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Abstract

Background: Understanding the relationship between sites and the plant species they support is essential for effective 
vegetation management. Site-species matching requires knowledge of the growth response of a given species to the 
full range of environmental conditions in potential planting sites. This can be achieved by repeatedly measuring 
species growth at a comprehensive network of sample plots that cover a range of environmental conditions, including 
topography, climate, and soil factors. The New Zealand Dryland Forests Initiative has established permanent sample 
plots (PSPs) of a plantation species, Eucalyptus bosistoana F.Muell., across New Zealand. However, these PSPs do not 
cover the entire range of environmental conditions available for the species and hence there is a need to expand the 
network of sites. The aim of this study was to determine optimal locations for new PSPs to provide more unique 
information to support site-species matching studies for Eucalyptus bosistoana in New Zealand.

Methods: A geographic information system (GIS) and stratified random sampling method were used to generate a 
model to identify optimal locations for E. bosistoana PSP establishment. The variables used in this study included 
topography, climate, and soil data. Redundancy between the initial set of potential explanatory variables was reduced 
by a multi-collinearity analysis. The potential habitat for the species was restricted to land with environmental 
conditions that could support E. bosistoana. All environmental variables were stratified and an initial priority index 
for each stratum in each variable was calculated. Then a weighted-overlay analysis was conducted to create the final 
priority index, which was mapped to identify high-priority areas for targeted PSP expansion. 

Results: The existing PSP network for E. bosistoana generally covers the environmental conditions in low-elevation 
New Zealand dry lands, which are located alongside the east coast of the South Island, and the southern part of the 
North Island. The model identified high priority areas for PSP expansion, including several large regions in the North 
Island, especially in Rangitikei and Taupo Districts. 

Conclusions: The model successfully allowed identification of areas for a strategic expansion of permanent sample 
plots for E. bosistoana. Newly identified areas expand upon the topographic, climatic, and soil conditions represented 
by the existing PSP network. The new area for PSP expansion has potential to provide valuable information for 
further site-species matching studies. The methodology in this paper has potential to be used for other plot networks 
of a different species, or even natural forests. 
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Introduction
The use of forest monitoring plots is important for forest 
resource protection and management. For plantation 
forest development, permanent sample plots (PSP) 
provide information on how trees grow, when and which 
silvicultural practices are required, and how effective 
they are if applied. This information is crucial for the 
decision making process of any plantation management 
plan and can be used to support decisions about whether 
more plantings of a given species should be established 
(Millen et al. 2016). Understanding the relationship 
between a species and its site requirements is essential 
to the success of the plantation.

The New Zealand Dryland Forest Initiative (NZDFI) 
has used permanent sample plots to monitor the survival 
and growth of durable eucalypts not previously planted 
in large numbers in New Zealand. One particular species 
being trialed by the NZDFI is Eucalyptus bosistoana 
F.Muell., which has its natural habitat in the south-
eastern coastal areas of Australia (Boland et al. 2006). 
This species has good potential as a plantation species in 
New Zealand due to its abilities to produce highly durable 
timber, to coppice vigorously after fire and harvesting, 
and to provide nectar/pollen for native biodiversity 
(Apiolaza et al. 2011; Millen et al. 2016; Nicholas & 
Millen 2012). Despite many positive characteristics, 
there are some concerns about its susceptibility to pests, 
namely defoliation from the Eucalyptus variegated 
beetle (Paropsisterna variicollis (Chapuis)) (Lin et al. 
2017). With its hardness, wood density, straightness, 
and durability, the timber of this species has been used 
for numerous purposes such as farming fences, building 
materials, boat masts and railway ties. Of particular 
relevance is that this species has high drought tolerance 
that satisfies the prerequisite for plantations in New 
Zealand drylands (Apiolaza et al. 2011; Millen et al. 
2016; Nicholas & Millen 2012).

To determine whether this species can be 
commercially successful in New Zealand, the NZDFI aims 
to ensure its trials are well distributed throughout New 
Zealand’s drylands such that they can be used for growth 
and yield modelling. The growth and yield models will 
help determine the sites with the greatest growth rates 
and survival. As of 2015 the NZDFI had established 
and monitored 84 permanent sample plots (PSPs) of E. 
bosistoana in 30 sites across the North and South Islands 
of New Zealand (NZDFI 2015). However, there is a desire 
to expand the PSP network to span a more complete 
range of environmental conditions suitable for eucalypt 
plantations in New Zealand. The extended PSP network 
will provide a greater understanding of how E. bosistoana 
grows in a variety of environmental situations, especially 
in marginal conditions (NZDFI 2015, 2017). To fill the 
gaps in the existing PSP network, new PSPs should be 
established at sites with environmental conditions that 
are not well represented in the current network.

