
CLASS ENCAPSULATION AND OBJECT ENCAPSULATION
An Empirical Study

Janina Voigt, Warwick Irwin, Neville Churcher
Department of Computer Science and Software Engineering, University of Canterbury, Christchurch, New Zealand

jvo24@student.canterbury.ac.nz, warwick.irwin@canterbury.ac.nz, neville.churcher@canterbury.ac.nz

Keywords: Encapsulation; encapsulation boundary; OO design; information hiding.

Abstract: Two schools of thought underpin the way OO programming languages support encapsulation. Object encap-
sulation ensures that private members are accessible only within a single object. Class encapsulation allows 
private members to be accessed by other objects of the same class. This paper describes an empirical inves-
tigation into the way encapsulation is used in practice in class encapsulation languages C# and Java. We 
find arbitrary and inconsistent programming practices and suggest that object encapsulation is more intuitive 
and provides OO design advantages.

1 INTRODUCTION

‘Programming is about managing complexity’
(Eckel, 1998)[p6]. Complexity can be controlled by
decomposing software into pieces with high cohe-
sion and low coupling (Yourdon, 1979). The infor-
mation hiding principle advocates encapsulation of
implementation decisions so that they can be
changed without impacting the rest of the program
(Parnas, 1972). Only relatively stable features of a 
program should remain externally visible. The Sta-
ble Abstractions Principle reinforces this aspect of 
information hiding (Martin, 1997), and the funda-
mental Computer Science concept of Abstract Data 
Types applies the principle to data structures.

Encapsulation is the core programming language 
mechanism that supports these design principles, 
making it perhaps the most important semantic char-
acteristic of programming languages. Because it is 
so fundamental, we might expect a clear consensus
on how programming languages should support en-
capsulation, and on how encapsulation mechanisms 
should be employed. Among OO programmers, 
however, we have found a surprising lack of accord
over even the most basic of encapsulation questions
(Voigt, 2009). What level of protection (private, 
package, etc) should be used for attributes?
Should accessors be provided? If they are, should 
they also be used by an object to access its own 

data? Should subclasses call them?
In languages such as Java, novices are commonly 

advised to declare attributes private, and to write 
getters and setters, which may be public. C# goes 
further and supports property syntax (Hejlsberg, 
2008). This mechanical exposing of attributes 
through accessor methods undermines information 
hiding. A definitive characteristic of OO is the 
closeness of methods to the data on which those 
methods operate. The use of accessors is a sign that 
data is being manipulated outside its owner object.
The Tell, Don’t Ask principle (Hunt, 1998) advises 
designers to avoid using getters and operating on the 
returned data, and instead to instruct the object that 
already contains the data to do the work. The Law of 
Demeter (Lieberherr, 1989) effectively prohibits the 
use of getters; an object may use only its own data, 
local variables and parameters.

Encapsulation is considerably more complex in 
the presence of inheritance. The use of protected
access is controversial. Riel, as one of his ‘golden 
rules for OO design’, advises designers to ‘avoid 
protected data’, and instead make it private
to its class (Riel, 1996). Holub states that ‘pro-
tected data is an abomination’ (Holub, 2003).
However, other OO cultures encourage or enforce 
the opposite rule. In Objective C the default access 
to attributes is protected. In Smalltalk inherited 
properties can’t be hidden; all data is implicitly



protected. But Smalltalk programmers do not 
describe encapsulation in these terms. On the con-
trary, they describe data as private, but to an object, 
not a class.

2 OBJECT ENCAPSULATION 
AND CLASS ENCAPSULATION

Rogers states that encapsulation means only group-
ing of properties and that hiding is an orthogonal 
concept (Rogers, 2001). In this paper we use its con-
ventional meaning of both grouping and hiding. A 
suitable definition is (Booch, 2007):

The process of compartmentalizing the elements of 
an abstraction that constitute its structure and behavior; 
encapsulation serves to separate the contractual 
interface of an abstraction and its implementation.

In non-OO systems, the encapsulation boundary 
is normally around modules.  OO languages vari-
ously place the boundary around objects or classes.

