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Abstract

This report investigates two approaches for online pattern-matching in files compressed
with the Burrows-Wheeler transform (Burrows & Wheeler 1994). The first is based on
the Boyer-Moore pattern matching algorithm (Boyer & Moore 1977), and the second
is based on binary search. The new methods use the special structure of the Burrows-
Wheeler transform to achieve efficient, robust pattern matching algorithms that can
be used on files that have been only partly decompressed. Experimental results show
that both new methods perform considerably faster than a decompress-and-search
approach for most applications, with binary search being faster than Boyer-Moore at
the expense of increased memory usage. The binary search in particular is strongly
related to efficient indexing strategies such as binary trees, and suggests a number of
new applications of the Burrows-Wheeler transform in data storage and retrieval.
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Chapter 1

Introduction

“The greatest masterpiece in literature
is only a dictionary out of order.”
—Jean Cocteau

Computer science is about information. This information must somehow be stored—the more
efficiently the better—and then presumably retrieved at some later date.

Information storage and retrieval are not only integral to computer science, but to society in
general. The amount of information available in today’s world surpasses ‘overwhelming’, and the
task of finding a desired piece of data is becoming more and more like finding a needle in a whole
field of haystacks. For instance, the internet search engine Google now indexes 1,610,476,000
pages'. It has also been estimated that the amount of information in the world doubles every
twenty months (Piatetsky & Frawley 1991). Information is getting out of control.

The pattern matching problem

The problem of pattern matching, or finding occurrences of a pattern in a text or collection of
texts, is one of the oldest and most thoroughly-researched problems in Computer Science. Many
techniques exist for building efficient indexes to facilitate fast searching. These include binary
search trees, which allow logarithmic-time access and retrieval, and hash tables, which give almost
constant time performance.

There are several problems with an indexed approach to pattern matching. Perhaps the major
disadvantage is that an index places restrictions on the types of queries that can be performed.
For example, if the index is built using only whole words, then partial word queries or queries
that cross word boundaries (such as a search for the word pattern immediately followed by the
word matching) may not be possible. The less restrictive the index, the more information it has
to contain—and this information must itself be stored somewhere. In the extreme case, the index
could even be larger than the text.

The other main problem with indexing is that it takes much more work to construct the index
than to look for a single piece of information. This makes static indexing (constructing an index
that cannot be modified without discarding the old index and re-indexing the entire text again)
essentially worthless for situations where data is constantly being updated, since the index must
be kept current, and even worse for ‘one-off’ queries, since the computational effort required to
construct the index far outweighs the cost of performing a single search for a given pattern.

Most databases or collections that allow their contents to be updated use dynamic indexing
systems, where the index can be updated without starting from scratch. This approach offers all
the retrieval benefits of a static index at a fraction of the maintenance costs. However, there is
still a trade-off between the size of the index and its potential power for searching.

Thttp://wuw.google.com, 25 October, 2001



8 CHAPTER 1. INTRODUCTION

Search strategies that involve an index are called ‘offline’ approaches, since the work of con-
structing and maintaining the index is kept separate from the user’s interaction with the system
via a query interface. Often, offline systems need not even access the original text, since all that
needs to be done is to return some information about where the pattern occurs (for example, a
list of page numbers), and this information will be stored in the index.

The opposite of offline pattern matching is, naturally, ‘online’ pattern matching, where no
other information than the text itself is stored, and all the work of pattern matching is done at
query time. Naturally, online algorithms will not perform as quickly as, say, a static index built on
a hash table, since almost no documents are so nicely structured, but what they lack in speed they
make up for in power. Online algorithms are capable of approximate matching (with wildcards or
regular expressions), and require no additional storage space for an index.

With no available information about the structure of the file, an online algorithm must traverse
the entire text in order to search for all occurrences of a particular pattern. For this reason, online
approaches are heavily dependent on the size of the text being searched. The simplest ‘brute
force’ algorithm, a linear search which aligns the pattern at each position in the text and checks
for a match, has time complexity O(mn), where m is the length of the pattern and n the length
of the text. Other, more sophisticated algorithms such as the Knuth-Morris-Pratt algorithm
(Knuth, Morris & Pratt 1977) and the Boyer-Moore algorithm (Boyer & Moore 1977), are able
to identify portions of the text that cannot possibly contain a match, and can consequently be
‘skipped’. In this way, the Knuth-Morris-Pratt algorithm achieves a worst case time complexity of
O(m+mn), and the Boyer-Moore algorithm, although in the worst case it degenerates to the brute
force algorithm, has a best case time complexity of O(7%). In general, the Boyer-Moore algorithm
manages to achieve so-called ‘sub-linear’ complexity; that is, for most files, it solves the pattern
matching problem in fewer than n comparisons. This makes the Boyer-Moore algorithm the most
efficient online pattern matching algorithm in general use.

Searching compressed files

Compression is the art of reducing the size of a file by removing redundancy in its structure. In
general, compression works by assigning shorter bit patterns to symbols that are more likely to
oceur.

With compressed files becoming more commonplace, the problem of how to search them is be-
coming increasingly important. There are two options to consider when deciding how to approach
compressed pattern matching. The first is a ‘decompress-then-search’ approach, where the com-
pressed file is first decompressed, and then a traditional pattern matching algorithm applied. This
approach has the advantage of simplicity, but brings with it tremendous overheads, in terms of
both computation time and storage requirements. Firstly, the entire file must be decompressed—
often a lengthy process, especially when considering files several megabytes in size. Additionally,
the decompressed file must be stored somewhere once decompressed, so that pattern matching
may occur.

The second alternative is to search the compressed file without decompressing it, or at least
only partially decompress it. This approach is known as compressed-domain pattern matching,
and offers several enticing advantages. The file is smaller, so a pattern matching algorithm should
take less time to search the full text. It also avoids the work that would be needed to completely
decompress the file.

The main difficulty in compressed-domain pattern matching is that the compression process
may have removed a great deal of the structure of the file. The more structure removed, the
better the compression likely to be achieved. There is therefore a subtly-balanced tension between
obtaining good compression and leaving enough ‘hints’ to allow pattern-matching to proceed. It
would appear that these two goals are in constant opposition, but in fact compression is very closely
related to pattern matching, in that many compression systems use some sort of pattern matching
technique to find repetitions in the input, which can be exploited to give better compression. The
effect of this is that these patterns are coded in a special manner, which, if suitably represented,



may actually aid in pattern matching.

Many techniques exist for compressed-domain pattern matching. So-called ‘fully-compressed
pattern matching’—compressing the pattern, then searching the compressed text for the com-
pressed pattern—is one popular method, but will not work in situations where a given substring
could have a number of different representations depending on context. This happens when bound-
aries in the compressed text do not correspond to those in the original text, such as in arithmetic
coding, or where the input file is coded adaptively.

A recent survey by Bell, Adjeroh & Mukherjee (2001) outlines several techniques for online
compressed-domain pattern matching in both text and images. Many of these techniques are based
on the LZ family of compression systems (Ziv & Lempel 1977, Ziv & Lempel 1978), but others
include methods for Huffman-coded text and run-length encoding. The authors of this survey
noted the potential of a relatively new method called the Burrows-Wheeler transform (Burrows
& Wheeler 1994), which is used in some compression systems as a preprocessing step to achieve
some of the best compression available. The Burrows-Wheeler transform is explained in detail in
Chapter 2.

The authors of the survey noted that very little work had been done with the Burrows-Wheeler
transform, although some research has been undertaken in the area of offline pattern matching
(Ferragina & Manzini 2000, Ferragina & Manzini 2001, Sadakane & Imai 1999, Sadakane 20000).
This is hardly surprising, given that the BWT itself is a recent development in the field of text
compression. Additionally, the idea of using the BWT for pattern matching seems somewhat
counterintuitive, since it works by permuting the text into a seemingly random order. However,
the ouput from the Burrows-Wheeler transform actually contains a lexically sorted version of the
text—the perfect index.

Chapter 3 describes the adaptation of the Boyer-Moore algorithm to handle BWT-encoded
text efficiently, while Chapter 4 describes a new technique that exploits the sort process used in
the BWT to give an extremely fast pattern matching algorithm with all the speed benefits of a
static index, but very little extra cost in terms of space, and the convenience of an online system.

