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Training ground motion dataset from the Canterbury

region, New Zealand
As large magnitude earthquakes are rare, their recorded ground motions

are of prime importance and should therefore be manually screened.

Hence, only ground motions from earthquakes with moment magnitude

between 3.5 and 5.0 are considered within this study as shown in Figure 1.

The ground motion dataset used to train the neural network is comprised of

3989 records from 168 earthquakes that occurred in Canterbury, New

Zealand. These ground motions were recorded between 2003 and 2016 by

55 strong motion stations. Figure 1 shows the map of the strong motion

station network, earthquakes sources and schematic ray paths of the

observed ground motions.

In the dataset, the key ground motion metrics calculated from the records

are expressed as the geometric mean of the two horizontal components of

the ground motion. The vertical component has been excluded from this

analysis. To train the neural network, ground motion record quality has been

manually classified as highest quality records; high quality records; average

quality records; low quality records; and lowest quality records.

Differences between high and low quality ground

motions and data treatment
To determine the quality of a ground motion record, the primary metric that

is checked is the signal-to-noise ratio (SNR). However, there are many

other factors which could compromise the quality of a ground motion.

Hence to refine the selection process, 20 additional metrics characterizing

duration, peak signal and Fourier amplitude are utilized. As neural networks

yield better results with uncorrelated and amplitude-like inputs, the variables

are standardized and decorrelated using a Mahalanobis transform.

Figures 2 (a)-(d) show four couples of standardized, decorrelated variables,

and Figures (e)-(f) the signal and Fourier spectra of a single component of

one highest and lowest quality records. It can be observed on Figures 2 (a)-

(d) that none of the variable couples could be used to linearly separate high

and low quality records. However, neural networks combine classifying

planes across multiple dimensions, allowing a more accurate classification.

Figures (e)-(h) illustrate some of the potential differences a highest and a

lowest quality records can have (e.g. a high peak noise).

Motivation
Densification of strong-motion station networks, their increased sensitivity,

and the desire to use smaller magnitude data, is leading to exponentially-

increasing ground motion datasets. Despite the improving reliability of

seismic instrumentation, recorded ground motions are not of uniform

quality, and the exponentially-increasing dataset sizes require automated

quality assessment in order to be scalable. Here we propose a two-layer

neural network that takes key ground motion metrics as inputs to

automatically determine the quality of the records.

Trained neural network and future work
The neural network was trained with both the highest and lowest quality records.

Its architecture was selected via a grid search combined with a K-Fold cross-

validation scheme. Applied to a ground motion, the final neural network assigns

two scores: one for resemblance to a highest quality records and one for the

resemblance to a lowest quality records. To reduce the number of misclassified

ground motions of low quality (i.e. average to lowest quality records must be

rejected), multiple acceptance thresholds are tested. It can be observed in Figure

3 that a threshold of 0.9 seems to eliminate most of the average to lowest, while

also significantly reducing the number of ground motions available for validation.

The developed neural network will further be tested on newly classified datasets

(e.g. the Wellington region) to ensure its broader validity. The threshold effect will

also be analyzed on the final validation results. Additionally, the introduction of

potentially automated-selection-induced biases will also be investigated. Final

results will serve to validate results from the New Zealand physics-based ground

motion model for small-to-moderate magnitude earthquakes.

Figure 1: Map plot of 168 earthquake sources which produced observed ground

motions at the 55 recording stations considered in this study. Schematic ray paths of

observed ground motions are also shown as black lines.

Figure 3: Influence of the acceptance threshold on (a) the number of accepted ground

motions ; and (b) the proportion of accepted ground motions for each categories. Numbers

between brackets indicate the original number of ground motions in each category.

Figure 2 (a)-(d): Scatter plots of four variable couples in their respective transformed

spaces showing the differences between the HSQR and LSQR distributions; (e)-(f)

Signals of the HSQR and LSQR indicated in Figure 2 (a)-(d); and (g)-(h) Fourier

spectra of the same records.

(a)

(c)

(b)

(d)

(a)

(b)

(e)

(g)

(f)

(h)