Smalltalk, arguably the archetypal OO language, 
uses object encapsulation, as Goldberg and Robson 
explain (Goldberg, 1989):

The set of messages to which an object can respond 
is called its interface with the rest of the system. The 
only way to interact with an object is through its 
interface. A crucial property of an object is that its 
private memory can be manipulated only by its own 
operations. A crucial property of messages is that they 
are the only way to invoke an object’s operations. 
These properties insure that the implementation of one 
object cannot depend on the internal details of other 
objects, only on the messages to which they respond.
Messages insure the modularity of the system because 
they specify the type of operation desired, but not how 
that operation should be accomplished.

Unlike Smalltalk, C++ augmented an existing 
language which used an encapsulation approach 
based on static modules, and so it is perhaps unsur-
prising that it (and subsequently Java and C#) use 
class encapsulation: ‘Note that in C++, the class—
not the individual object—is the unit of encapsula-
tion’ (Stroustrup, 1997)[p754]. Objects of the same 
class can access each other’s private properties, 
as shown in the following Java code, adapted from
Stroustrup’s example:

public class Node {
 private int data;
 private Node next;
 public boolean find(int d) {

 for(Node n=this; n!=null; n=n.next)
 if(n.data==d) return true;

 return false;
 }

}

When inheritance is used, the class encapsulation 
boundary bisects objects, so that one part of an ob-
ject cannot access other (inherited) parts of the same 
object. Protected access approximates object 
encapsulation within an object, but still allows ob-
jects of the same class to access each other’s inter-
nals. Although Stroustrup introduced protected
access (he credits Mark Linton as co-inventor), he is
unconvinced about its merits (Stroustrup, 1994):

The alternative to protected data was claimed to 
be unacceptable inefficiency, unmanageable 
proliferation of inline interface functions, or public
data. Protected data, and in general, protected
members seemed the lesser evil. Also, languages 
claimed ‘pure’ such as Smalltalk supported this—rather
weak—notion of protection over the—stronger—C++ 
notion of private. I had written code where data was 
declared public simply to be usable from derived 
classes.

These were good arguments and essentially the ones 
that convinced me to allow protected members.
However, I regard ‘good arguments’ with a high degree 
of suspicion when discussing programming. There 
seem to be ‘good arguments’ for every possible 
language feature and every possible use of it. In 
retrospect, I think that protected is a case where 
‘good arguments’ and fashion overcame my better 
judgement and my rules of thumb for accepting new 
features.

A similar distaste for protected attributes is evi-
dent in much advice available to OO programmers, 
and in the casual way it is supported in Java, where 
it also opens properties to package access.

The difference between class and object encapsu-
lation has important consequences for software de-
sign, yet as far as we can tell has largely escaped the 
attention of software practitioners. Stroustrup, makes 
little of it.  Snyder86 (Snyder, 1986) acknowledges 
the difference, but says ‘we ignore this distinction in 
this paper as it does not affect our analysis’.  We 
suggest that the validity of Snyder’s argument—that
inheritance is antithetical to encapsulation—hinges 
on which encapsulation boundary is assumed.

In his keynote speech to OOPSLA97, Kay fa-
mously said ‘I made up the term object-oriented, and 
I can tell you I did not have C++ in mind’. We inter-
pret subsequent passages of Kay’s speech to mean 
that the lack of object encapsulation is one of the 



main reasons he claims that C++ and Java are not 
legitimate OO languages. Kay contrasts a mechani-
cal analogy of software with a cellular analogy:

If you take things like clocks, they don’t scale by a 
factor of a hundred very well. Take things like cells, 
they not only scale by factors of a hundred, but by fac-
tors of a trillion, and the question is, how do they do it, 
and how might we adapt this idea for building complex 
systems? Okay, this is the simple one. This is the one, 
by the way, that C++ has still not figured out, though.

You must, must, must not let the interior of any one 
of these things be a factor in the computation of the 
whole. [...] The cell membrane is there to keep most 
things out, as much at it is there to keep certain things 
in.

