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Abstract

The standard model of cosmology, Λ Cold Dark Matter (ΛCDM), assumes that
the Universe can be modelled by an exact solution to Einstein’s equations —
the isotropic and homogeneous Friedmann-Lemâıtre-Robertson-Walker space-
time. The structure we observe in the Universe formed from small initial density
perturbations in the early Universe, which the standard model treats by per-
turbation theory. We investigate two versions of perturbation theory: standard
linear perturbation theory and the more recent, non-linear post-Newtonian per-
turbation theory. Linear perturbation theory involves gauge choices, and it was
shown recently by Clifton et al. [1] that many of the common gauges are non-
viable in the post-Newtonian expansion. We investigate further gauge choices,
introduced by Bičák et al. [2].

If one does not assume that the average evolution of the Universe by an
exact solution to Einstein’s equations, then in the context of an inhomogeneous
cosmology one finds extra terms contributing to the dynamics of the average
spacetime — the backreaction terms. We review the most recent and general
averaging formalism of Buchert [3], referred to as the “extrinsic averaging ap-
proach” and discuss the challenges faced by other constructions of the same
formalism. We then also investigate the updated version of the “intrinsic aver-
aging approach” — first introduced by Buchert in 2000 [4].

We show that backreaction can be constructed in the post-Newtonian ex-
pansion by using the extrinsic averaging approach. The standard Buchert for-
malism (the intrinsic averaging approach) cannot be used as it is effectively a
‘non-viable gauge’ when the post-Newtonian expansion is considered.

Finally, we investigate the magnitude of backreaction terms in an inhomoge-
neous exact solution to Einstein’s equations — the Szekeres model. We consider
a particular model containing an underdensity and overdensity on small cosmo-
logical scales (< 100 Mpc), while asymptotically approaching a standard ΛCDM
model on larger spatial scales. The magnitude of the backreaction correction to
the average evolution equations is found to correlate with the spatial gradient of
the density. It reaches 2.3% in the overdense region but is negligible otherwise.
These results are compared with a similar analysis undertaken by Bolejko in
2017 [5].
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Chapter 1

Introduction

In 1915 Einstein published his theory of general relativity (GR), a theory in

which gravity is no longer a force – as in Newton’s theory – rather, gravity is

an emergent property of the geometry of spacetime [6]. In Einstein’s theory,

“matter tells spacetime how to curve and spacetime tells matter how to move”.

During the first few years after GR was developed, it successfully explained

the precession of the perihelion of Mercury [7] and the curving of light around

the sun [8]. In recent times, the detection of gravitational waves with the

Laser Interferometer Gravitational-Wave Observatory (LIGO) [9] was another

confirmation of GR being the correct theory of gravity. While GR has provided

a description of gravity to high precision on small scales (when compared to the

size of the Universe), its applicability on large scales is not thoroughly tested

and is a point of debate.

Early astronomers were limited to observing and collecting data from stars

within our own galaxy. These stars have small velocities compared to the speed

of light, which prompted astronomers to believe that the Universe was not

expanding, nor contracting — it was static. The first application of GR to cos-

mology was by Einstein1 himself, who added a cosmological constant, Λ, to his

field equations to counteract the expansion they suggested [10]. Within the next

ten years, Aleksandr Friedmann and Georges Lemâıtre independently derived

solutions to Einstein’s equations which featured an expanding Universe with no

cosmological constant [11–13]. These results did not gain much attention until

1929 when the first piece of observational evidence that the Universe was ex-

panding came to light. This evidence came from Edwin Hubble’s observations

of extragalactic nebulae, which showed a positive trend between the distance of

these nebulae and their radial velocities — suggesting the Universe is expanding

[14]. In 1931, Einstein accepted this piece of evidence and that the Universe was

indeed expanding, stating that the cosmological constant was no longer needed

[15–17].

1Einstein did not believe that there was a beginning to time and an expanding Universe
would have suggested this. Therefore, it was not only early astrophysical data that led him
to add the cosmological constant.
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The current standard model of cosmology is based on the Friedmann-Lemâıtre-

Roberston-Walker (FLRW) solution to the Einstein equations, describing a ex-

panding spacetime that is isotropic and homogeneous. The idea of isotropy and

homogeneity has its roots in the Copernican principle, which is the notion that,

we, on Earth, do not occupy a ‘privileged’ place in the Universe. Thus, from

observations implying that the Universe is isotropic, one can use the Copernican

principle to formulate the cosmological principle which states: “on sufficiently

large scales the spatial distribution of matter is isotropic and homogeneous”.

In 1998 Riess et al. [18] followed by Perlmutter et al. in 1999 [19], fit as-

trophysical data to the FLRW model and found something unexpected — the

Universe was not only expanding, the expansion was also accelerating. The sur-

veys which ‘proved’ this were observing type 1a supernovae (SNe1a), the SNe1a

observed appeared to be fainter than predicted by the FLRW model (without

a cosmological constant). The return of the cosmological constant seemingly

explained these observations and thus became part of the standard model. The

cosmological constant in modern times, is associated with “dark energy” — a

repulsive negative pressure, opposing gravity, that drives the expansion of the

Universe at late times.

The standard model continued to add various constraints and constituents

to form what we know today to be the Λ Cold Dark Matter (ΛCDM) model.

Early measurements of the afterglow of the big bang — the Cosmic Microwave

Background (CMB) radiation — indicated that within the class of FLRW mod-

els the Universe (globally) was very close to spatially flat [20]. Constraints from

the CMB also suggested that matter only accounted for ∼ 27% of the total

energy density of the Universe [21], requiring a smoothly-distributed energy

to reconcile this constraint with a spatially flat geometry. The ΛCDM model

evolved further to include dark matter2 — a type of invisible matter that only

interacts gravitationally. Modern measurements3 of weak gravitational lensing

such as in [26] and measurements of CMB anisotropies have strengthened the

‘requirement’ of dark matter [21, 27] (see [28] for a history and review).

To date, the ΛCDM model — with the addition of standard perturbation

theory and Newtonian N-body numerical simulations — has explained most of

our cosmological observations. Notable successes include: matching the power

spectrum of temperature fluctuations in the CMB [29], the location of the peak

separation of large-scale structures in galaxy surveys (the baryon acoustic oscil-

lation (BAO) peak) [30], and the matter power spectrum of large-scale structure

at low redshifts [31].

There have been, however, a growing number of tensions in the past two

decades between the predictions of the ΛCDM model and observations. These

2In the standard model, dark matter must be ‘cold’ as we require it to be slow-moving
3Dark matter was actually first hypothesised by Lord Kelvin and presented in lectures in

1884 [22] and was later inferred from the rotation curves of galaxies in the 1970s [23–25].
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tensions include the ‘lack of power’ at the largest scales in the CMB power spec-

trum, and the recent 3.7σ tension between local measurements of the Hubble

parameter [32, 33] compared to the inferred value from the CMB [29]. Fur-

thermore, there is a growing tension with the lack of ‘direct observation’ of the

‘dark sector’ of the Universe. These tensions may be — as most would lead one

to believe — due to of insufficient precision, or systematic errors.

There is, however, preexisting physics that is neglected in the standard

model that may explain some of these tensions [3, 4, 34–37]. The basis of

the ΛCDM model is the assumption of a isotropic and homogeneous expanding

background4 described by the FLRW model. These assumptions are violated

on scales smaller than ‘the statistical scale of homogeneity’ (SSH) (see [38–41]

for details and reviews), yet the ΛCDM model is in general, applied on any

scale. Current state-of-the-art cosmological simulations model the evolution of

structures in the Universe using Newtonian gravity on top of an assumed back-

ground spacetime for example, [42, 43]. Newtonian gravity has been shown to

be a ‘good approximation’ for GR on small scales, however, it’s applicability on

cosmological scales remains a point of debate.

The main argument of why isotropy and homogeneity remain as guiding

principles in cosmology is because — as mentioned — the Universe ‘is isotropic

and homogeneous’ on large scales past the SSH. The Universe, however, is

clearly inhomogeneous on small scales, and it is not ‘clear’ whether ‘smoothing

out’ this small-scale structure has an effect on large-scale dynamics. In 2000,

Buchert showed that the evolution of general averages of an inhomogeneous

Universe is not the same as the evolution of a homogeneous Universe [4]. This

is due to the fact that averaging procedures and time evolution do not com-

mute in non-linear GR. Buchert showed that when averaging an inhomogeneous

spacetime, extra terms arise that may contribute to the apparently accelerated

expansion of spacetime, the extra terms being coined backreaction. Buchert has

also developed the theory of Lagrangian perturbation theory [44–48] which is

a ‘background free’ approach to perturbation theory in cosmology which has

also evolved to include backreaction terms. The significance of backreaction

has been the subject of much debate in recent years, see [49–54].

One contribution to this debate, Wiltshire’s timescape model [35, 36], claims

that the expansion is not actually accelerating and is more of a fundamental

issue associated with how one calibrates time parameters in the presence of

backreaction. There are also attempts to deviate from the ΛCDM model and

standard perturbation theory, for instance, post-Newtonian theory, which is

explored by Clifton et al. [1]. The treatment of post-Newtonian gravity by

Clifton et al. is an attempt to model the evolution of non-linear structures,

though the problem of using an FLRW background remains.

4The assumption of homogeneity implies that the background expands at the same rate,
everywhere.
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New surveys using ‘state-of-the-art’ telescopes such as Euclid, the Large

Synoptic Survey Telescope, and the Square Kilometre Array are expected to

greatly tighten the constraints on the various parameters that define our Uni-

verse. These surveys are expected to reach percent level precision over a range

of redshifts [55, 56], where the differences between the FLRW expansion history

and more generic expansion histories will be measurable [57, 58]. Furthermore,

drawing the correct conclusions from observations require accurate cosmological

simulations — simulations that use full GR. These simulations would poten-

tially be able to encapsulate the full effects of backreaction on the large-scale

dynamics of the Universe. Examples of such simulations can be seen in [59–61].

This thesis will discuss the standard model of cosmology, ΛCDM, along

with standard perturbation theory. We will thereafter, explore alternatives to

ΛCDM. In Chapter 2 we shall discuss a brief history of the development of GR

and introduce the standard model of cosmology. We will also discuss various

pieces of observational evidence that support ΛCDM and those that ΛCDM

struggles to explain. Finally, we will introduce inhomogeneous cosmologies and

the basis of backreaction.

In Chapter 3 we introduce the 3+1 and 1+3 formalisms. The 3+1 formalism

in particular is the basis for numerical relativity (NR) and averaging procedures

that Buchert uses to develop his theory of backreaction. In particular, we will

introduce the notion of 3–dimensional hypersurfaces in a 4–dimensional space-

time, different types of curvature, and the various projections of the Einstein

equations from a 4–dimension manifold to the 3–dimensional hypersurfaces.

In Chapter 4 we introduce how the standard model of cosmology accounts for

inhomogeneities in the CMB and models the evolution of structure — standard

perturbation theory. We will discuss the mathematical basis of perturbation

theory, the solutions to the perturbed Einstein equations, and the problem of

gauges, with examples of various gauges.

In Chapter 5 we present the latest form of the Buchert formalism [3] with

additional derivations and details. We will discuss the 3+1 formalism in the

context of the Buchert formalism with three timelike congruences, introduce the

fluid-extrinsic averaging formalism, and the fluid-intrinsic averaging formalism.

We shall make contact with various parts of the literature and discuss challenges

that the Buchert formalism overcomes/improves on.

In Chapter 6 we present the post-Newtonian formalism which goes beyond

standard linear perturbation theory with the aim of modelling the formation

of non-linear structures. We will also investigate the various gauges used in

simulations to determine their viability in the post-Newtonian expansion, going

beyond the gauges explored in [1], such as those found in [2]. We also conduct

and original investigation extending the Buchert averaging scheme to the post-

Newtonian expansion with an example of how the averaged evolution equations

of Buchert may be used in simulations.
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In Chapter 7 we perform an original investigation of backreaction effects

in a particular Szekeres model. To do so we will introduce the cosmic quartet

[62] and the pseudo cosmic quartet. A similar investigation was undertaken

by Bolejko [5], however, we use different parameters, a different density profile,

and the aforementioned pseudo cosmic quartet. We will discuss our results and

then compare them with Bolejko’s results.
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Chapter 2

General Relativity and
Cosmology

2.1 From Newton to Einstein

Before general relativity, there was Newtonian gravity and before explaining

Einstein’s field equations, we will present the history of how our understanding

of gravity changed. In 1686, Sir Issac Newton developed his equation for the

force of gravity between two objects of mass m1 and m2, separated by distance,

r:

F = G
m1m2

r2
, (2.1)

where G is a proportionality constant known as the universal gravitational con-

stant. Newton’s theory itself was based on the assumption of a reference frame

with an absolute space and an absolute time passing at the same rate every-

where in space. For nearly two centuries Newton’s equation for the gravitational

force was unchallenged. To this day, bridges, buildings, and other feats of engi-

neering only require Newtonian gravity due to its remarkable accuracy within

Earth’s gravitational field. Newton’s theory, however, began to face problems

in 1859 as it could not explain the perihelion precession of Mercury, first noticed

by Urbain Le Verrier [7].

In 1785 a strikingly similar equation was developed by Charles–Augustin de

Coulomb for the electrostatic force between two charged particles with charge

q1 and q2, separated by distance r [63]:

F =
1

4πε0

q1q2

r2
. (2.2)

One will notice that both the gravitational force and electrostatic force equa-

tions were essentially identical. Both forces did not depend on time, which

to physicists, caused problems as these forces were mediated instantaneously.

Instantaneous processes violated the natural notion of “causality” that we all

posses — “actions take time to make an effect”. The conclusion reached due
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to this ‘unnatural’ behaviour was that there must some ‘unknown’ physical

medium that allows the propagation of the electrostatic force. This medium

was named the ‘electric field’. In 1862, James Clerk Maxwell published his

unified theory of electricity and magnetism, electromagnetism in the form of

Maxwell’s equations1:

∇ · E =
ρ

ε0
,

∇ ·B = 0,

∇× E = −∂B

∂t
,

∇×B = µ0

(
J + ε0

∂E

∂t

)
.

(2.3)

Maxwell’s equations were revolutionary as they explained the entire classical dy-

namics of electromagnetism. The problem of electromagnetism having no time

dependence was resolved and the action was no longer instantaneous. Maxwell’s

equations were also invariant under coordinate transformations. This was an

important quality of Maxwell’s equations as most physicists would prefer their

physical theories to be true regardless, of a choice of coordinates. The underly-

ing idea being that coordinates do not exist a priori in nature. The objective

was now clear for gravitation. Any attempt to re-imagine how gravity worked

would involve a gravitational field which would determine the motion of objects

within it, making the force not instantaneous.

Einstein did not believe the Newtonian idea of an absolute space; he thought

only relative motions were physically meaningful. Newton’s bucket experiment

can be used to illustrate this: when the water inside a bucket rotates, the surface

of the water becomes concave. However, if the water rotated with respect to the

rotating bucket, the surface of the water would be flat. According to Newton,

the water rotates with respect to an absolute space, whereas Einstein postulated

the water rotates with respect to a physical entity: the gravitational field.

Galileo Galilei had proved in the 1590s that gravitational and inertial mass

were the same for all bodies. This is often referred to as the weak equivalence

principle. Einstein knew of this and reasoned that it contained something deep

as it meant there was something fundamentally different about gravity and

electromagnetism. The interaction between charged particles and an electric

field were certainly different if the charges of the particles were changed.

Einstein had, therefore, a few guiding principles: general covariance which

he had already proposed for special relativity in a limited sense (Lorentz invari-

ance), motions being relative to some gravitational field, and the weak equiv-

1The form of Maxwell’s equations presented here are actually not the original form.
Maxwell’s original equations were reformulated using vector calculus by Oliver Heaviside
in 1884.
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alence principle. During the process of developing general relativity, Einstein

developed the strong equivalence principle which had the following ideas:

• The principle of uniqueness of free fall (the weak equivalence principle):

All bodies (subject to no forces other than gravity) will follow the same

paths given the same initial position and velocity.

• All experiments produce results of special relativity in “small” regions of

spacetime.

• Principle of Equivalence of gravitation and inertia: All motions in an

external static homogeneous gravitational field are identical to those in

no gravitational field if referred to a uniformly accelerated coordinate

system.

• For inhomogeneous gravitational fields we reformulate the Strong Equiv-

alence Principle as: at any event, always and everywhere, it is possible

to choose a local inertial frame such that in a ‘local’ spacetime neigh-

bourhood all non-gravitational laws of nature take on their familiar forms

appropriate to the absence of gravity.

Einstein’s great insight after developing the weak equivalence principle fur-

ther was that the gravitational field was built into spacetime itself. The strong

equivalence principle seemingly demanded this geometric description of the

gravitational field — of spacetime— as locally, the ‘usual’ laws of motion had to

be recovered. A näıve description of a manifold is that it is ‘locally’ Euclidean

at each point, therefore, not a far-fetched description for a notion of spacetime.

Einstein postulated that masses altered spacetime and that objects moved in

straight lines known as “geodesics” in this ‘curved’ spacetime. The more these

geodesics deviate, the stronger the gravitational field or curvature.

2.2 Einstein’s Field Equations

Einstein’s theory of general relativity was a conceptual leap in the way gravity

was understood. He abandoned the idea of a gravitational force and an absolute

reference frame. Newtonian ideas of particles moving under the influence of a

force were replaced by particles moving on geodesics in a curved spacetime.

The mathematical interpretation of spacetime is that it is a four dimensional

manifold, M on which a metric, a bilinear form g, with signature (−,+,+,+)

acts. The matter and energy content of a spacetime is encoded in the stress-

energy symmetric tensor, T . The dynamics of (M, g) is linked to the matter

and energy content of the spacetime, T via the field equations:

G = R− 1

2
Rg + Λg = 8πGT . (2.4)
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Here G is the Einstein tensor, R is the Ricci tensor, and R is the Ricci scalar.

The projection of the tensor quantities on a coordinate basis gives us,

Gµν = Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (2.5)

In terms of a coordinate basis we have,

Rµν = R α
µαν , (2.6)

and,

R = g µνRµν . (2.7)

Here R α
µβν is the Riemann curvature tensor and is defined as,

R α
µβν ≡ ∂βΓαµν − ∂νΓαµβ + ΓασβΓσµν − ΓασνΓ

σ
µβ, (2.8)

where Γαµν are the Christoffel symbols describing the metric connection on the

tangent bundle of M and in a coordinate basis are defined as,

Γαµν ≡
1

2
gαλ(∂µgνλ + ∂νgµλ − ∂λgµν). (2.9)

The left-hand side of Einstein’s equation encodes the curvature in the Ein-

stein tensor2, Gµν . More specifically, the left-hand side consists of:

• Indirectly, the Riemann tensor: R α
βµν . There are a number of ways to

interpret the Riemann tensor. The most common one is associated with

deviations of geodesics [64]. If one starts with a vector X and parallel

transports it around a small parallelogram on a manifold M defined by

vectors a and b the deviation of X is

δXµ = −R µ
ναβX

νaαbβ. (2.10)

This notion carries over to the equation of geodesic deviation in general

relativity where two objects moving along geodesics in a spacetime will

deviate from each other according to the curvature of that spacetime.

• The Ricci tensor, Rµν which is a contraction of the Riemann tensor. Per-

haps one of the most intuitive ways to interpret the Ricci tensor is associ-

ating it to volume deformations. If one interprets the Riemann tensor as

governing how the evolution of vectors parallel propagated along geodesics

then the Ricci tensor governs the evolution of volumes parallel propagated

along geodesics3.

2As discussed, Gµν , only contains Ricci curvature, which encodes information about dis-
tortions of volumes. For a full description of curvature, one also requires information of the
Weyl curvature which describes distortion in shape.

3We must, however, be careful here because volumes can change in flat space. For a true
description then, one must subtract off any volume change that may occur in flat space.
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• The Ricci scalar; R which is a contraction of the Ricci tensor. The Ricci

scalar, in a sense characterises how the volume measured in a curved

spacetime differs from that in flat spacetime.

• Λ, the cosmological constant. When Einstein first published his field

equations, he did not consider the cosmological term. This only came

into consideration through Einstein’s efforts to model the Universe and fit

his model to observations.

The right-hand side of Einstein’s field equations is the source term, the

stress-energy tensor. In cosmology we assume that the matter stress-energy

tensor can be approximated as a fluid. In the early Universe with both matter

and radiation present such an approximation is well justified. At later epochs

when the energy density of radiation becomes negligible, we approximate the

stress-energy tensor by particles of a pressureless (non-interacting) dust. Obvi-

ously, as structures form the nature of the dust particles changes.

If one prescribes a 4–velocity for the fluid, uµ then the most general stress-

energy tensor takes the form [65]:

Tµν = ρ uµuν + p hµν + πµν + 2q (µuν). (2.11)

Here hµν = gµν +uµuν is the projection tensor (discussed in Chapter 3), ρ is the

energy density, p the isotropic pressure, πµν the spacelike tracefree anisotropic

pressure which satisfies πµν u
µ = 0, hence providing 5 independent components,

and qµ is the spacelike heat transfer vector, satisfying qµu
µ = 0, thus contribut-

ing 3 independent components. This stress-energy tensor is sometimes referred

to as describing an ‘imperfect fluid’.

The Einstein equations (2.5) embody the contracted Bianchi identity,

∇µG
µν = 0, (2.12)

on the left-hand side and the covariant conservation of stress-energy,

∇µT
µν = 0, (2.13)

on the right-hand side. Here, ∇µ is the covariant derivative associated with the

metric, gµν .

2.3 The Friedmann-Lemâıtre-Robertson-Walker

Spacetime

As with any spacetime in general relativity, the dynamics can be fully deter-

mined by specifying a metric tensor and a stress-energy tensor. We begin with

the line element, ds2, which is determined by the metric tensor,

ds2 = gµν dxµdxν . (2.14)
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The line element provides the infinitesimal length between two points in space-

time. We will demonstrate how one obtains the Friedmann-Lemâıtre-Robertson-

Walker (FLRW) line element by first considering only the spatial part,

dl2 = gij dxidxj. (2.15)

In this case we consider the line element to be the proper distance between

points, x and x+dx. The FLRW spacetime relies on the assumption of isotropy

and homogeneity. An example of a isotropic and homogeneous 3-dimensional

space is flat space, which has the line element,

dl2 = dx2. (2.16)

This metric is left invariant under spatial translations and rotations. Another

example of such a surface is a spherical surface in four-dimensional Euclidean

space with radius a, with the line element,

dl2 = dx2 + dz2, (2.17)

where z2 + x2 = a2. Another possibility for such a space — the only other one

as shown by Weinberg [66] – is,

dl2 = dx2 − dz2, (2.18)

where z2−x2 = a2. The coordinate transformations that leave this line element

invariant are four-dimensional pseudo-rotations (much like Lorentz transforma-

tions but instead of time here, we use z). We can now rescale these coordinates:

x = aq, z = aw. (2.19)

The two line elements above can then be written as,

dl2 = a2 [ dq± dw2 ], (2.20)

where w2 + q2 = 1. The total derivative of this constraint equation gives us,

w dw = ∓q dq, (2.21)

which allows one to rewrite (2.20) as,

dl2 = a2

[
dq2 ± (q dq)2

1∓ q2

]
. (2.22)

One can further simplify the above and also include the flat Euclidean case. To

do this, we rewrite the above slightly as

dl2 = a2

[
dq2 + k

(q dq)2

1− kq2

]
, (2.23)
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where,

k =


+1 spherical (positive curvature)
0 Euclidean (flat)
−1 hyperspherical (negative curvature) .

We note that a2 > 0 as we require ds2 > 0 at q = 0 because it is a physical

length.

To extend this metric to (an expanding) spacetime, we can simply include

time in the line element to obtain

− gµν dxµdxν = dt2 − a(t)2

[
dq2 + k

(q dq)2

1− kq2

]
. (2.24)

Note that a depends only on time, because of the assumption of isotropy and

homogeneity. This ensures that at every point in space the Universe is expand-

ing at the same rate in all directions. Therefore, one can assume that this

expansion factor, a(t), known as the scale factor [65, 67] need only depend on

time and not on spatial location.

Finally, instead of using Cartesian coordinates, xi, we can use spherical polar

coordinates where,

dq2 = dr2 + r2dθ2 + r2 sin2 θ dφ2. (2.25)

Performing a coordinate transform we find,

gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1− kr2
+ r2 dθ2 + r2 sin2 θ dφ2

]
, (2.26)

which is the standard form of the FLRW line element. In the present standard

model for cosmology, one sets k = 0 as on large scales the Universe is assumed

to be “spatially flat”. In this case, the line element reduces to

ds2 = gµνdx
µdxν = −dt2 + a(t)2

[
dr2 + r2dθ2 + r2 sin2 θ dφ2

]
. (2.27)

The distance we would measure here is named the comoving distance and the

coordinates are referred to as comoving coordinates. A comoving distance allows

the distance between two points to remain constant as the Universe expands

even though the physical distance will change [67]. We can also rewrite the line

element as a proper time interval,

dτ 2 = dt2 − a(t)2

[
dr2 + r2dθ2 + r2 sin2 θ dφ2

]
. (2.28)

Note that one may determine the convention used in this thesis from the deriva-

tion in this section. I.e., we will use units where c = 1 and our metric signature

is (−,+,+,+) unless stated otherwise.
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2.3.1 About Time and Dimensions

Defining a notion of ‘global time’ is difficult. This is because clocks tick at

different rates in the Universe. In an effective model of the Universe, there

would ideally be some notion of averaging over all of these clocks.

In cosmology, there can be multiple notions of time, one of these is the

coordinate time, t, also known as cosmic time. The cosmic time is the proper

time of a comoving observer, as can be seen from (2.27). In cosmology we also

often use — in fact, more often than not — conformal time. Conformal time is

defined as,

η − ηi ≡
∫ t

ti

dt′

a(t′)
, (2.29)

where t is the cosmic time. As long as the cosmic time is considered to be a

physically relevant proper time, then the conformal time should not be con-

sidered a “physically meaningful” time. However, the conformal time is useful

for describing the particle horizon, defined4 as cη, this measures the maximum

distance information — such as photons or gravitational waves — could have

propagated since the big bang. The particle horizon sets a limit to causal con-

tact between different regions in the Universe, usually leading to the “horizon

problem”[65].

The conformal time allows one to rewrite the FLRW line element as

ds2 = a(η)2

(
− dη2 +

dr 2

1− k r 2
+ r2 dθ2 + r2 sin2 θ dφ2

)
. (2.30)

Hence, the scale factor has become a conformal factor, explaining the name for

η. The line element (2.30) is a conformal scaling of Minkowski space if k = 0,

an Einstein static Universe with spatial sections of topology S 3 if k = 1, or

similarly of a Universe with hyperbolic spatial section if k = −1.

Note that when using the line element (2.30), any derivatives with respect

to conformal time will be denoted by a prime, ′. The introduction of the confor-

mal time allows for some freedom of where the ‘dimensions of the line element

live’. This will be relevant to the interpretation of post-Newtonian cosmology

in Chapter 6. Consider the following:

[ ds2 ] = L2, (2.31)

where [.] indicates the dimensions of the object and L is the dimension of length.

From the definition of the conformal time we know

dt

dη
= a,

4In (2.29), we have assumed c = 1 as per usual, however, the distinction is made in the
discussion to provide insight into what the conformal time is.
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which gives rise to two choices for allocating dimensions. In units c = 1, [ t ] =

[ ct ] = L. This gives two natural choices depending on whether a factor of c is

implicit in the definition or not.

I : [ a ] = L =⇒ [ η ] = 1,

II : [ a ] = 1 =⇒ [ η ] = [ t ] = L .
(2.32)

The spatial FLRW line element which we shall refer to as γ ij will have the

corresponding dimensions

I : [ γ ij dx idx j ] = 1 =⇒ [ γ ij ] = 1, [x i ] = 1 ,

II : [ γ ij dx idx j ] = L2 =⇒ [ γ ij ] = 1, [x i ] = L .
(2.33)

2.3.2 Hubble Law

In 1929 Edwin Hubble published a study which showed that the redshift of

galaxies was proportional to their distance. This study consisted of 18 galaxies

in which Cepheids5 could be seen. The study analysed the redshift of these

galaxies and found the redshift was increasing as a function of distance. This

became known as the Hubble law6. Hubble’s law could be mathematically

expressed as

z =
H0 d

c
, (2.34)

where z is the redshift, d is the distance to the galaxy, and H0 is the proportion-

ality constant known at the Hubble constant. Hubble interpreted the redshift

as a non-relativistic radial Doppler shift, z = v/c, writing v = H0 d, where v is

the separation velocity of the galaxy from us.

The Hubble parameter can be defined straightforwardly using the FLRW

metric as

H(t) =
ȧ(t)

a(t)
, (2.35)

where the dot refers to a derivative with respect to the time coordinate, t. The

value of the Hubble constant today is H evaluated at t0,

H0 =
ȧ(t)

a(t)

∣∣∣∣∣
t=t0

. (2.36)

It should be noted that cosmologists often move the ambiguity of the value of the

Hubble constant today to a dimensionless Hubble constant, h, and write H0 =

100h−1 kms−1Mpc−1. Furthermore, it is also common to use the conformal

5Cepheids are a type of star that pulsate radially, varying in diameter and temperature
and produce change in brightness with well defined stable periods and amplitudes.

6In 2018 the International Astronomical Union declared that this should be know as the
Hubble–Lemâıtre Law, since Lemâıtre obtained the relation (2.34) using the same data two
years prior to Hubble. [13].
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Hubble parameter, which is the Hubble parameter with respect to conformal

time. The conformal Hubble parameter is denoted by H and is defined as

H =
a′(η)

a(η)
, (2.37)

which can be related to the usual Hubble parameter via

H = aH. (2.38)

2.3.3 Friedmann equations

Thus far we have discussed the metric of the standard model of cosmology, the

FLRW metric. To fully describe the standard model, we must also describe

the matter content as Einstein’s field equations couple geometry to the matter

content of a spacetime. In the standard model, one assumes that all the matter

in the Universe can be smoothed into a perfect fluid with an stress-energy tensor

that takes the form [65]:

T µν = (ρ+ p)uµuν + p gµν . (2.39)

Here, uµ are the components of the 4−velocity of the fluid defined as

uµ =
dxµ

dτ
, (2.40)

ρ is the energy density, and p is the pressure.

In the rest-frame of the fluid7, the components of the 4–velocity are

uµ̄ = (1, 0, 0, 0), or uµ =
1

a
(1, 0, 0, 0), (2.41)

i.e., the spatial velocity of the fluid is zero. If the spatial velocity of the fluid

were non-zero then one would violate the assumption of spatial homogeneity.

Furthermore, the assumption of isotropy and homogeneity imply that the pres-

sure and energy density can only be functions of time. The stress-energy tensor

with respect to (2.30) has the following matrix representation:

T µν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (2.42)

The Friedmann equations follow when one computes the relevant terms in the

field equations, which can be rewritten in the trace-reversed form:

Rµν − Λgµν = 8πG (Tµν −
1

2
T gµν). (2.43)

7In what follows, when specifying particular coordinate frames we will use barred indices
for the standard comoving frame and unbarred for the conformal frame.
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For the FLRW metric, the components of the Ricci tensor are:

R0̄0̄ = −3
ä

a2
, or R00 = 3

(a′ 2
a2
− a′′

a

)
,

R0i = 0,

Rı̄̄ =

(
2
ȧ2

a2
+
ä

a
+ 2

k

a2

)
gı̄̄, or Rij =

(
2
a′ 2

a4
+
a′′

a3
+ 2

k

a2

)
gij.

(2.44)

The Ricci scalar is,

R = 6

(
ȧ2

a2
+
ä

a
+
k

a2

)
≡ R = 6

( k
a2

+
a′′

a3

)
. (2.45)

The components of the Einstein tensor are:

G0̄0̄ = 3

(
ȧ2

a2
+
k

a2

)
− Λ, or G00 = 3

a′ 2

a2
+ 3k − Λ a2 ,

G0̄ı̄ = G0i = 0,

Gı̄̄ = −

(
2
ä

a
+
ȧ2

a2
− Λ +

k

a2

)
gı̄̄, or Gij = −

(
2
a′′

a3
− a′ 2

a4
− Λ +

k

a2

)
gij,

(2.46)

and finally, the components of the stress-energy tensor are

T0̄0̄ = ρ, or T00 = a2ρ ,

T0̄ı̄ = T0i = 0,

Tı̄̄ = Tij = p gij.

(2.47)

From the standard form of the field equations, (2.5) we obtain the first

Friedmann equation:

ȧ2 + k

a2
=

8πGρ+ Λ

3
, or H2 + k = a2 8πGρ+ Λ

3
(2.48)

and from the trace-reversed equations (2.43) we obtain the second Friedmann

equation:

ä

a
= −4πG

3

(
ρ+ 3p

)
+

Λ

3
, or H′ = −4πG

3

(
ρ+ 3p

)
a2 + a2 Λ

3
. (2.49)

Note that if Λ = 0 then for any matter that obeys the strong energy condition,

ρ + 3p > 0, the expansion is always decelerating. Generically a perfect fluid

with pressure will obey an equation of state

p = wρ, (2.50)

where w is restricted by energy conditions. In particular, the dominant energy

condition requires that −1 ≤ w ≤ 1 so that the speed of sound does not exceed
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the speed of light. The strong energy condition is violated if −1 ≤ w < −1/3,

corresponding to matter which does not clump gravitationally and is therefore

called “dark energy”. The cosmological constant, which was first introduced as

a geometric quantity can also be interpreted as a dark energy with w = −1,

with pressure

pΛ = − Λ

8πG
, (2.51)

and density,

ρΛ =
Λ

8πG
. (2.52)

Following an initial phase which is phenomenologically well described by a

period of inflation, the Universe can be considered to pass through a series of

epochs in which one component of the energy dominates over the others. Very

roughly, if we take the energy conservation equation

uν∇µT
µν = 0 or ρ̇ = −3

ȧ

a
(ρ+ p), (2.53)

then for a fluid with a single equation of state, p = wρ, we find ρ ∝ a−3(1+w).

