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ABSTRACT 

Design of buildings in earthquake regions requires that the building is made to withstand 

certain large earthquake magnitudes with a degree of permanent, but energy absorbing, 

damage. To accurately determine the behaviour of the building while damage occurs, a non-

linear analysis must be used as these effects are non-linear. These computations are often 

very slow as the building’s response must be calculated many times a second. 

This thesis seeks to find a faster alternative to the Newmark-β and similar numerical 

integration schemes commonly used in non-linear seismic structural analysis. Faster 

computation would enable rapid simulation thus speeding up the design process. It would 

also allow large Monte Carlo analyses to be done to improve research analysis and allow 

designers to better account for variability in materials, construction, soil site and other factors 

that can significantly affect response. 

For the purposes of this investigation simple two node finite elements were used. The non-

linear component consists of the well-accepted Ramberg-Osgood hysteresis model. The 

alternative approach used in this thesis is to solve non-linear first order differential equations 

using a Runge-Kutta based solution. This approach, with added new computational methods, 

should be more efficient than directly solving the second order equation of motion with 

Newmark-β. 

Different test cases were run to establish performance differences in a variety of potential 

user cases. These cases involved testing different models against both real earthquake data 

and synthetic input accelerations. In all test cases, the Newmark-β solution yielded the same 

results as the new solution, as long as a small enough time step was used. When a small time 

step was used and the results agreed, the new solution was much faster than the Newmark-β 

solution. 



 

 

In particular, the new numerical solution approach was significantly faster than Newmark-β 

when the accuracy demanded was 1% or less. As the tolerance was tightened the advantage 

of the new solution increased exponentially. From this project a set of MATLAB scripts has 

been created that will reproduce the results given and can also be used to analyse other 

building models. The overall approach used is also entirely generalisable. 
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1 INTRODUCTION 

1.1 MOTIVATION 

Currently non-linear earthquake analysis is mostly conducted only at research institutes, 

rather than in engineering consultancies. However, non-linear seismic response analysis is 

important for determining, accurately, the response of critical buildings and infrastructure. 

There are two reasons for this outcome. One is the complexity of such analysis. The second is 

the computational time required for results that can be trusted. In addition, while many 

software packages exist, results can be highly variable and difficult to verify, casting doubt 

on the tools and approach. This thesis explores an alternative method of doing non-linear 

time-history analysis on a building to make the process faster while maintaining accuracy 

compared to existing methods. 

Computationally, non-linear dynamic seismic analysis of buildings and critical infrastructure 

is typically done with a Newmark-β solution or similar numerical integration approach. This 

numerical solution is simple in development, but does not represent the current way other 

science disciplines solve differential equations. Other methods have existed for decades, but 

have been avoided in engineering because of the added complexity in development or 

derivation for sometimes minimal return in improved accuracy. 

If an alternative could be developed that would give trustworthy, accurate results much more 

quickly then it would allow for more test cases to be analysed in design. More analyses and 

productivity would give a designer a better idea of the building’s potential behaviour in an 

earthquake, as well as a greater sense of sanity-checking and trust in the outcomes. In an 

extreme case, it would be desirable to run a Monte Carlo analysis on building designs to 

account for variations and random real world differences to the design to ensure its 
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robustness. Finally, and more directly, seismic life safety is a function, in large events, of 

non-linear structural response. Thus, life-safety and effective, productive non-linear analyses 

are inherently linked. 

Currently, methods for fast numerical solution of dynamic non-linear earthquake responses 

do not really exist. Most non-linear numerical solutions are suited to vehicle crash analysis, 

which involves very large deformations and high strain rate over a very short time span. In 

non-linear, dynamic earthquake analysis there can be large deformations but they occur over 

a relatively longer time. However, as a portion of an entire earthquake record, these highly 

non-linear periods can be quite small. What is missing from current numerical solution 

approaches is the ability to both analyse the simple linear parts of the response quickly, and 

the complex non-linear parts accurately. Such a separation of tasks could dramatically speed 

up the numerical solution. 

1.2 OBJECTIVES AND SCOPE 

The first objective was to create a standard non-linear Newmark-β solution in MATLAB. 

This solution will serve as the gold standard comparator for any alternative method in terms 

of accuracy and speed. This numerical solution was written in MATLAB code, rather than 

using an existing compiled program (like ANSYS(TM) or RUAUMOKO(TM)) to make 

speed comparisons meaningful. Hence, it forms the foundation of the comparisons made in 

this thesis. Note that while MATLAB can be relatively slow compared to optimised C or 

FORTRAN, the speed increases of these codes should be relatively unchanged for any given 

approach developed here. Thus, any improvements should carry through to optimised code. 

Secondly a faster alternative to this standard approach was to be developed and tested on a 

series of example problems. Particular attention is paid to speed increases. Note that all 

numerical solutions were optimised as much as possible using MATLAB code alone, so that 
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comparisons were valid and fair. Finally, while MATLAB was used, a further 10-100x speed 

increase might be expected with optimised C or FORTRAN code and processor-specific 

compilation. 

To simplify the solutions and methods developed, only one element type and only one 

hysteretic model were used. However, the methods developed in this thesis can be readily 

extended to include other elements and hysteresis models. In this thesis, this breadth was not 

a main focus, as the primary outcomes were methods development and demonstrating 

significant reductions in computational cost (increase in speed). 

As noted, further absolute performance gains can be had by using a compiled language, rather 

than MATLAB. This approach would have taken significantly longer to code and is not likely 

to make a large difference in the relative speed comparisons obtained. Both numerical 

solutions derived here, as designed and compared, would likely benefit similarly from using a 

faster language. Based on the results in this thesis, a case for developing such a numerical 

solution could be made. 

1.3 LITERATURE SURVEY 

Numerical solution of the non-linear dynamic response of structures by step-by-step 

numerical integration methods is well presented in “Dynamics of Structures”(Clough & 

Penzien, 1975) but the original methods first appeared in a paper by Nathan M. Newmark in 

1959 (Newmark, 1959). Step-by-step methods must be used in the non-linear case as the 

principle of linear superposition does not apply. Any non-linearity in the response invalidates 

other linear analyses, such as frequency domain or modal domain approaches. The book 

presents both constant average and linear acceleration Newmark-β schemes, although several 

other forms and extensions exist. 
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The ordinary differential equation (ODE) numerical solution recommended by the MATLAB 

help files(MathWorks, 2010) is a Runge-Kutta(Dormand & Prince, 1980) based function. 

This Runge-Kutta solution has been found to be efficient at solving most ODE problems 

when compared with other ODE numerical solutions for nonstiff systems(Hosea & 

Shampine, 1994). In particular, they also offer good accuracy and variable step times. 

Similar ODE numerical solutions are used in many other fields where non-linear systems 

need to be solved e.g. (Hann, Chase, & Shaw, 2005). In that specific example paper, the 

objective is to speed up the analysis of a series of non-linear dynamic equations modelling 

the insulin-glucose metabolism of critically ill patients. The equations of motion used here in 

non-linear structural analysis can be arranged in the same fundamental form as their model so 

the same fundamental approach can be taken. 

The non-linear component used here is Ramberg-Osgood hysteresis(Ramberg & Osgood, 

1943). This hysteresis model describes the non-linear relationship between stress and strain 

when near, or in excess of, the material yield strength. It has been particularly useful in 

modelling the behaviour of metals undergoing strain hardening(Palermo & Vecchio, 2004). It 

is also widely used in structural analysis codes (Carr, 2008) and is well accepted in the 

profession. 

1.4 NEWMARK-β SOLUTION METHODS 

To solve a non-linear structural system a full time history Newmark-β or similar, numerical 

integration scheme is typically used. Alternatives, such as modal or frequency domain 

analysis, cannot be used as the principle of superposition does not hold in the non-linear case. 

Hence, step-by-step integration is required. 
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Typically, a constant average acceleration Newmark-β solution is used. This choice is made 

because it has an unconditionally stable time step. Hence, for relatively large time steps the 

solution will remain stable and can give good results if the higher modes do not make a 

significant contribution to the response. However, unconditionally stable does not imply 

unconditionally accurate, and a proper time step must be chosen. For the non-linear case, it 

enables good results if the non-linearity is not a significant contributor to the response and a 

small enough time step is used(Lu, Chung, Wu, & Lin, 2006).  

In numerical integration, a time step must be selected that is small enough to properly capture 

the behaviour of the system. This small time step results in accurate results, but at the cost of 

computational speed. When a large time step is selected the results can be inaccurate and 

unstable, but also run much faster. Hence, there exists a fundamental trade off of speed and 

accuracy. In most cases a small time step is needed for only brief periods during the analysis, 

while a large time step is adequate for much of the rest of the analysis. 

The downside to the large time steps with hysteresis curves is that turning points in the 

hysteretic behaviour are not accurately found. If the actual turning point where direction or 

stiffness changes lies in between time points when using large time steps, the Newmark-β 

method will not attempt to find the actual turning point, but continue on. As will be seen 

later, a slight change in the turning point can greatly impact the following response, and thus 

cause significant inaccuracy in the outcome. 

Newmark-β methods are favoured in earthquake analysis for many reasons. In particular, it is 

a simple method and non-linear effects can be added quite easily. The downside of the 

method is that it is very inefficient compared with other (apparently) more complex methods. 

This last point illustrates the real-world trade off between complexity, efficacy and uptake 

that confronts many technology solutions. 
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1.5 PROPOSED ODE SOLUTION APPROACH 

To improve on the performance of the Newmark-β and similar second order ordinary 

differential equation (ODE) numerical integration schemes a generic ODE solution was 

selected as the foundation. Instead of directly solving the second order differential equations, 

as is done with Newmark- β it splits up these second order ODEs into two, coupled, first 

order differential equations. These resulting equations are then solved with an appropriate 

ODE solution. MATLAB has several such numerical solutions built in, with the Runge-Kutta 

based ODE45 method typically recommended as a good starting point(MathWorks, 2010). 

MATLAB’s ODE45 function uses an explicit Runge-Kutta (Dormand & Prince, 1980) 

method. The step size is variable, which means that at places in the analysis that need a small 

time step it can be resolved accurately, while marching through simpler regions much more 

quickly with a larger time step. Once a function has been created in MATLAB for a given 

system of equations other ODE solution functions can be used to find which has the best 

performance. 

To write the ODE function representing the non-linear system of equations, they must first be 

converted into a continuous form. The Newmark-β solution has the advantage of always 

moving only forward in time. However, this assumption does not hold true for all ODE 

numerical solutions. In particular, some numerical solution methods will go back in time with 

a smaller step size or do multiple solutions at different times for a single step to increase 

accuracy(Shapine & Gordon, 1975). The derivation of this continuous form is required for 

this research and is given in the next chapter. 

