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Abstract. Granger and Hyung (2004), Diebold and Inoue (2001) and Smith
(2005) demonstrate how long memory and structural change can be confused
because their finite sample properties are similar. In this paper we present a
new approach to detecting multiple breaks in a series. The approach, which
utilises the computational efficient methods based upon Atheoretical Regres-
sion Trees (ART), also allows categorisation of breaks as either ’spurious’ or
’real’. We present empirical examples of the use of the approach utilisin g data
on realised volatility from 16 Dow Jones Industrial Average index stock. Par-
ticular attention is placed on 5 stocks which exhibit long memory based upon
the Beran (1992) test. Some statistical properties of the regimes identified are
also considered.

1. Introduction

It is now well known that long memory and structural change are easily con-
fused see [21], [15] and [42]. Distinguishing between long memory and structural
change is difficult because their finite sample properties are similar and so stan-
dard methodologies often fail, see [41]. It is often the case that structural break
detection and location techniques report breaks when only long memory is present;
similarly, long memory measurement techniques often report long memory when
only structural breaks are present even when the series are Markovian. Theorists
may be interested in knowing the statistical properties of procedures for detecting
and quantifying long memory when only structural change is present and vice versa,
however, recent developments in financial econometrics mean that practitioners are
now also acutely interested in these issues.

Engle’s paper [18] on ARCH marked the birth of the field of financial econo-
metrics. Bollerslev’s generalisation [11] and ensuing computational simplifications
opened the literature to a wide audience of applied economists and the area was
given extra impetus with the growing availability of high frequency and ultimately
’tick-by-tick’ data. However, one of the original problems with the GARCH ap-
proach and the Stochastic Volatility (SV) models that followed is that volatility
is ’latent’ and attempts to measure it via, e.g., daily squared return measures of
volatility typically contains significant measurement error. By aggregating 288
squared 5-minute returns, Andersen and Bollerslev [1] demonstrated that volatility
becomes essentially measurable, ex-post. Such aggregated high-frequency sums of
squared returns have recently been labeled realised volatility. In a series of papers
Andersen, Bollerslev, Diebold and Ebens [2] and Andersen, Bollerslev, Diebold and
Labys [3] have studied the properties of realised volatility measures as an accurate
measure of actual volatility and hence the growth of work on realised volatility in
financial and exchange rate markets (see [36] for an excellent survey of the area).
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An interesting feature that [3], [34], [44], all highlight, is that the typical financial
asset has realised volatilities that are fractionally integrated of order d, where d is
around 0.4 giving the data a ’long memory’ property. Long memory, also known
as long-range dependence, strong dependence, global dependence or the Hurst phe-
nomenon after the work of Hurst (1951), has a somewhat longer history than that
found in econometrics and popularised by the work of Granger [20]. Hurst [30]
considers long memory in hydrological data; Mandelbrot and Wallis [33], likewise
in geophysical records, tree-ring indices, earthquake frequencies and sunspot cycles.
Examples from economics include stock market volatilities [21] and [22]. Bollerslev
and Wright [12] argue that estimates of the degree of fractional integration are
unbiased for daily volatility based on intraday returns, whereas they are severely
downward biased when estimated from daily squared returns. Diebold and Inoue
[15] show that occasional structural breaks can spuriously suggest the presence of
long memory. As financial volatility data seems to have occasional, irregular, level
shifts, it would seem important to model/detect these shifts when trying to estab-
lish the degree of long memory (and vice versa). On the other hand, de Pooter,
Martens and van Dijk [35] report that (using S&P 500 realised volatility) level shifts
do not account for the long memory characteristics in the data. The fractional in-
tegration parameter declines when structural breaks are explicitly modelled, but
remains significantly greater than zero.

The aim of this paper is to consider the statistical properties of procedures
designed to detect and location of structural change when in fact the series actually
exhibit long memory. Long memory processes typically generate observations that
may ’look like’ structural change, but in fact these breaks are ’spurious’. What
we do here is to consider whether we can categorise ’reported’ breaks as ’spurious’
or ’real’ by examining the statistical properties of the ’regimes’ reported by the
Atheoretical Regression Trees (ART) see Cappelli and Reale (2007). The approach
involves using a structural break technique when ART is applied to a pure long
memory time series.