For radiation, w = 1/3, and ρR ∝ a−4; and for non-relativistic matter

(including dark matter) w = 0 and ρM ∝ a−3. The mass-energy of the Universe

is then
ρ = ρr + ρm + ρΛ

= ρr0

(a0

a

)4

+ ρm0

(a0

a

)3

+
Λ

8πG
.

(2.54)

Here ρr includes both neutrinos and photons, and ρm = ρb + ρc both baryonic

and Cold Dark Matter.

In the early radiation dominated epoch, before matter radiation equality,

a� aeq = a0 ρr0/ρm0, we find a ∝ t1/2. Later, following decoupling there is an

epoch when ρm � ρr, and ρm � ρΛ and we find a ∝ t2/3, as in an Einstein–de

Sitter Universe. One can also write an analytic solution with Λ = 0 which

interpolates between the radiation dominated and matter dominated regimes.

At decoupling, for example, the energy density of radiation and matter is ∼ 25%

and∼ 75% respectively leading to a0/adecoupling ∼ 1100. At very late times, dark

energy dominates the energy density of the Universe and the scale factor takes

the form a(t) ∝ exp
[

1
2

√
Λ/3t

]
.

In the current epoch, we find ourselves at a time when the energy density of

matter and dark energy are of a similar order of magnitude, ρm ∼ ρΛ. Cosmic

acceleration appears to have begun only relatively recently, so that at present

ä > 0 but Ḣ = (äa − ȧ2/a2) < 0. Since this appears to involve a degree of

fine-tuning it begs the question of why this occurs at the present epoch.

This is known as the “cosmic coincidence problem”. Answering this question

could involve the anthropic principle [68], or dynamical dark energy, or alter-

natively abandoning the FLRW models. Models which involve backreaction of
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inhomogeneities — discussed in Chapter 5 — provide a potential alternative

resolution in terms of a related coincidence. In particular, the epoch of onset of

cosmic acceleration coincides with the first growth of large inhomogeneities.

2.4 The Lambda Cold Dark Matter Model

After the discovery of the apparently accelerated expansion of the Universe in

the 1990s by [18, 19] the Lambda Cold Dark Matter model (ΛCDM) became

the prevalent model to describe the Universe. The model adapts the FLRW

metric and consequently the Friedmann equations to describe our Universe on

any scale. It is predicated on the cosmological principle — the notion that the

average spatial distribution of matter in the Universe is exactly isotropic and

homogeneous.

To this day, ΛCDM is the most tested model of cosmology and is supported

by many cosmological observations8. A particular set of FLRW cosmological

parameters agree with independent observations, and have been designated the

“concordance model”. In terms of the parameters (2.55) defined below, at the

present epoch we find negligible spatial curvature, a substantial cosmological

constant, and a matter density with an order of four times as many dark matter9,

particles as ordinary baryonic matter. This particulate matter is called “dark

matter”, as the relative velocities are small, i.e., non-relativistic. Cold Dark

Matter is ‘well approximated’ as dust since it is pressureless and assumed to

only interact gravitationally.

2.4.1 Cosmological parameters

Often in cosmology instead of using a dimensionful density, ρ, we define dimen-

sionless density parameters, Ωi = ρi/ρcr, for each component contributing to

the energy density. Here ρcr = 3H2/8πG is the critical density of a spatially

flat matter dominated model. In particular we define:

Ωm(t) :=
8πG

3H2(t)
ρm(t),

Ωr(t) :=
8πG

3H2(t)
ρr(t),

ΩΛ(t) :=
Λ

3H2(t)
,

Ωk(t) := − k2

a2(t)H2(t)
,

(2.55)

8This is true, however, in recent years many aspects of the model have come into question
with the development of ‘precision cosmology’.

9While many candidates exist for dark matter, none have been directly observed to date.
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where, as before, M , r, Λ, and k refer to matter, radiation, the cosmological

constant, and curvature constant respectively. With these parameters, one can

rewrite the first Friedmann equation as

ΩM + Ωr + ΩΛ + Ωk = 1. (2.56)

We evaluate the parameters at the present epoch to obtain standard cosmo-

logical parameters. These have been constrained by many independent tests,

including the Planck collaboration in 2015 and 2018 [29, 69] by the temper-

ature fluctuations in the cosmic microwave background (CMB). The present

epoch values are given with a 68% confidence level:

Ωc 0 = 0.264± 0.002,

Ωb 0 = 0.0493± 0.0002,

ΩΛ0 = 0.6911± 0.0062,

|Ωk 0| < 0.001± 0.002,

Ω0 ≈ 1× 10−5,

(2.57)

where the subscript c refers to cold dark matter, the subscript b refers to or-

dinary baryonic matter, and the subscript 0 refers to evaluation at the present

epoch.

2.4.2 Observations

While this thesis does not delve into how the theory we discuss may be tested,

it is nevertheless important to understand the observational side of cosmol-

ogy. After all, early work constraining Ωm0 < 1 [70–73] and the discovery of

the accelerated expansion of the Universe marked the beginning of the current

standard model and the alternate formalisms we investigate in this thesis.

Cosmic Microwave Background

In 1964 the CMB, the afterglow of the big bang, was discovered [74]. The CMB

is isotropic to a high degree, and is the largest piece of evidence supporting

a big bang cosmology [75]. Advancements in instruments and data processing

led to the realisation that the CMB radiation was actually anisotropic [76]. In

the years following the discovery of the CMB, it was found to have a dipole

temperature anisotropy [77, 78] to an estimated 1 part in 10−3. This dipole has

been assumed to be purely kinematic, and can be removed by a local boost.

After accounting for this local boost, the temperature anisotropies of the CMB

have been observed at the order of a few parts in 10−5, beginning with the

observations of the COBE satellite [79, 80], then continuing with the Wilkinson

Microwave Anisotropy Probe (WMAP) and the Planck satellite missions. These
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have constrained the temperature anisotropy to be parts in 10−5 relative to the

mean temperature, T̄ ≈ 2.725K [69, 81].

The early Universe was dense, and opaque, containing a photon-baryon

plasma, and dark matter. The initial conditions of the big bang created a spec-

trum of density perturbations about the background which were ‘scale free’.

These density perturbations lead to gravitational collapse of the primordial

plasma and dark matter. The baryons, however, experienced a radiation pres-

sure that opposed gravitational collapse, creating pressure perturbations. This

interplay between competing effects of radiation pressure and gravitational col-

lapse resulted in acoustic waves in the plasma known as the Baryon Acoustic

Oscillations (BAOs), with sound speed vsound =
√

dp/dρ, where dρ is the den-

sity perturbation and dp is the pressure perturbation. The dark matter particles

are understood to be pressureless and thus they continued to experience gravi-

tational collapse during this epoch.

As the photon-baryon plasma cooled, free electrons bound with protons

to form neutral hydrogen, decreasing the electron density significantly — this

epoch is known as recombination and occurs near the epoch of photon-electron

decoupling [67]. Recombination released photons which travelled freely through

the Universe (forming the CMB) meaning the radiation pressure on the baryons

vanished, ending the BAOs. The last baryon acoustic waves ‘froze’ in place,

leading to baryon overdensities at the distance the last sound wave travelled

— the sound horizon and its harmonics on smaller scales [82, 83]. Due to the

continuous gravitational collapse of dark matter before recombination, the rel-

ative density of the dark matter particles was greater than that of the baryons

— δρc/ρ̄ ≈ 10−4 for dark matter and δρb/ρ̄ ≈ 10−5 for the baryons, where δρ

is the density perturbation and ρ̄, the background density. After recombina-

tion the relatively larger density perturbations from the dark matter acted as

‘gravitational wells’ for the baryons to ‘fall into’. This was on the scale of small

protogalaxies, forming the first structures in the Universe.

The small-scale anisotropies measured in the CMB are dominated by the

BAOs. Measuring the location and amplitude of the peaks in the angular power

spectrum leads to constraints on the cosmological parameters, (2.4.1) [84]. The

BAO is detected principally by two methods. Firstly, the angular power spec-

trum is measured by determining the temperature fluctuations in the CMB as

a function of angular scale. The largest first peak in the power spectrum corre-

sponds to an angular scale in which overdensities and underdensities have had

time to undergo only one compression or rarefaction by the decoupling epoch.

The scale is observed at an angle ∼ 0.6° — corresponding to distance scales on

which inhomogeneities are still expanding today as close to linear perturbations

in the framework of the standard model. Consequently, we expect an echo of the

excess power in galaxy clustering statistics. Secondly, the first BAO peak was

detected in 2005 by examining the 2-point galaxy-galaxy correlation function of
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thousands of galaxies [85, 86]. The distance determined matched the predicted

sound horizon. Over the last decade, it has become an important test as new

data sets becomes available.

Type Ia Supernovae

To determine the expansion history of the Universe requires that we observe

independent values of the distances and redshifts. While redshifts are ‘simple’ to

measure, estimating the distances is full of systematic errors as well as statistical

biases. Ideally, astronomers seek “standard candles”, objects of fixed absolute

bolometric luminosity, L, which at a distance, dL — the “luminosity distance”

— lead to an observable bolometric flux,

F =
L

4πdL 2
. (2.58)

Measurements of the flux then enable the observed luminosity distances, dL =√
L(4πF), to be compared to different model predictions as a function of red-

shift.

In reality, there are no perfect standard candles, and the best we have are

“standardizable” candles. In 1993, a breakthrough was made by Phillips, [87],

who discovered an empirical relation between the peak of the supernova light

curve in the rest frame B-band and its decay over 15 days — allowing SNe1a

to be standardizable.

The High-z Supernova Search Team [18, 88] and the Supernova Cosmology

Project [19] used SNe1a data to plot the Hubble diagram to about z ∼ 0.8.

The results of this showed that SNe1a farthest away from Earth were ∼ 15%

dimmer than previously expected for a matter dominated FLRW cosmology

with Λ = 0. The conclusion from this was that the expansion of the Universe

was accelerating which was explained well by implementing Λ > 0 in the context

of a FLRW cosmology. One should note that only an FLRW model was used in

the data analysis. One may then ask whether the cosmological constant actually

exists or whether it is an emergent feature of model fitting. SNe1a at z > 1 were

also investigated in later years suggesting the Universe underwent deceleration

at earlier epochs, implying that the Universe was not always dominated by a

repulsive ‘vacuum energy’ [89–91].

In the last two decades numerous SNe1a surveys have been conducted to re-

inforce the original measurements of Riess et al. [18] and Perlmutter et al. [19].

These SNe1a have been amalgamated into various catalogues and beyond mea-

suring the acceleration of the Universe, they are often used to determine the

local Hubble constant.
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2.5 Challenges for the Standard Model

The ΛCDM model has had many successes and has been able to explain many of

our cosmological observations. There are, however, several tensions which have

developed due to the standard model. In addition, the nature of dark energy and

dark matter — the most dominant constituents of the Universe — constitute

major challenges for fundamental physics. Dark energy is the greater problem,

since unlike dark matter, it would not appear to have a “simple” resolution in

particle physics. Some general relativists, including Buchert and Wiltshire [4,

36, 44–48] have sought alternatives for dark energy at a fundamental level.

2.5.1 Fundamentals

There are numerous fundamentals in the theory of general relativity which are

overlooked or ignored because of complications that arise. One such problem

is the largest scale on which Einstein’s equations can be applied with a coarse-

grained stress-energy tensor. General relativity has only been well tested on

‘small scales’ explaining phenomena including the precession of the perihelion

of Mercury, the bending of light from distant stars around our sun, gravitational

lensing, and gravitational wave production from black hole mergers in the strong

field regime [92]. Nonetheless, one should be careful when applying general

relativity to large scales where it has not been directly tested, such as galaxies,

galaxy clusters, the local neighbourhood, and even the entire Universe.

Perhaps the leading challenge to the assumptions of the standard model is

the foundation of the cosmological principle. The cosmological principle is based

on the Copernican principle. Our galaxy is in a thin filament [93] inside the local

void. The filament connects us to the nearest rich cluster of galaxies, the Virgo

cluster, of order 20 Mpc away. On larger scales, surveys indicate that 40 to 50%

of the volume of the present epoch Universe is contained in voids that have a

diameter of 30h−1Mpc on average [94, 95]. These voids have a density contrast

of δρ ∼ −0.95, where δρ = δρ/ρ̄ = (ρ− ρ̄)/ρ̄. While we still find ourselves in a

galaxy which might be deemed ‘typical’, the Copernican principle may require

refinement [35]. This is because our observations indicate all galaxies constitute

a mass-biased view of the Universe and are not representative of typical locations

by volume, which are void regions where structures never formed.

The dust approximation also gives rise to fundamental issues [96]. In par-

ticular, particles of dust are usually understood as ‘discrete masses’ which do

not change over the timescale of evolution of the problem in question. However,

over the life time of the Universe the nature of the dust must change as par-

ticle geodesics cross — from ions, to stars and planets, to galaxies and galaxy

clusters. If we require the mass of a dust particle not to change over the age

of the Universe we must coarse-grain on scales larger than the largest typical
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non-linear structures. I.e., at scales a few times larger than the most typical

voids or ∼ 100h−1Mpc.

We are therefore dealing with fluid elements, rather than isolated dust par-

ticles, and we are averaging over geometrical quantities involving small scale

structure and the dynamical gravitational energy implicit in solutions of Ein-

stein’s equations on small scales. On account of the strong equivalence principle,

gravitational energy cannot be localised at a point. Gravitational energy is non-

local. It can at best be integrated over regions, giving rise to various quasilocal

definitions [97]. However, such definitions are not unique and represent an open

frontier for theorists in the mathematical relativity community.

Associated with the problem of averaging is the problem of patching space-

times. It is known that there are many different gravitational fields in the

Universe and, therefore, the most accurate description of the Universe would

patch all of these spacetimes together. This is a complicated problem involving

fundamental problems of physical interpretation over and above the mathemat-

ical issues of the “fitting problem” [98]. The fitting problem leads one to other

fundamental questions in cosmology — for instance, “what is the actual scale

beyond which bound systems can no longer be influenced by the rest of the Uni-

verse?” in the current epoch. This led Wiltshire to define a notion of10 “finite

infinity” [35, 99] to embody a concept suggested originally by Ellis [100].

A similar scale has been called the “matter horizon” by Ellis and Stoeger

[101], and is much smaller than the particle horizon. The particle horizon is

an absolute limit set by the finite propagation speed of light. However, at the

present epoch the energy density of electromagnetic and gravitational waves is

negligible in comparison to the local matter density. Variations in the local

matter density on scales larger than those of bound structures were primarily

determined by the finite speed of sound before decoupling.

This effectively creates new considerations about causality in cosmological

averages and leads to the idea that given any two (or more) matter horizons,

they will develop separately — as separate Universes. The question then arises,

“how much do these separate Universes differ”. Rough estimates by Wiltshire

[36] based on this idea suggest that on any scale of averaging above 100h−1 Mpc,

density differences of ∼ 6% should be expected. In the FLRW model, one

expects δρ → 0 as the scale of averaging is increased. With a nearly scale

invariant spectrum of initial density perturbations, and the separate Universe

idea, the SSH is one at which δρ becomes bounded. By contrast, the SSH is

defined for a scale beyond which δρ monotonically decreases for larger averages

in the standard model.

In scenarios in which we seek to explain apparent cosmic acceleration as

an effect of inhomogeneities, the basic effect comes about from the differential

10Wiltshire [35] defines finite infinity as the timelike boundaries which define the boundary
between bound systems and unbound systems.
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growth of voids as opposed to walls and filaments – the denser but still expand-

ing regions that contain bound and collapsing structures. The volume of voids

is initially negligible. However, considered as “separate universes”, locally they

decelerate much less than the denser walls. Cosmological distances are mea-

sured on scales on which light traverses a significant number of both voids and

walls. Early in cosmic history the void volume fraction is tiny and the amount

of deceleration appears homogeneous when projected along a light ray. How-

ever, in the late universe there is a transition to void dominance. Therefore,

consider an observer who tries to interpret cosmological distances in terms of

a single deceleration parameter. It may appear that the expansion starts to

“accelerate” when the fraction of the distance travelled through the less rapidly

decelerating – and hence rapidly growing – voids increases.

Whether the transition to void dominance is significant enough to be inter-

preted as apparent “acceleration” or not depends crucially on the calibration

of the global average expansion rate as compared to local clocks and rulers.

The key ingredient in Wiltshire’s timescape model is a cumulative “drift” of

the canonical clocks “at infinity” for observers in bound structures [35]. This

is compared to the time parameter of the normals to the spatial hypersurfaces

which describe average evolution, via Buchert averages, on cosmological scales.

Such a phenomenology goes beyond the framework of Buchert’s scheme, which

we develop in Chapter 5.

2.5.2 Observational Challenges

The ΛCDM model is broadly supported by numerous independent observations.

There are, however, a number of challenges for the ΛCDM model which are

persistent and growing in significance as observational precision increases. A

number of these challenges were reviewed by Buchert et al. [102] five years ago.

Here we will briefly discuss and update some of the key issues.

Hubble Constant

The value of the Hubble constant has been a matter of debate among as-

tronomers over many decades, dominated by a history in which systematic

uncertainties have led to some large differences in estimates values of H0. Some

fifty years ago, competing estimates differed by a factor of two. By comparison,

present estimates are much closer. Nonetheless as precision increases, there

appears to be a persistent tension which continues to receive a lot of attention

from the community at present.

Higher values of H0 are obtained largely from low redshift measurements,

and somewhat lower values are obtained from parameter fits to the ΛCDM

model at larger distances. These values are represented by the SH0ES collab-
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Figure 2.1: Whisker plot with 68% confidence limit constraints on the Hubble
constant H0 from [103], through direct and indirect measurements by different
astronomical missions over the years. The cyan vertical band corresponds to the
2020 value from the SH0ES collaboration [104] (H0 = 73.2 ± 1.3) km s−1 Mpc−1

and the light pink vertical band corresponds to the 2018 value H0 = (67.4 ±
0.5) km s−1 Mpc−1 from the Planck collaboration [29] from the ΛCDM model.
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oration 2018 estimate11, H0 = (73.45 ± 1.66kms−1Mpc−1) [33] and the Planck

collaboration estimate H0 = (67.4 ± 0.5)kms−1Mpc−1 [29]. These values are

obtained by using Cepheid variables and SNe1a and by fitting the angular di-

ameter distance of the sound horizon in the CMB anisotropy data respectively.

The tension between these two values is 3.7σ.

The situation is significantly more complicated, however. For example, in

2019 using a method based on selecting galaxies with stars at the tip of the

red giant branch (TRGB) in the Hertzsprung–Russell diagram, the Carnegie–

Chicago collaboration published a value H0 = (69.8 ± 0.8)kms−1Mpc−1. This

value sits between the Planck satellite and SH0ES values, being 1.2σ from the

former and 1.7σ from the latter. While the TRGB method yields some of

the lowest values of H0 obtained by direct measurements, there are a number

of methods which tend to give higher values, as summarised in Figure 2.1.

Additional methods include: gravitational lensing estimates, angular diameter

distances to masers in accretion disks around supermassive black holes, and the

empirical Tully-Fisher relation. Gravitational wave estimates from neutron star

binary mergers are a promising independent estimator for the future. However,

to date only one event (GW170817) has yielded an independent redshift as well

as a distance [105].

Numerous ideas have been put forward to explain the Hubble tension, which

usually invoke exotic new physics without changing the Friedmann equation

[103]. Inhomogeneous models, however, offer many potential avenues of solu-

tion, as they naturally give rise to a scale dependence of the Hubble parameter.

For example, Bolejko [37] showed that an emerging globally negative curvature

of the Universe can resolve the Hubble tension, while also reducing the amount

of dark energy. This was done under the “silent Universe” approximation12.

Other ideas have been discussed in the context of backreaction and averaging

[106]. Examination of the effect of of ‘local’ structure could also play a signif-

icant role in measurements which will be one of the many aims of upcoming

‘precision’ surveys [107, 108].

Systematic Problems in Type Ia Supernova Data Fitting

In a previous project [109], we used the JLA [110] and Pantheon [111] SNe1a

catalogues consisting of 740 and 1048 SNe1a respectively to compare Wiltshire’s

timescape model [36] to the ΛCDM model. This built on an earlier analysis by

Dam et al. [112] using the JLA catalogue. By Bayesian model compasion Dam

11This has very recently updated to H0 = (73.2 ± 1.3kms−1Mpc−1) [104]. Over time
individual values of each group have not changed significantly, rather the uncertainties have
tightened.

12The silent Universe is based on numerical solutions of the field equations in a 1+3 formal-
ism (see Chapter 3) with restricted gravitational degrees of freedom. The Einstein equations
are sourced solely by irrotational dust and a cosmological constant, with vanishing magnetic
parts of the Weyl tensor and diagonalisable shear.
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et al. had found a log Bayes factor of lnB = 1.43 which indicated a slight

preference for timescape relative to ΛCDM.

Subsequently, after the Pantheon catalogue [111] was released we first at-

tempted to analyse that data set. However, that proved impossible given the

manner in which the data had been reduced before publication. Nonetheless,

we were able to reanalyse a subsample consisting of 646 SNe1a common to both

Pantheon and JLA, using the data from the JLA catalogue. Surprisingly, we

found a log Bayes factor of lnB = −1.62, indicating the ΛCDM was now slightly

preferred to the timescape model.

The publication of the Pantheon survey gave no statement as to why 94

supernovae from the earlier JLA catalogue had been omitted. Indeed, the very

fact that 94 supernovae were omitted was not stated anywhere, and was some-

thing that could only be determined from the data files that were made pub-

licly available13. Furthermore, the Pantheon survey also provided new SNe1a

already reduced with added systematic uncertainties for example, that incor-

porate peculiar-velocity modelling based on N-body simulations on a FLRW

background. With an increasing tendency of observers to fit the data to the

FLRW in order to increase “precision” it is becoming difficult to actually test

frameworks that fall outside the FLRW paradigm.

Large-Angle CMB Anomalies

There are several observations concerning the large angle multipoles of the CMB

anisotropy spectrum, which may be considered anomalous to varying degrees of

statistical significance [115]. These include:

(i) the power asymmetry between the northern and southern hemispheres

[116–120];

(ii) the low quadrupole power [116, 121];

(iii) the alignment of the quadrupole and octupole [121–124];

(iv) the parity asymmetry [125] between odd and even multipoles;

(v) a large unusually cold spot [126, 127].

The power asymmetry was observed in the first COsmic microwave back-

ground explorer (COBE) sky maps (of the CMB), and was also detected by

WMAP with increased significance [116–119]. The significance of this and a

number of the other anomalies further increased with the release of Planck

satellite data [128–130].

13Other concerns have been raised by Rameez and Sarkar [113, 114].
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Anisotropies in the Galaxy Distribution

The CMB anisotropies are determined after the CMB dipole has been sub-

tracted, assuming it is purely kinematic, due entirely to a local Lorentz boost

between our telescopes and the “CMB rest frame”. To fully resolve the ob-

served 3.353 ± 0.034 mK CMB dipole [131, 132] as a local boost requires two

things. The first being the motion of the sun within the galaxy and of our

galaxy within the Local Group (LG) of galaxies. The second being the LG

itself must have a boost vLG−CMB = 635±38 km s−1 toward galactic coordinates

(`, b) = (276.4◦, 29.3◦) ± 3.2◦ in the constellation Hydra. However, in generic

inhomogeneous cosmologies we can expect differential expansion which cannot

be reduced to uniform expansion plus pure local boosts [133, 134].

Any significant nonkinematic local expansion will impact directly on our

interpretation of the CMB. This gives rise to corrections at the level of the

CMB quadrupole and higher multipoles which do not match an expansion of

the Lorentz boost factor in powers of v/c [134]. The Planck team claim to have

verified the kinematic nature of the CMB dipole by measuring the higher order

effects of modulation and aberration on the anisotropy spectrum [135, 136].

However, this conclusion only holds for the small angle multipoles lmin = 500 <

l < lmax = 2000. If large angle multipoles are included and lmax is reduced to

lmax < 100, then the inferred boost direction moves across the sky to coincide

with the modulation dipole anomaly direction [119], (`, b) = (224◦,−22◦)±24◦.

Such an angular scale dependence of the results based on the kinematic

interpretation are not at all surprising if nonkinematic differential expansion

is at play on <∼ 100h−1 Mpc scales [133, 134]. If correct, differential expansion

should manifest itself in other ways. Independent tests of the special relativistic

modulation effect on number counts of radio galaxies, quasars and mid-infra red

active galactic nuclei reveal a dipole whose direction is consistent with the CMB

dipole. The amplitude of this, however, is too large to be explained kinemat-

ically [137–143]. In 2013, for example, Rubart and Schwarz ruled out a kine-

matic dipole in radio galaxies at the 99.5% confidence level [138]. There have

been numerous debates about systematic uncertainties. However, observational

characteristics such as frequency dependence have been examined [142] which

mitigate against simple observational explanations for the ‘anomaly’. Further-

more, there has been a recent observation of a dipole in a sample of quasars at

large redshifts [141]. The amplitude of which rejects the kinematic hypothesis

at the level 4.9σ. Therefore, ruling out many possible systematic uncertainties

that are potentially invoked in nearby radio galaxy samples.

Primordial Lithium Abundance

In the first few minutes after the big bang, big bang nucleosynthesis (BBN) oc-

curred. This process converted about 25% of primordial protons – i.e., hydrogen
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nuclei – into helium–4 nuclei (alpha particles) with traces of deuterium, helium–

3, and lithium–7. All heavier elements are synthesized in stars. Thus the BBN

predictions determine nuclear abundances in the oldest baryonic matter we ob-

serve in the Universe, from which all stars formed. Big bang nucleosynthesis

uses standard nuclear reactions which are well–understood. One basic param-

eter, ηBγ, the ratio of the densities of primordial baryons to photons tightly

constrains the isotopic mass ratios 4He/H, 3He/H, D/H, and 7Li/H of the nu-

clear end products. The fact that the predictions broadly agree with observation

has long been one of the key pieces of evidence supporting the big bang [144,

145].

There have long been weak (1–2σ) intrinsic tensions in astronomical obser-

vations of the relative abundances of primordial D/H versus 7Li/H [144], given

BBN predictions using a broad constraint on ηBγ from just the CMB tempera-

ture and the distance to the last scattering surface. However, the constraint on

ηBγ tightened significantly with WMAP’s first measurement of the ratio of the

heights of the third to first acoustic peaks [145]. This ratio greatly constrains

both the densities of baryons and cold dark matter relative to the CMB photons.

Such constraints can only be made within a cosmological model, in this case the

ΛCDM model. A result of this is that the prediction for the Li/H abundance

became seriously discrepant with observations [145] and the significance of the

discrepancy has increased with time [146]. The lack of 7Li/H in metal-poor

halo field stars in our galaxy is inconsistent with the ΛCDM expectation from

the CMB anisotropy spectrum at about 4σ–5σ. This may be resolved with

existence of new exotic particles [147, 148].

The primordial Li/H abundance is viewed as a particle physics problem by

most of the community. The fact remains, however, that it is largely due to the

ΛCDM fit of the heights of the first and third acoustic peaks in the CMB. Any

alternative cosmological model which changes the ratio of baryonic matter to

dark matter, as is generally the case in Wiltshire’s timescape cosmology [36],

requires a reexamination of the entire problem.

2.6 Backreaction and Inhomogeneous Cosmol-

ogy

We have thus far discussed the challenges the standard model faces, both funda-

mental and observational. We have also discussed various ideas that have been

put forward in the field to attempt to reconcile these problems, most of them

involving inhomogeneous models of some description. We have also implied that

the FLRW metric is overly simplified with the cosmological constant simply be-

ing a fine-tuning parameter. One potential solution to the dark energy problem

is to properly consider the role of small-scale inhomogeneities on the average
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large-scale cosmological dynamics, this is the approach taken by Buchert [3,

4, 34]. This approach is a more theoretically ‘conservative’ (but socially more

radical) approach to addressing the dark energy problem. This is because many

other theories invoke new physics from the introduction of fundamental fields or

modifications to the gravitational action. The idea of how small-scale structure

impacts large-scale behaviour is known as backreaction.

2.6.1 First look at Backreaction from Inhomogeneities

Let us consider a ‘physical spacetime’ which is described by (M, g) and an aver-

aged spacetime
(
〈M〉D , 〈 g 〉D

)
where the averaging procedure is not specified.

Let us assume that the physical spacetime on small scales is a solution to Ein-

stein’s equations. The averaged Einstein equations in the form (2.5) then read

〈Gµν 〉 = 8πG 〈Tµν 〉, (2.59)

where

〈Gµν 〉 = 〈Rµν 〉 −
1

2
〈Rgµν 〉+ Λ 〈 gµν 〉.

Let us then decompose the ‘physical metric’ as a fluctuation or perturbation

from the average to model inhomogeneities:

gµν = g aµν + δ gµν , (2.60)

where g aµν = 〈 gµν 〉.
The averaged Einstein equation due to the inhomogeneities, therefore, can

be reformulated by following [149]:

〈Gµν 〉 = G a
µν + ∆Gµν = 8πG 〈Tµν 〉. (2.61)

Thus, the averaging process and the construction of the Einstein tensor do not

commute — the averaged dynamics of spacetime is not equal to the dynamics

of the averaged spacetime. This can perhaps be better understood by the

statement:

Gµν (〈 gµν 〉) 6= 〈Gµν (gµν) 〉 = 8πG〈Tµν 〉. (2.62)

However, this is precisely what the standard model assumes;

G a
µν = 8πG〈Tµν 〉. (2.63)

The ∆Gµν term is the so-called ‘backreaction’ term and will be non-zero as

long as inhomogeneities are present and can act on the dynamics of the aver-

aged spacetime. By neglecting this term, the standard model assumes that the

dynamics of the structures at small scales do not influence global dynamics.

The open question is to understand if the backreaction term is large enough to

account for dark energy and dark matter.
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It should be noted that the fundamental issue with this approach, is that

there exists no unique approach to the mathematically complex problem of

averaging tensors. There are a handful of approaches in the literature which

often involve extra mathematical structure [150–153]. Buchert averaging, on

the other hand, considered in Chapter 5 is constructed from scalar variables,

such as the intrinsic Ricci scalar, extrinsic curvature scalar, and stress-energy

scalars.
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Chapter 3

3+1 Formalism in General
Relativity

The 3+1 formalism is an approach to general relativity that splits spacetime

into space + time. This is done by splitting the four-dimensional manifold

of spacetime, M, equipped with a Lorentzian metric, i.e., the signature is

(−,+,+,+), into three-dimensional hypersurfaces that evolve with some notion

of time. These hypersurfaces are required to be spacelike so the metric induced

on the hypersurfaces is Riemannian, i.e., has signature (+,+,+). Furthermore,

the requirement for these hypersurfaces to spacelike means that we will also

have a globally hyperbolic spacetime, which is a fundamental assumption for

any physical theory1.

The 3+1 formalism has become the basis for calculations in general relativity

that do not presuppose some particular background. It is useful when one

wishes to rewrite the Einstein field equations as an initial value problem, a

Cauchy problem. In particular, a Cauchy problem which has a local unique

solution as was shown by Yvonne Choquet-Bruhat in 1952 [154]. One can use

an initial hypersurface as the Cauchy surface from which the Universe or parts

of the Universe evolve. Note that the space + time splitting is not an a priori

structure of general relativity, but rather somewhat depends on a choice of time

coordinate. We should also make clear that the 3 + 1 formalism is not the same

as the 1 + 3 formalism. These two formalisms differ in their basic structures,

in the 3 + 1 formalism, the basic structure is a family of three-dimensional

hypersurfaces. In the 1 + 3 formalism, the basic structure is a congruence of

one-dimensional curves such as worldlines. We will discuss the 1 + 3 formalism

will be discussed in section 3.5.

The formalism that exists today originated from work done by Georges Dar-

mois in the 1920s [155], André Lichnerowiez in the 1930s [156–158], and the

aforementioned Yvonne Coquet-Bruhat in the 1950s. In the late 1950s and

1Globally hyperbolic spacetimes are used in ‘physical’ theories has they have no closed
time-like curves and, therefore, causality is not violated.
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early 1960s, Richard Arnowitt, Stanley Deser, and Chales W. Misner (ADM)

used the 3 + 1 splitting as a foundation for the Hamiltonian formulation of gen-

eral relativity2 [161]. In the 1970s, the 3+1 formalism became the backbone

for numerical relativity, largely due to the work by James W. York who formed

the 3+1 equations that were used in this community [162, 163]. Numerical

relativity, in modern times is an essential tool to interpret astrophysical data.

A strong motivation for further improvements in numerical techniques is the

development of a completely new field of gravitational wave astronomy. This

began with the first detections by LIGO [9] and will continue for decades with

projects such as LISA [164].

3.1 Hypersurfaces

The hypersurfaces we discuss are 3-dimensional surfaces. These surfaces evolve

dynamically to generate a 4-dimensional manifold, M, via the Einstein equa-

tions. Hypersurfaces in the framework of the 3+1 formalism are introduced as

surfaces of ‘local simultaneity’ for certain observers in a full spacetime. We will,

therefore, in this section present the mathematical tools to make a 3+1 split of

spacetime. Our discussion here will first deal with general embeddings as maps

on manifolds without considering the Einstein equations.

3.1.1 Embedding Hypersurfaces in Spacetime

We define a hypersurface as a 3-dimensional manifold which we shall label, Σ̂.