1.6 RAMBERG-OSGOOD HYSTERESIS 

The Ramberg-Osgood hysteresis model was originally formulated at NASA for modelling 

metals near their yield points(Ramberg & Osgood, 1943). The model is still useful in 
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modelling the steel structure of buildings, which have similar behaviours. Its main features 

are smooth strength degradation around the yield point and strain hardening(Bruneau, Uang, 

& Whittaker, 1998). In structural analysis it is used to capture the plastic behaviour of beams 

as they undergo yielding to dissipate energy during large seismic events. 

The Ramberg-Osgood hysteresis curve smoothly transitions from the un-deformed stiffness 

as it degrades. Then as the element is unloaded the original linear stiffness returns. This 

behaviour closely models the strain hardening exhibited by various metals used in structures. 

It also captures the same fundamental shape seen in structural push-over tests. 

The behaviour of the Ramberg-Osgood method during the first loading is defined: 

 
  

 

  
    

 

  
 

   

  1.6.1 

Where   is the stress,   is the force,    is the initial elastic stiffness,    is the effective first 

yield and   is the Ramberg-Osgood constant. Once the turning point (  ,   , see Figure 1.1) 

has been reached, the equation for the curve is defined on the return by: 

 
      

    

  
     

    

   
 

   

  1.6.2 
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FIGURE 1.1: RAMBERG OSGOOD HYSTERESIS MODEL (CARR, 2008) 

Equations (1.6.1) and (1.6.2) can be rearranged for         : 

 
         

  

   
 
   

    
1.6.3 

For subsequent loadings          can then be defined: 

 
         

  

   
    
   

 
    

1.6.4 

These definitions enable calculation of the tangent stiffness matrix at any point in the 

analysis. Both numerical solutions use them as will be seen later. 

One important fact to note from Equations (1.6.1) and (1.6.2) is that the stiffness is never the 

same from one time step to the next. In other hysteresis models like the bilinear model 

significant speed improvements can be had by knowing that the stiffness is constant in certain 
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regions. This makes the Ramberg-Osgood model computationally expensive by comparison 

as the stiffness changes every time step and thus must be recalculated every time step. 

1.7 CHAPTER SUMMARY 

The motivation of this thesis is that it would be useful to be able to conduct non-linear 

seismic analysis on building models in design. Currently this is not feasible as the existing 

numerical solutions are too slow to give trustworthy results in a timely manner. 

This thesis takes the approach of using more efficient numerical integration schemes than the 

commonly used Newmark-β scheme. The schemes tested are implemented as MATLAB 

functions including a Runge-Kutta based solution. By solving the governing equations more 

efficiently the time taken for trustworthy results can be substantially reduced. 

The non-linear component used in this thesis is a Ramberg-Osgood hysteresis model. This 

model is commonly used in structural seismic analysis for the frame response. This model 

incorporates strain hardening and does not remain constant from one time step to the next. 

This makes it one of the more computationally expensive hysteresis models. 
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2 DERIVATION OF NUMERICAL SOLUTION METHODS 

2.1 DYNAMIC-EQUILIBRIUM CONDITION 

The equations of motion for a system can be written in general matrix-vector form: 

               2.1.1 

Where fI is a vector of the inertia forces for each DOF, fD is a vector of the damping forces 

and fS are the elastic forces. 

The elastic force is defined: 

          2.1.2 

where   is the displacement vector and   is the matrix of stiffness coefficients. Note that   is 

constant for linear systems, but non-linear and time-varying in other more complex cases. 

By assuming that the damping depends on the velocity (viscous damping) the damping force 

is defined: 

           2.1.3 

where   is the damping matrix and    is the velocity vector. 

Finally, the inertial forces are defined: 

           2.1.4 

Where   is the mass matrix and    is the acceleration vector. 

Substituting Equations (2.1.2) – (2.1.4) into the equation of motion in Equation (2.1.1) yields: 

                       2.1.5 

This equation requires the secant stiffness matrix, for non-linear analysis at any given time 

step. It can be hard to calculate accurately when the tangent stiffness matrix is changing each 
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time step according to the hysteresis rule in use. Figure 2.1 shows the secant stiffness 

(K_secant) for a typical non-linear force displacement response. To avoid calculating the 

secant stiffness matrix every time step, which can be computationally expensive, an 

incremental equation of motion is used instead. 

 

FIGURE 2.1: DEPICTION OF STIFFNESS MATRIX AT THE START OF THE TIMESTEP 

(K_ORIGINAL), THE TANGENT STIFFNESS AT THIS TIMESTEP (K_TANGENT) AND THE 

STIFFNESS AT THIS TIMESTEP (K_SECANT). 
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2.2 ELEMENTS 

The elements used in this thesis are 2D beam elements with two nodes and three degrees of 

freedom per node as shown in Figure 2.2. 

 

 

For the purposes of this thesis a lumped mass model was used. This is where the mass matrix 

is diagonal. The matrix is defined: 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
  

 
 

   
   

  

 
  

 
 

   
   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
2.2.1 

Where   is the element length and   is the weight of the element per unit length. 

FIGURE 2.2: 2D BEAM ELEMENT 
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The stiffness matrix is defined: 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
 

  

 
    

  

   

  
 

    

  

   

  

   

  

   

 
 

   

  

   

 

 
  

 

  

 

 
    

  
 

   

  

    

  

   

  

   

  

   

 

   

  

   

  
 
 
 
 
 
 
 
 
 
 
 
 

 
2.2.2 

A Caughey damping model was used for the damping matrix in this thesis. This allowed 

setting the damping for each mode in the response. The calculation for the Caughey damping 

matrix is outlined here. 

First the eigen-problem is solved as defined: 

 
       

2.2.3 

Where   is a matrix of eigenvectors and   is a diagonal matrix of eigenvalues. The modal 

damping matrix,   , is then defined: 

 
       

2.2.4 

Where   is a vector of damping ratios for each mode and   is the square root of each value in 

 . This modal damping matrix can now be converted to the damping matrix,  : 

 
          

2.2.5 

A major downside of this damping model is that the C matrix is almost full so the system 

matrices cannot be stored as sparse matrices. This will disadvantage both algorithms in both 

speed and memory usage. 



14 

 

 

2.3 NEWMARK-β DERIVATION 

Start by considering the acceleration history at two points,   and    , as in Figure 2.3. 

 

 

Assume acceleration between   and     to be: 

 
                    2.3.1 

FIGURE 2.3: ACCELERATION HISTORY 

Acceleration,    

    

 

      

 

  

 

     

 
   

 

Time,   



15 

 

Integrating to find velocity: 

 

            
     

   

         
   

 

         
       

   

  

                         

       

   

  

                         

2.3.2 

Now assume that the acceleration between   and     is defined: 

 
                      2.3.3 

Integrate once to find velocity in terms of    : 

 

            
     

   

         
   

 

         
       

   

  

           

2.3.4 

Integrate (2.3.4) and substitute (2.3.3) to find the displacement: 

 

         

   

 

       

       

   

         
       

   

  

          
        

 

                   
     

 
              

2.3.5 
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In this thesis only constant average acceleration is considered so by setting   
 

 
 and   

 

 
 

in Equations (2.3.2) and (2.3.5) the following equations for the velocity and displacement at 

the end of the time step are found: 

 

          
  

 
            

2.3.6 

 

              
     

 
            

2.3.7 

Now rearrange (2.3.7) for      : 

 
     

 
                    

     

 
    

2.3.8 

 

      
 

     
                    

2.3.9 

Now substitute (2.3.9) into (2.3.6) to find      : 

 

          
  

 
     

 

     
                     

2.3.10 

 

          
 

  
                

2.3.11 

Equations (2.3.9) and (2.3.11) can now be substituted into the equation of motion, 

Equation (2.1.5): 

 

  
 

     
                    

       
 

  
                            

2.3.12 
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2.3.13 

Equation (2.3.13) can be expressed in terms of an effective stiffness matrix and loading 

vector: 

 

             
2.3.14 

Where           are defined: 

 

   
  

     
 

  

  
   

2.3.15 

 

             
 

     
                  

 

  
        

2.3.16 

The algorithm for this constant average Newmark-β scheme is as follows 

1. Define initial conditions   ,     and     

2. Solve (2.3.14) for      then use (2.3.9) and (2.3.11) to find       and       

respectively. 

3. Repeat step 2 until at the end of the acceleration vector      

2.4 INCREMENTAL EQUILIBRIUM 

In Clough & Penzien (1975) the incremental equilibrium equation is defined based on the 

original Newmark-β equations of motion: 

          1 2.4.1 

                                                 
1
 Eqn 15-5 (Clough & Penzien, 1975) 
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Where     is the effective tangent stiffness matrix and     is the effective incremental loading. 

The effective tangent stiffness matrix is defined: 

 
       

 

  
  

 

   
  2.4.2 

And the effective incremental loading is defined: 

 
               

 

 
          2.4.3 

Using the displacement increment calculated at a given time step from Equation (2.4.1), the 

incremental velocity can be found using: 

 
    

 

  
        2.4.4 

The initial acceleration vector should be calculated at the start of the step by solving for 

    in Equation (2.1.1), yielding: 

            
    

 2.4.5 

Thus, the overall process using incremental equation is defined: 

1. Define initial conditions    and     

2. Find the change in the forcing vector     ,   , since the previous time step. 

3. Use (2.4.5) to find    , the acceleration at the start of the time step 

4. Use    to solve (2.4.1) for the incremental displacement    

5. Use (2.4.4) to find the incremental velocity     

6. Finally add the incremental displacements and velocities to a running sum (the actual 

displacement and velocity). 

7. Store the actual values for this time step 

8. Repeat from step 2 until at the end of the acceleration vector      
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2.5 DERIVATION OF FIRST ORDER EQUATIONS FOR ODE SOLUTION 

Start with the second order system of equations defined: 

                  2.5.1 

Introduce a second variable by setting      and      . Now, solving for the 

derivatives of these new variables yields: 

        

                   

2.5.2 

Or in matrix form with           : 

 
          

 
    

  2.5.3 

Where A is defined: 

    
  

          
  2.5.4 

Where   is a matrix of (n x n) made of all 0 values and   is the identity matrix of size 

(nxn). 

Equations (2.5.3) and (2.5.4) are the standard state space formulation for the 2nd order 

mechanical vibration problems. 