Approximate pattern matching with the BWT

The structure contained in the Burrows-Wheeler transform can also be used to aid in approximate
pattern matching—that is, finding substrings of the text that are similar to the pattern, but may
not match exactly. One method, ‘k-approximate’ matching, involves computing the edit distance
between two strings as the number of basic operations (insertions, deletions and substitutions)
needed to transform one string into the other. k-approximate matching involves finding all the
substrings of the text for which the edit distance from the pattern is less than some value of
k. Approximate pattern matching is beyond the scope of this project, but the author has been
involved in some preliminary work in this area. Appendix A contains the current draft of a paper
outlining an approximate pattern matching method based on the Burrows-Wheeler transform and
the idea of g-grams—substrings of length ¢ of both the pattern and the text. By taking the
intersection of both sets of ¢-grams, areas of possible approximate matches can be identified and
examined.

Evaluating lossless compression methods

The question “what is the best compression method?” can only be answered with another ques-
tion: “why do you ask?” There is no single ‘best’ compression method, simply because there are
so many ways of measuring their performance. Some are better in terms of speed, while others
may take slightly longer, but achieve better compression. Some methods compress and decom-
press at approximately the same speed, while others take a long time to compress to allow faster
decompression.
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The Canterbury Corpus (Arnold & Bell 1997) is a set of eleven ‘typical’ files, collected for
the purpose of evaluating lossless compression methods. The original focus of this report was the
exploration of suitable performance metrics for lossless compression methods, using the Canterbury
Corpus as a benchmark. This research was sidelined and eventually abandoned in order to explore
the burgeoning area of compressed-domain pattern matching. Some initial results are discussed
in Appendix B.

Notation

Throughout this paper we will refer to the pattern matching problem in terms of searching for
a pattern P of length m in a text T of length n. The input alphabet will be referred to as ¥;
similarly, |¥| will denote the length of the alphabet. Other variables will be defined as they are
used.

In general, arrays will be represented by uppercase letters, while lowercase letters will denote
variables of scalar type. All arrays will begin at one unless otherwise noted, and will be indexed
with square brackets.
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Chapter 2

The Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT), also called ‘block sorting’ (Burrows & Wheeler 1994),
is a technique for making text files more amenable to compression by permuting the input file so
that characters that appear in similar contexts are clustered together in the output.

Figure 2.1 shows a portion of the book1 text (from the Calgary Corpus) that has been permuted
with the Burrows-Wheeler transform. The context is characters followed by the letters ‘aking’;
notice how only a few characters (e, m and t) appear in this context. This makes the output of
the Burrows-Wheeler transform particularly suitable for move-to-front coding (Bentley, Sleator,
Tarjan & Wei 1986), which assigns higher probablilities to more recently-seen symbols.

The transformation is performed by sorting all the characters in the input text, using their
context as the sort key. Here the ‘context’ can be either the characters immediately before or
immediately after the character being sorted; although Witten, Moffatt & Bell (1999) use the
preceding characters as the sort key to illustrate the parallel between the BWT and other context-
based compression models, most other descriptions of the BWT seem to use the substring after
the character in question. This latter method has several advantages for the applications in this
report (not the least of which is perspicuity), and so for the purposes of this discussion, the term
‘context’ refers to as many characters after the character being sorted as are needed to resolve
any question of ordering. In fact, the two approaches are practically equivalent, and result in very
similar compression performance in most situations (Fenwick 1996a).

The transformed text is simply the characters in order of their sorted contexts. Figure 2.2 shows
how the Burrows-Wheeler transform would be performed on the shorter text ‘mississippi’. First,
all the cyclic rotations of the text are produced. Next, the characters are sorted into the order of
their contexts. Finally, the permuted characters are transmitted. For example, the permuted text
of the book1 text would contain the sequence ememttemmtmmeeeteeee (see Figure 2.1), and the
complete permuted text for the string mississippi is pssmipissii (Figure 2.2(c)).

It is also necessary to transmit the position in the permuted text of the first character of the
original text. In the case of the example in Figure 2.2, we transmit the number four, since the
letter m, which is the first character of the input, appears at position four in the permuted string.
Therefore, the output of the Burrows-Wheeler transform for the string mississippi is the pair
{pssmipissii,4}.

Remarkably, it is possible, given only this output, to reconstruct the original text. This is
possible because the matrix in Figure 2.2 is constructed using cyclic rotations; that is, the charac-
ters in the last column of Figure 2.2(b) cyclically precede those in the first column. Figure 2.2(d)
shows this relationship more clearly: the characters in the left-hand column (which are taken from
the last column of the sorted matrix) immediately precede those in the right-hand column (the
first character of the sorted matrix).

If we refer to the first and last columns of the sorted matrix as F' and L respectively, then L is
the output from the Burrows-Wheeler transform, and F' can be obtained by the decoder simply by
sorting the characters of L. Then we see that each character in L is followed by the corresponding

11
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aking it so decisively,

aking it stick to his he
aking it, and turning th
aking itself visible low
aking just now. You are

aking just the least thi
aking loneliness of the

aking me a woman, and de
aking movements associat
aking my own measure so

aking no attempt to cont
aking no reply. ’I fanci
aking of a daring attemp
aking of Bathsheba. Ther
aking of Boldwood, " He’
aking of her hand by the
aking of machinery behin
aking of one. He was at

aking of? ’ she asked. T
aking off my engagement

® ® ® ® ct ® ® @ BB B8 8 0B 0B 0

Figure 2.1: Sorted contexts for the Burrows-Wheeler transform.

F L L F
1 | mississippi 1| 1 mississip p 1|p 1| p i
2 | ississippim 2 | 1 ppimissis s 2| s 2 | s i
3 | ssissippimi 3| i ssippimis s 3| s 3| s i
4 | sissippimis 4| 1 ssissippi m 4 | m* 4 | mx i
5 | issippimiss 5| m 1ississipp 1 5 | 1 5 1 m
6 | ssippimissi 6 | p 1imississi p 6| p 6 |p P
7 | sippimissis 7| p pimississ i 7|1 711 P
8 | ippimississ 8 | s ippimissi s 8 | s 8| s s
9 | ppimississi 9 | 8 1issippimi s 9| s 9| s s
10 | pimississip 10 | s sippimiss 1 10 | i 10 |1 s
11 | imississipp 11 | s sissippim 1 1 | 1 11 | i s

(2) (b) () (d)

Figure 2.2: Burrows-Wheeler transform of the string mississippi: (a) rotations of the string;
(b) sorted matrix; (c) permuted string (last character of sorted matrix); (d) permuted string and
sorted string.
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character in F. In particular, we know that in this case L[4] is the first character of the text;
therefore, F'[4] (the letter i) must be the second character.

‘We must now consider the problem of locating the next character to decode. We know that each
character in F' must correspond to a character in L, since the two strings are merely permutations
of one another. However, the letter i occurs four times in L. Which one corresponds to the i that
has just been decoded (the fourth i in F')? To answer this question, we must observe that each
group of characters in F' occurs in the same order in L. For example, the third s in F' corresponds
to the third s in L, and so on. Since we are dealing in this instance with the fourth i in F', this
corresponds to the fourth i in L (L[11]), which, we then discover, is followed by an s, and so forth.
Decoding the rest of the string in a similar manner gives the order 4, 11, 9, 3, 10, 8,2, 7, 6, 1, 5.

2.1 Implementing the Burrows-Wheeler Transform

Although it may seem that the BWT requires substantial overheads in terms of arrays, in practice,
it can be implemented quite efficiently. For example, the matrix shown in Figure 2.2(a) is never
constructed; instead, a list of indices into the text is created, and when two indices are being
compared during the sorting process, the corresponding substrings are compared.

A further improvement comes from the fact that it is not necessary to construct the F' array.
Since the order of the alphabet is fixed, and we know from L how many occurrences of each
character there are, we can compute the F' array implicitly. Each symbol in the alphabet will
occur in one contiguous group in F' (whose size may be zero if the symbol does not occur in the
text); let the array K store the lengths of these groups. Then from K we can compute M, which
gives the starting index of each group in the (virtual) F' array. (This approach has other merits
than space efficiency, as we shall see in Chapter 4.)

As presented above, the inverse BWT takes O(n?) time, because of the need to count the
previous occurrences of each character. Naturally, there is a way to improve this as well, and in
fact, the inverse transform can be made to run in O(n) time by means of a ‘transform array’, V,
which can be created in linear time from L, K and M.

