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Using scanning tunneling microscopy, we report the observation of moiré patterns (MPs) on van der Waals
heterostructures comprised of various 2D allotropes of bismuth and antimony grown on highly ordered pyrolytic
graphite and MoS,. The spatial periods of the MPs range from A ~1 to ~10 nm. For all the reported cases
(a-bismuthene, o-antimonene, f-antimonene, and monolayer bismuthene), we model the observations using
a simple superposition model (SSM). Where possible, the results obtained from the SSM are compared to
analytical prediction. MPs emerging from mixed symmetry stacking (hexagonal on rectangular) are explained

without requiring commensuration of the layers.
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I. INTRODUCTION

The isolation of graphene [1,2] and other atomically thin
crystals (h-BN [3], MoS,; [4], Si [5], Ge [6], P [7,8], Sn [9],
etc.) has led to an explosion of interest in two-dimensional
(2D) materials. A large library of 2D crystals exists, with a
wide range of electronic properties ranging from metallic to
insulating [10]. Many of these materials offer unprecedented
mechanical, thermal, and optical properties [11] providing a
platform for, for example, extreme miniaturization of elec-
tronic, biomedical, and spintronic [12—-14] devices.

The intralayer bonding within a 2D crystal is typically
covalent, but multilayer systems are bound via much weaker
van der Waals interactions. Stacked to the desired sequence,
the 2D materials—acting as building blocks—form so-called
van der Waals heterostructures (VDWHs) [11,15,16].
VDWHs can be prepared rather simply (the absence of
strong interlayer interactions permits the superposition of
virtually any given pair of 2D layers) using either bottom-up
or top-down approaches. The former makes use of successive
deposition techniques steps while the latter requires the
fabrication of the individual layers first, and subsequent peel
off and assembly [11].

In VDWHEs, the lack of strong interlayer bonding facilitates
device engineering through a new degree of freedom, the
twist angle 6 between two 2D crystals. This rotation causes
the formation of moiré patterns (MPs), which can drastically
alter the properties of the VDWH. A good example is bi-
layer graphene where a variety of electronic effects can be
achieved by manipulating 6: unconventional superconducting
and Mott insulator states can be engineered at the “magic
angle” 0 = 1.1° [17], Dirac cones can be shifted within the
first Brillouin zone [18], van Hove singularities [19,20] and
fractal Hofstadter [21] “butterfly” energy spectra [22-25] can
be designed, and incommensurate quasicrystalline structures
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can be created at @ = 30°[26,27]. Similarly, in h-BN/graphene
heterostructures 6 can tune the band gap [28-30].

Our primary interest, and motivation for the present work,
is the potential for MPs to provide a platform for topological
device engineering, and specifically to use MPs to modulate
local strain and therefore design, for example, spin-polarized
current channels [31]. Moreover, thorough analysis of the
MPs can reveal information on the interplanar interactions
[32], and can act as a “magnifying lens” for observing struc-
tural defects in 2D crystals [30,33]. The investigation of these
effects is still in its infancy, and one of the reasons for this is
that there is currently no standard formalism for predicting or
interpreting observed MPs arising from generalized symmetry
stacking. Here we discuss a simple and readily implemented
procedure that can be used for any pair of 2D materials, and
show its application to a range of heterostructures built from
group-V elements, which are strong candidates for topological
devices.

A. Observation of moiré patterns

The most direct way of observing MPs in VDWHs is usu-
ally through scanning tunneling microscopy (STM). MPs ap-
pear as a periodic height modulation in STM images. The vast
majority of the reported examples of MPs arise from hexag-
onal lattices superposed onto other hexagonal lattices, e.g.,
on multilayered graphene/graphite systems [18,19,23,34-36],
Pb on Ag(111) [37], graphene on h-BN [28-30], on Ir(111)
[38], on Cu(111) [39], etc. More rarely, the interfering crys-
talline structures (under- and overlayer) possess a rectangular
symmetry, e.g., Bi on GaAs(110) [40], NaCl on Ag(100) [41],
twisted bilayer phosphorene [42], or monolayer Bi (MBi) on
a-Bi [43]. Our reports on group-V compounds on HOPG and
MoS, [44,45] constitute, to the best of our knowledge, the
only experimental reports focusing on the MPs generated by
a mixed symmetry stacking (e.g., rectangular and hexagonal
symmetries). The analysis of MPs in these mixed symmetry
systems is particularly challenging.
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FIG. 1. Ball-and-stick models of the different allotropes of Bi
and Sb that are observed in our experiments («-Bi and «-Sb, B-Sb,
and MBi) showing both top and side views. The unit cells are indi-
cated in black. The literature lattice parameters are given in Table I.
Note that the notation used in the literature can be confusing and so
for clarity we emphasize that in the present paper: the thickness of
the paired-layer o phase indicated here is two monolayers (2 ML),
whereas the 8-Sb and MBi structures are both 1-ML thick.

B-Sb MBi

The appearance of the MPs depends on several factors [36]:
the strength of the interaction between the layers, the distance
between the tip and the surface, and the bias voltage at which
the image is recorded, but it is clear that the twist angle 6
between the layers will also be important. STM images in
which MPs are present can in principle be calculated if the
detailed atomic structure is known [36,46], but in the case of
incommensurate structures this is extremely challenging due
to the absence of true periodicity. Similarly, in the case of long
range commensurability an enormous unit cell is required.