The hysteresis rule defines the relationship between stress and strain. This relationship 

is captured in the tangent stiffness matrix. To make use of this fact we can follow the 

elastic force defined: 

                         2.5.5 
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Recall that in the case of Ramberg-Osgood hysteresis, the tangent stiffness matrix for 

the initial loading is defined: 

 
         

  

   
 
  

 
    

2.5.6 

As the time step goes to zero the differential equation (DE) becomes: 

                 

  

  
          

  

   
 
  

 
    

2.5.7 

However,       can be redefined using the chain rule, yielding: 

   

  
 

  

  

  

  
 

  

  
  2.5.8 

So the set of DEs thus becomes: 

                 

   
    

   
 
  

 
    

2.5.9 

Or in first order form: 

        

                   

   
    

   
 
  

 
    

2.5.10 
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Equation (2.5.10) is for the initial loading only. However, this formulation can be easily 

modified for subsequent loadings by altering the third line accordingly, using Equation 

(1.6.4) to give: 

        

                   

   
    

   
    
   

 
    

2.5.11 

The initial loading is only until the element changes direction. The element changes direction 

when the velocity (the first derivative of displacement) crosses zero. 

Now Equation (2.5.10) can be used for the first loading and Equation (2.5.11) for subsequent 

loadings. The algorithm for the general ODE solve with one element is: 

1. Set initial conditions 

2. Run one of MATLAB’s ode numerical solutions to solve Equation (2.5.10) with 

events
2
 turned on stopping at velocity (  ) crossing zero. 

3. Store the data vectors. 

4. Run the ode solver again this time with Equation (2.5.11) and with the initial 

conditions equal to the state of the system at the end of the previous solve. Again 

events must be turned on and the termination condition is the velocity crossing zero. 

5. Add the data from this solve to the data vectors. 

6. Check if we have reached the end of the input vector. If not repeat from step 4. 

This algorithm must be slightly altered for a system with more than one element. With more 

than one element the displacement inside the element must be used in Equations (2.5.10) and 

                                                 
2
 See http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ode23tb.html for an explanation of ODE 

events 
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(2.5.11) and similarly with the velocity for the termination condition. To do this the relative 

displacement of each of the element’s nodes is used in place of the absolute values. 

Additionally the termination condition must only be enabled after the second piece of input 

data. It is impossible for the system to turn in this space as there is only one piece of data so 

far. If the system is allowed to turn before the 2
nd

 piece of data ODE numerical solutions that 

use more than one solve per step (for example MATLAB’s ode113) can think the system has 

turned if the first piece of acceleration data is zero as the velocity is also zero.  

2.6 CONTINUOUS FORMULATION CHECK 

In the single degree of freedom case, a continuous formulation can be derived to check 

Equations 2.5.10. Starting with the single degree of freedom equation of motion with scalars: 

                  2.6.1 

Where: 

 
  

  

   
 
  

 
    

2.6.2 

And: 

      
2.6.3 

If we assume that the displacement is positive (   ) and thus       , and put    , 

then an analytical solution to   can be found, and is defined: 

 
  

  

  
 
  

 
  

  
  
  

 
2.6.4 

                
2.6.5 
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Equation (2.6.5) is quadratic in  . Solving for  , where     must be positive for a realistic 

result, yields: 

 

  
       

        

  
 2.6.6 

Recalling the linear ODE equation of motion: 

        

     
 

 
              

2.6.7 

Equation (2.6.6) can be substituted into Equation (2.6.7) yielding: 

        

     
 

 
     

 

 
        

                
2.6.8 

This is a continuous first order ODE that can be used to check the more general form in 

Equation (2.5.10). The algorithm used for verification of the initial loading of the other 

numerical solutions is: 

1. Set initial conditions 

2. Run one of MATLAB’s ode numerical solutions to solve Equation (2.6.8) 

3. Compare results with the other numerical solutions 

2.7 CHAPTER SUMMARY 

This chapter first presented the equation of motion (EOM), the governing equation for the 

analysis in this thesis. The numerical solutions presented in this thesis solve this governing 

equation to find the motion of the structure to be analysed. 

Secondly the constant average acceleration Newmark-β numerical integration scheme is 

derived and the algorithm for its use is presented. This method is the typical approach for 

linear dynamic analysis. An enhancement to this Newmark-β is then presented using the 
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incremental form of the EOM. This enhancement allows solving with non-linear hysteresis 

models without needing to calculate the secant stiffness matrix. 

The continuous form of the EOM is then derived for use in the ODE solver algorithm. The 

algorithm is also outlined. This algorithm is later shown to be a more efficient alternative to 

the Newmark-β algorithm. 

Finally the continuous form is solved analytically for the single degree of freedom case. This 

analytical solution can then be used to verify the other two numerical solutions.  
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3 METHODS 

3.1 CODE FLOWCHARTS 

The general outline of the process of solving the earthquake response is given in Figure 3.1. 

The solution method section can be either the Newmark-β (Figure 3.2) or the ODE solver 

(Figure 3.3). The actual ODE function is outlined in Figure 3.4. 

The first section of the code is problem definition. This consists of importing an acceleration 

vector and the corresponding dt, the time between each acceleration data point. The building 

metrics are then defined. They include: number of floors, number of bays, elements per 

column, height of each floor and bay width. The material and cross-section properties are also 

defined. 

With all this information stored a script is used to generate the mesh and boundary condition 

matrix. The mesh generation is done by creating a node list and a vector of element objects 

connecting the nodes. This information is returned in the form used by the solution methods. 

This collection of system defining objects and matrices is then given to either the Newmark-β 

or ODE solution function. These functions are very similar with key differences being that 

the Newmark-β code needs a user defined solver time step to use and the ODE function can 

accept an alternative ODE solver to use in the numerical integration. The details of these 

algorithms are given later in this section. Upon completion of the algorithm the displacement 

data is returned with a corresponding time vector. 

With these results the motion of the building can be visualised in several ways. The motion of 

particular nodes be tracked or a series of images of the building during the analysis can be 

produced from which a video can be created. 
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The speed of all the steps here are largely unimportant as none of them are repeated even 

when using multiple input acceleration vectors. It is only the time taken by the solution 

function that is of interest. 

 

 

The Newmark-β function begins by creating a time vector that will correspond to the output 

data using the user selected solver time step. The acceleration vector is also interpolated to 

give the acceleration at each solver time step. There is a provision for storing less steps than 

FIGURE 3.1: CODE OVERVIEW FLOWCHART 

RUN SOLUTION FUNCTION 

This can be either the Newmark-β or the ODE solver 

DEFINE PROBLEM 

Import acceleration vector 

Choose building metrics 

Choose material properties 

CREATE SYSTEM TO BE SOLVED 

Create Mesh 

Set Boundary Conditions 

PROCESS RESULTS 

Plot(s) of response 

Timing information from solver 
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are actually calculated in the case of very small solver time steps. This works to significantly 

reduce memory requirements while making negligible change in result. The solver still uses 

the small time step to numerically integrate; it is only the storing step that is altered. 

The global mass and stiffness matrices are calculated using the system defining data that was 

found earlier. From these the damping matrix can be found using the damping model 

selected. It is trivial to create an alternative damping model function in place of the Caughey 

function. 

The mass matrix is then inverted and stored. This is a computationally expensive process so it 

would be undesirable to be doing this at every time step. This makes the assumption that the 

mass matrix does not change with time. Typically inverting matrices is avoided in 

computational mathematics but here we know the matrix is diagonally dominant (see 

Equation (2.2.1)). This guarantees that it is invertible (Farid, 1995). 

Up to this point everything that has been done is only done once and need not be repeated for 

running the same model with different input accelerations. This means the speed is largely 

inconsequential. The actual time stepping loop starts here. First a forcing vector is created 

using the boundary conditions and the acceleration vector; this is the application of the type 2 

boundary conditions. By using this vector and the previous step’s forcing vector (all zeros in 

the case of the first step) an incremental forcing vector is found. 

This forcing vector and the previous step’s displacement vector (all zeros in the case of the 

first step) are passed to each element object. These element objects use this information 

together with the hysteresis rule defined for each element to produce a local tangent stiffness 

matrix at this time step. 
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The local tangent stiffness matrices from each element can then be assembled into a global 

tangent stiffness matrix. These two steps involving applying the hysteresis rule to each 

element and then assembling the global stiffness matrix is very computationally expensive 

and is also done in the ODE function. As each of the elements is potentially changing 

direction and thus stiffness at different times they must be found individually. It is important 

to note that any parallelisation or other method to speed this process up will substantially 

benefit both solvers. 

If a different hysteresis rule were required this need only be made into a function and passed 

to each element in place of the Ramberg-Osgood function. This would seamlessly integrate 

and no further changes need be made. 

The effective stiffness and effective loading can now be calculated using Equations (2.4.3) 

and (2.4.2). The initial acceleration is also found using Equation (2.4.5). After the type 1 

boundary conditions have been applied Equation (2.4.1) can be solved to find the incremental 

displacement. 

The incremental displacement is used to find the incremental velocity using Equation (2.4.4). 

The actual displacement, velocity and acceleration are found by adding the incremental 

values. These are added to the storage vector to be returned and the next time step is started. 

There is also an added feature to reduce memory requirements. In order for the Newmark-β 

algorithm to accurately find the turning points in the hysteresis loops very small time steps 

must be used.  Although this accuracy is required to find the subsequent displacements it is 

not required for post processing. This result allows the algorithm to use the very small time 

step but not store all of the data that was used. 

  



29 

 

 

 
FIGURE 3.2: FLOWCHART OF NEWMARK-Β CODE 

Prepare time and acceleration vectors with the chosen time step 

Assemble global mass and stiffness matrices 

 

Invert the mass matrix for use later 

Increment time step counter 

Create a forcing vector using the boundary conditions and the 

acceleration vector and convert into an incremental forcing vector 

Update all elements on their displacement and forces at the start of 

this time step 

Reassemble the global stiffness matrix 

Find the effective stiffness and loading and solve Equation (2.4.1) 

Update and store the displacement variables using the incremental 

displacement results 

Is the time step the last time step? 

Return Results 

Find the damping matrix using the chosen damping model 

Yes 

No 
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The outer ODE function starts with finding the global mass and stiffness matrices as in the 

Newmark-β function. The solver time vector is not able to be calculated at this point however 

as the ODE code proceeds with a variable time step. As with the Newmark-β function, the 

damping matrix is also found using the chosen damping model function. 

