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Abstract—The paper presents an ergodic capacity analysis
of MIMO three product channels. We first derive the exact
non-asymptotic and asymptotic probability density functions of
the arbitrary eigenvalue of the system. From these, a non-
asymptotic and asymptotic expression for the ergodic capacity of
the system is derived. The non-asymptotic results involve several
single numerical integrations and the number of numerical
integrations increases with the number of antennas used in the
system. However, the asymptotic result has only one numerical
integration and a more compact form, hence providing a simpler
alternative to the non-asymptotic ergodic capacity result. We also
validate the results by using simulations. The results show that
the non-asymptotic analytical results are in good agreement with
the simulations and the asymptotic analytical results provide a
good approximation to the exact results even when the system
has very few antennas.

I. INTRODUCTION

Multiple-input, multiple-output (MIMO) product channels
have recently been given considerable attention due to their
many applications. Wireless channels are modeled as MIMO
product channels in MIMO multi-keyhole environments [1],
[2], [3] and also in certain MIMO multi-hop relaying envi-
ronments [4], [5], [6], [7]. In most of this work performance
analysis has focused on two product channels of finite size.
In addition capacity results on MIMO two product channels
have also been derived by employing asymptotic methods [1],
[8], [9], [10]. The advantage of the asymptotic methods is
their ability to provide accurate results with greatly reduced
complexity.

In this paper, we analyze the ergodic capacity of MIMO
three product channels. The exact analysis builds on the
approach in [6] while the large system approach requires an
asymptotic eigenvalue analysis of MIMO product channels.
In [11], [12], the arbitrary eigenvalue probability density
function of a Wishart matrix is studied as the dimension of
the matrix becomes large. In [1] a similar study is performed
for MIMO two product channels. Here, the author uses the S-
transform and the Stieltjes transform to derive an asymptotic
arbitrary eigenvalue probability density function (p.d.f.) for
the MIMO two product channel. The Stieltjes transform has
recently been identified as a key tool to derive information- and
communication-theoretic performance measures for random
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vector channels [1]. A general method to obtain the Stieltjes
transform for MIMO N product channels is discussed in
[13]. Furthermore, in [14] an asymptotic capacity analysis
is performed for multi-hop relaying systems again using the
Stieltjes transform. In this work a numerical method is used
to the obtain asymptotic arbitrary eigenvalue distribution from
the Stieltjes transform and no closed form expression for
the capacity is given. However, asymptotic ergodic capacity
analysis for MIMO three product channels is not accurately
available in the literature. Hence, our main contribution in
this paper is to derive an exact expression for the ergodic
capacity of MIMO three product channels and also to derive
an asymptotic expression for the ergodic capacity of the
channels using the Stieltjes transform. Our asymptotic result
is much simpler than the exact expression and provides a very
good approximation even when the number of antennas is
very small. We also present simulation results to validate our
analysis.

II. SYSTEM MODEL

MIMO product channels arise in MIMO environments when
there are groups of scattering objects [1] and are also found
in MIMO multi-hop relaying environments [3]. Specifically,
MIMO three product channels can be found in an environment
where there are two clusters of scatterers in between the source
and destination terminals. One such environment is the prop-
agation of signals between different floors of a building [13].
Furthermore, MIMO three product channels can also be found
in MIMO 3-hop relaying environments when the amplified
noise from the relays is negligible. For ease of exposition
we present our analysis in the context of the MIMO three-
hop relaying system shown in Fig. 1. The source (.5), relays
(R;), and destination (D) terminals are equipped with ng,
n, and ng antennas respectively. We assume the relays have
equal numbers of antennas due to space limitations. When the
relays have arbitrary numbers of antennas, the analysis is still
possible but additional cases have to be considered separately.
During the first hop, .S transmits to R, in the second hop R;
transmits the amplified signal from the first hop to Rz and
finally in the third hop Ry transmits the amplified signal from
the second hop to D. We let the normalized channel matrices
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Fig. 1.

