and -5.13 percentage change for puree swallows.  See Appendix 

5 for Bland Altman plots.
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Discussion 

 

This study investigated the reliability and validity of handheld portable ultrasound to 

quantify a number of measures of swallowing.  A mixed-aetiology cohort of individuals with 

dysphagia was assessed, which is representative of a typical speech-language therapy 

caseload.  Measures included biomechanical kinematic measures of hyoid excursion and 

thyrohyoid approximation and muscle morphometry measures of tongue thickness and cross-

sectional area of submental muscles.  This research provides important data on the various 

components that impact reliability, to ultimately support knowledge translation of a tool that 

has showed significant promise in research laboratories.  

 

Reliability data generated from this research indicates that raters can achieve high 

levels of agreement when measurement of portable ultrasound images is completed offline 

from pre-selected images with some of these data comparing favourably with published 

research to date. 

 

Hyolaryngeal Excursion 

 

This study demonstrated high inter- and intra-rater reliability of offline measurement, 

using pre-selected images, for hyolaryngeal displacement using portable ultrasound (ICC .83-

.84; CI: .49 - .94).  These data are comparable to previous published research, conducted 

using sophisticated technology (Chen et al., 2017; Hsiao et al., 2012; Macrae et al., 2012).  

Whereas this study demonstrated low inter-rater reliability of online acquisition and 

measurement of the same biomechanical feature of swallowing, (ICC of .33; CI: .0 - .66), 
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thus indicating a significant reduction associated with the acquisition and image selection of 

the data measured for this dynamic swallowing feature when using the portable technology.  

 

Thyrohyoid Approximation  

 

Inter- and intra-rater reliability of offline measurement, using pre-selected images, for 

thyrohyoid approximation was, although overall slighter lower than those for hyoid 

displacement, also found to have relatively high levels of agreement (ICC of >.75), however 

confidence intervals were larger (CI: .30 - .91).  Online inter-rater reliability, which included 

acquisition, image selection and measurement, was moderate (ICC of .56). These data do not 

compare favourably to published research; Huang et al. (2009) demonstrated excellent inter-

rater reliability (ICC of >0.97) for the same measure; their reliability data included the 

acquisition, image selection and measurement components and as such demonstrated superior 

outcomes with sophisticated instrumentation.  

 

Tongue Thickness  

 

Offline measures of tongue thickness produced high to excellent ICC values in this 

research.  Intra-rater ICC values for measuring tongue thickness were excellent for the two 

raters (ICC>.98; CI: .90 – 1.0), the inter-rater ICC value was also high (ICC of .85) although 

had larger confidence intervals (.44 - .97).  Online measures of tongue thickness could only 

be measured based on estimates of variance as the model was over fitted, confidence intervals 

were calculated at between 0 and .65, indicating a high degree of variability associated with 

data acquisition and online image selection and measurement. 
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Cross Sectional Area of Submental Muscles 

 

Intra-rater ICC values for measuring cross-sectional area of submental muscles, 

offline, also fell within the excellent range, across all measures (ICC: .91 - .99; CI: .89 – 1.0).  

Additionally Inter–rater ICC values for these measures ranged from high to excellent (ICC of 

> .84).  These values compare favourably with published research (Hsiao et al., 2012; Macrae 

et al., 2013).  Online inter-rater reliability ICC values for these measures (ICC: .42 - .78), 

were significantly higher than those for the dynamic biomechanical swallowing measures.  

However the confidence intervals remained large ranging from .0 to .94, thus high degrees of 

variability were evident.  

 

Online Versus Offline Measurement Reliability  

 

While offline inter- and intra-rater reliability of swallowing kinematic and static 

measures, using Clarius
TM

 portable ultrasound, was consistently high in this research, it is 

clear from the data collected that data acquisition and frame selection of the ultrasound 

images as well as the factors associated with online live measurement in pressured clinical 

environment had a big impact on reliability. This study showed a significant reduction in ICC 

values, with larger confidence intervals, for all measures when acquiring and measuring the 

images online compared to offline measurement alone.  Reductions in online reliability 

measures were most significant for the biomechanical, kinematic, measures of swallowing.  It 

is hypothesised that this is due to the dynamic nature of these measures, requiring careful 

image selection, of rest and maximum displacement, prior to measurement being completed.  