In the original paper by Burrows & Wheeler (1994), the transform array is computed such
that, for any character L[i], the preceding character in the text is given by L[V[¢]]; that is,

Vi:1<i<n,Tn—i+1] = L[V'index]

where VO[z] = z, Vi*1[z] = V[V?[z]], and index is the index of the first character in the text. Of
course, using V' in this way to generate the text results in its being constructed backwards. In fact,
Burrows and Wheeler noted this in their paper: “We could have defined [the transform array]
so that the string...would be generated from front to back, rather than the other way around.”
Exactly why they did not do so remains a mystery, and may be one of the reasons why the paper
is so notoriously misunderstood.

Fortunately, it is just as easy to generate a ‘forwards transform array’, which we shall call W.
A method for generating both the V and W arrays from the M array in linear time is given as
Algorithm 2.1. This algorithm uses the key property outlined above, namely that the occurrences
of each symbol in the alphabet appear in the same order in L as they do in F'. For each character
in L, BUILD-TRANSFORM-ARRAYS uses the M array to locate the corresponding character in F,
and this relationship is recorded in the transform array.

Algorithm 2.2 performs the actual reconstruction of the string in ‘front-to-back’ fashion, using
the W array, but could be trivially changed to use V instead. For most of the other applications
in this report, W will certainly prove more useful.

2.2 Auxiliary arrays

Depending on the application, a number of auxiliary arrays may prove useful with the Burrows-
Wheeler transform. Adjeroh, Mukherjee, Bell, Zhang & Powell (2001) describe a number of these
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Algorithm 2.1 Build the transform arrays for the inverse BWT

BUILD-TRANSFORM-ARRAYS(L, M)
1 for i« 1tondo
2 Vi] < M|LJi]]

3 WIMI[L[i]]] « i
4 MIi] — M[i]+ 1
5 end for

Algorithm 2.2 Reconstruct the original text using the V array

BWT-DECODE(L, W, index)
1 ¢« index
for j — 1 to n do
T(j) — L]
end for

U W N

arrays; here, we will focus only on those auxiliary arrays relevant to the applications in this report.
Let Hr be defined as an array relating the characters in the original text T' to their position
in the sorted string F'; that is,

Vi:1l<i<n,T[i|=F[Hrli]
Then let I be the inverse of this array; that is,
Vil <i<n,T[I[]] = Fi]

These two arrays are particularly useful in pattern matching, as they can be used to report the
position of a match in the original text. The Hr array is used by the compressed-domain Boyer-
Moore algorithm in Chapter 3, and the I array by the binary search algorithm in Chapter 4.

Algorithm 2.3 Compute the Hr and I arrays

COMPUTE-AUXILIARY-ARRAYS(V, inder)
1 4« index
for j «— 1 to n do
i— Vi
Hrin—j+1] i
Il —n—-j+1
end for

S O = W N

2.3 Concluding remarks on the BWT

Because of the context method used in the BWT, it behaves very similarly to other context-based
compression models such as PPM and DMC. In fact, block-sorting is closely related to the PPM*
method (Cleary, Teahan & Witten 1995), which allows arbitrary-length contexts, and is among the
best known models for achieving good compression. Block-sorting forms the basis of the popular
bzip family of compression systems (Seward 2000), whose performance is widely regarded to be
among the best publicly-available systems.



Chapter 3

A Boyer-Moore-based approach

The Boyer-Moore algorithm (Boyer & Moore 1977) is considered one of the most efficient algo-
rithms for general pattern matching applications, and can achieve ‘sub-linear’ performance in most
situations.

In principle, the Boyer-Moore algorithm is very similar to brute force pattern matching, in that
searching is performed by ‘sliding’ the pattern across the text, and comparing the characters from
the pattern with the corresponding text characters. The main differences are that the pattern is
checked from right to left (rather than left to right, as in the brute force algorithm), and that
the Boyer-Moore algorithm is able to recognise and skip certain areas in the text where no match
would be possible.

3.1 Shift heuristics

Underlying Boyer-Moore’s ability to skip portions of the text are two key heuristics: the bad
character rule and the good suffix rule.

Definition 3.1.1 (Bad character rule)

Suppose the beginning of the pattern is aligned with the text at position k, and that
a mismatch has occurred at position 7 in the pattern, that is, P[i] # T'[k + i — 1]. Let
¢ = T[k + i — 1], the mismatched character from the text. The bad character rule
proposes that the pattern be shifted to the right so that the mismatched character ¢
is aligned with the rightmost position of ¢ in P. If this would yield a negative shift
(that is, the rightmost occurrence of ¢ in P is after the mismatch), then the pattern is
simply shifted to the right by one position.

In Figure 3.1(a), a mismatch has been detected between the ¢ of reduced, and the letter d
in the text. Since the rightmost d in reduced is to the right of the mismatch, the bad character
heuristic simply proposes a shift by one character to the right.

It is trivial to generate a lookup array for the bad character heuristic in O(m + |3|) time and
O(]X]) space; one such algorithm is given in Cormen, Leiserson & Rivest (1989).

Definition 3.1.2 (Good suffix rule)

Suppose that a substring ¢ of T" matches a suffix of P, but that a mismatch occurs at
the next character to the left. Let ¢’ be the rightmost occurrence of ¢ in P such that
t' is not a suffix of P, and the character to the left of ¢’ differs from the character to
the left of ¢ in P. If ¢’ exists, then shift P to the right so that the substring ¢’ in P is
aligned with the substring ¢ in the text. Otherwise, shift P to the right until a prefix
of P matches a suffix of ¢ in T. If no such shift is possible, then shift P completely
past t; that is, shift the pattern m places to the right.

15
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Figure 3.1(c) shows a shift proposed by the good suffix heuristic, after the suffix ed has been
matched. In this case, there is a further occurrence of ed in the pattern, and so this is aligned
with the matched ed in the text, giving a shift of four characters.

The lookup array for the good suffix rule requires O(m) space, and can be computed in O(m)
amortised time, although doing so is much more difficult than computing the bad character array.
Gusfield (1997) details some of the history of the good suffix rule, and laments at some length
the lack of adequate explanation in the literature. Ironically enough, it now appears that his own
algorithm may contain errors. Fortunately, Cormen et al. (1989) gives a clear, concise explanation
of the preprocessing algorithm, and an amortised analysis of its O(m) time complexity.

We have, as a result of the two rules, two possible candidates for shift distances at each
mismatch during the search process. To resolve this, the maximum of the two shifts is chosen, so
that the heuristic that yields a greater shift is the one that is taken. It is also easy to prove that
the algorithm will make progress at each step, since the heuristics always give a positive shift, and
that no occurrences of the pattern are missed due to over-zealous shifting.

3.2 Extensions to the basic shift heuristics

The bad character rule is useful when a mismatch occurs near the right end of P, but has no effect
when the mismatching character from T occurs in P to the right of the mismatch position, since
this would give a negative shift. To overcome this problem, the bad character rule is extended as
follows:

Definition 3.2.1 (Extended bad character rule)

When a mismatch occurs at position ¢ of P, and the mismatching character in T is
¢, then shift P to the right so that the closest ¢ to the left of ¢ in P is aligned with
the mismatched ¢ in T. If no such shift is possible (that is, there is no ¢ to the left of
position 4 in P), then shift P completely past the mismatched ¢ in 7.

Figure 3.1(b) shows a shift proposed by the extended bad character heuristic. Although the
rightmost d in reduced is to the left of the mismatch position (and therefore of no use to the
standard bad character heuristic), there is another d to the left of the mismatch. This is aligned
with the mismatched d in the text, giving a shift of two places, instead of the single-place shift
proposed by the original bad character rule.

The extended rule can yield much better shifts than the original bad character heuristic, with
only a very slight trade-off in performance—at most one extra step per character comparison
(Gusfield 1997).

There are several algorithms which claim to compute the extended bad character rule in O(m)
space and time (Gusfield 1997, Mukherjee, Bell, Powell, Adjeroh & Zhang 2001). However, these
use a linked list of pattern indices for each symbol in the alphabet (see Figure 3.2, so, strictly
speaking, their space requirement is actually O(m + |X|). To retrieve the extended bad character
shift for a text character ¢ and a position ¢ in P, traverse the list of indices for ¢ until a value
k < i is obtained. If no such value is found, then there is no ¢ to the left of 7 in P, and P should
be shifted completely past the mismatched character; otherwise, the correct shift is given by i — k.