Habitat modelling is often used to examine the set of 
conditions within the habitat of a particular species or a 
group of species. In this approach, a habitat is considered 
as a group of separate factors (i.e. terrain, climate and 
soil). This approach was introduced by James and 

Shugart (1970) for bird habitat modelling. In the early 
days of habitat modelling, the approach was often 
used to model the habitat or distribution of birds (e.g. 
Johnston and Temple (1986) or mammals (e.g. Pereira 
(1989); Pausas et al. (1995). These habitat models 
were typically created by collecting site description 
data in terms of site properties (i.e. model variables) 
to determine their statistical relationships with the 
distribution of a species. Such statistical assessments 
usually require large amounts of empirical data that are 
not easily collected. 

As computing technology became more widely 
available, habitat modelling took advantage of these 
processing advances. A computer-based model, CLIMEX, 
was developed and used to describe the climatic 
favourability of a given location for a particular animal 
species (Sutherst & Maywald 1985). CLIMEX modelling 
requires climatic data and population data for the target 
species (Sutherst & Maywald 1985; Sutherst et al. 2007). 
CLIMEX and its applications have enabled ecologists to 
utilise computing power for habitat modelling (Pattison 
& Mack 2008; Shabani et al. 2012; Taylor et al. 2012). 
Recently, CLIMEX has been applied to examining the 
potential distribution of invasive plants and insects 
(Aljaryian et al. 2016; Hill et al. 2016; Xuezhen et al. 
2018).

In New Zealand, a form of habitat modelling has 
been widely used to assess the potential productivity of 
plantation forest species across a range of environmental 
conditions. Two common indices used to predict the 
productivity of Pinus radiata include the 300 Index 
(defined as the stem volume mean annual increment 
at age 30 years (Kimberley et al. 2005)) and Site 
Index (defined as the mean top height at age 20 years 
(Goulding 2005)). Watt et al. (2009) modelled the spatial 
distribution of Cupressus lusitanica productivity. These 
indices reflect the potential growth of the target species 
in their habitat based on surrounding environmental 
conditions.

Environmental site descriptions are costly and 
time-consuming to undertake, especially in the case of 
large habitat areas. However, with the development of 
computer science and geographic information systems 
(GIS), GIS-based habitat models have become more 
widespread relative to traditional statistical habitat 
models because of their applicability on large spatial 
extents (Basir 2014; Reisinger & Kennedy 1990; Store 
& Kangas 2001). In GIS-based habitat modelling, each 
environmental variable is represented by a GIS layer (i.e. 
either vector or raster). As a result, an environmental 
description of every spatial location in the habitat can be 
obtained (Dettmers & Bart 1999; Shaw & Atkinson 1988; 
Wadge et al. 1993). GIS-based habitat modelling has good 
potential to meet the NZDFI’s objective of strategically 
expanding their PSP network for E. bosistoana. 

A challenge involved with this objective is how to 
allocate new sample plots optimally across a large 
study area to cover the wide range of environmental 
variability. Simple random sampling tends to collect 
samples throughout the range of values in the population 
if those values appear with similar frequencies (Green 



1979; Royall 1970). However, this method often involves 
a high risk of bias when applied on naturally distributed 
population, such as environmental objects on a large 
geographic surface (Cawsey et al. 2002; Danz et al. 2003; 
Kohl et al. 2006). Systematic sampling may solve the 
problem of the simple random sampling method but it 
cannot guarantee that samples from all important value 
gradients are taken into account unless the sampling 
density (i.e. the number of samples over a unit of area) 
is sufficiently high (J. E. Austin et al. 2001; Scott 1998). 
Due to these limitations, neither random, nor systematic 
sampling are appropriate for expanding the E. bosistoana 
PSP network.

Alternatively, to ensure the samples are distributed 
representatively across the entire  range of values, the 
stratified random sampling method has been widely 
used, especially for low-density samples over an large 
areas (e.g. national survey) or an isolated natural area 
that restricts the ability to collect samples (Esfahani 
& Dougherty 2014; Tomppo et al. 2014; Yves & Ecker 
2014). Indeed, if the environmental conditions within a 
specific area are stratified into several separate groups, 
taking samples from these groups will provide more 
representative information about the population (M. P. 
Austin & Heyligers 1991). Stratified random sampling 
has been increasingly adopted in ecological and forestry 
studies (Danz et al. 2003; Knollova et al. 2005; Wallenius 
et al. 2011; Yves & Ecker 2014). 

