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1 Introduction 

The problem of fitting a smooth, twice continuously differentiable plane curve through a 
given set of data points, (xi, Yi), j = 1, 2, ... , n, is considered. The curve to be calculated is 
required to pass through the given points in the order prescribed and be invariant with respect 
to rotation and translation of axes. The least energy spline, also called 'true nonlinear spline', 
is one such curve which has received renewed attention recently [4, 7, 8) and this is the starting 
point for the investigation in this paper. After deriving the differential equation describing 
the least energy spline a simple approximation leads to the development of the 'nonlinear 
spiral spline' which shares the required desirable properties of 'invariance' and 'smoothness' 
and which gives visually pleasing curves. Although nonlinear, the defining equations for the 
spiral spline are quite easily solved and an algorithm for calculating the required curve, together 
with a highly useful technique for automatically generating initial approximations to nonlinear 
splines ( applicable also to the least energy spline) are presented. 

1 Dedicated to my parents. 
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Stoer[18] has also proposed the use of spiral splines (see also Mehlum[13, 15] and Pal and 
Nutbourne[l6]) and this paper has much in common with his approach. An important differ­
ence is that Stoer determines a spiral spline by minimizing its energy whereas the approach 
taken here is to show first that spiral splines are good approximations to the true nonlinear 
spline ( c.f. Mehlum[15]) and then to fix the particular spiral spline by imposing appropriate 
end conditions. 

2 The variational problem 

In this section the differential equation describing a least energy curve passing through two 
points with Cartesian coordinates (x 1 , y1 ), (x 2 , y2), and having prescribed inclinations 'lj;1 and 
'lj;2 at these points is derived. Extensive use is made of intrinsic coordinates ( 'lj;, s ), where 'lj;(s) 
denotes the inclination, (measured from the positive x-axis as angular origin), at the point 
at distance s measured along the curve. The variational problem is to determine that curve, 
with continuous curvature, which minimizes the functional: 

L (d'lj;) 
2 

I['lj;] = 1 J; ds (1) 

and which satisfies the collocation conditions: 

X2 - X1 = laL COS 'Ip ds (2) 

Y2 - Y1 = foL sin 'Ip ds (3) 

where Lis the (unknown) curve length (setting s=O at (x1 ,y1 )). Introducing the Lagrangian 
function, 

F ( s, 'ljJ, 'lj;') = ( '1j;')2 + >. cos 'ljJ + µ sin 'ljJ (4) 

where >. and µ are Lagrange multipliers, the Euler-Lagrange equation for the variational 
problem can be written 

(5) 

with boundary conditions, '1j;(O)='lj;1 , '1j;(L)='lj;2• Because Lis unknown this latter boundary 
condition leads to the transversality condition (see, for example, [5]) 

[F - 'lj;'; ~ = o] 
'Ip ,fl=,fl2 

which on substituting for F from equation ( 4) provides the condition 

[( w')2 = ).. cos 'Ip + µ sin 'Ip] 
,fl=,fl2 

(6) 

Moreover, with F defined by ( 4) equation (5) takes the simple form 

->. sin 'ljJ +µcos 'ljJ -1 (2'1j;') = 0 
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which is easily integrated to give 

(
d'lj;) 2 
""J; = ,\ cos 'ljJ + µ sin 'ljJ (+constant) (7) 

and the constant of integration is clearly zero from the transversality condition (6). Equa­
tion (7) is well known as an intrinsic differential equation of an elastica and has been derived 
by several different (and sometimes lengthy) methods (see, for example, [2, 7, 8, 9, 11, 13, 17]) 
and it may be integrated to give x(s) and y(s) in terms of elliptic functions [9]. Thus in prin­
ciple it is possible to express 'ljJ as a function of s involving three as yet unknown parameters, 
,\, µ, and the constant of integration arising from the solution of the nonlinear differential 
equation (7). These three parameters together with the unknown curve length L must then 
be determined by satisfying the two collocation conditions (2), (3) and the two prescribed end 
inclinations 'lj;1 , 'lj;2 in order to complete the specification of the required curve in parametric 
form. 