The image of Σ̂ by an embedding Φ : Σ̂→M is a hypersurface, Σ ofM (for a

visual interpretation, see Figure 3.1). This is defined as:

Σ = Φ(Σ̂), (3.1)

the embedding, Φ : Σ̂ → Σ is a homeomorphism. A homeomorphism more

generally, is a continuous function between topological spaces that has a con-

tinuous inverse function. Homeomorphisms are isomorphisms (i.e., one-to-one

and onto) that preserve the topological properties of a given space. The one-

to-one nature of the embedding map guarantees that Σ in M does not self-

intersect. We can define a hypersurface locally as the set of all points, p such

that a scalar field on M is constant:

∀p ∈M, p ∈ Σ ⇐⇒ t(p) = 0, (3.2)

where t is the scalar field on3 M.

2It should be noted that an earlier version of this was formulated by Paul Dirac [159, 160].
3We can see this explicitly with an example. Let us introduce a local coordinate system

of M, xµ = (t, x, y, z). If we then have Σ, a submanifold of M then we define Σ by the
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Figure 3.1: A visual representation of embedding from [165]. The embedding Φ can
be seen carrying the hypersurface Σ̂ into M, thereby defining the hypersurface,
Σ ∈ M. The push-forward of the tangent vectors, Φ∗v, to curves, C become
tangent vectors the curves Φ(C) in M.

The embedding Φ also transports curves in Σ̂ to curves inM. Therefore, it

also transports tangent vectors to these curves on Σ̂ to vectors onM. This can

be seen in Figure 3.1 where the curve is C and the tangent vector is v. One can

thus relate the tangent spaces of Σ̂, Tp(Σ̂) to the tangent spaces inM, Tp(M).

To do this, we use the push-forward mapping, Φ∗:

Φ∗ : Tp(Σ̂) −→ Tp(M)

vi 7−→ Φ∗(0, v
i),

(3.4)

where vi = (vx, vy, vz) are the components of a vector, v with respect to the

basis of Tp(Σ) associated with the coordinate system, xµ = (t, x, y, z). Similarly,

the pull-back of Φ, Φ∗, relates the cotangent spaces of Σ̂, T ∗p (Σ̂) to the cotangent

spaces of M, T ∗p (M):

Φ∗ : T ∗p (M) −→ Tp(Σ̂)

ωµ 7−→ Φ∗ωµ = ω i,
(3.5)

recalling that one-forms, ωµ are the components of the 1-form, ω with respect

to the dual coordinate basis, dxµ associated with the coordinates, xµ. The idea

of pull-backs of the embedding map can be generalised to multilinear functions

of vectors, therefore, the bilinear form, g (the spacetime metric). We define the

induced metric on Σ as:

h := Φ∗(g). (3.6)

coordinate condition, t = 0. We can, therefore, obtain an explicit for of Φ defined:

Φ : Σ̂ −→ M
(x, y, z) 7−−→ (0, x, y, z).

(3.3)
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h is usually referred to as the ‘first fundamental for of Σ’ or the ‘3-metric’. In

terms of the coordinates, xi, introduced before, we have

h ij = g ij. (3.7)

We wish to have the hypersurfaces be spacelike, and thus the metric, h is definite

positive, i.e., has signature (+,+,+). Note that we will only deal with vectors

inM that have been identified with vectors in Σ̂, that is, we will use the push-

forward of vectors in Σ̂ inM. We will, therefore, use v instead of always using

Φ∗v – thereby, keeping the knowledge of the structure implicit.

3.1.2 Normal Vector

We wish to define a normal vector to Σ inM. This can be done by considering

a scalar field t and defining Σ as a level surface of t (such as one defined in

(3.2)). The gradient4, ~∇t is a vector normal to the surface Σ in the sense that,

v · ~∇t = gµν v
ν ∇µt = 0, v ∈ Tq(Σ). (3.8)

The vector ~∇t, furthermore, defines a unique normal direction to Σ, meaning

that any other vector, k, normal to Σ will be collinear to ~∇t. We can further

define a unit normal vector to Σ as

n ≡ 1√
− ~∇t · ~∇t

~∇t, (3.9)

or in component form

nµ =
1√

−gαβ∇αt∇βt
∇µt. (3.10)

Note: the condition that the hypersurface, Σ, is spacelike restricts the normal

vectors, ~∇t and n to be timelike, implying

n · n = nµnµ = −1. (3.11)

3.1.3 Curvature

In 1827, Gauss defined the notion of curvature in two ways for 2–dimensional

surfaces embedded in R3. The first method was by considering a normal to a

surface at a point, P and then drawing a plane containing this normal (a normal

plane). The intersection of this plane with the surface is a curve on the surface.

If the plane is rotated about the point, P , then amongst all the curves there

will be one which has the maximum radius from P and one with a minimum.

The principal radii at P are the reciprocal of the radii of the osculating circles

of the curves at P . These radii are usually labelled κ1 and κ2.

4An arrow indicates the contravariant components, i.e., has components ∇µt.
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The second notion of curvature was different. Consider, again, a point P

which is associated with a point Q on a sphere in a way such that the normals

are P and Q are parallel on the sphere. A circle of area, G in the neighbourhood

of Q maps into a closed curve about P which encloses an area, F on the surface

of the sphere. Gauss, thereby defined one number to characterise the curvature

of this surface know as the Gaussian curvature:

|KGauss| = lim
F→0

(G/F ). (3.12)

The two concepts of curvature can be related by

KGauss = κ1κ2. (3.13)

We also define the mean curvature:

Kmean = κ1 + κ2. (3.14)

The two scalar curvature measurements are fundamentally different. For

instance, KGauss can be measured from observations made from within the

surface and without the knowledge of how the surface is embedded in a larger

space5. Kmean, on the other hand is a property of the sheet within the context of

the embedding space and may never be measured by observers on the surface6.

It may not be surprising then that we refer to the Gaussian curvature as the

intrinsic curvature (that we associate with the intrinsic Ricci scalar) and the

mean curvature as the extrinsic curvature. We will, therefore, introduce the

intrinsic and extrinsic curvature in the context of a 3 + 1 splitting of spacetime.

Intrinsic Curvature

Intrinsic curvature of a surface was demonstrated by Gauss to be a curvature

that could be determined by measurements made on the surface. This is the

curvature we associate with gravity, the curvature of spacetime.

If the hypersurface, Σ is spacelike, then the induced metric, h is not degen-

erate. Therefore, we can conclude that there is a unique connection7, D on the

manifold, Σ. This connection is torsion-free and metric preserving (Dh = 0).

Here, D is the usual Levi-Civita connection used associated with the metric h

5The Gauss–Bonnet theorem related the sum of the interior angles of a spherical triangle
to the radius of the sphere. Gauss used this theorem to determine the radius of the Earth.
Gauss used measurements of a triangle which had side lengths of ∼ 25km. This calculation,
thereby consolidated the idea of being able to measure the curvature of a surface by making
observations only on the surface, i.e., not requiring information of the 3-dimensional space in
which it is embedded [166].

6One may note the different physical dimensions, KGauss has dimensions [ L−2 ] and Kmean

has dimensions [ L−1 ].
7A degenerate metric is null and has signature (0,+,+). To see details about how this

relates to having a unique connection, see [167].
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and restricted to Σ. The Riemann tensor that is associated to the connection,D

represents the intrinsic curvature of (Σ,h). We will denote this 3-dimensional

Riemann tensor by R to avoid confusion with the 4-dimensional intrinsic cur-

vature of (M, g). As is the case of four dimensions, the 3-dimensional Riemann

tensor can be expressed as the non-commutativity of two successive covariant

derivatives:

∀v ∈ Tp (Σ), (DiDj −Dj Di) v
k = R k

pij v
p. (3.15)

The Ricci tensor, Rij, and the Ricci scalar, R, are defined as:

Rij := R k
ikj, and R := hijRij. (3.16)

Extrinsic Curvature

Previously, we had described the extrinsic curvature as a “mean curvature”. For

another geometric interpretation, one can consider the ‘bending’ of the manifold

Σ, with respect to the manifold it is embedded within, M. More precisely, the

extrinsic curvature corresponds to the how the normal, n changes when one

moves on Σ. We can formalise this notion of change by considering tangent

vectors on Σ and moving the normal vector along them, then evaluating the

variation in the normal vector. The variation will be evaluated via the spacetime

connection, ∇:

∀v ∈ Tp (Σ), χ : v →∇v n, (3.17)

where χ(v) is the Weingarten map or shape-operator. Note that χ(v) ∈ Tp (Σ)

since8

n · χ(v) = n ·∇v n = nα v µ∇µ nα = 0. (3.18)

The fundamental property of the Weingarten map is to be self-adjoint with

respect to the induced metric, h:

∀ (u,v) ∈ Tp (Σ)× Tp (Σ), u · χ(v) = χ(u) · v. (3.19)

Here, the scalar product is with respect to h if the vectors, u and v are in Tp(Σ)

or g if u and v are vectors9 of Tp(M). Because χ is self-adjoint, it implies that

the bilinear form defined on the tangent bundle of Σ by

K : Tp (Σ)× Tp (Σ) −→ R
(u,v) 7−→ −u · χ(v)

(3.20)

8This shows that the normal and χ(v) are orthogonal, hence, χ(v) must live in Tp (Σ).
This also means that the Weingarten map is well defined since χ : Tp (Σ)→ Tp (Σ).

9In fact, for a 3–dimensional hypersurface, the eigenvalues of the Weingarten map are the
principle curvatures (κ1, κ2, and κ3) of the hypersurface, Σ. The mean curvature of Σ with
these eigenvalues is defined as the arithmetic mean:

KMean :=
1

3
(κ1 + κ2 + κ3).

These eigenvalues are all strictly real numbers since χ is self-adjoint.
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is symmetric. This is called the second fundamental form of the hypersurface, Σ.

It is also the extrinsic curvature tensor of Σ and contains the same information

as the Weingarten map. Using the definition of χ(v) in (3.17) we obtain

∀(u,v) ∈ Tp (Σ)× Tp (Σ), K(u,v) = −u ·∇v n. (3.21)

3.1.4 Orthogonal Projector

At each point in spacetime, the tangent space of M can be decomposed as

Tp (M) = Tp (Σ)⊕ Vect(n), (3.22)

where Vect n is a 1-dimensional subspace of Tp (M) that is the span of n. The

orthogonal projector onto Σ associated with the decomposition above is the

operator
~h : Tp (M) −→ Tp (Σ)

v 7−→ v + (n · v)n.
(3.23)

One would require that the orthogonal projector acts as the identity operator

to any vectors tangent to Σ,

∀v ∈ Tp (Σ), ~h(v) = v. (3.24)

We also have
~h(n) = 0, (3.25)

as a consequence of n · n = −1. According to (3.23), ~h takes the form

hµν = δ µν + nµ nν . (3.26)

We had previously noted that the embedding, Φ of Σ in M induces the

push-forward, Tp (Σ) → Tp (M) and the pull-back, Tp ∗ (M) → Tp ∗ (Σ). The

embedding Φ, however, does not provide a mapping in the reverse direction.

The orthogonal projector seems to provide a natural reverse mapping as by

definition it maps from Tp (M) → Tp (Σ). Using the orthogonal projector,

we can construct a mapping from Tp ∗ (Σ) → Tp ∗ (M). For any linear form,

ω ∈ Tp ∗ (Σ),
~h
∗

: Tp ∗ (Σ) −→ Tp ∗ (M)

ω 7−→ ω + 〈ω,n 〉
¯
n,

(3.27)

where,
¯
n is the dual to n. One can obviously extend this notion further to

multilinear forms. As the operator ~h
∗

maps to the a cotangent space at p ∈M,

we can naturally act on the induced metric, h and find a result that will still

be in the cotangent space:

h ≡ ~h
∗
h = g +

¯
n⊗

¯
n (3.28)
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We use the same symbol as the induced metric because it is a bilinear form

on10 M and coincides with the induced metric if the two arguments are vectors

tangent to11 Σ. In component form, we write

hµν = gµν + nµ nν . (3.29)

Similarly, one could use ~h ∗ to extend the extrinsic curvature to a bilinear

form on M which is a priori defined as a bilinear form on Σ:

K := ~h
∗
K. (3.30)

This process need not be restricted to bilinear forms of course, and can be

extended to all tensors onM. In addition to extending all 3-dimensional tensors

to 4-dimensional tensors, we may use the orthogonal projection operation, ~h, to

project all tensors onM “down to” Σ (or up from Σ toM). In particular, this

also applies to covariant derivative of a tensor. Given the covariant derivative

of a tensor, DT on Σ, we can extend this to M:

DT = ~h
∗
∇T , (3.31)

or in component form,

Dρ T
α1...αk

β1...βl = hα1
µ1 . . . h

αk
µkh

ν1
β1 . . . h

νl
βl h

σ
ρ∇σT

µ1...µk
ν1...νl . (3.32)

This idea will be of great use when trying to derive the 3-dimensional Riemann

tensor from the definition of the 4-dimensional one.

3.1.5 The Relationship Between K and ∇n

Recall that the unit normal vector, n has the property, n ·n = −1. Therefore,

it would be reasonable to interpret it as a 4–velocity of some observer. We

would, therefore, also have a 4-acceleration given by12

a ≡∇nn. (3.33)

Using this information and the original definition of K we may compute an

explicit calculation for the extrinsic curvature:

K(u,v) = K(~h(u),~h(v))

= −~h(u) ·∇~h(v)n

= −(u+ (u · n)n ) · (∇v n+ (v · n)∇nn )

=∇
¯
n (u,v )− 〈v,

¯
n 〉 〈u,

¯
a 〉.

(3.34)

10Put simply, we can use the same symbol as the induced metric as it is exactly the same
as the induced metric when restricted to only acting on tangent vectors of Σ.

11~h can be thought of as the “extended” induced metric, h with the first index raised by
the metric, g.

12Note that a ∈ Tp (Σ) since n · a = 0.
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Since this is true for any pair of vectors in Tp (M), we may conclude13

∇
¯
n = −K−

¯
a⊗

¯
n, (3.35)

or in component form14,

∇µ nν = −Kµν − aµ nν . (3.36)

If one takes the trace (with respect to g) of the (3.35) we find the scalar extrinsic

curvature to be

K = −∇µn
µ. (3.37)

3.2 Geometry of Foliations

In the previous section we introduced a hypersurface, Σ embedded in a space-

time, (M, g). We shall now consider a continuous set of such hypersurfaces,

(Σ t) t∈R. The entire set forms a cover for the entire manifold, M. Such a foli-

ation requires that M is globally hyperbolic. With this restriction, the results

of this section apply generally, and in particular do not assume the Einstein

equations.

3.2.1 Definition of a Foliation

Any spacetime (M, g) that is globally hyperbolic can be foliated by a family of

spacelike hypersurfaces, Σ t. We define a foliation or slicing by supposing there

exists a scalar field, t̃ onM (which has non vanishing gradient), such that each

hypersurface is a level surface of t̃.

∀t ∈ R, Σ t := {p ∈M, t̃(p) = t}. (3.38)

This is very similar to how we defined our chosen hypersurface in the previous

section. Since the gradient of t̃ does not vanish, the Σ t are non-intersecting:

Σ t ∩ Σ t ′ = ∅ for t 6= t ′. (3.39)

Each hypersurface, Σ t is called a slice of the foliation. We will assume that

hypersurfaces to be spacelike and thus the foliation covers M:

M =
⋃
t∈R

Σ t. (3.40)

13We have made a sign choice here to be consistent with Gourgoulhon [165]. This sign choice
differs from Carroll [64] for instance. This sign choice, however, will remain consistent in the
derivations and does not change the final results, nor does it impact anything in Chapter 5.

14An alternative form of this equation is given by explicitly considering the acceleration for
an Eulerian observer. One can show that aµ = Dµ lnN , and thus, we have

∇µnν = −Kµν − (Dµ lnN)nν
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3.2.2 Foliation Kinematics

The kinematics of a foliation are determined by the 3-dimensional slices, Σ t, the

infinitesimal neighbouring slice, Σ t+dt and the 4-dimensional space that fills the

space between the slices. Misner, Thorne, and Wheeler, [168] and Alcubierre

[169] discuss physical notions that are required to give the chosen foliation

structure a sense of “rigidity”. The physical notions are:

• A notion of how to measure proper distances given by the metric, h ij.

• The lapse function which defines a notion of proper time between slices.

• The relative velocity of observers travelling normal to the slices (Eulerian

observers) and the worldlines corresponding to constant spatial coordi-

nates. This is given by the shift vector, β.

Note that we use terms such as “velocity” and “observer”. However, we do not

need these notions to interpret the results in this section, even though this is

their physical motivation.

Eulerian Observers

The idea of Eulerian observers is fundamental to the 3 + 1 splitting of space-

time. We can regard n as the 4–velocity an Eulerian observer. The worldlines

of Eulerian observers are obviously orthogonal to the hypersurfaces Σ t. One

may physically interpret this as meaning that the spacelike hypersurface, Σ t, is

locally is the surface of simultaneity of the Eulerian observers.

Lapse Function

Recall that the normal vector to Σ t, n, which is timelike and future-directed

must be collinear to the vector ~∇t. Hence we will write

n := −N ~∇t, (3.41)

with

N :=

(
−1

~∇t · ~∇t

)1/2

. (3.42)

The minus sign here is chosen so that n is future-oriented. Furthermore, the

value ofN ensures that n is a timelike unit vector with norm−1. The scalar field

N is the lapse function, coined by Wheeler in 1964 [170]. By construction we

also have N > 0, i.e., the lapse function never vanishes for a ‘regular’ foliation,

or equivalently,

¯
n = −N dt. (3.43)
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Figure 3.2: Diagram of a point in Σt and Σt+δt from [165]. The hypersurface
Σt evolves into Σt+δt by the Lie derivative along m. The point p′ ∈ Σt+δt is
determined by p ∈ Σ by the change inm over some time, δt i.e., by a displacement
m δt. The length of this displacement is the change in proper time, δτ , for an
Eulerian observer following the worldline connecting p and p′.

To properly understand the physical interpretation of the lapse function, let

us introduce the normal evolution vector:

m := Nn, (3.44)

i.e., it has the properties

m ·m = −N2 and ∇m t = mµ∇µ t = 1. (3.45)

A consequence of this last property is that the hypersurface Σ t+δt can be ob-

tained from the previous hypersurface, Σ t by the ‘small displacement’ m δt.

In particular, one can show if p corresponds to a point with the coordinate

position, x, then

t(p′) = t(x+m δt) = t(p) + δt . (3.46)

‘The last equality shows p ′ ∈ Σ t+δt. Hence we say the vector m δt ‘carries

Σ t into Σ t+δt’. This notion is perfectly described by the Lie derivative15 as

the Lie derivative is associated directly with generating diffeomorphisms be-

tween manifolds (in this case, hypersurfaces). We describe the action of the

Lie derivative of the curves and tangent vectors of Σt along m as ‘evolving

the hypersurface along the normal direction’. This justifies the name “normal

evolution vector”16.

Finally, to understand the role of the lapse function better, let us consider

two events on a worldline of some Eulerian observer. Let t be the time coordi-

nate of the event p ∈ Σ t and t + δt the ‘time’ of p ′ ∈ Σ t (refer to Figure 3.2

15For an understanding of why the Lie derivative is natural for describing this scenario, the
reader may refer to Appendix B of [64].

16Interestingly, if we consider the evolution of the 3-metric, h, by taking the Lie derivative
along m we find:

Lmhµν = −2NKµν .

This relationship means that the extrinsic curvature can also be thought of as a measure of
how the induced metric evolves in time.
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for an illustration). We note that the proper time between these two events,

δτ (measured by the Eulerian observer) is given by the metric length of the

timelike vector linking these two events:

δτ =
√
−g(m,m) δt

= N δt.
(3.47)

This justifies the name “lapse fucntion” given to N . N relates the time coor-

dinate which labels the slices of the foliation to the physical time, τ measured

by an Eulerian observer. Without the notion of observers, the lapse function

is said to determine how far consecutive slices are from each other in the slice-

orthogonal time direction at each point.

Shift Vector

To define a shift vector, β, we require the notion of coordinates on our spacetime

manifold. We introduce the natural basis, ∂µ = (∂t,∂i) of Tp (M) associated

with the coordinates, xµ. The vector which we usually refer to as the ‘time

vector’, ∂t, has the same properties as17 m. In particular, the tangent vectors

on Tp (Σt) can evolve along either ∂t or m and the difference is given by a shift

in reference coordinates. The two vectors only coincide if the spatial coordinates

xi are such that the xi = constant lines are orthogonal to Σ t. The difference

between ∂t and m is was also coined the shift vector by Wheeler in 1964 [170]

and is denoted by β:

β := ∂t −m = ∂t −Nn. (3.48)

For an illustration of this difference, one may refer to Figure 3.3. Note that

the shift vector is tangent to the hypersurface as n · β = 0. One can think of

the shift vector as generating spatial diffeomorphisms relating points between

successive slices [3].

3.3 3+1 Splitting of the Metric

The components of the metric tensor, g, onM with respect to the coordinates

xµ are defined as

g = gµν dxµ ⊗ dxν . (3.49)

We can therefore compute each component by using

gµν = g (∂µ,∂ν). (3.50)

Using (3.48) we find

g00 = g(∂t,∂t) = ∂t · ∂t = −N2 + βi β
i. (3.51)

17This is because 〈dt,∂t 〉 = 1 which was also the case for m.
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Figure 3.3: Illustration of the shift vector, β from [165]. The coordinates (xi) on
Σt define the ‘time vector’, ∂t by the xi = constant lines. The shift vector is the
difference between the time vector and m, therefore, the difference between the
spacetime coordinates xα, and the xi = constant lines.

Note that we have used only Latin indices for the scalar product of the shift

vector as it is tangent to the constant time hypersurfaces, meaning there is no

time component. Similarly we have

g0i = (m+ β) · ∂i = βi, (3.52)

since m · ∂i = 0 by definition. Finally, the spatial part of the metric must be

the induced metric,

gij = hij. (3.53)

Collecting all of these components together we have

gµν =

(
−N2 + βk β

k βj
βi hij

)
(3.54)

or,

ds2 = gµν dxµ dxν = −N2 dt2 + hij (dxi + β idt)(dxj + β jdt). (3.55)

The inverse metric in matrix form is18

g µν =
1

N2

(
−1 β j

β i N 2 hij − β i β j

)
. (3.56)

3.4 3+1 Decomposition of the Einstein Equa-

tions

In the numerical relativity literature, the 3 + 1 Einstein equations are often

referred to as the “ADM equations” named after Arnowitt, Deser, and Misner

18One may notice that while gij = hij , g
ij 6= h ij in general. They are, however, equal in

the case of vanishing shift.
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[161]. For this reason, the splitting of spacetime we have discussed is often

referred to as the “ADM gauge”. The major contribution from ADM, however,

was the Hamiltonian formulation of general relativity. Moreover, as stressed by

York [171], the dynamical equations in the work of ADM involve projections

of the Einstein tensor. Therefore, ADM use the Einstein equations in the form

given by (2.5), whereas, other dynamical equations used — before ADM —

involved the Einstein equation in the form (2.43).

Thus far we have only been interested in how the geometry of spacetime

can be split into hypersurfaces, Σt that are ‘foliated’ along level surfaces of a

of scalar field which we relate to some notion of time. We have also discussed

how quantities that live on the tangent (and cotangent) planes of Σt and M
can be related. We will now discuss the Einstein equations and how these can

be decomposed in general. We will keep this decomposition general and will

not discuss cosmological ideas until Chapter 5.

3.4.1 Gauss–Codazzi Equations

The first part of the Einstein equations we investigate is the Riemann tensor.

We discussed the fact the Riemann tensor, Ricci tensor and Ricci scalar are

intrinsic properties of a manifold and are inherently related to the notion of

gravity. When using the 3 + 1 formalism it is often useful to know the intrinsic

curvature of the embedded hypersurface and understand its evolution.

Gauss’ Equation

Let us consider the 3-dimensional Ricci identity (3.15). The 4-dimensional

version of this is is

(DµDν −Dν Dµ) vγ = R γ
κµν v

κ. (3.57)

This can be rewritten in terms of the ordinary 4-dimensional covariant derivative

by using (3.32). We first write

DµDν v
γ = Dµ(Dν v

γ) = hαµ h
β
ν h

γ
ρ∇α (Dβ v

ρ), (3.58)

using (3.32) again, we obtain

DµDν v
γ = Dµ(Dν v

γ) = hαµ h
β
ν h

γ
ρ∇α (hσβ h

ρ
λ∇σ v

λ). (3.59)

By using ∇µ h
σ
ρ = ∇µ (δ σρ + nσ nρ) = nρ∇µ n

σ + nσ∇µ nρ and the fact that

hµν nµ = 0 we find

DµDν v
γ = −Kµν hγλ nσ∇σ v

λ −K γ
µKνλ vλ + hαµ h

σ
ν h

γ
λ∇α∇σ v

λ. (3.60)
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Swapping the indices on the 3-dimensional covariant derivatives and the corre-

sponding ones on the right-hand side, we can rewrite (3.57) as

(DµDν −Dν Dµ) vγ = (K γ
ν Kµλ −K γ

µKνλ) vλ

+ hαµ h
σ
ν h

γ
λ (∇α∇σ −∇σ∇α) v λ.

(3.61)

This can be simplified to19

hαµ h
β
ν h

γ
ρ h

σ
λR

ρ
σαβ = R γ

λµν +K γ
µKλν −K γ

ν Kµλ, (3.62)

which is Gauss’ equation.

If we further contract on γ and µ and use hµα h
α
ρ = δ µρ + nµ nρ then take

the trace with respect to the induced metric we obtain the scalar Gauss equation

R = R + 2Rµν n
µ nν +K2 −Kij Kij, (3.63)

where K = Kµµ and Kij Kij = Kµν Kµν .

Codazzi Equation

The Codazzi equation can be manipulated into the momentum constraint equa-

tion and is just another decomposition of the Riemann tensor. We begin by

contracting the Riemann tensor with the normal vector:

R γ
µαβ n

µ = (∇α∇β −∇β∇α)n γ, (3.64)

using the projection tensor to project the tensor quantities onto Σt we find,

hµα h
ν
β h

γ
ρR

ρ
σµν n

ν = hµα h
ν
β h

γ
ρ (∇µ∇ν −∇ν∇µ)nµ (3.65)

By using relations we used to derive Gauss’ equation one can obtain the Codazzi

equation,

h γρ n
σ hµα h

ν
β R

ρ
σµν = Dβ K γ

α −DαK γ
β. (3.66)

Contracting on γ and α we obtain the contracted Codazzi equation,

h γα n
ν Rµν = DαK −DµK µ

α. (3.67)

Last non-trivial projection of Riemann Tensor

Thus far we have found Gauss’ equation which is a full projection of the Riemann

tensor and the Codazzi equation by projecting three times with h and once

along n. Unlike these two projections which involve h, K, R, and DK the

19Note that usually the normal vector dual is of the form nµ = (−N, 0, 0, 0) and therefore
for computational purposes it can often be useful to use Rµν nµ nν , allowing us to deal with
only one term, N2R 00. This fact in general should also be used for the extrinsic curvature,
reducing the computation time.
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final projection will also involve derivatives normal to the hypersurfaces and

not only on the tangent planes. This is important as we then have a notion of

a dynamical equation — one the evolves in ‘time’.

We begin with

hαµ n
σh νβ (∇ν∇σ −∇σ∇ν)n

µ = hαµ n
σh νβ R

µ
ρνσ n

ρ, (3.68)

by use of20 K µ
σn

σ = 0, nσ∇ν nσ = 0, aν = Dν lnN , and hνβnν = 0 we find

hαµn
σh νβ R

µ
ρνσ n

ρ = −KασK σ
β + hµα h

ν
β n

σ∇σKµν
+DβDα lnN +Dα lnNDβ lnN.

By use of the chain rule, we find

hαµn
σh νβ R

µ
ρνσ n

ρ = −KασK σ
β + hµα h

ν
β n

σ∇σKµν +
1

N
DβDαN. (3.69)

Finally, we can relate hµα h
ν
β n

σ∇σKµν to Lm. First, let us recall what this

Lie derivative expands to

LmKαβ = mµ∇µKαβ +Kµβ∇αm
µ +Kαµ∇βm

µ. (3.70)

Projecting this down onto Σt and by use of ∇µmν = ∇µ(Nnν) we find

LmKαβ = N hµα h
ν
βn

σ∇σ Kµν − 2NKαµK µ
β. (3.71)

Therefore, we can write our original decomposition as

hαµn
σh νβ R

µ
ρνσ n

ρ =
1

N
LmKαβ +

1

N
DαDβ N +KαµK µ

β. (3.72)

One can further use Gauss’ equation to rewrite the above expression in terms

of the spacetime Ricci tensor instead of the Riemann tensor, which is useful for

the Einstein equations:

hµα h
ν
βRµν = − 1

N
LmKαβ −

1

N
DαDβ N +Rαβ +KKαβ − 2KαµK µ

β. (3.73)

3.4.2 3+1 Decomposition of the Stress-Energy Tensor

In addition to a 3 + 1 split of the geometric objects, it is natural to decompose

tensors such as the stress-energy tensor, especially when discussing the Einstein

equations. It does not make sense to discuss a stress-energy tensor without a

source for this stress-energy. We can, therefore, think of a fluid as we do in

cosmology, though we will not discuss general fluid variables until Chapter 5

20We have not derived the particular equality of aν here. One may, however find this
derivation in many texts such as Gourgoulhon [165] (equation 3.17).
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The (0, 0) component of the stress-energy tensor is defined to be the matter

energy density measured by an Eulerian observer (i.e., in the normal frames).

We write this in a 3+1 decomposition as

E := T (n,n), (3.74)

or in component form,

E = Tµν n
µn ν . (3.75)

This follows from the fact that n is the 4-velocity for an Eulerian observer.

Furthermore, if we write this equation as T µνnµnν then one can clearly see that

E = N2 T 00.

Similarly, from the definition of the stress-energy tensor we also have the

matter momentum density given by the (0, i) components. In a 3 + 1 split we

write this as

J := −T (n,~h(.)), (3.76)

and in component form we can write

Jα = −Tµν n µh να, (3.77)

Note due to the projector, ~h, we find J is tangent to Σt.

Finally, the spatial components of the stress-energy tensor correspond to the

matter stress tensor measured by an Eulerian observer. We express this as

S := ~h
∗
T , (3.78)

and in component form:

Sαβ = Tµν h
µ
α h

ν
β. (3.79)

Just as was the case for the momentum, (3.76), S is a tensor field tangent to

Σt. The trace of the stress tensor is

S := h ijSij = g µνSµν . (3.80)

With the parts of the stress-energy tensor we can reconstruct the tensor in

the following way:

T = S +
¯
n⊗ J + J ⊗

¯
n+ E

¯
n⊗

¯
n. (3.81)

We can take the trace of this equation with respect to g and find

T = S + 2 〈p,n〉+ E 〈
¯
n,n〉

= S − E,
(3.82)

which follows from the fact that p and n are orthogonal.
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3.4.3 Projection of the Einstein Equations and Dynam-
ical Equations

With the various projections of the Riemann tensor and stress-energy tensor,

we can project the Einstein equations onto Σt. There are three possibilities

for projections and a fourth equation which is not a projection of the Einstein

equations but rather a dynamical equation.

(1) Full projection onto Σt

A full projection implies that we apply the operator ~h
∗

to the Einstein equations.

In particular we will use the Einstein equations in the form (2.43):

~h
∗
R = 8πG

(
~h
∗
T − 1

2
T~h
∗
g

)
. (3.83)

The left-hand side of this is given by (3.73). For the right-hand side, by defini-

tion we have ~h
∗
T = S and T = S−E from (3.82). Therefore, we find the first

dynamical equation to be

LmKαβ = −DαDβ N +N
(
Rαβ +KKαβ − 2KαµK µ

β

+ 4πG[ (S − E)hαβ − 2Sαβ ]
)
. (3.84)

Note that a fundamental property of the Lie derivative along m is that it is a

map T n (Σt) −→ T n (Σt). Furthermore, we know the quantities on the right-

hand side to be tangent to Σt from previous discussions. Therefore, we can

write (3.84) as

LmKij = −DiDj N +N
(
Rij +KKij − 2KikK k

j

+ 4πG[ (S − E)hij − 2Sij ]
)
, (3.85)

without loss of generality21.

Note that we do not include the general case where the shift vector is non-

zero. In fact, we can rewrite the left-hand side of this equation as we have

m = ∂t − β. Because the Lie derivative is linear by definition we have

(
∂

∂t
− Lβ

)
Kij = −DiDj N +N

(
Rij +KKij − 2KikK k

j

+ 4πG [ (S − E)hij − 2Sij ]
)
. (3.86)

21A cosmological constant can be included on the right-hand side of the (3.86). This is
done by adding −NΛhij .
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(2) Full Projection Perpendicular to Σt

This projection amounts to contracting the Einstein equations in the form (2.5)

with the normal vector. Since g(n, n) = −1 we have

R(n, n) +
1

4
R = 8πGT (n, n). (3.87)

By use of the scalar Gauss equation (3.63) and T (n, n) = E we obtain22

R+K2 −KijK ij = 16πGE. (3.88)

This equation is known as the Hamiltonian constraint.

(3) Mixed Projection

We project the Einstein equations in the form (2.5) once onto Σt and once along

the normal vector:

R(n,~h(.))− 1

2
R g(n,~h(.)) = 8πGT (n,~h(.)). (3.89)

Using the contracted Codazzi equation and the momentum projection for the

stress-energy tensor we obtain

Dj K j
i −DiK = 8πGJi. (3.90)

This equation is known as the momentum constraint.