This  study takes advantage of the merits of GIS-based 
habitat modelling and stratified random sampling to find 
priority locations for a strategic expansion of the existing 
permanent sample plot network for E. bosistoana in 
New Zealand. The resulting priority map highlights the 
environmental gaps in the existing plot network that 
need to be filled by the strategic expansion. Although 
this study is specific to E. bosistoana, the methodology 
has general applicability as it involves a GIS-based model 
of habitat that is easy to modify and adjust for other 
species.

Methods
Study area
The study area includes the North and South Islands 
of New Zealand, which cover a total of approximately 
268,000 km2 (Fig. 1). New Zealand has a wide range of 
topographic and climatic conditions, ranging from sea 
level to 3737 m above sea level (Barringer et al. 2002). 
The annual average temperature ranges from -2.55 to 
16.79 °C and annual precipitation ranges from 392 to 
6807 mm year-1 (Fick & Hijmans 2017).

Tree species and Permanent Sample Plots
“Coast grey box” or “Gippsland grey box” (Eucalyptus 
bosistoana) is a species naturally found on the southeast 
coast of Australia (Boland et al. 2006). It can reach 
a height of approximately 40 to 60 m at maturity. The 
habitat of this species is coastal mixed forests located 
in areas below 500 m of elevation within a range 
of latitudes from 33 to 37.5°S (Apiolaza et al. 2011; 
Boland et al. 2006). The climatic range is warm humid 

to cool, with a mean maximum monthly temperature of  
24-29 °C in the hot season and a mean minimum 
temperature of 1-6 °C in the winter months. It can 
withstand 5-40 frost days per year. The mean average 
precipitation in its natural range is 700-1200 mm a 
year (Boland et al. 2006), though it is currently planted 
on sites in NZ with less than 700 mm of annual rainfall 
(NZDFI 2019).

E. bosistoana has been planted at 30 sites across New 
Zealand to support the NZDFI research programme. 
Within these sites, 84 PSPs have been established, and 
together, these PSPs are considered as a PSP network. 
The PSPs are further divided into 1095 sub-plots (Fig. 1).

Description of data used in the study
The environmental factors available for use in this 
study include climate, soil, and topography (Table 1). 
Climate data are from WorldClim and include average 
temperatures and precipitation based on the period from 
1970-2000 (Fick & Hijmans 2017). Soil data are from 
the New Zealand Land Resource Inventory (Newsome et 
al. 2008), while the digital elevation model (DEM) was 
sourced from Landcare Research who interpolated the 
surface from Land Information New Zealand’s 1:50,000 
topographic spot heights and contours. 
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FIGURE 1: The study area (source: Statistics NZ 2016) 
and existing permanent sample plots for  
E. bosistoana. 



General modelling approach
The method applied in this study consisted of five 
steps, each of which is detailed below: (1) identification 
of variables for GIS-based modelling, (2) building 
the dataset, (3) variable restriction, (4) variable 
stratification, and (5) cartographic modelling.

Identification of variables for GIS-modelling 
According to studies by Apiolaza et al. (2011) and Prober 
et al. (2016)  and based on the available sources of data, 
17 variables were selected as potentially influencing the 
growth and distribution of E. bosistoana (Table 2). The 
multi-collinearity analysis, which involved an assessment 
of variation inflation factors (VIF), was undertaken to 
test the correlations between the variables to minimise 
information redundancy. VIF values near 1 indicate that 
the variables were independent, while VIFs exceeding 10 
were indicative of multi-collinearity requiring correction 
(García et al. 2014; Kutner et al. 2003). 

The next step was to determine whether a weighting 
should be applied to the remaining variables to highlight 
certain variables as having greater impact upon the 
growth and development of E. bosistoana. Information 
from previous studies (Apiolaza et al. 2011; Boland et al. 
2006; NZDFI 2015) and expert advice (EG Mason pers. 
comm) contributed to the decision-making process. Four 
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variables were deemed as the most influential factors on 
the target species, including annual average temperature, 
precipitation, soil pH and elevation. These variables 
were given a weight coefficient of 1.5 whereas all other 
variables were assigned a weight coefficient of 1.