A forcing vector is created using the boundary conditions; this is applying the type 2 

boundary conditions. The type 1 boundary conditions are applied by removing the fixed 

degrees of freedom from the system matrices. As with the Newmark-β function the mass 

matrix is inverted and stored for later use. 

The next step is to create a list of degrees of freedom relating to each element. This is used 

later in using turning points in the hysteresis calculation for each element. 

Finally the ode options are set up. The MATLAB ODE solver to be used is chosen either by 

the default or the user selection. The solver is given the time step of the acceleration data as a 

maximum step size. This prevents the solver from missing out any of the input data. The 

solver is also given a relative tolerance of 1e-10 and events are turned on. Turning on events 

will cause the solver to stop when certain criteria defined in the inner ODE function are met. 

The very small relative tolerance has very little impact on performance and ensures that the 

solver is finding all the points to great accuracy. 

The ODE solver is then run for the initial loading (up to the first element turn) with initial 

conditions being all zero. The inner ODE function solved by the MATLAB ODE solver is 

described later in this section. On completion of this initial run the displacement, velocity, 

force and time matrices/vector are returned. The end values of these are used as the initial 

conditions for the following run. 
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At the end of each run the results data is appended to the results so far and at the end the final 

results are returned. There is also provision for checking that too much data is being stored 

and an interpolation will be run occasionally to reduce the memory requirements. This is 

done in both solver methods.  

 

 
FIGURE 3.3: FLOWCHART FOR THE OUTER ODE FUNCTION 

Assemble global mass and stiffness matrices 

 Find the damping matrix using the chosen damping model 

Remove fixed degrees of freedom (Type 1 Boundary conditions) 

from system matrices 

Create force vector from forcing (Type 2) boundary conditions 

Create a list of degrees of freedom relating to each element 

Invert the mass matrix for use later 

Run ode function solving Equations (2.5.10). Stop when an 

element changes direction. (See Figure 3.4) 

Identify the element(s) turned and record them for the ode function 

Identify the element(s) turned and record them for the ode function 

Have we reached the end of the analysis? 

Return Results 

No 
Yes 
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The inner ODE function starts by taking the acceleration vector and corresponding time 

vector and interpolating to find the acceleration at this time step. The first 2 equations from 

Equations (2.5.10) can be solved to find the tangent of the displacement and velocity. This 

leaves only the tangent of the force which depends on the hysteresis model. 

To apply the Ramberg-Osgood hysteresis model to each element first each element is 

selected in turn. The element has a yield force defined in the element object. The local 

velocity vector and force vector are found using the list of degrees of freedom relating to each 

element which was found in the outer ODE function. The local initial stiffness is known and 

stored in the element object. 

By looking at the data passed to the inner ODE function it is determined if this element has 

turned and when. Based on this either Equation (2.5.10) or (2.5.11) is solved to find the 

tangent of the force at this time step. 

If another hysteresis model were to be used then this procedure would need to be changed 

accordingly. This could be achieved by having each element set a hysteresis model as in the 

Newmark-β but instead of the local tangent stiffness matrix being returned the tangent force 

is returned. 

The tangent of the force for each element is assembled into a global force and returned along 

with the global tangents of the displacement and velocity. Just like the incremental Newmark-

β algorithm Figure 3.2 the secant stiffness is not calculated. 

The inner ODE function also gets called by the MATLAB ODE solver to find when to stop. 

The stopping condition is any element turning. The element velocity crossing zero is used as 

this stopping condition. To find the velocity of each element the global velocity vector must 

be split into local velocity for each element. The termination condition is then defined as any 
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of those velocities crossing zero. The MATLAB ODE solvers will find this stopping 

condition accurately as it is able to reduce the step size near interesting points. 

 

 

The main difference between the algorithms is that the ODE code is solving the continuous 

form the equation of motion. Both algorithms are essentially the same except that the 

Newmark-β code is solving incrementally each time step while the ODE code is able to solve 

the continuous form at any time point. This flexibility allows more efficient numerical 

integration algorithms to be used. 

FIGURE 3.4: INNER ODE FUNCTION FLOWCHART 

Interpolate to find the input (ground) acceleration at this time step 

Solve the first 2 Equations from Equations (2.5.10) 

Select the first (or next) element 

Find the yield force for this element 

Find the local velocity vector, force vector and initial stiffness 

matrix 

Has this element turned? 

Solve 3
rd

 Equation from (2.5.11) Solve 3
rd

 Equation from (2.5.10) 

Add the local tangent force vector into a global tangent force 

vector 

Is this the last element? 

Yes No 

Return the global tangent vectors 

Yes 
No 
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Although they are essentially doing the same thing the algorithms are coded very differently. 

The Newmark-β function simply steps through each time step as in Figure 3.2 but the ODE 

function is split up into two distinct parts. The outer part as presented in Figure 3.3 is 

preparing the data needed for the MATLAB ODE solver to run. The inner part is called by 

MATLAB’s ODE solver and is presented in Figure 3.4. It is this inner code that is called 

many times while the outer code sets up the data for the solver to run again after each turn of 

an element. 

Both algorithms have the same problem in terms of computational intensity. They both need 

to find if each element has turned and what that element’s local stiffness is, based on the 

hysteresis rule. The ODE code will only be faster if it is able to do this expensive operation 

less often than the Newmark-β code. 

This most expensive part of the analysis involves dealing with each element individually. The 

result from each element does not depend on any other element. This is termed a highly 

parallelisable problem (Berkman, Galil, Schieber, & Vishkin, 1989). If this section of the 

code were to be run in parallel we could expect performance increases roughly proportional 

to the number of threads on the system. 

The way the Newmark-β function is coded will tend to give it an advantage in the MATLAB 

code that will not exist when using a compiled language. This is because the other very 

computationally expensive part of the Newmark-β algorithm is the solving of Equation 

(2.4.1). This is done with a built in MATLAB command (Mathworks, 2010). This part of the 

code will not benefit from coding in a compiled language as it already is. However, it can be 

parallelised as the matrix involved is sparse (Amestoy, Duff, L'Excellent, & Li, 2001). 
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3.2 INPUT ACCELERATION 

For the purposes of benchmarking and verifying using the models presented in the next 

section two input accelerations were used. The first is a synthetic acceleration record shown 

in Figure 3.5. The second is the North-South component of the El Centro earthquake recorded 

on May 18 1940. The acceleration record is shown in Figure 3.6. 

The synthetic acceleration record begins with a ramp in one direction followed by an equal 

ramp in the opposite direction. The first ramp is sufficiently strong to cause plastic 

deformation while the second stops the building accelerating. The building is then allowed to 

respond during a period of no acceleration followed by a final ramp. This last ramp is large 

enough to again cause plastic deformation. This will tend to show up slight inaccuracies in 

following the hysteresis model as the building is plastically deformed early on and then again 

loaded at the end. The record is also very short at only 2.5 seconds which allows for quick 

testing. 

 

FIGURE 3.5: SYNTHETIC INPUT 
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FIGURE 3.6: EL CENTRO EARTHQUAKE RECORD (NORTH-SOUTH COMPONENT) 

3.3 TEST CASES 

The first test case is a single element with two nodes as shown in Figure 3.7. The first node is 

held laterally, vertically and rotationally. The second node has a lateral acceleration applied 

to it. This simple test case has an analytical solution and is well known. Thus, it is a good 

starting point.  
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The second test case uses two elements and three nodes arranged as in Figure 3.8. As in the 

first case the first node is held and the other two nodes have lateral accelerations applied to 

them. This is a modest, but controllable addition of complexity to the first case. 

 

 

The third case uses three elements to form a single floor frame. There are two vertical 

elements and one horizontal arranged as in Figure 3.9. Nodes 1 and 2 are held while nodes 3 

and 4 have identical lateral accelerations applied. This test case is a simple partial frame, 

which is the “base” element of more complex framed structures. Hence, solution of this case 

is readily extended to other cases. 

FIGURE 3.8: TWO ELEMENT TEST CASE 

1 

2 

3 

FIGURE 3.7: SINGLE ELEMENT TEST CASE 

1 

2 
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The final case considered is a frame developed in the SAC Project. The SAC Project 

produced structures designed for Los Angeles, Seattle and Boston (Krawinkler & Gupta, 

1998). The structure used here is the SAC-3 model. This model is a 3-bay, 3-story building 

shown in Figure 3.10 with columns and beams defined in Table 3.1. 

 

FIGURE 3.10: SAC-3 STRUCTURE MESH 

FIGURE 3.9: SINGLE FLOOR TEST CASE 

1 2 

4 3 
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TABLE 3.1: SAC3 

Name Area [m
2
] Second Moment of Area [m

4
] 

W24x68 1.297x10
-2

 7.617x10
-4

 

W30x116 2.206x10
-2

 2.052x10
-3

 

W14x257 4.877x10
-2

 1.415x10
-3

 

W33x118 2.239x10
-2

 2.456x10
-3

 

3.4 TEST SYSTEM 

MATLAB was run using the “-singleCompThread” switch to avoid any issues with multi-

threading. Both numerical solutions would likely benefit from multi-threaded coding but this 

was outside the scope of this thesis. In the case of a Monte Carlo analysis parallelising the 

code would not be required as multiple cases could be run in parallel with each case executed 

as a single thread. This represents a highly parallelisable problem (Berkman, Galil, Schieber, 

& Vishkin, 1989). 

The test system was as follows: 

Software:   MATLAB 2009b 64bit 

Operating System:  Microsoft Windows 7 64bit 

Hardware:   Intel Core 2 Quad Q9300 @ 3.60 Ghz 
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4 RESULTS 

4.1 TEST CASES 

The set up code for each of the test cases are given in APPENDIX B: Test Case Code. The 

manual for using the set of scripts used in the test case code is given in APPENDIX A: 

Manual. 

The first test was to determine the most accurate and efficient ODE solver for Equations 

(2.5.10) and (2.5.11). For this task the SAC-3 building was used with one element per column 

as this is one of the more complex building models used to test the Newmark-β algorithm. 

The ground acceleration input used was the North-South component of the El Centro 

earthquake. 

The first storey nodes had some discrepancy between the ODE numerical solutions, as shown 

in Figure 4.1. In this figure, the ode45 method ends up with a slightly different result to the 

other three methods. Ode45 is an explicit Runge-Kutta algorithm and is generally considered 

the best starting point. However, it is not well suited to the very tight tolerances used here 

when compared with ode113 and ode15s. The relative tolerance used here was 10
-10

, whereas 

ode45 is considered more efficient when using the default of 10
-3

 and where only a medium 

level of accuracy is required. In contrast, ode113 is well suited to problems requiring high 

accuracy and where the functions are expensive to calculate (Shampine & Reichelt, 1997). 

