
Effect of Diagnosis on Variability of ICU
Patients in Insulin Sensitivity ?

Tamás Ferenci ∗, Levente Kovács ∗, Balázs Benyó ∗,
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Abstract: Tight glycemic control (TGC) in intensive care unit (ICU) patients represents an
active research field as it has been proved its mortality and cost reduction effects. Previous
works demonstrated that insulin sensitivity plays an important role in this question. The
paper investigates by two defined metrics patient’s variability in insulin sensitivity based on
a previously introduced (ICING) glucose-insulin model. These metrics grasp the deviations
of the actual insulin sensitivity data from their predictions; hence, characterizing a patient’s
variability at a given time. We also introduce and examine a way to characterize variability
across longer time periods and across different patients. Investigations are applied to an actual
longitudinal database consisting of n = 261 patients with 47, 836 hours of measurement in total,
with patients grouped according to diagnosis groups formed from their Apache III codes. Data
was also segregated according to time spent in ICU (in days). Kruskal–Wallis-test was then
employed (separately for different days) to assess whether patients in different diagnosis groups
exhibit significantly different variability. Differences were further analyzed with Tukey HSD
post-hoc testing. Results show that insulin sensitivity decreases with time and that differences
between diagnosis groups diminish. However, there are significant differences on the first two
days of stay in the ICU according to one of the metrics, with cardiac patients being more variable
and gastric patients (especially non-operative ones) being less variable.

Keywords: Insulin sensitivity, Patient variability, Statistical Analysis, Statistical Inference,
Tight glycemic control.

1. INTRODUCTION

Stress induced hyperglycemia is a significant issue in criti-
cal care, affecting up to 30-50% of patients and increasing
morbidity and mortality (Krinsley (2003) and McCowen
et al (2001)). Controlling glycemia has proved difficult
due to the associated risk of hypoglycemia when highly dy-
namic patients are treated with exogenous insulin (Gries-
dale et al (2009)). Both extremes, as well as glycemic
variability, have been independently linked to increased
morbidity and mortality (Bagshaw et al (2009), Egi et al
(2006) and Krinsley (2008)), creating a difficult clinical

? This work was supported in part by the National Office for
Research and Technology (NKTH), Hungarian National Scientific
Research Foundation grant OTKA K82066. It is connected to the
scientific program of the ”Development of quality-oriented and
harmonized R+D+I strategy and functional model at BME” project,
supported by the New Hungary Development Plan (Project ID:
TMOP-4.2.1/B-09/1/KMR-2010-0002).

problem to safely and effectively regulate glycemia to a
physiologically and clinically safe range.

Glycemic control can reduce negative outcomes (Krinsley
(2004), Chase et al (2008) and Berghe et al (2001)),
but has proven difficult (Casaer et al (2011), Brunkhorst
et al (2008) and Finfer et al (2009)). Only Chase
et al (2008) reduced both mortality and hypoglycemia.
However, inter- and intra- patient metabolic variability
(Chase et al (2011)) makes good control difficult. Hence,
glycemic targets have been raised (Moghissi et al (2009)).

Change in patient-specific insulin sensitivity drive outcome
glycemic variability and hypoglycemic risk (Chase et al
(2011)). However, cohort-based stochastic models (Lin et
al (2008)) can be too conservative. It is the risk of sudden
rises in insulin sensitivity that can result in a hypoglycemic
event for a given insulin dose over a typical 3-4 hour
measurement interval are of greatest concern. It is critical
to determine the size and likelihood of these variations.



This research statistically analyses insulin sensitivity vari-
ability as a function of diagnostic category and day of stay.