B. Topological group-V materials

Group-V elemental and alloy crystals have attracted
significant attention since the first fabrication of black-
phosphorous-based transistors [7] and the discovery that
Bi;_,Sb, is a three-dimensional (3D) topological insulator
[47,48]. Because of the strong spin-orbit coupling in Bi,
many of its known allotropes are topologically nontrivial:
«-Bi [49,50], B-Bi [51], and even bulk Bi [52] have all been
reported to possess nontrivial topology, and most recently
exotic hinge states have been reported in Bi nanowires [53].
An area of active investigation is whether the topological
properties survive in the low-dimensional forms of these
materials [45,50]. In fact the 2D forms of these materials
are interesting because of the crystalline symmetries that are
adopted. Figure 1 shows the o phase (“black-phosphorus”-
like, A17 group) consisting of two paired layers with an atom
near the middle of the rectangular unit cell, the 8 phase
which has a buckled honeycomb structure, and the unusual
rectangular MBi phase [43].

o-Bismuthene («-Bi) has been extensively investigated
[44,54-63] and is of particular relevance to the present work
because Sb allotropes are grown on top of islands of «-Bi. The
low-dimensional phases of antimonene (Sb) have been much
less investigated: first-principles calculations were reported
several years ago [64—66], but experimental realizations of
B-Sb [67-70] and «-Sb [45,70,71] were only reported more
recently. Topologically protected edge states are predicted for
a-Sb [45], multilayer 8-Sb [72,73], and sufficiently strained
monolayer 8-Sb [74]. Table I compiles the literature lattice

TABLE I. Literature values of the lattice constants R;, R, of the
various group-V 2D allotropes. The indicated value of «-Bi is for a
paired layer (2-ML «-Bi) grown on HOPG [56]. The bulk values are
Ry x R, =4.54 x 4.75 A’ [76]. The nature of the underlayer onto
which these layers are observed in this paper is also indicated. The
type of stacking symmetry is indicated as X on Y (R: rectangular, H:
hexagonal).

Layer «-Bi [56] «-Sb [45] B-Sb [45] MBI [43]

R; (A) 45+02 429+£0.09 4.04+£004 40+02

R, (A) 48402 486+0.10 4.04+0.04 4.14+0.3

Underlayer HOPG, MoS, 4-ML «-Bi 2-ML @-Bi 2-ML «-Bi
Symmetry R/H R/R H/R R/R

constants of the different materials studied here, as well as the
substrates on which they are grown.

C. The structure of this paper

There is currently no established method for interpreting or
modeling the geometry (i.e., the direction and period) of the
MPs observed from any pair of 2D layers. In this paper we
present an STM study of MPs observed for VDWHs consist-
ing of different 2D allotropes of Bi and Sb. We demonstrate
that the geometry of all the MPs observed in our experiments
can be explained by the use of a simple superposition model
(SSM) which can be applied to all the observed crystal sym-
metries. Whenever possible, results obtained from the SSM
are compared to a previous analytical model [75] which has
only a limited range of applicability (see below). Finally, we
discuss the observations and modeling and point out that the
observed MPs have the longest wavelengths possible, most
likely to minimize elastic deformation energy.

II. EXPERIMENTAL AND MODELING

The experiments are performed in an Omicron VI-AFM
STM/growth chamber (P < 5 x 107'° mbar). Bi and Sb are
sequentially deposited from high purity (5N) source materials
in heated PBN crucibles. The mechanically cleaved substrates
(HOPG or MoS,) are degassed at T = 800 K for at least 2 h
and are kept at room temperature during deposition. The tips
are obtained from cut Pt/Ir wires. The STM scans are per-
formed at room temperature in the same chamber, maintaining
UHYV conditions between deposition and analysis. To measure
the lattice constants and the geometry of the MPs (essentially
the spatial period A and angle of the fringes § with respect to
a given lattice vector), we use fast-Fourier transforms (FFTs)
of STM images. The characterization of the MPs is based on
a large number of STM images from multiple islands, and
then averaged in order to minimize the effect of thermal drift.
The uncertainty in the measurements of A and § originate
from three different factors: (i) the lateral extension of the
islands (i.e., the number of moiré fringes that are visible),
(ii) the deviation of the MPs from a plane wave (arising due
to local strain or dislocations), and (iii) the statistical variance
from multiple measurements. All measurements are calibrated
with atomically resolved STM images of HOPG or MoS; in
all trace directions. The twist angle 6 is measured through
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comparison of the FFTs of atomically resolved STM images
of the under- and overlayer. Where atomic resolution is not
available for the overlayer (rotated MBi case, see Sec. III D),
6 is determined from the simulations.

To understand the MPs, we use two methods: a simple
superposition model (SSM) and an analytical model [75].
While approaches similar to our SSM have previously been
applied in an ad-hoc way to several all-hexagonal systems
[23,33,35,77-80], here we demonstrate a consistent method-
ology that can in principle be applied to any system including
those with mixed symmetry. MPs observed on «-Bi grown
on HOPG have been successfully modeled previously using a
commensurate model [44].