Additionally use of a scroll function on an iPad screen compared with frame by frame 

analysis on a computer, lighting, and time constraints associated with immediate online 
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measurement are likely to have further contributed to reduce reliability for these measures.  

In order to attempt to identify the impact of the environmental factors alone further 

exploration of the data was undertaken.  

 

Effect of Environment on Ultrasound Reliability  

 

The effect that environmental factors had on reliability was analysed by calculating 

intra-rater ICC values for rater one’s online and offline ultrasound measurements of the same 

pre-selected still images, thus eliminating the impact of data acquisition.  These ICC values 

can be seen in Table 13, (column labelled online/offline intra-rater ICC).  These calculations, 

when compared with offline intra-rater ICC demonstrate that ICC values increased 

significantly when environmental factors associated with lighting, time pressure of a live 

VFSS clinic, and image resolution on a small screen were eliminated.  ICC values for hyoid 

excursion increased from .67 to .83; thyrohyoid approximation ICC values increased from .63 

to .75.  Tongue thickness inter-rater ICC increased from .64-.98. However static measures of 

cross-sectional area of each of the submental measures did not show any increase in ICC. 

This finding indicates that ultrasound analysis of kinematic swallowing measures of the 

tongue, using a Clarius
TM

 portable device, are unlikely to be reliable under these conditions 

and that the resolution of the device to view and measure images live may not be adequate.  

These factors will need to be further explored prior to knowledge translation into the clinical 

environment.   

 

Effect of Data Acquisition and Frame Selection on Ultrasound Reliability 

 

Further reduction of reliability was noted where the acquisition and frame selection 

components as well as environment factors were included, this is evidenced by comparing 
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Offline inter-rater ICC with online data acquisition inter-rater ICC (refer to Table 13).  ICC 

values for hyoid excursion decreased from .83 to .33; and thyrohyoid approximation ICC 

values decreased from .78 to .56.  Additionally static measures of cross-sectional area of each 

of the submental measures decreased significantly (.99 to .60, .84 to .78 and .95 to .42) with 

the inclusion of acquisition and frame selection and environmental components.  However, 

there were larger differences with kinematic swallowing measures compared to static 

measures.  It is hypothesised that a number of factors contributed to the differences in data 

acquisition between raters.  Firstly, rater one acquired the sonogram for kinematic 

swallowing measures concurrently with VFSS, while the second rater acquired the sonogram 

without VFSS.  In addition, the second rater completed data collection after the participant 

had already undergone a standard VFSS procedure and research data collection by the first 

rater.  It is therefore possible that there may have been greater than usual variance in the 

dynamic swallowing gestures of hyoid excursion and thyrohyoid approximation, as a result of 

fatigue or patient performance across assessment periods.  It is also possible that sonogram 

acquisition differences between raters may relate to different technique as well as variance as 

a result of slightly different conditions for data collection.  Inter-rater reliability data from 

online data acquisition in this study was poor in comparison to the reliability data collected 

by Hsiao et al. (2012), for hyoid excursion, who included data acquisition and still achieved 

high inter- and intra-rater reliability (intra-rater ICC: .92 and .84, inter-rater ICC: .80.).  It is 

possible that this discrepancy may be as a result of research methodology or potentially as a 

result of the impact of the associated with portable ultrasound equipment, (small screen, 

crude measurement calipers and touch-screen scroll function for frame selection). 

 

Further research on inter-rater reliability using the portable device for online data 

acquisition under identical conditions is required.  Further assessment on sonogram 
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acquisition reliability across raters, and test–retest reliability across sessions, using healthy 

subjects, was completed concurrently with this project and those data may help in the 

establishment of training protocols for clinical translation. 

 

The data generated in this study indicates that reliability decreases as a result of both 

the pressure of a clinical environment and variation in sonogram acquisition, the images 

acquired and measured online were therefore reviewed to further qualify these findings.  