The remainder of the paper is organized as follows. Section (2) sets out the
competing models and the empirical problem. Section (3) discusses the methods
used in this paper. Section (4) describes the data. Section (5) represents the
results of investigation and Section (6) gives final concluding remarks. A concise
illustration of ART is given in an appendix in section 7.

2. Models and the Empirical Problem

A number of models have been proposed to account for the extraordinary per-
sistence of the correlations across time found in long memory series. Some have
enjoyed considerable success in specific fields such as the Granger[20] aggregation
model in econometrics.

There are two common sets of models applied across long-memory series from
diverse fields. One set are true long memory models, in particular, the Fractional
Gaussian Noises (FGN) and Fractionally Integrated (FI(d)) processes. The other
set are models with a non-stationary mean. For simplicity the types of models
studied are ones in which the time series can be broken in a series of “regimes”
within which it is a reasonable assumption that the mean in stationary. Some
examples are structural break and Markov switching models.

2.1. Fractional Gaussian Noises and Fractionally Integrated Series. FGNs
(Mandelbrot and van Ness[32]) are the stationary increments of an Gaussian H-
self-similar stochastic process.



DETECTION OF SPURIOUS AND REAL BREAKS IN REALIZED VOLATILITY 3

Definition 1: A real-valued stochastic process {Z(t)}t∈R is self-similar with
index H > 0 if, for any a > 0,

{Z(at)}t∈R =d {aHZ(t)}t∈R

where =d denotes equality of the finite dimensional distributions. H is also
known as the Hurst parameter.

Definition 2: A real-valued process Z = {Z(t)}t∈R has stationary incre-
ments if, for all h ∈ R

{Z(t + h)− Z(h)}t∈R =d {Z(t)− Z(0)}t∈R.

It follows from Definition 1 that H is constant for all subseries of an H-self-similar
process.

FGNs are a continuous time process while Fractionally Integrated series (FI(d))
series(Granger and Joyeux[22], Hosking[29]) are their discrete time counter-parts.

FI(d)s are a generalization of the “integration” part of the Box-Jenkins ARIMA
(p,d,q) (Autoregressive Integrated Moving Average) models to non-integer values of
the integration parameter, d. Denoting by B the backshift operator, the integration
operator (1−B)d can be expanded as a Maclaurin series into an infinite order AR
representation

(1) (1−B)dXt =
∞∑

k=0

Γ(k − d)
Γ(k + 1)Γ(−d)

Xt−k

where Γ(·) is the gamma function. The integration operator in Equation (1) can
also be written in an infinite order MA representation.

ARIMA models with non-integer d are known as Autoregressive Fractionally
Integrated Moving Average (ARFIMA) models. The AR(p) and MA(q) parameters
in ARFIMA models may be used to model any short-range dependence present in
the series. Both FGNs and FI(d)s have been extensively studied. See the volumes
by Beran[8], Doukhan et al.[16] and Embrechts and Maejima[17] and the references
therein.

2.2. Structural Breaks in Mean Model. Klemes[31] argued that statistical long
memory in hydrological time series was the result of non-stationarity in the mean.
These types of models typically have stochastic shifts in the mean, but overall are
mean reverting about some long term average.

We define the break model as follows:

(2) µyt =
p∑

i=1

Iti−1≤t<tiµi

where µyt is the mean of the time series, It∈S is an indicator variable which is 1
only if t ∈ S, t is the time, ti, i = 1, . . . , p, the breakpoint and µi is the mean of
the regime i. In this case, regime is defined as the period between breakpoints.

Some comments must be done on this model. First, it is important to note that
(2) is just a way to represent a sequence of different models (i.e. models subjected
a structural breaks). Second, we are considering only breaks in mean. This model
can be generalized for any kind of breaks. In fact, we are considering this class of
model just because this is one of the models mainly considered, but given a true
break each regime must be modeled separately.

2.3. Model Confusion. Despite the obvious theoretical differences between the
FGNs or FI(d)s and non-stationary mean models, they are difficult, if not impossi-
ble, to tell apart in real data (Granger and Hyung[21], Diebold and Inoue[15]).

