
A CALCULUS BASED ON ABSENCE OF ACTIONS1

Padmanabhan Krishnan

Department of Computer Science

University of Canterbury, PBag 4800

Christchurch, New Zealand

E-mail: paddy@cosc.canterbury.ac.nz

Abstract

In this article we present a process algebra where the behaviour can be

speci�ed when certain actions cannot be exhibited. This is useful in specifying

time outs, interrupts etc. We present a few properties which form the basis for

a sound and complete axiomatisation of a bisimulation equivalence relation.

A comparison with other approaches is presented.

1 Introduction

Most approaches to concurrency and synchronisation are based on the presence of

information. The rules that govern behaviour usually state that if a certain type

of behaviour is possible, then another type of behaviour is also possible. But such

a framework is not su�cient especially when one has to include concepts such as

interrupts and priorities. To specify the semantics (and hence to implement) features

such as interrupts and priorities, it is essential to have both the presence of and the

absence of information. That is, we need to specify that if a certain behaviour is

impossible, then some other behaviour is possible. The use of negative information

has many uses including default reasoning in arti�cial intelligence [Rei80] and the

select-else construct in Ada [Ada83]. In the default reasoning situation, the classical

example is the assumption that all birds can
y which is discarded when penguin is

a bird and penguins cannot
y is asserted. Thus the validity of the assertion that

all birds can
y requires the absence of information on penguins. In Ada, the `else'

alternative in a `select' statement is executed only if the other `entries' cannot be

accepted. To execute the `else' alternative, knowing that there are no pending entry

calls is essential.

While there have been various approaches to include priorities and interrupts in

the context of concurrency, the work by Saraswat [SJG95] et. al. is the only one that

we are aware of to consider a general framework for the absence of information. But

their main concern is that of a non-monotonic logic and its denotational semantics.

1To appear at the Eighth International Symposium on Intensional Programming: ISLIP'95

1

Process algebras such as ACP [BK88], CCS [Mil89] and CSP [Hoa85] are a

popular approach to study concurrency. Unlike Saraswat [SJG95] et. al. who study

negative information in the context of logic programming, we present a calculus with

negative information using ideas from process algebra.

While studying negative information, it is easy to de�ne a calculus whose syntax

does not include negative information but whose semantics is based on absence of

information. However, if such calculi are to be meaningful (i.e., have a sound se-

mantics) the operational rules have to follow certain rules. See the work by Groote

[Gro90] for the technical details. In certain situations the ideas expressed by Camil-

leri and Winskel [CW91] are also applicable. We present a calculus where the

behaviour in the absence of information is speci�ed as part of the syntax and the

semantics does not use any negative rules.

The syntax we consider is a variant of CCS. As usual we will consider a countable

set of actions with a bijection (�) such that for every action �, � = �. The bijection

identi�es complimentary actions which are used for synchronisation. The synchroni-

sation of two processes is represented by a special � action. For the sake of simplicity

we do not consider relabelling but consider a syntax for specifying behaviour in the

absence of actions.

P ::= 0 (��P) [: S, P] [[: S, P]] (P + P) (P j P) (P n

H) X (rec X:P)

The intuitive semantics of processes expressed in the above syntax is as follows.

The process 0 represents termination (or deadlock) and make no further progress.

The process (�� P) can exhibit a positive action (�) and then behave as P. The

process [: S,P] represents behaviour in the context of negative information. If the

environment in which P executes cannot exhibit any action in S, the behaviour spec-

i�ed by P is exhibited. The process [[: S,P]] is a stronger version of [: S,P], in that

the requirement of : S persists for the entire behaviour of P. Strictly speaking, this

form is not essential. One can use recursion and [: S,P] over the entire behaviour of

P. But the stronger form is useful when specifying behaviour and acts a convenient

shorthand. The combinators +, j and n represent non-deterministic choice, concur-

rency and hiding respectively. When considering (P j Q) we consider Q be in the

operating environment of P and vice-versa. The term X and (rec X:P) is used to

de�ne recursive processes. We assume that in (rec X:P) the term P is well guarded

so that the recursive process is well de�ned.