[…]
The realization here [...] is that once you have 

encapsulated, in such a way that there is an interface 
between the inside and the outside, it is possible to 
make an object act like anything. The reason is simply 
this, that what you have encapsulated is a computer. 
You have done a powerful thing in computer science, 
which is to take the powerful thing you’re working on, 
and not lose it by partitioning up your design space.

This is the bug in data and procedure languages. I 
think this is the most pernicious thing about languages 
like C++ and Java, that they think they’re helping the 
programmer by looking as much like the old thing as 
possible, but in fact they are hurting the programmer 
terribly by making it difficult for the programmer to 
understand what’s really powerful about this new
metaphor.

Object autonomy is indeed important. When class 
encapsulation is used to allow one object access to 
another, the accessed object cannot make use of in-
heritance to act in its own way. This prevents use of 
the open-closed principle (Meyer, 1988), depend-
ency injection (Fowler, 2004) and reduces opportu-
nities for software reuse. These are among the most 
influential OO design principles.

Figure 1a shows an example UML class diagram. 
The classes A to D represent the units of class en-

capsulation. Figure 1b shows the same classes, and a 
number of instances, o1 to o4, which represent the 
units of object encapsulation. Figure 2 contrasts the 
two encapsulation boundaries for the same example. 
Class encapsulation boundaries cut through objects, 
and also encompass portions of multiple objects.

3 A PRELIMINARY SURVEY

In a recent paper (Voigt, 2009) we reported the re-
sults of a survey of the encapsulation preferences of 
programmers who use Java and/or C#. The subjects 
were drawn from three populations: undergraduate 
students, postgraduate students, and professional 
developers. As can be seen in Figure 3, we found 
different tendencies in the three populations. Novice 
programmers showed a preference for object encap-
sulation, despite having been taught that data is 
private to a class in Java. In contrast, most post-
graduates embraced the class encapsulation offered 
by the programming languages. Professionals 
showed diverse preferences. All three populations 
exhibited a degree of confusion over encapsulation 
boundaries.

(a) An example class diagram (b) Classes and some instances

Figure 1: An encapsulation example.

Figure 2: Different encapsulation boundaries.

Figure 3: Survey results.



The survey confirmed our expectation that novice 
programmers find object encapsulation more intui-
tive. This is not greatly surprising, given the paral-
lels between OO and real-world classification. Coad 
and Yourdon (Coad, 1991) quote the 1986 Encyclo-
paedia Brittanica entry on Classification Theory 
(Brittanica, 1986):

In apprehending the real world, [people] constantly 
employ three methods of organisation, which pervade 
all of their thinking: 
1) the differentiation of experience into particular 

objects and their attributes—e.g. when they 
distinguish between a tree and its size or spatial 
relations to other objects.

2) the distinction between whole objects and their 
component parts—e.g. when they contrast a tree 
with its component branches, and

3) the formation of and the distinction between 
different classes of objects—e.g. when they form 
the class of all trees and the class of all stones and 
distinguish between them. 

This is what makes object encapsulation intuitive; it 
echoes the boundaries between real-world objects.

4 MEASURING 
ENCAPSULATION PRACTICES 
IN JAVA

We wrote a static analysis tool to measure encapsu-
lation in Java programs, to determine what develop-
ers do in practice, as opposed to what they say they 
do. We addressed encapsulation of data in the first 
instance; we will expand the study to include 
method encapsulation in the near future. Encapsula-
tion of data is more emphatically stressed by OO 
design guidelines and more readily grasped by pro-
grammers, so it is likely to support more definitive 
conclusions.

Our tool measures two aspects of a program: the 
levels of protection accorded to attributes, and the 
ways in which attributes are actually accessed. This 
allows us to tell, for example, if an attribute has been 
given wider scope than is used in practice, such as 
when a package-accessible attribute is only ever 
used locally in its class.

To characterise protection levels, we count the 
number of attributes in a program with public, 
package, protected and private access. These 
numbers give an overview of how rigorously data is 
hidden from the outside world.