Some of this difficulty can be attributed to the fact that FGNs with 0.5 < H < 1
and FI(d) processes with 0 < d < 0.5 exhibit some properties of non-stationary
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series while being stationary. Similarly, while mean shifting models have a non-
stationary mean they exhibit some properties of stationary series, particularly in
that they typically do not deviate greatly from the series mean. Thus it may help,
at an intuitive level, to think of both classes of model as being approximately
stationary.

A number of estimators of H utilize the series’ estimated spectral density. For
example the periodogram, modified periodogram, and Whittle estimators (Taqqu et
al.[43]) are all based on the series periodogram. The periodogram is a representation
of the linear dependence properties of a time series. As regime switching processes
are non-linear, the estimates of H and other linear statistical measures, such as the
ACF, are meaningless. See [42] for details of the effects of regime switching on the
widely-used Geweke Porter-Hudack estimator.

As alluded to above, the use of structural break detection and location methods,
which are a prelude to formulating a regime shifting model, are problematic because
they tend to find breaks in FGNs and FI(d) series even though the data generating
process is uniform throughout the series. For example, when the standard cumula-
tive summation (CUSUM) test(Brown et al.[13]) for detecting structural breaks is
applied to long memory series the probability of finding a break converges to one
with increasing series length (Sibbertsen[40]). Diebold and Inoue[15] show that a
series containing only structural breaks can be confused with long memory if the
probability of a break decreases with increasing sample size. In real data sets the
probability of a break is a property of the data generating process, which is inde-
pendent of the sample size. Thus if enough data could be gathered in principle it is
possible to distinguish between long memory and structural breaks using existing
techniques. However there is often insufficient data to make this distinction.

Despite this risk of model misspecification we could find no empirical study of the
statistical properties of the “regimes” in FGNs or FI(d) series of finite sample size
when they were incorrectly analyzed by applying structural break location methods
to them. The use of ART, a computationally very fast structural break method,
has allowed large scale simulation studies, such as this one, to proceed which would
have been computationally impractical with established techniques such as that
due to Bai and Perron[4][5].

3. Method

In this section we present the methodology used to find and decide if the breaks
are real or spurious. The methodology can be summarized in the following two
steps: (i) apply a fast technique to detect the breaks; and (ii) given each break
period, test whether the break is spurious or not. Both steps are discussed in this
section.

A fast technique called Atheoretical Regression Trees (ART), recently introduced
by Cappelli and Reale[14], is employed to find the breakpoints. An Atheoretical
Regression Tree is a non-parametric approach proposed to find breaks in the level
of a stochastic process. This method exploits, in the framework of least square
regression trees, the contiguity property introduced by Fisher[19] for grouping a
single real variable. See appendix for an exposition about ART.

Given each break period, we then test the null hypothesis that the break is
spurious against the alternative that the break is a true structural change.
The probability distribution is obtained empirically by simulating series with the
same length and fractional integration parameter of the original series and then
estimating breaks (using ART), the size of each break period and its fractional
parameter.
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Formally, assume y(1,T ) = {yt}T
t=1 is a realization of a stochastic process and

B = {t1, t2, . . . , tp} the set of breakpoints identified by ART; so, the series is divided
into p + 1 sub-series. Denote any sub-series i as y(ti−1,ti), i = 0, 1, . . . , p + 1 with
t0 = 1 and tp+1 = T . Then, define L = {l1, . . . , lp+1} and D = {d1, . . . , dp+1}
respectively as the sets of length and fractional integration parameters for each
sub-series, and d the fractional integration parameter for the whole process. The
null and alternative hypothesis as follows:

H0 : y(ti−1,ti) is generated by a spurious break

Ha : y(ti−1,ti) is generated by a true structural break on y(1,T )

To evaluate this hypothesis we test P [(li, di) ∈ Iα] < (1 − α) where P is a
probability measure and Iα is the α-confidence set (equivalently, we check if (li, di) ∈
Iα). This test is carried out by simulation as described below:

(1) Simulate N true fractional integrated series FI(d) with T observations;
(2) For each series calculate the sets L and D;
(3) Estimate the empirical distribution and the confidence set Iα.
(4) Verify if (li, di) ∈ Iα.

As the confidence regions usually have irregular contours and the estimator for d
exhibits bias for short series, it is preferable to evaluate the hypothesis test graph-
ically (e.g. verify if the point (li, di) is inside the region defined by Iα).