2. MATERIAL AND METHODS

To assess the effect of diagnosis and length-of-stay on the
variability of a clinically validated model-based insulin
sensitivity metric (SI) ?the ending of the sentence is miss-
ing here? The Markov-approximation provides a model to
predict future insulin sensitivity values: first, the present
insulin sensitivity (SI (n)) is identified, then, the cohort
model is used to predict the distribution of insulin sensi-

tivity at the next time-point (f̂SI(n+1)) given SI (n). The
actual (identified) SI (n + 1) value might be away from the
middle of this distribution, and this difference over time
going forward is the variability in which we are interested.
Thus, variability was defined by the position of the realised
eventual SI (n + 1) value relative to its predicted distribu-

tion f̂SI(n+1). We will call F̂−1
SI(n+1) (SI (n + 1)) (i.e. which

percentile was the actual SI value on its predicted distri-
bution) the ”hit percentile”. Optimally, it should be 50,
high values indicate underestimated, low values indicate
overestimated insulin sensitivity. The position of hit per-
centile was qualified numerically through two approaches.
First, the hit percentile was compared to 50 (representing
the median) with the squared difference characterizing
the ”error” in the prediction. This method was called
the quadratic penalty. Secondly, deviations were penalized
penalized asymmetrically by a one-sided threshold penalty
that takes the value of 1 if the hit percentile is larger then
90, 0 otherwise. Hence, these metrices represent different
physiological considerations in assessing variability, and
the relationship between them was also investigated.

An overall variability score is obtained for a given patient
by averaging these values across the time series of SI
values. For the one-sided threshold penalty, this averaging
simply calculates the ratio of greater-then-90 percentile
outcomes. This analysis was also carried out for daily
windows during the stay in ICU.

An overall variability score can be calculated for a given
diagnosis group by averaging the overall variability scores
for only the patients belonging to that group. However,
if the patients’ length of stay differs, simple arithmetic
averaging assigns unequal weights for each patient. Hence,
only series of equal length were averaged, as described in
the next paragraph.

Results are presented for the first 24 hours (”Day 1”),
second 24 hours (”Day 2”), third 24 hours (”Day 3”),
and remaining time in ICU (”Day 4 and onwards”).
As a consequence, patients with less then 24 hours of
data were excluded, leaving n = 261 patients. These
patients together had 47, 836 hours and individual SI
values. Diagnosis groups were created based on the Apache
III codes: Cardio (C), Gastro (G), All other (O), with
Operative (Op) and Non-operative (NOp) breakdown in
every category. This grouping is medically relevant and
ensures proper sample sizes in every group to aid the
robustness of the further statistical tests. Table 1 shows
the distribution (according to length-of-stay and diagnosis
group) and the most important demographic indicators of
the patients.

Table 2. p-values of Kruskal–Wallis-test for
the equality of average SI variability across
diagnosis groups segregated according to day

One-sided threshold Quadratic

Day 1 0.1809 0.02234
Day 2 0.1814 0.02094
Day 3 0.9702 0.6884

Day 4 and onwards 0.1352 0.6499

The distribution of the per-patient average penalty scores
for a given diagnosis group and day was illustrated with
boxplots (see Chambers et al. (1983) and Velleman et al.
(1981)).

To investigate if the differences in SI variability are sig-
nificant, we used Kruskal–Wallis-tests To avoid potential
difficulties with using repeated-measures ANOVA and the
usage of the more complicated mixed-effects models, we
split the data according to days, and performed separate
analyses. Thus, the ANOVA-type test could be still ap-
plied.

To assess which diagnosis groups are differing, post-hoc
testing was carried out using Tukey’s Honestly Significant
Differences (HSD) method, see Hsu (1996).

The preprocessing of the data was performed under Math-
works Matlab (version 2009a, see The MathWorks Inc.
(2009)). Statistical analysis was performed under the R
statistical program package (see R Development Core
Team (2011)), version 2.14.2.

3. RESULTS AND DISCUSSION

Figure 1 shows the distribution of the per-patient overall
variability metrics in different diagnosis groups, segre-
gated according to ICU day and diagnosis group. One-
sided threshold penalties exhibit much larger, typically
positively-skewed variations. There is a slight trend in the
central tendency, as median variability appears to decrease
as time increases. A trend towards reduced spread in the
variabilities over time is more pronounced.