Review of the ultrasound images revealed a number of environmental factors that appeared to 

influence measurement reliability.  An example of a tongue thickness measure made online in 

the pressure of a clinical environment can be seen in Figure 20.  In this example the examiner 

incorrectly identified the bolus, instead of choosing the intersecting point between the bolus 

and the surface of the tongue; the palate was identified in error as the tongue surface.  The 

same image measured offline can be seen in Figure 21 for comparison.  It is hypothesised that 

time pressure prevented full review of the cine loop which would have allowed the examiner 

see where the bolus was situated at rest thus providing context when swallowed.  

 

 
 
 
 
 
 
 
 
 
 
 

  Figure 20: Online tongue thickness measurement                  Figure 21: Offline tongue thickness measurement  
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Similarly, the impact of the software used to measure the images was reviewed.  The 

portable ultrasound connected wirelessly to a 9.7 inch iPad screen and a standard stylus was 

used to draw either freehand or straight lines for measurement purposes.  The software’s 

spatial resolution and accuracy was poorer than that of ImageJ, and thus did not allow for 

finer details to be measured.  This was particularly evident when measuring cross-sectional 

area of submental muscles (see Figures 22 to 25 for examples).  In addition when measuring 

freehand, the software did not allow the measurement callipers to meet when measuring area, 

as it would refresh when they connected (See Figure 26).  Instead the software accounted for 

the distance between the two ends of the freehand line, which for certain measures had more 

impact than others (see Figures 26 and 27 for examples).  Offline measurement was 

completed using ImageJ software on a 23 inch screen where brightness and contrast were 

able to be adjusted to improve image quality as needed and accuracy of calliper placement 

was superior.   
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Figure 22: Online geniohyoid measurement             Figure 23: Offline geniohyoid measurement  

 

 

 

 

 

Figure 24: Online anterior belly of digastric measurement            Figure 25: Offline anterior belly of digastric measurement  

 

 

 

 

 

 

Figure 26: Online anterior belly of digastric measurement       Figure 27: Offline anterior belly of digastric measurement  

 

Validity  

 

Preliminary assessment of validity of the portable ultrasound measures against the 

gold standard of VFSS, for the measurement of hyoid excursion, was encouraging  during 

liquid boluses (r = 0.92, p ≤ .001) and puree boluses (r = 0.76, p =.003) demonstrating good 

to excellent correlation with VFSS.  Further, the range of percentage change from rest to 

maximum hyoid displacement was reasonably consistent across VFSS and ultrasound.  These 

data suggest that the quality of hyolaryngeal displacement images gathered by portable 
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ultrasound technology are adequate, as they correlate strongly with VFSS when measured 

offline.  These data are similar to the findings of other studies using more sophisticated 

ultrasound technology (Hsiao et al., 2012; Lee et al., 2016).  

 

Measures of thyrohyoid approximation were found to be more variable on ultrasound 

than on VFSS.  The mean percentage change was much higher on ultrasound than on VFSS.  

Thyrohyoid approximation measures were not shown to correlate significantly with VFSS, (r 

= 0.61, p = 0.11).  The lack of significant correlation for this measure may be influenced by 

several factors.  Firstly, the resolution of the portable device and secondly, the thyroid 

cartilage having multiple acoustic shadows on ultrasound, some of which were inconsistently 

visible as thyrohyoid approximation was achieved.  Therefore, it was not possible on 

ultrasound to use a consistent landmark across participants, as was used for hyolaryngeal 

displacement.  Given the multiple acoustic shadows cast by the thyroid cartilage on 

ultrasound, it is also unclear whether the measures on VFSS are anatomically identical to 

those on ultrasound.  Further analysis of the 43 participants with dysphagia on whom data 

were collected is required, in order to improve statistical power and draw stronger 

conclusions of the validity of portable ultrasound against VFSS. 

