
SENG402 Final Report - Social Media in Software
Development

Johann Reiher 17080963
University of Canterbury

Matthias Galster
University of Canterbury

Abstract—Using Drupal as a case study, we investigate the use
of sentiment analysis on bulk sets of tweets in order to extract
useful emotional trends relating to the development/release cycle.
We offer extensive filtering of spam and other irrelevant data,
automated categorization, and data visualization of various
sentiment and categorical trends exhibited by our data set.

I. INTRODUCTION

User and customer feedback is integral to the conception, de-
sign, development, and maintenance of any software projects
and products [1]. Many of the prevalent methods of gathering
feedback (e.g. customer surveys) are not ideal due to a number
of factors including low response rate, a lack of real-time
feedback, and the need to use incentives to attract users.

A second major issue, particularly in open source software
development, is that of globally distributed development teams
and users [2]. This, again, is essentially a feedback prob-
lem; developers require constant feedback from the rest of
their team in order to maintain an understanding of product
changes/enhancements/bugs etc. which is heavily affected by
being geographically separated. The global spread of users
essentially rules out a face-to-face approach to surveying users
and necessitates the use of an online method.

II. BACKGROUND

The use of social media particularly micro-blogging e.g.
Twitter in software development as a tool with which to
communicate and solicit user-feedback is becoming increas-
ingly widespread. This trend is particularly prominent in the
open-source community as it allows for simple and transparent
communication within an often geographically scattered team
of contributors and users. Given its prevalence simplicity and
the ability to share information in almost real-time, the use of
Twitter will be the primary focus of this project. Developers
are relying more and more on micro-blogging for fast, real-
time feedback from globally distributed sources without the
need for extra incentives to encourage user feedback. Twitter,
in particular, is used heavily by software developers and
the general project team to curate technical information [2].
There is evidently a huge amount of valuable information now
residing in these micro-blogging communities and although it
is already highly useful in terms of immediate feedback and
action, information on the overall trends and sentiments of
both developers and users would add another major advantage.

Research and development of comprehensive sentiment analy-
sis tools has already begun and is outlined in [3], [4], [5]. The
target audience consists of software developers, organizations,
project and product managers, and marketing teams.

III. SOLUTION APPROACH

The solution approach will consist of three basic steps: 1)
Extraction of data from Twitter based on product-related
criteria (e.g., product name): Twitter has a comprehensive
REST API which allows for the programmatic reading and
writing of Twitter data. This will be used to search for Tweets
concerning a particular product or project, with Drupal likely
to be used as a case study. A number of wrappers exist for this
API, including TwitteR (an R package), and Tweepy (a Python
wrapper). For the purpose of removing irrelevant (noise) data,
it is necessary to filter the overarching set of tweets. There
are a number of options for the method/style of filtering. The
simplest option is a basic keyword filter as outlined in [6]. This
has the advantage of simplicity and speed of implementation
while also being unlikely to give false positives, however it
is also likely to result in some relevant tweets being missed
if they are fuzzy in their declaration of their topic. This step
may also attempt to separate developer accounts from user
accounts in order to allow separate analysis of these two
distinct groups. Extracting large quantities of Twitter data can
be very time-consuming. In order to account for this and also
maintain a baseline set of test data, the Tweets gathered via
the REST API must be perpetuated. This will likely take the
form of a MySQL database. 2) Analysis of Twitter data using
comprehensive sentiment analysis: Sentiment analysis will be
used in order to programmatically extract emotional data from
tweets. A number of sentiment analysis libraries exist and
require comparison. Each individual tweet will be categorised
as either positive or negative based on the polarity value found
through the sentiment analysis. In order to test the validity
of the output of the chosen sentiment analysis method, a set
of test data with known classification is required. This can
be created manually, however this is time consuming as it is
necessary to read and label each individual tweet. A method
that has been suggested is to search for emoticons and take
these as a source of truth i.e. a happy face indicates positive
polarity. 3) Presentation of findings in a user-friendly way:
Using the classified tweets from the previous step we can
now observe trends over time. These trends must be linked

to important features of the development cycle e.g. bugs,
features, releases. A possible method is to look for words
which occur in a large number of tweets around the same
date and compare these to the available information on the
development at that point e.g. change-logs. Volume must be
visualised, along with overall polarity as areas of high volume
are often more indicative than those of high polarity. The
project is split into seven work packages, each with a number
of tasks associated with it.

A. Work package 1

Retrieve data from Twitter; data must be related to a particular
product; this may require a search based on hash-tags and
Twitter handles; search results would need to be retrieved and
stored in a structured format without losing meta-information
(e.g., time, Twitter handle (ID), etc.) and text.

1) Task 1: Research existing methods/libraries/APIs and eval-
uate their suitability for use in the context of this project.

2) Task 2: Retrieve arbitrary data from Twitter programmati-
cally.

3) Task 3: Design and implement a database to store the
retrieved tweets, including all relevant meta-data.

B. Work package 2

Data filtering; noisy data needs to be reduced. Filtering could
be done on account (is the particular account relevant to the
analysis? Is the account held by a contributor or a user?), on
the date posted, or on the message content (is the content
actually relevant or did the message just happen to contain
search terms?).

1) Task 1: Separate developers from users.

2) Task 2: Filter garbage tweets (spam).

C. Work package 3

Sentiment analysis; extracting emotional information from
data. This requires extensive research and review of existing
libraries/APIs. Basic analysis and visualization should be used.

1) Task 1: Find and compare existing sentiment analysis
libraries.

2) Task 2: Perform basic sentiment analysis on the data set
from Work Package 1, adding the output to the database.

3) Task 3: Identify/find/create control set and compare to the
output of sentiment analysis from Task 2.

4) Task 4: Graph the polarity of both users and developers
over time.

D. Work package 4

Link the exhibited trends from Work Package 3 to development
events and categorize these events. Events may include new
releases, added/removed features, bugs etc. These can be
further categorized (e.g. product, process, feature) and may
include dynamic categories.