The real data sets were also subject to the Beran’s goodness-of-fit test1 (see
Beran[7]) to evaluate if a fractional integrated process is appropiate. This test
was also applied to each sub-series found by ART to evaluate if a model with a
time-varying d (e.g. multifractal models) is appropiate.

4. The Data Set

The data set comprise realized volatility and returns of 16 Dow Jones Industrial
Average index stock: Alcoa (AA), American International Group (AIG), Boeing
(BA), Caterpillar (CAT), General Electric (GE), Hewlett Packard (HP), IBM, In-
tel (INTC), Johnson and Johnson (JNJ), Coca-Cola (KO), Merck (MRK), Pfizer
(PFE), Wal-Mart (WMT), and Exxon (XON). The period of analysis is from Janu-
ary 3, 1994 to December 31, 2003. Trading days with abnormally small trading are
excluded, leaving a total of 2539 daily observations. The daily realized volatility is
estimated using the two time scale estimator of Zhang et al.[45] with five-minute
grids, which is a consistent estimator of the daily volatility. A broader explanation
about the dataset can be found in Scharth and Medeiros[38].

Tables 1 and 2 show basics statistics for the returns, squared returns, stan-
dardized returns, realized volatility, realized standard deviation and log-realized
volatility. We present the mean, median, minimum, maximum, standard deviation,
skewness and kurtosis for each series.

Some distributional characteristics described by Andersen et al.[3] for the realized
exchange rate volatility arise in these tables. (i) There is a similarity between the
means of the realized variance and the squared returns. It is expected because
both are unbiased estimates of the true volatility. However the standard deviation
of the realized volatility is much smaller than the standard deviation of the squared
returns. (ii) Both realized volatility and realized standard deviation presents excess
of kurtosis and a highly asymmetric distribution. On the other hand, the log of
realized volatility presents a lower kurtosis and a more symmetric distribution. For
this reason, the log of realized volatility is used instead of the realized volatility

1The Beran’s test was evaluated using functions implemented in the R[37] package longmemo[39].
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Table 1. Descriptive Statistics for Daily DJIA Stocks Return

This table contains the summary statistics for daily return measures. The sample period covers

January 3, 1994 to December 31, 2003 (2539 observations). Standardized returns are obtained

by dividing the raw returns by the realized standard deviation.

Mean Med. Min. Max. Std.dev. Skew. Kurt.