A. Simple superposition model

Simulations using the SSM are performed with the freely
available software package VESTA [81]. To illustrate the
method, we first simulate the MP originating from two
systems: (i) twisted bilayer graphene (where both layers
have hexagonal symmetry and identical lattice constant) and
(i1) «-Bi on HOPG (mixed symmetry). Figures 2(a) and 2(d)
show the geometry of the two systems: the underlayer is
defined by its unit vectors R; and R, and the unit cell
angle w, the overlayer (unit vectors R’,R’2 and unit cell
angle @') is rotated by 6 with respect to Ry. For (i) the two
graphene layers are rotated by & = 5.0°, and for (ii) we use the
observed value from experiments of 6 = 30° (see Sec. III A
below). Figures 2(b) and 2(e) show the underlayer (black) and
overlayer (orange) but to identify the MPs one must observe
the layers at a larger scale [Figs. 2(c) and 2(f)]. For the twisted
bilayer graphene, the MP appears as a superlattice of circular
spots, where Ry and Ry correspond to the superlattice
vectors as indicated in Fig. 2(c) (note that we use the same
vectorial notation as in [75] for consistency). We define the
period A as the distance between two rows of spots (fringes),
and § is the angle of the row of spots (fringes) with respect to
one of the two layers’ unit vectors. Both A and § are measured
manually using the built-in tools in VESTA. For the first case
the SSM yields A = 2.44 nm and §; = 32.5°. Interestingly,
the MP appears very differently for «-Bi on HOPG [Fig. 2(f)]:
instead of a superlattice of spots, only a single periodicity
given by Ry is observed. The SSM shows that the period
for 6 = 30° is A = 3.48 nm and the fringes are perpendicular
to a-Bi R} (white arrow), i.e., § = 90.0°.

The underlying assumptions of the SSM are the following:
(1) the layers are rigid, i.e., there is no relaxation and the under-
and overlayer are strictly defined by their respective basis
vectors, (ii) the phase of the superposition (i.e., a possible
lateral shift of the overlayer with respect to the underlayer)
is unimportant as it does not affect the essential features
(A and 8) of the MP, and (iii) the lattice mismatch leads to
an apparent height modulation and the question of whether
the observed MPs originate from purely electronic effects or
physical corrugation of the heterostructure (or a combination
of the two) is not considered here.

B. Analytical modeling

An analytical model for prediction of the MP for incom-
mensurate superposition was reported previously [75]. The

FIG. 2. Unit cell vectors, MP vectors, and SSM, using the ex-
amples of twisted bilayer graphene (a)—(c) and the experimentally
observed lattice constants of «-Bi on HOPG (d)—(f). (a) and (d)
Underlayer (left) and overlayer (right) basis vectors. The lattice
constants of the under- (over-) layer are referred to as Ry, R, (R,
R}). The angles w and o’ define the symmetry of the layers. Here
weusein (a)-(c) Ry =R, =R, =R, =2.46 Aandw =o' = 21 /3
with a twist angle 6 = 5.0°. In (d)-(f) we use the bulk values of
Bi (R, x R, = 4.54 x 475 A’ on HOPG (R, = R, = 2.46 A). The
overlayer is rotated by 8 = 30.0° with respect to R;. (b) and (e) SSM
where the underlayer (black) and overlayer (orange) are displayed
with VESTA. The unit cells are indicated. (c) Large scale SSM, where
the MP appears as a superlattice of spots (MP vectors: Ry, Ry).
The period A and angle § are indicated. For & = 5.0°, the SSM yields
A =244 nm and § = 32.5°. (f) Large scale SSM, where the MP
appears as a series of fringes running horizontally. The unique Ry
vector is indicated, as well as the period A and angle § with respect
to «-Bi R}. The SSM yields A = 3.48 nm and § = 90.0°. In (c) and
(f) the dashed lines indicate the row of MP spots or fringes and serve
as a guide to the eye. The white arrows in (c) and (f) represent the
reference vectors from which the angles § are measured.

MP is defined with the two previously described vectors Rypg
and Rypp, usually much larger than the unit vectors of the
under- and overlayers. In the case of rectangular layers, i.e.,
w = o = 1 /2, the expression for Ry and Ry, is

R 1( picost gp1sinf\ /R, W
R/ A —épzsinB pacost [\R,)’
where P11 = R/l/R], P2 = R/Z/R2, q = R]/Rz, and A =1 +
p1p2 — (p1 + p2)cos 6. Equation (1) gives the MP superlat-
tice vectors as a function of 6 and of the lattice constants.
The range of the validity of the model [75] is limited by the
following conditions: (i) the two layers must have an identical

unit cell angle w = &/, (ii) the twist angle 6 must be within
—10° and +10°, and (iii) the lattice mismatch cannot exceed
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~20%. Due to these limitations, the analytical model can be
used for only a subset of the observed cases: «-Sb on «-Bi
(see Sec. IIIB) and MBi on «-Bi (see Sec. IIID). For the
other cases, @-Bi on HOPG or MoS, (see Sec. III A) and
B-Sb on «-Bi (see Sec. IIIC), we use SSMs to understand
the experimental observations.

III. RESULTS

We now report experimental results and modeling of the
observed MPs for a number of VDWHs.

A. a-Bismuthene

The system of interest consists of 2-ML-thick «-Bi islands
grown on two different substrates, with different lattice con-
stants HOPG and MoS,. We first focus on the MPs observed
on «-Bi on HOPG. Figure 3(a) shows an atomically resolved
STM image of a 2-ML-thick «-Bi island. Clearly a strong
height modulation corresponding to the MP is visible. Two
fringes are indicated with dashed lines for clarity. Figure 3(b)
shows the FFT of the STM image in Fig. 3(a). The recip-
rocal lattice points «-Bi (0,1), (1,0) are resolved, as well as
the wave-vector K corresponding to the MP visible in real
space. The measured lattice constants of «-Bi are R} x R, =

45 x4.8 Az, in agreement (within uncertainties) with bulk
values [76] and previous measurements of «-Bi [49,56]. The
measurement of the period and angle of the MP, obtained
from the average of 40 scans, yield A = 3.2+ 0.4 nm and
§ = —54+£5°.