The computational speed results for each solver are given in Table 4.1. 

The maximum error in the ode45 solution compared with the others in this case is 5%. The 

ode45 algorithm is not considered appropriate for problems requiring high accuracy 

(MathWorks, 2010). In this case the ode45 solution has not accurately resolved one of the 

early turning points and thus there was a significant error introduced on subsequent unloading 
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and loading of the element. This need for accurately finding the turning points in the 

hysteresis loops is further demonstrated in Figure 4.4. The high accuracy required at the 

hysteresis loop turning points precludes ode45 as a valid algorithm for this problem. 

In the linear portions of the response all solvers give equivalent solutions. When there is 

significant non-linear behaviour there is significant error in one of the algorithms tested. This 

demonstrates the need for an appropriate solver for problems with large contributions from 

non-linear effects. 

 

FIGURE 4.1: HORIZONTAL DISPLACEMENT OF FIRST STOREY NODES. ODE45 DEVIATES 

FROM THE OTHERS WHICH ALL OVERLAP 
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TABLE 4.1: TIME RESULTS FOR THE ODE SOLUTION BENCHMARK 

Solver Solution Time [s] 

ode45 292 

ode23 2047 

ode113 263 

ode15s 880 

 

Table 4.1 shows that the ode113 method is slightly faster than ode45 and yields the same 

result as the other two numerical solutions. This outcome gives confidence that ode113 is 

giving the correct solution. Therefore, from this point on, the comparisons between the ODE 

solution and the Newmark solution are done using ode113. 

These times are very different with ode23 taking an order of magnitude longer than the 

others. This result comes from the solvers actually being completely different. The MATLAB 

interface for each of these solvers is identical but the solvers themselves perform the 

numerical integration in different ways. They are therefore appropriate for different kinds of 

problems. 

The first test after selecting the ODE solver to use was the single element case shown in 

Figure 3.7. The benchmark results are given in Figures 4.2 and 4.3. Figure 4.2 shows the 

results using the synthetic input and Figure 4.3 shows the results from the El Centro ground 

acceleration input. The ODE code was run once in each case with the time taken represented 

by the solid red line. The Newmark-β code was run with different time step values and the 

difference between each Newmark-β solution and the equivalent ODE solution were 

calculated to give the error line shown in blue with a cross at each data point. The time 

required for the Newmark-β runs as the time step is reduced is given by the dashed green line. 
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The synthetic acceleration input was solved more quickly by the ODE solver than the 

Newmark-β solver with a time step of 10
-3

 seconds. As the synthetic acceleration gave such a 

simple response with few turning points in the hysteresis curve the Newmark-β code gave 

little error. As more turning points are introduced the Newmark-β solution will tend to 

compound errors at each point. This can lead to very large errors depending on where the 

turning points are in relation to the time steps the numerical integration occurs at. If the 

turning point is half way between two time steps the error can be very large. If the turning 

points are very close to the time steps the error can be much lower. 

 

FIGURE 4.2: SINGLE ELEMENT RESULTS WITH SYNTHETIC INPUT OF FIGURE 3.5 THE 

SOLID RED LINE SHOWS THE TIME FOR THE ODE SOLUTION 

The synthetic input gives an almost steadily reducing error in the Newmark-β solution with 

decreasing solution time step. This result is very favourable for the Newmark-β algorithm as 

it gives trust in the result. When the error is erratic the result cannot be trusted. 
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This favourable result is likely due to both the simple model consisting of only a single 

element and also the simple input acceleration in Figure 3.5. As is seen later in this chapter, 

this steady decrease in error is no longer seen when a more complex model or input 

acceleration are used. 

The El Centro ground motion input gave a much more complex output with many turns in the 

hysteresis curve. This more complex input and response caused the ODE code to take almost 

as long as the Newmark-β solution with a time step 10
-3

 seconds. It also caused much greater 

errors to appear in the Newmark-β result, indicating its potential unsuitability in such large, 

non-linear cases. As there were more turns of the hysteresis loop in the non-linear portion of 

the response, there was much greater opportunity for small errors in the Newmark-β result to 

compound as is demonstrated in Figure 4.4. 

It is important to note that the low points in the error of the Newmark-β solution with 

relatively large time steps are not necessarily reliable indicators. They are the result of 

chance. By changing the time step, the points at which each step occurs can change. This can 

put the points the closer or further away from the real turns in the hysteresis loops. The result 

of this is that sometimes a larger time step can give a lower error as the turns in the hysteresis 

loop were more closely modelled. 

When solving with Newmark-β the time step is usually progressively reduced until two 

successive results agree within some pre-set tolerance. This approach means that these low 

points would not be used as the final result in a Newmark-β analysis. In this case the 

Newmark-β code requires a time step of 1.8x10
-3

 seconds or less to get a reliable error of less 

than 1%. 
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FIGURE 4.3: SINGLE ELEMENT RESULTS WITH EL CENTRO GROUND MOTION INPUT THE 

SOLID RED LINE SHOWS THE TIME FOR THE ODE SOLUTION 

The erratic reduction of error in this simple single element test case calls for a closer look at 

the effect of turning point accuracy on the error. Figure 4.4 shows this importance of 

accuracy in finding the turning point in the hysteresis loop on the subsequent response after 

the turning point. The single element case was again considered this time with the input 

acceleration in Figure 4.6. The main feature of this acceleration vector is the sharp change 

from negative to positive acceleration which will cause a sudden change in direction. The 

element is then released, allowing the element to return after experiencing this turn in the 

hysteresis curve. 

Although it appears as though the Newmark-β solution turns at almost the same time and 

displacement as the ODE code at just past 0.4 seconds, the slight difference (1.2%) create a 

large difference in the following unloading of the element. At 0.8 seconds the error has 

reached over 17% which is very significant and this error carries on to the end of the analysis. 
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Figure 4.5 shows this point more clearly. When the Newmark-β code is used with a much 

smaller time step, of 5x10
-4

 the turning point is more accurately identified and the subsequent 

response agrees with the ODE result. 

 

FIGURE 4.4: DEMONSTRATION OF THE NEED FOR TURNING POINT ACCURACY USING A 

SINGLE ELEMENT AS IN FIGURE 3.7 WITH THE INPUT ACCELERATION VECTOR GIVEN IN 

FIGURE 4.6 

The turning point at 0.4 seconds is shown in Figure 4.5. This zoomed in figure clearly shows 

the small, 1.2%, difference in horizontal displacement between the two Newmark-β solutions. 

It is also important to note that the turn happened at the same time, so the only discrepancy is 

the 1.2% displacement error. 
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FIGURE 4.5: CLOSE UP OF THE FIRST TURNING POINT FROM FIGURE 4.4 

 

FIGURE 4.6: TURNING POINT DEMONSTRATION INPUT ACCELERATION VECTOR 
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The second test case with two elements depicted in Figure 3.8 increased the number of 

degrees of freedom and thus the solve time. It also added to the need for accuracy of the 

motion of the first floor node as the motion of the second node depends on it. The benchmark 

results for the synthetic input are given in Figure 4.7 and El Centro results are given in Figure 

4.8. The El Centro input gave a complicated output with many turns in the hysteresis loops. 

The time step required for the Newmark-β solution was very small. The small time step was 

needed as any error in either element would compound causing substantial discrepancies in 

the final result. 

 

FIGURE 4.7: TWO ELEMENTS RESULTS WITH SYNTHETIC INPUT OF FIGURE 3.5 THE SOLID 

RED LINE SHOWS THE TIME FOR THE ODE SOLUTION 

As with the synthetic input for the single element case in Figure 4.2 the errors in the 

Newmark-β solutions are mostly decreasing with decreased solver time step. This is again 

due to the simple nature of both the model and the input acceleration. There are only a few 

turns in the response and so less turns for the Newmark-β solution to miss. 
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FIGURE 4.8: TWO ELEMENTS RESULTS WITH EL CENTRO GROUND MOTION INPUT THE 

SOLID RED LINE SHOWS THE TIME FOR THE ODE SOLUTION 

In contrast to the synthetic results, the El Centro ground motion input errors in Figure 4.8 

have multiple false minimums but still overall tends towards agreement with the ODE 

solution. Of particular note is the two points with very similar errors around a time step of 

4x10
-3

. These could lead a user to think the result is correct when in fact it differs from the 

true solution by more than 20%. These similar errors are likely caused by the time steps 

landing in similar places around the turning points in the hysteresis curves of the two 

elements. There is also a case with three errors very close to each other around a time step of 

3x10
-4

. Once again there is still substantial error in the solution even though these successive 

Newmark-β solutions agree and differ in time step by a factor of around two. 

The error in the Newmark-β results in Figures 4.7 and 4.8 are very different. This shows the 

Newmark-β error to change based on the input acceleration used, it is input dependant. 
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Therefore, if multiple acceleration inputs are to be used on a given model a convergence 

analysis must be done for each one to ensure accuracy. 

The false minimums in Figure 4.8 also occur in some of the other test cases and represent a 

large pitfall in use of the Newmark-β algorithm. For an analyst to avoid using one of these 

false minimums as the solution a much smaller time step must be used in addition to the one 

that found a sufficiently accurate result. This adds substantially to the computational time for 

a Newmark-β analysis. Even though an adequate result might be found at a time step of 10
-4

 

seconds, the user needs to try something much smaller and check the two solutions agree to 

some predefined tolerance in order to have confidence in the result. 

As a follow up to the two element case the actual displacements are compared to the ODE 

solution for two different Newmark-β time steps in Figure 4.9. Although the larger time step 

gives a sensible looking result it is not accurate. The errors are 13.6% in magnitude. In 

addition the peaks are reached at different times separated by 0.7 seconds. Both errors are 

potentially very significant. 

This large discrepancy is caused by the non-linear effect not being modelled accurately. The 

Newmark-β algorithm requires a very small time step even in this simple case due to the 

large contribution of the non-linear effects. The demonstration shows how easily the 

Newmark-β algorithm can lead an analyst astray. Sensible looking results were obtained with 

a time step of 10
-3

 seconds but they were quite different to the result using a time step of 10
-4

 

seconds.  
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FIGURE 4.9: DEMONSTRATION OF SIMILAR BUT INCORRECT NEWMARK-β RESULT 

The next test case is the single floor model made up three elements connecting four nodes, as 

shown in Figure 3.9. The results for the synthetic input and El Centro input are given in 

Figures 4.10 and 4.11 respectively. As with the two element test case the synthetic input was 

quick to solve with both methods. Also, as with the two element case, the El Centro input 

required very small time steps to achieve acceptable levels of accuracy. 