Returns
AA 0.0592 0.0000 -11.7690 13.9790 2.2455 0.2210 5.7682

AIG 0.0621 0.0000 -9.4058 10.2450 1.8781 0.1586 5.6874

BA 0.0309 0.0000 -19.5150 9.4093 2.1330 -0.6411 10.6439

CAT 0.0546 -0.0105 -12.8600 10.5020 2.1109 -0.0589 5.4642

GE 0.0502 0.0000 -11.1580 12.1910 1.8819 0.1137 6.3498

GM -0.0001 -0.0420 -18.0810 9.7083 2.0923 -0.3201 7.3881

HP 0.0359 0.0000 -20.7230 20.0120 2.8658 0.0072 7.7369

IBM 0.0767 0.0000 -16.8860 12.2970 2.1900 0.1845 7.6796

INTC 0.0812 0.0625 -24.0190 18.2580 3.0129 -0.3959 8.0512

JNJ 0.0606 0.0101 -17.9610 7.8484 1.6230 -0.4967 10.5365

KO 0.0332 0.0000 -10.8050 9.7942 1.7119 -0.0836 6.3963

MRK 0.0404 0.0000 -9.8196 8.7065 1.8106 -0.1102 5.4244

MSFT 0.0845 0.0000 -16.8570 17.2960 2.3863 -0.1068 7.1315

PFE 0.0712 0.0000 -11.3540 7.6380 1.9601 -0.1518 4.8073

WMT 0.0505 0.0000 -11.1420 10.7670 2.0729 0.0935 5.4565

XON 0.0367 0.0000 -8.8868 10.5240 1.5304 0.0930 5.9905

Sq. Returns
AA 5.0439 1.6259 0.0000 195.4124 11.0386 7.3733 85.7299

AIG 3.5296 1.0449 0.0000 104.9600 7.6555 5.9224 53.4298

BA 4.5487 1.2410 0.0000 380.8352 14.0992 15.2789 340.6905

CAT 4.4570 1.4066 0.0000 165.3796 9.4090 7.0022 83.7160

GE 3.5425 1.0791 0.0000 148.6205 8.2009 7.5364 88.9029

GM 4.3761 1.4354 0.0000 326.9226 11.0627 14.4255 348.2239

HP 8.2111 2.3333 0.0000 429.4427 21.3148 9.2785 134.9611

IBM 4.8002 1.3652 0.0000 285.1370 12.4219 9.2677 142.2279

INTC 9.0807 2.9856 0.0000 576.9124 24.0322 11.5904 207.8825

JNJ 2.6367 0.8942 0.0000 322.5975 8.1032 26.2985 980.0299

KO 2.9305 0.9539 0.0000 116.7480 6.8030 7.8313 95.5194

MRK 3.2785 1.1291 0.0000 96.4245 6.8879 6.6272 65.6423

MSFT 5.6991 1.8597 0.0000 299.1516 14.0855 11.0667 189.1471

PFE 3.8454 1.3809 0.0000 128.9133 7.4782 6.1214 66.7017

WMT 4.2979 1.3600 0.0000 124.1442 9.0812 5.7336 50.3953

XON 2.3424 0.7988 0.0000 110.7546 5.2368 9.1377 139.4680

Std. Returns
AA 0.0220 0.0000 -6.3106 3.7788 1.0193 0.0468 3.4540

AIG 0.0536 0.0000 -3.6679 3.7159 0.9875 0.1749 3.0764

BA 0.0243 0.0000 -16.9699 3.0882 1.0041 -1.8581 34.7971

CAT 0.0330 -0.0063 -10.1037 4.0079 1.0468 -0.2529 6.3467

GE 0.0720 0.0000 -3.4612 3.9464 1.0196 0.2564 2.9943

GM -0.0330 -0.0268 -119.8759 3.7493 2.5941 -38.8369 1795.4531

HP 0.0596 0.0000 -5.2363 7.8799 1.1320 0.3334 5.4140

IBM 0.0626 0.0000 -4.3916 5.6842 1.1232 0.2628 3.5643

INTC 0.1015 0.0348 -9.5360 4.9895 1.3823 -0.0861 4.3746

JNJ 0.0508 0.0104 -3.1235 3.5500 0.9239 0.1542 3.1103

KO 0.0386 0.0000 -2.9779 3.5548 0.9016 0.1853 3.1710

MRK 0.0454 0.0000 -4.3590 4.3478 0.9906 0.0900 3.4009

MSFT 0.0890 0.0000 -6.6010 5.9613 1.3170 0.1525 3.4358

PFE 0.0683 0.0000 -3.1276 3.4387 0.9902 0.1745 2.9191

WMT 0.0430 0.0000 -3.3396 3.3880 0.8944 0.1942 3.2411

XON 0.0445 0.0345 -3.2432 3.1444 0.9226 0.0932 2.9438
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Table 2. Descriptive Statistics for Daily DJIA Stocks
Realized Volatility

This table contains the summary statistics for daily realized volatility measure. The sample period

covers January 3, 1994 to December 31, 2003 (2539 observations).

Mean Med. Min. Max. Std.dev. Skew. Kurt.