(4) Final Dynamical Equation

We wish to have a set of dynamical equations that one can evolve forward

in time. It turns out that the final equation that is usually considered is the

evolution of the induced metric, ∂thij. In a foliation that has vanishing shift

vector, we simply have

∂t hij = −2NKij. (3.91)

However, in the case that we do not have vanishing shift, we have

∂t hij = −2NKij +Dj βi +Di βj (3.92)

Dynamics Discussion

4The Cauchy problem in general relativity involves specifying an initial hyper-

surface, Σ0, and letting the initial data evolve in time. The initial data we refer

to is the induced metric and the extrinsic curvature. We refer to the set of

22A cosmological constant can be added to the right-hand side of this equation by adding
2Λ.
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equations (3.86) – (3.92) as the Einstein system, and as can be seen equations

(3.85) and (3.92) describe the time evolution of the initial data. Equations

(3.88) and (3.90) in the Einstein system are, therefore, suitably named the con-

straint equations. This is because we require the initial data, (h,K) to obey

the constraint equations as they evolve in time. In fact, because of the con-

tracted Bianchi identity, one can show that the constraints are preserved by the

dynamical evolution equations [165].

It should also be noted that the Einstein system does not contain time

derivatives of the lapse function, N , nor the shift vector, β. Consequently, N

and β are not dynamic variables. This is related to the fact that they are are

only associated with the choice of coordinates, (t, xi). The general covariance

of general relativity implies that we are free to choose the lapse and shift freely

without changing the physical dynamics. However, an arbitrary choice of lapse

and shift can lead to coordinate singularities.

3.5 1+3 formalism

In this section we will discuss a timelike congruence of curves that are the

basic structure of the 1 + 3 formalism as opposed to spacelike hypersurfaces of

the 3 + 1 formalism. Most of them formalism developed for the 3+1 splitting

remains the same in the 1+3 formalism except, strictly speaking, we project

onto local hypersurfaces in the neighbourhood of each timelike curve. This is

because, in general we will have vorticity, meaning the timelike normals are not

hypersurface forming.

Instead of considering the normal vector to a given hypersurface, we will

consider the 4-velocity which is defined to be a tangent vector field to the

timelike congruence. In general our 4-velocity will not be collinear to n —

which was the case considered in the 3+1 split we discussed (in fact, in the

previous chapter n = u). We will follow the 1+3 formalism as introduced

by Carroll and Poisson [64, 172], except we will not assume that the timelike

congruence is a geodesic congruence. (See Roy [173] for an in depth introduction

to the 1+3 formalism.)

As before, we have a metric on the spatial frames that is related to the

projection tensor. The projection tensor can be thought of as projecting onto a

subspace of Tp (M) which are ‘local hypersurfaces’ with u as the normal vector.

The induced metric is this case is

b = g +
¯
u⊗

¯
u, (3.93)

or in coordinate form,

bµν = gµν + uµuν . (3.94)

One can interpret the timelike congruence as defining the trajectory of fluid

particles and thus, the collection defines a fluid. With this interpretation, one
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can think of the projection tensor as projecting onto the ‘fluid rest frames’. In

this sense, we can define a form of Gauss’ equation (3.62) as well by simply

replacing n with u. However, one should be careful as in the case of nonzero

vorticity there is no global hypersurface, and thus the intrinsic curvature does

not hold the same physical intuition.

Furthermore, we can define the expansion of such a fluid. The expansion

can be thought of as the neighbouring fluid worldlines deviating. Therefore, a

natural way to define the expansion is by taking the covariant derivative of the

4-velocity:

Θµν := ∇ν uµ + uµaν , (3.95)

where aµ = uα∇αuµ. One may observe the similarity between the expression

for the expansion tensor and the extrinsic curvature. The two are not the same,

however, because u is not necessarily collinear to n — this is usually expressed

as “there is a tilt between u and n. The idea of ‘tilts’ will be explored in

Chapter 5. In the case that the 4-velocity is collinear, i.e., there is no ‘tilt’ we

have,

Θµν = −Kµν . (3.96)

We also define the expansion scalar,

Θ := ∇αu
α, (3.97)

which describes the change in volume of a sphere centred on one of the timelike

worldlines. In the context of a spatially isotropic and homogeneous cosmology,

we relate the Hubble parameter23 to the expansion scalar by

H =
1

3
Θ. (3.98)

One can further define the shear tensor,

σµν := bαµb
β
ν∇(αuβ ) −

1

3
Θ bµν

= ∇ (µ uν ) + u (µ aν ) −
1

3
Θ bµν ,

(3.99)

which describes the distortion in the shape of the collection of test particles,

from a sphere to an ellipsoid. The symmetric part is taken since the distortion

will be the same in (for example) the x-direction and the −x-direction. For a

geodesic congruence, the acceleration term would vanish. Finally, we define the

vorticity tensor,
ωµν := bαµb

β
ν∇[αuβ ]

= ∇ [µ uν ] + u [µ aν ]

= ∂ [µ uν ] + u [µ aν ] ,

(3.100)

23Depending on if the expansion scalar depends on time or not, this could be the Hubble
constant or the Hubble parameter. Here we will assume that the expansion scalar is varying.
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which can be thought of as describing rotations and is antisymmetric. A fluid

with zero vorticity is said to be irrotational, in this case aµ = 0 and the con-

gruence is hypersurface forming

With all of the above decompositions of the expansion tensor, we can rewrite

the expansion tensor as

Θµν =
1

3
Θ bµν + σµν + ωµν . (3.101)

The evolution of the expansion of these timelike curves is described by the

covariant derivative of the expansion tensor along the path, D/dτ = uµ∇µ.

We compute this for the expansion tensor to find:

DΘµν

dτ
= uα∇α∇ν uµ

= uα∇ν∇αuµ − uαR ρ
µαν uρ

= ∇ν(u
α∇α uµ)− (∇ν u

α)(∇α uµ)−R ρµαν u
αu ρ

= ∇ν aµ −Θα
ν Θµα −R ναµρ u

αuρ.

(3.102)

Here we have used the Ricci identity for covectors, the Leibniz rule, and per-

muted the indices on the Riemann tensor. Note that aµ = uα∇α uµ and if the

congruence of curves are geodesics this term vanishes. Taking the trace of the

above equation with respect to g we find

dΘ

dτ
= −1

3
Θ2 − σµν σ µν + ωµν ω

µν −Rµν u
µu ν +∇µ a

µ. (3.103)

This equation is known as Raychaudhuri’s equation and is a fundamental

result that describes the motion of neighbouring worldlines. Since the shear

and vorticity are purely spatial we note that ωµν ω
µν ≥ 0 and σµν σ

µν ≥ 0 with

equality only holding if the tensors themselves are zero. There are various parts

of Raychaudhuri’s equation which can be thought of as promoting or opposing

(re)-collapse of the worldlines. Collapse is opposed by nonzero vorticity and a

positive divergence of the acceleration. It is promoted by nonzero shearing and

a positive trace of the Ricci tensor, which is guaranteed by the strong energy

condition.

In the case of an irrotational geodesic congruence Raychaudhuri’s equation

becomes
dΘ

dτ
= −1

3
Θ2 − σµν σ µν −Rµν u

µu ν .

Consider geodesic congruences for matter obeying the timelike convergence con-

dition Rµν u
µu ν ≥ 0, or equivalently the strong energy condition on the stress-

energy tensor, Tµν u
µuν ≥ −(1/2)T (when Λ = 0). Under such conditions, all

of the terms on the right-hand side are strictly positive, we see that if Θ < 0

(i.e., the congruence is converging initially) the congruence will converge more

rapidly as time passes. If, on the other hand, Θ > 0 originally (congruence is
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expanding) then we find that the congruence expansion will decrease as time

passes. This is exactly what one expects from Newtonian gravity — that grav-

ity is an “attractive” force. Conversely, fluids which violate the strong energy

condition give rise to the possibility of a repulsive “levity”.
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Chapter 4

Perturbation Theory

The standard model of cosmology, ΛCDM is constructed on the assumption

of the average expansion being that of an ideal spatially isotropic and homo-

geneous solution of Einstein’s equations. The average expansion is observed

to be isotropic in some statistical sense when averaged on a “suitably” large

scale which we call the statistical scale of homogeneity (SSH). The SSH has

been estimated to be around 70–120h−1Mpc [38] based on the 2–point galaxy

correlation function. On scales smaller than this, observations indicate that the

Universe is inhomogeneous with a hierarchy of scales ranging from planetesimals

to galaxy clusters. The FLRW metric is not a good approximation on the scale

of stellar systems or the neighbourhood of supermassive black holes. However,

in the standard model it is implicitly assumed that cosmological observations

made at any point with weak local gravitational fields can be exactly reduced

to those of a FLRW model plus a local Lorentz boost. Once the local boost is

removed from our CMB map, we observe temperature fluctuations associated

with the density fluctuations which seeded the first structures to grow after

recombination.

Understanding the primordial fluctuations/perturbations and how they grew

over time to form the observed Universe today is one of the many goals of

perturbation theory in cosmology, which was initially developed by Lifshitz

[174]. Perturbation theory is an attempt to model a inhomogeneous Universe

that is very close to homogeneous, i.e., very close to FLRW. Standard linear

perturbation theory assumes a background cosmology which is an exact solution

to the Einstein equations. In most cases, the background is FLRW, we then use

the perturbed Einstein equations to describe how these perturbations evolve.

For an introduction to linear perturbation theory we will assume the back-

ground geometry to be FLRW with1 k = 0 and denote this with a bar above the

metric tensor, ḡµν on a background manifold, M̄. We will also use conformal

1This is because the CMB suggests that the Universe was close to flat at the epoch of last
scattering. Thus, if we wish to model the anisotropies of the CMB, we often perturb about
a spatially flat Universe.
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time and write the metric as:

ḡµν dxµdxν = a2(η)(−dη2 + δijdx
idxj). (4.1)

We often refer to the spacetime containing inhomogeneities as the physical

spacetime or manifold, M. This manifold is different to the background man-

ifold with the metric gµν . The perturbations are, therefore, the difference be-

tween the physical and background spacetime, and are defined as:

δgµν(x) = gµν(x)− ḡµν(x). (4.2)

Note that we have specified a spacetime coordinate, x. This is an ill-posed state-

ment because gµν and ḡµν are tensors defined on different manifolds, and x is a

coordinate defined through a different chart(s). Embedding these two distinct

manifolds in one larger manifold would not solve the problem as evaluating the

difference between two tensors at distinct points is poorly defined.

Therefore, a mapping which can map points of the background manifold

to the physical manifold is required — for this purpose, we define a gauge

[175–177]. A gauge is a one-to-one correspondence from M̄ → M and can

be interpreted as a point-identification map which is generally arbitrary. If a

coordinate system is introduced on the background manifold, M̄, then the gauge

caries it to the physical manifold,M. A change in the map from M̄ →M, when

keeping the background coordinates fixed is known as a gauge transformation.

A gauge transformation introduces a coordinate transformation in the physical

manifold, along with changes in an event in M which is associated with an

event in M̄. Therefore, gauge transformations are different from coordinate

transformations which are only a relabelling of events.

In general, while one can always perturb a given background spacetime, be-

ing able to recover a smooth metric from a given perturbed spacetime, however,

is not a uniquely defined process. This can be problematic as one can always

choose a different background and arrive at different perturbation values. Se-

lecting an unperturbed spacetime from a given perturbed one is known as a

gauge choice. Determining the best gauge is one version of the fitting problem

— one that has no unique answer. The word “gauge”, however, is more general

and there have been tensions in the community because of these definitions.

This, and the gauge problem will be discussed further in section 4.5.

We will now introduce the mechanics of linear perturbation theory and write

perturbed Einstein equations. In standard perturbation theory, we have a con-

dition of the form [65, 83, 174]:

|ḡµν | � |δgµν | ∼ ε, (4.3)

meaning, the perturbations are small, (characterised by an order of smallness,

ε). We refer to such an expansion as a “weak-field” expansion2. We neglect

2Weak field here refers to expansions in cosmology when a geometry of space-time is close
to a known exact solution — usually FLRW.
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terms where perturbations are multiplied together, resulting in O(ε2) terms.

The perturbation to the inverse of a general matrix, A is δA−1 = −A−1(δA)A−1.

Therefore, the inverse of the metric perturbation is [65] (in a coordinate basis)

δgµν = −ḡ µρδgρσḡ νσ. (4.4)

The components, therefore, will be:

δg00 = − 1

a4
δg00,

δg0i =
1

a4
δikδg0k =

1

a4
δg0i,

δgij = − 1

a4
δikδgkmδ

mj = − 1

a4
δgij.

(4.5)

Note that there is a negative sign in involved when computing the inverse per-

turbed metric. Finally, we may write the general ‘full’ line element as

gµν dxµdxν = a2(η) (−dη2 + δij dxi dxj) + a2(η) δgµν dxµdxν . (4.6)

4.1 Perturbed Geometry Calculations

We are now in a position to compute the Christoffel symbols in a perturbed

FLRW spacetime. Using linear perturbation theory and neglecting higher order

terms, the full Christoffel symbols are:

Γµνρ =
1

2
ḡ µσ(ḡσν, ρ + ḡσρ, ν − ḡνρ, σ) +

1

2
ḡ µσ(δgσν, ρ + δgσρ, ν − δgνρ, σ)

+
1

2
δgµσ(ḡσν, ρ + ḡσρ, ν − ḡνρ, σ) +O(δg2),

(4.7)

in particular, the perturbed part of the Christoffel symbols can be written as:

δΓµνρ =
1

2
ḡ µσ(δgσν, ρ + δgσρ, ν − δgνρ, σ − 2δgσαΓ̄ανρ). (4.8)

To use this equality, we first need the background Christoffel symbols. The only

non-vanishing Christoffel symbols in the k = 0 FLRW spacetime are:

Γ̄0
00 =

a′

a
,

Γ̄0
ij =

a′

a
δij,

Γ̄i0j =
a′

a
δij.

(4.9)
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Therefore, we can now calculate the perturbed FLRW Christoffel symbols.

These are found to be:

δΓ0
00 = −1

2
δg′00 ,

δΓ0
i0 = −1

2
(δg00, i − 2Hδg0i) ,

δΓii0 = δg′i0 +Hδgi0 −
1

2
δg00, i ,

δΓ0
ij = −1

2
(δg0i, j + δg0j, i − δg′ij − 2Hδgij − 2Hδijδg00) ,

δΓij0 =
1

2
(δg′ij + δgi0, j − δg0j, i) ,

δΓij k =
1

2
(δgij, k + δgik, j − δgjk, i − 2Hδjkδgi0) ,

(4.10)

recalling that primes represent derivatives with respect to conformal time, η and

H is the Hubble parameter with respect to conformal time. One may note that

indices do not always match in level. However, we have used the assumption

that 3-tensors are raised and lowered by δij, for example, δgi0 = δgi0.

In order to compute the linearised Einstein equations, we will use the trace-

reversed form, (2.43). This form of the field equations is used because one does

not have to compute the Ricci scalar, and therefore, is economical. Note that

some authors, such as Weinberg [65] choose to use the cosmic time coordinate,

t instead of conformal time. To convert between the two, one can simply use

the tensor transformation law:

Aµν = Ãρσ
∂x̃ρ

∂xµ
∂x̃σ

∂xν
, (4.11)

where tensors that use cosmic time are represented with tildes. Because chang-

ing from conformal time to cosmic time does not affect the spatial coordinates,

we have3

A00 = a2Ã00 , A0i = aÃ0i , Aij = Ãij. (4.12)

This rule will hold for perturbed quantities as well.

The Ricci tensor in a coordinate basis is:

Rµν = ∂ρΓ
ρ
µν − ∂νΓρµρ + ΓρµνΓ

σ
ρσ − ΓρµσΓσνρ. (4.13)

Substituting the full Christoffel symbol,

Γλµν = Γ̄λµν + δΓλµν , (4.14)

into the definition of the Ricci tensor, one obtains:

Rµν = ∂ρΓ̄
ρ
µν − ∂νΓ̄ρµρ + Γ̄ρµνΓ̄

σ
ρσ − Γ̄ρµσΓ̄σνρ

+ ∂ρδΓ
ρ
µν − ∂νδΓρµρ + Γ̄ρµνδΓ

σ
ρσ + Γ̄σρσδΓ

ρ
µν

− Γ̄ρµσδΓ
σ
νρ − Γ̄σνρδΓ

ρ
µσ.

(4.15)

3If there are derivatives with respect to time in the tensors, one must also convert these
by the chain rule.
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The first term in this expansion is the background Ricci tensor, and we label

the second and third line as δRµν to linear order. Therefore, we write (4.15) as

Rµν = R̄µν + δRµν , (4.16)

with
δRµν = + ∂ρδΓ

ρ
µν − ∂νδΓρµρ + Γ̄ρµνδΓ

σ
ρσ + Γ̄σρσδΓ

ρ
µν

− Γ̄ρµσδΓ
σ
νρ − Γ̄σνρδΓ

ρ
µσ.

(4.17)

Using this equality, the components of the Ricci tensor are found to be:

δR00 =− 1

2
∇2δg00 −

3

2
H∂ηδg00 + ∂k∂ηδg

k
0

+H∂kδgk0 −
1

2
(∂2
ηδg

k
k +H∂ηδgkk),

(4.18)

δR0i =−H∂iδg00 −
1

2
(∇2δg0i − ∂i∂kδgk0)

+
∂2

η a

a
δg0i +H2δg0i −

1

2
(∂i∂ηδg

k
k − ∂k∂ηδgki),

(4.19)

δRij =
1

2
∂i∂jδg00 +

1

2
H∂ηδg00δij +

(
H2 +

∂2
ηa

a

)
δg00δij

− 1

2
(∇2δgij − ∂k∂jδgki − ∂k∂iδgkj + ∂i∂jδg

k
k

+
1

2
∂2

ηδgij +H∂ηδgij +

(
H2 +

∂2
ηa

a

)
δgij

+
1

2
H∂ηδgkkδij −H∂kδgk0δij −

1

2
(∂j∂ηδg0i + ∂i∂ηδg0j)

−H(∂jδg0i + ∂iδg0j),

(4.20)

where ∇2 = δij∂i∂j is the spatial Laplacian in comoving coordinates. Note if

one were to use the original form of the field equations, (2.5), then we require

the Einstein tensor. The Einstein tensor in linear perturbation theory is:

Gµν = Ḡµν + δGµν , (4.21)

where

δGµν = δRµν −
1

2
δ (gµνR) + δΛ

= δRµν −
1

2
(Rδgµν + gµν δR) + 0,

(4.22)

therefore, the perturbed Einstein tensor depends on both gµν and δgµν . This

information will be needed if one wishes to compute the perturbed Friedmann

equations, as both forms of the Einstein equations are used.
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4.2 Perturbed Stress-Energy Tensor

The right-hand side of the field equations in the trace reversed form can be

labelled as a ‘source’ tensor,

Sµν := Tµν −
1

2
gµνg

ρσTρσ, (4.23)

the perturbed source tensor is,

δSµν = δ(T̄µν + δTµν)−
1

2
δ
(

(ḡµν + δgµν)(ḡ
ρσ + δgρσ)(T̄ρσ + δTρσ)

)
= δTµν −

1

2
ḡµνδT

ρ
ρ −

1

2
δgµνT̄

ρ
ρ.

(4.24)

One can determine the trace of the background stress-energy tensor in terms

of the scale factor and its derivatives (with respect to conformal time). To do

this, we first find the trace in terms of the background pressure and background

energy density:

T̄ ρρ = ḡ µρT̄µρ = ḡ 00T̄00 + ḡ 11T̄11 + ḡ 22T̄22 + ḡ 33T̄33

= 3p̄− ρ̄.
(4.25)

One could also simply take the trace of (2.42). We can also use the first Fried-

mann equation (2.48) (in conformal time) to obtain an equation for the back-

ground energy density:

ρ̄ =
3

8πGa2

(
a′ 2

a2
− Λa2

3

)
. (4.26)

Using the above and the second Friedmann equation with respect to conformal

time (2.49) we obtain an equation for the background pressure,

p̄ = − 1

8πG

(
− Λ +

2a′′

a
− a′ 2

a2

)
. (4.27)

Using (4.26) and (4.27) we can rewrite the trace of the background stress-energy

tensor as4:

T̄ ρρ = − 3

8πGa2

(
2
a′′

a
− 4a2

3
Λ

)
. (4.28)

With the trace of the background stress-energy tensor, we can calculate the

perturbed source tensor:

δS00 = δT00 +
1

2
δT ρρ −

[
− 3

16πGa2

(
2
a′′

a
− 4a2

3
Λ

)]
δg00 ,

δS0i = δT0i −

[
− 3

16πGa2

(
2
a′′

a
− 4a2

3
Λ

)]
δg0i ,

δSij = δTij −
a2

2
δijδT

ρ
ρ −

[
− 3

16πGa2

(
2
a′′

a
− 4a2

3
Λ

)]
δgij .

(4.29)

4One could alternatively take the trace of the background field equations. However, having
these expressions for background density and pressure is useful in general.
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To proceed further, we want to be able to write the remaining parts of δSµν
in terms of the perturbed FLRW metric. Thus, we must write δTµν in terms of

the metric perturbations. Let us begin with the standard FLRW stress-energy

tensor and perturb it:

δTµν = δT̄µν = δ (p̄ḡµν + (ρ̄+ p̄)ūµūν)

= δp ḡµν + p̄ δgµν + ūµūν δρ+ ūµūν δp

+ ūµ(ρ̄+ p̄) δuν + ūν(ρ̄+ p̄) δuµ.

(4.30)

To determine the form of δuµ, we will choose the space part, i.e., δui to be

a spatial velocity vector, vi. For δu0 let us use the normalisation condition,

ḡµν ūµūν = −1, (4.31)

where the background 4-velocity components (in conformal time) are

ūµ = −a(η)(1, 0, 0, 0), and ūµ =
1

a(η)
(1, 0, 0, 0). (4.32)

We now perturb (4.31) to obtain:

0 = δ(ḡµν ūµūν)

= (ūµūν) δgµν + (ḡµν ūµ)δuν + (ḡµν ūν)δuµ

= δg00 − 2aδu0

=⇒ δu0 =
δg00

2a
,

(4.33)

where we have used the fact that the only non zero component of the background

4-velocity is the time component, u0. Because the normalisation condition (4.31)

can be written with the indices inverted, we also have δu0 = δg00/2a
3.

Finally, we need to calculate ui. To do this, we start with the covariant (or

1-form) form of the full 4-velocity and manipulate it is as follows:

ūµ + δuµ = uµ = gµνu
ν = gµν(ū

ν + δuν)

= (ḡµν + δgµν)(ū
ν + δuν)

= ḡµν ū
ν + ḡµνδu

ν + δgµν ū
ν (expanded to first order)

=⇒ δuµ = ḡµνδu
ν + δgµν ū

ν (equating order by order)

∴ δuµ = ḡ µνδuν − ḡ µσδgσν ūν .
(4.34)

This shows that the vector form of the 4-velocity has an extra part, δgµν ū
ν .

This stems from the fact that ḡ µν raises indices on background quantities and

gµν raises indices on full quantities (those in the physical manifold,M) and δuµ
is neither. Therefore, the perturbed 4-velocity is:

uµ = a

(
− 1 +

δg00

2a2
, vi

)
, and uµ =

1

a

(
1 +

δg00

2a2
, vi − 1

a2
δgi0

)
, (4.35)
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with (4.30)–(4.35) we can now calculate the components of the perturbed stress-

energy tensor, they are:

δT00 = −ρ̄δg00 + a2δρ

δT0i = p̄ δg0i − a2(ρ̄+ p̄) vi

δTij = p̄ δgij + a2δij δp.

(4.36)

Finally we need the trace of the perturbed stress-energy tensor. We first need

an equation that can relate the perturbed mixed index stress-energy tensor to

what we already have. This can be found as follows:

T µν = T̄ µν + δT µν = gµσTσν

= (ḡ µσ + δgµσ)(T̄σν + δTσν)

= T̄ µν + ḡ µσδTσν + δgµσT̄σν

∴ δT µν = ḡ µσδTσν + δgµσT̄σν .

(4.37)

Using this, we can determine all of the mixed index components of the perturbed

stress-energy tensor, these are:

δT 0
0 = −δρ,

δT 0
i = (ρ̄+ p̄)vi,

δT ij = δp δij,

δT ρρ = 3 δp− δρ.

(4.38)

4.3 Perturbed Einstein Field Equations

We can now write expressions for the field equations in terms of the perturbed

metric and perturbed fluid variables. For µ = ν = 0 we have

− 1

2
∇2δg00 −

3

2
H∂ηδg00 + ∂k∂ηδg

k
0 +H∂kδgk0 −

1

2
(∂2
ηδg

k
k +H∂ηδgkk)

− 3

16πGa2

(
2
a′′

a
− 4a2

3
Λ

)
δg00 + ρ̄δg00 = δρ+

1

2

(
3δp− δρ

)
,

(4.39)

for µ = i, ν = 0 we have

−H∂iδg00 −
1

2
(∇2δg0i − ∂i∂kδgk0) +

∂2
ηa

a
δg0i +H2δg0i −

1

2
∂i∂ηδg

k
k

− 1

2
∂k∂ηδg

k
i −

3

16πGa2

(
2
a′′

a
− 4a2

3
Λ

)
δg0i − p̄ δg0i = −a2(ρ̄+ p̄) vi,

(4.40)
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and finally for µ = i, ν = j we have

1

2
∂i∂jδg00 +

1

2
H∂ηδg00δij +

(
H2 +

∂2
ηa

a

)
δg00δij

− 1

2
(∇2δgij − ∂k∂jδgki − ∂k∂iδgkj + ∂i∂jδg

k
k

+
1

2
∂2

ηδgij +H∂ηδgij +

(
H2 +

∂2
ηa

a

)
δgij

+
1

2
H∂ηδgkkδij −H∂kδgk0δij −

1

2
(∂j∂ηδg0i + ∂i∂ηδg0j)

−H(∂jδg0i + ∂iδg0j)−
3

16πGa2

(
2
a′′

a
− 4a2

3
Λ

)
δgij − p̄ δgij

= a2δij δp−
a2

2
δij

(
3δp− δρ

)
.

(4.41)

Beyond the problem of how complicated these equations look, we also have

unphysical quantities that arise, i.e., those that have no significance to the

‘real’ nature of spacetime. We will, therefore, discuss how these problems are

generally approached in cosmology with gauge freedoms.

4.4 Metric Decomposition

Before discussing different gauges and the problems behind selecting gauges we

will introduce a useful decomposition of the perturbed metric. In general, one

can perform a Helmholtz decomposition of the metric tensor [1, 65]. Since the

metric is a symmetric rank 2 tensor, there should be 10 fluctuating degrees of

freedom in the perturbed metric tensor, δgµν .

There are four degrees of freedom corresponding to the scalar metric pertur-

bations, i.e., there are only four ways to construct a metric from scalar functions

[178]:

δgµν = a2

(
−2φ ∂iB
∂iB 2 (−ψ δij + ∂i∂jE)

)
, (4.42)

where the scalars are, φ, B, E, and ψ. Here φ is a generalisation of the Newto-

nian potential and ψ is the5 ‘curvature perturbation’. Scalar perturbations are

the ‘most important’, as they couple with the density and pressure perturba-

tions and exhibit gravitational instability. The scalar fluctuations are related to

the temperature fluctuations we observe in the CMB via the Sachs-Wolfe effect.

Density perturbations are primarily responsible for the structure we observe in

the Universe.

5The curvature perturbation terminology derives from its common use in the longitudinal
gauge, where it is the only perturbation involved in the scalar curvature.
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There are four vector degrees of freedom of the metric perturbations,

δgµν = a2

(
0 −Si
−Si ∂iFj + ∂jFi

)
, (4.43)

where Si and Fi are divergenceless6 vectors, i.e.,

∂Si
∂xi

= 0 and
∂Fi
∂xi

= 0. (4.44)

Vector perturbations couple to rotational velocity perturbations in the cosmic

fluid. Since these decay in a expanding Universe, they are not usually examined

in early Universe cosmology.

Finally, there are two tensor components. These two tensor components

correspond to the two polarisation states of gravitational waves. We have,

δgµν = a2

(
0 0
0 Dij,

)
(4.45)

where Dij is traceless and divergenceless,

D i
i =

∂Dij

∂xi
= 0. (4.46)

The three different types of fluctuations do not couple in linear perturbation

theory and so the behaviour of each can be examined individually. Because of

this, the field equations can be simplified by equating scalar, vector, and tensor

perturbations for individual components of the field equations.

We summarise the metric components in the above decomposition as,

δg00 = −2 a2φ

δg0i = a2(∂iB − Si)
δgij = a2(−2ψ δij + 2 ∂i∂jE + 2 ∂(iFj) +Dij),

(4.47)

therefore, the full FLRW line element is written as:

gµν dxµdxν = a2(η)

(
− (1 + 2φ) dη2 + 2 (∂iB − Si) dη dxi

+ (−2ψ δij + 2 ∂i∂jE + 2 ∂(iFj) +Dij) dxidxj

)
.

(4.48)

4.5 Gauges

The phrase gauge (Eich) transformation or gauge invariance was first introduced

by Hermann Weyl in 1918 [179, 180]. Weyl was attempting to unify gravity and

6If one has vectors that do not have vanishing divergence, the divergence contributes to
the scalar gravitational fluctuation modes [178].

64



electromagnetism and used the phrases gauge transformation and gauge invari-

ance to mean change of length or calibration, i.e., Weyl wanted his theory to be

invariant under changing of calibration or length. The concept of gauge invari-

ance that the current generation of cosmologists has a very specific meaning.

This is no doubt a consequence of a highly influential paper of Bardeen [176],

titled ”Gauge invariant cosmological perturbations”, which is framed entirely

in the FLRW setting.

There are, however, theorists in the community who still use a more general

notion of “gauge”. Researchers who use a 3+1 formalism in general relativity

such as Buchert [3] attempt to define a cosmology without a reference back-

ground. Buchert makes choices of spatial hypersurfaces which are foliation or

slicing choices [181]. Such choices could be deemed to be “gauge choices” in the

broad sense as they fix a time coordinate for the normal vector. In the context of

standard perturbation theory, however, we will follow the most common usage

of “gauge”. It is worth noting that when the Buchert formalism is introduced in

Chapter 5, one does not have a background spacetime and the foliation choices

or slicing choices do not correspond to the common phase ‘gauge choice’.

A gauge choice in the standard model of cosmology attempts to distinguish

between unphysical and physical quantities [83, 176]. While the decomposition

of the metric in the previous section simplifies the perturbed field equations

greatly, we have introduced unphysical scalar and vector modes. To see how

this can occur, consider a choice of coordinates as a mapping between M̄ and

M, and label it D. Let us then consider another mapping, D ′ which maps

the same points (for example, the origin) in M̄ into different points in M.

Now consider a physical quantity, such as the Ricci scalar, R, on M with a

corresponding quantity, R̄ on M̄. Then in the first coordinate system defined

by the map, D, the perturbation δR of R at a point, x ∈ M can be expressed

as:

δR(x) = R(x)− R̄ (D−1(x)), (4.49)

where D−1 is the inverse to map D. One can also define a similar perturbation

with D ′:
δR ′(x) = R(x)− R̄ (D ′ −1(x)). (4.50)

The difference between these two perturbations is

∆R(x) = δR ′(x)− δR(x). (4.51)

This difference is referred to as a ‘gauge artefact ’ and carries no physical sig-

nificance. This is the essence of the gauge problem in general relativity —

physically meaningful quantities should not depend on a choice of coordinates.

Some of the perturbations in the perturbed Einstein in section 4.3 introduced

these so-called gauge artefacts. To isolate these, we investigate how coordinate

65



transformations act on the metric. Consider an infinitesimal coordinate trans-

formation:

xµ 7→ x̃µ = xµ + ξµ. (4.52)

This coordinate transformation implies we have four independent gauge degrees

of freedom. These correspond to one from the time component, ξ0 and three

from the spatial vector, ξi. One can decompose the spatial vector, ξi as

ξi = ζ i + ∂iζ, (4.53)

where ζ i is the transverse, divergenceless part of ξi. Therefore, we note that

there are two scalar gauge modes7 given by ξ0 and ζ, and two vector gauge modes

from ζ i. Furthermore, the tensor modes are gauge-invariant and, therefore,

there are four physical perturbation or fluctuation modes8.

We continue our investigation of how the metric transforms under (4.52):

g̃µν(x̃) = gαβ
∂xα

∂x̃µ
∂xβ

∂x̃ν

= gαβ(x̃)− Lξgαβ(x̃),

(4.54)

where Lξ is the Lie derivative along the vector field, ξµ. If one defines the

metrics in (4.54) as

g̃µν(x̃) = ḡµν(x̃) + δg̃µν(x̃) and gµν(x) = ḡµν(x) + δgµν(x), (4.55)

then using (4.54) we find that the change in the perturbation of the metric due

to coordinate transformation (4.52) is9,10

δg̃µν(x̃)− δgµν(x̃) = ∆ δgµν = −Lξḡµν +O(δgξ). (4.56)

Using this equation, we can find the transformations in the different components

of the full metric by observing how the perturbed metric transforms.

The transformed perturbations are thus found by taking Lie derivatives of

the unperturbed background FLRW metric,

−∆ δg00 = Lξḡ00 = ξα∂αḡ00 + 2ḡ0α∂0ξ
α,

−∆ δg0i = Lξḡ0i = ξα∂αḡ0i + ḡ0α∂iξ
α + ḡαi∂0ξ

α,

−∆ δgij = Lξḡij = ξα∂αḡij + ḡiα∂jξ
α + ḡjα∂iξ

α.

(4.57)

7The phrase gauge mode is simply to distinguish between scalar modes which come from
the metric perturbations and scalar modes that arise from gauge transformations.

8More precisely, there are two that correspond to scalar perturbations and two that cor-
respond to vector fluctuations.