One way to avoid the overheads associated with linked lists is to use a two-pass technique
similar to that used to compute the F' array in the BWT decoding process. During the first pass,
the number of occurrences of each character are counted, and an array of size m is partitioned
accordingly. During the second pass, this array is populated with the indices in the pattern of
each character. For example, the extended bad character array for the pattern reduced is shown
in Figure 3.3. Note that this technique does not avoid the O(m + |X|) space requirement of the
linked list technique described above, since one index for each symbol in the alphabet is required
to keep track of the partitioning. However, it seems generally more efficient to implement this
method than to use linked lists, especially when the pattern size is likely to be small.
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bad character ——good suffix

(1] [alele[i[d[EM@I []o] [e[o]..-

[xlefd[u]c[e]d]

(a)

..[I] [ale[c[if@<a] [¢]o] [&[o]..-

‘r‘e d u|c|e‘d‘

(b)

. [I] [ale[e[i[a[@M@ [+]o] [e[o]..-

[rlefd]u]cle[q]

(c)

Figure 3.1: An illustration of the Boyer-Moore heuristics. (a) Matching the pattern reduced
against a text by comparing characters from right to left gives a mismatch at position 5. (b) Shift
proposed by the extended bad character rule. (¢) Shift proposed by the good suffix rule.

a — 0

b — 0

c — 5H—=10

d - 7T—3—=10
e — 6—-2-10
r — 1—=90

s — 0

t — 0

u — 4-90

Figure 3.2: An array of linked lists showing the extended bad character shifts for the pattern
reduced
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5|l c| «c
71d| «—d
31d

6|e| e
2 e

l|r| «r
4 |lu| «—u

Figure 3.3: Extended bad character shift array for the pattern reduced

3.3 The compressed-domain Boyer-Moore algorithm

The compressed-domain application of the Boyer-Moore algorithm given by Mukherjee et al. (2001)
relies on the fact that, given the F' and Hr vectors, it is possible to decode portions of the text
in a random-access fashion, without decoding the entire block. Pseudocode for this algorithm is
given as Algorithm 3.1.

Algorithm 3.1 The compressed-domain Boyer-Moore algorithm.

BM-MatcH(P, F, Hr)
1 CoMPUTE-GOOD-SUFFIX(P)
2 COMPUTE-BAD-CHARACTER(P)

3 k<1

4 while k<n—-—m-+1do

) 1—m

6 while ¢ > 0 and P[i] = F[Hr[k +i—1]] do

7 t—1i—1

8 end while

9 if ¢ = 0 then
10 # Report a match beginning at position k —m + 1
11 k — k+ G[0]
12 else
13 sG < (shift proposed by the good suffix rule)
14 sp < (shift proposed by the extended bad character rule)
15 k — k+ MAX(sq, SB)
16 end if

17 end while

The exact details of how the algorithm computes the proposed shifts (lines 13-14) have been
omitted here for clarity, but are not difficult to understand. In the case of the good suffix rule,
the proposed shift can be obtained with a single array lookup; for the bad character rule, it is a
matter of traversing the list of positions of the mismatched character in P until either a viable
shift is found, or the end of the list is reached.

This BWT-Boyer-Moore algorithm allows searching in BWT-encoded files that is comparable
to the fastest known algorithms for uncompressed text.



Chapter 4

Binary Searching

One interesting side effect of the Burrows-Wheeler transform is that it produces, as an artifact of
the inverse transform, a list of all the substrings of the text in sorted order, making it possible to
perform a binary search on any file encoded with the Burrows-Wheeler transform—an O(mlogn)
pattern matching algorithm!

Figure 4.1 shows the sorted list of substrings for the text mississippi, taken from the sorted
matrix in Figure 2.2(b). Note that a ‘match’ for the string miss actually involves finding a
substring of the text that has miss as a prefiz. (This is really no different from other pattern
matching algorithms (such as Boyer-Moore), where the characters following a substring have no
effect on its suitability as a candidate for matching.) Also, notice that all the occurrences of
the substring is are together in the list (positions 3—4). This is an important observation in the
application of binary search to BWT-compressed files.

In fact, it is possible to improve even on the above O(mlogn) figure, and obtain a pattern
matching algorithm that runs in O(m log %‘) time, as a direct result of the efficiency improvements
made in Chapter 2. Recall that the F' array of the Burrows-Wheeler transform is not stored
explicitly, but that the starting position and length of each run of characters are stored in the
M and K arrays. Therefore, if the first character of the pattern is ¢, then the lower and upper
bounds for a binary search are given, respectively, by M|[c] and M[c+ 1] — 1. Thus, if the pattern
is only one character long, or ¢ occurs at most once in the text, then any results are immediately
accessible from two array lookups; in all other cases, this observation effectively decreases the
length of the pattern by one character and the search space by a factor of, on,average,T%r

To take advantage of this structure, it is necessary to make some minor modifications to the
standard binary search algorithm. Firstly, we must devise a string-comparison function that works
with the structure of the BWT. Such an algorithm is given in Algorithm 4.1. It uses the W array

ppi

ssippi
ssissippi
ississippi
i

pi

ippim
issippim
sippi
sissippi

© 00 N O e W NN =

H
o
nnn 0"t 8 R H e

11

Figure 4.1: Sorted list of substrings of mississippi
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to decode as much of the text as is needed to determine a match®. The parameter i signifies a row
in the sorted matrix (Figure 2.2(b)), which corresponds to a substring ¢ of the text. The return
value is the same as C’s STRCMP; that is, negative if P < ¢, positive if P > ¢, and zero if there is
an exact match. Note that, in this case, an ‘exact match’ means that P matches a substring of
the text.

Algorithm 4.1 String-comparison routine for BWT binary search

BWT-STRCMP(P, W, L, i)

m «— LENGTH(P)

J1

while m > 0 and L[] = P[j] do
m+—m—1
J—J+1

end while

if m =0 then
return 0

else
return P[j] — L[{]

end if

The binary search algorithm itself must be modified, because in this case we are looking for a

range of results, rather than just one. The modified algorithm works as follows:

Step 1. [standard binary search]

Perform a standard binary search on the range M|c|... M[c + 1] — 1, as described above.
Either this algorithm will terminate without a match (in which case the pattern is not present
in the text), or a matching substring will be found, in which case we continue with the next
step.

Step 2. [binary search on first half of list]

Suppose the match found in Step 1 occurs at position p of F. Then we have two cases to
consider:

(a) There is some index p’ such that M|c] < p’ < p, and each index in [p’...p — 1] points
to a match. (This occurs because the list is in sorted order, so all matches will be
contiguous in the list.)

(b) There are no matches with indices in M[c|...p —1; let p’ = p.

In either case, perform a binary search on M|c]...p— 1. At each step, compare the pattern
to the substring at the midpoint of the list. If the result is negative or zero, then choose
the first sublist (up to and including the midpoint); otherwise, choose the second sublist. In
this way, the first match in M|c]...p — 1 (if it exists) will be located; if no such match is
present, then p is the first occurrence of the pattern in the complete list.

Step 3. [binary search on second half of list]

A further two cases are presented by the match found in Step 1. Either:

(a) There is some index p” such that p < p” < M[c+ 1] — 1, and each index in [p...p"]
points to a match.

(b) There are no matches with indices in p+1... M[c+ 1] — 1; let p” = p.

1Or, more correctly, a mismatch, since ascertaining a match will always involve m comparisons.
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Text Results Number of
entered candidates
C c...czarina 2110
co coach. . . cozy 890
com coma. . . comrade 155
comp compact. . . compute 82
compr comprehend. . . compromise 11

Figure 4.2: Incremental search for the word compression.

Again, in either case, perform a binary search on p+ 1...MJ[c+ 1] — 1, this time choosing
the latter half of the list if the comparison value is positive or zero. This will ensure that
the last occurrence of the pattern is found.

Step 4. [search results]
If a list of results is generated by the above steps, then p’...p" are the indices of the matches
in the sorted matrix; that is, F[p’...p"] contains the first characters of the matches, and
their indices in the text T are given by I[p’...p"]. (Recall that the I array relates F and T';
see Section 2.2 on page 13 for details.)

This process is summarised in Algorithm 4.2.

The enhanced binary search algorithm obtains all the matches with a fraction of the compar-
isons needed by linear-based algorithms such as the Boyer-Moore method presented in Chapter 3.
In fact, in situations where there are a large number of matches present in the text, some matches
will be found without any comparisons at all. This is possible because once two matches have
been found, it is known that everything between them must also be a match, due to the sorted
nature of the F' array.