HOPG and «-Bi do not share the same unit cell angle
(w # '), and so the existing analytical model cannot be
used to simulate the observations and so we use the SSM as
described in Sec. II. First, we use the bulk lattice constants

of Bi (R} x R, =4.54 x 4.75 A’ [76]), the measured twist
angle (0 = 30°), and the literature lattice constants of HOPG
(Ri =R, =2.46 A [82]) [shown in Fig. 2(f)]. The simulation
yields A = 3.48 nm and § = —90°. While the period A agrees
relatively well with the observations, the fringe angle § does
not. A refinement of the simulation is then performed. Since
the experimental lattice constants and twist angle 6 have
measurement uncertainties, it is possible to modify the values
of R}, R}, and 6 in the SSM within the uncertainty range until
the simulated period and angle agree with the observations.
Figure 3(c) shows the simulation [on the same scale as the
STM image in Fig. 3(a)] obtained using R} x R, = 4.520 x

4.750 A” and @ = 28.1°. These minimal changes to the lattice
constants (R reduced by 0.02 A only) and to the twist angle
(6 reduced by 1.9°) yield A =3.20 nm and § = —54.4°,
which are both in very good agreement with the observation.
Note that the optimized lattice constants and twist angle are
still within the experimental uncertainties.

We now focus on the MPs observed when «-Bi is deposited
on MoS; substrates. It is clear that since HOPG and MoS,
have different lattice parameters, the MP structure is expected
to differ. Figure 3(d) shows an atomically resolved STM
image of a 2-ML-thick «-Bi grown on MoS;. A clear MP (M)
is imaged, with fringes running nearly vertically in the image
(green lines). Upon closer inspection, two distinct series of
fringes M, and M3 with shorter periods and different angles
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FIG. 3. «-Bi on HOPG (a)-(c) and on MoS, (d)—(f). (a) STM to-
pography image (V = 0.50 V, I = 0.90 nA) of «-Bi grown on HOPG
where a clear MP is resolved. The period A and angle §. (b) FFT of
the STM image in (a). The reciprocal vectors of «-Bi (0,1) and (1,0)
and the wave-vector K associated with the MP are resolved. (c) SSM
of a-Bi on HOPG using Ry = 2.46 A, R| x R} = 4.520 x 4.750 A’
for a twist angle of 6 = 28.1°. (d) STM topography image (V = 0.05
V, I =30 pA) of a-Bi grown on MoS,. Three distinct MPs (M,
M,, and M3) are resolved, the fringes are indicated respectively with
green, blue, and red lines. (e) FFT of the STM image in (d), where
the reciprocal vectors (1,0), (0,1) and (1,1) of @-Bi and Kj, K,, and
Kj; are indicated. (f) SSM of «-Bi on MoS,, using R; = 3.161 A,
R} x R, =4.530 x 4.870 A’ twisted by 8 = 0.3°. The insets in (c)
and (f) show the SSMs at higher magnification where the unit cells
of the underlayer (black) and overlayer (orange) are indicated. The
white arrows indicate the R; «-Bi direction, chosen as a reference
for the measurement of 6.

are also resolved (blue and red lines). Figure 3(e) shows
the FFT of the STM image in Fig. 3(d). The (0,1), (1,0),
and (1,1) points of the reciprocal lattice are resolved. More
importantly, the FFT shows the three distinct wave vectors Ky,
K5, and K3 that correspond to the three MPs observed in the
real-space image. Inspection of the FFT in Fig. 3(e) leads to
the observation that the wave vectors of the MPs are related
by Ky = K3 — K;, i.e., the MPs M, and M3 have similar
wave vectors and interfere to create M. Repeated imaging
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FIG. 4. (a) Atomically resolved STM image (V =0.1 V, I =
50 pA) of a «-Sb layer grown on a 2-ML «-Bi layer in which
a 4-ML o-Bi stripe separates laterally the two «-Sb layers.
(b) STM topography image (V = 1.0 V, I = 20 pA) of a «-Sb layer
(light blue) grown on a 4-ML-thick «-Bi island (dark blue). A clear
fringelike MP is visible, the fringes running nearly perpendicular
to the «-Bi Ry direction (white arrow). [Inset: Topography profile
extracted from the black line in (a). The period is A = 6.8 £ 0.9 nm,
and the fringe angle § = 87 &+ 8°.] (c) and (d) Moiré period A (c)
and fringe angle § (d) using the experimental (solid squares) and
optimized lattice constants (open squares) using systematic SSMs.
Observed (red), and analytically calculated (solid lines) A and ¢ are
also added.

and analysis performed on multiple islands yield 1| = 2.22 &+
0.07nm, §; =4 £2°, 4, =099 £0.05nm, §, = =79 £ 2°,
and A3 = 1.00 £ 0.05 nm, §3 = 75 £ 2°.