MIMO three-hop relaying system.

for the source-to-relay (S— R;), relay-to-relay (R;— R3), and
relay-to-destination (Ro— D) links be given by H € C"* ",
H, € C" > and H3 € C"¢*", respectively, and assume
that both relays have n, antennas. All channels are assumed
to exhibit independent and identically-distributed (i.i.d.) flat
Rayleigh fading. Hence, the entries of the corresponding
channel matrices are modeled as i.i.d. zero mean circularly
symmetric complex Gaussian (ZMCSCG) random variables
with unit variance. Furthermore, we assume that relays assist
in the communication with D using amplify-and-forward (AF)
relaying. Hence, R; amplifies the received observation by a
factor, b;, and retransmits it to the corresponding destination.
The received signal at the destination after the three hops is
then given by

Y =boby VP3P PP HsHy H
+ bobi/ PsPoHsHong + bay/ PsHsng + ns. (1)

In (1), the parameters P;, P, and Ps are the average powers
of the S—R1, R1— Rs and Rs— D links, respectively, taking
into account the different path loss and shadowing effects
over the links. The variables nq, no and n3 are the noise
vectors at R;, Re and D respectively, and x is the vector
of transmit symbols. The transmit symbols are assumed i.i.d.
with E{xx'} = p,I,. /ns. The noise at D is modeled as
ZMCSCG with E{nsn}} = I,,. To obtain the 3 product
channel we follow [3] and assume that the amplified noises
from the relays are negligible. With this assumption, the
received signal at the destination can be written as

Yy =bobi/PsPoPPHsHoH x + 13
£ /prHsHyH iz + ngs, (2)
where p; = b3b3 P3P, P;. In this paper, we discuss the ergodic

capacity of the received signal given in (2) both asymptotically
and non-asymptotically.

ITI. NON-ASYMPTOTIC CAPACITY ANALYSIS

Defining p £ p1p,, the ergodic capacity of the system is
given by [5] as below,
}. 3)

1
C= §E {log2

The factor 1/3 accounts for the fact that information is con-
veyed to the destination terminal over three time slots [4].
This factor can be increased by pipelining the transmission of
messages. However, it does not effect the analysis and hence
we assumed that no pipelining is used in the transmission.

I, + nﬁH3H2H1(H3H2H1)T

14

For the capacity analysis, we require the distribution of the
non-zero arbitrary eigenvalue, A, of W where

W = H3;H,H,(H3:H.H,)'. “4)

However, a general form for this distribution is not possible for
arbitrary numbers of antennas. Thus, we have to consider two
separate cases: n, < ns and n, > ng. Let so = min(ng, n,),
s1 = min(ng,ns) and s min(sg, s1), then the ergodic
capacity can also be written as

n(1+ pA/ns) f(A)dA, &)

3ln(2)
where f()\) is the probablhty density function (p.d.f.) of A.
Hence, to find the ergodic capacity of the system, we need
to find the non-zero arbitrary eigenvalue density, f()\), of the
random matrix W. The derivations of the ergodic capacity of
the system for the two cases are given below.

A. Capacity Analysis: n, < ng
For this case the non-zero arbitrary eigenvalue density, f()),
can be given as follows.

Theorem 1: The p.d.f. of an arbitrary eigenvalue A\ of W
when n, < ng is given by

1
f(/\) N Fnr(nr)FnT (nT)FnT (ns)SO
I N e L NPT
X ) ———— | K | Ar(j),
i=n, —so+1 j=1 (nq —ny +1) ’
(6)

where I',,(n) = [, I'(n —k+1), K, ; denotes the (i,5)"
minor of the n, X n, matrix K with elements

K,;=T@{+j—1)T(ns —n, +1), @)

and

Ax(4)

o0
o) A
/ gymetne=nati=De =3 )L (2u)du.
0

®)
In (8), K,(-) is the modified Bessel function of the second
kind.
Proof: See Appendix A.
Then, using the above result and (5) and defining py =
p/ns, the ergodic capacity can be calculated as