This extremely fast performance makes the binary search approach ideal for situations where
speed is of the essence. One example is the ‘incremental search’ found in multimedia encyclopaedias
and online application help. As the user enters a word character by character, a list of possible
results is displayed. This list becomes shorter as more of the word is typed and the query made
more specific. For example, a search for the word compression in a dictionary might begin with
the results shown in Figure 4.22. By the time the prefix compr has been typed, the number of
possible results is probably small enough to fit on one screen.

Saving the start and end indices of the previous searches allows an improvement in the perfor-
mance of the binary search, since these indices can be used as the bounds for the next search.

Figure 4.3 shows an example of a full-text retrieval system that uses the binary search approach
to provide a responsive incremental search. As the user enters a query in the text box in the top-
left corner of the window, the list of results is updated with each keystroke. The system is so fast,
in fact, that the only noticeable lag comes from the time taken to populate the list of results.

2Results taken from /usr/dict/words
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Algorithm 4.2 BWT Binary search algorithm

BWT-BINARY-SEARCH(P, W, L, I)
1 ¢« PI1]

P — P[2...m)]

low — M|c]

high — M[c+1] —1

while low < high do
mid «— (low + high)/2
emp — BWT-STRCMP (P, W, L, W[mid))
9 switch cmp
10 case =0: break
11 case >0: low+— mid+ 1
12 case < 0: high«— mid
13 end switch
14 end while
15
16 if cmp =0 then
17 p «— mid
18 h—p-1
19 while low < h do

0O J O UL i W N

20 m — (low+ h)/2

21 if BWT-STROMP(P', W, L, W[m]) > 0 then
22 low—m+1

23 else

24 h+—m

25 end if

26 end while
27 if BWT-STrRCMP(P’, W, L, W(low]) # 0 then

28 low «+— mid # No matches in low. .. mid-1
29 end if
30

31 l=p+1
32 while [ < high do

33 m «— (I + high+1)/2 # Round up

34 if BWT-STROMP(P', W, L, W[m]) > 0 then
35 l—m

36 else

37 high < m — 1

38 end if

39 end while
40 if BWT-STROMP(P', W, L, W high]) # 0 then

41 high «— mid # No matches in mid+1. .. high
42 end if

43

44 return {I[low... high]}

45 else

46 return {} # No matches found
47 end if
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Chapter 5

Experimental Results

For the purposes of experimentation, a simple Burrows-Wheeler-based compression program, bsmp,
was developed. bsmp uses a four-stage compression system:

1. a Burrows-Wheeler transform, with the block size set to the size of the entire file,

2. a move-to-front coder (Bentley et al. 1986), which takes advantage of the high level of local
repetition in the BWT output,

3. a run-length coder, to remove the long sequences of zeroes in the MTF output, and
4. an order-0 arithmetic coder.

Table 5.1 compares the performance of bsmp with bzip2, a production-quality block-sorting com-
pressor (Seward 2000). Compression and decompression times are given in seconds, and compres-
sion ratios in output bits per input byte. The files shown are all text files from the Canterbury
Corpus (Arnold & Bell 1997, Powell 2001); the three larger files are from the ‘Large’ collection,
and demonstrate the performance of block sorting on large files. Naturally, bsmp does not compare
particularly favourably in terms of speed, since no real effort was spent in optimising this simple
system, but the compression ratios achieved by bsmp are at least comparable to bzip2’s. For the
remainder of the experiments in this chapter, bsmp will be used as the compression system, since
this allows us to work with partially decompressed files, and to treat the entire file as one block.
It is intended to examine in more detail the relationship between the BWT and the compression
process, and eventually to adapt the techniques in this report for use with bzip2-compressed files.

Compress Decompress

File Size Time Time Ratio
(bytes) bzip2 bsmp bzip2 bsmp bzip2 bsmp
text 152,089 0.12 2.55 0.04 0.16 2.272 2.630
play 125,179 0.11 1.95 0.04 0.15 2.529 2.915
Csrc 11,150 0.03 0.14 0.01 0.02 2.180 2.470
list 3,721 0.02 0.05 0.00 0.00 2.758 2.969
tech 426,754 0.33 8.85 0.10 0.42 2.019 2.351
poem 481,861 0.40 8.98 0.12 0.53 2417 2.797
man 4,227 0.02 0.04 0.01 0.01 3.335 3.577

E.coli 4,638,690 3.94 151.82 1.13 707 2158 2.337
world 2,473,400 2.10  79.34 0.46 2.59 1.584 1.633
bible 4,047,392 2.10 113.36 0.77 496 1.671 1.836

Table 5.1: Performance of the bzip2 and bsmp compression systems
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Time in seconds
[TTTTTTT T[T T I T T T T T T T T T I T T T T TTTT]
0 5 10 15 20 25 30 35 40 45

uncompress D bm
(@) i | bwt-bm
E bwt-binary

uncompress |:H unbwt H bm
(b) | bwt-bm

S bwt-binary

Figure 5.1: Search times for (a) a single pattern, and (b) a hundred randomly-selected words from
the file bible.txt

There are a number of interesting choices to be made when implementing a block-sorting com-
pressor such as bsmp. Fenwick (1996a) examines these choices in some detail, but his compression
system does not use run-length coding (step 3 above). In implementing bsmp, we have chosen
to use two models for the arithmetic coder. The first models the lengths of runs in the MTF
output, and the second the MTF values themselves. By always outputting a run length, we ef-
fectively compose a flag denoting whether this is a run or not with the actual run length, since
there will be approximately a 90% chance that the run length will be one'. In a system based on
Huffman coding, this would be wasteful, but an arithmetic coder allows a representation that is
arbitrarily close to the entropy (Witten et al. 1999), and so a probablility of 90% can be coded in
—log, 0.9 = 0.152 bits.

There is some room for fine-tuning, but we are mainly concerned here with relative speed, not
compression performance.

5.1 Search performance

The main result we are interested in is, of course, whether or not searching is actually faster
with the Burrows-Wheeler transform. Assuming that we have a file that has been compressed as
described above, we could either completely decompress the file and then use a tool like grep to do
the pattern matching, or only partially decompress the file (to the BWT-permuted output) and
use one of the BWT search algorithms described in this report.

In considering which method to use, we must take into account the overheads associated with
each stage of the decompression process. For example, if the inverse BWT phase is particularly
costly, it may be better to search on the BWT-encoded file. However, if the time taken to decom-
press the arithmetic coding, run-length coding and move-to-front coding together far outweighs
the cost of the inverse BWT and the search on the decoded text, or the search on the BWT file,
then the choice of whether or not to perform the inverse BWT in full is largely arbitrary.

To investigate the individual parts of the decompression process, the bsmp decompressor was
modified to produce as output a BWT file, which could then be fed into a BWT decoder if
required. This allowed us to compare the relative performance of the BWT search algorithms
with a decode-and-search approach.

Figure 5.1 shows a timeline view of the three search algorithms on the 3.86 megabyte bible.txt
file from the Canterbury Corpus (the actual results are shown in Table 5.2). The ‘uncompress’
phase represents the time taken to decode the arithmetic coding, run-length coding and move-to-
front coding, producing a BWT file. This file is then used for each of the three search methods:

1Based on empirical data.
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Component steps Total time taken
Patterns | uncomp unbwt bm bwt-bm bwt-binary | unbwt-bm bwt-bm bwt-binary
1 2.3 6.7 0.7 3.3 3.6 9.7 5.6 5.9
10 2.3 6.7 2.0 6.7 3.6 11.0 9.0 5.9
20 2.3 6.7 3.7 10.7 3.6 12.7 13.0 5.9
30 2.3 6.7 5.6 15.4 3.6 14.7 17.7 5.9
40 2.3 6.7 6.7 17.2 3.6 15.7 19.5 5.9
50 2.3 6.7 8.6 21.1 3.5 17.6 23.4 5.8
60 2.3 6.7 104 25.2 3.6 19.4 27.5 5.9
70 2.3 6.7 114 28.5 3.6 20.5 30.8 5.9
80 2.3 6.7 129 32.2 3.6 21.9 34.5 5.9
90 2.3 6.7 14.8 36.1 3.5 23.8 38.4 5.8
100 2.3 6.7 16.7 40.8 3.6 25.7 43.1 5.9

Table 5.2: Time in seconds to search a BWT-compressed file for one or more patterns

e unbwt — bm applies the inverse BWT and uses a standard Boyer-Moore algorithm to search
for the pattern. Rather than use a pre-built utility like grep for the pattern-matching stage,
it was decided to build a pattern-matching program from scratch, for consistency of imple-
mentation (grep is heavily optimised, and this may have resulted in biased results). The
pattern matching algorithm used here is the same Boyer-Moore code used in Chapter 3, but
without the modifications for searching BWT files.

e bwt-bm is the compressed-domain Boyer-Moore algorithm, as described in Chapter 3.
e bwt-binary is the binary search algorithm defined in Chapter 4.