Before we present the formal details a few examples to illustrate the use of

negative information are presented.

2

Example: Given two Ada tasks A and B de�ned as follows:

task A : : : accept a do P else accept b do Q : : :

task B : : :A.b or A.a

This speci�es that the entry a has higher priority priority than entry b.

Task A can be translated into our calculus as: ([:fag, b�Q] + a�P) where

the issuing of the entry call in task B becomes a and b.

Thus the overall system will be (([:fag, b�Q] + a�P) j (b�0 + a�0)) n

fa,bg.

In this particular situation the behaviour is equivalent to (� �P) fa,bg.

If instead of task B one had tasks B and as follows:

task B : : :A.b

task C : : :A.a

the entry call from C will accepted while entry call from task B will be

suspended. The system in this case will be (([:fag, b�Q] + a�P) j (b�0

j a�0)) n fa,bg

In both the cases, the presence of : fag ensures that a has higher priority

over b. The presence of the term a�P indicates that the action a can be

selected.

Example: The behaviour of a CPU can be speci�ed as a cyclical execu-

tion of the sequence fetch, decode and execute. This can be interrupted

by an interrupt say (i) at any given instant in the cycle. When the in-

terrupt line is lowered (and hence the action i disappears) the cycle is

resumed. The above behaviour is speci�ed below.

CPU = [[:fig, NB]]

NB = fetch�decode�execute�NB

The process generating and holding the interrupt can be speci�ed as

Intr = start�Do

Do = [: fdoneg, i�Do] + done�Intr

The CPU can continue processing till the interrupt generator is started.

Once it is started, the process Do holds the interrupt till it receives a

request to complete in which case it reverts back to Intr. The negative

information for Do ensures that action `done' has a higher priority than

i and hence cannot be ignored by the process Do. Thus on completing

the interrupt handling, the process Do has to disable i, letting the CPU

continue its regular processing.

3

The absence of information is required if the techniques used by Krishnan

[Kri94] are to be extended to verify the behaviour of a CPU in the

presence of interrupts.

Example: Imprecise computation [LNL87] especially in the case of it-

erative improvements can be speci�ed as follows.

C = r1 � r2 � : : : rn�Final

Final = rf �Final

Muncher = [[: fhurryg, r1�r2 : : : �0]]

T = do something�(obtain info�0 j HL)

HL = hurry�HL

Val = obtain info�
X

i

ri � vi � 0

Sys = (C j T j HL j Val) f obtain info; r1; r2; : : : ; rn g

The process C is the main computation process whose body is speci�ed

as a sequence of actions which can be suspended at any given instant by

enabling hurry. The process T is a timer which after `doing something'

activates both hurry which is persisted and a process Val which inspects

the state of C (via synchronisation) and prints an appropriate value (vi).

It is important to note that the hiding involves the ri's. Hence if Muncher

is absent, the process C will be unable to advance as it will be unable to

exhibit the ri's due to the restriction on Sys. Furthermore, even though

ri is restricted, the process Muncher cannot advance after hurry has

been asserted. Hence after a hurry the only possible synchronisation is

between C and Val.

Example: Our �nal example is a modi�ed version of the example pre-

sented by Baeten [BBK85] et. al. Consider a system with a �le server,

a key board and a display. The key board generates signals which are

either displayed directly or are requests to the �le server to display the

status. Hence the keyboard generates interrupts to the �le server. The

formal speci�cation is as given below. FS is the main �le server while FI

is the interrupt handler. The process Display and Keyboard specify the

behaviour of the display and key board respectively.

FS = [[:ff intg BF]] j FI

FI = f int � f display �FI

Display = n display�n done �Display + f display �f done �Display

Keyboard = n display�Keyboard + f int�Keyboard

System = (FS j Display j Keyboard) n fn display, f int, f displayg

4

The synchronisation between FI and Keyboard on f int ensures that the

interrupt is handled and FS resumes its regular service.