1) Task 1: Create a development and release time-line for the
period covered by the main data set.

2) Task 2: Look for keywords in times of high volume and
compare these to documentation to find cause.

3) Task 3: Link sentiment trends to the development/release
time-line.

E. Work package 5

The results will be presented to the target audience (develop-
ers, analysts, etc.) in a user-friendly way.

1) Task 1: Review and compare visualization libraries/tools.

2) Task 2: Implement visualization of relevant data.

F. Work package 6

Test the newly created tool(s) using different products in order
to evaluate effectiveness as well as the general approach.

1) Task 1: Find other products with an appropriately large
amount of Twitter usage.

2) Task 2: Run analysis and evaluate outputs.

G. Work package 7

Final report and presentation.

IV. WORK PERFORMED

A. Work Package 1 - Retrieve data from Twitter

1) Task 1: "Research" : A number of libraries/packages
for interfacing with the Twitter REST API were investi-
gated. TwitteR - the R package used in "Microblogging in
Open Source Software Development" - was the first solution
investigated[2]. R is a open-source statistical graphing and
data-mining language and environment commonly used in
complex mathematical situations. Due to a lack of experience
with R, its environment, and its unusual syntax which may
have hindered project progress, alternatives were investigated.
Python was chosen as the preferred language for working with
the Twitter API due to a number of factors:

• The existence of a number of strong candidate libraries.
• Familiarity with the language.
• Ease of text-manipulation.
• Speed of prototyping and development.
• Limited size of the end-product.

Python libraries investigated include tweepy, python-twitter,
twython, and TweetPony. All of these libraries offered essen-
tially the same functionality and ease of use for the scope of
this project. Tweepy was eventually chosen as it is actively
maintained, and works with Python 3.

2) Task 2: "Retrieve": In order to retrieve data from Twitter,
it was necessary to create a developer account and a Twitter
app. This allows for the generation of the keys required in
the authentication process. Initially, tweets were retrieved via
the standard search method, however this only allows for the
retrieval of one page of tweets at a time (up to 100 tweets). In
order to retrieve the maximum number of tweets (~15,000)
it was necessary to use a Cursor object as a pagination
helper. The cursor takes the API’s search function as its first
parameter, followed by the search query, and the number of
results to return per page. The cursor then iterates through the
~1,500 available pages and retrieves the tweets from each.

3) Task 3: "Store" : A database was required to store Tweets
after retrieval via Tweepy. This was especially necessary due to
the time overhead of retrieving tweets (~10 minutes). Tweets
are returned by Twitter’s API as JSON objects. Tweepy pro-
vides a wrapper for these responses and automatically makes
use of this when retrieving tweets. The result is a Python object
with JSON name:value pairs mapped to class attributes. The
object also contains the original JSON for convenience. Since
the project scope primarily surrounds the tweet text and is
less effected by properties of entities like users, a single table
will suffice. Initially the intent was to use a mySQL database,
however this was determined to be over kill for the intended
use. MongoDB and SQLite were both investigated, including
a first prototype in MongoDB before eventually deciding on
SQLite for its simplicity, portability, and the added benefit of
being built in to Python. The initial prototype simply stored
the entire JSON of Tweets in a single column table. The
next iteration was the SQLite version currently in use. This
comprised a single table which stored user_id, follower_count,
screen_name, tweet_id, retweeted, favourite_count, tweet_text,
created_at. This allows for the select statements required by
Work Package 2.

B. Work Package 2 - Filtering

A step was added to this work package as it became clear that
retweets would need to be removed. Since all retweets begin
with "RT ", they were able to be removed by checking the
first three characters of each tweet and removing the tweets
matching this pattern.

1) Task 1: "Separate developers from users" : In order to
complete this task a list of official Drupal accounts and
the accounts of core contributors had to be found. This
was based on a combination of the core accounts men-
tioned in "Microblogging in Open Source Software Devel-
opment", along with a list of major contributors found at
https://www.drupal.org/node/3060/committers[6]. The separa-
tion itself is done via database query.

2) Task 2: "Filter spam" : In order to allow the spam
filter to adapt to different topics/products in the future, a
machine learning approach was desirable. This is done via
a Bayesian classification Python library called Bayesian [7].
Naive Bayesian classification has been shown to be highly
effective in the recognition and categorization of bodies of
text - particularly in the context of Twitter - and was therefore
deemed an appropriate algorithm for this task [8], [4]. The
program includes a utility function which prompts the user
for manual classification of a designated number of tweets and
writes these answers to file as its training set. Alternatively, It
can then classify unknown examples based on the information
collected from these training examples. The higher the number
of training examples, the more accurate the spam detection
(particularly with a relatively even distribution of positive/neg-
ative examples). Testing was done with 20 training examples
and showed a good degree of success, however in order to
increase the robustness of the spam filter a training set of size
100 will be used in future.

C. Work Package 3 - Sentiment Analysis

1) Task 1: "Research": A number of sentiment analysis
libraries were found and compared including SentiStrength,
Pattern, Textblob, and NLTK [9], [10], [11], [12]. NLTK,
although very powerful, was not ideally suited to the task
of classifying tweets as the functionality it offers is more
base-level and would have required significantly more work
than the other options to attain basic sentiment analysis read-
ings. SentiStrength required awkward in-Python Java handling
and careful text manipulation and was decided against on
those grounds. Pattern offers out-of-the-box sentiment analysis
giving access to both polarity, and mood/modality values.
TextBlob is a high level text analysis library which builds on
the work seen in both Pattern and NLTK. It provides single-
line sentiment analysis, giving polarity and subjectivity values,
however it does not include the mood/modality functions seen
in Pattern.