Building the dataset
In this study, data were derived from existing published 
data or through interpolation of field data in cases of 
large areas (Table 2). All acquired data were processed 
into raster layers (one layer corresponding to a single 
model variable). 

All the environmental variables (Table 2) were 
processed to raster-format layers with cell size of 25 × 
25 m in the same projected coordinate system (i.e. New 
Zealand Transverse Mercator) before being clipped to  
the study area boundary. The data processing stage was 
conducted using ArcGIS version 10.4 (ESRI, Redlands, 
CA, USA) and SAGA-GIS 4.2 (Conrad et al. 2015).

Variable restriction
Potential trial planting sites in New Zealand should have 
similar environmental conditions to the native habitat 
of E. bosistoana in Australia, such that the species has 
a reasonable chance of surviving and providing growth 
and yield. Variable value restriction was used to restrict 

Category Raw data Unit Source Data type Resolution

Climate

Monthly mean temperature °C

WorldClim Version2 Raster 1 × 1 km
Monthly minimum temperature °C

Monthly maximum temperature °C

Monthly precipitation mm

Soil

Potential rooting depth m

New Zealand Land 
Resource Inventory 
(NZLRI)

Vector N/A

Soil pH N/A

Soil salinity %

Soil temperature regime Classified (*)

Profile available water in soil mm

Topography Digital Elevation Model (DEM) m Landcare Research Raster 25 × 25 m

Boundaries

Territorial Authority  
  (2016 Generalized Version) N/A Statistics New Zealand Vector N/A

NZ Area Units  
  (2015 Yearly Pattern) N/A Statistics New Zealand Vector N/A

Land Cover Database version 4.1 N/A Landcare Research Vector N/A

TABLE 1: GIS data used for habitat modelling including their sources, type of data and spatial resolution

(*) Soil temperature regime classes include:  T - thermic; WM - warm mesic; MM - mild mesic; CM - cool mesic; DM - cold mesic and C – cryic 
(Webb & Wilson 1995).



the potential planting sites in New Zealand to those 
having similar environmental conditions to those in the 
natura range of E. bosistoana.  

There were two reasons for restricting the site 
availability. First, some areas had current land uses 
that were not consistent with plantation forestry (e.g. 
settlement area, horticulture, and indigenous forests). 
These areas were identified using the New Zealand Land 
Cover Database (LCDB v4.1) and subsequently excluded 
from the analysis. Second, areas were also excluded 
if they had environmental conditions that deviated 
considerably from the native habitat of the target species 
(e.g. permanent ice or extremely low precipitation that 
the species could not survive). Restricting the study 
area based on environmental conditions considered 
the environmental conditions appearing in the natural 
habitat of E. bosistonana in south-eastern Australia, 
those of existing trial plantations throughout NZ, values 
found in previous studies (Boland et al. 2006; Grieve et 

al. 1999; Webb & Wilson 1995)  and, where necessary, 
expert knowledge (EG Mason, pers. comm.). Ranges for 
each of the 17 environmental variables were inferred 
from one or more of these four sources; the specifics are 
detailed below. 

We obtained data, including 1596 recorded points of  
E. bosistoana occurrence from its natural range in south-
eastern Australia (ALA 2017). The occurrence locations 
were overlaid with environmental attribute data from 
the Atlas of Living Australia (ALA), WorldClim, and 
CSIRO Ecosystem Sciences (ALA 2017) to identify the 
ranges of environmental conditions (e.g. temperature, 
precipitation) that E. bosistoana tolerates in its native 
habitat. In addition to the natural range data, the species 
was successfully established in 30 sites throughout 
New Zealand. These trial plots provided additional 
information about the range of conditions in which the 
species could survive. 
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Variable category Variable ID Variable Unit Source

1. Climate

V1.1 Annual average temperature °C

WorldClim Version2  
(the determination of cold, hot, 
dry, and wet seasons based on the 
publication by Leathwick et al. 
(1998))

V1.2 Average monthly minimum 
temperature of the cold season °C

V1.3 Average monthly maximum 
temperature of the hot season °C

V1.4 Annual precipitation mm/year

V1.5 Monthly precipitation of the dry 
season mm

2. Soil

V2.1 Potential rooting depth m

New Zealand Land Resource 
Inventory (NZLRI)

V2.2 Soil pH None

V2.3 Soil salinity %

V2.4 Soil temperature regime Classified

V2.5 Profile available water in soil mm

3. Topography

V3.1 Elevation m Landcare Research

V3.2 Slope degree Derived from DEM  
(Burrough & McDonell 1998)