2 Formal Details

An operational semantics based on labelled transition systems [Plo81] is given in

�gure 1. To de�ne the semantics of absence of information, it is essential to know

the information available; i.e., all actions that are possible. All other actions are

deemed to be impossible at this stage. This is characterised from the syntax of the

process as follows.

De�nition: 1 De�ne the set of possible actions a process (say P) makes available

(written as ready(P)) as follows.

ready(0) = ;

ready(��P) = f�g

ready(P + Q) = ready(P) [ready(Q)

ready(P j Q) = ready(P) [ready(Q)

ready([:S,P]) = ready(P)

ready([[:S,P]]) = ready(P)

ready(P n H) = ready(P) - (H [H)

ready(rec X:P) = ready(P)

In the presentation of the rules, we have abused notation for the sake of simplify-

ing the presentation. Technically one should have di�erent rules for the behaviour of

a process in an environment and that of a process by itself. We use a single relation

�! to indicate both the behaviours. Hence at the surface level the rules appear

very similar to the CCS rules.

Following Milner [Mil89] a bisimulation relation induced by �! can be de�ned.

A direct de�nition of a bisimulation relation (�) based only on observational be-

haviour would not be a congruence. This is due to the presence of the j combinator.

If two processes are equivalent, it is essential that their behaviour be identical in all

environments. The de�nition of � is as follows.

5

h��P, Qi
�

�! P

hP,Qi
�

�! P0

h[:S, P],Qi
�

�! P0
S \ ready(Q) = ;

hP,Qi
�

�! P0

h[[:S, P]],Qi
�

�! [[:S, P0]]
S \ ready(Q) = ;

hP1,P2i
�

�! P0

1

(P1 + P2)
�

�! P0

1

(P2 + P1)
�

�! P0

1

hP1,P2i
�

�! P0

1

(P1 j P2)
�

�! (P0

1
j P2)

(P2 j P1)
�

�! (P2 j P
0

1
)

hP1,P2i
�

�! P0

1

hP2,P1i
�

�! P0

2

(P1 j P2)
�

�! (P0

1
j P2)

(P2 j P1)
�

�! (P2 j P
0

1
)

hP,Qi
�

�! hP0,Qi

(P n H)
�

�! (P0 n H)
(�, � 62 H)

hP,Qi
�

�! hP0,Qi

(rec X:P)
�

�! P0(X/(rec X:P))

Figure 1: Operational Semantics

6

De�nition: 2 Process P and Q are bisimilar (P � Q) i� for all processes R

hP,Ri
�

�! P0 implies that hQ,Ri
�

�! Q0 and P0 � Q0

hQ,Ri
�

�! Q0 implies that hP,Ri
�

�! P0 and P0 � Q0

It is easy to check that � is the smallest relation that is a congruence.

We now present a few laws that are satis�ed by �.

Proposition 1 If P and Q are CCS processes (that is do not use the absence of

information construct) and P are Q are bisimilar under the semantics presented for

CCS, P and Q are indeed bisimilar under the semantics presented here.

The above proposition shows that our extension is consistent with CCS. That

is, the new rules do not distinguish processes in the absence of the use of negative

information.

Proposition 2 If [: S1, P] � [: S2, Q] and P
�

�! P0, S1 = S2.

Proof: If S1 and S2 are di�erent (say in �0) h[: S1, P], �
0 � 0i and h[: S2, Q], �

0 � 0i

will have di�erent behaviours. �

Proposition 3 Let P be [: S1,
X

i2I

ai � Pi] and Q be [: S2,
X

j2J

bj �Qj].

If S1 \ fbj; j 2 Jg and S2 \ fai; i 2 Ig are both nonempty then (P j Q) � 0.