In contrast, quadratic penalties are much more concen-
trated, and have a smaller coefficient of variation. The
continuous lowering of variabilities in every group is also
seen, but a reduction in spread is not as pronounced.
The two metrics are consistent in assigning ”higher” and
”lower” variabilities similarly, albeit, on different scales.

Significance of the between-diagnosis group differences
per-day according to both variability metrics is shown on
Table 2.

It can be seen there are no significant differences in SI
variability according to diagnosis group on Day 3 and after,
no matter which metric is used. There are no significant
differences at all (on either day) according to the one-sided
threshold penalty, however, there are significant differences
on Day 1 and on Day 2 when the quadratic penalty is
employed. (The former observation can be explained by
the higher spread of per-patient variability metrics as seen
on Figure 1.)

For the two cases, where significant difference was detected
(Day 1 and Day 2 with quadratic penalty) post hoc testing



Table 1. The distribution (according to length-of-stay and diagnosis group) and the most
important demographic indicators of the patients. Data are shown in an n, age, percentage of
females format, with age statistics arranged in Mean (Median) ± SD (IQR) manner. Columns
indicate minimum (and not exact) length-of stay, so the same patient may appear in several

cells.

Day 1 Day 2

NonOP – Cardio 28, 59.5 (61.5) ± 16.5 (24), 35.7 18, 58.4 (59.5) ± 16.1 (19), 38.9
OP – Cardio 35, 72.9 (73) ± 7.12 (10.8), 22.9 21, 72.9 (73) ± 6.54 (10), 23.8

NonOP – Gastro 16, 64.3 (67) ± 12.8 (15), 25 13, 64.4 (71) ± 14.2 (18.5), 23.1
OP – Gastro 42, 67.9 (72) ± 12.4 (13), 35.7 29, 69.9 (72) ± 10.8 (11.3), 27.6

NonOP – All other 119, 54.7 (59) ± 18 (27), 46.2 101, 54.5 (59) ± 18 (28), 42.6
OP – All other 21, 50.8 (56) ± 19.2 (31), 38.1 16, 54.9 (57.5) ± 18.5 (31), 43.8

Day 3 Day 4 and onwards

NonOP – Cardio 11, 64.2 (63) ± 10.6 (16.3), 18.2 11, 64.2 (63) ± 10.6 (16.3), 18.2
OP – Cardio 18, 73.2 (73.5) ± 6.46 (9), 27.8 18, 73.2 (73.5) ± 6.46 (9), 27.8

NonOP – Gastro 13, 64.4 (71) ± 14.2 (18.5), 23.1 13, 64.4 (71) ± 14.2 (18.5), 23.1
OP – Gastro 23, 69.2 (71) ± 9.46 (11.5), 26.1 23, 69.2 (71) ± 9.46 (11.5), 26.1

NonOP – All other 88, 54.2 (58) ± 17.9 (26.5), 45.5 88, 54.2 (58) ± 17.9 (26.5), 45.5
OP – All other 15, 54.7 (57) ± 19.1 (33.5), 40 15, 54.7 (57) ± 19.1 (33.5), 40
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Fig. 1. Boxplots of per-patient overall variability scores segregated according to day and diagnosis group. Upper row
shows one-sided threshold penalty metric, while lower row shows the quadratic penalty metric. Markers within
boxes indicate mean, whiskers extend to the furthest observation no farther then 1.5IQR from the median.

was employed (Tukey’s HSD for the classical ANOVA).
Results are shown on Table 3.

For Day 1, no significant pairwise difference can be de-
tected, on Day 2, Non-operative Gastro and Operative
Cardio was significantly different (p = 0.00472), while
Non-operative All other and Operative Cardio was very
close to significance (p = 0.06305).