Realized Var.
AA 5.1834 3.4186 -0.5307 50.2230 5.1477 2.5744 11.8982

AIG 3.3285 2.3245 -0.7663 54.4010 3.2353 4.9796 51.5327

BA 4.5087 3.2051 -0.9989 76.9930 4.5544 4.6060 44.1159

CAT 4.4668 3.0989 -0.6955 47.6930 4.3718 3.3203 20.6553

GE 3.3691 2.3398 -0.7288 50.3660 3.5433 4.8747 42.5651

GM 3.8228 2.7456 -0.9773 39.2060 3.5552 3.6436 22.5032

HP 7.2864 4.5536 -0.6106 102.4400 8.0333 3.6999 27.4805

IBM 3.5255 2.4148 -0.6940 54.6810 3.5263 4.2417 35.3268

INTC 5.3452 3.4125 -0.7937 76.4150 5.7693 3.5469 25.0793

JNJ 3.1808 2.3545 -0.7909 51.6580 3.3208 5.4480 48.3564

KO 3.5087 2.5262 -0.6523 50.7080 3.1923 3.9729 34.8622

MRK 3.4671 2.5647 -0.7290 42.7880 3.4093 4.7862 37.7570

MSFT 3.5001 2.4537 -0.8873 44.3320 3.5268 3.9132 30.2009

PFE 4.1549 2.9970 -0.4824 48.5730 4.2476 4.6315 35.0192

WMT 5.2769 4.0421 -0.5867 84.7110 4.9462 5.7714 64.9237

XON 2.7857 1.9414 -0.7253 42.0930 2.8622 4.5468 38.6561

Realized std. dev.
AA 2.0819 1.8489 0.6851 7.0868 0.9216 1.3650 4.9927

AIG 1.6975 1.5246 0.4834 7.3757 0.6686 1.8001 9.3120

BA 1.9593 1.7903 0.0337 8.7746 0.8186 1.6648 8.3425

CAT 1.9479 1.7604 0.5518 6.9060 0.8202 1.5066 6.3622

GE 1.6934 1.5296 0.5208 7.0969 0.7082 1.9163 9.7138

GM 1.8261 1.6570 0.1508 6.2615 0.6989 1.7955 7.9198

HP 2.4342 2.1339 0.6240 10.1213 1.1669 1.4548 6.2647

IBM 1.7390 1.5540 0.5532 7.3947 0.7083 1.8219 8.4124

INTC 2.0958 1.8473 0.4542 8.7416 0.9763 1.5033 6.2984

JNJ 1.6627 1.5344 0.4573 7.1873 0.6453 2.4188 13.1318

KO 1.7483 1.5894 0.5897 7.1210 0.6725 1.5795 7.3642

MRK 1.7405 1.6015 0.5206 6.5413 0.6618 2.1733 11.0744

MSFT 1.7181 1.5664 0.3357 6.6582 0.7406 1.4882 7.0161

PFE 1.8909 1.7312 0.7194 6.9694 0.7614 2.0085 10.0670

WMT 2.1568 2.0105 0.6429 9.2039 0.7909 2.0199 11.7544

XON 1.5412 1.3933 0.5241 6.4879 0.6407 1.8261 8.9054

Log realized var.
AA 1.2961 1.2292 -0.7564 3.9165 0.8094 0.3432 2.7195

AIG 0.9274 0.8435 -1.4537 3.9964 0.7069 0.3930 3.2375

BA 1.1917 1.1647 -6.7789 4.3437 0.7828 -0.2094 7.1515

CAT 1.1798 1.1310 -1.1891 3.8648 0.7703 0.2922 3.0029

GE 0.9085 0.8501 -1.3048 3.9193 0.7422 0.4076 3.2374

GM 1.0828 1.0100 -3.7832 3.6688 0.6787 0.4173 4.2865

HP 1.5763 1.5159 -0.9432 4.6293 0.8908 0.1943 2.6934

IBM 0.9699 0.8816 -1.1841 4.0015 0.7174 0.5076 3.2848

INTC 1.2916 1.2274 -1.5784 4.3362 0.8537 0.2634 2.8204

JNJ 0.8994 0.8563 -1.5650 3.9446 0.6606 0.5971 4.2200

KO 0.9901 0.9267 -1.0563 3.9261 0.6972 0.4029 3.0394

MRK 0.9927 0.9418 -1.3056 3.7563 0.6571 0.5757 3.9329

MSFT 0.9157 0.8976 -2.1833 3.7917 0.8133 0.0500 3.1672

PFE 1.1414 1.0976 -0.6586 3.8831 0.7075 0.4698 3.4401

WMT 1.4238 1.3968 -0.8835 4.4392 0.6604 0.2934 3.8115

XON 0.7209 0.6634 -1.2920 3.7399 0.7403 0.4203 3.1252
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itself. (iii) the returns are asymmetric and heavy tailed, but the standardized
returns are much less asymmetric and leptokurtic, presenting a distribution close
to the Normal distribution.