1 ZT ZT(_l)i-i-j

T)Fn'r (nT)F" (ns) i=n,—so+1 j=1

ng—nr+i—1

Ip

31n( 7, (n

X |Kw|/

where Ig can be evaluated as

4 L Tr—k+1)
_ | r k—r
v kz_(J4k'< k >p L(ng —ny +1i)

} / e B2 T (1 (i)
0

X Kn,—n,+j-1(2u)du,

1—|—p0)\

(10)



where 1 = ng —n, + 4% — 1. A closed form expression for
the integral, Ip, in (10) is difficult to obtain and numerical
integration is required.

B. Capacity Analysis: n, > ng

For this case the non-zero arbitrary eigenvalue density, f()),
can be given as follows.

Theorem 2: The p.d.f. of an arbitrary eigenvalue A\ of W
when n, > ng is given by

1 ng N
Slrns (ns)rnr (nT)Fnr (nr) Z Z

i=ns—s1+1 j=1

fA) =
/\nd —ngs+i—1

T(ng —ns +1) |

ps
Nyp—"Ng

X (_1)%7"5““ +i,j‘ Ax(j)

(11
where K7} denotes the (¢, 7)™ minor of the n, X n, matrix

KP* with elements

T(i+j—1)
T(i+j—1)
xT' (ng — n,. + 1)

t=1,...,n, —Ng
t=n,—ng+1,....0.

ps __
K

12)

and Ay (j) is given in (8).

Proof: See Appendix B.

Using the results in (11) and (5), the ergodic capacity for
n, > ng can be calculated as

1
C = 3@ (0 T ) T (22)

Np—ng+it] s
X (_1) ! }KZT—ns-‘ri,j|
e <] /\ndfnSJrifl
X In(1 4+ pp\) =——
/0 (1+po )I‘(nd—ns—i—z)

ps
Ip

i=ng—s1+1 j=1

Ax(G)dx,  (13)

where I}’ can be evaluated as

L I(ry—k+1
Iy =) 4k! ( ) pongin =t
k=0

F(nd —ns + Z)
" / (et A 220 D) S D ey 1/ (pu?))
0

1
k

X K, n.tj1(2u)du, (14)

where 71 = ng —ns + ¢ — 1. Again, a closed form expression
for the integral, I%’, in (14) is difficult to obtain and a single
numerical integration is required.

IV. ASYMPTOTIC CAPACITY ANALYSIS

The non-asymptotic capacity results in the previous section
gives exact capacity results for any number of antennas. How-
ever, the non-asymptotic results involve numerical integrations
and determinants. Furthermore, the number of numerical inte-
grations and determinants that need to be computed increases
with an increase in the number of antennas in the system.
In this section, we derive an asymptotic capacity result that
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serves as a good estimate for the non-asymptotic case with
greatly reduced complexity.

The asymptotic capacity analysis considers the arbitrary
eigenvalue p.d.f. of W given in (4) when n,/n, — ¢y and
ng/n. — ¢1 as ng,n.,ng — oo for positive constants c¢o,
ci1. In [1] it is shown that the Stieltjes transform can be
used to find the asymptotic arbitrary eigenvalue distribution
of MIMO product channels. The Stieltjes transform is related
to the asymptotic p.d.f. of an arbitrary eigenvalue, f,(\), of a
random matrix as

_ [ AW

d\.
o At S

G(s) (15)
In [13], the author derives a general method to obtain the

Stieltjes transform for matrices of type

CN=H1...HN(H1...HN)T/(7’LN), (16)

where H; is n x n matrix with entries which are i.i.d.
ZMCSCG random variables with unit variance. Using the
result in [13], we can obtain the Stieltjes transform of W
for the general case of arbitrary values of ¢y, c;. However,
the general result is complex and due to space limitations we
assume ng = n, = ng = n in the derivation below. Hence,
using the result in [13] and assuming n; = n, = ng £ p, the
Stieltjes transform of W /n? can be given as,

s°G4(s) +sG(s) — 1 =0. (17)