9We have used the active gauge transformation here. Another way to obtain these results is
to refer to the ‘gauge group’ of general relativity, the group of diffeomorphisms. To preserve
the group structure associated to this active transformation, we use the exponential map:
A 7→ Ã = eLξA, where A is any tensor field. Taylor expanding this result provides us with
the result in (4.56) (up to a negative sign).

10Note that we have made a sign choice here, that is consistent with [65], this does not
change anything significantly as it will propagate through trivially.
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With the properties of the FLRW metric we find

−∆ δg00 = 2 a2∆ (φ) = −2 a′aξ0 − 2 a2ξ0 ′,

−∆ δg0i = −a2∆(B,i − Si) = −a2ξ0
,i + a2ξ′i ,

−∆ δgij = −a2∆(−2ψ δij + 2E ,ij + 2F(i ,j) +Dij) = 2a′aξ0δij + 2 a2ξ(i ,j).
(4.58)

By using using the decomposition, ξi = ζ i + ∂iζ and equating scalars, vectors,

and tensors on each side, we find

∆φ = −

(
a′

a
ξ0 + ξ0 ′

)
,

∆B = ξ0 − ζ ′ ,
∆Si = ζi

′ ,

∆ψ =
a′

a
ξ0 ,

∆E = −ζ ,
∆Fi = −ζi ,
∆Dij = 0 .

(4.59)

Therefore, the gauge transformed line element is

ds2 = a2(η)

{
−

[
1 + 2 (φ− a′

a
ξ0 − ξ0)

]
dη2 + 2 (B + ξ0 − ζ ′), i dη dx̃i

− 2 (Si + ζi
′) dη dx̃i +

[(
1− 2(ψ +Hξ0)

)
δij + 2 (E − ζ), ij

+ 2 (Fi − ζi), j +Dij

]
dx̃idx̃j

}
.

(4.60)

To eliminate these gauge modes, there are two general approaches: the first is to

fix a gauge, i.e., select a gauge by fixing coordinates by ‘choosing’ components of

ξµ such that they do no appear in the field equations. The second is to use gauge-

invariant quantities, first introduced by Bardeen [176]. We will investigate both

of these in the context of standard perturbation theory.

4.5.1 Gauge Fixing

We will introduce a few of the common gauges in linear cosmological perturba-

tion theory and the choice of the gauge generators that achieve these gauges.

• Synchronous gauge: We define the synchronous gauge by setting

φ̃ = B̃ = S̃i = 0. (4.61)
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This gauge was used widely for many calculations after it was introduced

by Lifshitz in 1946 [174] but became unpopular in the 1980s. The use of

the synchronous gauge decreased because of the fact that the condition

(4.61) does not fix the gauge completely, i.e., there are still unphysical

gauge modes. The time coordinate in the synchronous gauge is simply

the proper time of comoving observers at fixed spatial coordinates. One

may obtain this gauge by solving the differential equations φ = ξ0 ′+Hξ0

and B ,i +Si = ξ′i− ξ0
,i. These differential equations are coupled, and one

can see the equations imply

ξ0 =
1

a

∫
aφ dη + f(x)

ζ =

∫
(ξ0 +B) dη + g(x)

Ai = −
∫
Sidη + h(x).

(4.62)

The integration variables, f , g, and h are purely spatial and give rise

to spurious gauge modes. This problem can, however, be fixed if one

chooses an initial gauge condition, such as a vanishing 3-velocity for per-

turbed dark matter which is ‘natural’ as dark matter is understood to be

slow moving [182].

• Spatially flat gauge: We define the spatially flat gauge by choosing

ψ̃ = Ẽ = F̃i = 0. (4.63)

This choice leaves the 3-metric on spatial hypersurfaces unperturbed, or

“flat” as is the case of the k = 0 FLRW spacetime. In standard per-

turbation theory, one can fix this gauge by choosing ξ0 = −ψ/H, and

ξi = E ,i + Fi.

• comoving orthogonal Gauge: This gauge is defined by choosing

ṽi = 0 and g̃0i = 0. (4.64)

This gauge is, therefore, defined by the 3-velocity and 3-momentum of the

fluid vanishing. The constant time hypersurfaces are orthogonal to the

fluid 4-velocity in this gauge.

• Conformal Newtonian or longitudinal gauge: This gauge is defined by

choosing

B̃ = Ẽ = 0. (4.65)
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This gauge is also referred to as the “zero-shear” gauge because the scalar

shear is given by σ = E ′ − B. This allows one to write the metric tensor

in a diagonal form (for scalar perturbations). If one assumed anisotropic

stresses to vanish then one finds ψ = φ, allowing the field equations to

be written in a form very close to the Newtonian equations for gravity.

One can obtain this gauge by choosing E = ζ and E ′ + B = −ξ0. This

gauge is often used to model the CMB in simulations due to scalar per-

turbations being the simplest and most dominant perturbation. One can

generalise this gauge to one which possesses all of the scalar perturbations.

• N-body gauge: The N-body gauge is defined when

ṽ + B̃ = 0. (4.66)

However, there are still remaining gauge freedoms. These are used to

set the “counting density” associated with N bodies. This is equal to

the energy density at leading order. This condition requires the scalar

deformation of the spatial volume to be zero. This can be expressed as:

ψ̃ − 1

3
∇2Ẽ = 0. (4.67)

To fix this gauge completely, therefore, we require v + B = −ξ0 and by

solving ∇2ζ = (∇2E − 3ψ) + 3H(v +B).

4.5.2 Gauge-Invariant Quantities

The second option one has is to work with gauge-invariant variables. As the

name suggests, under gauge transformations of the form (4.59) these variables

are invariant or remain unchanged. In general, the only perturbations of quan-

tities that are gauge-invariant are ones that vanish or are constant in the back-

ground spacetime. This was formalised in the Stewart-Walker lemma [178]. The

lemma states that a linear perturbation of a tensor field is gauge-invariant if

and only if one of the following hold:

• T0 = 0;

• T0 is a constant scalar field;

• T0 is a linear combination of products of delta functions, δµν ,

where T0 is the unperturbed tensor field.
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Metric Invariants

One can define more than one scalar quantity that is invariant under the gauge

transformations in (4.59). The first are the metric perturbations themselves

introduced by Bardeen [176]. Examples of these are:

Φ = φ−Hσ − σ′ and Ψ = ψ +Hσ, (4.68)

where σ = E ′ − B is the scalar shear. These scalars are gauge-invariant forms

of the Newtonian potential and curvature perturbation. We can use (4.59) to

show that these variables under such transformations. Let us first observe how

σ transforms:
σ = E ′ −B

= Ẽ ′ + ζ ′ −B′ + ξ0 − ζ ′

= σ̃ + ξ0

∴ σ̃ − σ = ∆σ = −ξ0.

(4.69)

From the transformation of σ we can determine

∆Φ = −

(
Hξ0 + ξ0 ′

)
+Hξ0 + ξ0 ′.

= 0

∴ Φ̃ = Φ.

(4.70)

Similarly,
∆Ψ = Hξ0 −Hξ0

∴ Ψ̃ = Ψ.
(4.71)

There are more gauge-invariant metric scalars that can be defined such as

A = φ+ ψ +

(
ψ

H

)′
,

B = −σ − ψ

H
,

Q = φ+
1

2
(a(v +B))′.

(4.72)

Because there are only two vector degrees of freedom (because there are two

gauge modes) there will only be one gauge-invariant metric vector perturbation.

This vector must be transverse (divergence-free), one choice for this is

Pi = Si + Fi
′. (4.73)

Curvature Invariants

The perturbed intrinsic Ricci scalar for a flat FLRW Universe is,

δR =
4

a2
∇2 ψ. (4.74)

70



This is an invariant quantity as the intrinsic Ricci scalar vanishes in the back-

ground for a flat FLRW Universe. Therefore, by the Stewart-Walker lemma, it

must be gauge-invariant. However, using Ψ is more useful because it is itself

gauge-invariant and thus even for a k 6= 0 FLRW model, the intrinsic Ricci

scalar will be gauge-invariant.

There are also other gauge-invariant curvature perturbations, such as:

R = ψ −H(v +B),

µ = −ψ −Hδρ
ρ′
.

(4.75)

We note that R coincides with the intrinsic Ricci perturbation in the comoving

orthogonal gauge (where v = B = 0). While µ coincides with the intrinsic Ricci

perturbation on ‘uniform’ density hypersurfaces11. It can further be shown that

the perturbed (0, i) field equation — in the gauge invariant form — gives an

explicit gauge-invariant formula for R:

R = Ψ +
2

3

(Ψ′ +HΦ)

(1 + w)H
, (4.76)

where w was defined in (2.50). This formula is useful as it relates the curvature

perturbation to the metric potentials. In the case of vanishing anisotropic stress

(Ψ = Φ) we have

R = Φ +
2

3

(Φ′ +HΦ)

(1 + w)H
. (4.77)

11This gauge is defined by setting the perturbation of the density to zero, δρ = 0.
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Chapter 5

Buchert Formalism

The widely accepted picture of the evolution of the Universe relates measurable

quantities to the global cosmological parameters such as the mean matter den-

sity and the average global expansion rate. As demonstrated in Chapter 2 these

parameters are derived from solutions of Einstein’s equations1 for spatially ho-

mogeneous and isotropic systems. The key argument that the standard model

invokes is that the Universe on average should follow the evolution of simple

FLRW models, without specifying a notion of averaging.

A viable cosmological model should provide an effective evolution history of

the inhomogeneous Universe. Thomas Buchert’s averaging formalism provides

a procedure for spatially averaging the scalar characteristics of an inhomoge-

neous model of the Universe. In turn, this yields a system of scale-dependent

‘Friedmann-like’ equations with additional terms to the usual matter stress-

energy. Backreaction may potentially replace the dark constituents of the Uni-

verse — which are fundamental puzzles in the standard model of cosmology.

Many debates have taken place in the last 20 years since the first formal

introduction of Buchert’s averaging scheme [4]. In considering such schemes,

several researchers have questioned whether the apparent late time acceleration

of cosmic expansion was due to the backreaction of inhomogeneities.

Some of the most notable arguments against this idea were made by Ishibashi

and Wald [49] and Green and Wald [50–53] (see [184] for a review). In a series

of papers, Green and Wald claimed that the effects of backreaction are neg-

ligible. However, this was only actually proven in a particular mathematical

framework with simplifying assumptions about the nature of “backreaction”.

In particular, they assumed that average evolution is an exact solution of Ein-

stein’s equations on any scale of averaging. Buchert et al. [54] disagree about

these mathematical assumptions. For example, the Buchert scheme [4, 34] does

not assume that the average evolution is an exact solution of the Einstein equa-

tions. Therefore, any attempt to use Buchert averaging to create a cosmological

1One can also use Newton’s equations for gravity in an ad hoc derivation of the Friedmann
equations [183].
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model must explain how and why average evolution is close to spatially homo-

geneous2. Wiltshire’s timescape model [35, 36] is a phenomenological model

which attempts to address these issues, via a cosmological equivalence principle

[185] for average symmetries.

The averaged systems that are derived in [3, 4] which will be presented here

are considered “background-free” approaches to relativistic cosmologies. One

can alternatively, interpret spatial averages as a general background cosmology

with a ‘background’ that is not fixed a priori, and instead evolves with the

formation of structures. One may then investigate fluctuations with respect to

these physical averages, thus eliminating the need for gauge transformations.

The problem still remains, however, of being able to relate such statistical av-

erages of structures to our own observations. Some preliminary attempts at

developing “perturbation theory” about a ‘general averaged’ background have

been made in [186].

5.1 Spacetime Foliation and Fluid Decomposi-

tion

We consider a model of the Universe that is sourced by a single general matter

fluid — a fluid that is not assumed to be a perturbation of a background. We

will use a general 3+1 splitting of spacetime and for the decomposition of the

fluid flow and of its stress-energy tensor.

5.1.1 Geometry

Let us consider a globally hyperbolic four-dimensional manifold, M, endowed

with a pseudo-Riemannian metric tensor, g with a local coordinate system, xµ.

The fluid flow will be described by a timelike congruence with a unit, future-

oriented, timelike tangent vector field, u which is the 4–velocity of the fluid3.

We construct the spacetime manifold by foliating a family of spacelike hy-

persurfaces as Chapter 3, which has a unit vector n. This unit vector is in

general tilted with respect to the 4-velocity, u. The normal vector is defined

through (3.48) which in coordinate form gives

nµ =
1

N

(
1, −βi

)
, (5.1)

2Ishibashi and Wald [49] state ‘the main point of their paper’ is to stress that any new
model of cosmology must show that all of the predictions of this new model are compatible
with observation — a formalism for averaging does not suffice.

3There are many possible physical interpretations of the 4-velocity. For instance, it can
be defined as the ‘energy frame’ for the fluid, or the barycentric velocity, or associated to
another conserved current.
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Figure 5.1: A spatial hypersurface, Σt is shown here with different congruences
and corresponding tangent vectors from Buchert et al. [3]. The vector Nn is the
normal to the hypersurface scaled by the lapse (referred to as m in Chapter 3);
it is tangent to the congruence C(n). The time vector of the coordinate basis,
∂t is tangent to the congruence of curves C(∂t), which have xi = constant. The
4–velocity of the fluid, u, is tangent to the congruence of curves C(u). The
relationship between the various vectors is discussed in subsection 5.1.2. The
difference between C(n) and C(∂t) is characterised by the shift. The difference
between C(n) and C(u) is characterised by the tilt. The difference between C(∂t)
and C(u) is characterised by the coordinate velocity. Notice that if V = 0 then
∂t = (N/γ)u and thus the tilt is proportional to the shift. If v = 0 then we have
a fluid flow which is hypersurface orthogonal, n = u, hence V = −β.

with the dual vector components

nµ = −N (1, 0). (5.2)

Recall that β is the shift vector, which in general, generates spatial diffeomor-

phisms between successive slices. We define the projection operator as follows

with its various properties (in the coordinate description):

hµν := gµν + nµnν , hµν n
µ = 0 , hµα h

α
ν = hµν , hµνhµν = 3, (5.3)

where the restriction to the spacelike hypersurfaces defines the spatial metric.

The four-dimensional line element can be written as

ds2 = gµν dxµdxν = −
(
N2 − β iβ i

)
dt2 + 2β i dx

idt+ hij dxidx j . (5.4)

The dynamic variables associated with the normal frames are the extrinsic cur-

vature, K, and the acceleration which we shall refer to as a (n).
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5.1.2 Description of the Fluid

The general set up of the various congruences can be seen in Figure 5.1. The

fluid 4-velocity, u can be decomposed as

u = γ (n+ v), (5.5)

where,

γ = −nα uα =
1√

1− v α vα
(5.6)

is the Lorentz gamma factor. Here, v is the Eulerian velocity which is the

spatial velocity of the fluid relative to the normal frames. It determines the

tilt between the normal and fluid frames. For vanishing tilt we have u = n,

therefore, v = 0 and γ = 1.

We also introduce the coordinate velocity of the fluid4,

V =
dx

dt
, (5.7)

where x is the spatial coordinate of the fluid element in the coordinate system

(t, x i) and d/dt is the coordinate time derivative along the fluid flow lines. The

Eulerian velocity can be written as

v =
1

N
(β + V ). (5.8)

Using (5.5) and the above expression for the Eulerian velocity, we can rewrite

the four velocity as

u =
γ

N

(
Nn+ β + V ), (5.9)

where
γ

N
=

1√
N2 − (βµ + V µ) (βµ + Vµ)

. (5.10)

Since, V depends on the shift, β, for various coordinate systems we have differ-

ent shift vectors. E.g., for a coordinate system comoving with the fluid we have

V = 0 and for a vanishing tilt, we have V = −β. A vanishing tilt indicates

v = 0, meaning n = u, and thus the fluid flow is ‘hypersurface orthogonal’.

This results in vanishing vorticity of the congruence.

In general, the fluid will possess vorticity, and not be hypersurface forming,

unlike the normals, n. In the actual Universe, as overdensities collapse, angular

momentum perturbations grow. In general, particle geodesics will also cross

in collapsing structures leading to a breakdown of our formalism: we cannot

maintain a single fluid description for the entire evolution of the Universe.

Using (5.1) one can write the 4–velocity in a more intuitive way:

uµ =
γ

N

(
1, V i

)
, (5.11)

4As Figure 5.1 shows, both v and V are tangent to the spatial slices, Σt meaning n ·v = 0
and n · V = 0.
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with the dual

uµ =
γ

N

(
−N2 + β i (β i + Vi) , β i + Vi

)
. (5.12)

Kinematic variables

Recall the projection operator, b, that projects tensors onto the local rest frames

of the fluid (those frames orthogonal to u):

bµν := gµν + uµuν . (5.13)

The properties of b are similar to the properties of h,

bµν u
µ = 0 , bµα b

α
ν = bµν , bµν bµν = 3. (5.14)

In the case where the fluid flow is hypersurface orthogonal, the projection op-

erators b and h are the same. The kinematic variables are those introduced

in section 3.5, namely, the expansion tensor, Θ, the expansion scalar, Θ, the

shear, σ, the vorticity, ω, and the acceleration, a. Using σ and ω, one can also

define the squared scalar shear,

σ2 =
1

2
σ µν σµν , (5.15)

and the squared scalar vorticity,

ω2 =
1

2
ω µν ωµν . (5.16)

Note that both are positive-definite.

Stress-Energy Tensor and Conservation Laws

One can decompose the stress-energy tensor as in (3.81), or one can decompose

the tensor as follows:

Tµν = δ αµ δ
β
ν Tαβ = (bαµ − uα uµ) (bβν − uβ uν)Tαβ

= bαµ b
β
ν Tαβ − 2u(νb

α
µ) u

β Tαβ + uαuβuµuν Tαβ ,
(5.17)

which we can written as

Tµν = ρ uµ uν + 2 q (µ uν ) + p bµν + πµν , (5.18)

where

ρ := uµu ν Tµν , qµ := −bαµ uβ Tαβ , p bµν+πµν := bµα b
ν
β Tµν , bµνπµν = 0 .

Here, ρ is the energy density of the fluid in the fluid rest frames, q is the spatial

heat flux vector, p is the isotropic pressure, and π is the spatial and traceless

anisotropic stress mentioned in chapter 1.
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Decomposing the stress-energy tensor with respect to the normal frames, as

done in (3.81), we find (in components)

Tµν = E nµnν + 2n (µ J ν ) + Sµν . (5.19)

By using (5.5) we relate the scalar quantities, E and S ≡ S µ
µ, of both frames

as

E = γ2ρ+ (γ2 − 1) p+ 2 γ v µ qµ + v µ v ν πµν , (5.20)

S = (γ2 − 1) ρ+ (γ2 + 2) p+ 2 γ v µ qµ + v µ v ν πµν . (5.21)

Using the conservation of stress-energy equation, ∇ν T
µν = 0, along with

(5.18) and the kinematic variables, we find the energy conservation law5:

uµ∇ν T
µν = 0 ⇐⇒ uα∇α ρ+ Θ (ρ+ p) = −(aµq

µ +∇µq
µ + π µνσµν ) , (5.22)

and the momentum conservation law:

bαµ∇ν T
µν = 0 ⇐⇒

aα = − 1

ρ+ p

(
bαµ∇α p+ bµα u

σ∇σ q
α +

4

3
Θ qµ

+q α(σαµ + ωαµ) + bµα∇β π
αβ
) (5.23)

These conservation laws are accompanied by the conservation of the rest mass

density, µ, of the fluid in the fluid rest frame:

∇ν (µu ν) = 0, or, u ν∇ν µ+ Θµ = 0. (5.24)

Time derivatives

In the decomposition of spacetime so far, we have implied the existence of

two times, in particular, the coordinate time, t and the fluid proper time, τ .

Furthermore, as can be seen in Figure 5.1, there are three timelike congruences.

This means there can be several definitions of time derivatives. The ones we

shall use here are:

• The covariant derivative along the fluid flow lines; uµ∇µT , for any tensor

field T . We shall denote this with an overdot only using the comoving and

Lagrangian description. This is because in the comoving description (as

described below) this derivative aligns with the proper time derivative.

• The comoving derivative along the fluid flow lines according to the proper

time, d/dτ .

5When deriving this relation, the last term on the right-hand side comes from the fact
that π is a symmetric tensor, it is orthogonal to u.
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• The comoving derivative along the fluid flow lines according to the coor-

dinate time, t, d/dt.

• The partial coordinate time derivative along the vector ∂t. Note that

these are the integral curves of constant xi which we denote by ∂t
∣∣
xi

.

For any tensor field, T = T µν...
αβ... ∂µ⊗∂ν⊗· · ·⊗dxα⊗dxβ⊗. . . as decomposed

in the coordinates (t, xi), the last three time derivatives are related by

dT µν...
αβ...

dt
=
∂ T µν...

αβ...

∂t

∣∣∣∣
xi

+ V i ∂ T
µν...

αβ...

∂xi
, (5.25)

and
dT µν...

αβ...

dτ
=

γ

N

dT µν...
αβ...

dt
. (5.26)

We shall also introduce comoving (or Lagrangian) spatial coordinates, X =

{X i}. These coordinates label the fluid elements in contrast to the Eulerian

coordinates we have used thus far, x = {xi} which are the positions of these

elements at time t. These two coordinates coincide on the ‘initial hypersurface’

where t = ti. For t > ti, however, the comoving coordinates of each fluid element

remain constant along the fluid flow line, whereas the reference coordinates, x

do not. We relate the two sets of coordinates by a family of diffeomorphisms

parameterized by coordinate time t,

X 7→ x = f(t,X), (5.27)

with f(ti,X) = X. We also define the Jacobian associated with the diffeomor-

phism:

J (t,X) := det
∂ f(t,X)

∂X
. (5.28)

As an example, if one assumes isotropy and homogeneity then the function is

a map from R3 → R3, and we have x = a(t)X, where a(t) is the Friedmann

scale factor. The time derivative with respect to these comoving coordinates is

related to the time derivative with respect to the reference coordinates by

∂ T µν...
αβ...

∂t

∣∣∣∣
Xi

=
∂ T µν...

αβ...

∂t

∣∣∣∣
xi

+ V i ∂ T
µν...

αβ...

∂xi
. (5.29)

One should note, however, that this description is only possible before shell-

crossing as there is no possible way for f to be a diffeomorphism once geodesics

cross.

5.2 Comoving and Lagrangian Description

Comoving Description

We define the comoving description by setting the spatial part of u to zero. This

corresponds to setting the shift as β = N v and consequently, V = 0. This
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choice of foliation corresponds to the spatial coordinates propagating along the

fluid flow lines, meaning the comoving or Lagrangian coordinates are a natural

choice6.

Using the coordinates, (t,X i), of the comoving description, the 4–velocity

of the fluid has the components

uµ =
N

γ
(1, 0) , (5.30)

and dual components

uµ =
(
− N

γ
, γvi

)
. (5.31)

The line element, (5.4) reduces to

ds2 = −N
2

γ2
dt2 + 2Nvi dt dX i + hij dX idXj . (5.32)

Furthermore, in the comoving description, the projector b components are,

b 00 = 0, b 0i = 0, b ij = h ij + γ2 vi vj. (5.33)

Finally, we shall also introduce the kinematic quantities in this particular “gauge”

or “foliation choice”.

Firstly, in any coordinate system may rewrite the vorticity as

ωµν = u [µ aν ] +∇[µ u ν ] = u [µ aν ] + ∂[µ u ν ]. (5.34)

From the orthogonality of the vorticity tensor and the fluid four velocity (in the

comoving description) the following identity can be constructed:

0 = ωµiu
µ =

1

2
(u0 ai − ui a0) +

1

2
(∂0 ui − ∂i u0). (5.35)

Furthermore, in any comoving description we have

a0 = u0∇0 u0 + ui∇i u0 = 0, (5.36)

therefore, by rearranging (5.35) one can write the spatial components of the

4–acceleration as

ai =
γ

N

(
d

dt
ui +

γ

N
∂i

(
N

γ

))
. (5.37)

We have used ∂t ≡ ∂t |Xi = d/dt which is true only in the a comoving descrip-

tion. Substituting this back into the equation for vorticity, the non-vanishing

components of the vorticity are found to be

ωij =
γ

N
u [ i

d

dt
u j ] +

N

γ
∂[ i

(
γ

N
u j ]

)
. (5.38)

6We refer to this as the “weak” Lagrangian description as there have been no constraints
placed on the coordinate time.
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The expansion tensor can be related to the Lie derivative of the projector7,

b along the fluid flow in any coordinate system according to

(Lub)µν = uα∇α bµν + bαν∇µ u
α + bµα∇νu

α

= 2u (µ aν ) + 2∇(µ uν ) = 2 Θµν .
(5.39)

Therefore, in the comoving description, we can write the expansion tensor as

Θ ij =
1

2
u0 ∂0 b ij =

1

2

γ

N

d

dt
b ij. (5.40)

The expansion scalar can thus be written as

Θ =
1

2

γ

N
b ij

d

dt
b ij. (5.41)

Furthermore, by defining the ‘representative length’ l in the fluid rest frames,

we can define a ‘Hubble parameter’8, 3l̇/l := Θ. Thus we may write

Θ =
3

l

γ

N

dl

dt
, and σ ij =

1

2

γ

N
l2

d

dt
(l−2 b ij). (5.42)

Lagrangian Description

One may choose a foliation that allows the hypersurfaces to be labelled by

the proper time τ of the fluid instead of the coordinate time, t. This class

of foliations is referred to as the fluid proper time foliations. This choice of

foliation may be realised by noting the evolution of the proper time relative to

the coordinate time, dτ/dt = N/γ. An obvious choice, therefore, would be to

select9 N = γ. For such foliations the hypersurfaces cannot be fluid orthogonal,

in other words, a tilt must be present, except in the case of irrotational geodesic

flow, which is the case for irrotational dust (for example as in the LTB model).

In general, such a tilt may grow as time passes and become large. A large tilt

may even cause the slices to not be spacelike everywhere. Therefore, for an

analysis using the Lagrangian description we must restrict ourselves to the part

of the whole spacetime where the hypersurfaces remain spacelike.

7Recall that the Lie derivative of the induced metric on the normal frames was related
to the extrinsic curvature. Furthermore, recall that the expansion tensor and the extrinsic
curvature are the same in the case of a hypersurface orthogonal flow.

8Recall that the expansion scalar is related to the Hubble parameter.
9In general, we define the proper time through

τ(t,Xi) := τi +

∫ t

tΣi

N(t̃, Xi)

γ(t̃, Xi)
dt̃ ,

where Σi is the initial hypersurface parameterized by t = tΣi and τi is the value of τ on the
initial hypersurface. Thus, by selecting N = γ we find that the change in proper time from
the initial hypersurface to another along the fluid flow is equal to the change in coordinate
time.
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In the coordinates (τ,X i) the components of the 4–velocity vector are

uµ = (1, 0), (5.43)

with corresponding dual components

uµ = (−1, γ vi). (5.44)

The line element (5.4) becomes

ds2 = −dt2 + 2 γvi dX
i dt+ hij dX idXj . (5.45)

5.3 Fluid-Extrinsic Scalar Averaging

Instead of assuming that the Universe expands according to the Friedmann scale

factor a(t) on any scale, we follow the Buchert averaging scheme. This results

in a “effective scale factor” allowing inhomogeneities to develop in the evolution

of the domain. We shall introduce Buchert averaging here, specifically, extrinsic

averaging. We refer to this as extrinsic averaging as we are not performing the

averaging in the rest-frame of the fluid. More precisely, these equations are also

dubbed the “extrinsic” averaged equations because to derive them, we will use

the Einstein equations projected along n instead of u. That is, we will use the

dynamical equations from Chapter 3 in a slightly different form:

∂t |xi hij = −2N Kij +Djβi +Diβj , (5.46)

∂t |xi K
i
j =N

(
R i

j +KK i
j + 4πG [(S − E) δ ij − 2S i

j ]− Λ δ ij

)
−D iDjN + βkDkK i

j +K i
kDjβ

k −K k
jDkβ

j,
(5.47)

which are (effectively) equations10 (3.92) and (3.86) respectively.

Buchert averaging is over a spatial (compact) domain lying in the hypersur-

faces — this domain is transported along the congruence of the fluid. This form

of transporting the domain ensures the domain encloses the same collection of

fluid elements at all times. We denote the domain containing this collection

with respect to the reference coordinates — at a given time — by Dx and with

respect to the comoving coordinates by DX . This distinction is important as

Dx depends on time whereas DX by definition does not. For this analysis, we

shall not use the Lagrangian description, nor the comoving description in order

to preserve the all degrees of freedom in the splitting space and time.

10The second equation here is not exactly (3.86) as the indices are mixed. However, one
may obtain this by considering the product rule for ∂t |xi (h ik Kkj).
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5.3.1 Volume of Domains and Their Time-Evolution

The Riemannian volume of a spatial domain D within the hypersurface is given

by

VD (t) =

∫
Dx

nµ dσµ =

∫
Dx

√
h ( t, x i ) d3x, (5.48)

where h is the determinant of the spatial metric, h := det (hij), and dσµ is the

oriented volume element on the hypersurface, i.e., dσµ := −nµ
√
h d3x. Hence,

nµ dσµ = −nµ nµ
√
h d3x =

√
h d3x. For an expanding Universe the volume of

the domain in consideration will also increase, thus we wish to find an expression

for the change in the Riemannian volume over time.

First let us examine

d

dt
VD =

d

dt

∫
Dx

√
h d3x. (5.49)

To proceed beyond this step is complicated because the operators d/dt and∫
Dx
· d3x do not commute as the limits of integration which are determined by

Dx depend on (in general) t. A physical understanding of why these operators

are not suitable follows from the fact that the fluid is moving with respect to

the reference coordinates (t, x i) and the domain moves with the fluid.

If we wish to have the coordinate time derivative and spatial volume in-

tegration operators to commute, we require the fluid to be ‘not moving’ with

respect to the spatial coordinates, the natural choice then is to transform the

integrand to Lagrangian coordinates to eliminate the time-dependence. We use

x i = f i (t,X) , (5.50)

and

d3 x = det

(
∂f(t,X)

∂X

)
d3X = J (t,X ) d3X, . (5.51)

The domain transforms as Dx → DX = f−1 (Dx). Inserting all of these trans-

formations into (5.48) we obtain:

VD (t) =

∫
DX

√
h( t, f i( t,X )) J (t,X) d3X. (5.52)

The boundaries are now fixed with respect to the fluid, therefore, we may now

commute d/dt and
∫
DX
· d3X:

d

dt
VD (t) =

∫
DX

d

dt

(√
h( t, f i( t,X )) J (t,X)

)
d3X. (5.53)

We are now free to change back to the reference coordinates, x i and obtain:

d

dt
VD (t) =

∫
Dx

d

dt

(
J
√
h
)
J−1 d3 x =

∫
Dx

(
J−1
√
h

d

dt
J +

d

dt

√
h

)
d3 x,

(5.54)
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where we have used J−1 J = 1.

To simplify this expression further, we require an expression for the Eulerian

velocity in terms of the diffeomorphism, f . To reformulate the Eulerian veloc-

ity consider the coordinate time derivative of the determinant of the Jacobian

matrix (J),

∂t |Xi det

(
∂xi

∂Xj

)
= ∂t |Xi det(J i

j ) = ∂t |Xi J. (5.55)

Using the Jacobi identity we find

∂t |Xi J = detJ tr
(
J −1 ∂t |Xi J) = J tr

(
∂Xj

∂xk
∂

∂Xj
(∂t |Xi f

i )

)
= J

∂

∂xi

(
∂t |Xi f

i
)

= J ∂i V
i.

(5.56)

Furthermore, recalling (5.25), (5.54) simplifies to,

d

dt
VD (t) =

∫
Dx

(
∂t|xi

√
h+ V k ∂ k

√
h+ ∂ k V

k
√
h

)
d3 x

=

∫
Dx

(
1

2
h ij ∂t|xi h ij +

1

2
h ij V k ∂ k h ij + ∂ kV

k

)
√
h d3 x,

(5.57)

where we have used the Jacobi identity, as in (5.56) for the last equality – in

order to differentiate
√
h. The last two terms can also be simplified by noting

DkV
k = ∂kV

k + ΓkklV
l

= ∂kV
k +

1

2
h ki
(
hik,l + hil,k − hkl,i

)
V l

= ∂kV
k +

1

2
h ij V k ∂k hij.

(5.58)

Finally, using the trace of (5.46) and (5.58), (5.57) can be simplified to:

d

dt
VD =

∫
Dx

(
−NK +D i V

i +D i β
i
)√

h d3x

=

∫
Dx

(
−NK +D i (Nv

i )
)√

h d3x.

(5.59)

5.3.2 Scalar Averaging and Commutation Rule

We define the extrinsic average of any scalar field11 ψ on the compact comoving

domain D as

〈ψ 〉D (t) :=
1

VD

∫
D
ψ nµ dσµ =

1

VD

∫
Dx

ψ (t, x i)
√
h d3x. (5.60)

11This should not be confused with the curvature perturbation scalar from perturbation
theory.
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Noting that all of the terms in (5.59) are scalars, we can apply this definition

to (5.59):
1

VD
d

dt
VD =

〈
−NK +D i (Nv

i )
〉
D
. (5.61)

Using this we may find the coordinate-time derivative of an averaged scalar:

d

dt
〈ψ 〉D = −

(
1

VD

∫
Dx

ψ
√
h d3x

)(
1

VD
d

dt
VD

)
+

1

VD
d

dt

∫
Dx

ψ
√
h d3x

= −〈ψ 〉D
〈
−NK +D i (Nv

i )
〉
D

+
1

VD
d

dt

∫
Dx

ψ
√
h d3x.