Table 3 presents the estimates of the fractional integrated parameter d using the
Whittle estimator and Beran’s goodness-of-fit tests for each series. As reported by
other authorities a d estimate close to 0.4 is appropriate for most series. Despite
the fact that realized volatilities usually present a long memory behavior and a
visual examination of the series ACF and periodogram suggests the series are of
the long memory type, most of the series (AA, BA, CAT, GE, HP, IBM, INTC, KO,
MSFT, PFE and WMT) rejected the Beran’s test at a level of 5%. The rejection
sugests that a unique d cannot explain the whole series or the series does not have
long-memory. However, this analysis is beyond the scope of this paper and we will
focus on the series with long memory behavior.

Table 3. Fractional Integrated Parameter estimates
for Daily DJIA Stocks Realized Volatility

This table contains the estimates of

the fractional integrated parameter

d using the Whittle estimator and

Beran’s goodness-of-fit tests for the

whole series.

d Beran p-value.

AA 0.42 2.65e-6

AIG 0.40 0.14

BA 0.40 0.02

CAT 0.41 0.002

GE 0.44 0.04

GM 0.36 0.09

HP 0.44 0.002

IBM 0.44 8.93e-6

INTC 0.46 3.59e-7

JNJ 0.40 0.16

KO 0.42 2.57e-6

MRK 0.39 0.34

MSFT 0.46 0.008

PFE 0.42 4.43e-6

WMT 0.42 2.95e-12

XON 0.44 0.09

5. Results

We apply the procedure described in section 3 to the five stocks which seem to
exhibit long memory (AIG, GM, JNJ, MRK and XON). For all series we evaluate
graphically the hypothesis that the breaks (detected by ART) are spurious at α =
95% confidence level. We found that JNJ. MRK and XON are really long memory
processes and AIG and JNJ have breaks.

Table 4 presents the test results for each stock at a α = 95% confidence level.
Clearly only two series have breaks and the others are regarded as true long memory
process. The breaks found in the AIG and the GM series are dated 20 July, 1998 and
03 December, 1999 respectively. The break found in AIG series can be associated
with the Russian Crisis. The break found in the GM series can be associated with
several events, for example the selling of GM’s Financial Transaction Business to
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Figure 1. Series plot with breaks identified by ART.

Arthur Andersen (23-Nov-99), a cross-supply agreement with Honda (21-Dec-99),
and Management Changes (08-Feb-2000). This last event could be regarded as a
main event which lead to the break.

Table 4. Number of True Breaks Detected

This table shows the number of detected Breaks and divide them into

Spurious Breaks and True Breaks.

# Breaks # Spurious Breaks # True Breaks

AIG 7 6 1

GM 8 7 1

JNJ 11 11 0

MRK 8 8 0

XON 7 7 0

To illustrate the technique we will present an analysis of AIG. First the breaks
detected by ART are presented with a possible explanation for each, and then we
show the results of the test for AIG.

Figure 1 shows the realized volatility series with each break identified. We can
verify that after break 1 the level of the series changes and the series presents a
more ”irregular” behavior. The period between breaks 1-2 and 3-4 apparently have
a behavior similar to the first regime but with a higher level. Moreover, periods
between breaks 2-3 and 4-5, and 6- , are likely to be less and more volatile periods
respectively.

Some of these breaks can be associated with some events:
(1) 20-July-1998: Russian Financial Crisis.
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Figure 2. Density plot with the 95% confidence set (dashed line).
The regimes are represented with the symbol ”A”. A point outside
the confidence set means a rejection of the null hypothesis

(2) 09-April-2001: Talking between AIG and American General Corp. (AGC).
In May, 2001, AIG bought AGC for US$ 23 billion.

(3) 16-August-2001: Reasonably close to 09/11 Terrorist ACT.
(4) 12-June-2002: Close to DJIA 4-year Low.
(5) 06-November-2002: No event related.
(6) 03-July-2003: No event related.

According to the test, it appears that only the Russian Crisis caused a structural
change in the series. Figure 2 shows the result of the test. This figure is a density
plot (a 2-dimension histogram) where the dashed line is the 95% confidence set.
We plot the ”A” on the same graph and a point outside the dashed region denotes
a rejection of the null hypothesis.