Figure 3(f) shows the SSM using the experimental lattice
constants for both MoS; and «-Bi for the twist angle 6 =
0.3°. Here A; =2.20 nm, §; =2.7°, 2, =1.03 nm, 6, =
—77.2°, and A3 = 1.00 nm, §3 = 76.1°, which are in very
good agreement with the experimental values. For this case,
no modification is required of either the lattice constants or
twist angle to agree with the observations.

B. a-Antimonene

The black-phosphorus-like allotrope of antimonene, «-Sb
[45], is only observed on top of either 2-ML-thick or 4-ML-
thick «-Bi structures. Figure 4(a) shows an example of an
atomically resolved STM image of two «-Sb structures grown
on a 2-ML «-Bi layer, where the two «-Sb structures (left
and right of the image) are separated by a narrow 4-ML «-Bi
stripe. Clearly this image shows that the «-Bi and «-Sb layers
are aligned (@ = 0 % 2°). The measured lattice constants of

a 4-ML a-Bi are R, x R, =4.53+0.10 x 4.87 £0.10 A,
which are similar to those measured on a 2-ML «-Bi (see
Table I). Despite the small change in the lattice constants,
neither the atomic structures nor the MPs differ significantly
when the underlayer’s thickness is changed and so we only

discuss the MPs generated by the stacking of «-Sb on a 4-ML
a-Bi.

Figure 4(b) shows a STM topography image of a typical
a-Sb layer (light blue) grown on a 4-ML «-Bi layer (dark
blue), itself deposited on HOPG (black). The lattice param-

eters of ¢-Sb on a 4-ML a-Bi are R x R, = 4.18 x 4.84 A%,
slightly differing from those measured on «-Sb on a 2-ML «-
Bi. Clearly a fringelike MP is visible, where the fringes extend
nearly perpendicular to the «-Bi Ry direction (indicated with
a white arrow). The inset in Fig. 4(a) shows the topographic
profile obtained from the black line in the STM image, which
reveals a peak-to-peak amplitude of ~1 A. The average period
is A = 6.8 = 0.9 nm and the angle of the fringes (with respect
toa-Bi Ry)is § = 87 £ 8°.

We now focus on modeling the MP using the SSM. The
lattices of both «-Bi and «-Sb are generated using the ex-
perimentally observed lattice constants as shown in Table I
and simulated images (not shown) are obtained for a range of
twist angles consistent with the measurement uncertainty in
6. Figure 4(c) shows the simulated period A (solid squares) as
a function of 0 in the range —10° < 6 < 10° (in steps of 1°).
The experimentally observed period A is also plotted (red).
The simulated period peaks at A = 5.41 nm for 6 = 0. Clearly,
whichever the value of 6, the simulated period is too small
to agree with the observations. The simulated (solid square)
and experimental (red) fringe angles § are plotted in Fig. 4(d),
and both agree for 6 = 0 &= 2°. However, because the period
obtained in the experiment and in the SSM do not agree, the
MP cannot be explained with the experimentally observed unit
cells of both «-Bi and «a-Sb. We therefore repeat the SSMs
using slightly modified unit cells (within the measurement
uncertainties listed in Table II).

To increase the simulated period, the lattice mismatch in
the direction perpendicular to the MP fringes R) — R; must
be decreased. The open squares in Figs. 4(c) and 4(d) show,
respectively, the simulated period and angle obtained with

using Ry x R, = 4.497 x 4870 A> and R x R, = 4.218 x

4.840 AZ. For 6 = 0 the period is . = 6.80 nm and § = 90°,
which is in excellent agreement with the observed MP. The
fringe angle § is not significantly affected by the small change
in the unit cells and still agrees well with the experimental
value of 6 = 87°. For completeness, because the conditions
for analytical predictions are met (10° < 60 < 10° and w =
o' =1 /2) we test the validity of the SSM method by ana-
Iytically calculating the MPs using the analytical formalism
detailed in Sec. II B, both using experimental and optimized
lattice constants. The curves of both A and § are plotted
along with the simulated periods and angles in Figs. 4(c) and
4(d) (solid lines). Clearly the SSM method and the analytical
prediction agree very well.

Finally, we note that while in principle a second MP is
possible in the direction perpendicular to the MP observed
in Fig. 4(b), the near zero lattice mismatch in that direction
(~0.6%) would lead to a period of A ~78.6 nm which would
not be visible in the present experiments due to the limited
width of the «-Sb layers (typically ~20 nm). It is also possible
in this case that the weak strain experienced by «-Sb is
released leading to a change in the MP.
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TABLE II. Lattice constants R|, R}, twist angles 6, MP periods A, and angles § obtained for all the studied VDWHs. In each case,
experimentally determined values are shown on the first line, and values obtained from modeling are shown between parentheses on the
second line. All values used in SSMs agree with the observations within the measurement uncertainties. Note the minute differences between
the 2-ML «-Bi lattice constants when grown on HOPG versus MoS,;. Note, for the 2-ML «-Bi/MoS, case, A3 = 1.00 £ 0.05 nm (1.00 nm

using SSM) and §3 = 75 £ 2° (76.1° using SSM).