(5.62)

The second term on the right-hand side can be expanded and simplified further

by taking similar steps to the derivation of the coordinate-time derivative of the

Riemannian volume. We demonstrate the first step:

d

dt

∫
Dx

ψ
√
h d3x =

d

dt

∫
DX

ψ (t,f)
√
h J d3X

=

∫
DX

d

dt

(
ψ (t,f)

√
h J
)

d3X.

Using the product rule and the steps used previously, we find,

1

VD
d

dt

∫
Dx

ψ
√
h d3x =

〈 d

dt
ψ
〉
D

+
〈(
−NK +D i (Nv

i )ψ
)〉
D
. (5.63)

Inserting this back into (5.62) we obtain the commutation rule:

d

dt
〈ψ 〉D −

〈 d

dt
ψ
〉
D

= −〈ψ 〉D
〈
−NK +D i (Nv

i )
〉
D

+
〈(
−NK +D i (Nv

i )
)
ψ
〉
D
. (5.64)

This is referred to as the ‘the commutation rule’ because it is the difference of

two operators, the time evolution and spatial averaging. This is valid for any 3+

1 foliation of spacetime and any scalar ψ. One may note that this commutation

rule does not depend on the shift vector, therefore, is also independent of the

propagation of the spatial coordinates. It may seem as there is a dependence

on the shift through the (Nv i) term. However, this term is only equal to the

shift vector in the weak Lagrangian description, and the whole derivation here

has been fully general.

The commutation rule can also be formulated in terms of the kinematic

variables. This is done by noting

D i (Nv
i ) = v iD iN +ND i v

i

= N nαvi∇α ni +ND i v
i

= N nα(∇α(vini)− ni∇α v
i) +ND i v

i

= 0 +ND i v
i = N∇ν v

ν ,

(5.65)
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where we have used DiN = Nai (introduced and used in (3.68)), the fact

that ni = 0, and v 0 = 0 for the last equality12. With the use of (5.65) and

K = −∇ν n
ν , we obtain:

−NK +D i (Nv
i ) = N

(
∇ν (n ν + v ν)

)
=
N

γ
Θ− 1

γ

dγ

dt
, (5.66)

where we have used (5.5) for the last equality. Therefore, the commutation rule

can be written as

d

dt
〈ψ 〉D −

〈 d

dt
ψ
〉
D

= −〈ψ 〉D

〈
N

γ
Θ− 1

γ

dγ

dt

〉
D

+

〈(
N

γ
Θ− 1

γ

dγ

dt

)
ψ

〉
D

. (5.67)

5.3.3 Extrinsically Averaged Evolution Equations

To make a comparison with the standard evolution equations of the FLRW

model, we define a scale factor. Buchert [3, 4] refers to this as the extrinsic

effective scale factor aD which is defined as

aD(t) :=

(
VD(t)

VDi

)1/3

, (5.68)

where VDi
refers to volume of the domain at the ‘initial time’ ti. We may then

reformulate the domain volume expansion rate as

1

aD

daD
dt

=
1

3

〈
−NK +D i (Nv

i )
〉
D
. (5.69)

To derive the first effective evolution equation let us consider the Hamilto-

nian constraint (3.88):

R+K 2 −K ijK ij = 16πGE + 2 Λ. (5.70)

We can rearrange this equation and multiply through by N2 to obtain

N2R+N2 (K 2 −K ijK ij)−N2 16πGE − 2N2Λ = 0. (5.71)

We can now “take an average” of this equation by using (5.60):

−〈N2R〉D −〈N2(K2−KijKij) 〉D + 〈N216πGE 〉D + 〈 2N2Λ 〉D = 0. (5.72)

12One cannot immediately assume that ∇0 v
0 = 0. However, expanding this covariant

derivative, we do in fact obtain zero as the result.
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If we now square (5.69) and then combine it with (5.72) (effectively adding zero)

we obtain

3
( 1

aD

daD
dt

)2

=
1

2

( 2

3

〈
NK +D i (Nv

i )
〉2

D
−
〈
N2(K2 −KijKij )

〉
D

)
+ 8πG 〈N2E 〉D + 〈N2Λ 〉D −

1

2
〈N2R〉D .

(5.73)

We define the kinematical backreaction as:

QD = −2

3

〈
NK +D i (Nv

i )
〉2

D
+
〈
N2(K2 −KijKij )

〉
D
, (5.74)

so that the first two terms in (5.73) areQD. Substituting the definition of energy

(5.20) into (5.73) we find the first extrinsically averaged evolution equation,

3
( 1

aD

daD
dt

)2

= −1

2
QD −

1

2
〈N2R〉D + 〈N2 〉D Λ + 8πG〈N2ρ 〉D −

1

2
TD,
(5.75)

where TD is the stress-energy backreaction term, defined as

TD := −16πG

〈
N2
(

(γ2 − 1) (ρ+ p) + 2 γv αqα + v α v βπαβ

)〉
D

. (5.76)

In the literature, it is common to define

HD :=
1

aD

daD
dt

,

which is an effective Hubble parameter.

The second effective extrinsically averaged equation is the “acceleration”

equation. The original form of this equation was introduced by Buchert [4]

by averaging the Raychaudhuri equation for geodesic dust flow. Here we shall

use the trace of (5.47) and the commutation rule, (5.64). First, note that by

differentiating (5.69) with respect to coordinate time we have,

3
1

aD

d2aD
dt2

= 3H2
D +

d

dt

〈
−NK +D i (Nv

i )
〉
D
. (5.77)

By use of the commutation rule we can expand the second term

d

dt

〈
−NK +D i (Nv

i )

〉
D

=

〈
−K d

dt
N −N d

dt
K +

d

dt
D i (Nv

i )

〉
D

−
〈
−NK +D i (Nv

i )
〉2

D
+
〈

(−NK +D i (Nv
i ))2

〉
D
. (5.78)

To simplify this expression, we change the time derivative to a partial coordinate

time derivative with respect to, x i, according to d/dt = ∂/∂t |x i + V i ∂i. Using
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the trace of (5.47), allows us to expand the (dK/dt) term in (5.78). The trace

of (5.47) (multiplied by N) is

N ∂t |x i K = N2
(
R+K 2 + 4πG [3 (S − E)− 2S ]− 3 Λ

)
−D iD iN + β iD iK. (5.79)

Substituting this into (5.78) and then rearranging we find the second extrinsi-

cally averaged evolution equation:

3
1

aD

d2aD
dt2

= −4πG
〈
N2 (ρ+ 3p)

〉
D

+ 〈N 2 〉D Λ +QD + PD +
1

2
TD, (5.80)

where

PD :=

〈(
D i(Nv

i )
)2

+
d

dt

(
D i (Nv

i )
)

− 2NKD i (Nv
i)−N2 v iD iK

〉
D

+

〈
N D iD iN −K

dN

dt

〉
D

, (5.81)

is the extrinsic dynamical backreaction.

There are two conditions for these equations to hold, namely, the integra-

bility and energy balance conditions. The integrability condition is for the

assurance that one can integrate (5.80) to obtain (5.75). This is obtained by

taking the coordinate time derivative of (5.75) and then by substituting in the

expressions for (5.75) and (5.80). The source part of this condition must also

satisfy the averaged energy conservation law. The relevant expressions are given

in section 3.4.2 of Buchert et al. [3].

5.4 Discussion

5.4.1 Backreaction Discussion

In subsection 2.6.1 we discussed how backreaction arises from the averaging of

the Einstein equations. In the previous section we used the commutation rule

for extrinsically averaged scalars and found that the Friedmann analogues have

extra terms than one would obtain by averaging crudely. These extra terms

are precisely the backreaction terms. We note that the backreaction terms are

identically zero if one chooses to use periodic boundary conditions by Gauss’

theorem. Therefore, one must be careful in simulations when attempting to

determine backreaction effects:

The different types of backreaction are summarised as below.
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• QD : The kinematical backreaction term. This term was the original ‘type’

of backreaction to be discussed by Buchert in13 [4]. The kinematical back-

reaction is so named because it was originally introduced by averaging the

Raychaudhuri equation (for a geodesic congruence) where the right-hand

side is given in terms of the kinematic variables Θ, σ, and ω. For this rea-

son, the kinematical backreaction describes the impact of inhomogeneities

on the average expansion related to the variance of the expansion as well

as the averaged shear, and vorticity [4, 34]. We will also encounter the

kinematic variables when we discuss the intrinsic averaging approach.

The sign of the kinematical backreaction can change the dynamics of a

domain. If QD > 0 then the kinematical backreaction contributes to the

acceleration of the expansion of the domain we average over. If QD < 0

then the kinematical backreaction will ‘slow down’ the expansion of the

domain we average over and will thus contribute to deceleration. If QD =

0 then there are no inhomogeneities present in the domain.

• PD : The dynamical backreaction term. Dynamical backreaction was in-

troduced in [34], where a congruence of general timelike curves was used —

more precisely, not necessarily geodesics — without vorticity. This meant

that an acceleration term was present in the Raychaudhuri equation. For

this reason, the dynamical backreaction arises from non-vanishing pres-

sure gradients in the spatial hypersurfaces [34]. As formulated in (5.81),

the link to 4–acceleration is not entirely obvious, however. The sign of

the dynamical backreaction also provides us with knowledge of the dy-

namics of a domain. If PD > 0 then the dynamical backreaction behaves

as an acceleration term to the domain averaged over. If PD < 0 then the

dynamical backreaction contributes a deceleration term to the domain

averaged over.

• TD : The stress-energy back reaction term. This backreaction term is

purely due to the tilt of the fluid 4-velocity u relative to the hypersurface

normal vector, n. It can be interpreted in the following ways.

1. TD measures the difference in the energy of the fluid as measured in

its rest frames relative to the values measured in the normal frames.

As such, it is an average measure of the kinetic energy of the fluid

as measured in the normal frames. One can show this by expressing

(5.20) as

E − ρ = (γ2 − 1) (ρ+ p) + 2 γv αqα + v α v β παβ

= Tµνn
µnν − Tµνuµuν ,

(5.82)

13Note that the original construction of Buchert averaging did not include vorticity as only
a fluid-orthogonal approach was considered.
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allowing us to write

TD = −16πG
〈
N2 (Tµνn

µnν − Tµνuµuν)
〉
D
. (5.83)

2. TD also expresses the difference between the isotropic pressure mea-

sured in the rest frames of the fluid and the normal frames. Using

(5.21), we find

E − ρ = S − 3p = Tµνh
µν − Tµν bµν , (5.84)

and therefore,

TD = −16πG
〈
N2 (Tµνh

µν − Tµνbµν)
〉
D
. (5.85)

3. TD corresponds to a ‘bulk’ tilt contribution. This is because for

a boundary-free domain, TD does not vanish whereas the tilt con-

tributions (terms that contain v) in QD and PD vanish for such a

domain14.

The first two interpretations follow from the construction of the extrinsi-

cally averaged evolution equations, using the intrinsic variables — ρ and

p. These equations are derived, however, from observations made in the

normal frames which measure E and S.

The sign of TD will usually be constrained and remain negative [3], with

the interpretation that −TD is a measure of the kinetic energy. This means

that this particular type of backreaction will contribute a ‘deceleration’

term to the effective acceleration.

We have discussed the effects of the signs of each of the backreaction terms,

however, the overall sign is the most important factor. If we combine all of

the backreaction terms into one term, QD = QD + PD + TD, then in (5.80) a

negative sign for QD will contribute to a deceleration of the domain we average

over. Conversely a positive sign will contribute to an acceleration of the domain

we average over.

A negative sign for the overall backreaction, QD, can be thought of as being

phenomenologically similar to dark matter since it increases the deceleration

one would infer for a given fluid rest energy. By contrast, a positive overall

backreaction has the same sign as the cosmological constant term in (5.80)

and could, therefore, be phenomenologically similar to dark energy as it could

contribute to an accelerated expansion. However, this analogy is not complete

as the two backreaction terms, QD and TD enter the analogue of the Friedmann

equation (5.75) with the opposite sign to the cosmological constant.

14For more detail on this and a derivation of the effective equations for a boundary-free
domain see section 3.5.3 of Buchert et al. [3].

89



Furthermore, we stress that care must be taken when interpreting (5.75)

and (5.80) since they refer to statistical averages on extrinsic hypersurfaces

with respect to an average time parameter, t, not to local observables. In

Wiltshire’s timescape model [35], using realistic initial conditions the backreac-

tion never grows large enough to dominate the right-hand side of (5.75), and

3 a−1
D (d2aD/dt

2) remains negative (decelerating). Nonetheless, the local proper

time parameter, τ , of observers in ‘bound structures’ ‘drifts’ from the statis-

tical extrinsic t parameter. This ‘drift’ is so extreme, that at late epochs the

observers in ‘bound structures’ infer a positive acceleration at late epochs with

respect to τ .

5.4.2 Extrinsic Conservation of the Fluid Rest Mass

The averaging approach discussed above is from the “extrinsic point of view”,

i.e., not in the rest frames of the fluid. In the literature, this has led to a

concern with the conservation of the rest mass of the fluid. Buchert et al. [3]

show that the averaging procedure we have followed does indeed result in a

conserved fluid rest mass as shown below. Therefore, we follow the Buchert

scheme of averaging rather than others. We discuss this in relation to three

possible choices for picking how the domain propagates, corresponding to the

three timelike congruences introduced.

The first choice is to assume the domain evolves along the congruence of

coordinate frames ∂t, considered implicitly by Larena [187] and Brown et al.

[188]. This choice has two problems: The first problem is that for a specific

choice of shift, the vectors ∂t and u will not be collinear. In general, this

means that the fluid elements will flow across the boundary of the domain.

One may question the use of averaged evolution equations for a domain that

evolves according to ∂t, since the number of fluid elements at the one time

cannot be guaranteed to be the number of fluid elements at a later time. The

second problem is that the location of the averaging domain at a given time will

depend of the choice of the shift vector. This results in the averaged system

of equations depending on the choice of coordinates and how they propagate,

which is ‘unphysical’.

The second choice is to have the averaging domain to propagate along the

integral curves of the normal vector associated to the normal frames, n. This

choice is distinct from ∂t (characterised by the shift) and from the fluid 4–

velocity (characterised by the tilt). This choice is considered by15 Gasperini

et al. [190]. Others such as Beltrán Jiménez et al. [191] and Smirnov [192]

assume n to be geodesic and equivalent to the 4–velocity of the fluid (whereas

Gasperini et al. assume u and n differ). These choices either restrict the degrees

15Gasperini et al. use a window function and have a covariant spacetime averaging formal-
ism, rather than considering averages on spatial hypersurfaces [189].
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of freedom in setting up the 3+1 splitting of space time, or more generally result

in the fluid flowing over the boundary of the averaging domain.

The third choice is the one we have followed where the domain is comoving

with the fluid — the boundaries follow u as shown in Figure 5.2. This ensures

that the collection of fluid elements in the domain of averaging remains constant

as the domain evolves in time. Such a choice, however, is only advantageous

for one fluid. The two fluid or multi-fluid approach to cosmology has been

investigated in recent years, see [193, 194]. The two-fluid approach, where

one fluid is pressureless dark matter and the other is baryonic matter would

be particularly interesting to investigate in future studies with the Buchert

formalism. If one wishes to repeat this with even two fluids, however, we would

have to choose the domain to propagate along the congruence of only one, thus

only preserving one fluid rest mass.

We now show how the fluid rest mass is indeed conserved. We introduce the

conserved fluid rest mass flux vector M ,

M α := µuα , ∇αM
α = 0, (5.86)

recalling that µ is the conserved rest mass density. We represent the rest mass

of the fluid within the domain by the flow of M through D as

MD :=

∫
D
Mα dσα =

∫
D
−µuαnα

√
h d3x = VD 〈 γµ 〉D , (5.87)

where we have used the scalar averaging equation, (5.60) and −uαnα = γ.

We demonstrate that the rest mass of the fluid is conserved by integration

of the conversation equation for M over the ‘spacetime tube’, T , shown in

Figure 5.2. This spacetime tube can be thought of as the portion of M swept

out by the propagation of D between two hypersurfaces at times t1 and t2 where

t2 > t1. We use Gauss’ theorem to express this integration as

0 =

∫
T

∇αM
α√g d4 x =

∮
∂T

Mα dηα, (5.88)

where g := | det( gµν ) | and dηµ is the outward-oriented volume element on the

boundary of T , which we represent with ∂T . This equation can be decomposed

into three parts, one for the rest mass of the fluid at t1, one for the rest mass of

the fluid at t2, and one for the flux of the rest mass past the boundary of the

domain. To perform this decomposition we introduce the timelike part of ∂T ,

A . This part of the boundary has an outward-oriented unit normal vector, A

(see Figure 5.2 to visualise the various vectors). The timelike part, A also has

an associated volume 3–form, dVA . We can thus rewrite (5.88) as

0 =

∫
Dt2

γµ
√
h d3x−

∫
Dt1

γµ
√
h d3x+

∫
A

MαAα dVA

= MDt2
−MDt1

+

∫
A

µuαAα dVA .

(5.89)
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Figure 5.2: Representation of the spacetime tube, T , from Buchert et al. [3]. The
two domains at t2 and t1, and the various vectors used in the rest mass preserving
proof are shown here. The vector n is orthogonal to the hypersurfaces at t1 and t2
and the 4–velocity is titled with respect to it. The vector A is orthogonal to the
4–velocity. Note the domain boundary is transported along the fluid congruence.

The last term on the right-hand side vanishes because the domain of the bound-

ary is transported along u. This implies that the outward-oriented normal vec-

tor A is everywhere orthogonal to u, hence uαAα = 0. Therefore, we find,

MDt2
= MDt1

, showing that the rest mass is preserved. In general, however,

the last term will not be zero depending on which congruence the averaging

domain is transported along — leading to the problem of rest mass now being

conserved.

A proof of this can be constructed by considering the three congruences:

Consider an outward-oriented vector for a domain (not the one we are averaging

over) that is comoving along the congruence of curves with tangent vector u,

A(u). We have shown that this corresponds to a conserved rest mass because

A(u) and u are orthogonal. Now consider our actual domain of averaging that

moves along the congruences with tangent vector ∂t. This domain of averaging

has an outward-oriented normal vector A(∂t). We relate the two vectors by

A(∂t) = A(u) − V . (5.90)

Therefore, if we consider the integral above,∫
A

µuαA
α
(∂t) dVA =

∫
A

µuα (Aα
(u) − V α ) dVA , (5.91)

then we notice there is an extra term which corresponds to the flux (F ) through
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the averaging domain,

F = −
∫

A

µuα V
α dVA . (5.92)

One could repeat this argument for an averaging domain that propagates along

the congruence with tangent vector n by replacing V with Nv.

5.4.3 Time-Reparameterization Invariance of Extrinsi-
cally - Averaged Equations

In Chapter 6 we will develop the Buchert averaging formalism under the rules

of the post-Newtonian expansion. The particular form of the post-Newtonian

expansion we will follow by Clifton et al. [1] uses conformal time instead the

coordinate (or ‘cosmic’) time. Furthermore, the conformal time, η is dimen-

sionful, a point which is not discussed in depth in the literature. While we can

show that the Buchert equations, (5.75) and (5.80), are invariant under a time

reparameterization, this does not help us to understand what a ‘dimensionful’

conformal time means physically and following others in the literature we treat

it simply as a mathematical construct.

A time reparameterization of the form t 7→ T (t) can be implemented by

transforming the lapse function as:

N 7→ Ñ = N
dt

dT
. (5.93)

In (5.75) this means that the left-hand side will gain a factor of (dt/dT )2, and

therefore the right-hand side must also gain the same factor in order for the

entire equation to be invariant. Note that under the transformation (5.93) we

then have

− 1

2
QD −

1

2
〈N2R〉D + 〈N2 〉D Λ + 8πG〈N2ρ 〉D −

1

2
TD 7→

− 1

2

( dt

dT

)2

QD −
1

2

( dt

dT

)2

〈N2R〉D +
( dt

dT

)2

〈N2 〉D Λ+

8πG
( dt

dT

)2

〈N2ρ 〉D −
( dt

dT

)2 1

2
TD.

(5.94)

From the definition of the extrinsic kinematical backreaction (5.74) note that

we have assumed that the reparameterization only impacts the lapse and not

the ‘doubly contracted’ extrinsic curvature, the scalar extrinsic curvature, nor

the 3–dimensional intrinsic curvature. This is the essential part of the argument

since, the Buchert equations would otherwise not be invariant under the time

reparameterization. Since these quantities are scalars, they will not change
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under a time reparameterization and thus we find

3

a2
D

( dt

dT

)2(daD
dt

)2

= −1

2

( dt

dT

)2

QD −
1

2

( dt

dT

)2

〈N2R〉D+( dt

dT

)2

〈N2 〉D Λ + 8πG
( dt

dT

)2

〈N2ρ 〉D −
( dt

dT

)2 1

2
TD 7→

3

a2
D

( daD
dt

)2

= −1

2
QD −

1

2
〈N2R〉D + 〈N2 〉D Λ + 8πG〈N2ρ 〉D −

1

2
TD.

(5.95)

I.e., the equation is invariant under a time reparameterization.

The second averaged equation, (5.80) is slightly more complicated. While

the discussion from above will still apply, i.e., we gain an extra factor of

(dt/dT )2, the dynamical backreaction, PD, and (3/aD) (d2aD/dt
2) will each

undergo an affine transformation. This will be the same for both sides and thus

the equation will remain invariant. To see this, first consider the effect of (5.93)

on the left-hand side of (5.80):

3

aD

dt

dT

d

dt

(
dt

dT

daD
dt

)
=

3

aD

(
daD
dt

d2t

dT 2
+

(
dt

dT

)2
d2aD
dt2

)
. (5.96)

The first term on the right-hand side cancels exactly with a similar transforma-

tion in the PD term, namely
〈

d/dt
(
Di(Nv i)

)
−K dN/dt

)〉
D

term. Under the

transformation (5.93) this becomes〈
d2t

dT 2

(
Di(Nvi) +

d

dt
(Di(Nvi)

)
+

d2t

dT 2
K
(
N +

d

dt
N
)〉
D

. (5.97)

Noting that by (5.69)

3

aD

(
daD
dt

d2t

dT 2

)
=

d2t

dT 2

〈(
Di (Nv

i) +KN
)〉
D

, (5.98)

we find

3
1

aD

d2aD
dt2

= −4πG
〈
N2 (ρ+ 3p)

〉
D

+ 〈N 2 〉D Λ +QD + PD +
1

2
TD 7→

3

aD

((
dt

dT

)2
d2aD
dt2

)
+

d2t

dT 2

〈(
Di (Nv

i) +KN
)〉
D

=

− 4πG

(
dt

dT

)2〈
N2 (ρ+ 3p)

〉
D

+

(
dt

dT

)2

PD +

〈
d2t

dT 2

(
Di(Nvi)

)
+

d2t

dT 2
KN

〉
D

+

(
dt

dT

)2

〈N 2 〉D Λ +

(
dt

dT

)2

QD +
1

2

(
dt

dT

)2

TD,

(5.99)
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and therefore, under (5.93)

3
1

aD

d2aD
dt2

= −4πG
〈
N2 (ρ+ 3p)

〉
D

+ 〈N 2 〉D Λ +QD + PD +
1

2
TD 7→

3
1

aD

d2aD
dt2

= −4πG
〈
N2 (ρ+ 3p)

〉
D

+ 〈N 2 〉D Λ +QD + PD +
1

2
TD,

(5.100)

i.e., the equation is invariant under a time reparameterization.

5.5 Fluid-Intrinsic Scalar Averaging

The various results in the literature discussed in subsection 5.4.2 adopt the ex-

trinsic fluid averaging approach. This was not the approach originally taken

by Buchert 20 years ago [4, 34]. Extrinsic averaging procedures are built from

averaging domains that evolve along the normal congruence or along the co-

ordinate congruence associated with ∂t. As we showed, these approaches face

challenges with not being able to preserve the rest mass of the fluid, and suffer

from a potential coordinate dependence.

The averaging procedure of subsection 5.3.3 does not suffer from these prob-

lems. Nevertheless, Buchert et al. [3] argue that the intrinsic properties of the

fluid such as Θ, σ2, and ω2 are ‘more relevant’ for characterising an effective

cosmological model. The extrinsic approach, however, can be used to be a

‘measure’ of the deviations from the dynamics of an isotropic and homogeneous

model of the Universe.

There are, however, limitations to the intrinsic approach which we will also

discuss. Recall that the kinematic variables introduced in section 3.5, these

variables were introduced in the context of a 1 + 3 formalism. As discussed,

the basic structure in the 1+3 formalism is a congruence of timelike curves and

not a hypersurface, which is required for the averaging operations. Therefore,

intrinsic averaging can be interpreted as a 1+3 formalism jointly with a 3+1 for-

malism. The limitation here is that the fluid rest frames of a fluid with vorticity

are not hypersurface-forming. Thus, while we may be able to mathematically

describe the intrinsically averaged equations using only the comoving descrip-

tion introduced in section 5.2, we still require extra mathematical structure to

be rigorous — for instance, the Lagrangian description.

5.5.1 Intrinsic Averaging Operator

For the “fluid intrinsic” averaging, we shall use the fluid intrinsic metric, b

instead of the induced metric on the normal frames, h. Firstly, let us determine

the relation between the determinants of b and h,

b = det (gij + uiuj) = det (hij + uiuj) = h det (δij + h ijukuj)

= h (1 + h ijuiuj) = h (1 + hµνuµuν) = hγ2,
(5.101)
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and therefore,
√
b d3x = γ

√
h d3x. Thus, we see that the two volume measures

coincide when the fluid flow is hypersurface orthogonal, as expected. We also

claim that since the volume measured with respect to the fluid rest frames is

the ‘proper’ volume, this is the ‘more natural’ averaging scheme. We define the

total proper volume of the fluid elements within a domain D:

V bD(t) :=

∫
D
uµ dσµ =

∫
D
γ
√
h d3x =

∫
D

√
b d3x. (5.102)

The superscript b indicates that the volume is evaluated with respect to the

metric b. Indeed if one compares the expression for the rest mass of the fluid

using
√
b d3x we find

MD =

∫
D
γµ
√
h d3x =

∫
D
µ
√
b d3x, (5.103)

which is what one would expect when defining the rest mass. The difference

between this definition and (5.87) is due to the fact that the rest mass density,

µ, is a quantity in the rest frame of the fluid.

We further define the intrinsic scalar average over D for any scalar, ψ in D
as:

〈ψ 〉bD :=
1

V bD

∫
D
ψ uµ dσµ =

1

V bD

∫
D
ψ γ
√
h d3x

=
1

V bD

∫
D
ψ
√
b d3x.

(5.104)

The expressions for the volume and the scalar averaging only differ from the

fact that the volume 3–form used is now built from u instead of n. However, the

coordinate time derivative of the volume and the intrinsic evolution equations

will differ in more ways as we are using the comoving description. The two

averaging schemes are related as follows:

V bD = V hD 〈 γ 〉hD , and 〈ψ 〉bD =
1

〈 γ 〉hD
〈 γ ψ 〉hD , (5.105)

where we have used the superscript h to indicate volumes and averages with

respect to the induced metric on the normal frames, h. We notice again that the

volumes with respect to the different metrics and scalar averages coincide in the

absence of tilt, i.e., when γ = 1. We also have an approximate equivalence in

the case of small tilts which corresponds to non-relativistic Eulerian velocities.

Furthermore, we note that in general, V bD > V hD , this can be seen as a Lorentz

contraction of the volume of each fluid element because the tilt corresponds to

a boost.

5.5.2 Fluid-Intrinsic Time Evolution

To determine the time evolution of the intrinsic fluid volume V bD we follow the

same procedure as in the extrinsic case. We change the spatial coordinates
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to comoving ones in order to determine the commutation rule between time

evolution and spatial volume integration. The distinction here is that we are

explicitly using the comoving description (hence the coordinate velocity, V =

0). Therefore, we have the following:

1

V bD
d

dt
V bD =

1

V bD

∫
Dx

(
1

2
b ij

d

dt
bij

)
√
b d3x, (5.106)

which may be simplified by using (5.41), to obtain

1

V bD
d

dt
V bD =

〈
N

γ
Θ

〉b

D

=
〈

Θ̃
〉b
D
. (5.107)

Here, we have introduced the ‘rescaled scalar expansion’, Θ̃ := (N/γ) Θ, which

may be interpreted as the fluid’s ‘local expansion’ with respect to the coordinate

time t. One the other hand, Θ, describes the local expansion with respect to

the proper time, τ , because N/γ = dτ/dt.

In terms of evolution by the coordinate time, t, and intrinsic spatial averages,

we arrive at the commutation rule,

d

dt

〈
ψ
〉b
D
−

〈
d

dt
ψ

〉b

D

= −
〈

Θ̃
〉b
D

〈
ψ
〉b
D

+
〈

Θ̃ψ
〉b
D
. (5.108)

This commutation rule is, again, independent of the shift due to the coordinate

independent definition of the domain propagation. However, there is still a

dependence on the tilt through the factor N/γ in the rescaled expansion factor.

Furthermore, given the local continuity equation, dµ/dt + Θ̃µ = 0 we see that

substituting ψ = µ in (5.108) gives

d

dt

〈
µ
〉b
D
−
〈

Θ̃
〉b
D

〈
µ
〉b
D

= 0, (5.109)

which is equivalent to the rest mass conservation equation, where MD =

V bD 〈µ 〉bD .

5.5.3 Fluid-Intrinsic Averaged Evolution Equations

We define the intrinsic effective scale factor in the domain D similarly to before,

except we use the intrinsic volume domain:

a bD(t) :=

(
V bD(t)

VDi

)1/3

. (5.110)

The rate of change of the scale factor defines the averaged fluid expansion rate

in coordinate time16:

H b
D :=

1

a bD

da bD
dt

=
1

3

〈
Θ̃
〉b
D
. (5.111)

16Note the similarity between this expression and the definition of the Hubble parameter
and the expansion scalar we introduced in (3.98). The difference here is that we are using a
local Hubble parameter valid only for the domain we average over.
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Instead of using the Einstein equations projected along n as we did in sec-

tion 5.3, we express the local dynamics of the fluid by a projection of Einstein’s

equations along u. This projection yields Raychaudhuri’s equation, expressed

slightly differently from section 3.5:

Θ̇ = −1

3
Θ2 − 2σ2 + 2ω2 +A− 4πG (ρ+ 3p) + Λ, (5.112)

where A = ∇µ a
µ. Raychaudhuri’s equations can be complemented by an

analogue to Gauss’ equation (3.63). We define a ‘fluid rest frame 3–curvature’

scalar, R from the 4–Ricci tensor and scalar:

R := ∇µ u
ν∇ν u

µ −∇µ u
µ∇ν u

ν +R + 2Rµν u
µu ν . (5.113)

The scalar Gauss equation (3.63), however, is only valid when there exist

u-orthogonal hypersurfaces, and this is only the case when there is zero vortic-

ity. In the case of vanishing vorticity, R does coincide with the scalar intrinsic

curvature of the u-orthogonal hypersurfaces. For non-zero vorticity, however,

we cannot interpret R as the intrinsic scalar curvature. We emphasise that in

general R is not equal to the scalar curvature R of the n-orthogonal hypersur-

faces.

We may form a constraint equation by substituting the Einstein equations

directly projected along u into (5.113):

2

3
Θ2 − 2σ2 + 2ω2 + R = 16πGρ+ 2Λ, (5.114)

where the covariant derivative of u have been decomposed into its kinematic

parts. This equation allows us to relate R to the fluid rest frame energy den-

sity. Following the derivation of the extrinsically averaged evolution equations,

we multiply (5.114) and (5.112) by (N/γ)2 and then use the evolution of the

intrinsic volume and scalar averaging formulae to determine the intrinsically

averaged evolution equations. Let us first introduce the rescaled variables of

interest:

σ̃2 :=

(
N

γ

)2

σ2, ω̃2 :=

(
N

γ

)2

ω2, ρ̃ :=

(
N

γ

)2

ρ, p̃ :=

(
N

γ

)2

p,

Ã :=

(
N

γ

)2

A, and R̃ :=

(
N

γ

)2

R.

(5.115)

By squaring (5.111) and rearranging the rescaled version of (5.114) such that

we add zero to the squared effective Hubble parameter, we obtain the first

intrinsically averaged evolution equation:

3 (H b
D)2 = 8πG〈 ρ̃ 〉bD −

1

2
〈 R̃ 〉bD + Λ̃ b

D −
1

2
Q̃ b
D, (5.116)

98



where,

Λ̃ b
D := Λ

〈
N 2

γ2

〉b

D

, (5.117)

and

Q̃ b
D :=

2

3

(〈
Θ̃ 2
〉b
D
−
〈

Θ̃
〉b
D

2

)
− 2

〈
σ̃ 2
〉b
D

+ 2
〈
ω̃ 2
〉b
D
, (5.118)

which is the intrinsic kinematical backreaction. Furthermore, by differentiat-

ing (5.111) with respect to coordinate time, using the intrinsic commutation

rule (5.108), rewriting (5.112) in terms of coordinate time, and substituting in

(5.116) we obtain the second intrinsically averaged evolution equation:

3
1

a bD

d2a bD
dt

= −4πG 〈 ρ̃+ 3p̃ 〉bD + Λ̃ b
D + Q̃ b

D + P̃ b
D, (5.119)

where

P̃ b
D :=

〈
Ã
〉b
D

+

〈
Θ̃
γ

N

d

dt

(
N

γ

)〉b

D

, (5.120)

is the intrinsic dynamical backreaction. Once again, there are completeness

conditions, such as an integrability condition that ensures one can obtain (5.116)

from (5.119): these can be found in section 4.2.2 of [3].

Note that the backreaction terms in this intrinsic formalism, Q̃ b
D and P̃ b

D
are not in general the same as the backreaction terms we have formulated in

subsection 5.3.3. They do coincide, however, in the case of a hypersurface

orthogonal flow. In that case, we have K ij = −Θ ij, ω
2 = 0, and Ã = NDiDiN ,

so that the two definitions of backreaction terms will be the same.