6. Conclusions

Many previous studies have demonstrated the value of FGNs and FI(d) processes
as an operational model for stock market log volitility time series. Indeed, if the
goal of the analysis is to find a single statistically parsimonious and mathematically
elegant model for all of the data then either an FGN or an FI(d) are good choices.
They are quick to fit, require few parameters, and are straight forward to use in
forecasting. For pragmatic time series analysis FGNs and FI(d) processes provide
useful modeling tools.

However, a pure FI(d) process does not fit the observed distributions of a range
of statistical properties of the realized log volitility for the AIG stock. This suggests
that a more complex physical model of log volitility is required than is offered by
an FI(d) process.
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7. Appendix: Atheoretical Regression Trees

Time series data consists of a series of observations ordered by time. In the con-
text of regression trees (RTs) time assumes the role of the predictor variable when,
in fact, it is merely a counter. A common source of poor predictive performance
in RTs is that the distribution of the response variable is not orthogonal to the
predictor variables (see Fig 8.12 of [27]) for an example). This problem does not
arise in univariate time series. This gives us reason to suspect they will perform
well in the location of structural breaks.

There are several questions to be addressed in applying RTs to time series. These
are:-

(1) As RTs fit piece wise constant functions to data do RTs discover or impose
breaks on time series?

(2) What is the effect of serial correlations on RTs performance in detecting
structural breaks?

(3) Given that observations in time series are, in general, non-interchangeable
can cross-validation be used in tree selection?

(4) Is it possible to obtain a confidence interval for the breaks?
The model considered is:

(3) yt = µg + εt, g = 1, . . . , G, t = Tg−1 + 1, . . . , Tg,

where G is the number of regimes (and G− 1 the number of breakdates), yt is the
observed response variable and εt is the error term at time t (we adopt the common
convention that T0 = 0 and TG = T where T is the series length). This is a pure
structural breaks model because all the model coefficients are subject to change
and it has been employed by Bai & Perron [5] to detect abrupt structural changes
in the mean occurring at unknown dates. The problem is to estimate the set of
breakdates (T1, . . . , Tg, . . . , TG−1) that define a partition of the series

P (G) = {(1, . . . , T1), . . . , (Tg−1 + 1, . . . , Tg), . . . , (TG−1 + 1, . . . , T )},
into homogeneous intervals such that µg 6= µg+1. Bai & Perron (2003) propose an
estimation method based on the least squares principle: for each G-partition, the
corresponding least square estimates of the µg’s are obtained by minimizing the
within-group sum of squares

(4) WSSy|P (G) =
G∑

g=1

Tg∑

t=Tg−1+1

(yt − µg)2.

The estimated breakdates (T̂1, . . . , T̂g, . . . , T̂G−1) are associated with the partition
P ∗(G) such that P ∗(G) = argminP (G)WSSy|P (G). In this approach, the breakdate
estimators are global minimizers since the procedure considers all possible partitions
by using the dynamic programming approach proposed by Fisher’s (1958) to find
the least squares partition of T contiguous objects into G groups. His efficient
algorithm exploits the additivity of the sum of squares criterion resorting to a
dynamic programming approach [6] that applied to ordered data points finds the
global minimum. Despite the computational saving, the method cannot deal with
high values of T and G and the same remark holds for the Bai & Perron’s procedure,
even with today’s computing power.

In the case of time series data [26] provides an excellent justification in favor
of the (faster) binary division algorithm: suppose that the observed time series
consists of G segments within each of which the values are constant, i.e. model (1)
becomes a piecewise constant model with εt = 0. Then, there is a partition into G
segments for which the within-group sum of squares is zero and it will be identified
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by a sequential splitting algorithm as the one in ART.
In other words, if the data have a hierarchical structure then ART will find the
overall optimum, otherwise it provides a suboptimal solution for which, because
the partitions are contiguous, misplacements can occur only on the boundaries.
As discussed in [25], although structural breaks are treated as immediate, it is
more reasonable to think that they take a period of time to become effective, thus
misplacements on the boundaries are not a concern.
Given that the global search algorithm requires O(n2) steps, whereas ART, at any
tree node requires O(n(h)) steps to identify the best split, suboptimality does not
appear a high price to pay to obtain full feasibility and indeed, in the application
we will show that the partitions provided by ART are comparable to those obtained
by the global search procedure.
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