Overlayer 2-ML «-Bi 2-ML «-Bi «-Sb B-Sb MBi
Underlayer HOPG MoS, 4-ML «-Bi 2-ML «-Bi 2-ML «-Bi
R| A 45402 4.53 +0.05 4.18 £ 0.09 4.04 +0.04 40402
(4.520) (4.530) (4.218) (4.080) (3.97)
R, A) 48402 4.87 +0.04 4.84+0.10 4.04 +0.04 41403
4.750) (4.870) (4.840) (4.080) (3.82)
0 (deg) 30+£5 0.3+£0.6 0+2 12+3 1+£3
(28.1) 0.3) (0.00) (12.5) 0.5)
Ay (nm) 32+04 2.22+0.07 6.8+0.9 4.74+0.5 1.94+0.2
(3.20) (2.20) (6.80) 4.57) (1.95)
81 (deg) —544+5 4+£2 87+8 —39+8 25+£2.0
(—54.4) 2.7 (90.0) (=36.1) 2.6)
Ay (nm) NA 0.99 +0.05 NA 1.06 + 0.06 3.1+£03
NA (1.03) NA (1.05) (3.16)
8, (deg) NA —79+2 NA 37+6 —80 £ 10
NA (=717.2) NA (33.9) (—86.0)

C. B-Antimonene

The hexagonal allotrope of antimonene, 8-Sb, is observed
only on top of 2-ML-thick «-Bi nanostructures [45], regard-
less of whether Bi is first deposited onto HOPG or MoS,
substrates. Figure 5(a) shows an STM image of 8-Sb (blue) on
the «-Bi island (dark blue) grown on a MoS, substrate. A MP,
labeled My, is visible (dashed white lines). The average value
for the period is | = 4.7 £ 0.5 nm and the fringe angle with
respect to the Ry vector of «-Bi is §; = —39 £ 8°. Figure 5(b)
shows an atomically resolved STM image of a different
instance of B-Sb, also grown on 2-ML-thick «-Bi on MoS,
substrate. At this resolution, another distinct MP (referred to
as M) is visible, and is characterized by A, = 1.06 & 0.06 nm
and §; = 37 £ 6°. The FFT of the STM image in Fig. 5(b)
is shown in Fig. 5(c). The (1,0) and (0,1) reciprocal lattice
vectors of B-Sb (and their linear combinations) and the wave
vectors associated with M; and M, (K; and K3, indicated with
black and blue arrows) are resolved.

Similar to the «-Bi/HOPG and «-Bi/MoS; cases in
Sec. III A, the under- and overlayer do not share the same sym-
metry (w = 7 /2 # o' = 21 /3), and the twist angle 6 > 10°
so the use of the analytical model is not permitted, and one can
only model the MP using the SSM. The procedure is identical
to that developed in Sec IITA: first, the two lattices «-Bi
and B-Sb are superposed, using the experimentally observed
lattice constants and the measured twist angle 6 = 12.0° (not
displayed here). The simulation leads to A; = 6.11 nm, §; =
—30.6° and A, = 1.05 nm, §, = 38.7°. While the simulated
MPs are already in the right ballpark, A; is significantly larger
than the observed A; = 4.7 £ 0.5 nm. The lattice constants
and/or twist angle used for the simulations must therefore be
modified until an agreement is found with the observations.
Due to the large parameter space that can be varied within
the simulations (R;, R,, R}, R;, 0), we first varied only
the twist angle 6 and recorded the simulated periods and
angles of M; and M,, conserving the lattice constants as

measured. Figure 6(a) shows the simulated §; as a function
of the simulated period A;, for the twist angles ranging from
6 = 9.0° to 15.0° with a step angle A6 = 0.5° (solid squares).
As 0 is increased, the value of A; increases until 6 ~12.5°
and then decreases. Conversely &; decreases rather steadily
from 6 = 9.0° to 0 = 15.0°. However, there is no value of 6
that can model accurately both the observed A; and §; (red
symbol). The lattice parameters used in the SSM have to be
modified in order to reduce the simulated A;.

New simulations are therefore performed using the SSM,
this time varying the lattice parameters (with the condition
that Ry, R», R are kept within their experimental uncertain-
ties). The periods and angles of M| and M, are systematically
recorded. Figure 6(a) shows the values (A, §;) obtained for

the optimized lattice parameters R; x R, = 4.48 x 4.83 A’
and R} =4.08 A (in open squares). Now the SSM data agrees
with the observed values (in red) for the twist angle 6 =
12 £ 1°. For 8 = 12.5° the SSM yields A; = 4.57 nm, §; =
—36.1° which are in close agreement with the observations.
The optimized SSM is shown in Fig. 5(d), where several moiré
fringes of M; and M, (respectively, white and blue dashed
lines) are indicated. The inset of Fig. 5(d) shows the SSM
at higher magnification. The direct visualisation of both the
STM image in Fig. 5(b) and the simulation using the SSM in
Fig. 5(d) further confirms the agreement.