If S1 \ fbj; j 2 Jg = ; but S2 \ fai; i 2 Ig 6= ; then (P j Q) � R where

R = [: S1,
X

i

ai � (Pi j Q)]

If S2 \ fai; i 2 Ig = ; but S1 \ fbj; j 2 Jg 6= ; then (P j Q) � R where

R = [: S2,
X

j

bj � (P j Qj)]

Proof: It is easy to see that ready(P) = fai, i 2 Ig while ready(Q) = fbj, j 2 Jg.

Hence if (P j Q)
ai�!, it is clear that (S1 \ ready(Q)) has to be empty. Other cases

are similar. Hence depending on the relationship between the Sk's and the ready

sets the appropriate behaviour will be exhibited. �.

In the last two results in the above proposition, the negative information guard is

maintained as the bisimilarity has to be preserved over all contexts. If one removes

the negative information guard in R, it is easy to devise an environment (as shown

in the following example) where they are not bisimilar.

7

Example: Consider the process [:fag, b�0] j [:fbg, c�0].

This process is bisimilar to

[:fag, b�(0 j [:fbg, c�0])].

If the :fag is removed, the behaviours of the two processes in the context

of a�0 are not identical.

As we are still within the domain of interleaving semantics for the `j' combinator

the following proposition is valid.

Proposition 4 Let P be [: S1,
X

i2I

ai � Pi] and Q be [: S2,
X

j2J

bj �Qj].

If S1 \ fbj; j 2 Jg and S2 \ fai; i 2 Ig are both empty then (P j Q) � R where

R = [: S1 ,
X

i2I

ai � (Pi j Q)] +

[: S2 ,
X

j2J

bj � (P j Qj)] +

[: (S1 [S2) ,
X

i;j;ai=bj

� � (Pi j Qj)]

Proof: As S1 \ fbj; j 2 Jg is empty, hP,Qi
ai�! for every ai. Similarly hQ,Pi

bj
�!

for every bj. Hence both asynchronous behaviour and synchronisation moves are

possible. �

The above result is straightforward generalisation of the expansion theorem for

CCS. Propositions 3 and 4 together cover all possible interleaved behaviour.

Proposition 5 Other properties include

X

i2I

ai � Pi � [:;,
X

i2I

ai � Pi]

[: S1 , [: S2,P]] � [: (S1 [S2), P]

[:S, (�1 � P1 + �2 � P2] � [:S, �1 � P1] + [:S, �2 � P2]

[: S, P] n H � [: S, (P n H)]

(P + Q) n H � (P n H) + (Q n H)

(��P) n H � 0 if � or � 2 H

(��P) n H � �(�P n H) if � and � 62 H

[: S1, 0] � [: S2, 0]

8

P + P = P 0 j P = P
P + 0 = P 0 n H = 0

P + Q = Q + P P j Q = Q jP
(P + Q) + R = P + (Q + R) (P j Q) j R = P j (Q j R)

Figure 2: Equations

It is easy to derive a sound and complete axiomatisation of the bisimulation

relation for �nite processes. That is we do not consider recursion and [[]]. One can

translate the above rules into equations (and add a few axioms such as associativity,

commutativity, idempotence etc.) to obtain the axiomatisation. The proof follows

the usual lines of de�ning a standard form and proving that every bisimilar process

can be reduced to the same standard form. The standard that needs to be considered

is [:S,P] where P is in CCS standard form (i.e., of the form
X

i2I

ai �Pi where each Pi

is in standard form). The following propositions formalise the above description.

De�nition: 3 A process is in CCS standard form if it is of the form
X

i2I

ai � Pi

where each Pi is in standard form. Note that 0 is in CCS standard form as 0 can

be expressed as an empty choice.

A process in our calculus is in standard form if it is of the form [: S, P] where

S is a set of action (perhaps empty) and P is in CCS standard form.

Proposition 6 Every process can be converted to a process in standard form using

the equation form of the results related to bisimulation and the axioms in �gure 2.