Figure 5.1(a) shows the time taken to search for a single pattern. In this case, the unbwt
phase takes approximately twice as long as the bwt-bm and bwt-binary methods, which take
approximately equal time. In this case, either of the two compressed-domain algorithms would be
appropriate. The main overhead for these algorithms is the time taken to construct the various
transform arrays from the BWT output, as the search time for a single pattern is trivial.

Figure 5.1(b) illustrates the behaviour of the different search algorithms when searching for
more than one pattern. In this case, a hundred words were randomly selected from the file
as candidate patterns, and the pattern matching algorithms searched for each one in turn. In
this case, the compressed-domain Boyer Moore algorithm was dramatically slower than even the
plain-text search. One possible reason for this is that although the two programs share almost
identical code, the permuted nature of the BWT output means that a compressed-domain Boyer-
Moore algorithm must perform several array lookups per comparison, whereas in the plain-text
algorithm, these can be replaced with pointer arithmetic. It is interesting to note that there is
almost no difference between searching for one pattern with the binary algorithm and searching
for a hundred. This underscores the fact that most of the time taken for the binary search is in
loading and processing the BWT file.

As can be seen from Figure 5.2, above about twenty patterns it becomes more efficient to
decode the BWT file and search on the plain text than to use the compressed-domain Boyer-
Moore algorithm. However, both these methods are dramatically slower than the compressed-
domain binary search, which is almost constant at around 5.9 seconds for any number of patterns.

This general pattern holds true independent of the size of the input file. For single pattern
searches, there is no significant difference between the two compressed-domain methods, while for
more than one search, binary search is the clear winner.

5.2 Memory usage

The main disadvantage of the binary search approach is its memory requirements. All the search
methods use a number of arrays whose size is proportional to the length of the input file. Com-
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Figure 5.2: Search times for one or more patterns

monly, characters are stored in a single byte and integers take four bytes. Since integers in this
context are used as indices into the file, this representation allows for files up to 232 = 4 GB in
size.

Assuming single-byte characters and four-byte integers, an array of m characters will take
n bytes, and an array of integers will take 4n bytes. As can be seen from Table 5.3, both the
decompress-then-search and compressed-domain Boyer-Moore methods use one array of characters
and one of integers, for a total of 5n bytes of memory (disregarding other, smaller arrays whose size
is O(]X])), while the binary search method uses one character array and two integer arrays, for a
total of 9n bytes. For a typical file one megabyte in size, this is an additional memory requirement
of four megabytes. However, we believe that this cost is justified by the performance benefits
of binary search, especially in light of the increasing amount of memory available on personal
computers.

5.3 Number of comparisons

The other figure of interest is the number of comparisons performed during the search phase, since
this represents the amount of work done by the algorithm. Figure 5.3 shows the mean number
of comparisons to find all occurrences of all the words in bible.txt, by word length. Somewhat
incredibly, the binary search algorithm is able to find every instance of a particular pattern in
under a hundred comparisons on average, compared to Boyer-Moore (hundreds of thousands of

Arrays Memory Example for
Method used required 4MB file
Decompress-then-search L K 5n bytes  20MB
Compressed-domain Boyer-Moore F, Hr 5n bytes  20MB
Compressed-domain binary LW, I 9n bytes 36MB

Table 5.3: Memory requirements for searching
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Figure 5.3: Mean number of comparisons by pattern length for the file bible.txt
comparisons) and linear search (millions of comparisons).

5.4 Unsuccessful searches

In the above experiments we have used patterns that are known to appear in the input file.
However, in practice, there is no noticeable difference when searching for patterns that do not
appear in the file. Binary search may have to perform one or two extra iterations, because it has
direct access to patterns starting with a given character, but terminates almost as quickly as if an
occurrence of the pattern had been found, while Boyer-Moore still traverses the entire file.

The only case where this will be relevant is if the pattern contains a character that is not found
in the input. In this case, the binary search algorithm will terminate immediately if the character
is at the start of the pattern, but will behave normally otherwise. The Boyer-Moore algorithm
will obtain something close to its best-case performance of O(;%) comparisons, depending on the
position of the ‘bad character’ in the pattern.
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Chapter 6

Conclusion

In this report we have demonstrated how to take advantage of the structure placed in files com-
pressed with the Burrows-Wheeler transform, and in particular how to use this structure for
pattern-matching applications, introducing two new methods for solving the pattern matching
problem in the context of BWT-compressed files. The first, the Boyer-Moore-based approach dis-
cussed in Chapter 3, applies an existing algorithm to the special structure of the Burrows-Wheeler
transform, while the second method, the binary search approach of Chapter 4, uses the unique
properties of the Burrows-Wheeler transform to produce a pattern-matching strategy that would
be impossible with any other compression method.

As noted in Section 5.1, there is almost no difference in speed between the two compressed-
domain algorithms for straightforward, single-pattern searches. In this case, the Boyer-Moore
algorithm has the advantage of lower memory requirements, and should prove useful for applica-
tions where memory is at a premium. On the other hand, the slightly higher memory footprint of
the binary search algorithm is offset by dramatic performance gains for multiple pattern searches,
and by a considerable increase in the power of possible searches, including boolean and ‘pseudo-
boolean’ queries (AND, OR, NEAR) and approximate matching.

In fact, the Burrows-Wheeler transform has many more uses than simple pattern-matching.
There are many other uses of a sorted list of substrings, especially in the area of computational
biology. For example, it is possible to determine, with only one pass through the encoded E.coli
file, that the longest repeated substring in the liverwort DNA sequence is 2,815 characters long,
and begins with “AAAGAAACATCTTCGGGTTG. ..”. Similar searches have revealed a 551-character
repetition in the King James Bible!. It is also conceivable that similar strategies could be used to
efficiently detect plagiarism in collections of text or source code.

In general, the Burrows-Wheeler transform is useful in any situation where a sorted index
is useful. Using the V' and W transform arrays, it is possible to generate infinite forwards and
backwards contexts for a keyword-in-context (KWIC) index. It is also possible to use the Burrows-
Wheeler transform for simple data mining. For example, in the sorted list, all substrings containing
the letters ‘www.’ or ‘Mon’ will be adjacent, allowing fast retrieval.

6.1 Further work

Although initial results with the techniques described in this report are very pleasing, there is still
considerable scope for future investigation and research.

1Both occurrences are contained in Numbers 7:60-71, and relate to the dedication of the tabernacle, where
the leaders of the twelve tribes of Israel each bring an identical sacrifice. Interestingly, some versions of the Bible
use a form of run-length coding, where verses 12—83 are represented with a list of the tribal leaders and a single
description of the sacrifice.
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6.1.1 Moving further into the compressed domain

In Chapter 5, we showed that it is possible to search directly on the permuted text, and in this way
to achieve significant reductions in search time. However, if a file has been compressed with the
‘BWT — MTF — RLE — VLC’ method, it is still necessary to perform three stages of decoding
to obtain the permuted text. This represents a significant amount of work—up to a third of the
total search time in some cases.

Mukherjee et al. (2001) describes a method for obtaining the F' array from the move-to-front
output in O(nlog |X]) time. It may be possible to extend this to other arrays required for pattern-
matching, such as Hr, to gain a performance increase by skipping the reverse move-to-front step
altogether. It may even be possible to skip the run-length decoding process in a similar way,
leaving only the arithmetic decoding stage.

6.1.2 Dealing with blocked files

The major disadvantage of the compressed-domain binary search algorithm is that it requires that
the entire input file be treated as a single block. This requires enough memory to load the entire
file at once, which is may be infeasible when decoding files that are many megabytes or even
gigabytes in size, although when encoding it may be possible to perform the sorting in several
phases, similar to mergesort.

Most block-sorting compressors use much smaller blocks. In the original paper by (Burrows &
Wheeler 1994), the authors tested block sizes from one kilobyte to 103 megabytes before apparently
settling on a block size of 16 kilobytes?. bzip2 is capable of using block sizes between 100 and 900
kilobytes, with a default of 900k. As the block size increases, more context becomes available, and
better compression is likely to be achieved, although the man page for bzip2 notes that “larger
block sizes give rapidly diminishing marginal returns”.