To fit a curve with continuous slope and curvature through a set of points {(xi, Yi)}f the 
unknown end inclinations at interior knots are replaced by continuity conditions for slope and 
curvature at each interior knot. This was essentially the approach taken in 1966 by Larkin[9] 
in which the resulting system of nonlinear algebraic equations was solved by a simple, although 
somewhat slow, relaxation method. This appears to be the first successful attempt to calculate 
accurate solutions to the curve of least energy. His method is reviewed together with other 
early approaches (6, 14, 19] in the survey paper by Malcolm[12]. More recently, a new approach 
to solving the exact equations of the nonlinear lea.st energy spline is presented by Edwards[4]. 
He obtains simplifications in the spline representation by using a local coordinate system 
on each subinterval and solves. the resulting nonlinear system of algebraic equations by an 
efficient modified Newton iteration. Thus there are methods available for constructing least 
energy splines. However, there are still some fundamental difficulties. Existence of a finite, 
stable equilibrium solution cannot be guaranteed for an arbitrary configuration. A necessary 
condition for existence is established by Larkin[9] and is most easily seen by rewriting equation 
(7) (which must hold on each subinterval) in the form 

(
d'lj;) 2 
""J; = P] cos('lj; - ai), 

Then the need to keep the right hand side non-negative on ['lj;J, 'lpj+i] requires, in particular, 
that 

(8) 

Unfortunately, the inclinations 'lpj, j = 2, ... , n-1, are not known a priori. Even when existence 
is not at issue it may be that many stable least energy splines exist for a given configuration 
since any solution necessarily corresponds to a local and not global minimum of the energy 
curve. This is a difficulty that is likely to arise with all nonlinear splines including the spiral 
splines introduced in the next section. For the present author, however, the main disadvantage 
with least energy curves is that in some cases the approach does not lead to very pleasing 
curves. For example, many people would agree that a circle is a very smooth curve and if 
the data points and end conditions are consistent with a circle then that is what should be 
fitted. The examples given by Lee and Forsythe[ll], however, show that circles are not least 
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energy curves. Therefore, the problem of approximating the least energy curve in a way that 
preserves the highly desirable property of invariance with respect to translation and rotation 
of axes and which fits circles when appropriate is considered. 

3 Approximating the Curve of Least Energy 

For configurations which result in small inclinations ~ ~ ~ and a linearization of the 
variational problem (1-3) in Cartesian coordinates leads to the familiar cubic polynomial 
spline which is not rotationally invariant. However, linearizing the right hand side of equation 
(7) gives 

(d'lj;) 2 

ds = >. + µ'lj; 

which has general solution 
(9) 

where I is a constant of integration, and this does lead to a rotationally invariant spline as 
is shown later. Equation (9) is the intrinsic form of an Euler spiral, also called Cornu spiral 
or clothoid (10] and consequently a nonlinear spline comprising piecewise curves of the form 
(9) satisfying continuity of slope and curvature at the knots is subsequently referred to as a 
spiral spline - it includes a circle as a special case. 

The spiral curve (9) expresses the inclination, 'lj;, as a quadratic function of the arc length 
s. In practice, it is more convenient to write the quadratic, Qi(s), on the jth sub-interval, 
h, si+i], using the Newton form of the interpolating quadratic through the points (si, 1Pi), 
( s i+I, 1Pi+l) and ( s;+;,+1 , </>i), where </>i denotes the inclination half-way along the curve on this 
sub-interval (i.e. <pj = Qi(s;+;i±1 