The falling trend of variability according to the one-sided
threshold penalty indicates a decreasing chance of hypo-
glycemia (that can be attributed to large rises in insulin
sensitivity over short time periods) as days of ICU stay
increase. The overall risk of increased variability of both
forms (one-sided and quadratic metrics) by diagnostic
category is highest for Cardio patient groups matching the
increased hypoglycemia observed in glycemic control stud-
ies in these cohorts (e.g. Preiser et al, 2010). The overall

higher variability (according to quadratic measure) on Day
1 in all groups is also reflective of increased hypoglycemia
and variability reported in most glycemic control studies
Griesdale et al (2009).

As far as the physiological explanation of the phenomenon
is concerned, it can be most likely linked to the counter-
regulatory and oxidative stress responses, and inflamma-
tory acute immune response that is often observed in hy-
perglycemic critically ill patients. The fact that variability
has a declining trend over days 1-4 – possibly as the acute
phase passes – also matches expectations and physiological
observations.



Table 3. p-values for the post-hoc testing of the significant differences (Day 1 and Day 2 with
quadratic penalty)

Compared Day 1 Day 2
pair Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)

OpC - NOpC == 0 -0.000871 0.007403 -0.118 1.000 0.0167845 0.0100620 1.668 0.53874
NOpG - NOpC == 0 -0.022773 0.009151 -2.489 0.124 -0.0232665 0.0114018 -2.041 0.30979
OpG - NOpC == 0 -0.015855 0.007124 -2.226 0.219 -0.0031855 0.0093997 -0.339 0.99934

NOpO - NOpC == 0 -0.011849 0.006133 -1.932 0.371 -0.0040197 0.0080145 -0.502 0.99571
OpO - NOpC == 0 -0.008392 0.008429 -0.996 0.914 -0.0081472 0.0107632 -0.757 0.97213
NOpG - OpC == 0 -0.021902 0.008812 -2.486 0.125 -0.0400510 0.0110550 -3.623 0.00472
OpG - OpC == 0 -0.014984 0.006683 -2.242 0.212 -0.0199700 0.0089758 -2.225 0.22025

NOpO - OpC == 0 -0.010978 0.005615 -1.955 0.357 -0.0208042 0.0075129 -2.769 0.06305
OpO - OpC == 0 -0.007521 0.008060 -0.933 0.933 -0.0249317 0.0103951 -2.398 0.15341

OpG - NOpG == 0 0.006918 0.008578 0.806 0.964 0.0200809 0.0104557 1.921 0.37789
NOpO - NOpG == 0 0.010924 0.007775 1.405 0.711 0.0192468 0.0092304 2.085 0.28641
OpO - NOpG == 0 0.014381 0.009689 1.484 0.661 0.0151193 0.0116968 1.293 0.77735
NOpO - OpG == 0 0.004006 0.005241 0.764 0.971 -0.0008342 0.0065995 -0.126 0.99999
OpO - OpG == 0 0.007463 0.007804 0.956 0.927 -0.0049617 0.0097554 -0.509 0.99542

OpO - NOpO == 0 0.003457 0.006911 0.500 0.996 -0.0041275 0.0084289 -0.490 0.99617

4. CONCLUSION

Variability in insulin sensitivity peaks on Day 1 across di-
agnostic groups, as well as metrics, but differences between
diagnostic groups diminish as time passes.

Quadratic penalty exhibits smaller differences between di-
agnostic groups, but also smaller variations within groups.
Thus, it can be concluded that overall variability is more
stable across patients, in contrast to the risk for unex-
pected rises in SI which shows much higher inter-patient
variability.

As a result of this, there are no overall significant differ-
ences between diagnostic groups when one-sided threshold
penalty is considered, i.e. diagnosis groups are equivalent
from the risk point of view (when only unexpected rises in
SI are considered).

There are, however, significant differences when quadratic
penalty (i.e. overall variability) is considered; it is sug-
gested the operative cardiac patients exhibit higher vari-
ability. This is in concordance with the literature findings
and the possible pathophysiological explanations.
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