There is no stress-energy backreaction in the intrinsic averaging case, nor

is there a stress-energy backreaction in the fluid-orthogonal extrinsic averaging

case. We had previously stated that TD was due to the tilt characterised by Nv.

However, there is still a remnant of the tilt in the intrinsic averaging scheme

due to the comoving description. Therefore, perhaps, a more precise statement

is that a stress-energy backreaction will manifest whenever one attempts to

average over a domain which has a normal vector that is not collinear to the

fluid 4–velocity.

5.5.4 Effective Friedmannian Form

In the interest of making a correspondence with the standard Friedmann equa-

tions, we can reparameterize quantities in (5.116) and (5.119). We shall make

this correspondence by rewriting these equations as if they are sourced by an

effective stress-energy tensor [3, 4]. We define the corresponding effective, time-
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dependent energy density and pressure:

ρ beff(t) := 〈 ρ̃ 〉bD −
1

16πG
Q̃ b
D −

1

16πG
W̃D +

1

8πG
L̃D ; (5.121)

p beff := 〈 p̃ 〉bD −
1

16πG
Q̃ b
D +

1

48πG
W̃D −

1

8πG
L̃D −

1

12πG
P̃ b
D, (5.122)

where we have new backreaction terms W̃D and L̃D. Here (5.121) describes the

deviation of the averaged fluid 3–curvature, 〈 R̃ 〉bD from a constant curvature

‘behaviour’. While (5.122) describes the deviation of17 Λ̃ b
D from the cosmological

constant, they are defined as:

W̃D := 〈 R̃ 〉bD − 6
1

(a bD)2
kDi

, and L̃D := Λ̃ b
D − Λ, (5.123)

where kDi
is a domain-dependent constant. With the effective sources, (5.116)

and (5.119) may be rewritten as the respective Friedmann-like equations:

3 (H b
D) 2 = 8πGρ beff − 3

1

(a bD)2
kDi

+ Λ

3
1

a bD

d2a bD
dt

= −4πG
(
ρ beff + 3p beff

)
+ Λ .

(5.124)

5.5.5 Lagrangian Description

In the Lagrangian description, one sets the coordinate time equal to the proper

time by specifying the choice of lapse, N = γ. In the case of the LTB and

Szekeres models that we shall discuss in Chapter 7, we will use a Lagrangian

description18. With this choice, the commutation rule takes the form19:

d

dτ

〈
ψ
〉b
D

=

〈
d

dτ
ψ

〉b

D

−
〈

Θ
〉b
D

〈
ψ
〉b
D

+
〈

Θψ
〉b
D
, (5.125)

and the scale factor evolution equation takes the form:

1

a bD

d

dτ
a bD =

1

3
〈Θ 〉bD . (5.126)

The intrinsically averaged evolution equations, (5.116) and (5.119) in the

Lagrangian picture respectively read:

3 (H b
D )2 = 8πG〈 ρ 〉bD + Λ− 1

2
〈R 〉bD −

1

2
Q b
D ; (5.127)

3
1

a bD

d2a bD
dτ 2

= −4πG 〈 ρ+ 3p 〉bD + Λ +Q b
D + P b

D , (5.128)

17If one assumes the existence of a cosmological constant representing dark energy then
the averaged equations we have shown above suggest we must also account for a dark energy
backreaction.

18We will actually specify coordinates with N = 1 instead of setting N = γ. This is simply
because there will be no tilt considered, hence Nv = 0.

19Note that overdot (the derivative with respect to coordinate time in the comoving de-
scription for a scalar) is the same as d/dt in the Lagrangian picture. Also note that in this
description tilde scalars are the same as normal ones because N/γ = 1
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with the backreaction terms being reduced to:

Q b
D :=

2

3

(〈
Θ 2
〉b
D
−
〈

Θ
〉b
D

2

)
− 2

〈
σ 2
〉b
D

+ 2
〈
ω 2
〉b
D

;

P b
D =

〈
A
〉b
D
.

(5.129)
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Chapter 6

Post-Newtonian Cosmology and
Viable Gauges

In Chapter 4, we introduced standard linear perturbation theory, which is widely

used in cosmology to understand the formation of structure and model inho-

mogeneities. Standard perturbation theory is a weak-field and slow-motion

approximation which assumes that all perturbed quantities are small. The or-

der of smallness is characterised by a parameter, ε, and any terms of order ε2 are

neglected. Post-Newtonian cosmology is also a slow-motion and weak-field ex-

pansion. However, unlike standard perturbation theory, it remains valid when

density contrasts are large. The post-Newtonian formalism does not assume

the same order of magnitude for all perturbed quantities and furthermore, as-

sumes orders of smallness for time derivatives as well. We follow the treatment

of post-Newtonian theory from Clifton et al. [1] with the aim of determining

viable gauge choices in this formalism. It should be noted, however, that this

work builds on earlier paper, such as [195, 196].

When considering the applicability of different approaches to weak-field

gravity, an important factor we must consider is the volume of the domain.

On spatial domains that are “small” and on which matter is moving slowly

(relative to c) one finds the dynamics of gravity can be well approximated by

the Poisson equation. This is the case for the post-Newtonian theory — we

change the structure of the perturbative expansion by reducing partial differen-

tial equations to only spatial variables. In general, however, this simplification

is not valid on large scales.

The key idea that we use in post-Newtonian theory is the domains we con-

sider are ‘sufficiently small’— see Figure 6.1. This restriction is placed so that

a change in the background geometry, over time, is negligible relative to the

time that information of this change will take to propagate from one side of the

system to another. We may express this statement more precisely as follows1.

1In this part of the discussion, for clarity we will not set c = 1. Later on we shall suppress
c again.
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Figure 6.1: The domains in which post-Newtonian theory and cosmological pertur-
bation theory are shown here. Standard perturbation theory applies left of the
blue line. Post-Newtonian theory applies under the red line. Both formalisms
apply on small scales when velocities are small. The characteristic spatial scale of
the system under consideration is denoted by L and the Hubble scale is denoted
LH . This figure is from Clifton et al. [1]

Consider a ‘characteristic time-scale’ for variations in the background geometry

of a system, ηc, in conformal time2. Since gravitational waves propagate at the

speed of light, we may define a characteristic length scale which light travels in

the time the variations of the background occur as

λ c = c η c. (6.1)

In the post-Newtonian approximation λc will be large compared to the scale of

the system we are considering, denoted by rc. The matter in the systems we

consider will generally have a velocity of magnitude vc = rc/ηc. Therefore, the

slow-motion condition, vc � c, is equivalent to the condition rc � λc. This is

precisely the statement above: the slow-motion systems we consider must exist

on spatial scales much smaller than those over which gravitational information

can travel in some time-scale.

It must be noted that the definition (6.1) presupposes that conformal time is

dimensionful — choice II discussed in subsection 2.3.1. I.e., we take dη = dt/a

with a(η) dimensionless rather than dη = c dt/a with a(t) dimensionful which

is the alternative choice. Treating conformal time as dimensionful has become a

common practice in cosmology and is generally considered to be a mathematical

convenience. This choice, however, may have fundamental implications which

have not been fully considered.

When studying the evolution of the Universe we are often interested in

structures that grow over time-scales comparable to the age of the Universe.

2This may, for instance, correspond to the orbital period in close proximity, or the time-
scale for a large body to assemble itself gravitationally.
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We therefore have3, ηc ∼ H−1, implying, λc ∼ cH−1. Note since this is a

heuristic calculation, Clifton et al. in fact assume η c ∼ 3.3hH−1. From the virial

relation we note that the Newtonian potential, φ ∼ v2/c2, and furthermore from

“empirical observations” [1] we know φ ∼ 10−4, implying,

rc
λc
∼ vc

c
∼ 10−2 . (6.2)

We note from (6.1) and the discussion above that λc is the size of the ob-

servable Universe, λc ∼ 104 Mpc, implying rc ∼ 100Mpc. This means that size

of the systems we are restricted to when using a slow-motion and weak-field

expansion are ∼ 100 Mpc or smaller. We characterise an order of smallness in

this expansion, related to the slow-motion condition:

χ :=
vc
c
� 1. (6.3)

Furthermore, we note that the slow-motion condition also has consequences for

the order-of-smallness of derivatives. It follows that if the parts of a system

‘move slowly’ then the time-variation of state variables (here, S) must also vary

slowly. Therefore, we say
∂S

∂η
∼ χ, (6.4)

that is, conformal-time derivatives “add an extra order of smalless”. This im-

plies the background Friedmann equations — which contain two conformal-time

derivatives (or one conformal-time derivative squared) — are of order χ2. Other

post-Newtonian attempts to model large density contrasts are similar to this

approach, except they use an ‘order of largeness’. This is done by making spatial

derivatives large based solely on the Poisson equation [195].

Following Clifton et al. [1], we will hereafter adopt the units c = 1. However,

we will not set G = 1 as they do. Clifton et al. also make the choice of rc = 1,

which results in statements such as χ ∼ 1/ηc ∼ H. These statements are

consistent with χ being dimensionless, however, we stress that when using this

formalism for practical purposes, we would strictly have χ ∼ rc/cηc ∼ rcH/c.

6.1 Perturbations and their Orders of Magni-

tude

We use the same expansion of the metric that we used in section 4.4. The

4–velocity, however, is specified slightly differently, the components are:

uµ =
1

a

(
1− φ+

1

2
v 2, v i

)
. (6.5)

3Recall that H is the Hubble parameter in conformal time which is directly associated to
the horizon.
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Interestingly, if one specifies the lapse according to the g00 component then

we obtain exactly this 4–velocity following the Buchert formalism. With this

4–velocity and (2.39) we compute the components of the ‘full’ stress-energy

tensor4:
T 0

0 ' −Gρ (1 + v2) +O(χ5),

T 0
i ' Gρ vi +O(χ4),

T i
j ' Gρ v ivj +Gp δ ij +O(χ5),

(6.6)

where ρ is the energy density of the fluid and p is the isotropic pressure. The

order of magnitudes are found by realising that to leading order, ρ is order

O(χ2), if the background Friedmann equations are to hold.

We may use the ‘full’ Einstein tensor to determine the magnitude of the per-

turbed metric components (see Appendix A) by equating the Einstein equations

order-by-order. By noting the background Friedmann equations are O(χ2),

φ ∼ v2 = O(χ2), and conformal-time derivatives add a factor of χ we deter-

mine:

δ g00 ∼ χ2, δ g0i ∼ χ3, δ gij ∼ χ2, (6.7)

which implies
φ ∼ ψ ∼ F i,j ∼ E ,ij ∼ D ij ∼ ρ ∼ χ2,

Si ∼ B ,i ∼ χ3,

p ∼ χ4 .

(6.8)

This all stems from5,
δ G 0

0 ∼ χ4

δ G 0
i ∼ χ3

δ G i
j ∼ χ4,

(6.9)

which matches the orders of magnitude for the perturbed stress-energy tensor.

One should note, however, that because the background Einstein equations for

the (0, i) components are zero, we have this difference in orders of magnitude.

If a ‘physical’ background spacetime model existed for which this was not the

case, we would find all of the perturbed metric components would be of the

same order. This obviously differs from standard perturbation theory which

assumes all perturbations are of the same order, ε.

Perhaps the most useful aspect of the post-Newtonian expansion is that

these orders of magnitude are related to a physically ‘sensible’ condition —

the slow-moving condition. The slow-motion condition implies that on scales

r < rc we approximate the entire past light cone of a point by some constant

4This is not how one would strictly compute the perturbed stress-energy tensor in linear
perturbation theory. Here we simply define the perturbation of the stress-energy tensor as
the difference between the full and the background.

5Really, we should state the T 0
i component is a perturbation. This is why the order of

G0
i is lower than the others, because this is really the first time a (0, i) component appears.

Conversely, the perturbed (0, 0) and (i, j) components are the second time these components
appear in the expansion.
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Figure 6.2: The past lightcone, L of a point P which is on a worldline W . Support
of the metric perturbations at the point P can be approximated locally on the
spacelike hypersurface, S under the assumption rc � λc. This figure was obtained
from Clifton et al. [1].

η-hypersurface, S (see Figure 6.2). This is because the time it takes gravita-

tional information to propagate from one side of the domain is negligible when

compared to ηc. Therefore, we simplify the integrals involved in determining

the gravitational field. For instance, consider the perturbed constraint and

evolution equation:

H 2 +
2

3
∇ 2 ψ =

8πG

3
ρa2 +

Λ

3
a2 +O(χ4), (6.10)

and

Ḣ − 1

3
∇ 2φ = −4πG

3
(ρ+ 3p̄) a2 +

Λ

3
a2 +O(χ4), (6.11)

where ∇ ≡ ḡ ij ∂i∂j. Note that we have included background pressure here.

This is normally taken to be zero except in the early Universe. The slow-motion

condition allows us to physically restrict the perturbed equations showing its use

when attempting to solve equations for the gravitational field. One may note

that these equations are simply a combination of the background Friedmann

equations and the Newton-Poisson equations for φ and ψ. Furthermore, they

occur at the same order of magnitude here, which is not the case in standard

perturbation theory.

6.2 Gauge Choices in the Post-Newtonian Ex-

pansion

Due to the different orders of magnitude associated with the different perturbed

metric components, Clifton et al. [1] find that there are many standard cosmo-

logical gauges that are not viable. These gauges are not viable in the sense
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that many of the physical quantities that are set to zero in standard pertur-

bation theory are gauge invariant in the post-Newtonian expansion. We will

demonstrate that this is the case and test the uniform Hubble expansion gauge

as well. Before starting a detailed analysis, one may crudely understand how

certain quantities such as φ will be gauge invariant as they are O(χ2), as are the

background field equations6. More precisely, to select a gauge we must specify

coordinates by a choice of the gauge generators as done in subsection 4.5.1.

However, in post-Newtonian cosmology sometimes no such choice can be made.

Recall the gauge transformations we performed in (4.57) and (4.58). We

must analyse the order of magnitude of these equations to determine the order

of magnitude of the gauge generators. Let us begin with the (0, 0) components

−∆ δg00 = O(ξ0 ∂η a)−O(∂η ξ
0) = O(χ ξ0)−O(χ ξ0). (6.12)

This puts the minimum restriction on ξ0 to be O(χ) in order to obtain the

correct orders of magnitude on both sides of the equation as δg00 is O(χ2). For

the (0, i) components we have

−∆ δg0i = O(ξ0) +O(χ ξi), (6.13)

This puts the minimum restriction on ξ0 to be O(χ3) and ξi to be O(χ2) as δg0i

is O(χ3). Finally, for the (i, j) components we have

∆δgij = O(χ ξ0) +O(ξi), (6.14)

from which we see that no new restrictions have been added on either gauge

generator. Therefore, we conclude that

ξ0 = O(χ3), and ξi = O(χ2) . (6.15)

This differs from the assumption standard cosmological perturbation theory

which assumes ξµ ∼ ε.

It is important to note that the O(δg ξ) terms in (4.56) cannot be neglected

as some of these appear at the same order as Lξḡµν . Therefore, we must use

∆ δgµν = −Lξgµν , (6.16)

instead of Lξḡµν , resulting in the following transformations:

∆φ = −
(
H ξ0 + ξ0 ′ + φ ,i ξ

i
)
,

∆B = ξ0 − ζ ′

∆Si = ζ i
′ ,

∆ψ = H ξ0 ,

∆E = −ζ ,
∆F i = −ζi ,
∆D ij = 0 .

(6.17)

6As we will show, this does not mean that all quantities that are O(χ2) are gauge invariant.
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Performing the same gauge transformation on the stress-energy tensor with

components given in (6.6) we find,

∆µ = 0

∆ Π = ξi (lnµ) ,i ∆P = 0,

∆ v i = 0 .

(6.18)

Here we have decomposed the energy density, ρ into two parts of order O(χ2),

µ and Π, such that ρ = µ (1 + Π) where µ is the rest mass density and Π is the

specific energy density.

With all of the gauge transformations of the various metric components and

the stress-energy components, we may investigate which components are gauge-

invariant. Notice that the right-hand side of the transformations for φ, ψ, p,

v, µ, Π, and D ij are either zero or of a higher order in χ than the left-hand

sides — meaning they are all required to be gauge-invariant. This is because

we cannot set any choice of ξ to generate a change that is the same order of

magnitude as the quantity we wish to change. The only quantities that are not

gauge-invariant are B, Si, E, and Fi as the right-hand sides are the same order

of magnitude in χ as the left-hand sides. Notice that the only quantities that

are order O(χ2) and not gauge-invariant are E and Fi.

We now investigate the viability of the gauges investigated in section sub-

section 4.5.1 with the information above

• Synchronous gauge: The synchronous gauge is defined by setting

φ̃ = B̃ = S̃i = 0.

This was achievable in standard perturbation theory but is not viable in

the post-Newtonian expansion. This is because φ is gauge invariant at

leading order — meaning it cannot be set to 0. The other requirements

(B̃ = S̃i = 0) are still achievable in the post-Newtonian expansion by

solving the differential equations (4.62).

• Spatially flat gauge: This gauge is defined by setting

ψ̃ = Ẽ = F̃i = 0.

This was achievable in standard perturbation theory, but not in post-

Newtonian perturbation theory because ψ is gauge-invariant. Thus we

cannot make it vanish, though we can set Ẽ and F̃i to zero.

• Comoving orthogonal gauge: We choose

ṽi = 0 and g0i = 0 .

We cannot achieve this gauge in the post-Newtonian expansion as v is

gauge-invariant at leading order. This means that we must have a tilt

between the normal frames and the fluid rest frames.
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• Conformal Newtonian or longitudinal gauge: One defines this gauge

by choosing

B̃ = Ẽ = 0.

This gauge is the only standard gauge in cosmology investigated by Clifton

et al. [1] that is achievable in both standard perturbation theory and

the post-Newtonian expansion. This allows most standard approaches

to modelling the evolution of the Universe from the CMB as an initial

hypersurface viable in post-Newtonian perturbation theory.

• N-Body gauge: Recall that the first condition to define the N-body

gauge is

ṽ + B̃ = 0.

This condition is obviously not achievable in post-Newtonian theory as

v and B are O(χ) and O(χ3) respectively. The second condition for the

N-body gauge is7

ψ̃ − 1

3
∇2 Ẽ = 0,

which can be achieved by picking ζ such that is solves ∇ 2ζ = −(3ψ +

−∇ 2E). Interestingly, this condition can be satisfied in the post-Newtonian

expansion. This opens up the opportunity to modify the first condition

to have a modified version of this gauge that is viable, which has been

investigated by [196, 197].

6.2.1 Uniform Hubble Expansion Gauge

This gauge has also been called the Mach 1 gauge by Bičák et al. [2] who

determine three alternative gauges, Mach 1 to Mach 3 using Mach’s principle

as a guide8. Bičák, Katz and Lynden-Bell describe these gauges as follows:

“In these gauges, the local inertial frames can be determined instantaneously

from the perturbed Einstein field equations from the distribution of energy and

momentum in the Universe”. We shall only investigate the Mach 1 gauge here.

The uniform Hubble expansion gauge is defined by two conditions:

δΘ = 0 , (6.19)

and the minimal-shift distortion condition which is equivalent to

∇i
Th ik. (6.20)

7There is a sign error in the corresponding equation presented by Clifton et al. [1]. This
sign propagates through trivially.

8Mach’s principle states “Local inertial frames are determined through the distributions of
energy and momentum in the universe by some weighted average of the apparent motions”.
There are actually many different principles that are referred to as “Mach’s principle” —
Bondi and Samuel list 10 [198].
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Here Th ik is the traceless part of the induced metric on the normal hypersur-

faces, hij. The condition (6.19) was introduced by Bardeen [176] and implies

that the expansion of the fluid on a hypersurface is the same as the expansion

of the background manifold — in this case, the FLRW background. The latter

condition (6.20) was introduced by Smarr and York in 1978 [199] because it

allows kinematic and dynamical effects to be separated in order to study the

kinematics of the worldlines that create a hypersurface. In perturbation theory

the traceless part of h is
Th ik = 2F i,j +D ij, (6.21)

meaning the minimal-shift distortion condition becomes

∇i
Th ik = 2∇i F

i
,k +∇iD

i
k = 0. (6.22)

Since F and D are divergenceless the condition is automatically satisfied in

both standard and post-Newtonian perturbation theory.

Recall that in the case of non-vanishing tilt, we do not have K = Θ. This is

exactly the case we deal with in the post-Newtonian expansion as the 3–velocity

of the fluid cannot be set to zero. This means we cannot exactly follow Bičák

et al. [2] who use a fluid velocity that is hypersurface orthogonal9. Instead we

must compute

∇µu
µ =: Θ , (6.23)

where we use u as defined in (6.5). Carrying out this calculation we find (in a

general gauge)

Θ =
1

a
3H +

1

a

[
∂i v

i + 3H
(
− φ+

v2

2

)
− v i ∂i ( 3ψ −∇ 2E +∇ 2ζ )

+ ∂η ( 3ψ −∇ 2E +∇ 2ζ ) + v i∂i φ+ v i vi
′

]
+O(χ5) . (6.24)

Note the background expansion scalar is Θ̄ = 3H/a, thus, the perturbed part

of Θ is everything after the first term. Interestingly, there is one term of order

O(χ), namely10, 1/a ∂iv
i which is the same order as the background term, and

the other terms are all O(χ3). We see the only gauge generator we have present

is ζ which is order O(χ2), while the leading order term in δΘ is order O(χ).

This implies that we cannot set δΘ to zero and, therefore, the gauge is not

viable in the post-Newtonian expansion.

We may, however, construct a ‘weaker’ condition that sets all of the χ3 terms

to zero. We then obtain

Θ = Θ̄ +
1

a
∂iv

i, (6.25)

9In the case of a fluid velocity that is hypersurface orthogonal, this gauge is also referred
to as the constant mean extrinsic curvature gauge as K = Θ.

10This is similar to the perturbed equations (6.10) and (6.11) which involve the background
Friedmann equations and the perturbations, φ and ψ.
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which means the expansion is simply the background expansion with the ad-

dition of the spatial divergence of the 3–velocity of the fluid. This condition

or gauge choice expresses that the observed expansion (through the Hubble pa-

rameter) will be uniform regardless of how we split the background expansion to

be and the spatial divergence of the velocity field. It accords with there being

no observational distinction between the divergence of the spatial velocity of

“the fluid” and an isotropic component of the local expansion.

To determine whether or not this gauge choice is viable, we collect the

various O(χ3) terms in (6.24). Let

A = ∇2ζ, B = 3ψ −∇2E, C = −3φ
H
a

+ 3Hv
2

a2
, and Z = φ,i + v′i ,

(6.26)

and therefore the condition of setting all of the O(χ3) terms in (6.24) to zero

becomes

vi (−∂i (A+B) + Z) + ∂η (A+B) + C = 0. (6.27)

This requires us to solve the following set of coupled differential equations:

∂η (A+B) + C = 0 ,

− ∂i (A+B) + Z = 0.
(6.28)

Taking the derivative of the first equation with respect to spatial coordinates,

and taking the derivative of the second equation with respect to conformal time,

we find
∂i∂η (A+B) + ∂iC = 0 ,

− ∂i∂η (A+B) + ∂ηZ = 0.
(6.29)

To solve this system of equations, we obviously require ∂iC = −∂ηZ, i.e.,

− ∂η (φ,i + v′i ) = ∂i

(
− 3φ

H
a

+ 3H v2

2a

)
, (6.30)

which cannot be set by choice of gauge, or in other words, by choice of ξ. Thus,

this gauge in not viable in the post-Newtonian expansion.

6.3 Construction of Buchert Averaging in the

Post-Newtonian Formalism

Our aim here is to construct Buchert averages in the post-Newtonian expan-

sion. This should be possible due to all the freedom the extrinsic approach to

averaging allows. One has a total 4 degrees of freedom in the time-time and

space-time components and all 6 (if required) in the space-space components of

the metric tensor (as well as three timelike congruences).

Let us first summarise the restrictions imposed on us by the post-Newtonian

expansion:
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• Different degrees of freedom in the metric have different orders of magni-

tude in χ.

• We are not allowed to have vanishing tilt as v, the Eulerian velocity is

gauge-invariant at leading order.

• We must work with conformal time which must be dimensionful, while

the scale factor must, therefore, be dimensionless.

To make contact between the two formalisms, we must first consider the line

elements. The four degrees of freedom in the 3+1 formalism which are given by

the lapse, N , and shift, β, can be specified as follows

N2 = a2(η) ( 1 + 2φ ), (6.31)

and,

βi = a(η) (B ,i − Si ). (6.32)

We note that the standard set of spatial coordinates in the standard model of

cosmology are the comoving coordinates. With the knowledge that11 x = aX

we may write the following

ds2 = gµν dxµdxν = −N2 dη2 + 2β i dx
idη + h ij dxidx j

= a2(η)
(
− (1 + 2φ ) dη2 + 2 (B,i − Si ) dX i dη + h ij dX idXj

)
,

(6.33)

where

h ij = ((1− 2ψ) δ ij + 2E, ij + 2 ∂(iFj) +D ij). (6.34)

The perturbed FLRW line element here is exactly the same as (4.48) except

we have now used a different symbol for the spatial coordinates to match the

Buchert formalism. We have also transformed the time coordinate that Buchert

uses to the conformal time, which we are allowed to do by the argument in

subsection 5.4.3. Therefore, we find that the lapse is 1 + O(χ2), and the shift

is O(χ3). Due to this, we have neglected the β iβi term in the g00 component

of the line element in (5.4) as this would be order O(χ6).

Let us now turn our attention to the three congruences shown in Figure 5.1.

Up to a negative sign, we may relate the vectors β, Nv, an V by

β = Nv − V
≈ a( 1 + φ )v + V .

(6.35)

The left-hand side of this equation, the shift vector is O(χ3), implying the

right-hand side must be O(χ3). To achieve this, we require that the coordi-

nate velocity cancels the Eulerian velocity (multiplied by a) which is O(χ).

Therefore,

V = av, and β = aφv, (6.36)

11Recall that in the Buchert formalism, {xi} are the reference coordinates or Eulerian
coordinates and {Xi} are comoving coordinates.
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which satisfy the post-Newtonian expansion constraints. It may seem odd that

β, which is not gauge-invariant is constructed from two quantities that are

gauge-invariant. This, however, does not matter as the gauge transformations

that we consider are applied to the metric and stress-energy tensor, (not indi-

vidual scalars/vectors). This means that if a component is gauge invariant, it

will remain gauge invariant as long as the order of magnitude remains the same.

We have fixed the lapse and shift vectors in the Buchert formalism to ensure

that the post-Newtonian formalism is not violated. Therefore, we can now

extend the Buchert averaging scheme. Let us begin with the time evolution of

the volume, which becomes

d

dt
VD =

∫
Dx

(
− a(1 + φ)K + aDi

(
(1 + φ)(v i)

))√
h d3x. (6.37)

Furthermore, the commutation rule (5.64), and the extrinsically averaged evolu-

tion equations (5.75), (5.80), change by the replacement N = a( 1+φ ). Further

changes will come from the fact that the induced metric determinant, h, is now

perturbed as well. This allows us to determine the order of magnitude of various

terms in the averaged evolution equations, for instance, the backreaction terms.

6.3.1 Longitudinal Gauge and Backreaction Magnitudes

If one wishes to simulate the evolution of the Universe from some initial Cauchy

surface using the post-Newtonian expansion with Buchert averaging then the

only viable standard gauge is the longitudinal gauge. The line element in the

longitudinal gauge takes the form

ds2 = a2(η)
(
− (1 + 2φ ) dη2 + ( 1 + ψ ) δ ij dX idXj

)
. (6.38)

Thus, the shift vanishes in this gauge.

Recall that in the extrinsic averaging formalism, we must compute the back-

reaction in terms of the extrinsic curvature. In the longitudinal gauge, the scalar

extrinsic curvature is

K =
1

a

(
3H− 3φH +

3

2
ψ′
)
, (6.39)

and the contracted extrinsic curvature tensor scalar is

K ijK ij =
1

a2

(
3H2 − 6φH2 − 3Hψ′

)
. (6.40)

We must also determine the intrinsic curvature of the hypersurface, which in

the longitudinal gauge is

R =
4

a2
∇2 ψ. (6.41)
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Finally, to average, we need the determinant of the spatial metric, h:

h = det(h ij) = a6 ( 1− 6ψ ) =⇒
√
h = a3

√
1− 6ψ

≈ a3 ( 1− 3ψ ).
(6.42)

Before writing down the expressions for the backreaction terms in terms of a

post-Newtonian expansion, let us examine the volume operator. The volume of

our domain is written (in comoving coordinates) as

VD =

∫
DX

a6 ( 1− 3ψ ) d3X, (6.43)

where the extra powers of a come from the Jacobian that transforms from

x → X. The relative size of the volume is determined by the integration

domain chosen. When averaging scalars, we will therefore have a leading order

part multiplied by a6 and decrease the order by χ2 when multiplying by the

3ψ a6 term.

The kinematical backreaction in the post-Newtonian formalism is, therefore,

determined to be12:

QD =
2

3

〈
NK +D i (Nv

i )
〉2

D
−
〈
N2(K2 −KijKij )

〉
D

=
2

3

〈
3H +

3

2
ψ′ +D i ( a(1 + φ)(vi) )

〉2

D
−
〈

6H2 − 6Hψ′
〉
D

+ 〈O(χ5) 〉D .
(6.44)

We see that the leading order terms will be O(χ2), which will not change due

to the averaging procedure by the argument above13. Therefore, one can say

that “backreaction” is, at leading order, O(χ2). We find

PD :=

〈(
D i( a(1 + φ)v i )

)2

+
1

a

d

dη

(
D i ( a(1 + φ) v i )

)
− ( 3H +

3

2
ψ′ )D i ( a(1 + φ)(vi) ) + a( 1 + 2φ ) v iD i 3φH

〉
D

+

〈
a2 ( 1 + φ )D iD i ( 1 + φ )− 3H

a2

d

dη
a( 1 + φ )

〉
D

+ 〈O(χ5) 〉D , (6.45)

where the leading order terms are the same order as the leading order terms

in the kinematical backreaction expression. Finally, we may express the stress-

energy backreaction as

TD = −16πG
〈
a( 1 + 2φ )(E − ρ)

〉
D
, (6.46)

12This is only the case if we do not have periodic boundary conditions. As mentioned in
subsection 5.4.1, all averages will vanish if one assumes periodic boundary conditions.

13More precisely, the square root of the determinant of the metric does not change (to
leading order). Thus it does not increase the order of smallness of any of the terms inside the
angle brackets.
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where we assume E to be O(χ2) as it is essentially the same order as ρ, only

measured in a different frame. Therefore, the stress-energy backreaction is also

O(χ2) at leading order.

We now write the extrinsically averaged evolution equations as:

3
( 1

aD

daD
dη

)2

= 8πG
〈
a2(1 + 2φ)ρ

〉
D

+
〈
a2(1 + 2φ)

〉
D

Λ

− 1

2

〈
a2(1 + 2φ)

4

a2
∇2 ψ

〉
D
− 1

2
QD −

1

2
TD + 〈O(χ5) 〉D , (6.47)

3
1

aD

d2aD
dη2

= −4πG
〈
a2(ρ+ 2φρ+ 3p)

〉
D

+
〈
a2(1 + 2φ)

〉
D

Λ

+QD + PD +
1

2
TD + 〈O(χ5) 〉D . (6.48)

We note from the previous discussion that like the backreaction terms, the

leading order parts in these equations are also O(χ2).

Finally let us consider the fluid-intrinsic averaging scheme introduced in

section 5.2. The comoving description or the ‘weak Lagrangian description’

restricts the freedoms in the general 3+1 splitting of spacetime. This is done

by setting the coordinate velocity, V , to zero and thereby setting the shift

vector to Nv. This can be thought of as a non-viable gauge choice in the

post-Newtonian expansion which requires the coordinate velocity to be gauge-

invariant. Furthermore, the Lagrangian description restricts the freedom even

further by fixing the lapse such that φ = 0, which we know is not a ‘viable

gauge choice’ either. Therefore, only extrinsic Buchert averaging is possible in

the post-Newtonian expansion as the tilt cannot be set to zero.

The fact that the backreaction terms appear at the same order, O(χ2), as

the other terms in the averaged equations (6.47)–(6.48) may appear surprising.

However, we are dealing with regional averages on small scales, not a global

averaged Friedmann background. Our result, therefore, has no bearing on the

debate about the magnitude of backreaction [50–54]. That debate concerns

assumptions about how one constructs the global averages, which we do not

consider here. Since χ ∼ rc/cηc ∼ rcH/c, our slow-motion restriction limits us

to scales rc ∼ cχ/H.

We see explicitly that the post-Newtonian framework can be readily applied

to small scale Buchert averages. In particular, in (6.38) a(η) can be identified

as a spatially homogeneous part of a generic lapse function, rather than nec-

essarily the scale factor of a FLRW background. Issues about global averages

require additional assumptions. It was already noted by Clifton et al. that their

formalism could allow for the inclusion of nontrivial backreaction — however,

they chose not to consider the possibility, and only worked with a perturbed

FLRW background.
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This possibility of a background–free post–Newtonian approach could be

investigated in future by not restricting quantities such as φ and ψ to be “small”.

Rather we would simply take these scalars to characterise the deviations from

spatial homogeneity. This would mean steps such as (6.42) where we Taylor

expand the volume form
√
h would remain exact. Obviously this would increase

the complexity of the equations as neither the extrinsic curvature nor intrinsic

Ricci scalar would be truncated at O(χ2). This is similar to the approach the

in Lagrangian perturbation theory of Buchert [44] where perturbations are not

necessarily small. Clearly, there are many open avenues for future research.
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Chapter 7

The Szekeres Model and
Backreaction

In Chapter 4, we reviewed the standard approach to modelling inhomogeneities

in the Universe using linear cosmological perturbation theory. In Chapter 6, we

discussed a relatively new approach to modelling non-linear structure evolution

in the Universe. Both of these approaches (in general) perturb about an FLRW

background. Linear perturbation theory in particular is known to poorly explain

the late epoch Universe on small scales, thus we seek alternatives.