Characterising actual accesses to attributes is 
more complex. Our program accumulates the num-

ber of accesses to public, package, protected
and private attributes that originate inside and 
outside the object that contains the attribute, and the 
number of accesses that originate inside or outside 
the class that defines the attribute. This allows us to 
count the number of accesses that cross both types of 
encapsulation boundary.

Accesses from outside a class that defines an at-
tribute are easy to find. However, a more sophisti-
cated approach is required to determine if an access 
comes from outside an object. Because we perform 
static analysis of source code, objects—which are a 
runtime concept—do not yet exist and it is impossi-
ble to determine precisely whether a reference refers 
to the same object as the one doing the accessing.
We employ a simple heuristic. If an access origi-
nates in a class that is neither the class that defines 
the attribute, nor a subclass of the class that defines 
the attribute, then the access must come from outside 
the object. Otherwise, we check the syntax of the 
access code. If it is of the form fieldName (without a 
qualifier), this.fieldName or super.fieldName, the 
access comes from within the same object. If the 
access is of the form qualifier.fieldName, we pre-
sume the access comes from outside the object.

Our tool analyses the data it collects to determine 
the degree to which the two types of encapsulation 
are used in each program.

We implemented our tool using Java Symbol Ta-
ble (JST) (Irwin, 2007, Irwin, 2003, Irwin, 2005) to 
model the semantic structure of a program, including
concepts such as packages, classes, methods, con-
structors, parameters, attributes and local variables. 
The relationships between these entities are also 
captured by the model.

We used the current version of the Qualitas Code 
Corpus produced by the University of Auckland as a 
repository of real-world software to be analysed 
(Qualitas_Research_Group, 2009). This version of 
the corpus contains 100 Java projects of diverse 
provenance, including some very well-known pro-
grams such as Eclipse and ANTLR.

For this experiment, we analysed 33 programs 
from the corpus; these were the ones for which the 
complete source code could be processed by the 
current version of our tools (which are compatible 
with Java 1.6). A list of the 33 programs analysed 
can be found in (Voigt, 2010). We also analysed an 
additional 11 programs produced by groups of 6-7 
second-year software engineering students as part of 
a semester-long project for real clients.

Our experiment has similarities to a recent em-
pirical study that measured how often different ac-
cess modifiers are used and how frequently fields 



are accessed in the Qualitas Code Corpus (Tempero, 
2009). Tempero analysed all programs in the corpus, 
but considered only the level of exposure of fields, 
and implicitly assumed class encapsulation.

5 RESULTS AND ANALYSIS

The corpus programs contained 69-2159 attributes, 
and 355–10818 accesses. The student programs con-
tained 55–469 attributes, and 208–973 accesses.
Figure 4 and Figure 5 show the relative numbers of 
different protection levels used in corpus and stu-
dents programs. 

Clearly, private is the most frequently de-
clared and the most heavily accessed protection 
level. This tendency is more pronounced in student 
programs than in corpus programs, where 40% of 
attributes are not private. This suggests that stu-
dent programs tend to be more tightly encapsulated.

It is interesting to note that students rarely de-
clared protected attributes and that corpus pro-
grams tended to access protected attributes 
somewhat more frequently than other types.

The graphs also show highly diverse encapsula-
tion practices in the corpus programs, particularly 
for private data which spans a range from virtu-
ally no use to almost exclusive use.

We found similar levels of variation in the num-
ber of accesses to attributes. Of particular note was:

• Unsurprisingly, public attributes were used 
heavily from outside their declaring class (cor-
pus 57.5%, student 40.8%), and were also used 
heavily internally.

• In Java, protected gives access to subclasses 
and classes in the same package. In the corpus 
subclass access was much more common 
(27.9%) than same-package access (5.6%). The 
remaining accesses were from within the declar-
ing class. However in student programs, out of
the eight that used protected, two used it as 
package access, four as private access, and 
two as subclass access. This suggests consider-
able confusion among students regarding Java’s 
protected access mechanism.

• Package attributes were much less commonly 
accessed from outside the class in which they 
were declared (averaging 20.1%). Package is 
the default protection level, so is used when de-
velopers forget to specify tighter access. Six out 
of 11 student programs never accessed pack-
age attributes from outside the declaring class. 