The use of standard forms is to get a handle on the structure of process, given

a speci�c behaviour. That is, given that a process P in standard form, and if P can

exhibit an action (say �), the syntactic structure of P can be assumed to be of the

form [:S, (��P1 + P2)]. This observation is then used to prove the following lemma.

Lemma 1 Absorption Lemma If P and Q are in standard form such that P �

Q, P + Q = P = Q

Proof Outline: If P and Q cannot exhibit an action, they are of the form [: S, 0]

and the result is obvious. Otherwise as P � Q, for every R, hP,Ri
�

�! P0 implies

that hQ,Ri has a matching move. For this to occur P must be of the form [: S,

(��P1 + P2)] and Q of the form [: S, (��Q1 + Q2)]. Note that in both P and Q the

negative part must be identical. Hence [: S, (��P1 + P2)] + [: S, ��Q1] is equal to

P. By repeating the process the entire of Q2 can be absorbed into P. �

9

Proposition 7 If P � Q, it can be proved that P = Q.

Proof: The proof follows the usual steps. The �rst is to use the above proposition

and convert P and Q to standard form. Hence it su�ces to consider P and Q already

in standard form. If P and Q in standard form are bisimilar, the absorption lemma

shows that (P + Q) = P and (Q + P) = Q and as (P + Q) = (Q + P), (P = Q). �

The modal �-calculus [Sti89] has been used to obtain a logical characterisation

of bisimulation. However in our case it is not clear how the semantics of satisfaction

of a formula by a process of the form [: S, P] should be de�ned. One can adopt the

view that [: S, P] j= ' i� P j= '. This view is satisfactory as far as observation

behaviour of processes is concerned. However, this is not su�cient to characterise

bisimulation as both [:;,��0] and [:fbg,��0] satisfy h�iTrue but clearly the two

processes are not bisimilar. While it is possible to de�ne satisfaction of a formula '

for the term [: S, P] as

[: S, P] j= ' i� 8 R, ([: S, P] j R) j= ')

the de�nition is unsatisfactory due to the universal quanti�cation over the set of

processes (R). This invalidates the use of traditional model checking techniques.

Hence a more discerning form of satisfaction is essential and this is a topic of future

work.

But we can present a few results related to the simple de�nition of satisfaction

for processes whose behaviour depends on the absence of other actions.

Proposition 8 If P j= haiTrue, and Q j= [a]False, then if ([: S, P] j Q) j= haiTrue,

then for every � 2 S, Q j= [�]False

As Q cannot perform an a action, and P can, the only way for ([: S, P] j Q)

to exhibit an a action was for Q not to disable P. Hence the ready set of Q cannot

contain any action in S.

Proposition 9 For every P such that P j= [c]False, ([:fag, b � 0] j P) j= [c]False

The above proposition states that as long as P cannot perform a c action, placing

it in an environment which cannot perform a c action will not magically enable c.

3 Related Work

Bolognesi and Lucidi [BL91] present two calculi in the context of real-time systems.

The �rst deals with urgent actions and is restricted to a single process. That is,

10

if a process can perform an urgent action, it cannot idle. Hence this is useful in

controlling choice in the presence of time outs. The second calculus deals with a

binary operator which is used to disable other processes. Once a process is disabled,

it does not make any contribution to further behaviours. They achieve their main

aim of providing with a single very powerful operator. Even with the powerful

binary combinator, it is hard to specify concepts such as temporary suspension.

Furthermore, being a binary operator, the environment has to be encoded in. In

our case we can �rst specify the system and then worry about the environment. Of

course, we have not added any concept related to time. But that is easily achieved

using the well known techniques [Kri92, Yi91].

Camilleri and Winskel [CW91] describe the addition of priority choice (!j) to

CCS. The operational rules appear to be more complex due to the assumption of

an implicit environment. We have a simpli�ed presentation as the environment is

represented as another process. Every process using !j can be expressed in our

calculus. For example, (a�0 !j b�0 !j c�0) can be represented as [:fa,bg, c�0] +

[:fag, b�0] + a�0.