V3.3 Aspect degree Derived from DEM  
(Burrough & McDonell 1998)

V3.4 Curvature None Derived from DEM  
(Zeverbergen & Thorne 1987)

V3.5 Terrain Ruggedness Index - TRI None Derived from DEM  
(Riley et al. 1999)

V3.6 Topographic Wetness Index - TWI None Derived from DEM  
(Beven & Kirkby 1979)

V3.7 Wind Exposition Index None Derived from DEM  
(Gerlitz et al. 2015)

TABLE 2: The environmental variables of the habitat model



Finally, a number of previous studies on eucalypts 
provided guidance to help determine the thresholds for 
environmental conditions that the species can survive 
(Boland et al. 1984; Grieve et al. 1999). In brief, the three 
sources of data together contributed to determining the 
recorded value range of each variable describing the 
habitat of E. bosistoana. To avoid being overly restrictive 
(i.e. causing loss of potential habitat area) and to create 
chances for the species to adapt to conditions in new 
areas that are marginally outside the current habitat 
conditions, the recorded value range was generally 
buffered by positive and negative 10% to create the 
“restriction value range” for each variable.

Some exceptions to buffering the recorded value range 
existed. The study did not apply an upper limit for the 
restriction value range of the variable Average monthly 
min temperature of the cold season as higher values 
of this variable would be better for the development 
of the target species (Millen et al. 2016). In practice, 
this restriction value range also contained values in 
Australia’s conditions that did not exist within the study 
area (i.e. New Zealand). 

An interference of the restriction value range in 
association with the range of values available in the study 
area was used to produce the “value range of interest” 
for each variable. Once the value range of interest was 
defined for each variable layer, all pixels with values 
outside the range of interest, or those with unsuitable 
land covers, were replaced by no-data pixels, such that 
they would be excluded from subsequent analyses. 

Variable stratification and standardisation
The environmental raster layers used in this study 
contained continuous values. Even though the full 
value range for any given environmental variable was 
restricted by the value ranges of interest, no sample plot 
system could effectively provide sufficient samples to 
cover every value in those ranges. The stratified random 
sampling approach allowed the study to conduct an 
analysis on a relatively small number of groups of values 
instead of a wide range containing continuous values.

Following the stratified random sampling approach, 
the value range of interest for each variable was 
stratified into non-overlapping compartments, also 
called strata. A stratum should include values reflecting 
similar conditions (e.g. cold weather or uneven surface) 
or a particular level of characteristics of the conditions 
at the corresponding locations (e.g. low slope or high soil 
pH). Defining strata requires an understanding of the 
full range of values present for each variable, and then 
specifying breakpoints within the data; the breakpoints 
act simultaneously as an upper limit for one stratum and 
a lower limit for the next stratum. 

Breakpoints for some of the variables used in this 
study were based on existing published values (Webb and 
Wilson 1995; Newsome et al. 2008), while others were 
based on an assessment of the frequency distribution 
of a given variable. The stratification of soil variables, 
slope and aspect were carried out mainly based on 
descriptions of New Zealand landscapes by Webb and 
Wilson (1995) and Newsome et al. (2008). For example, 

the soil pH value range, in general including values from 
0 to 14, was divided into six strata: very low (<4.9), low 
(4.9–5.4), moderately low (5.5–5.7), near neutral (5.8–
6.4), moderately high (6.5–7.5) and high (>7.5). 

For variables where published strata were not 
available, an alternative approach was required. 
Climatic variables and topographic variables (other than 
slope and aspect), were stratified following the Jenks 
Natural Breaks algorithm (Jenks & Caspall 1971). This 
stratification uses the frequency distribution of data for 
a particular variable and identifies natural groupings 
inherent in the data. Breakpoints are identified to 
achieve groups with similar numbers of observations 
and to maximise the differences between strata. In this 
way, the variables were divided into strata that have 
relatively big differences in the data values  (De Smith 
et al. 2015). 

After stratification, values of variables from existing 
plot locations were extracted and then assigned into 
strata to count the frequency of occurrence within 
each stratum (i.e. the number of times that values from 
existing plots appear in each stratum). The study used 
this frequency as an indicator for priority. The priority 
indicator increases with decreasing frequency in a 
stratum. The lower the frequency, the greater the need 
for new plots in that stratum. 