The asymptotic p.d.f. of an arbitrary eigenvalue of the random
matrix W /n3, f,(\), can be obtained using the Stieltjes
inversion formula [1]
1
fa(N) = =limSG(—A — je),

T e—0

(18)

where 37 is the imaginary part of Z. Using (18), f,()\) can
be obtained as below.
Let

9(N) = EmRG(-A — o).
— T (@3 —_\ — 1
c(N) = E%JG( A —je),

19)
(20)

where RZ is the real part of Z. For ¢(\) # 0, the real and
imaginary parts of (17) give the following system of equations:

Mgt N) = 6X32 (V) g% (\) + A3t (N) + Ag(\) +1 =0 (21)

AN (N — 4N (N g(N) +1 =0, (22)
respectively. Solving (22) for c?(\) gives
1
N =N+ ———. 23

Solving (21) for ¢*(\) and setting its solution equal to the
right-hand side of (23) gives

64X g%(\) — 16Ag%*(\) — 1 = 0. (24)

As c(\) and f, () are related by f,(\) = c¢(\) /7, c2(\) has to
be strictly non-negative and real in the correct domain. From



(23), this also means that g?>()\) has to be strictly positive
and real in the correct domain. The random matrix W /n?
is positive-definite when ny = n, = ng. Hence, f,(\) will
be zero when A < 0, positive and continuous in the range,
0 < A < Anae and zero when A > \p4,. Now using
this information, equation (24) and the properties of cubic
polynomials, it can be found that g?(\) has real and positive
values when 0 < A < 16%/27 and g*()\) satisfying these
conditions can be given as

2()) = VB42X8(1 — jv/3) s/ =27+ /272 — 27 x 162/
g = 38404 2
N V642X8(1 + jv/3) 8 —27 — /272 — 27 x 162/\
384\4 2 '

(25)

From the properties of f,(\), ¢(Anaz) must be equal to
0. Hence, observing (23) and (25), A4, must be equal to
16%/27. Also using (23), ¢(Amaz) = 0 only when g(\) has
negative values. Hence, g(\) has to be real and negative. Thus,
g(\) = —v/g%(\), where g?()\) is given in (25).

Now, using the above information, f,(\) can be calculated
as

1 1
a(A) = =112\ + ——=. 26
fa) W\/g<>+4Azg(A) 26)
where g(\) is given above and f,()) is defined in 0 < A <
162 /27 and is zero elsewhere. Using this result, the asymptotic
ergodic capacity for the system defined in (2) can be written
as

n

162 /27 )
Ca= 3o /O In(1+n2pN) (NN, (27)

where we have assumed ns = n, = ng = n. From
(27), the asymptotic ergodic capacity result has only one
numerical integration and the integrand is a single closed form
expression. Hence, the asymptotic result is much simpler than
the non-asymptotic ergodic capacity result given in (9).

It is possible to obtain f,(\) for the general case when
ns, Ny and ng are unequal and ¢y, c; are arbitrary positive
numbers. In this case, the sixth order polynomial equation in
g(\), (24), has non vanishing terms in all powers of g(\) up
to order 6. Hence, the solution for g(\) does not have a simple
closed form as in (25). Therefore, the solution for g(\) has
to be evaluated numerically and the correct root out, of the
6 possibilities, has to be identified. In this case, f,(\) also
includes zero eigenvalues. Hence, f,(\) has to be scaled by
a factor, ng/min(ns, n,,ng), so that the arbitrary eigenvalue
p.d.f. obtained only includes non-zero eigenvalues. We include
some results for this case in Sec. V but a full exposition of
the calculations is omitted for reason of space.