Figure 6(b) shows the values (A;, §;) obtained from the
SSM using the experimentally observed (black squares) and
the optimized lattice parameters (open squares). In contrast
to M;, the values of both simulated A, and &, do not de-
pend strongly on 6. The scatter in simulated A, &, is a
result of the manual approach of the SSM technique, as it
can be difficult to accurately visualize the periodic change
of contrast constituted by the M, fringes on screen [see
Fig. 5(d)]. Nevertheless, the small range in which the values
of X, and §; scatter agrees well with the observed M, (red
symbol).
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FIG. 5. (a) STM topographic image (V = 0.20 V, I = 10 pA) of
a VDWH grown on MoS, (black). 8-Sb (blue) is present on top of
the 2-ML-thick «-Bi island (dark blue). A MP (M) is visible on the
B-Sb layer. (b) Atomically resolved STM image (V =0.10 V, I =
50 pA) of B-Sb, where both M, (highlighted with white dashed lines,
M =4.74+0.5nm,§; = —39 + 8°) and M, (blue dashed lines, A, =
1.06 & 0.06 nm, &, = 37 + 6°) are resolved. (c) FFT of the STM
image in (b). The reciprocal vectors of 8-Sb (1,0), (0,1), and (1, —1)
are indicated. The FFT resolves both K; (black arrow) and K, (blue
arrow), the wave vectors associated, respectively, with M; and M,.
In (a), (b), and (d), «-Bi R is indicated (white arrow). (d) SSM of
B-Sb (orange) on «-Bi (black), using R, x R, = 4.480 x 4.830 10%2
and R| = R, = 4.080 A, for a twist angle 6 = 12.5°, leading to
two simulated MPs M; (A = 4.57 nm, §; = —36.1°, indicated with
white dashed lines) and M, (A, = 1.05 nm, §; = 33.9°, indicated
with blue dashed lines). The inset in (d) is a higher magnification
of the SSM where the unit cells are indicated.

D. Monolayer bismuthene

A previously unpredicted single monolayer, rectangular
allotrope of bismuthene (MBi), has recently been realized
[43]. MBi is only ~2+£1 A thick when observed on 2-
ML-thick «-Bi islands, confirming that it is comprised of a
single atomic layer. Figure 7(a) shows an atomically resolved
STM image, revealing the MBi unit cell of R] x R, =4.0 +

02x4.1+02 A>. Two moiré fringes are also resolved:
M, (A =1.94+0.2nm, §; = 2.5 £ 2.0° indicated with black
dashed lines) and M, (A, = 3.1 0.3 nm, 6, = —80 % 10°,
indicated with blue dashed lines). Again, the fringe angles
8 are measured with respect to the underlying 2-ML «-Bi
R; direction (white arrow). The preferential growth direction
of the 4-ML «-Bi stripes seen in large scale images (see
below) allows us to directly measure the twist angle 6 between
MBi and «-Bi. The MBi and «-Bi crystals are in fact nearly
aligned, as 6 = 1 & 3°.

Figure 7(b) shows a different MBi layer (blue) grown on
a 2-ML «-Bi (black) existing between two 4-ML «-Bi stripes

15 60
) (®)
o " 45
-15 o L] [
un - li o
& 230 o [ = o
= + . T30 | th
©@ .45 o . Y
o n
-60 n - 15
-75 o L
\{6 =15.0°
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3 4 5 6 7 08 09 1.0 11 12 13
A; (nm) A, (nm)

FIG. 6. (a) Fringe angle §, versus period A; and (b) §, versus A,
obtained from SSMs using the experimentally observed lattice con-
stants (R; x Ry = 4.53 x 4.87 10\2 and R = 4.04 A, solid squares)
and optimized lattice constants (R; X R, = 4.48 x 4.83 AZ andR| =
4.08 A, open squares). The observed M; (11, §;) and M, (A2, 8,) are
added onto the graph (red). In both panels the twist angle step is
AO =0.5°

(white). The «-Bi lattice vector Ry is indicated with the white
arrow. The direction of the 4-ML «-Bi stripes is also used to
obtain 6 as previously discussed. A MP (dashed black lines)
is visible, and is characterized by the same period A; and
angle 6; as in Fig. 7(a), i.e.,, 1.9 nm and 2.5°, respectively.
Figure 7(c) shows the same region as in Fig. 7(b) after tip
modification (TM). Clearly the changes due to TM led to a
reduction of the lateral extension of the layer, and induced
a variety of defects corresponding to the darker patches on
the topographic image. However, the MP fringes are still
visible, and are characterized with 1} = 1.9+ 0.3 nm and
87 = 20 £ 4°. Unfortunately, the imaging conditions could
neither allow resolution of M, in Figs. 7(b) and 7(c), nor the
atomic structure in Fig. 7(c).

We now focus on the modeling of the MPs, for the three
experimental images in Figs. 7(a)-7(c). We simulate the
MPs using the SSM with the experimentally observed lattice
parameters of both 2-ML «-Bi and MBi for the observed
twist angle & = 1° (not shown). Two distinct MP fringes are
observed, qualitatively similar to the STM image in Fig. 7(a).
The SSM vyields A; =2.97 nm, §; = 7.3°, A, = 3.33 nm,
8, = —80.6°. While M, is in very good agreement with the
observation, the simulated M; fringes are too large and appear
excessively rotated with respect to Ry. The simulation is
therefore systematically repeated by varying 6 from —10°
to 10°. The simulated values of (A, d;) and (X,, §,) are
collected and displayed in Fig. 7(d) (solid squares, black for
M, blue for M5,). The observed MPs, M; and M, (before TM)
and M| (after TM) are also plotted (red symbols). Clearly
the simulated MPs do not agree with the observed ones for
the entire studied range: rather, the SSM-derived periods, in
particular A;, are too large. The lattice mismatch between
a-Bi and MBi must therefore be increased to reduce the
period. SSMs are repeated with a slightly compressed MBi
unit cell until the agreement is satisfactory. The open squares
in Fig. 7(d) show the SSM results using the optimized unit