The next step was to calculate a normalised priority 
indicator for each stratum. This ensured that all priorities 
were normalised on a scale of 0–100, using Equation (1):

pj = 100 × (1 – fj fmax
-1) 	 	  Equation (1)

where pj and fj are the normalised priority and 
the frequency of the stratum j respectively, fmax is 
the highest frequency in the variable. For example, 
assuming a variable was divided into three strata with 
the corresponding frequencies: f1 = 200, f2 = 160 and  
f3 = 20. Thus, f1 = 200 is the maximum frequency and fmax 
= f1 = 200. Then, the normalised priority for the strata 
was calculated following Equation (1): p1 = 0, p2 = 20 and 
p3 = 90 respectively. This result was interpreted such 
that stratum 3, with normalised priority value of 90, 
had the highest priority. The example demonstrated that 
this normalisation enables a quantitative evaluation of 
priority in which the higher normalised priority values 
meant the higher priority to establish forest plots on 
locations with attribute values within the stratum.

After the calculation of normalised priorities for all 
strata in all variables, the map layers were reclassified 
such that every pixel received the normalised priority 
value of the stratum which contained the pixel value. In 
other words, each map layer of a variable was converted 
to a priority layer that highlighted high-priority pixels 
on the map in respect to the particular environmental 
variable. 

Cartographic modelling
The last step was to produce the map of priority index 
(i.e. final priority point) for each pixel within the 
feasible area. This index was calculated on each pixel 
as the weighted sum of normalised priority values 

Le and Morgonroth New Zealand Journal of Forestry Science (2020) 50:9						                     Page 6



from all variables by the priority function as shown in  
Equation (2):

				     Equation (2)

where P was the priority index, n was the number of 
environmental variables, pi was the normalised priority 
value of the variable i, and wi was the weight coefficient 
of the variable i. In particular, the priority index was 
calculated for each pixel by a weighted sum of, for 
example, 17 normalised priority values corresponding to 
the 17 selected variables (i.e. n = 17). The weighted sum 
was calculated by multiplying each normalised priority 
layer by its weight coefficient and then summing the 
weighted normalised priority values from all variable 
grids using an algebraic overlay analysis. In this stage, 
the coefficient of 1.5 was used for the four variables (i.e. 
annual average temperature, precipitation, soil pH and 
elevation) and a coefficient of 1 was used for all other 
variables. With each normalised priority value ranging 
between 0–100, the priority index in this example could 
have values between 0–1,900.
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Results

Model structure
After all the variable layers were created, we estimated 
the dependence between model variables in each 
category to detect any multi-collinearity. VIF values of 
all variables to identify multi-collinearity are shown in 
Table 3. 

The VIFs of variables 3.2 (Slope) and 3.5 (Terrain 
Ruggedness Index – TRI) considerably exceeded 10.0 (i.e. 
approximately 31.2 and 32.2, respectively). This was 
interpreted as there being a high correlation between 
these variables, which could lead to information 
redundancy and overlapping in the model. To solve 
this multi-collinearity problem, TRI was removed 
from further consideration because Slope is easier to 
measure/calculate and is more common in forestry 
research as compared to TRI. 

Estimation of the priority index
Variable restriction
Value ranges of interest of the variables are presented in 
Table 4. Most of the variables, except topographic aspect 
and soil salinity, had ranges of interest narrower than 

TABLE 3: Multi-collinearity analysis of each variable category

Variable ID Detection-
Tolerance (%)

Variance Inflation 
Factor (VIF)

Multi-collinearity
Present?

(A) Climatic variables
Annual average temperature 82.66 1.21 FALSE
Average monthly min temperature of the cold season 76.12 1.31 FALSE
Average monthly max temperature of the hot season 72.91 1.37 FALSE
Annual precipitation 35.50 2.82 FALSE
Monthly precipitation of the dry season 41.56 2.40 FALSE

(B) Soil variables

Potential rooting depth 89.90 1.11 FALSE
Soil pH 88.98 1.12 FALSE
Soil salinity 96.11 1.04 FALSE
Soil temperature regime 89.59 1.12 FALSE
Profile available water in soil 97.64 1.02 FALSE

(C) Topographic variables

Elevation 29.29 3.41 FALSE
Slope 3.21 31.18 TRUE
Aspect 54.80 1.82 FALSE
Curvature 66.67 1.50 FALSE
Terrain Ruggedness Index - TRI 3.20 31.24 TRUE
Topographic Wetness Index - TWI 85.19 1.17 FALSE
Wind Exposition Index 42.43 2.36 FALSE
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the corresponding value ranges for the study area (i.e. all 
the values appeared in the study area). These conditions 
together determined available areas for the expansion of 
the existing PSPs (Fig. 2). 