2) Task 2: “Sentiment Analysis”: Initial sentiment analysis
was performed using TextBlob. TextBlob was chosen due
to the reasons mentioned in Task 1, along with ease of
implementation, and Python 3 compatibility. This provided
good results, however it became apparent that more sentiment
data, specifically mood and modality, would be required to
perform proper analysis. To this end, the decision was made
to use Pattern instead. This required back-porting from Python
3 to Python 2. A number of problems with encoding arose
during this process, with some libraries requiring utf-8 while
others required Unicode. These issues were fixed by specifying
the particular encoding required at a number of points in
the program. The current implementation gives us values for
polarity, subjectivity, mood, and modality.

3) Task 3: “Graphing”: Figures 1 to 4 illustrate the summed
polarity per day for various subsets of users. There appears
to be some degree of correlation in the trends of the different

Fig. 1. Polarity and Category Percentages per Day - Iteration 1

groups, however given the small range of time within which
all of the tweets occur, this is an unreliable assertion.

D. Work Package 4 - Categorization

This work package has not proceeded as anticipated in the
project proposal, however progress has been made. A machine
learning approach was decided on for categorization as manual
classification is unfeasible for such a large data set. A Naive
Bayesian classifier like that used in Work Package 2 was
employed. In order to train the classifier, it was necessary
to manually classify tweets into categories. The selected
categories are Feature, Release, Process, Bug, Application
Scenario, Usage Advice, Job, and Other. The same set of
tweets was manually classified independently by each of us
and then merged to form a consensus. The classifier has a class
for each of the categories, as opposed to the binary version
used in the spam filter.

V. INTERPRETING SENTIMENT DATA

A. Polarity

Polarity values are in the range [-1.0, 1.0] where -1.0 indicates
a totally negative sentiment, and 1.0 indicates a totally positive
sentiment.

B. Subjectivity

Subjectivity values are in the range [0.0, 1.0] where 0.0 is
highly objective, and 1.0 is highly subjective.

Feature Announcing Features for #Drupal8 - Informative
reading from @phase2 http://t.co/FHZMXV0KWe

Release Excellent summary of the expected features you’ll
see in #Drupal 8 http://t.co/Dbww2mOWR6 Which

are you most looking forward to?
Process Hey! What do you think of Dummy comment entity

necessary for building comment form is expensive
to build? I’m tryię http://t.co/PX8DRMMWO4

Bug Hey! What do you think of Token length is not
checked and causes exceptions if it is longer than

50 chars? I’m tryâę http://t.co/YQ2EKVd3YM
Application

Scenario
Drupal for Non-profits. See the resource guide:

#drupal http://t.co/iS2242oiND
Usage Advice Creating Joomla Templates, Drupal Themes,

Wordpress Themes, DNN Skins, and Blogger
Templates all in minutes. http://t.co/jSWmDBlyza

Job #Empleo #Job Build a Website in either DRUPAL
or WORDPRESS (WP preferred) by

jasonsbradshaw http://t.co/kOKxgTju97
Other Turn with respect to the nonpareil pervious cms -

drupal: IFOlt http://t.co/YvfCAGTlb0
TABLE I

EXAMPLES OF TWEETS CLASSIFIED INTO EACH CATEGORY

C. Mood

Mood refers to the use of auxiliary verbs (e.g., could,
would) and adverbs (e.g., definitely, maybe) to express uncer-
tainty. Mood is either INDICATIVE, IMPERATIVE, CONDI-
TIONAL, or SUBJUNCTIVE.

Fig. 2. Polarity and Category Percentages per Day - Iteration 2

Fig. 3. Summed Polarity per day - All Tweets

D. Modality

Modality values are in the range [-1.0, 1.0] and represent the
level certainty expressed. Values above 0.5 indicate facts.

VI. COVERAGE OF SENTIMENT AND MOOD

Of the 9812 tweets which remain after filtering

• 3904 have non-neutral polarity,
• 9767 have non-neutral modality,
• 9394 have non-neutral subjectivity.

The number of tweets with non-neutral polarity was found
with the following SQL query:

Fig. 4. Summed Polarity per day - Core Contributors

SELECT c o u n t (∗) FROM
t w e e t s _ w i t h _ s e n t i m e n t _ a n d _ m o o d WHERE (
p o l a r i t y != 0 . 0) ;

The number of tweets with non-neutral modality was found
with the following SQL statement:

SELECT c o u n t (∗) FROM
t w e e t s _ w i t h _ s e n t i m e n t _ a n d _ m o o d WHERE (
m o d a l i t y != 0 . 0) ;

The number of tweets with non-neutral subjectivity was found
with the following SQL statement:

Fig. 5. Summed Polarity per day - Official Drupal Accounts

Fig. 6. Summed Polarity per day - Non-Affiliated Accounts

SELECT c o u n t (∗) FROM
t w e e t s _ w i t h _ s e n t i m e n t _ a n d _ m o o d WHERE (
m o d a l i t y != 0 . 0) ;

VII. EVALUATION

The delivered solution comprises four core elements; pulling
tweets, filtering spam and other unwanted content, performing
sentiment analysis, and categorising tweets. The solution, to a
large degree, was evaluated via a combination of extensive unit
testing and data visualization. The visualization in particular

Fig. 7. Training examples per category

TABLE II
MOOD VALUES

Mood Form Use Example
INDICATIVE none of

the
below

fact, belief It rains.

IMPERATIVE infini-
tive

without
to

command, warning Don’t rain!

CONDITIONAL would,
could,
should,
may, or

will,
can +

if

conjecture It might rain.

SUBJUNCTIVE wish,
were,

or it is
+ in-

finitive

wish, opinion I hope it rains.

[13]

Fig. 8. Cumulative Distribution Function of Polarity Values

assisted greatly in allowing us to pinpoint areas of interest e.g.
high/low polarity, unevenly distributed categorization, changes
between training iteration, and daily/hourly trends. Test driven
development was employed on a number of occasions, how-
ever the bulk of testing was performed retroactively. Fleiss’
Kappa and Cohen’s Kappa were used to evaluate the level

Fig. 9. Cumulative Distribution Function of Modality Values

of agreement between human and machine in regard to the
classification of polarity, modality, and category.