cell for MBi (Ry x R, = 3.97 x 3.82 A”). Note that the unit
cell for @-Bi remains unchanged and consistent with previous
examples. For 6 = 0.5°: the new simulated MPs are A; =
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FIG. 7. (a) Atomically resolved STM image (V = —0.8 V, [ =
0.2 nA) of a MBI layer grown on a 2-ML «-Bi. The «-Bi reference
lattice vector Ry is indicated (white arrow). Clearly a dual fringelike
MP is observed, and the periods A; and A, are indicated on the
figure. (b) STM image (V = —0.8 V, I = 0.1 nA) of a MBi layer
(blue) grown on a 2-ML «-Bi (black) between two 4-ML «-Bi
stripes (white). Only M; is visible (black dashed lines). (c¢) STM
image (V = —0.8 V, I =0.1 nA, RT) of the same area obtained
after tip modification. M; appears rotated by about 20° with respect
to Ry. (d) SSM-derived fringe angle & as a function of A for both
M, (black) and M, (blue), using the experimentally observed lattice
constants (solid squares) and after optimization (open squares lines).
The experimentally observed MPs are displayed in red. (e) SSM
of the MBI layer (orange) on «-Bi (black) in (b) for an angle of
6 = 0.5°. (f) SSM for an angle of & = 4.1°. Insets in (e) and (f) show
the SSMs in higher resolution. The unit cells are indicated.

1.95 nm, 8; =2.6° and A, = 3.16 nm, §, = —86.0° which
are all in very good agreement with the observed MPs before
TM. Figure 7(e) shows the simulated MPs for 6 = 0.5°. The
M, fringes are indicated with black dashed lines, and it is
clear that the result from the SSM agrees with the STM
image in Fig. 7(b). For the value of 8 = 4.1°, the simulated
M, has a period A = 1.85 nm and §; = 20.3° which agrees
very well with the observed M after TM. Figure 7(f) shows
the result from the optimized SSM for 6 = 4.1°. Here too,
the agreement with the STM image in Fig. 7(c) is clear.

Despite the lack of atomic resolution data, it is possible
to understand the MPs both before and after TM: the MBi
layer was rotated by 6 = 4.1 — 0.5 = 3.6° relative to the «-Bi
underlayer.

IV. DISCUSSION AND CONCLUSION

Our approach to understanding observed moiré patterns is
based on a simple superposition model. The SSM allows an
understanding of the origin of the MPs in all the VDWHs
studied here and we believe that the same approach should
be applicable to any VDWH. Table II summarizes the final
parameters that described the MPs observed for «-Bi on
HOPG and MoS; substrates, as well as for «-Sb on «-Bi, 8-Sb
on «-Bi, and MBi on «-Bi. The results of the SSM are in good
agreement with the only available analytical model [75], in the
few cases where that model is applicable.

The SSM also allows an understanding of the evolution
of the MPs as the twist angle 6 between the two layers is
varied. More generally, modeling the observed MPs in this
way allows precise determination of the structure of both
under- and overlayer. The SSM allows corrections to the
lattice constants and/or twist angle 6 in order to precisely
model the periods and angles of all the observed MP fringes.

While the method relies on manual measurement of the
periods and angles, the SSM appears to be the first consistent
approach to understanding of MPs for layer structures that
do not share the same symmetry, and has the advantage that
it does not require commensurability. A general analytical
model remains to be developed, and would be of significant
benefit to the design of VDWHs.

The visualization of the MPs produced by the SSM re-
quires some thought and experience. Obviously rendering
parameters chosen in software, such as the diameter of the
atoms, can affect the clarity of the MPs on screen. We also find
that the screen resolution is important in viewing generated
images as aliasing effects can occur if the wrong resolution is
chosen; high definition rendering is preferred. Additionally,
including both atoms within the unit cell for the BP-like
structures (o phases in Fig. 1) increases the visual contrast in
many cases (Figs. 1 and 2). These visualization issues do not
impact on the geometry of the MPs (the measured period or
fringe angle) except in the case of MBi/«-Bi (Fig. 7), where
the inclusion of the middle atom in the unit cell generates
images (not shown) in which an additional MP resulting from
the interference of the diagonal rows of atoms is observed
strongly. We hypothesize that this difference with the exper-
imental images is related to the strong atomic buckling of
the MBi, in which the middle atom is vertically offset by
~1.5 A [43], and therefore does not participate in the bilayer
interaction that leads to the observed MP.

We have carefully considered the question of whether the
solutions provided by the SSM are unique. For each case we
explored a wide range of simulated patterns and examined the
trends in the simulated period A and angle § as 6 was varied.
These are continuous functions (as shown in Figs. 4, 6, and 7)
and it is therefore possible to be confident that other solutions
do not exist. We note that in some cases a range of the lattice
constants could be used in the SSMs to yield the required A
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and §. However the choice of these parameters is restricted by
the experimental lattice constants and we only consider values
within the range of the experimental uncertainties.

Finally, we note that in all the examples discussed here the
overlayer adopts a rotational configuration in which the period
is very close to the maximum possible (6 ~0 for MBi/«-Bi,
a-Sb/a-Bi, and «-Bi/MoS,, 8 ~12.5° for §-Sb/«-Bi, and
for 6 ~30° for «-Bi/HOPG). The simplest interpretation of
this observation is to that the overlayer, which has a rotational
degree of freedom (@), rotates during the early stage of growth

in order to minimize the elastic deformation energy due to the
lattice mismatch between the layers.
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