• Because Java uses class encapsulation, pri-
vate attributes can be accessed from other ob-
jects of the same class. Almost all corpus and 
student programs made some use of this, but the 
average percentage of accesses to private at-
tributes from other objects was very low (3.0%
and 1.3% respectively).

Figure 4: Use of protection levels in corpus programs. Figure 5: Use of protection levels in student programs.



Figure 6 shows the main categories of access we 
measured. Table 1 shows what percentage of all ac-
cesses belonged to each category in the corpus and 
student programs. Unsurprisingly, in both popula-
tions the dominant category of access is within the 
same object and class. This category does not reveal 
anything about encapsulation boundary preferences 
as it crosses no encapsulation boundaries. Categories 
4 and 5 similarly do not indicate any encapsulation 
boundary preference as the accesses cross both kinds 
of boundary. Interestingly, category 4 accesses are 
much less frequent than category 5, suggesting that 
developers are more averse to accessing superclass 
data than data in a completely unrelated class.

Category 2 accesses cross the class boundary but 
not the object boundary, indicating the use of object 
encapsulation. Category 3 is the inverse, indicating 
the use of class encapsulation. In corpus programs, 
when an encapsulation boundary preference is evi-
dent, object encapsulation (6.6%) is used more than 
twice as much as class encapsulation (2.7%). This is 
consistent with our expectations and earlier survey 
results showing that object encapsulation is more 
intuitive.

In student programs, the number of accesses in 
Category 2 and Category 3 suggest the opposite re-
sult: class encapsulation appears to be preferred. 
This conflicts with our findings from the survey 
where object encapsulation was overwhelmingly 
preferred by students. This difference might be ex-
plained by the fact that the scenario in the survey 
was simpler, the students’ programs show evidence 
of general confusion about encapsulation mech-

anisms in Java, and the total number of accesses in 
Category 2 and Category 3 was very low.

Figure 7 andFigure 8 show the relative use of ob-
ject and class encapsulation in each of the programs 
analysed. Clearly, object encapsulation is preferred 
by the majority of corpus programs. Notably, there 
is only a single program that clearly uses class en-
capsulation (JFreeChart) but a number of programs 
use mostly object encapsulation or a mixture of the 
two encapsulation approaches. The majority of stu-
dent programs use class encapsulation rather than 
object encapsulation. This is consistent with the ob-
servation that students generally avoided the pro-
tected access level, which can be used to support 
object encapsulation in languages like Java.

The great majority of accesses in both popula-
tions either cross no encapsulation boundary or both 
kinds. No systems measured used either type of en-
capsulation exclusively, although some showed a 
strong preference for one or other. The percentage of 
accesses crossing a class encapsulation boundary 
ranged from 0.3% to 39.9% for corpus programs and 
1.3% to 6.1% for student programs. The percentage 
of accesses crossing an object encapsulation bound-
ary ranged from 2.0% to 40.2% for corpus programs 
and 3.8% to 15.4% for student programs.

Some corpus programs were notable for having 
large numbers of accesses from outside both the 
class and the object. For example, the highest num-
ber of class and object boundary crossings (39.9% 
and 40.2%) occurred in one program: FitJava. This 
indicates not only that the encapsulation is very 
loose and the data is poorly distributed amongst the 
classes because the program’s behaviour is not lo-
cated with the data on which it acts.

When protected access is used, it tends to be 
used for object encapsulation. For both populations, 
the access to protected attributes from outside 
the object was less common (8.3% for corpus pro-
grams and 4.5% for student programs) than for at-
tributes with other protection levels.

Figure 6: An overview of access categories.

Table 1: Percentage of accesses by category.

Category of Access Corpus
programs

Student
programs

1 Same object, same class 82.6 % 93.7 %
2 Same object, superclass 6.6 % 0.3 %
3 Different object, same class 2.7 % 1.5 %
4 Different object, superclass 0.2 % 0.0 %
5 Different object, different class 7.8 % 4.5 %



6 CONCLUSIONS AND FUTURE 
WORK

Encapsulation is a fundamental mechanism for con-
trolling complexity in programs. However, the units 
of encapsulation employed by OO programming 
languages differ; some languages place the encapsu-
lation boundary around classes, and some around 
objects.