V. RESULTS

The results produced in this paper are validated by using
Monte Carlo simulation. In all the results given, we have used

0.7 [ ]Simulation i
- - ~Theory asmp.
0.6 — Theory non—asmp. | |
0.5 1
<04 i
—
03 |[\ 1
0.2 1
0.1 1
0 = —
0 8 9 10

Fig. 2. Analytical and simulated p.d.f.s of the arbitrary eigenvalue of W /n3,
with system parameters: (2,2, 2).

0.8

0.7 [ |Simulation 1
- - ~Theory asmp.
0.6 — Theory non—asmp. | |

Fig. 3. Analytical and simulated p.d.f.s of the arbitrary eigenvalue of W /n3,
with system parameters: (4,4, 4).

the system defined in (2) and the number of antennas used
in the system is represented by the 3-tuple (ns, n,, nq). First,
in Figs. 2 and 3, we validate the result in Theorem 1 and the
asymptotic p.d.f., fo(\), via simulation. The result in Theorem
1 is for an arbitrary eigenvalue p.d.f. of W. Hence, it needs
to be scaled such that n3f(n3\) will give the p.d.f. of the
arbitrary eigenvalue of W /n3. The plots show the p.d.f. of
the arbitrary eigenvalue, A, with system configurations (2, 2, 2)
and (4, 4,4). Figure 2 shows that the non-asymptotic analytical
results are in good agreement with the simulations but the
asymptotic analytical results have some minor differences
compared to the simulations. However, Fig. 3 shows that this
difference is smaller for larger systems.

Figure 4 gives the non-asymptotic, asymptotic and simu-
lated ergodic capacity per antenna of the system defined in
(2). The non-asymptotic and asymptotic analytical results are
based on (9) and (27), respectively, and the results are given
for the system configurations: (2,2,2), (4,4,4) and (6,6, 6).
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Fig. 4. Analytical and simulated ergodic capacity per antenna of the system
with parameters: (2, 2,2), (3,3,3), (5,5,5) .
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Fig. 5.  Analytical and simulated ergodic capacity of the system with
parameters: (1,2, 3), (3,4,2), (1,2,1).

Figure 4 shows that the non-asymptotic analytical results are
in good agreement with the simulations for all values of n
and the asymptotic analytical results have minor differences
compared with the simulations in the higher SNR regions and
when n is small. However, the asymptotic analytical results
improve as n increases and give a good estimate for the non-
asymptotic results for n as low as 3.

Finally, we validate the analytical ergodic capacity result
given in Sec. IIl for the case when n, > ng; by using
simulation. Here, we also include results for the general case
when ng, n, and ng are unequal. Figure 5 shows that the non-
asymptotic analytical results are in good agreement with the
simulations and the asymptotic results provide an excellent
approximation to the exact results.

VI. CONCLUSIONS

The paper presents an ergodic capacity analysis of MIMO
three product channels. We first derived the exact non-
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asymptotic and asymptotic probability density functions of the
arbitrary eigenvalue of the system. The non-asymptotic results
are derived for any number of antennas in the system. From the
probability density functions, a non-asymptotic and asymptotic
expression for the ergodic capacity of the system is derived.
We also validated the analytical results by using simulations.
The results showed that the non-asymptotic analytical results
are in good agreement with the simulations and the asymptotic
analytical results provide a good approximation to the exact
results even when the system has very few antennas. Also, the
results showed that the asymptotic results have much lower
complexity compared to the non-asymptotic case.