It is therefore necessary to investigate the effect of ‘blocked’ files on the performance of the
binary search algorithm. This will involve developing a method to deal with the case when an
instance of a pattern overlaps a block boundary. It is expected that the modified routine will be
approximately O(™* logb), where b is the block size.

6.1.3 Approximate matching

So far we have only discussed exact pattern matching with the Burrows-Wheeler transform. The
paper by Adjeroh et al. (2001) (draft enclosed as Appendix A) discusses a new method for ap-
proximate pattern-matching using ¢g-grams, but it should be possible to adapt the binary search
techniques outlined here to the task of approximate pattern matching. This might involve rotating
the pattern so that the longest substring is at the beginning and can then be used to filter the
text for possible matches, which can then be verified (Witten et al. 1999). This is similar to the
apporach of Bratley & Choueka (1982), but without the memory overhead of storing the rotated
lexicon, since this is captured by the BWT.

6.1.4 Relationship to other data structures

There is a strong relationship between the Burrows-Wheeler transform and the binary search
tree. In fact, a binary search tree is implicit in the inverse BWT process (Bell 1986). This has
applications in ‘longest match’ searching, since the longest match for a particular string will be
on the path from the root to that string in a binary search tree. It is worth investigating whether
strategies and algorithms that apply to search trees in general can be applied to the Burrows-
Wheeler transform, and whether the BWT is similarly related to any other search structures.

2This figure was mysteriously mentioned in the ‘Performance of implementation’ section of the paper with no
apparent justification.
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6.2 Concluding remarks

In conclusion, the Burrows-Wheeler transform not only yields excellent compression, but provides
an excellent means of performing many different kinds of search tasks, because it provides easy
access to a list of all sorted substrings. This is a very promising and rewarding area, and one that
certainly deserves further attention.
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Appendix A

Searching with g-grams

This appendiz contains the draft of a paper to be submitted to DCC 2002, of which
the author of this project is a co-author. It is included here to further illustrate the
usefulness of the Burrows-Wheeler transform and its usefulness in pattern-matching
applications.

Pattern Matching in BWT-Compressed Text

Don Adjeroh Amar Mukherjee, Nan Zhang
Lane Department of Computer Science School of Electrical Engineering
and Electrical Enginerring and Computer Science
West Virginia University University of Central Florida
Morgantown, WV 26506-6109, USA Orlando, FL 32816, USA

Tim Bell, Matt Powell
Department of Computer Science

University of Canterbury
Christchurch, New Zealand

Draft of 1 November, 2001

Abstract

The compressed pattern matching problem is to locate the occurrence(s) of a pattern
P in a text string T using a compressed representation of 7', with minimal (or no)
decompression. In this paper, we provide on-line algorithms for solving both the
exact pattern matching problem and the k-approximate matching problem directly
on BWT compressed text. The BWT provides a lexicographic ordering of the input
text as part of its inverse transformation process. Based on this observation, pattren
matching is performed by text pre-filtering, based on a fast ¢-gram intersection of
segements from the pattern P and the text T. Algorithms are proposed that perform
exact pattern matching O(u+m log \_;I) time on average, and k-approximate matching

in O(u + |X|log |X] + % log 55 + ak) time on average, (o < u), where u = |T| is the
size of the text, m = |P| is the size of the pattern, and ¥ is the symbol alphabet.
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1 Introduction

The pattern matching problem is to find the occurrence of a given pattern in a given text string.
This is an old problem, which has been approached from different fronts, motivated by both its
practical significance, and its algorithmic importance. Matches between strings are determined
based on the string edit distance. Given two strings A : aj...ay, and B : by...b,,, over an alphabet
Y, the exact string matching problem is to check for the existence of a substring of the text that
is an exact replica of the pattern string. That is, the edit distance between the substring of A
and the pattern should be zero. In the k-approzimate string matching, the task is to check if there
exists a substring As of A, such that the edit distance between A; and B is less than or equal to
k. Various algorithms have been proposed for both exact and approximate pattern matching. See
(Navarro 2001) for a recent survey.

With the sheer volume of data easily available to an ordinary user and the fact that most of
this data is increasingly in compressed format, efforts have been made to address the compressed
pattern matching problem. Given T a text string, P a search pattern, and Z the compressed
representation of T, the problem is to locate the occurrences of P in T with minimal (or no)
decompression of Z. Initial attempts on compressed pattern matching were directed on compresson
schemes based on the LZ family (Amir, Benson & Farach 1996, Farach & Thorup 1998), where
algorithms have been proposed that can search for a pattern in an LZ77-compressed text string
in O(nlogQ(%) + m) time, where m = |P|,u = |T|,andn = |Z|. Bunke and Csirik (Bunke &
Csirik 1995) proposed methods that can search for patterns in run-length encoded files in O(um,.),
when m, is the lenght of the pattern when it is compressed. In (Moura, Navarro, Ziviani & Baeza-
Yates 2000), O(n + m+/u) algorithms were proposed for searching Huffman-encoded files. Special
compression schemes that facilitate later pattern matching directly on the compressed file have
also been proposed (Manber 1997, Shibata, Kida, Fukamachi, Takeda, Shinohara, Shinohara &
Arikawa 1999).

Although there has been a substantiatial work in compressed pattern matching, a recent survey
(Bell et al. 2001) shows that little has been done on searching directly on text compressed with
the Burrows-Wheeler Transform (BWT). Yet, in terms of data compression, empirical evidence
(Burrows & Wheeler 1994, Fenwick 1996 b, Balkenhol, Kurtz & Shtarkov 1999) shows that the BWT
is significantly superior to the more popular LZ-based methods (such as GzIP and COMPRESS),
and is only second to the PPM* algorithm (Cleary & Witten 1984). In terms of running time, the
BWT is much faster than the PPM*, but comparable with LZ-based algorithms. So far, the major
reported work on searching on BWT-compressed text are those of Sadakane (Sadakane 2000a) and
Ferragina and Manzini (Ferragina & Manzini 2000), who proposed O(mlogu + noe. log® u) and
O(m + noeclog® u) time algorithms respectively, to locate all 7, occurrences of P in T, where
0 < € < 1. However, the methods are for off-line pattern matching, and they considered only
exact pattern matching.

In this paper, we provide on-line algorithms for solving both the exact pattern matching
problem and the k-approximate matching problem directly on BWT compressed text.

2 The Burrows-Wheeler Transform

The BWT performs a permutation of the characters in the text, such that characters in lex-
ically similar contexts will be near to each other. Important procedures in BWT-based com-
pression/decompression are the forward and inverse BWT, and the subsequent encoding of the
permuted text.

The forward transform

Given an input text T = t1ta...¢,, the forward BWT is composed of three steps: 1) Form u
permutations of T' by cyclic rotations of the characters in 7. The permutations form a u X u
matrix M’, with each row in M’ representing one permutation of T'; 2) Sort the rows of M’
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lexicographically to form another matrix M. M includes T as one of its rows; 3) Record L, the
last column of the sorted permutation matrix M, and id, the row number for the row in M that
corresponds to the original text string 7.

The output of the BWT is the pair, (L,id). Generally, the effect is that the contexts that
are similar in 7" are made to be closer together in L. This similarity in nearby contexts can be
exploited to achieve compression. As an example, suppose 1" = mississippi. Let F' and L denote
the array of first and last characters respectively. Then, F' = iiiimppssss and L = pssmipissii.
The output of the tranformation will be the pair: (pssmipissii, 5) (indices are from 1 to u).

The inverse transform

The BWT is reversible. It is quite striking that given only the (L,id) pair, the original text
can be recovered exactly. The inverse transformation can be performed using the following steps
(Burrows & Wheeler 1994): 1) Sort L to produce F, the array of first characters; 2) Compute V,
the transformation vector that provides a one-to-one mapping between the elements of I and F,
such that F[V[j]] = L[j]. That is, for a given symbol o € ¥, if L[j] is the ¢-th occurrence of o in
L, then V[j] = i, where Fi] is the c-th occurrence of o in F’; 3) Generate the original text T, since
the rows in M are cyclic rotations of reach other, the symbol L[i] cyclically precedes the symbol
F[i] in T. That is, L[V[j]] cyclically precedes L[j] in T

For the example with mississippi, we will have V.=[6 8 951 7 2 10 11 3 4]. Given V and
L, we can generate the original text by iterating with V. This is captured by a simple algorithm:
Tlu+1—1i] = LIV¥id]],Vi=1,2,...u, where V[s] = s; and Vi*l[s] = V[Vi[s]]],1 < s < u.
In practical implementations, the transformation vector V' is computed by use of two arrays of
character counts C' = ci,c¢a,...¢zg, and R =1r1,72,...7: V[i] = R[i] + C[L[{]],Vi = 1,2,...u

where, for a given index, ¢, C|c] stores the number of occurrences in L of all the characters
preceding o, the c-th symbol in ¥. R[j] keeps count of the number of occurrences of character
L[j] in the prefix L[1,2,...,j] of L. With V| we can use the relation between L, F', and V to avoid
the sorting required to obtain F. Thus, we can compute F in O(u) time.