We measured many Java programs and found in-
coherent encapsulation practices, not only between 
programs but within programs. Neither class nor 
object encapsulation was practised consistently in 
any of the programs. It also appears that common 
advice to make attributes private was not consis-
tently followed; on average 58%, and in the worst 
case 1.9%, of attributes were private. Student 
programs were more tightly and more consistently 
encapsulated, no doubt because students had been 

instructed to program this way. Even so, students 
broke the rule in 17% of declarations.

Protection levels of attributes can be used to en-
force particular encapsulation practices but even in 
the absence of these protections the same encapsula-
tion boundaries can be respected by simply choosing 
not to access the attributes. We found, however, that 
accessible attributes did tend to be accessed. For 
example, approximately half the accesses to public
attributes came from outside the declaring class.
Similarly, approximately 30% of accesses to pro-
tected attributes came from subclasses.

The dominant practice is to access attributes from 
within the object and class that declares it. Here, the 
encapsulation boundary is effectively the intersec-
tion between the object and class boundary. We refer 
to this as Intersection Encapsulation. Intersection 
encapsulation is likely to be a strategy adopted in 
response to the confusion around encapsulation 
boundaries. It represents the common ground be-
tween developer’s intuition and the programming 
language mechanism for encapsulation. It is safe 
because it crosses no boundaries. However, it is re-
strictive because it provides minimal access to at-
tributes, which in turn may lead to heavier use of 
accessors and mutators, and hence an effective 
weakening of encapsulation. 

In those programs which did exhibit a preference 
for object or class encapsulation, the majority of 
programs tended towards object encapsulation. In 
corpus programs, 6.6% of accesses showed an object
encapsulation tendency, while only 2.7% showed a 
class encapsulation tendency. This adds weight to 
the findings of our previous study.

Class encapsulation allows objects of the same 
class to access each other’s private attributes, but 
this ability is rarely used in practice. In corpus pro-
grams only 3% of accesses to private fields come 
from outside the object. This suggests that there is a 
certain level of uneasiness among developers regard-
ing this access mechanism.

Java defaults to package access, which supports 
neither object nor class encapsulation. It appears that 
in many cases omission of the access modifier is 
unintended, particularly in student programs.

In C++ and C# it is possible to grant access to 
subclasses exclusively but in Java protected ac-
cess also grants package access. In practice, how-
ever, protected attributes tend not to be accessed 
outside the class hierarchy and Java’s protected
mechanism causes confusion among students.

Our ongoing work includes investigating the use 
of protection levels on methods in Java to broaden 
our understanding of encapsulation practices beyond 

Figure 7: Corpus use of object and class encapsulation.

Figure 8: Student use of object and class encapsulation.



attributes. We are also extending our dataset of pro-
grams to include all 100 programs in the Qualitas 
Code Corpus.

We are working on tools to automatically tighten 
encapsulation so that a consistent encapsulation pol-
icy will be applied throughout a program. These 
policies include object encapsulation, class encapsu-
lation and intersection encapsulation.

In the absence of these tools, however, developers 
could significantly improve the quality of their pro-
grams by being more aware of their encapsulation 
practices and consciously choosing which boundary 
to apply.

We would hope that in the future programming 
languages will be designed to more closely match 
the expectations of programmers. This may be a 
relatively simple change to existing languages such 
as Java. For example, Java could be made to support 
object encapsulation by eliminating syntax that ac-
cesses a field of any object other than this, and 
removing the class encapsulation access levels.

7 REFERENCES

Booch, G., Maksimchuk, R., Engle, M., Young, B., Con-
allen, J., Houston, K. 2007. Object Oriented Design 
with Applications, Addison Wesley Professional.

Brittanica, E. 1986. Encyclopaedia Brittanica, Chicago, 
IL, USA, Encyclopaedia Brittanica.