Perturbation theory about the FLRW model implicitly neglects backreac-

tion. We, therefore, will step away from perturbation theory and use an exact in-

homogeneous solution to the Einstein equations — the Szekeres model — in or-

der to investigate the magnitude of backreaction on small scales ≤ 100h−1 Mpc.

A similar investigation has been undertaken by Bolejko in 2017 [5] with different

parameters and different analysis techniques.

The Szekeres model was introduced in 1975 [200] and is the most general

known exact solution of the Einstein equations for an inhomogeneous dust

source. The Szekeres solution is a generalisation of the spherically symmet-

ric Lemâıtre-Tolman-Bondi (LTB) [201–203] solution. The LTB models were

an earlier inhomogeneous exact solution to the Einstein equations which are

sourced by dust1. The subclass of quasispherical Szekeres solutions adds a mass

dipole and possible shell rotation [204] to the LTB model. In appropriate lim-

its the Szekeres model reduces to the LTB model and the LTB model further

reduces to the FLRW model when ρ(t, r) → ρ(t). The Szekeres model has

been used numerically in ray-tracing investigations to determine to effects of

inhomogeneities below the statistical scale of homogeneity [134, 205].

The quasispherical Szekeres solutions represent a family of concentric but

asymmetric radial shells, with areal radius, R(t, r). In general, these shells are

displaced from each other according to the functions P , Q, and S in the line

element. The line element of the quasispherical Szekeres model in spherical

1In fact, Lemâıtre originally studied fluids with pressure as well [201].
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coordinates is [200, 206]

ds2 = −dt2 +
1

1 + 2E

[
R,r +

R

S
(S,r cos(θ) +N sin(θ)

]2

dr2

+

(
R

S

)2 [
S,r sin θ +N (1− cos θ)

]2

dr2 +

(
R

S

)2 [
(N,φ(1− cos θ)

]2

dr2

− 2

(
R

S

)2 [
SS,r sin θ + SN (1− cos θ)

]
drdθ

+ 2

(
R

S

)2 [
S(N,φ sin θ(1− cos θ)

]
drdφ+R2

(
dθ2 + sin2 θdφ2

)
,

(7.1)

where E = E(r) ≥ −1/2, S = S(r), and N(r, φ) ≡ (P,r cosφ+Q,r sinφ). Here

Q = Q(r) and P = P (r).

The Einstein equations with nonzero cosmological constant and dust source

with density, ρ, can be written as

Gµν = 8πGρuµuν + Λgµν . (7.2)

They can be reduced to the evolution equation and the mass distribution equa-

tion [207]. The evolution equation takes the form

(∂tR(t, r))2 = −k(r) +
2M(r)

R
+

1

3
ΛR2, (7.3)

where k(r) = −2E(r), and M(r) is related to the mass density via

8πGρ = 2
M,r − 3ME,r/E
R2(R,r −RE,r/E)

. (7.4)

Here
E,r
E

= − 1

S

[
S,r cos θ +N sin θ

]
, (7.5)

which describes the departure from spherical symmetry. Notice that the only

function that depends on time in (7.3) is R(t, r), thus we may integrate this

equation to give

t− tB(r) =

∫
R

0

dR̃√
2M/R̃− k + (1/3)ΛR̃2

, (7.6)

where tB(r) is the bang time function. This encodes the fact that the age of the

Universe can be position dependent.
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The Szekeres model becomes homogeneous in the limit

R(t, r)→ ra(t),

M(r)→ 1

2
H0

2 Ωmr
3,

k(r)→ H 2
0 (Ωm + ΩΛ − 1),

S(r)→ constant,

P (r)→ constant,

Q(r)→ constant,

(7.7)

when we recover the FLRW model. Here we will investigate a particular example

of the Szekeres model studied by Nazer, Bolejko, and Wiltshire [134]. It is chosen

to asymptote to the standard FLRW model with the limits (7.7) on spatial scales

> 100h−1 Mpc, with parameters chosen to match the best fit values (2.57) for

the fit to the Planck data. Notice that in the homogeneous limit, we clearly see

that r is a comoving coordinate, as introduced in (5.27).

The departure from homogeneity can be modelled by using the following

profile for the mass function [134, 205, 208],

M(r) =
1

2
H0

2 Ωmr
3(1 + δ(r)), (7.8)

where2 δ(r) specifies the departure from homogeneity. Bolejko et al. [134] chose

the δ(r) according to (7.9) to model a sharp gradient in density contrast at a

void/wall boundary,

δ(r) =
1

2
δ0

(
1− tanh

r − r0

2∆r

)
, (7.9)

as can be seen in Figure 7.1. Here δ0 ∈ [−1, 0], r0, and ∆r are constants.

The constant r0 is the ‘characteristic size of the void’, while ∆r determines the

‘steepness’ of the density profile.

The function k(r) is only dependent on the radial coordinate and thus we

may choose conditions for R at a given time to solve (7.6) for k(r). Therefore,

we make the following assumptions: firstly, the age of the Universe is the same

everywhere for comoving observers, i.e., tB = 0. Secondly, R(t0, r) = r, where

t0 is the age of the Universe in the spatially flat FLRW model. Under these

assumptions we may solve (7.6) numerically for k(r).

Furthermore, we will not use the full Szekeres metric in our analysis, but

rather only the axially symmetric case. This is specified by choosing S, P , and

Q to be

S(r) = r
( r

1 Mpc

)α−1

,

P (r) = 0,

Q(r) = 0.

(7.10)

2Note that δ(r) is designed to take numerical values similar to the density contrast though
it is not defined in exactly the same way.
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Figure 7.1: The density contrast δρ = (ρ − ρ̄)/ρ̄ at t = 0 in the plane θ = π.
A sharp increase from void to wall is shown when density contrast grows from
∼ −1 to ∼ 5. Another steep transition from the wall region to asymptotic spatial
homogeneity can be seen as the density contrast approaches zero.

Here α is a free parameter and in the limit that α→ 0, we recover an LTB model.

Finally, with the solution to k(r) the “full” R(t, r) is determined by solving3

(7.3) for all r and t with the condition R(t0, r) = r. The free parameters are

selected to be

r0 = 38.5h−1 Mpc, δ0 = −0.86, and α = 0.86. (7.11)

7.1 Backreaction in the Szekeres Model

The Szekeres solution is described by irrotational dust and the coordinates (7.1)

correspond to a fluid orthogonal comoving slicing, so that

nµ = uµ = (1, 0, 0, 0).

Consequently we use the Lagrangian form of the Buchert equations introduced

in subsection 5.5.5. Furthermore, the dynamical backreaction vanishes, because

the 4–acceleration is zero, leaving us only with the kinematical backreaction,

QD.

3Note that we have not actually fully specified all of the functions in (7.3) as the param-
eters r0 and δ0 are still unspecified. These parameters are determined via a 5-dimensional
parameter space search constrained by ray tracing and being able to realistically model the
dipole and quadrupole of the CMB and the Hubble expansion anisotropy.
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In order to carry out the averaging procedures (5.127)–(5.129), we require

the expansion scalar, Θ, the shear scalar, σ2, the intrinsic Ricci scalar4, R, and

the determinant of the spatial metric, h. These are found to be

Θ =
Ṙ,r + 2ṘR,r/R− 3ṘE,r/E

R,r −RE,r/E
,

σ2 =
1

3

3Ṙ,r − ṘR,r/R

R,r −RE,r/E
,

R = 2
k

R2

(
1 +

Rk,r/k − 2RE,r/E
R,r −RE,r/E

)
,

√
h = sin θ

(
R2R,r −R3E,r/E√

1− k

)
.

(7.12)

In order to make a comparison between the various functions describing

the average evolution we use the dimensionless density parameters, Ωi. Using

the Buchert formalism, these are dubbed the cosmic quartet [62] of averaged

parameters and are defined as

ΩDm :=
8πG

3(H b
D )2
〈 ρ 〉bD ,

ΩDΛ :=
1

3(H b
D )2

Λ,

ΩDR := − 1

6(H b
D )2
〈R 〉bD ,

ΩDQ := − 1

6(H b
D )2
Q b
D.

(7.13)

The averaged Hamiltonian constraint (5.127) then is equivalent to the sum rule

ΩDm + ΩDΛ + ΩDR + ΩDQ = 1 . (7.14)

The new density parameters, ΩDQ and ΩDR correspond to the kinematical back-

reaction and intrinsic Ricci scalar averaged in a domain, D, respectively.

To calculate the averages of the functions (7.12), we used the python inte-

gration routine, scipy.integrate.nquad. We choose to integrate over separate

shells with different density contrasts which can be seen in Figure 7.1. The first

shell is within the void region (underdense), {10 < r < 20 Mpc}. The second

shell is within the wall (overdense) region, {55 < r < 65 Mpc}. The final shell

is within the asymptotically FLRW region, {140 < r < 150 Mpc}. I.e., every

shell is chosen with a radius of 10 Mpc. These averages are then iterated over

time in steps of 1 Mpc ∼ 3.29Myr back to 1×103Mpc ∼ 3.29Gyr. The integrals

4We refer to this as the intrinsic Ricci scalar here despite our discussion in subsection 5.5.3
because the vorticity vanishes and the congruence is hypersurface forming.
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in the various domains take the form

2π

∫ θ=π

θ=0

∫ r=rf

r=ri

ψ sin θ

(
R2R,r −R3E,r/E√

1− k

)
dr dθ, (7.15)

where ri and rf are the radii at the beginning of the domain and the end of the

domain respectively, and ψ is the scalar we will average. On account of axial

symmetry, we gain a factor of 2π in the φ integral. Note that as time passes, the

volume of these averaging shells increase due to
√
h being time dependent and

increasing over time (stemming from the fact that r is a comoving coordinate).

7.2 Results and Discussion

We present the cosmic quartet for the three different regions — the void, wall,

and FLRW limit. A similar analysis was undertaken by Bolejko [5] who uses

different function choices for (7.8). Furthermore, Bolejko uses a different value

for the parameter α, Bolejko uses α = 0.52, whereas we use α = 0.86, and as

can be seen from (7.4), this changes the density dramatically.

In addition we also plot ‘pseudo-averaged density parameters’, defined as

Ω̄Dm :=
8πG

3H̄ 2
〈 ρ 〉bD ,

Ω̄DΛ :=
1

3H̄ 2
Λ,

Ω̄DR := − 1

6H̄ 2
〈R 〉bD ,

Ω̄DQ := − 1

6H̄ 2
QD,

(7.16)

where H̄(t) is the background or FLRW Hubble parameter. These parameters

do not obey the sum rule (7.14). These parameters are introduced for visual-

isation purposes since values of the parameters (7.13) depend strongly on the

values of HD which varies significantly from shell to shell. This can be seen

in Figure 7.2, where we plot the relative expansion rate Θ(t, r, π)/(3H̄(t)) as a

function of r for three time slices.

7.2.1 Asymptotic FLRW shell

In Figure 7.3 we first display the parameters of the cosmic quartet for averages

in the asymptotic region outer shell, as a check on our numerical procedures.

As expected, these are indeed found to match those of the spatially flat ΛCDM

model with the Planck normalised parameters, Ωm0 ' 0.31, ΩΛ0 = 0.69. The

only significant parameters are the decreasing matter density parameter ΩDm
(top right panel) and the increasing cosmological constant density parameter ΩDΛ
(bottom right panel). There is a tiny positive spatial curvature, corresponding
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Figure 7.2: Relative expansion rate(s) in the plane θ = π at the present and two
past epochs. Regional expansion of the inhomogeneities relative to the asymptotic
FLRW shell grows more extreme as t increases.
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Figure 7.3: The cosmic quartet, in the outer shell 140 Mpc < r < 150 Mpc, averaged
over time from 3.29 Gyr in the past to the present epoch. (For this shell the
corresponding pseudo-averaged density parameters are identical.)

to a negative ΩDR , with a magnitude decreasing to |ΩDR | ∼ 1.9 × 10−6 at the

present epoch. The backreaction density parameter Ω̄DQ∼ 4.5 × 10−9 is even
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Figure 7.4: The cosmic quartet (full line) and the pseudo cosmic quartet (dashed
line), in the shell 10 < r < 20 Mpc, averaged over time from 3.29 Gyr in the past
to the present epoch.

smaller, with fluctuations that are characteristic of numerical noise.

7.2.2 Void and wall shells

Next we present the cosmic quartet for both the void and wall shells in Fig-

ure 7.4 and Figure 7.5 respectively. In each case we plot the pseudo-averaged

parameters as well, indicated by dotted lines.

Averaged cosmological constant parameters

The (pseudo)-averaged parameters (Ω̄DΛ , ΩDΛ ) are shown in the bottom right

panels. Since Λ is constant, Ω̄DΛ is by definition the same in both void and wall

and equal to the FLRW region case in Figure 7.3. In the void region we have

ΩDΛ < Ω̄DΛ , while in the wall region region ΩDΛ > Ω̄DΛ . This is a consequence of

the definitions (7.13) combined with the fact that ΘDwall < 3H̄ < ΘD void.

Averaged matter density parameters

The averaged matter parameter, ΩDm, and pseudo averaged matter param-

eter, Ω̄m, are shown for the void and wall are seen in the top right panels.

As compared to the FLRW case Figure 7.3 the void is underdense, and the

wall is overdense, as we expect. Furthermore, both the underdensity and

overdensity are more extreme in terms of the domain dependent averages:
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Figure 7.5: The cosmic quartet (full line) and the pseudo cosmic quartet (dashed
line), in the shell 55 < r < 65 Mpc, averaged over time from 3.29 Gyr in the past
to the present epoch.

ΩDm void < Ω̄m void < Ω̄m, and ΩDmwall > Ω̄mwall > Ω̄m, where Ω̄m is the FLRW

parameter. In each case, the averaged matter density parameters decrease over

time since each region is expanding.

Averaged backreaction density parameters

The averaged backreaction parameter, ΩDQ, and pseudo-averaged backreac-

tion parameter, Ω̄DQ, are shown for the void and wall regions in the bottom left

panels. There is significant backreaction, with ΩDQwall∼ 0.022–0.024 (around

2.3 %) in the wall region, but not in the void region. The principal parameter

which determines this is the spatial gradient of the density. Within the void,

the backreaction is negligible, with ΩDQ void∼ 1.5–2.5× 10−7 . Nonetheless this

small value is still two orders of magnitude larger than the numerical noise

level of the FLRW region, with a discernible decrease over time. In Figure 7.6

we plot the magnitude of the density gradient |∂rρ| at the present epoch on a

logarithmic scale. This illustrates how the two orders of magnitude difference

between the void and FLRW shells correlates with the two orders of magnitude

in the small backreaction density parameter.

The backreaction term is largest in the wall region where the density gra-

dients are largest. Moreover, it is interesting that the magnitude of this term,

at the 2.3% level, is comparable to the level found at the present epoch in the

timescape model [36], as is the decreasing trend. In the present case, this order
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Figure 7.6: Log plot of the absolute value of the density derivative with respect to r
is shown, at t = 0, in the plane θ = π. This is to illustrate the order of magnitude
differences in density gradients in the various shells we average in.

of magnitude arises from an empirical Szekeres model for small scale density

contrasts with parameters constrained via realistic ray-tracing.

Averaged curvature density parameters

Finally the (pseudo)-averaged curvature parameters (Ω̄DR , ΩDR) are shown for

the void and wall the top left panels. The positive density parameters in the

void region represent negative averaged intrinsic Ricci scalar curvature, while

the negative parameters in the wall correspond to positive averaged intrinsic

Ricci scalar curvature there. This is exactly as we would expect. Similar to the

matter density parameters we have ΩDR void < Ω̄R void and |ΩDR wall| > |Ω̄R wall|.
In both the void and wall regions the magnitude of both curvature param-

eters is decreasing with time for the range of epochs shown over 3.29 Gyr to

the present. In fact, the magnitudes of the curvature parameters increase until

shortly before the earliest epoch shown5 in Figure 7.4 and Figure 7.5. Fur-

thermore, the maximum backreaction in the wall region occurs when |ΩDR wall|
reaches its maximum.

The fact that the magnitudes of the curvature density parameters are ulti-

mately decreasing with time is a consequence the cosmological constant. This

must ultimately dominate the energy density: R decays as ∼ 1/R2 as R(t, r)

increases, whereas Λ remains constant. This is the basic difference from models

5Unfortunately, we encountered a numerical singularity with our code at the epoch when
curvature parameters reached their maximum magnitude. We have not had time to hunt
down the origin of the bug, but have checked that it does not affect our other conclusions.
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with backreaction with Λ = 0, where spatial curvature is the largest contri-

bution to the energy density. In those cases, the far future limit is one in

which voids dominate, becoming emptier and emptier and closer to an empty

(negatively curved) Milne universe.

7.2.3 Comparison with other studies

Bolejko [5] has performed a similar analysis to ours, with somewhat different

Λ–Szekeres models. Qualitatively, his results are very similar to ours. Fur-

thermore, he explicitly demonstrates the growth of |ΩDR | in the walls and voids

before these parameters turn around and then decrease when the cosmological

term eventually dominates. However, we find somewhat lower backreaction and

spatial curvature in our results. This most likely due to Bolejko’s use of a den-

sity profile that leads to a much greater density contrast in the wall region, with

a maximum δρ∼ 8 as compared to our maximum δρ∼ 5. The greater density

contrast would imply a sharper density gradient, and this appears to drive the

magnitude of the backreaction term. Within the wall region, Bolejko finds ΩDQ
to be ∼ 4–7 %, as compared to our ∼ 2.3 %. Furthermore, Bolejko determines

ΩDR ' −0.8 in the same region, as compared to our value of ΩDR ' −0.33.

This illustrates the effects of having a density contrast which is near double our

maximal value.

Bolejko’s typical values of ΩDR in the void region are similar to ours, which

is to be expected since in both cases the density contrast of the void is close to

the minimum possible value δρ∼−1. Bolejko finds the same trend in ΩDR void as

we do, and determines the present day value to be6 ΩDR void ∼ 0.45, as compared

to our ΩDR void ∼ 0.5 (or Ω̄DR void ∼ 0.72 for the pseudo-averaged parameter).

It should be noted that both Bolejko’s analysis and our analysis contain an

asymptotic homogeneous limit given by a FLRW model with standard ΛCDM

parameters. Consequently we find similar results for evolution in this limit.

It is clear that in the void and wall regions spatial curvature significantly

affects the dynamics of the domain. This is true whether we examine the aver-

aged cosmic quartet or the pseudo-averaged cosmic quartet. Furthermore, even

when in the wall region where the sharp density gradients lead to the largest

backreaction this term is only of the order of a few percent. This means we

should consider the kinematical backreaction, QD, as only part of the “back-

reaction phenomenon” of regions with non-linear growth as there is a larger

contribution that is often overlooked — the spatial curvature. Furthermore, it

has been shown that ΩDQ only needs to be of the level of a few percent to obtain

evolution that is non-Friedmannian [36, 209].

Repeating this investigation without a cosmological constant could prove

6Bolejko only gave the regional averages, rather than values for the pseudo averaged cosmic
quartet.
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to be interesting. This is because when it is present, a cosmological constant

will always dominate as t → ∞. With Λ = 0 the spatial curvature due to

voids, ΩDR void will dominate the cosmic quartet at later times, resulting in very

different average dynamics.
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Chapter 8

Conclusion

The aim of this thesis was to investigate theories that go beyond the standard

model of cosmology in order to explain what we observe in the Universe today.

To do so, we firstly discussed the ΛCDM model and its observational status,

along with fundamental questions that are mostly ignored.

The standard model of cosmology, ΛCDM, is predicated on the cosmological

principle, the idea that the Universe is isotropic and homogeneous and it uses

the FLRW metric to model the Universe. While observations support an average

isotropic and homogeneous expansion law on scales larger than the ‘statistical

scale of homogeneity’, there is no reason the FLRW metric should apply for all

scales of averaging, nor is it clear if or how smoothing over small-scale structure

impacts the large-scale dynamics we observe.

Over the last two decades, since the discovery of the accelerated expansion

of the Universe from the evidence of type Ia supernovae, the ΛCDM model

has pointed to the existence of “dark energy”. This dark energy is a mysteri-

ous repulsive vacuum energy with negative pressure that drives this accelerated

expansion at late epochs. Some theorists including Buchert [4] argue that this

accelerated expansion is in fact due to the small-scale dynamics. This is because

the average evolution of spacetime is not equal to the evolution of a completely

averaged spacetime — which gives rise to backreaction. Wiltshire [35, 99] fur-

ther argues that while the backreaction terms themselves may only make a

contribution of 1 − 4% to the averaged energy density, the inference of cosmic

acceleration depends crucially on how statistical averages are calibrated relative

to local clocks and rulers. In particular, cumulative effects can be large. While

these models are still contested by the community at large, the growing tensions

in the standard model such as the Hubble tension may lead other researchers

to explore such alternatives in the coming decade.

We introduced the 3+1 and 1+3 formalisms in general relativity in order

to properly understand the averaging procedures used by Buchert in [3]. We

discussed the notion of embedding a 3–dimensional spacelike hypersurface in a

4–dimensional spacetime manifold. This process can be made more specific by
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introducing foliation kinematics which are motivated by physical choices. We

characterised the foliation kinematics by the lapse, N , shift vector, β, and the

induced metric, h.

To formulate the various projections of the Einstein equations, one also re-

quires the projections of the stress-energy tensor, discussed in subsection 3.4.2.

With these expressions, we formulated projections of the Einstein equations

onto the embedded hypersurfaces, which are widely used in the numerical rela-

tivity community and by theorists who use the 3+1 decomposition. We further

introduced the 1+3 formalism which gives rise the Raychaudhuri equation, a

fundamental equation describing the evolution of a congruence of curves.

We investigated how inhomogeneities in the early Universe are approached

in the standard model — by use of linear perturbation theory about a FLRW

background. This method of modelling inhomogeneities gives rise to compli-

cated (perturbed) Einstein equations which have “unphysical” quantities asso-

ciated with “gauge artefacts”. To obtain a faithful set of Einstein equations —

ones that do not have unphysical quantities — one is required to make gauge

choices that eliminate the unphysical quantities. Certain gauge choices, how-

ever, give rise to spurious gauge modes, such is the case for the synchronous

gauge. The alternative to making gauge choices is to use gauge invariant quan-

tities, such as those introduced by Bardeen in 1980 [176], and those explored

in subsection 4.5.2. There are still deficiencies with this approach to “inhomo-

geneous cosmology”: firstly, we still assume a background cosmology a priori.

Secondly, this is still a linear approach to a fundamentally non-linear theory.

Lastly, this approach still points to exotic physics in the late Universe.

We proceeded by investigating the recent and most developed version of the

Buchert formalism from Buchert et al. [3]. This approach to averaging is a

background free approach that does not assume the average evolution of space-

time is equal to the evolution of some averaged spacetime. The construction

we investigated first is the “extrinsic approach”. By performing averages with

respect to the Einstein equations projected along the normal to 3–dimensional

spacelike hypersurfaces, we formulated Friedmann equation analogues — the

“extrinsically averaged evolution equations” — that included extra terms, the

backreaction terms. Due to a tilt (or local boost) between the 4–velocity of the

fluid and the normal to the hypersurfaces, an extra backreaction term not in

Buchert’s original formulation [4, 34] — The stress-energy backreaction. Fur-

thermore, because the averaging domain was propagated along the fluid congru-

ence we found the fluid rest-mass was conserved, which is a problem in other

constructions of this averaging formalism. We showed explicitly the flux of

the fluid rest-mass across the boundary of the domain in the case where the

averaging domain did not propagate along the fluid congruence.

While the extrinsic averaging procedure is useful in the case where a “tilt”

is present, Buchert et al. [3] argue that the“natural” way to define the char-
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acteristics of a fluid is in its own rest frame, or the “intrinsic frame”. This is

particularly useful when considering cosmological models where the 4–velocity

has vanishing spatial components, i.e., the fluid is hypersurface orthogonal.

However, this fluid intrinsic approach is still not the same as taken by Buchert

in his earlier papers [4, 34] as the tilt still manifests through the scaling param-

eter, N/γ. The fluid intrinsic approach allows us to rewrite the “intrinsically

averaged equations” in an effective Friedmann form where we rewrite the usual

pressure and energy density as an effective pressure and energy density con-

taining the backreaction terms. Finally, we repeat this analysis using the La-

grangian description by setting N = γ, meaning there is now no dependence on

the original tilt. The Lagrangian description is effectively the synchronous gauge

which, became unpopular when using standard perturbation theory. However,

because Buchert’s approach is “background free”, the standard problems of the

synchronous gauge do not apply here.

This does not mean that the Buchert approach is without problems, how-

ever. As we discussed in subsection 5.4.1, backreaction is a phenomenological

replacement for dark matter and dark energy — dependent on the relative signs

of the various backreaction terms with respect to the cosmological constant. By

itself, the Buchert formalism also does not explain why average evolution is in

fact close to homogeneous, something the timescape model attempts to recon-

cile via the cosmological equivalence principle. Furthermore, in the timescape

model, backreaction never grows large enough to dominate the right-hand side

of the effective Friedmann equations for a given energy density. Therefore, these

domains will continue to decelerate without a cosmological constant, thus the

analogy is not complete.

Following the approach of Clifton et al. [1], we investigated the post-Newtonian

expansion and tested if various gauges used in the standard model were viable in

this expansion or not. We found that all gauges tested, except the longitudinal

gauge were not viable. This is fundamentally because the post-Newtonian ex-

pansion does not consider all perturbations to be of the same order of smallness

as in linear perturbation theory.

Clifton et al. state that their assumption of perturbing about a Friedmann

background results in a vanishing backreaction. This is actually because of

their assumption of periodic boundary conditions and because they are per-

turbing about a FLRW background. Not assuming these boundary conditions

and following the ‘expansion rules’ of Clifton et al. we showed that the Buchert

averaging scheme could be constructed in the post-Newtonian expansion. How-

ever, this can only be constructed using the extrinsic averaging approach as we

cannot set the tilt to zero in the post-Newtonian expansion.

We derived the extrinsically averaged Friedmann-like equations in the post-

Newtonian expansion and estimated the orders of magnitude of the components

of these equations. These equations revealed the leading order parts of backre-
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action appear at the same order as the background Friedmann equations, O(χ2).

This only applied to regional averages on small scales, however. We concluded

that this order-of-magnitude estimate had no bearing on the debate concerning

the magnitude of backreaction which is about constructing global averages.

Finally, we investigated the magnitude of backreaction in the Szekeres model.

We found that the backreaction parameter, ΩDQ, is correlated strongly with the

density gradient, being negligible except in the overdense region where the den-

sity gradients is sharpest, leading to the ΩDQ ∼ 2.3% at late epochs. Our results

are similar to those of Bolejko [5], the differences being attributable to a some-

what larger late epoch density contrast in his case.

This research has led to several question related to how one may use the

Buchert equations to model the real Universe. For instance, the extrinsic ap-

proach to averaging seems to lay a natural path to take if considering two (or

more) fluids for the early Universe where one is pressureless dark matter and

the other is ordinary baryonic matter. This is because of the three timelike

congruences in the general setup allowing one to prescribe a fluid velocity to

each of these congruences. By itself, this does not seem difficult, however, the

interesting problem to investigate here would be how one would overcome no

longer having conversation of rest mass.

Furthermore, it would be interesting to extend the investigation in Chap-

ter 7 to models without the cosmological constant and with an ensemble of

different density profiles to represent the statistical variety of different cosmic

web structures that we observe in the low redshift universe. This could pro-

vide insight into how curvature and backreaction effects change the evolution

of the domains, and the important question of whether realistic models can be

obtained in the absence of dark energy. It is interesting that the order of magni-

tude of ΩDQ that we found in Chapter 7 for structures that had been constrained

by realistic ray tracing [134] in Λ–Szekeres models is comparable to that found

in the timescape cosmology [36] without dark energy. The big challenge is how

one constructs an ensemble of structures with a suitable average to replace the

asymptotic FLRW region of our toy models.

In the end, we are left with many avenues for future research, and only

time will tell if any of the theories we investigated in this thesis will aid in the

development of a new standard model of cosmology.
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[207] K. Bolejko, A. Krasiński, C. Hellaby, and M.-N. Célérier, Structures in
the Universe by exact methods: formation, evolution, interactions (Cam-
bridge University Press, 2010).

[208] K. Bolejko, “Evolution of cosmic structures in different environments in
the quasispherical Szekeres model”, Physical Review D 75, 043508 (2007).

145

https://doi.org/10.1103/PhysRevD.83.123505
https://doi.org/10.1103/PhysRevD.17.2529
https://doi.org/10.1103/PhysRevD.101.023511


[209] T. Buchert, J. Larena, and J.-M. Alimi, “Correspondence between kine-
matical backreaction and scalar field cosmologies—the ‘morphon field’”,
Classical and Quantum Gravity 23, 6379 (2006).

146



Appendix A

Perturbed Einstein Tensor
Components

We will list the components of the perturbed Einstein tensor (to first order)

with respect to the metric (4.6) in this Appendix. This is useful mainly for

post-Newtonian theory as we can directly determine what order of magnitude

the various metric perturbations should be. This is done by matching the orders

of magnitude of the left-hand and right-hand sides of Einstein’s equations. We

compute the components of the Einstein tensor both from the various ingredi-

ents listed in Chapter 4, and the use of a computer algebra package, sagemath

to check our results.

The (0, 0) component of the perturbed Einstein tensor is

2a2δG 0
0 = −6H2 δg00 + 4H δgk0,k − 2H δg′kk +∇2δgkk − δgkl,kl , (A.1)

the (0, i) component is

2a2δG 0
i = 2H δg00,i +∇2δg0i − δgk0,ki + δg′kk,i − δg′ki,k , (A.2)

and finally, the (i, j) component is

2a2δG i
j =

[
− 4

a′′

a
δg00 − 2H δg′00 −∇2δg00 − 2Hδg′kk

+∇2δgkk − δgkl,kl + 2δg′k0,k + 4H δg0k,k − δg′′kk

]
δij

+ δgki,kj + δgkj,ki − δgkk,ijδg′′ij + 2Hδg′ij
− δg′0i,j − δg′0j,i − 2H (δg0i,j + δg0j,i).

(A.3)

Upon examination, we note that G 0
0 is O(χ2) +O(χ4), under the assumption

that δg00 ∼ χ2, δg0k ∼ χ3, and δgij ∼ χ2. This is consistent with the right-hand

side of the stress-energy tensor under the post-Newtonian expansion. Assuming

that the above orders of magnitudes are an ansatz for now, let us continue

examining the other components. Under the assumptions we have made for
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the order of magnitude of the perturbed metric components, we note that G 0
i

is O(χ3), and G i
j is O(χ2) + O(χ4). We find that these orders of magnitude

match the right-hand side of Einstein’s equations given in (6.6), and thus we

can safely assume the ansatz to be correct.

148


	Introduction
	General Relativity and Cosmology
	From Newton to Einstein
	Einstein's Field Equations
	The Friedmann-Lemaître-Robertson-Walker Spacetime
	About Time and Dimensions
	Hubble Law
	Friedmann equations

	The Lambda Cold Dark Matter Model
	Cosmological parameters
	Observations

	Challenges for the Standard Model
	Fundamentals
	Observational Challenges

	Backreaction and Inhomogeneous Cosmology
	First look at Backreaction from Inhomogeneities


	3+1 Formalism in General Relativity
	Hypersurfaces
	Embedding Hypersurfaces in Spacetime
	Normal Vector
	Curvature
	Orthogonal Projector
	The Relationship Between potato and nahh 

	Geometry of Foliations
	Definition of a Foliation
	Foliation Kinematics

	3+1 Splitting of the Metric
	3+1 Decomposition of the Einstein Equations
	Gauss–Codazzi Equations
	3+1 Decomposition of the Stress-Energy Tensor
	Projection of the Einstein Equations and Dynamical Equations

	1+3 formalism

	Perturbation Theory
	Perturbed Geometry Calculations
	Perturbed Stress-Energy Tensor
	Perturbed Einstein Field Equations
	Metric Decomposition
	Gauges
	Gauge Fixing
	Gauge-Invariant Quantities


	Buchert Formalism
	Spacetime Foliation and Fluid Decomposition
	Geometry
	Description of the Fluid

	Comoving and Lagrangian Description
	Fluid-Extrinsic Scalar Averaging
	Volume of Domains and Their Time-Evolution
	Scalar Averaging and Commutation Rule
	Extrinsically Averaged Evolution Equations

	Discussion
	Backreaction Discussion
	Extrinsic Conservation of the Fluid Rest Mass
	Time-Reparameterization Invariance of Extrinsically - Averaged Equations

	Fluid-Intrinsic Scalar Averaging
	Intrinsic Averaging Operator
	Fluid-Intrinsic Time Evolution
	Fluid-Intrinsic Averaged Evolution Equations
	Effective Friedmannian Form
	Lagrangian Description


	Post-Newtonian Cosmology and Viable Gauges
	Perturbations and their Orders of Magnitude
	Gauge Choices in the Post-Newtonian Expansion
	Uniform Hubble Expansion Gauge

	Construction of Buchert Averaging in the Post-Newtonian Formalism
	Longitudinal Gauge and Backreaction Magnitudes


	The Szekeres Model and Backreaction
	Backreaction in the Szekeres Model
	Results and Discussion
	Asymptotic FLRW shell
	Void and wall shells
	Comparison with other studies


	Conclusion
	Bibliography
	Perturbed Einstein Tensor Components