A. Pulling tweets

Although the large majority of functionality involved in pulling
tweets comes directly from the Tweepy library and as such is
mostly beyond the evaluation scope of this project, there are
few important points to note regarding issues that arose during
the development process. The most configurable part of the
tweet pulling process is the formation of the search query. As
a result, this search query has a conceivably enormous impact
on the other components of the solution. A search query which
is too specific may provide clean data, however it can easily
miss some relevant material and possibly diminish the overall
number of tweets pulled. A search query that is not specific
enough (too fuzzy) may result in a large amount of rubbish
data being pulled, possibly to the degree that we exceed the
maximum available number of returned tweets and therefore
miss out on more relevant data. The large impact that the initial
data set has on the rest of the project dictated that a great deal
of care was taken composing the search query. The chosen
query,

q =" d r u p a l 8 OR d r u p a l OR # d r u p a l OR
d r u p a l 8 "

errs on the side of not being specific enough, pulling every
tweet that mentions Drupal at all, however trials found this
to be necessary in order to retrieve a satisfactorily large set
of tweets for analysis. The breadth of the search query means
that extra emphasis is needed on the filtering stage in order
to remove junk data, noise, and spam. The use of time-
dependent queries was trialed, however their effectiveness was
dramatically decreased by the fact that regardless of the time
range specified in the query there is a finite number of tweets
available for extraction at any given time, e.g. a pull using the
query

q =" (d r u p a l 8 OR d r u p a l OR # d r u p a l OR
d r u p a l 8) u n t i l :2015−10−03"

performed on 2015-10-13 returned zero tweets.

B. Filtering

1) Retweets: The first stage of filtering is to remove the
retweets. The rationale behind this is that since tweets already
have a “retweet_count” value which indicates the number of
times that they have been retweeted, there is little information
to be gained from the retweets themselves. The advantage of
using the “retweeted” value rather than simply leaving retweets
in the data set would be that this allows for more controlled
handling of retweets, i.e. the amount of popularity surrounding
a tweet can be taken into account when calculating sentiment
values, rather than the overall sentiment being skewed by
retweets still in the data set. There is, however, an issue with

only using the “retweet_count” attribute because this only
provides the number of times that the original tweet has been
retweeted and does not take into account retweets of retweets.
Retweet removal is currently done via a relatively naive
method which involves looking for “RT “ at the beginning of
tweets. This is effective in removing manual retweets, however
retweets which use Twitter’s retweet button do not exhibit this
characteristic and are therefore missed. [14]A better approach
would be to combine the current method with the use of the
“retweeted_status” attribute native to the Twitter API’s JSON
Tweet objects, the presence of which indicates that the tweet
is a retweet. [15]

2) URLs: The second stage of filtering is removing tweets
which are dominated by URLs to an extent that there is a
negligible amount of useful information in them. This, once
again, uses a text-parsing approach, searching for URLs of
both “http://” and “https://” forms. The main negative effect
of this approach is that if a tweet contains multiple URLs it
will only pick up on the first one. The need for the additional
search for “https://” URLs became apparent during unit testing
when one of the example tweets was not being removed as
expected.

3) Spam: The third, and most important stage of filtering
is the Bayesian spam filter. A difficulty with this stage of
filtering is that although we wish to filter “traditional” spam
(e.g. tweets containing terms such as “viagra”, “fast cash”,
and “this isn’t junk”), we also wish to filter legitimate tweets
which are contextually irrelevant, along with what seem to be
(and will henceforth be referred to as) bot-generated tweets.
This difficulty is exacerbated somewhat by the broad initial
search query, as noted above. Bot-generated tweets differ from
traditional spam in that they often lack the standard spam terms
which a spam filter tends to look for and are instead composed
of a number of completely legitimate terms which to a human
reader are clearly nonsensical, however to the spam filter look
like clean tweets.

Fig. 10. Summed polarity per hour

a) Bot-generated tweet example: “Financial remuneration
Drupal sodium hyposulfite in order to sapid acquisitions lead
planning function: UNieSr” : The result of this is that bot-
generated tweets are far more difficult for the spam filter to

Fig. 11. Summed modality per hour

detect as they lack the standard terms and keywords which are
fundamental to the success of the naive Bayesian classifier.
In this respect, the Bayesian spam filter may not be ideal,
however it does perform very well in terms of avoiding false
positives which is extremely important in a scenario such as
this where every tweet contains potentially useful information.
Paul Graham’s 2003 work showed that false positive rates of
less than 0.06% were possible with a correctly implemented
Bayesian spam filter. [16] This testing, however, was per-
formed on emails rather than tweets. The big difference here is
size, with the maximum length of a tweet being significantly
smaller than many emails. The smaller size gives the spam
filter less to go on when performing classification and therefore
may result in a higher false negative rate, allowing more
spam to pass through the filter. While investigating polarity
extremes via relating trends exhibited in data visualization
back to the tweets that caused these trends it was discovered
that although no traditional spam was observed, a large number
of legitimate yet unwanted tweets still existed in the data
set. These tweets turned out to be the main cause of all of
the largest polarity spikes as they tended to exhibit more
extreme polarities than their more desirable counterparts. In
theory Twitter’s “Botmaker” filter dramatically lowers the
incidence of bot-generated spam, however there is evidently
still a substantial amount of spam circumventing this filter.
[17]

C. Sentiment analysis

The functionality dealing with sentiment analysis essentially
comprises no more than wrapper functions for the Pattern
API, however investigation showed that the library itself can
be carefully tweaked to give customized results. Although
the Pattern library is known to provide good results across
a broad range of domains, it does not take into account the
jargon of any specific domain. As a result of this, there is
definite room for improvement through the use of customized
sentiment values for domain-specific terms e.g. giving “au-
tomation” a high positive polarity in a software engineering
scenario. While investigation into this area was carried out
(successfully adding the aforementioned example to the list

of functional sentiment words) it has not been fully fleshed
out in the delivered solution. Due to the lack of extensive
domain-specific addition/reclassification of sentiment terms,
the overall accuracy is ~75%. [13] Fleiss’ Kappa showed
a gradually increasing level of agreement between our two
human classifiers and Pattern, with the kappa value steadily
increasing from 0.45 (moderate agreement) to 0.61 (substantial
agreement) between the first and final iteration. [18] Given
that the two human classifiers ended up with a kappa value of
0.9 (almost perfect), this level of agreement for the three-way
comparison is essentially what should be expected given the
~75% accuracy of Pattern’s sentiment analysis.