The error in the El Centro result is much higher than the simple synthetic input. As with the 

previous test cases this is due to the large number of turns in the hysteresis loops. With a 

small error at each of these turns the total error at the end of the analysis can be very 

significant. This means a very small time step is required to achieve a reliable result from the 

Newmark-β algorithm when the non-linear effects make a significant contribution to the 

response. 
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FIGURE 4.10: SINGLE FLOOR RESULTS WITH SYNTHETIC INPUT OF FIGURE 3.5 THE SOLID 

RED LINE SHOWS THE TIME FOR THE ODE SOLUTION 

As with the single element and two element test cases with synthetic input the errors are 

decreasing steadily as the time step is reduced. This single floor test case is still a simple 

model as it closely resembles a single element with a weight at the top node. The result of 

this is a steady convergence of the Newmark-β solution to the true solution. 
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FIGURE 4.11: SINGLE FLOOR RESULTS WITH EL CENTRO GROUND MOTION INPUT THE 

SOLID RED LINE SHOWS THE TIME FOR THE ODE SOLUTION 

The final test case is the SAC3 building shown in Figure 3.10. The SAC3 building model was 

particularly difficult for the Newmark-β algorithm to accurately follow, with large non-linear 

effects. This outcome is likely due to the number of elements in the model all depending on 

the displacement of the other elements. As seen in Figures 4.7 and 4.8 in this chapter, when 

non-linear deformations are inaccurate, these errors may flow-on to connected elements. 

Therefore, any slight inaccuracy in one would be compounded in this more complex model. 

The accuracy of the ODE solution was not affected by this issue and gave consistent and thus 

accurate results much more quickly than the Newmark-β solution. The analysis was run for 

both the synthetic input (Figure 4.12) and the El Centro input (Figure 4.13). These figures 

show the Newmark-β solution converging to the ODE solution but only after the time step 

had dropped below 10
-4

s. At this point the Newmark-β solution was taking more than five 

times as long as the ODE solution. 
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FIGURE 4.12: SAC3 RESULTS WITH SYNTHETIC INPUT OF FIGURE 3.5 THE SOLID RED LINE 

SHOWS THE TIME FOR THE ODE SOLUTION 

Unlike the previous examples the SAC-3 building model is not simple. It consists of many 

elements all dependent on the movements of the other elements. The complex nature of the 

model results in an error curve that does not decrease steadily, even with the simple synthetic 

input. It has spikes and plateaus that throw doubt on the reliability of the result. As the time 

step is dropped below 10
-4

 seconds the errors start to decrease reliably and the result can be 

trusted. At this point the Newmark-β solution is taking more than five times longer than the 

ODE solution. 
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FIGURE 4.13: SAC3 RESULTS WITH EL CENTRO GROUND MOTION INPUT THE SOLID RED 

LINE SHOWS THE TIME FOR THE ODE SOLUTION 

There are false minimums in the results from both input accelerations and the convergence 

again shows input dependence in the error of the Newmark-β algorithm. The enhanced 

complexity of the model has increased both of these effects. The synthetic input in Figure 

4.12 shows the result appearing to converge at around 10
-4

 seconds. An analyst might use a 

time step of 10
-4

 seconds for further analysis thinking the solution had converged to within 

0.5%. In reality the error is over 3% for the two input accelerations shown here. 

The preceding figures (Figures 4.1 to 4.13) all demonstrate the ODE algorithm’s consistency 

and accuracy. In every case, the Newmark-β solution converges to the ODE solution as the 

time step is reduced. This convergence adds confidence and reliability to the ODE algorithm. 

These figures were all produced with a yield force,   , chosen to ensure some non-linear 

behaviour and permanent deflection. That is, the final displacement is different to the initial 

displacement. However, the amount of non-linear behaviour greatly affects the error of the 
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Newmark-β algorithm, and is a very significant result. To demonstrate this problem the single 

element test case was used with the synthetic input acceleration and a selection of different 

yield forces. The results are given in Figure 4.15. 

The Newmark-β algorithm assumes that the stiffness remains constant over the time step. 

Looking at Figure 1.1 (reproduced here as Figure 4.14) we can see that the stiffness changes 

rapidly as the Ramberg-Osgood constant increases and as the force in the element approaches 

or exceeds the yield force. This result means that smaller time steps are required to model the 

areas where the stiffness is changing rapidly, such as when the hysteresis loop reaches 

corners or turning points. A result reinforced by the prior results in this chapter. 

 

FIGURE 4.14: RAMBERG OSGOOD HYSTERESIS MODEL (CARR, 2008) 
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FIGURE 4.15: DEMONSTRATION OF THE EFFECT OF YIELD FORCE ON ERROR FOR 

NEWMARK-Β 

The ODE solution times are given in Table 4.2. From this table, it is clear that increased non-

linear behaviour has no real impact on solution time for the ODE solver. The ODE solution 

does not take any longer because it is always finding the turning points very accurately, the 

additional non-linear contribution and thus dependence on this accuracy has no impact. For 

reference and comparison, the time taken for the Newmark-β solution at a few time step 

values are also given in Table 4.3. 

TABLE 4.2: SOLUTION TIMES FOR THE ODE ALGORITHM 

   Solution Time [s] 

1000 1.2 

500 1.1 

100 1.1 
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TABLE 4.3: SOLUTION TIMES FOR THE NEWMARK-β ALGORITHM 

Time Step [s] Solution Time [s] 

10
-3

 0.4 

10
-4

 3.5 

10
-5

 34.5 

4.2 CHAPTER SUMMARY 

The first result of note is that all test cases verify the consistency of the ODE algorithm with 

the Newmark-β algorithm. As the time steps used in the Newmark-β algorithm were 

decreased the difference between the two algorithm’s results always tended towards zero. 

This verifies that the ODE algorithm is trustworthy. 

The error in the Newmark-β solution depends not only on the model but also on the input 

acceleration. This result means that a time step that gave an adequate result for a given model 

and acceleration input is not guaranteed to give a similarly adequate result for a different 

acceleration input on the same model. For the analyst this means that a separate convergence 

analysis must be done for each input acceleration used on a model. 

The convergence analysis must be done thoroughly for the Newmark-β algorithm. This was 

highlighted by the false minimums in error that arose for successive Newmark-β time steps. 

This combined with the previous point requiring that a convergence study be done for every 

input acceleration used on a model adds substantial time to the Newmark-β analysis. The 

total time for a Newmark-β analysis is therefore much greater than the time taken for a single 

adequately accurate result. 
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5 SUMMARY AND CONCLUSIONS 

This thesis explores an alternative approach to dynamic non-linear seismic analysis of 

building models. This approach centres on there being more efficient methods of numerical 

integration than Newmark-β which is typically used. 

The reliability of the ODE solution is verified with several test cases against a constant 

average acceleration Newmark-β scheme. The results from Newmark-β scheme always 

tended towards the ODE solution as the time step was reduced. This shows the ODE solution 

to be trustworthy. 

The main outcome of this thesis is that using more efficient alternatives to Newmark-β can 

indeed give substantial performance improvements for non-linear analysis of building 

models. The results show that when the non-linear behaviour has a significant impact on the 

result the alternative method presented here is much faster. Additionally the ODE solution 

presented in this thesis gave solutions that were far more accurate than the Newmark-β 

solution gave with reasonable time steps. 

The most computationally intensive part of the algorithm is parallelisable and so performance 

increases can be had on multi threaded systems. Alternatively, for running multiple test cases, 

each could be run as a single thread with many being run simultaneously. Either option would 

work with the later likely being faster as the sequential parts of the code would also be run in 

parallel. Development would also be much simpler as coding with multiple threads is 

complex. 
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6 FUTURE WORK 

This thesis shows that for dynamic non-linear seismic analysis there are significant 

performance gains to be had in using efficient numerical integration. In order to take 

advantage of this the methods presented here would need to be extended. 

To make this solving method more useful it needs to support more element types. More 

hysteretic models should also be supported. Adding more element types should be simple and 

require little or no changes to the inner algorithm. Changes in the hysteretic models however 

would require continuous derivations of those models. These would then have to be handled 

inside the inner algorithm. As long as a continuous derivation of the required model exists 

this should be achievable. 

There are possibly more performance increases to be had by using an alternative ODE solver. 

In this thesis four solutions are benchmarked to find the most efficient but there exist many 

others as well as tweaks that can be done to the solvers used here. Although it is unlikely that 

a very large performance increase is to be had it is likely still worth investigating. 

There are also other non-linear effects that can be modelled in dynamic seismic analysis. 

These include soil interaction and P-Delta effects (Lindeburg & Baradar, 2001). The P-Delta 

effects are related to the vertical load on nodes having shifted from the original position 

causing a destabilising moment. 

Finally the whole program needs to be ported to a compiled language such as C or 

FORTRAN. This will result in a much more efficient program in terms of both CPU usage 

and memory usage. The algorithm also lends itself to parallelisation to allow for efficient use 

of systems with many threads. 
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APPENDIX A: MANUAL 

A.1 MESHING 

There are two approaches to creating the mesh with boundary conditions. The first is to use 

the provided meshing code. This is a quick and easy way to create large building models 

quickly, the steps for this are: 

1. Choose the number of: floors, bays, elements per column. Define the width of each 

bay, the height of each floor and the additional load applied to each floor if any. For 

example: 

% mesh variables 
floors = 3; 
bays = 3; 
elms_per_col = 1;     % [m] 
bay_width = 9;        % [m] 
floor_height = 4;     % [m] 
floor_load = [4e3; 4e3; 5e3];  % [kg] 

2. Define the cross section(s) used in the building. This is done with the 

el_cross_section object. It needs the cross sectional area, A, and the second moment 

of area, I. For example: 

% W24x68 cross section 
crossW24x68 = el_cross_section; 
crossW24x68.A = 0.01;          % [m^2] 
crossW24x68.I = 0.001;       % [m^4] 

3. Define the material(s) for use in the model. Similarly with the cross sections this is 

done with the el_material object. This object requires the Young’s modulus, E, the 

yield force, Fy, and the density, rho. It can optionally be given a name by storing a 

string in the name variable, name. For example: 

% W14x257 material 
matW14x257 = el_material; 
matW14x257.name = 'W14x257'; 
matW14x257.E = 5e9;   % [Pa] 
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matW14x257.Fy = 1e4;   % [N] 
matW14x257.rho = 5e3;   % [N/m] 

4. The mesh generation script can now be run to create the mesh variables. This script 

takes inputs of: the number of floors, number of bays, elements per column, bay 

width, floor height, column material, beam material(s), column cross section, beam 

cross section(s), floor load(s). The beam materials and cross sections can be either 

single objects or a vector of objects equal in length to the number of floors. If a vector 

is given each object is used for each floor starting at the 1
st
. Similarly the floor loads 

can be a scalar applied to all floors or a vector so that a different load can be applied 

to each floor. The outputs are a vector of elements, els, a matrix of nodes, x, a vector 

and matrix of boundary conditions, bcn and bcv, a vector load_nodes and a 

corresponding vector of load forces, load_force. This is best illustrated in an 

example: 

% set up beam vectors 
mat_beam = [matW33x118 matW30x116 matW24x68]; 
cross_beam = [crossW33x118 crossW30x116 crossW24x68]; 
 
% run mesh generator 
[els, x, bcn, bcv, load_nodes, load_force] = mesh_gen(... 
   floors,bays,elms_per_col, bay_width, floor_height, ... 
   matW14x257, mat_beam, crossW14x257, cross_beam, ... 
   floor_load); 

 

5. Optionally this generated mesh can be verified visually by creating a plot using the 

plot script, plot_mesh. If a name was given to any materials this will show up in the 

plot. For example: 

plot_mesh( els, x,bcn,bcv ); 

The alternative is to create the element vector, node list and boundary conditions manually. 