 

The validity and reliability data from this study provides important information to 

support knowledge translation from research laboratories into the clinical environment.  For 

example, the data indicates the need for future research to ensure that protocols for data 

acquisition are robust and allow consistent repeatability.  It is anticipated that increased 

availability and accessibility of objective assessments of swallowing will result in improved 

patient diagnostics, targeted treatments and outcomes, reduced incidence of aspiration 

pneumonia and an increase in nutrition and hydration in a highly vulnerable population. 
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The data presented in this study are preliminary, but encouraging, suggesting that 

portable ultrasound has potential for use in clinical care with further refinements.  Portable 

ultrasound instrumentation has the potential to increase the availability of objective 

assessment to the most dependant patients, by providing assessment in their home 

environment and, subsequently, decreasing dependence on hospital-based diagnostic services 

and reducing the associated costs.  However, in order to achieve clinical translation, further 

research is required to assess the impact of the variance in patient performance across 

assessment periods accounting for fatigue or variability across swallows, as well as exploring 

methods to improve reliability of online analysis.
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Limitations 

 

The portion of the concurrent larger study that was covered by this Master’s research 

had a small sample size of eight.  When conducting a reliability study, a sample size of 30 

heterogeneous samples involving at least three raters is optimal (Koo & Li, 2016).  The 

findings on validity cannot be generalised based on this study alone and should be considered 

in conjunction with the validity assessment of the larger cohort once analysed.  Reliability 

should be considered alongside concurrent data collected on healthy participants (pending 

publication), which explored multiple levels of reliability using the same equipment and three 

raters.  

 

Participants in this study of dysphagic individuals displayed a wide range of severity, 

from a mild to profound reduction in either hyoid excursion, or thyrohyoid approximation.  

The primary investigator identified these participants through perceptual assessment of 

reduced hyolaryngeal excursion or thyrohyoid approximation, posing a risk of inclusion bias.  

In an attempt to mitigate this limitation, the co-investigator was consulted for a second 

opinion where the movement of the hyolaryngeal complex appeared to be only mildly 

impaired or unclear, however, inclusion bias cannot be discounted as a possibility. 

 

There were some data capture errors as a result of initial equipment failure.  Of the 

eight participants, one participant’s still images failed to store on the built-in software.  In this 

case, screen shots of thyrohyoid approximation were taken for measurement purposes.  It 

could not be guaranteed that these images were identical to those stored on the Clarius™ 

cloud software, however, calibration on these screen shot images should have accounted for 

minor image differences.  As video capture was unable to be completed for this participant, 

context of the still image was not able to obtained by review of the cine loop, limiting ability 
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to make accurate judgements of the still images during offline measurement.  All other 

participants had video segments available for improved analysis of still image measures.  

This may have resulted in potential errors in inter- and intra-rater reliability for those data.  

 

This study made use of only two raters for assessment of inter-rater reliability.  Other 

studies of inter-rater reliability have used more than two raters to provide superior 

information on variance. (Kuhlemeier, Yates, & Palmer, 1998; Macrae et al., 2012; Miles & 

Huckabee, 2013; Scott, Perry, & Bench, 1998)  

Inter- and intra-rater reliability of VFSS measures were not completed in this study.  Given 

research evidence questions reliability of some methods of obtaining VFSS objective 

measures (Sia et al., 2012), further exploration of this would be useful when assessing 

validity of ultrasound measures against ‘gold standard’ VFSS.   
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Future Directions 

 

Researchers have indicated that the likelihood of having aspiration is 3.7 times greater 

for individuals who demonstrate reduced hyoid excursion than it is for individuals who have 

adequate hyoid excursion during swallowing (Perlman, Booth, & Grayhack, 1994).  

Similarly, reduced thyrohyoid approximation has been shown to be associated with aspiration 

risk (Shaker et al., 2002).  In line with research by Hsiao et al. (2012) and Lee et al. (2016),  

the ability to develop a quantifiable percentage change range or cut-off point for these 

kinematic biomechanical measures using portable ultrasound as an indicator of dysphagia 

severity may be of enormous clinical value. 