)). Then the spiral spline takes the simple form 

where 
2('1j;· - 2¢>· + 1P+1) c· - J J J 

J - L~ 
J 

and Li is the arc length, Lj=Sj+1 - Sj, 
Introducing t=(s-si)/Li and writing Pj(t) = Qj(si +tLj) reduces the quadratic (10) to 

t E [O, 1] (11) 

which is readily seen to satisfy Pj(O) = 1Pi, Pi(t) = </>i, Pj(l) = 1Pi+1, as required. The continuity 
of curvature conditions, Qj-l ( Sj) = Qj(sj), j = 2, 3, ... , n - 1, then become 

-L~ PJ_1 (1) = Ll. PJ(O), j =2, 3, ... , n - 1, 
J-1 J 

which, on substituting the form for P from (11) and rearranging, lead to the equations: 

Li1Pi-1 + 3(Lj-1 + Li)1Pi + Lj-11Pi+1 = 4(Li<Pi-1 + Li-t<Pi), 
j = 2, 3, ... , n - 1. 
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The collocation conditions (2), (3) also have a simple form when expressed in terms of P(t), 

f::.x i = Li la 1 

cos Pi ( t) dt 

f::.yi = Li fo 1 

sin Pi ( t) dt 

which may be rewritten in the computationally more convenient form 

~ fl 
Lj =Li/lo cos(Pi(t) - Oj) dt 

where Lj denotes the chord length, 

and Bj denotes the chord angle, 

(13) 

(14) 

(15) 

(16) 

and where Pj(t) depends on the unknown parameters 1Pi, <Pi, and 1Pi+1 through the def­
inition (11). The 3n - --1 nonlinear equations (12), (13), (14) in the 3n - 4 unknowns 
{ 1Pi };-1

, { <Pi }I-1 and { LJ~-l can then in principle be solved to give the intrinsic parametric 
form of the spiral spline. Of course, it is possible to eliminate the variables Lj, j = 1, ... , n-1, 
from the equations (12) by substituting from (14), and this reduces the size of the nonlinear 
system to 2n - 3 equations in the 2n - 3 unknowns { 1Pi };-1

, { <Pi }I-1
. However, the arc lengths 

are still needed to complete the description of the spiral spline in parametric form. 

3.1 End Conditions 

If the end inclinations 1/;1, i/Jn, are not known then other end conditions can be incorporated; for 
example, the 'curvature' end condition ~ = K 1 at s = 0 leads to the extra equation P{ (0) = L1K1 
or 

-31/;1 + 4</>1 -1/;2 = L1K1' 

and at the other end ~=Kn at s = L ( = I:I-1 Lj) becomes P~_1 (1) = Ln-1Kn or 

The special case of 'natural' end conditions, K 1 = 0, Kn= O, then gives the equations: 

31/;1 + 1P2 - 4</>1 
1Pn-1 + 31/Jn - 4</>n-1 

(17) 

Different end conditions such as 'closed loop' or 'not-a-knot' or others could also be applied 
in a similar fashion. 
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3.2 Energy 

In terms of Pi( t), the energy, lj, of the spiral spline on the j th span is 

1 fl 2 
£j = T Jo (PJ(t)) dt 

J 

and using the linearity of PJ(t) this evaluates to 

1 [ 3] 1 
lj = 3P!' L · ( PJ ( t)) o 

J J 

Using the linearity of PJ(t) again, gives PJ' = PJ(l) - PJ(O) and hence 

( PJ ( 1)) 
2 + Pj ( 1) PJ ( 0) + ( PJ ( 0)) 

2 

£· - --'--~-'-~~~~~~-'-~-'---
J - 3L· 

J 

which is the ratio of a quadratic form in the inclinations 1Pj, q>j, 1P;+i, to the arc length, Lj. 
Substituting the appropriate values from (11) and simplifying then gives 

(18) 

where the vector, Pi, and matrix, A, are defined as 

[ 
1Pj l Pi = <Pj , 

1Pi+l 

-8 1 l 16 -8 
-8 7 

(19) 

The matrix, A, in (19) is, as expected, positive semi-definite and has eigenvalues and corre­
sponding ( un-normalised) eigenvectors 