This is useful for very simple examples using only a few elements, the steps are outlined 

here: 
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1. Create a vector of nodes where the first column consists of x coordinates and the 

second column has the corresponding y coordinates. For example, the single element 

sticking out of the ground: 

% nodelist 
x = [0 0;      % ground node 
  0 1];     % 1st floor node 

2. As when using the meshing script, create the cross section and material objects. The 

single element example is continued here: 

% define the material 
mat1 = el_material; 
mat1.E = 1E9; 
mat1.rho = 5e4; 
 
% define the cross section 
cross1 = el_cross_section; 
cross1.A = .5; 
cross1.I = .01; 

3. Create a vector of each node and a corresponding matrix of boundary conditions. The 

matrix should contain the boundary conditions for each node in the order of the 

vector. The first column is the type of condition for the first degree of freedom and 

the corresponding value, then the second degree of freedom in the third column and 

so forth. For the single element example: 

% boundary conditions 
bcn = [1 2]'; 
bcv = [1 0 1 0 1 0; 
       2 1 2 0 2 0]; 

 

4. The element(s) can now be defined. If more than one element is required then create a 

vector of element objects. The element object requires some inputs on creation. These 

inputs are the material, cross section, a vector of the nodes this element connects and 

the node list matrix. In this case an element “vector” in MATLAB is created for the 

single element case: 

els(1) = element(mat1,cross1,[1 2],x); 
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At this point both methods have almost all the data needed to being the analysis with either 

the Newmark-β or ODE algorithm. The final pieces of data to be defined are the input 

acceleration vector, a corresponding time step between each of the data values and the 

Ramberg-Osgood constant. These can be defined as follows: 

% earthquake data 
load eq_R 
f = accel; 
dt_data = 0.02; 
 
% ramberg-osgood constant 
r = 5; 

A.2 SOLVING WITH NEWMARK-β 

The first step is to enable hysteresis on each element. This is done by creating the Ramberg-

Osgood hysteresis object inside each element object. On creation this object requires the 

Ramberg-Osgood constant, r. For example: 

for a = 1:length(els); 
       els(a).hyst = hyst_rambergosgood(r); 
end 

Now the solver time step needs to be defined and the solver can be run: 

dt_solver = 1e-5; 
[D,T] = const_accel_newmark_hyst(els, size(x,1)*3, ... 

f, dt_data, dt_solver, bcn, bcv, ... 
   @(M,K) caughey(M,K,zeta,bcn,bcv), ... 

load_nodes, load_force); 

The inputs to the const_accel_newmark_hyst function are; els, a vector of element objects; n, 

the number of degrees of freedom in the system; f, a vector of acceleration data; dt_data, the 

time step in the acceleration data; dt_solver, the time step that the Newmark-β solution 

should use; bcn and bcv, the vector and matrix defining the boundary conditions as defined 

earlier; damping_fn(M,K), a function that takes arguments of M and K, the mass and stiffness 

matrices, and returns the damping matrix; load_nodes and load_force, vectors of the nodes 
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to have load forces applied to and the corresponding forces as produced by the meshing script 

discussed earlier. 

The outputs consist of a matrix of displacements, D, for each degree of freedom for each time 

step and a corresponding time vector, T. It is important to note that during the course of the 

const_accel_newmark_hyst function the element objects will have stored data and changed 

their local tangent stiffness. These elements must therefore be redefined before any 

successive runs. 

A.3 SOLVING WITH THE ODE ALGORITHM 

Instead of enabling hysteresis on an element by element basis the ode_hyst function takes the 

Ramberg-Osgood constant as an argument so it can be called immediately: 

[D, T] = ode_hyst( size(x,1)*3, els, f, dt_data, bcn, ... 
bcv, @(M,K) caughey(M,K,zeta,bcn,bcv), Fy, ... 
r, load_nodes, load_force); 

The inputs for the ode_hyst function are similar to the const_accel_newmark_hyst function 

with only two notable exceptions. The yield force, Fy, is optional. If it is given a value this 

value will be used for all elements, if it is set to zero the yield force will be found on a per 

element basis as with the const_accel_newmark_hyst function. Secondly, the Ramberg-

Osgood constant, r, is given globally here. 

A.4 POST PROCESSING 

The displacements for any degree of freedom are easily plotted from the displacement 

matrices returned. To produce the benchmark results as in Figures 4.1 to 4.13 a function 

called resultPlot is used. The function requires a vector of solver time step values used in 

the Newmark function, a corresponding vector of errors, a corresponding vectors of time 

taken for those solutions and a scalar of the time taken for the ODE solution. For example: 
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resultPlot( dt_solver, errors, NewmarkTime, OdeTime ) 

This function returns nothing. It creates the plot on the current active figure. 
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APPENDIX B: TEST CASE CODE 

B.1 SINGLE ELEMENT 

% Single element sticking up out of the ground 
x = [0 0;    % ground node 
     0 3];  % 1st floor node 
  
% Hysteresis data 
r = 5; 
Fy = 1e4; 
  
% acceleration data 
% f = -(0:0.1:2); 
% f = [f -f zeros(1,length(f)*3) f]; 
load eq_R.mat 
f = -accel'; 
 
% Time step data 
dt_data = 0.02; 
dt_solver = logspace(-2,-4,20); 
 
% damping coefficients 
zeta = 0.05*ones(1,size(x,1)*3); 
  
% define the material 
mat1 = el_material; 
mat1.E = 1E9; 
mat1.Fy = Fy; 
mat1.rho = 5e4/9.81; 
  
% define the cross sections 
cross_col = el_cross_section; 
cross_col.A = .5; 
cross_col.I = .01; 
  
% define elements 
els(1) = element(mat1,cross_col,[1 2],x); 
  
bcn = [1 2]'; 
bcv = [1 0 1 0 1 0; 
       2 1 2 0 2 0]; 
  
%% Ode run 
disp('Starting secant ODE solver');tic 
[ D2, T] = ode_hyst( size(x,1)*3, els, f, dt_data,... 
    bcn, bcv,  @(M,K) caughey(M,K,zeta,bcn,bcv), Fy, ... 

r, 0, 0, 'ode113' ); 
OdeTime=toc; 
  
%% Newmark runs 
errors = dt_solver*0; NewmarkTime = errors; 
  
for idt = 1:length(dt_solver), 
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    % define elements 
    els(1) = element(mat1,cross_col,[1 2],x); 
    % Use rambergosgood hysteresis 
    for a = 1:length(els), 
        els(a).hyst = hyst_rambergosgood(r); 
    end 
     
    disp(‘Start Newmark solver’);tic 
    [D1, T1] = newmark_hyst(els,size(x,1)*3,f, ... 
             dt_data,dt_solver(idt),bcn,bcv, ... 

@(M,K) caughey(M,K, zeta, bcn, bcv )); 
    timea = toc; 
  
    % calculate error 
    errors(idt) = errorCalc(T1,D1(4,:),T,D2(:,1))*100; 
    NewmarkTime(idt) = timea; 
end 
  
%% plot the result 
figure(1);clf; 
resultPlot( dt_solver,errors,NewmarkTime,OdeTime ) 
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B.2 TWO ELEMENTS 

% Two elements sticking up out of the ground 
x = [0 0;    % ground node 
     0 3;   % 1st floor node 
     0 6];  % 2nd floor node 
 
% Hysteresis data  
r = 5; 
Fy = 1e4; 
  
% acceleration data 
% f = -(0:0.1:2); 
% f = [f -f zeros(1,length(f)*3) f]; 
load eq_R.mat 
f = -accel'; 
 
% Time step data 
dt_data = 0.02; 
dt_solver = logspace(-2,-4,20); 
 
% damping coefficients 
zeta = 0.05*ones(1,size(x,1)*3); 
 
% define the material 
mat1 = el_material; 
mat1.E = 1E9; 
mat1.Fy = Fy; 
mat1.rho = 5e4/9.81; 
  
% define the cross sections 
cross_col = el_cross_section; 
cross_col.A = .5; 
cross_col.I = .01; 
  
% define elements 
els(1) = element(mat1,cross_col,[1 2],x); 
els(2) = element(mat1,cross_col,[2 3],x); 
  
bcn = [1 2 3]'; 
bcv = [1 0 1 0 1 0; 
       2 1 2 0 2 0; 
       2 1 2 0 2 0]; 
  
%% Ode run 
disp('Starting secant ODE solver');tic 
[ D2, T, V, F ] = ode_hyst( size(x,1)*3, els, f, dt_data,... 
    bcn, bcv,  @(M,K) caughey(M,K,zeta,bcn,bcv), Fy, r, 0, 0, 'ode113' ); 
OdeTime=toc; 
  
%% Newmark runs 
errors = dt_solver*0; NewmarkTime = errors; 
  
for idt = 1:length(dt_solver), 
     
    % (re)define elements 
    els(1) = element(mat1,cross_col,[1 2],x); 
    els(2) = element(mat1,cross_col,[2 3],x); 
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% Use rambergosgood hysteresis 

    for a = 1:length(els), 
        els(a).hyst = hyst_rambergosgood(r); 
    end 
 
    disp('Starting newmark solver’);tic 
    [D1, T1] = const_accel_newmark_hyst(els, ... 