Fig. 12. Polarity frequencies per day

Fig. 13. Modality frequencies per day

D. Categorization

Categorization is performed using the same Bayesian classifier
as the spam filter, however the number of categories is
increased to eight to reflect the eight distinct groups of tweets
which we are interested in analysing. The far larger number
of categories means a significant increase in the amount
of manually labeled training data required in order for the
classifier to achieve similar results to that of the one used in
the filtering stage. The classifier was initially trained using a
set of 100 tweets. Evaluation of this first iteration gave a kappa
value of 0.53 (moderate agreement), with the human classifiers

achieving a kappa of 0.85 (almost perfect). Although the three-
way level of agreement was not particularly high, it was better
than expected given such a small amount of training data. The
second iteration saw the addition of another 100 tweets to the
training set. Rather than increasing the kappa as expected, this
increase in training data caused a slight decrease in kappa,
from 0.53 to 0.50. One possible reason for this is that the
training data is heavily skewed towards certain categories as
a result of their prevalence in the two sets of tweets used to
create the training set (illustrated in Figure 7). A slightly more
likely reason is that since the data set used in the testing of
the first iteration was then used to further train the classifier,
a new set of test data had to be used for the testing of the
second iteration to avoid testing on training data.

VIII. DISCUSSION

A. Objectives

The primary objective of the project was to produce a tool
which gives users the ability to analyse a given Twitter feed
and draw correlation/causation information from the output in
order to discover which changes most strongly effect both user
and developer satisfaction. This objective was only partially
fulfilled as a number of the later planned work packages were
not able to be fully completed. Essentially the entirety of
Work Package 4 could not be completed after initially being
slowed down by filtering issues and unanticipated difficulties
in gathering the appropriate release/commit information, and
then hitting time constraints at the end of the project. Although
this was an important work package for the project, it’s
absence does not detract much from the overall functionality
of the tool due to the fact that this missing information could
not easily be extracted programmatically and therefore would
have been a manual process rather than part of the tool itself.
This does however diminish our ability to completely evaluate
the tool and general viability of the approach.

B. Learning

A number of important lessons were learned, or at times
re-learned throughout the project. The biggest lesson was
that no matter how well a project seems to be planned at
the beginning, it is impossible to foresee the changes and
challenges that will inevitably occur as the early stages steadily
increase one’s ability to properly assess the later stages. This
ties in with doing as much research as possible early in
the project to minimize surprises later on, and with resisting
the urge to implement new functionality as soon as possible
without having attained a sufficient grasp of the underlying
concepts. Another big lesson was the need to thoroughly very
investigate an API before choosing to use it not just in with
regard to the obvious things - like checking whether it is
current, well supported, known to be accurate and bug-free etc
- but looking right down to the documentation of each class
and function. Many (particularly Python) APIs look extremely

well documented at face value but are severely lacking in the
kind of depth that the native Java APIs have.

IX. FUTURE WORK

It is clear from our analysis that there are a number of areas
in which even relatively minor improvements could have a
significant impact on the overall legitimacy of the project as
a standalone solution.

A. Pulling tweets

A viable method of gathering a larger initial set of tweets is
to perform multiple pulls at arbitrary time intervals (~once
every 7 days) with the “since” query parameter used to ensure
that the same tweets are not pulled multiple times. This, given
enough time, will allow for a far larger number of tweets to
be used in the analysis which could have a sizable effect on
the ongoing success of the project.

B. Filtering

Given the amount of noisy junk data which is still passing
through our spam filter, and the flow-on effects that this has
on the rest of the project, it is clearly necessary to take steps
to make improvements in this area. Re-trialing the current
classifier with a significantly expanded training set would
require the least input of the possible methods of improvement
and still has the potential to yield good results. In the event that
this does not satisfactorily improve spam filtering, different
methods will need to be investigated. The first decision then
will be whether to carry on with a different supervised
learning approach or to branch out into unsupervised learning,
or another non-machine-learning alternative. In the area of
supervised learning, support vector machines (SVMs) have
been shown to be highly effective in filtering spam, while
an approach utilizing K-Means clustering can work well for
an unsupervised alternative. [19], [20] Minimum description
length (MDL), a principal based on Occam’s razor, is the basis
for yet another highly effective spam removal method. [21]

X. CONCLUSION

We have made significant progress towards our initial goal of
providing a tool with which users can analyse a given Twitter
feed and draw development-related information from the out-
put in order to discover which changes most strongly effect
both user and developer satisfaction. Although it falls short
of this objective this project brings together Twitter, filtering,
sentiment analysis, and automated tweet categorization in a
rigorously tested and easy to use Python module, while also
allowing for visualization of sentiment trends. We propose
some possible direction for future work through which our
initial objective may be pursued and successfully brought to
fruition.

ACKNOWLEDGMENT

REFERENCES

[1] X. Yang, D. Hu, and D. M. Robert, “How Microblogging Networks
Affect Project Success of Open Source Software Development,” in 2013
46th Hawaii International Conference on System Sciences (HICSS), Jan.
2013, pp. 3178–3186.