Thus an alternative to expression (18) for the energy is 

(21) 

and this form is preferable for computational purposes because it is faster to evaluate, because 
it is usually more accurate, and because it is guaranteed to be non-negative even in the presence 
of rounding errors. 
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3.3 Rotational Invariance 

The structure of the eigensystem (20) also shows, again as expected, that the energy, Cj, is 
zero if and only if 'lpj = q>j = 'l/Ji+I, which corresponds to a straight line segment. Moreover, 
it also illustrates the rotational invariance of the spiral spline since the addition of an angle 
a to each of 'lpj, q>j, 'lpj+I clearly leaves the energy unchanged because Au1 = 0. To establish 
this invariance property formally, it is sufficient to show that if the axes are rotated through 
an angle a then the solutions for the inclinations 'lpj, <Pi, 'l/Ji+I are incremented by a. Now 
rotation of the axes by a causes the chord angles to be incremented by a and it is easy to see 
that if {'l/JJ}f,{</>j}r-1 ,{Lj}r-1

, solves (12), (13), (14), then {'l/Jj+a}f,{</>J+a}r-1 ,{L;}r-1
, 

solves (12) as well as equations (13) and (14) if the chord angles { Bj };-1 are replaced by 
{BJ=Oi+aH- 1

• 

4 Initial Approximations 

Existence of a solution to the nonlinear equations (12), (13), (14), for an arbitrary configuration 
of data points is still an open question. Stoer[18] has shown that countably many spiral curves 
can be found if there are only two data points and the inclination and curvature are prescribed 
at one end. Therefore, it seems likely that the equations (12), (13), (14), have at least one 
solution, and the present author has never failed to calculate at least one spiral spline for 
any data set to date, which includes some awkward cases for which it is known that no finite 
length, stable equilibrium, least energy spline exists (some of these examples are included in 
§5). In practice the real difficulty to overcome is that of choosing the most appropriate spline 
from the many possibilities. 

Clearly, the problem of choosing initial approximations is important, irrespective of the 
particular method used to solve the system of nonlinear equations, since it is this choice which 
will influence most strongly the particular solution (if any) obtained. Therefore, this aspect 
is considered next and it will be seen that this problem, in addition to being interesting in 
its own right, also leads very naturally to a simple and effective iterative scheme for solving 
equations (12), (13), (14). 

Initial approximations are required for the arc lengths Lj, j = 1, 2, ... , n - 1 and for the 
angles { <,Dj }'J~{, and { 'lpj }'J~i. If, in addition, the spline is not clamped at each end then 
one or both of 'lj;1 and 'l/Jn must also be assigned initial values. Because equations (12) are 
linear in the variables { 'l/Ji H, it is sufficient to determine initial approximations for Lj and 
<,Dj, j=l,2, ... ,n-1, and then solve (12). 

The chord length, Li, is used to estimate the arc length, Lj, since it gives a rotationally 
invariant estimate. The chord length also has the property of consistently under-estimating 
the arc length, which is advantageous because it is only the relative sizes of the arc lengths 
that are important to equation (12). It is also possible to use the chord angle, Oj, as an initial 
approximation to <,Dj but this can give very poor approximations in some cases since no account 
is taken of the end conditions. As a simple illustration, consider the two points (0,0), (1,1) for 
which it is required to fit a spiral spline with end inclinations 'lj;1 = 0°, 'lj;2 = 0°. For this case, 
the chord angle is 01 = 45°, and this would be the correct value for </>1 if natural end conditions 
were in force. However, with the given inclinations the true value should be close to 67.1 °. 

In order to derive rotationally invariant initial approximations to { <,Dj };-1 in a way which 
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does take account of end conditions the equation (13) is approximated by 

on the assumption that IPi(t) - Oil is small for O ~ t ~ 1. This is easily integrated after 
substituting for Pj(t) from (11) to give the approximation: 

(22) 

Substituting the approximations (15), (22) for Li and ¢>i in the continuity of curvature equa­
tions (12) and then rearranging gives the tridiagonal system of linear equations: 

Lj1Pj-1 + 2(tj-1 + ti)1Pi + Lj-11Pj+1 ~ 3(Ljoj-1 + Lj-10j), 
j = 2, 3, ... , n - 1 . 