In the variable value restriction process, areas to 
be excluded from the variables were either areas with 
values out of the value range of interest or areas under 
undesirable land covers (e.g. urban area, indigenous for-
est and mangrove area). Through this process, approxi-
mately 71.25% of the study area (i.e. 189,055.7 km2), 
primarily in the South Island, was excluded, including 
high mountainous areas, indigenous forests, and a large 
natural reserve area in the North Island (Fig. 2).

Variable stratification and standardisation
The results of variable stratification are in Table 5. From 
the counted frequency of each stratum, the normalised 
priority values of strata in each variable were calculated 
as in Table 6.

Overlay analysis
The final result was a map representing priority index 
values over the study area (Fig. 3). The maximum and 
minimum of the priority index were recorded at 1,506.5 
and 20.5 respectively, with high values indicating areas 
with under-represented environmental conditions 

amongst the existing PSP network. The locations of the 
1095 existing PSPs were also added to the map. Obviously, 
these locations distributed among low-priority areas as 
their environmental characteristics were well covered.

In general, high index areas were mainly in high 
elevation areas where the conditions in terms of the 
three types of variables were quite different than those in 
existing PSPs. The highest priority areas for E. bosistoana 
were in Rangitikei District (i.e. Moawhango) and Taupo 
District (i.e. Broadlands, Rangitaiki, and Tongariro). The 
other high priority zones included Northland, Auckland 
and Gisborne regions, and southeast-facing hillsides of 
the mountain chains in central South Island.

Discussion
The main objective of the model in this paper was to 
detect locations for new PSPs, which would enhance the 
effectiveness of the current PSP network for Eucalyptus 
bosistoana in New Zealand. The modelling results 
successfully allowed us to identify areas for a strategic 
forest plot expansion in New Zealand with the greatest 
potential to provide valuable information for site-species 
interaction. 

The capabilities of GIS were used in this study in 
association with the stratified random sampling method 
to create a flexible habitat model that was used to identify 
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FIGURE 2: Map of the study area BEFORE (A) and AFTER (B) variable restriction (value pixel: feasible for plot expansion; 
non-value pixel: excluded by variable restriction). The map inset in Figure 2A provides an example of the large 
number of sub-plots within any given point on the map.
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priority locations for PSP expansion. GIS was used here 
as a platform for contributing to the decision making 
process via variable data management, variable layer 
production, normalised priority calculation by means of 
spatial analysis, a weighted-overlaying combination of 
variables, and finally, mapping by means of cartographic 
modelling. The data processing and output of the spatial 
results prove the potential of GIS-based modelling in 
generating information for large-scale studies.

The most obvious advantage of the method used in 
this study is the possibility to generate priority indices 
for forest expansion in such a huge area as a whole 
country (i.e. New Zealand nationwide) consuming 
reasonable time and labor resources. This time and 
money-saving method enabled the study to adopt 
available environmental data in combination with expert 
knowledge to build a habitat model for a species to be 
strategically planted. Performing analyses in the habitat 
model allowed the study to spatially utilise normalised 
priority functions when dealing with different species 
and different existing forest plot systems in the same 
study area even if the area was huge with diverse 
environmental conditions.  

In the context of a new habitat for the species, 
the study set the habitat restriction based on actual 
occurrences of the species in its natural habitat and in the 
established sample plots within the study area. However, 
every species has its own tolerance ability to adapt to a 
wide range of environmental conditions. In this case, 
there were insufficient studies on the plasticity of the 
species, especially in respect to each environmental 
factor. We extended the range of each variable by 10% 
to reflect the potential for the species to adapt to a new 
habitat. However, the example of radiata pine (i.e. Pinus 
radiata) raised the issue of how much adaptable E. 
bosistoana could be. Indeed, radiata pine was introduced 
to New Zealand in the twentieth century and it has 
developed well in a much broader range of conditions 
than those present in its natural habitat (Mead 2013; 
MPI 2016; Weston 1957). Using an inappropriate value 
for the assumption of species’ plasticity may reduce the 
probability of identifying correct ecological thresholds. 
As a consequence, it is possible that variable buffering 
could result in either omitting significant suitable areas 
of potential new habitat (i.e. too small a buffer), or in 
adding unsuitable areas (i.e. too large a buffer) to the 
model.