[2] M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho, and A. Zagalsky,
“The (R) Evolution of Social Media in Software Engineering,” in
Proceedings of the on Future of Software Engineering, ser. FOSE 2014.
New York, NY, USA: ACM, 2014, pp. 100–116. [Online]. Available:
http://doi.acm.org/10.1145/2593882.2593887

[3] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau,
“Sentiment Analysis of Twitter Data,” in Proceedings of the Workshop
on Languages in Social Media, ser. LSM ’11. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2011, pp. 30–38. [Online].
Available: http://dl.acm.org/citation.cfm?id=2021109.2021114

[4] A. Go, L. Huang, and R. Bhayani, “Twitter sentiment analysis,” Entropy,
vol. 17, 2009.

[5] A. Mudinas, D. Zhang, and M. Levene, “Combining Lexicon and
Learning Based Approaches for Concept-level Sentiment Analysis,”
in Proceedings of the First International Workshop on Issues of
Sentiment Discovery and Opinion Mining, ser. WISDOM ’12. New
York, NY, USA: ACM, 2012, pp. 5:1–5:8. [Online]. Available:
http://doi.acm.org/10.1145/2346676.2346681

[6] X. Wang, I. Kuzmickaja, K.-J. Stol, P. Abrahamsson, and B. Fitzgerald,
“Microblogging in Open Source Software Development: The Case of
Drupal and Twitter,” IEEE Software, vol. 31, no. 4, pp. 72–80, Jul.
2014.

[7] “Bayesian 0.3.1 : Python Package Index.” [Online]. Available:
https://pypi.python.org/pypi/Bayesian/0.3.1

[8] “Choosing the right estimator scikit-learn 0.16.1 documentation.” [On-
line]. Available: http://scikit-learn.org/stable/tutorial/machine_learning_
map/

[9] “SentiStrength - sentiment strength detection in short texts - sentiment
analysis, opinion mining.” [Online]. Available: http://sentistrength.wlv.
ac.uk/

[10] “Pattern | CLiPS.” [Online]. Available: http://www.clips.ua.ac.be/pages/
pattern

[11] “TextBlob: Simplified Text Processing TextBlob 0.9.1 documentation.”
[Online]. Available: https://textblob.readthedocs.org/en/dev/

[12] “Natural Language Toolkit NLTK 3.0 documentation.” [Online].
Available: http://www.nltk.org/

[13] “pattern.en | CLiPS,” Dec. 2010. [Online]. Available: http://www.clips.
ua.ac.be/pages/pattern-en#article

[14] “FAQs about Retweets (RT).” [Online]. Available: https://support.
twitter.com/articles/77606

[15] “Tweets.” [Online]. Available: https://dev.twitter.com/overview/api/
tweets

[16] “Better Bayesian Filtering.” [Online]. Available: http://www.paulgraham.
com/better.html

[17] L. Hutchinson, “How Twitter’s new "BotMaker" filter
flushes spam out of timelines,” Aug. 2014. [On-
line]. Available: http://arstechnica.com/information-technology/2014/
08/how-twitters-new-botmaker-filter-flushes-spam-out-of-timelines/

[18] J. R. Landis and G. G. Koch, “The Measurement of Observer Agreement
for Categorical Data,” Biometrics, vol. 33, no. 1, pp. 159–174, Mar.
1977. [Online]. Available: http://www.jstor.org/stable/2529310

[19] K.-B. Duan and S. S. Keerthi, “Which is the best multiclass SVM
method? An empirical study,” in Multiple Classifier Systems. Springer,
2005, pp. 278–285. [Online]. Available: http://link.springer.com/chapter/
10.1007/11494683_28

[20] F. Qian, A. Pathak, Y. C. Hu, Z. M. Mao, and Y. Xie, “A case
for unsupervised-learning-based spam filtering,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 38. ACM, 2010, pp. 367–368.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1811090

[21] T. A. Almeida and A. Yamakami, “Advances in Spam Filtering
Techniques,” in Computational Intelligence for Privacy and Security,
ser. Studies in Computational Intelligence, D. A. Elizondo, A. Solanas,
and A. Martinez-Balleste, Eds. Springer Berlin Heidelberg, 2012,
no. 394, pp. 199–214, dOI: 10.1007/978-3-642-25237-2_12. [Online].
Available: http://link.springer.com.ezproxy.canterbury.ac.nz/chapter/10.
1007/978-3-642-25237-2_12

APPENDIX

{
" c o n t r i b u t o r s " : n u l l ,
" f a v o r i t e _ c o u n t " : 0 ,
" i n _ r e p l y _ t o _ s t a t u s _ i d " : n u l l ,
" r e t w e e t e d " : f a l s e ,
" f a v o r i t e d " : f a l s e ,
" c o o r d i n a t e s " : n u l l ,
" p l a c e " : n u l l ,
" i n _ r e p l y _ t o _ u s e r _ i d " : n u l l ,
" i d _ s t r " : "582064962199117824" ,
" l a n g " : " en " ,
" u s e r " : {

" p r o f i l e _ b a c k g r o u n d _ t i l e " : f a l s e ,
" name " : " B r i a n Brown , Ph .D. " ,
" u r l " : " h t t p : / / t . co / DpnqMLJ4Yn " ,
" p r o f i l e _ l o c a t i o n " : n u l l ,
" p r o f i l e _ b a c k g r o u n d _ i m a g e _ u r l _ h t t p s " : " h t t p s : / /

pbs . twimg . com / p r o f i l e _ b a c k g r o u n d _ i m a g e s
/458613392022855680/ ezZHUJpt . png " ,

" p r o f i l e _ s i d e b a r _ f i l l _ c o l o r " : "DDEEF6" ,
" d e f a u l t _ p r o f i l e _ i m a g e " : f a l s e ,
" v e r i f i e d " : f a l s e ,
" p r o f i l e _ l i n k _ c o l o r " : "000000" ,
" p r o f i l e _ u s e _ b a c k g r o u n d _ i m a g e " : t r u e ,
" c r e a t e d _ a t " : " F r i Sep 02 1 9 : 2 5 : 4 1 +0000 2011" ,
" p r o f i l e _ b a c k g r o u n d _ i m a g e _ u r l " : " h t t p : / / pbs .