(23) 

which, together with the known initial inclinations 'lj;1, '1Pn, is easily solved in O(n) arithmetic 
operations to give initial approximations { '¢j} for the unknowns { 'lpj}. Initial approximations 
for {<Pi} can then be recovered from (22). 

This procedure requires slight modification for different end conditions. For example, the 
natural end condition equations (17) give, in addition to equations (23), after substituting 
from (22) for the relevant value of q>j : 

2'lj;1 + 1P2 ~ 301 
'1Pn-1 + 2'lj;n ~ 3()n-1 

and this is still a tridiagonal system of linear equations when combined with (23). Clearly, 
other types of end condition can be accommodated in a similar way. Note also that the 
resulting linear system (23) is strictly diagonally dominant and a unique solution is therefore 
guaranteed. 

1 

0.8 

0.6 

0.4 

0.2 

0 
0 0.5 1 

Figure 1 
Clamped spline on 2 points 
£ = 4.863459; L = 1.503891 
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This technique produced very good initial approximations for nonlinear spiral splines and was 
used for determining the initial approximations in all the numerical examples presented in §5. 
It is also recommended for finding initial approximations to the true least energy nonlinear 
spline in the method of Edwards[4]. For the simple example above, with only 2 data points, 
it produces the initial approximation J1 = i(6 x 45° -0° -0°) =67.5°, which is much closer to 
the true value of 67.097 (to 5 significant figures) computed by the method of §5. The resulting 
curve is displayed in Figure 1. 

Finally it is noted that the recommended procedure for determining initial approximations 
is rotationally invariant. If the original axes are rotated through an angle a then the new 
chord angles become {Oj + a}. Thus the new values computed by solving equations (23) will 
add a to each original 0j, which in turn will cause a to be added to the original estimates Ji 
in equation (22). 

5 Constructing the Spiral Spline 

In principle any iterative method for solving nonlinear equations could be applied to the non­
linear system (12), (13), (14), using the initial approximations obtained by the technique 
described in the previous section. Usually a modified Newton or quasi-Newton method which 
takes account of the banded structure of the Jacobian matrix would be recommended. How­
ever, there are still some difficulties to overcome. The chord angles, {Oj}~-l are used in (23) 
to determine the initial approximations 0j, j = 2, 3, ... , n - l, but what are the chord angles? 
The following example illustrates well the difficulty concerned. Suppose there are three data 
points (0, 0), (1, 1.35), (2, 0), and it is required to fit a smooth curve passing through these 
points, in the order given, but with the end points clamped to have zero slope. Two possible 
curves satisfying these requirements are displayed in Figures 2 and 3. 

1.5 

1 

0.5 

0 

0 1 2 

Figure 2 
Clamped spline on 3 points 
£ = 11.21629; L = 3.664278 

0 1 2 

Figure 3 
Clamped spline on 3 points 
£ = 9.842400; L = 5.34 7986 

In each case, the nonlinear equations (12), (13), (14) are satisfied to high accuracy by the 
displayed curves. Although neither curve is a true least energy curve, each curve can be seen 
to satisfy condition (8) which is necessary for the existence of a finite length least energy 
curve. Both curves also have positive curvature at each end point although, in the case 
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of Figure 3, the curvature is very slight. The curve in Figure 2 was computed using end 
conditions: 'ljJ1 = 0°, lj}3 = 0° with chord angles 01 = 53.4 7°, 02 = -53.4 7°, leading to initial 
approximations ¢1 = 80.21 °, ¢2 = -80.21 °, and final values efJ1 = 79.53°, </J 2 = -79.53°. The curve 
in Figure 3 was computed using end conditions: 1/J1 = 0°, 'lj)3 = 360° with chord angles 81=53.47°, 
82 = 360° - 53.4 7 = 306.53°, leading to initial approximations J 1 = 35.21 °, J2 = 324. 79°, and 
final values efJ1 = 45.00°, efJ2 = 315.00°. It is difficult to make a choice, out of context, as to 
which is the better of these two curves because the topology is different in each case. Both 
curves are spiral splines but the curve in Figure 3 has less energy but longer length than that 
in Figure 2. The curve in Figure 3 may not be acceptable, however, because it crosses itself. 
If the orientation is also specified at each knot then the choice is easily resolved in the case 
above but for large data sets this may not be a practical proposition. 