 

This study limited the VFSS imaging completed concurrently with ultrasound to a 

single swallow with a 5ml bolus and did not continue screening beyond this to ascertain post-

swallow aspiration risk.  The single bolus trial would also not allow for known physiological  

variability (Molfenter & Steele, 2011).  Future research using ultrasound to assess 

swallowing could focus on identifying a percentage range that may indicate higher risk of 

aspiration and pharyngeal residue associated with the degree of hyoid excursion and or 

thyrohyoid approximation.  However the potential for differences across gender (Feng et al., 

2015; Ishida et al., 2002) and age (Kendall & Leonard, 2001; Kim & McCullough, 2008; 

Logemann et al., 2000) would also need to be considered within the data analyses.  
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Conclusion 
 

The data in this study indicate that the image quality gathered using portable 

ultrasound is adequate for some, but not all, swallowing measures when made offline.  Use of 

free open access software (ImageJ) allows for discrete measures to be made on a large screen 

with appropriate lighting and the ability to adjust images to improve contrast or brightness as 

required.  However, clinical translation of ultrasound measurement offline is hypothesised to 

face similar challenges as those faced by objective measures of VFSS (Baijens et al., 2013), 

as the time required completing these measures does pose significant challenges in a busy, 

clinical environment.  Therefore, it is hypothesised that in order to achieve clinical 

translation, exploring methods to improve reliability of online analysis is important.
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Appendix 1: Participant Information Sheet 

 

   

 
 

 

Participant Information sheet 

Study Title: Use of ultrasound to assess swallowing and swallowing safety 

 

Coordinating investigator: Rebecca Hammond  Contact: 021 223 8132 

 

Supporting investigator: Alice Dimmock             Contact: 021 815 295  

 

Supervising investigator: Maggie-Lee Huckabee  Contact: 021 324 616 

 

You are invited to take part in a study that evaluates a small ultrasound device 

to assess swallowing and swallowing safety. 
 
 

What is the study for? 

Swallowing problems are difficult to evaluate by watching someone eat. Our main 

tool for evaluating swallowing is a motion picture X-ray or videofluoroscopy (VFSS). 

You have been referred for a videofluoroscopy as part of your standard care. 

Depending on the results of your x-ray, you may be invited participate in a research 

project to evaluate a new tool for swallowing assessment. This would require a small 

amount of extra testing using an ultrasound device to measure your swallowing at 

the same time as the x-ray.  

Ultrasound is non-invasive, it is the same test as used on pregnant women; in this 

case an ultrasound transducer will be placed on the skin surface below your chin and 

above the larynx (Adam´s apple). 

Results from this study will give us more information on whether we can identify the 

type of swallowing problems people have and whether they can protect their lungs 

from food and fluid going the wrong way, using a small portable ultrasound device. 

This could offer more options for patients with swallowing problems, which don’t 

require transport to an x-ray department.  

Should I participate in the study? 

 Whether or not you take part is your choice.   

 If you don’t want to take part, you don’t have to give a reason. It won’t affect the 

care you receive.  

ETHICS NO: 17/STH/230 Version 6: 02/03/2018 Participant NO:   
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 If you do want to take part now, but change your mind later, you can pull out of 

the study at any time.   

 

What will I need to do? 

 After you have considered what is involved and discussed with family/whanau (if 

you like), you will need to sign a consent form.  

 We will need to know some information about you, for example, your age, 

ethnicity and medical diagnosis.  

 If we find that your type of swallowing problem would be useful to ultrasound 

during your x-ray test, we will ask you to swallow an additional 4 -8 mouthfuls of 

food and fluid under x ray at the end as part of the research. 

 Whist having the x-ray of these extra mouthfuls, a Speech-language therapist will 

place a small ultrasound device under your chin to measure your swallowing at 

the same time as the x-ray. 

 This means it will take a small amount of additional x-rays ( approximately 1-2 

minutes). It will also take about 25 minutes of your time.  

 For some participants after the x-ray study is complete, another speech-language 

therapist will need to complete 20 more minutes of ultrasound testing without x-

ray. We will be able to tell you before you begin on the day if you are one of these 

people. 

 

What happens after this? 

 After the study, your clinical care will be managed as usual. 

 Your x-rays and ultrasound for this study will be stored and analysed at 

Waitemata District Health Board.   

 For the purposes of research your name will be removed from all paperwork and 
you will be assigned a code number.  