APPENDIX

A. Proof of Theorem 1

Consider the case when n, < ng, then Ho has n, non-zero
eigenvalues with probability one. The singular value decompo-
sition of H 9 can be defined as Hy = UDQVT, where D5 is
an n, X, diagonal matrix with {\/v1, ..., /7, } as the main
diagonal elements in decreasing order. Using the singular value
decomposition of H, the matrix (HoH)(HoH 1) can be
written as UDoH, H | DU 2 UW,U". The matrix W
is central complex Wishart, as n, < ng, and has n, non-
zero eigenvalues defined as pg > ... > pp,. > 0. Then, the
unordered conditional density, f(u|v) can be given as [15]

1
s
Vi

T

flplv) = =
nelly, () [ 124
’ <Z e e

k=1
where |(Q,;)| denotes the determinant of the I x [ matrix Q
with elements @, ;. The unordered non-zero eigenvalue p.d.f.

of H ;H > can be found from [16] as

(=)' ), |

) ;o (28)

T

T

1
e, (00T, (0 kH

=1

e [k —vp)*. (29)

k<p

flv) =

Now the joint density, f(u, V), can be found using the relation,

f(p,v) = f(v)f(p|v), and integrating f(u,r) over all v;
we obtain

flp) = :

1T, (0 )T, ()T, ()

X <Z 2/1’](cns7nr+2j+i73)/2Knr—ns+i—l (2\/Mk)>
k=1

M

(30)

The eigenvalue decomposition of (HyH1)(H2H )" can be
defined as (HQHl)(HQHl)T = V12D12V12, where D12 is
an n, x n, diagonal matrix with {uy,..., 1y, } as the main
diagonal elements in decreasing order. Hence,

—~ —t
W = H;V1,D,VI,H, 2 HsD\;H,.  (31)



Let \; > Xs, > 0 be the non-zero eigenvalues of
W, where sp = min(ng, n,), then the conditional unordered
eigenvalue p.d.f. f(\|p) can be obtained from [6] as

F ) = ! y o g
g oy |Gl
S0 Hk<p(.“p fikc) P [(ng —n, + k)

(32)
where G is a n, X n, matrix with entries
i—1 .
. i #k
Gig={ "0 .?é (33)
Mj7 d=" o Hj 7 =

Using the relation f(A\, ) = f(p)f(A|p) to find the joint
density and integrating f(\, ) over all y; we obtain the result
in Theorem 1.

B. Proof of Theorem 2
When n, > ng,, the matrix H, also has n, non-zero
eigenvalues with probability one. Using the singular value
decomposition of H o, the matrix (HoH)(HoH )" can be

written as UDQH H DQUT UW U". The matrix W
in this case is pseudo Wlshart, as n, > ng, and has n, non-
zero eigenvalues defined as p; > > pp, > 0. Then,
the unordered conditional density, f(u|v) can be given using
results in [17], [18] as

1

-1
f(p,|1/) - ns!rns (ns) |((Vi)j_1)nr| |((,LL1)J )ns ) (34)
where FE is n, X n, matrix with elements
1/;-71 i1=1,...,n —ng
Eij={ vt i=nyr—ns+1,... 0
w e Hi—nptne/Vi
(35)

The unordered non-zero eigenvalue p.d.f., f(v), of H ;H 5 18
given in (29). The joint density, f(u,r) can be found again
using the relation, f(u,v) = f(v)f(p|v), and integrating
f(p,v) over all v; we obtain

1

_ -1
f(p’) ns!Fns (ns)FnT (nT)FnT (nr) |((ll’l) )ns
(36)
where F5 is n, X n, matrix with elements
(i+7—2), fori=1,...,n, —ng
2 PR, (np—ns+j—1)/2
E2i,j _ (/L r+ s) (37)

XKn, —n4j- 1(2\/m)
fori=n, —ns+1,.

In this case, the n, X n, diagonal matrix Djy has
{#,...,tn,} as the non-zero main diagonal elements in
decreasing order. Let A\; > ... > A5, > 0 be the non-zero
eigenvalues of W, then the conditional unordered eigenvalue
p.d.f. f(A|w) for the case can be obtained from [6] as

FAlm) . vy g
Mp) = Mg,
s1Lnz, (o — k) kv el I(ng—ns + k)
(38)
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where G is given in (33). Now using (36) and (38) in the
relation f(\, p) f(w)f(A|p) to find the joint density
and integrating f(A, ) over all p; we obtain the result in
Theorem 2.
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