twimg . com / p r o f i l e _ b a c k g r o u n d _ i m a g e s
/458613392022855680/ ezZHUJpt . png " ,

" d e s c r i p t i o n " : "My main Webs i te : h t t p : / / t . co /
QWP9z87LDZ I am a p r o f e s s i o n a l # webmaster I
have been a # geek f o r ove r 50 y e a r s ! #
WordPress # w e b s i t e s " ,

" s t a t u s e s _ c o u n t " : 908518 ,
" u t c _ o f f s e t " : −25200 ,
" g e o _ e n a b l e d " : f a l s e ,
" i d _ s t r " : "366757582" ,
" i s _ t r a n s l a t o r " : f a l s e ,
" n o t i f i c a t i o n s " : f a l s e ,
" p r o t e c t e d " : f a l s e ,
" f o l l o w i n g " : f a l s e ,
" l a n g " : " en " ,
" p r o f i l e _ b a n n e r _ u r l " : " h t t p s : / / pbs . twimg . com /

p r o f i l e _ b a n n e r s /366757582 /1408466227" ,
" p r o f i l e _ t e x t _ c o l o r " : "333333" ,
" l o c a t i o n " : " " ,
" f r i e n d s _ c o u n t " : 153 ,
" l i s t e d _ c o u n t " : 240 ,
" p r o f i l e _ i m a g e _ u r l " : " h t t p : / / pbs . twimg . com /

p r o f i l e _ i m a g e s /501771376307355648/
ZB2ldpQA_normal . png " ,

" d e f a u l t _ p r o f i l e " : f a l s e ,
" e n t i t i e s " : {

" d e s c r i p t i o n " : {
" u r l s " : [

{
" d i s p l a y _ u r l " : " b r i a n b r o w n . n e t " ,
" i n d i c e s " : [

17 ,
39

] ,
" e x p a n d e d _ u r l " : " h t t p : / / www. b r i a n b r o w n .

n e t " ,
" u r l " : " h t t p : / / t . co / QWP9z87LDZ"

}
]

} ,
" u r l " : {

" u r l s " : [
{

" d i s p l a y _ u r l " : " b r i answebworks . com " ,
" i n d i c e s " : [

0 ,

http://doi.acm.org/10.1145/2593882.2593887
http://dl.acm.org/citation.cfm?id=2021109.2021114
http://doi.acm.org/10.1145/2346676.2346681
https://pypi.python.org/pypi/Bayesian/0.3.1
http://scikit-learn.org/stable/tutorial/machine_learning_map/
http://scikit-learn.org/stable/tutorial/machine_learning_map/
http://sentistrength.wlv.ac.uk/
http://sentistrength.wlv.ac.uk/
http://www.clips.ua.ac.be/pages/pattern
http://www.clips.ua.ac.be/pages/pattern
https://textblob.readthedocs.org/en/dev/
http://www.nltk.org/
http://www.clips.ua.ac.be/pages/pattern-en#article
http://www.clips.ua.ac.be/pages/pattern-en#article
https://support.twitter.com/articles/77606
https://support.twitter.com/articles/77606
https://dev.twitter.com/overview/api/tweets
https://dev.twitter.com/overview/api/tweets
http://www.paulgraham.com/better.html
http://www.paulgraham.com/better.html
http://arstechnica.com/information-technology/2014/08/how-twitters-new-botmaker-filter-flushes-spam-out-of-timelines/
http://arstechnica.com/information-technology/2014/08/how-twitters-new-botmaker-filter-flushes-spam-out-of-timelines/
http://www.jstor.org/stable/2529310
http://link.springer.com/chapter/10.1007/11494683_28
http://link.springer.com/chapter/10.1007/11494683_28
http://dl.acm.org/citation.cfm?id=1811090
http://link.springer.com.ezproxy.canterbury.ac.nz/chapter/10.1007/978-3-642-25237-2_12
http://link.springer.com.ezproxy.canterbury.ac.nz/chapter/10.1007/978-3-642-25237-2_12

22
] ,
" e x p a n d e d _ u r l " : " h t t p : / / www.

b r i answebworks . com / " ,
" u r l " : " h t t p : / / t . co / DpnqMLJ4Yn"

}
]

}
} ,
" i d " : 366757582 ,
" f o l l o w e r s _ c o u n t " : 1454 ,
" f a v o u r i t e s _ c o u n t " : 0 ,
" f o l l o w _ r e q u e s t _ s e n t " : f a l s e ,
" sc reen_name " : " BriansWebWorks " ,
" p r o f i l e _ s i d e b a r _ b o r d e r _ c o l o r " : " FFFFFF " ,
" t ime_zone " : " P a c i f i c Time (US & Canada) " ,
" p r o f i l e _ i m a g e _ u r l _ h t t p s " : " h t t p s : / / pbs . twimg .

com / p r o f i l e _ i m a g e s /501771376307355648/
ZB2ldpQA_normal . png " ,

" i s _ t r a n s l a t i o n _ e n a b l e d " : f a l s e ,
" c o n t r i b u t o r s _ e n a b l e d " : f a l s e ,
" p r o f i l e _ b a c k g r o u n d _ c o l o r " : " FFFFFF "

} ,
" m e t a d a t a " : {

" r e s u l t _ t y p e " : " r e c e n t " ,
" i s o _ l a n g u a g e _ c o d e " : " en "

} ,
" geo " : n u l l ,
" r e t w e e t _ c o u n t " : 0 ,
" i n _ r e p l y _ t o _ s t a t u s _ i d _ s t r " : n u l l ,
" i n _ r e p l y _ t o _ s c r e e n _ n a m e " : n u l l ,
" t r u n c a t e d " : f a l s e ,
" e n t i t i e s " : {

" h a s h t a g s " : [
{

" i n d i c e s " : [
93 ,
107

] ,
" t e x t " : " d r u p a l h o s t i n g "