 Copies of your X-rays and ultrasound images will be securely transferred to the 

Rose Centre for Stroke Recovery and Research, St Georges Medical Centre, 

Christchurch.  

 All information will be kept safely on a password protected computer. 

 The data will be stored for 10 years; after that it will be deleted. 

 The results of the study will be included in the researcher’s MSc thesis and may 

be submitted for publication in a peer reviewed journal. If you would like a copy of 

the study when it’s complete, please indicate this on the consent form. You 

should understand that it may be quite a long time before the study is complete 

and the summary is available. 

 

What are the possible risks of this study? 

 There are minimal risks in taking part in the study. Ultrasound is completely non-

invasive.  

 There will be a small amount of additional x-ray time required, which involves 

radiation exposure. We will take great care to limit the exposure you receive but it 
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is estimated that the additional time required would be the equivalent to the 

natural radiation exposure you receive in 1-2 months or that which you would 

receive from 2 return flights to Europe. Sources of natural radiation are for 

example the ground and in building materials around us.  

 Your participation will not affect your care in any way.  

 You will have the opportunity to ask questions and to find out more information 

from the researcher.   

 If you were injured in this study, which is very unlikely, you would be eligible to 

apply for compensation from ACC just as you would be if you were injured in an 

accident at work or at home. This does not mean that your claim will 

automatically be accepted. You will have to lodge a claim with ACC, which may 

take some time to assess. If your claim is accepted, you will receive funding to 

assist in your recovery. If you have private health or life insurance, you may wish 

to check with your insurer that taking part in this study won’t affect your cover. 

 

Who pays for the study? 

The Health Research Council of New Zealand has provided a grant to cover the 

majority of the study costs. There is no cost to you.  

 

What if I change my mind and decide I no longer want to be involved in 

the study? 

 You can withdraw from the study or withdraw your data from the study up to the 
point the analysis is completed by contacting the primary investigator. 

 If you do not wish to contact the primary investigator, you can contact your 
speech-language therapist who can inform the primary investigator on your 
behalf. 

 You do not have to decide immediately whether or not you will participate in this 
study. Before you decide you may want to talk about the study with other people, 
such as family, whānau, friends, or healthcare providers.  Feel free to do this. 

 If you agree to participate in the study, please sign the consent form that comes 
with this information leaflet and bring it with you to your x-ray swallowing study. 

 

What if I have more questions? 

 Principal Investigator and Waitemata DHB contact: Rebecca Hammond (email 

Becca.hammond@waitematadhb.govt.nz  Phone : 021 2238232)  

 Supervisor: Prof Maggie-Lee Huckabee.  

maggie-lee.huckabee@canterbury.ac.nz 

 Maori Health Support: Maori Health Support: If you require Māori cultural 

support, talk to your whānau in the first instance. Alternatively, you may contact 

the administrator for He Kamaka Waiora (Māori Health Team) by telephoning 09 

486 8324 ext. 42324 

 If you have any questions or complaints about the study you may contact the 

Auckland and Waitematā District Health Boards Maori Research Committee or 

Maori Research Advisor by telephoning 09 4868920 ext. 43204 

mailto:Becca.hammond@waitematadhb.govt.nz
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Appendix 2: Consent Form 

 
 
 
 

Consent Form 
 

Study title: use of ultrasound to assess swallowing and swallowing safety 

  

 I have been given a full explanation of this project and have had the opportunity to ask 

questions. 

 

 I understand what is required of me if I agree to take part in the research. 

 

 I understand that participation is voluntary and I may withdraw at any time without penalty. 

 

 Withdrawal of participation will also include the withdrawal of any information I have provided, 

if this is still possible. 

 

 I understand that any information or opinions I provide will be kept confidential to the 

researcher and supervisors, and that any published or reported results will not identify the 

participants. 

 

 I understand that a thesis is a public document and will be available through the University of 

Canterbury and Waitemata DHB libraries. 

 

 I understand that all data collected for the study will be kept in locked and secure facilities 

and/or in password-protected electronic form and will be destroyed after ten years. 