Coad, P., Yourdon, E. 1991. Object Oriented Design, 
Upper Saddle River, NJ, USA, Yourdon Press.

Eckel, B., Sysop, Z. F. 1998. Thinking in Java, Upper 
Saddle River, NJ, USA, Prentice Hall PTR.

Fowler, M. 2004. Inversion of Control Containers and the 
Dependency Injection Pattern [Online].  [Accessed Jan 
2010].

Goldberg, A., Robson, D. 1989. Smalltalk-80: The Lan-
guage, Boston, MA, USA, Addison Wesley Longman.

Hejlsberg, A., Torgersen, M., Wiltamuth, S., Golde, P. 
2008. The C# Programming Language, Addison 
Wesley Professional.

Holub, A. 2003. Why Extends Is Evil. Java World.
Hunt, A., Thomas, D. 1998. Tell, Don't Ask [Online]. 

Available: http://www.pragprog.com/articles/tell-dont-
ask [Accessed].

Irwin, W. 2007. Understanding and Improving Object-
Oriented Software through Static Software Analysis.
Ph.D., University of Canterbury.

Irwin, W., Churcher, N. I. 2003. Object Oriented Metrics: 
Precision Tools and Configurable Visualisations. In: 
METRICS2003: 9th IEEE Symposium on Software 
Metrics, Sep 2003 Sydney, Australia. 112-123.

Irwin, W., Cook, C., Churcher, N. I. 2005. Parsing and 
Semantic Modelling for Software Engineering 
Applications. In: Strooper, P., ed. Australian Software 
Engineering Conference, Mar 2005 Brisbane, 
Australia. IEEE Press, 180-189.

Lieberherr, K., Holland, I. 1989. Assuring Good Style for 
Object-Oriented Programs. IEEE Software, 6, 38-48.

Martin, R. C. 1997. Stability. C++ Report.
Meyer, B. 1988. Object-Oriented Software Construction, 

New York, Prentice-Hall.
Parnas, D. L. 1972. On the Criteria to Be Used in 

Decomposing Systems into Modules. Communications 
of the ACM, 15, 1053 - 1058.

Qualitas_Research_Group. 2009. Qualitas Corpus Version 
20090202 [Online]. Available: http://www.cs.auckland
.ac.nz/~ewan/corpus [Accessed 2009].

Riel, A. J. 1996. Object-Oriented Design Heuristics, 
Reading, Mass., Addison-Wesley.

Rogers, P. 2001. Encapsulation Is Not Information Hiding. 
Java World. http://www.javaworld/javaworld/jw-05-
2001/jw-0518-encapsulation.html

Snyder, A. Year. Encapsulation and Inheritance in Object-
Oriented Programming Languages. In: Object-oriented 
programming systems, languages and applications, 
1986. 38-45.

Stroustrup, B. 1994. The Design and Evolution of C++, 
ACM Press/Addison-Wesley Publishing Co.

Stroustrup, B. 1997. The C++ Programming Language, 
Boston, MA, USA, Addison Wesley Longman.

Tempero, E. D. Year. How Fields Are Used in Java: An 
Empirical Study. In: Australian Software Engineering 
Conference, Apr 2009 2009 Gold Coast, Australia. 
IEEE Computer Society, 91-100.

Voigt, J., Irwin, W., Churcher, N. I. 2009. Intuitiveness of 
Class and Object Encapsulation. 6th International 
Conference on Information Technology and 
Applications. Hanoi, Vietnam.

Voigt, J., Irwin, W., Churcher, N. I. 2010. Technical 
Report Tr-Cosc 01/10: List of Qualitas Code Corpus 
Programs Used for Encapsulation Research [Online]. 
Christchurch, New Zealand: University of Canterbury. 
Available: http://www.cosc.canterbury.ac.nz/research/
reports/TechReps/2010/tr_1001.pdf [Accessed].

Yourdon, E., Constantine, L. 1979. Structured Design: 
Fundamentals of a Discipline of Computer Program 
and Systems Design, Englewood Cliffs, N.J., Prentice 
Hall.