size(x,1)*3,f, dt_data, ... 
dt_solver(idt), bcn, bcv, ... 
@(M,K) caughey(M,K, zeta, bcn, bcv )); 

    timea = toc; 
  
    % calculate error 
    errors(idt) = max([errorCalc(T1,D1(4,:),T,D2(:,1)) ... 

errorCalc(T1,D1(7,:),T,D2(:,4))])*100; 
    NewmarkTime(idt) = timea; 
    fprintf('Error for this run: %.3f%%\n',errors(idt)); 
end 
  
%% plot the result 
figure(1); 
resultPlot( dt_solver,errors,NewmarkTime,OdeTime ) 
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B.3 SINGLE FLOOR 

% Single floor 
x = [0 0; 10 0;    % ground nodes 
     0 3; 10 3]; % 1st floor nodes 
  
% Hysteresis data  
r = 5; 
Fy = 1e4; 
  
% acceleration data 
% f = -(0:0.1:2); 
% f = [f -f zeros(1,length(f)*3) f]; 
load eq_R.mat 
f = -accel'; 
 
% Time step data 
dt_data = 0.02; 
dt_solver = logspace(-2,-4,20); 
 
% damping coefficients 
zeta = 0.05*ones(1,size(x,1)*3); 
  
% define the material 
mat1 = el_material; 
mat1.E = 1E9; 
mat1.Fy = Fy; 
mat1.rho = 5e4/9.81; 
  
% define the cross sections 
cross_col = el_cross_section; 
cross_col.A = .5; 
cross_col.I = .01; 
  
bcn = [1 2 3 4]'; 
bcv = [1 0 1 0 1 0; 
       1 0 1 0 1 0; 
       2 1 2 0 2 0; 
       2 1 2 0 2 0]; 
 
% define elements 
els(1) = element(mat1,cross_col,[1 3],x); 
els(2) = element(mat1,cross_col,[2 4],x); 

els(3) = element(mat1,cross_col,[3 4],x); 
 
%% Ode run 
disp('Starting secant ODE solver');tic 
[ D2, T, V, F ] = ode_hyst( size(x,1)*3, els, f, dt_data,... 
    bcn, bcv,  @(M,K) caughey(M,K,zeta,bcn,bcv), 0, r, 0, 0, 'ode113' ); 
OdeTime=toc; 
 
%% Newmark runs 
errors = zeros(length(dt_solver),1); NewmarkTime = errors; 
  
for idt = 1:length(dt_solver), 
     
    % redefine elements 
    els(1) = element(mat1,cross_col,[1 3],x); 
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    els(2) = element(mat1,cross_col,[2 4],x); 
    els(3) = element(mat1,cross_col,[3 4],x); 
    % Use rambergosgood hysteresis 
    for a = 1:length(els), 
        els(a).hyst = hyst_rambergosgood(r); 
    end 
 
    disp('Starting newmark solver’);tic 
    [D1, T1] = const_accel_newmark_hyst(els,size(x,1)*3, ... 

f, dt_data, dt_solver(idt), bcn, bcv, ... 
@(M,K) caughey(M,K, zeta, bcn, bcv )); 

    timea = toc; 
  
    % calculate error 
    errors(idt) = max([errorCalc(T1,D1(7,:),T,D2(:,1)) ... 
            errorCalc(T1,D1(10,:),T,D2(:,4))])*100; 
    NewmarkTime(idt) = timea; 
    fprintf('Error for this run: %.3f%%\n',errors(idt)); 
end 
  
%% plot the result 
figure(1);clf; 
resultPlot( dt_solver,errors,NewmarkTime,OdeTime ) 
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B.4 SAC-3 BUILDING MODEL 

% acceleration data 
% f = -(0:0.1:2); 
% f = [f -f zeros(1,length(f)*3) f]; 
load eq_R.mat 
f = -accel'; 
 
% Time step data 
dt_data = 0.02; 
dt_solver = logspace(-3,-5,20); 
 
% hysteresis variables 
r = 5; 
  
% mesh variables 
floors = 3; 
bays = 3; 
elms_per_col = 1; 
bay_width = 9.144;                      % 30 feet in meters 
floor_height = 3.9624;                  % 13 feet in meters 
floor_load = [4706e3; 4706e3; 5094e3];  % loading to be applied [kN] 
 
%--------------------------------------------------------------------------- 
%%                           Set up cross-sections 
%--------------------------------------------------------------------------- 
% W24x68 
crossW24x68 = el_cross_section; 
crossW24x68.A = 0.012967716;        % 20.1 in^2 in m^2 (from [2]) 
crossW24x68.I = 0.000761703509;     % 1830 in^4 in m^4 (from [2]) 
  
% W30x116 
crossW30x116 = el_cross_section; 
crossW30x116.A = 0.022064472;       % 34.2 in^2 in m^2 (from [2]) 
crossW30x116.I = 0.00205202093;     % 4930 in^4 in m^4 (from [2]) 
  
% W14x257 
crossW14x257 = el_cross_section; 
crossW14x257.A = 0.048774096;       % 75.6 in^2 in m^2 (from [2]) 
crossW14x257.I = 0.00141518685;     % 3400 in^4 in m^4 (from [2]) 
  
% W33x118 
crossW33x118 = el_cross_section; 
crossW33x118.A = 0.022387052;       % 34.7 in^2 in m^2 (from [2]) 
crossW33x118.I = 0.00245576541;     % 5900 in^4 in m^4 (from [2]) 
  
  
%--------------------------------------------------------------------------- 
%%                            Set up materials 
%--------------------------------------------------------------------------- 
E  = 34473785000;           % 5000ksi in Pa (from [1]) 
Sigma_y = 1/10*317158822e-2;     % 46ksi in Pa (from [1]) (reduced by 10^2 
for now) 
g = 9.81; 
  
% W14x257 
matW14x257 = el_material; 
matW14x257.name = 'W14x257'; 
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matW14x257.E = E; 
matW14x257.Fy = Sigma_y*crossW14x257.A; 
matW14x257.rho = 382.458133*g;      % 257 lb/ft in N/m (from [2]) 
  
% W24x68 
matW24x68 = el_material; 
matW24x68.name = 'W24x68'; 
matW24x68.E = E; 
matW24x68.Fy = Sigma_y*crossW24x68.A; 
matW24x68.rho = 101.195148*g;       % 68 lb/ft in N/m (from [2]) 
  
% W30x116 
matW30x116 = el_material; 
matW30x116.name = 'W30x116'; 
matW30x116.E = E; 
matW30x116.Fy = Sigma_y*crossW30x116.A; 
matW30x116.rho = 172.627017*g;      % 116 lb/ft in N/m (from [2]) 
  
% W33x118 
matW33x118 = el_material; 
matW33x118.name = 'W33x118'; 
matW33x118.E = E; 
matW33x118.Fy = Sigma_y*crossW33x118.A; 
matW33x118.rho = 175.603345*g;      % 118 lb/ft in N/m (from [2]) 
  
%--------------------------------------------------------------------------- 
%%                             Generate Mesh 
%--------------------------------------------------------------------------- 
% set up beam vectors 
mat_beam = [matW33x118 matW30x116 matW24x68]; 
cross_beam = [crossW33x118 crossW30x116 crossW24x68]; 
% mat_beam = matW14x257; 
% cross_beam = crossW14x257; 
  
% run mesh generator 
[els, x, bcn, bcv, load_nodes, load_force] = mesh_gen(... 
    floors,bays,elms_per_col, bay_width, floor_height, matW14x257, ... 
    mat_beam, crossW14x257, cross_beam, floor_load); 
  
% confirm the mesh is correct using a plot 
figure(1);plot_mesh( els, x,bcn,bcv );%title('SAC-3 Mesh'); 
  
% Damping vector: 
zeta = repmat(0.05,size(x,1)*3,1); 
  
  
%--------------------------------------------------------------------------- 
%%                                ODE Solve 
%--------------------------------------------------------------------------- 
  
% redefine elements (old ones have hysteresis degredation) 
[els, nodelist, bcn, bcv, load_nodes, load_force] = mesh_gen(... 
    floors,bays,elms_per_col, bay_width, floor_height, matW14x257, ... 
    mat_beam, crossW14x257, cross_beam, floor_load); 
  
disp('Starting secant ODE solver');tic 
[ D, T, V, F ] = ode_hyst( size(x,1)*3, els, f, dt_data,... 
    bcn, bcv,  @(M,K) caughey(M,K,zeta,bcn,bcv), 0, r, ... 
    load_nodes, load_force,'ode113'); 
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OdeTime=toc; 
  
%--------------------------------------------------------------------------- 
%%                             Solve with Newmark 
%--------------------------------------------------------------------------- 
errors = zeros(length(dt_solver),1);NewmarkTime=errors; 
for idt=1:length(dt_solver) 
    % redefine elements (old ones have hysteresis degredation) 
    [els, nodelist, bcn, bcv, load_nodes, load_force] = mesh_gen(... 
        floors,bays,elms_per_col, bay_width, floor_height, matW14x257, ... 
        mat_beam, crossW14x257, cross_beam, floor_load); 
 
    % Enable Ramberg-Osgood hysteresis on all elements  
    % coefficient (r) defined at the top of this script 
    for a = 1:length(els); 
        % Use rambergosgood 
        els(a).hyst = hyst_rambergosgood(r); 
    end  
    disp('Solving with Newmark’);tic; 
    [D1,T1] = const_accel_newmark_hyst(els, size(x,1)*3, f, ... 
                dt_data, dt_solver(idt), bcn, bcv, ... 
                @(M,K) caughey(M,K,zeta,bcn,bcv), load_nodes, load_force); 
    timea = toc; 
    errors(idt) = max([errorCalc(T,D(:,end-2),T1,D1(end-2,:)) ... 
                   errorCalc(T,D(:,1),T1,D1(4,:))])*100; 
    NewmarkTime(idt) = timea; 
    fprintf('Error for this run: %.3f%%\n',errors(idt)); 
end 
 
%--------------------------------------------------------------------------- 
%%                             Display the results 
%--------------------------------------------------------------------------- 
figure(1);clf; 
resultPlot( dt_solver,errors,NewmarkTime,OdeTime ) 
 
% References: 
% [1] - Seismic Energy Dissipation of Buildings Engineered Cladding Systems 
%           by Quan Viet Nguyen 
% [2] - 
% http://www.engineeringtoolbox.com/american-wide-flange-steel-beams-
d_1319.html 