 

 I understand that I can contact the researcher Rebecca Hammond 

(Becca.hammond@waitematadhb.govt.nz) or her supervisor Maggie-Lee Huckabee (maggie-

lee.huckabee@canterbury.ac.nz) for further information. 

 

Optional: I would like to receive a summary of the findings. If so, please provide postal/ email 

address: 

                            

 

By signing below, I agree with the statements above, and to participate in this research project. 

 

Print name of participant:        

  

Signature of participant:        Date:      

 

ETHICS NO: 17/STH/230 Version 6: 02/03/2018 Participant NO:   
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Appendix 3: Data Collection Protocol 

 

  

 
NHI: ……………………………….              Participant ID:  ……………………………….               
 
DOB:………………….                            Age:………………..                         Handedness:……………………… 
 
Date ………………                                Time……………… 
 

Participant: 
 has read the information sheet and understood the information 
 meets inclusion criteria and 
      not pregnant 
      not allergic to food provided 
 has provided consent 
 

Further participant information: 
 New Zealand European 
 Other European  
 NZ Maori 
 Samoan                                              
 Fijian 
 Cook Island Maori 
 Tongan 
 Tokelauan 
 Other pacific peoples 

 Niuean  
 Southeast Asian  
 Chinese  
 Indian 
 Other Asian please 
state……………………………….. 
 Middle Eastern 
 Latin American/Hispanic  
 African 
 Other: ……………………………….. 
 

Medical Diagnosis: 
 
 
 
 

 

Post standard VFSS checklist: 

Signs of reduced hyolaryngeal excursion?  Yes/No 

Signs of reduced pharyngeal shortening?  Yes/No  

Completion of ultrasound analysis?  Yes/No 

Participant required to have reliability measures 
completed  (every 5th participant who completes US 

analysis) 

Yes/No 



119 
 

US assessment concurrent with VFSS                   

Date: ……………………………          Time: ………………………………   BH acquires  all swallows 

 Instruction: “Please sit with your hips as far back as comfortably possible. Keep your head in a natural position throughout the study. Please take this sip/spoon of… and 

keep it on your tongue until I tell you to swallow. Swallow as naturally as possible, whenever you are ready.” 

Hyoid displacement  (curvilinear transducer - Abdomen setting) 

 

Thin Barium (5ml) 

Hyoid Rest………………….…………. Hyoid Max………………………….…. 

Hyoid displacement (curvilinear transducer - Abdomen setting) 

 

Apple sauce mixed with barium (5ml)  

Hyoid Rest……………………. Hyoid Max………………………….….  

Thyrohyoid approximation (curvilinear transducer - Superficial setting)    

 

Thin Barium (5ml) 

Thyrohyoid Rest…………….…………...  Thyrohyoid Max………………………. 

Thyrohyoid approximation  (curvilinear transducer - Superficial setting)    

 

Apple sauce mixed with barium (5ml)  

Thyrohyoid Rest………………….……….  Thyrohyoid Max……………………. 

 

US assessment post VFSS : Floor of mouth (linear transducer - Breast setting) 

Geniohyoid.………………………………………   Left anterior belly of digastric muscle..……………………………………   Right anterior belly of digastric muscle………………………………………  

Tongue thickness  (curvilinear transducer - Abdomen setting) 

Tongue Thickness …………………….... 
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Appendix 4: Correlation – Assumption Plots: 

Hyoid, Liquid, VFSS-US Offline 
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Hyoid, Puree, VFSS-Ultasound Offline 
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Thyrohyoid Liquid:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



123 
 

Thyrohyoid Puree 
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Appendix 5: Bland-Altman Plots for Validity Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bland Altman plot for hyoid excursion during liquid (a), and puree swallowing (b) assessed using 

ultrasound and VFSS. The unit of the X- and Y-axis is percentage change. The thick dashed red line 

represents the mean difference between ultrasound and VFSS measurements; the thin dashed red lines 

represent the 95% confidence interval of the mean difference. 
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Bland Altman plot for thyrohyoid approximation during puree swallowing (a) assessed using 

ultrasound and VFSS. 

 

                                                           
 