The difficulty is compounded if the configuration of points depicted in Figures 2 and 3 lies 
well away from the endpoints in a much larger set of data because then the interior inclinations 
would not be known a priori. Changing these inclinations by a few degrees may well affect the 
decision on which fitted curve is preferred. In practice this difficulty needs to be handled by 
the nonlinear equation solver which must be prevented from flipping from one configuration 
to another between iterations. This could be done by adding linear inequality constraints in 
the variables 1Pi, <Pi, to the nonlinear system of equations but a different approach is preferred. 

The chord lengths Lj , j = 1, 2, ... , n -1, are calculated first and used as initial approxima­

tions for the arc lengths, L)0
) = Lj, The chord angles 8i, j = 1, 2, ... , n -1, are also calculated 

and adjusted modulo 360° to fix the topology. Then initial values, 1P)o) = '¢i, are calculated 
using the calculated chord lengths and chord angles as described in §4. The following simple 
iterative algorithm can then be applied. 

Algorithm 5.1 

For k=O, 1, 2, ... 

1. For j = 1, 2, ... , n - 1: 

( a) Keeping the values of { 1Pi} fixed at { 'ljJY)} solve the single nonlinear equation in 
the single variable <Pi : 

fo1 

sin (P?\t) - 8i) dt = 0 (24) 

where P?)(t) ='lj)Y) + (7PJ~1 - 'lj)Y))t + 2('1jJY) - 2</Jj + 1PJ~1 )t(t - 1). 

Denote the solution by <P)k+I). 

(b) Re-estimate the arc length, Li, using the latest estimates { 'lj)?)}, { <P)k+l)} in the 
equation: 

L?+i) = Lj/ fo1 

cos (P/\t) - 8j) dt (25) 

where P?)(t) =VJY) + (VJJ~1 - 'ljJY))t + 2('1jJY) - 2</>)k+l) + VJ)~1)t(t - 1), 

2. Obtain new estimates { VJjk+l)} by solving the tridiagonal system of linear equations (12) 

using the most recent values {<Pi=<Pt+l)}, {Lj=L)k+ 1
)}. 

10 



3. Terminate if maxj J7,L,y+i) - ·,t,Y) I _:::; c, ( a preset tolerance) or if the iteration appears to 
be diverging. (The results in this paper were obtained using c: = 10-6 .) 

The only real difficulty lies in step 1. The integrals (24), (25) can be expressed in terms of the 
Fresnel integrals : 

(26) 

for which there are standard approximations (see for example [1, 3]). For the results in this 
paper the Harwell subroutine library routine FClOAD was used for evaluation of the integrals 
in (24), (25) and subroutine NB02AD to solve the single nonlinear equation (24). 

An advantage of this approach is that it enables control over the topology of the spline to 
be maintained easily. If neighbouring chords have inclinations satisfying 

IOj+l - Oji < 90°, j = 1, 2, ... , n - 2, (27) 

then no difficulties have been experienced and the algorithm converges reliably and quickly 
in 2-10 iterations for data sets varying in size from n = 2 to n = 1000. When condition (27) 
is not satisfied there is usually some difficulty in deciding the appropriate topology and this 
seems to manifest itself in the algorithm by a slower convergence rate. As an illustration, 
consider the data of Reinsch[l 7], which comprises the 8 ordered points (-184, 44), (-76, 100), 
(-45, 121), (0, 120), (29, 112), (55, 14), (104, 100), (135, 120). Here the chord angles Os, 06, 
violate condition (27) and some difficulty can be anticipated. Two possible curves were, 
however, successfully computed using Algorithm 5.1 by making appropriate choices for the 
initial chord angles. These curves are displayed in Figures 4 and 5. 