}
] ,
" u s e r _ m e n t i o n s " : [] ,
" u r l s " : [

{
" d i s p l a y _ u r l " : " D r u p a l H o s t s . o rg " ,
" i n d i c e s " : [

0 ,
22

] ,
" e x p a n d e d _ u r l " : " h t t p : / / D r u p a l H o s t s . o rg " ,
" u r l " : " h t t p : / / t . co / 5 HhH8NakPS"

} ,
{

" d i s p l a y _ u r l " : " b r b r . co /190 xZkw " ,
" i n d i c e s " : [

68 ,
90

] ,
" e x p a n d e d _ u r l " : " h t t p : / / b r b r . co /190 xZkw " ,
" u r l " : " h t t p : / / t . co / 8 kxr6PhVEZ "

}
] ,
" symbols " : []

} ,
" i d " : 582064962199117824 ,
" i n _ r e p l y _ t o _ u s e r _ i d _ s t r " : n u l l ,
" p o s s i b l y _ s e n s i t i v e " : f a l s e ,
" t e x t " : " h t t p : / / t . co / 5 HhH8NakPS Awards Top 3 Cheap

Drupa l H o s t i n g f o r 2015 h t t p : / / t . co / 8
kxr6PhVEZ \ n # d r u p a l h o s t i n g " ,

" c r e a t e d _ a t " : " Sun Mar 29 0 6 : 2 1 : 1 5 +0000 2015" ,
" s o u r c e " : "< a h r e f = \ " h t t p : / / www. a j a y m a t h a r u . com / \ "

r e l = \ " n o f o l l o w \" > Tweet Old Pos t < / a >"

}

CREATE TABLE b a s i c _ t w e e t s
(u s e r _ i d i n t e g e r ,

f o l l o w e r _ c o u n t
i n t e g e r ,
sc reen_name t e x t
, t w e e t _ i d
i n t e g e r ,

r e t w e e t e d i n t e g e r ,
f a v o u r i t e _ c o u n t
i n t e g e r ,
t w e e t _ t e x t t e x t ,

c r e a t e d _ a t t e x t
)

CREATE TABLE t w e e t s _ w i t h _ s e n t i m e n t
(u s e r _ i d i n t e g e r

,
f o l l o w e r _ c o u n t

i n t e g e r ,
sc reen_name
t e x t ,
t w e e t _ i d
i n t e g e r ,

r e t w e e t e d
i n t e g e r ,
f a v o u r i t e _ c o u n t

i n t e g e r ,
t w e e t _ t e x t
t e x t ,
c r e a t e d _ a t
t e x t ,
p o l a r i t y
r e a l ,
s u b j e c t i v i t y

r e a l)

CREATE TABLE t w e e t s _ w i t h _ s e n t i m e n t _ a n d _ m o o d
(u s e r _ i d i n t e g e r

,
f o l l o w e r _ c o u n t

i n t e g e r ,
sc reen_name
t e x t ,
t w e e t _ i d
i n t e g e r ,

r e t w e e t e d
i n t e g e r ,
f a v o u r i t e _ c o u n t

i n t e g e r ,
t w e e t _ t e x t
t e x t ,
c r e a t e d _ a t
t e x t ,
p o l a r i t y
r e a l ,
s u b j e c t i v i t y

r e a l , mood
t e x t ,
m o d a l i t y
r e a l)

CREATE TABLE
t w e e t s _ w i t h _ s e n t i m e n t _ a n d _ m o o d _ a n d _ c a t e g o r y

(u s e r _ i d i n t e g e r
,
f o l l o w e r _ c o u n t

i n t e g e r ,
sc reen_name
t e x t ,
t w e e t _ i d
i n t e g e r ,

r e t w e e t e d
i n t e g e r ,
f a v o u r i t e _ c o u n t

i n t e g e r ,
t w e e t _ t e x t
t e x t ,
c r e a t e d _ a t
t e x t ,
p o l a r i t y
r e a l ,
s u b j e c t i v i t y

r e a l , mood
t e x t ,
m o d a l i t y
r e a l ,
c a t e g o r y
t e x t)

	I Introduction
	II Background
	III Solution Approach
	III-A Work package 1
	III-A1 Task 1
	III-A2 Task 2
	III-A3 Task 3

	III-B Work package 2
	III-B1 Task 1
	III-B2 Task 2

	III-C Work package 3
	III-C1 Task 1
	III-C2 Task 2
	III-C3 Task 3
	III-C4 Task 4

	III-D Work package 4
	III-D1 Task 1
	III-D2 Task 2
	III-D3 Task 3

	III-E Work package 5
	III-E1 Task 1
	III-E2 Task 2

	III-F Work package 6
	III-F1 Task 1
	III-F2 Task 2

	III-G Work package 7

	IV Work Performed
	IV-A Work Package 1 - Retrieve data from Twitter
	IV-A1 Task 1: "Research"
	IV-A2 Task 2: "Retrieve"
	IV-A3 Task 3: "Store"

	IV-B Work Package 2 - Filtering
	IV-B1 Task 1: "Separate developers from users"
	IV-B2 Task 2: "Filter spam"

	IV-C Work Package 3 - Sentiment Analysis
	IV-C1 Task 1: "Research"
	IV-C2 Task 2: ``Sentiment Analysis''
	IV-C3 Task 3: ``Graphing''

	IV-D Work Package 4 - Categorization

	V Interpreting Sentiment Data
	V-A Polarity
	V-B Subjectivity
	V-C Mood
	V-D Modality

	VI Coverage of Sentiment and Mood
	VII Evaluation
	VII-A Pulling tweets
	VII-B Filtering
	VII-B1 Retweets
	VII-B2 URLs
	VII-B3 Spam

	VII-C Sentiment analysis
	VII-D Categorization

	VIII Discussion
	VIII-A Objectives
	VIII-B Learning

	IX Future work
	IX-A Pulling tweets
	IX-B Filtering

	X Conclusion
	References
	Appendix