In this case study, the approach involved an assumption 
that the model input data was error-free. However, the 
evaluation processes used types of information that are 
often uncertain and imprecise. These problems may arise 
from errors from data measurement and processing 
(Fischer & Wang 2011; Karger et al. 2017; Pielou 1984). 
Most of the information to create variable layers was 
collected from various providers who have different 
ways of managing data, and the rest resulted from spatial 
analysis. These sources of information had the most 
significant influence on the model quality because their 
errors were almost systematic and propagated all over 
the study area (M. P. Austin & Heyligers 1991; Pielou 
1984; Sellars & Jolls 2007). For example, the study by 
Pearse et al. (2015) highlighted inaccuracies in the soil 
data used in the present study. However, the model in 
this paper had to use that soil data because it is the best 
dataset in existence for the study area. For GIS-based 
modelling, it is possible to analyze the sensitivity of the 
model’s results to the uncertainties and uncertainty 
propagation of data. The solution should consider the 
analytical error propagation method suggested by Store 
and Kangas (2001) and the Monte Carlo simulation 
described by Burrough and McDonell (1998). The 
information from existing plots may also be affected by 
GPS inaccuracy, but this type of errors were less than 10 
m (NZDFI 2015) that were not crucial at the large scale 
of the study area. 

In general, the case study used a new flexible 
technique that can be applied to a wide range of 
contexts. The habitat model was built as a description of 
environmental conditions across New Zealand. Similarly, 
with the development of global environmental data by 
remote sensing, such habitat models can be easily built 
for other parts of the world. Obviously, these models can 
be widely used for the expansion of any plot network of 
any species to be introduced to a new habitat. Although 
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FIGURE 3: The priority index map



following the same procedure, each study subject 
requires a specific set of variables and its own criteria 
for variable restriction as well as particular methods for 
variable stratification. 

Another potential use of this technique is to identify 
locations for the expansion of forest inventory plots, 
especially in natural forests. Indeed, environmental 
conditions among natural forests were unevenly 
distributed which leads to heterogeneous forest 
compositions and structures. Following the habitat 
modelling approach, an inventory plot system after 
expansion can better cover the whole range of 
environmental habitats of the forest statuses. This is 
crucial to achieve more precise and more accurate 
inventory result over the region of interest. 

Conclusions
The results indicate that it was inappropriate to plant E. 
bosistoana in some parts of the South Island, such as the 
rainforest areas in Westland, areas too high and too cold 
deep in the south of the island. The existing PSP network 
for the species is over-represented with environmental 
conditions present in low-elevation New Zealand dry 
lands, which are located alongside the east coast of the 
South Island, and the southern part of the North Island. 
Moreover, high priority areas for further trial plots of 
this species included several large regions in the North 
Island, such as Northland, Auckland and Gisborne 
regions and especially some smaller parts in the center 
of the North island in Taupo and Rangitikei Districts. 
Plantations of this species should also be tested at higher 
elevation (e.g. in mountainous areas of the Canterbury, 
Marlborough and Tasman regions).

We have developed a new approach involving a 
priority index to determine strategic expansion of 
forest monitoring plots that uses GIS-based models 
in association with stratified random sampling. The 
technique used in this study was illustrated by a case 
study that successfully identified optimal sites for new 
establishments of forest plots of Eucalyptus bosistoana 
in New Zealand. New plots in these sites, if established, 
will provide crucial information for the site-species 
matching programme of the NZDFI. We hope that, by 
describing the methodology in this study, a broader base 
will help forest resource professionals and researchers 
able to build GIS-based habitat models and apply these 
models in creating more adequate and efficient plot 
network designs to monitor and assess forests and the 
surrounding conditions as well as relationships between 
them. 

For further studies, we recommend using more 
variables to better describe the environment surrounding 
PSPs, if possible, especially in terms of soil conditions 
that critically influence a plant’s growth. However, it is 
important to find references determining the restriction 
ranges regarding the new variables to be added. 
Moreover, trial plantings of the target species should 
be established in areas with marginal environmental 
conditions to identify the species’ plasticity. This could 
provide more significant information to enhance the 

performance of the model. The model in this paper can 
also be supported by statistical methods to determine 
appropriate weight coefficients for the model variables 
in consideration. It is recommended to use the analytical 
hierarchy process method, which is one of the most 
popular methods to obtain variables’ weights in GIS-
based modelling (Carver 1991; Chen et al. 2010; 
Marinoni et al. 2009). 
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