Apart from simplifying the presentation of the operational semantics, by incor-

porating absence of action information in the syntax of processes, we have done

away with need for a bi-level syntax. They required a bi-level syntax to avoid giving

semantics to processes such as (a�0!j b�0) j (b�0 !j a�0). Hence they outlaw this by

imposing constraints on the syntax. In our case this process will be equated with 0.

This is because in the de�nition of ready for non-deterministic choice, the union of

all possibilities is taken.

Berry [Ber93] provides a calculus for preemption based on the synchronous lan-

guage Esterel. But the main drawback of the work is the need for a large number

of constructs to express various types of preemptions. They also do not present any

algebraic laws. We are able encode these operators in terms of our much simpler op-

erators (although in fairness it must be said that not all encodings are perspicuous)

which satisfy certain algebraic properties. Furthermore, our de�nitions are based on

asynchronous behaviour. It is possible to modify the semantics to specify instanta-

neous behaviour by extending the environment (using the ready set) to include the

current process whose behaviour is to be determined.

4 Acknowledgements

This work has been partially supported by UoC Grant No. 1787123.

11

References

[Ada83] Ada programming language (ANSI/MIL-STD-1815A). Washington, D.C.

20301, January 1983.

[BBK85] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Syntax and de�ning

equations for an interrupt mechanism in process algebra. Technical Report

CS-R8503, CWI, 1985.

[Ber93] G. Berry. Preemption in Concurrent Systems. In Foundations of Software

Technology and Theoretical Computer Science, LNCS 761, pages 72{93.

Springer Verlag, 1993.

[BK88] J. A. Bergstra and J. W. Klop. Process Theory Based on Bisimulation

Semantics. In Linear Time, Branching Time and Partial Order in Logics

and Models for Concurrency, LNCS 354, pages 50{122. Springer Verlag,

1988.

[BL91] T. Bolognesi and F. Lucidi. Time Process Algebras with Urgent Interac-

tions and a Unique Powerful Binary Operator. In J. deBakker, editor, Pro-

ceedings of the REX Workshop on Real-Time: Theory in Practice: LNCS

600, pages 124{148. Springer Verlag, 1991.

[CW91] J. Camilleri and G. Winskel. CCS with priority choice. In IEEE Sym-

posium on Logic in Computer Science, pages 246{255, Amsterdam, The

Netherlands, 1991.

[Gro90] J. F. Groote. Transition System Speci�cations with Negative Premises. In

J. C. M. Baeten and J. W. Klop, editors, CONCUR 90, LNCS-458, pages

332{341. Springer Verlag, 1990.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall In-

ternational, 1985.

[Kri92] P. Krishnan. A Calculus of Timed Communicating Systems. International

Journal of Foundations of Computer Science, 3(3):303{322, September

1992.

[Kri94] P. Krishnan. A Case Study in Specifying and Testing Architectural Fea-

tures. Microprocessors and Microsystems, 18(3):123{130, April 1994.

[LNL87] K. Lin, S. Natarajan, and J. W. Liu. Imprecise results: Utilizing partial

computations in real-time systems. In IEEE Real-Time Systems Sympo-

sium, pages 210{217, 1987.

12

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall International,

1989.

[Plo81] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical

Report DAIMI FN-19, Computer Science Department, Aarhus University,

1981.

[Rei80] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81{132,

1980.

[SJG95] V. Saraswat, R. Jagadeesan, and V. Gupta. Default Timed Concurrent

Constraint Programming. In 22nd ACM Symposium on Principles of Pro-

gramming Languages, January 1995.

[Sti89] C. Stirling. An Introduction to Modal and Temporal Logics for CCS. In

Joint UK/Japan Workshop on Concurrency:LNCS 491, pages 2{20, 1989.

[Yi91] Wang Yi. CCS+Time = An Interleaving Model for Real-Time Systems.

In ICALP -91, LNCS 510. Springer Verlag, 1991.

13