200 

100 

0 

0 

Figure 4. Reinsch(l 7] data 
Natural spline on 8 points 
£=0.186045; L=492.9196 

200 

100 

0 

0 

Figure 5. Reinsch(l 7] data 
Natural spline on 8 points 
l'=0.154888; L=572.7310 

The algorithm was also applied to the data of Birkoff, Burchard and Thomas[2], which 
comprises the 4 ordered points (1, 0), (2, 0), (0, 2), (0, 1). They claim that no stable equi­
librium, finite length, least energy spline exists for this configuration but the algorithm of 

11 



this section was able to calculate a finite length low energy natural spiral spline that has the 
required smoothness properties. The resulting curve is displayed in Figure 6. This data also 
violates (27) and the fitted curve violates condition (8), showing that it cannot be a true least 
energy curve. The curve has an arc of a circle on the second span. 

3 

2 

1 

ot:J_~___!!:::====i!:::....._~__;j 

0 2 

Figure 6. BBT[2] data 
Natural spline on 4 points 
£=2.771497; £=9.350514 

0 2 

Figure 7. Collinear data 
Natural spline on 5 points 
£ = 7 .397542; L = 16.41264 

As a final (and pathological) example the collinear set of points (0, 0), (0, 4), (0, 1), (0, 3), 
(0, 2), in the order given was fitted by a natural spiral spline. Setting the chord angles to 
be { O}f = {90°, 270°, 450°, 630°} the curve in Figure 7 was obtained. Its reflection in the 
y-axis could have been obtained if chord angles {O}f = {90°, -90°, -270°, -450°} had been 
used instead. Of course, it is unlikely that such a configuration of points would arise in any 
practical application but the example does indicate the robustness of the given approach. 

6 Discussion 

The convergence properties of Algorithm 5.1 have not yet been studied extensively but numer­
ical experience so far indicates that for sensible end conditions and appropriately calculated 
chord angles convergence always occurs. It would, however, be a simple matter to modify 
the algorithm to guarantee convergence to a 'solution' which at least minimizes some norm of 
the residuals of the nonlinear equations (12), (13), (14), but there are advantages in studying 
the convergence properties of the unmodified algorithm. The following result, although rather 
obvious, is stated as a theorem to emphasise its importance. 

Theorem 6.1 If the sequences { 7/it)}~1 , { </>?)};,:}, {L?)}J;f, k = 1, 2, 3, ... , generated by 
Algorithm 5.1 converge as k tends to infinity, with limit points denoted {in vector notation) by 
'f/; 00

, ¢ 00 
, L 00

, respectively, then the nonlinear equations {12), {13}, (14), are satisfied when 
1Pi=1Pf\ i=l,2, ... ,n, <Pi=<PJ°, Lj=LJ°, j=l,2, ... ,n-1. 

The importance of this result is that it can be used to establish conditions which guarantee 
the existence of a spiral spline if conditions can be found for which Algorithm 5.1 converges. 
The results presented in this paper indicate that convergence is usually achieved and that 
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Algorithm 5.1 is particularly effective when condition (27) holds for all the data points. These 
topics of existence and convergence are currently under further investigation. 

A particularly attractive feature of Algorithm 5.1 is its simplicity; the original pilot code 
was written in an evening. However, some improvements to efficiency could still be made. In 
particular the evaluation of the Fresnel integrals (26) via the Harwell subroutine FClOAD is 
somewhat slow and also gives poor relative accuracy for small values of a. Improved procedures 
could easily be incorporated. 
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