BWT-based compression

Compression with the BWT is usually accomplished in four phases, viz: bwt — mtf — rle —
vle, where bwt is the forward BWT transform; mif—move-to-front encoding (Bentley et al. 1986)
to further transform L for better compression (this usually produces runs of the same symbol);
rle—run length encoding of the runs produced by the mtf; and vic—variable length coding of the
rle output using entropy encoding methods, such as Huffman or arithmetic coding.

3 Overview of Our Approach

The motivation for our approach is the observation that the BWT provides a lexicographic ordering
of the input text as part of its inverse transformation process. The decoder only has limited
information about the sorted context, but it may be possible to exploit this to perform an initial
match on two symbols (a character and its context), and then decode only that part of the text
to see if the pattern match continues. We give our description in terms of the F, L and V arrays,
(i.e. the output of the bwt transformation—before the mif and further encoding). The methods
can be modified to search directly on the encoded output.

Given F and L, we can obtain a set of bi-grams for the original text sequence 7. Let Q2 and
QF be the set of bi-grams for the text string 7' and the pattern P respectively. We can use these
bi-grams for at least two purposes:

Pre-filtering

To search for potential matches, we consider only the bi-grams that are in the set Q' N QF. If
the intersection is empty, it means that the pattern does not occur in the text, and we don’t need



38 APPENDIX A. SEARCHING WITH Q-GRAMS
to do any further decompression.

Approximate pattern matching

We can generalize the bi-grams to the more usual g-grams, and perform g-gram intersection on
QqT and Qf; — the set of g-grams from 7' and P. At a second stage we verify if the ¢g-grams in
the intersection are part of a true k-approximate match to the pattern.

Example. Suppose T = abraca, and P = rac. We will have L = caraab, and F =
aaaber. Using F and L, we can obtain the bi-grams: Q¥ = {ac,ab,br,ca,ra} and QF = {ra,ac}.
Intersecting the two, we see that only {ra, ac} are in the intersection. For exact pattern matching,
ac will be eliminated, and thus we will only need to check in the area in T that contains ra, since
any match must contain ra. Suppose we had P = abr as the pattern, the intersection will produce
{ab, br}, eliminating the other potential starting points in F' that also started with a.

3.1 Generating ¢-grams from the BWT output

With only F and L, we can easily generate the bi-grams, and all the other ¢-grams in T', (¢ < u).
A simple rocedure that generates sorted g-grams is given below. We denote the sorted xz-grams
as F(z-gram) which is a vector of length u = |T'| of z-tuples of characters. Obviously, F' = F(1-
gram) and the lexicographically sorted matrix of all cyclic rotations of T is F(u-gram). We
assume x < u. The symbol "*’ denotes concatenation of character strings.

grams(F, L, V, q)

F(l-gram)=F;
for x=2 to q do
for i=1 to u do
F(x-gram) [T(i)]:= LIi]*F((x-1)-gram) [i];
end;
end;

If ¢ = 2, the result will be the sorted bi-grams. Results from the precedure for the first few values
of x (with T" = abraca) are shown in the table below. The M matrix is shown for convenience.
The procedure O(u?) in the worst case.

F L V FS FST ... M

a c 5 aa aab aabrac
a a 1 ab abr abraca
a r 6 ac aca acaabr
b a 2 br bra bracaa
o a 3 ca caa caabra
r b 4 ra rac racaab

4 Fast g-gram generation and intersection

4.1 Permissible ¢g-grams

Given ¢, the g-gram generateion procedure produces all z-grams, where x = 1,2,...q. However,
for a given pattern, we do not need every one of the O(n?) possible g-grams that is generated.
The key to a faster approach is to generate only the g-grams that are necessary, using the F' and
Hr arrays. We call these ¢g-grams that are necessary the permissible q-grams — they are the only
g-grams that are permissible given u, m, and the fact that matching can not progress beyond the
last characters in T and P.
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Thus, the bi-gram aa and the 3-gram aab produced in the previous example, are not permissible.
Further, if we wish to perform exact-pattern matching for a pattern P, where |P| = m, all we
need will be the m-length g-grams (i.e. the m-grams) in the text T. The m-length ¢-grams (and
excluding the ¢g-gram from the rotations of the text) are the permissible g-grams. In general, we
have a total of u — ¢ + 1 permissible g-grams for a u-length text. The major problems are to find
cheap ways to generate the ¢g-grams from 7', and then how to perform the intersection quickly.

4.2 Fast ¢g-gram generation

The inverse BWT transformation is defined as: V1,2 4, T[u+1—i] = L[V[id]], where V?[s] =

VIVI[...V[s]]] (s times) and V'[s] = s. Since V'[z] is just one more indirection on V*~1[z], we
can reduce the time required by storing the intermediate results, to be used at the next iteration
of the loop. Since F' is already sorted, and F[z] = L[V][z]], we can use a mapping between T

and F, (rather than L), so that we can use binary search on F. We can use an auxiliary array
H (or its reverse Hr to hold the intermediate steps of the indexing using V: Vi,i = 1,2,...,u
H[i] = V[V[id]], and T[i] = F[H[u+ 1 — i]]; or Hr = reverse(H), and T[i] = F[Hr][i]]

Example. The mapping vectors are shown below for T' = abraca, v = |T| = 6. I is a index
vector to the elements of Hr in sorted order.

idx TLFV | Hr I
1 acab| 2 6
2 baall 4 1
3 rra6| 6 4
4 aab2 |3 2
5 cac3]|]5 5
6 abrd4] 1 3

Hr (also H) represents a one-to-one mapping between F' and T'. By simply using F' and Hr,
we can access any character in the text string, without using 7' itself — which is not available
without complete decompression. Therefore, there is a simple algorithm to generate the g-grams,
for any given ¢: Vo—1,2,..u—qt1, Qt [x] = F[Hr[z]]... F[Hr[z +q—1]] ;

These ¢g-grams are not sorted. However, we can obtain the sorted g-grams directly by picking
out the z’s according to their order in Hr, and then use F' to locate them in 7. We make the
following claim:

Lemma 1: ¢-grams generation in constant time. Given T = tito,...t, transformed with
the BWT, F, the array of first characters, and I, the index vector to sorted form of the indices in
Hr, for any q,1 < q < u, QqT, the set of permissible q-grams can be generated in constant time
and constant space.

Sketch of Proof. The availability of F' and I (or Hr) implies constant-time access to any
area in the text string T'. We notice that the z used in the previous description is simply an index
on the elements of T'. {

4.3 Fast ¢-gram intersection

We present different fast g-gram intersection algorithms as a series of refinements on a basic
algorithm. The refinements are based on the nature of the different arrays used in the BWT
process, and the new transformation vectors previously described.

Algorithm 1

Let MQ, = Q(I;ﬂQqT. We call MQ,, the set of matching q-grams. For each g-gram, we use
indexing on F' and Hr to pick up the required areas in 7', and then match the patterns. To
compute MQ,, we need to search for the occurrence of each member of Q(I; in QqT. This will
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require a running time proportional to g(u — g+ 1)(m — ¢ + 1)). This will be O(mu) on average,
and O(u?) worst case.

We can improve the search time by using the fact that F' is already sorted. Hence, we can use
binary search on F to determine the location (if any) of each ¢-gram from Qf; . This will reduce
the time to search for each g-gram to glog(u — ¢+ 1) time units, giving an O(q(m — ¢) log(u — q))
time for the intersection. Average time will be in O(mlogwu), while the worst case will be in

O(% log %) = O(u*logu).

Algorithm 2

With the sorted characters in F, we can view the F array as being divided into || disjoint
partitions, some of which may be empty: F = Ui:l,lm,\El PF;, where the U operation maintains
the ordering in F'. The size of PF;, the i-th partition, is simply the number of occurrences of the
i-th symbol in the text string, 7. This number can be pre-computed by using C, the count array
used in constructing V' from L (see 2). Let Z7 = |PF;|. Then, 2] = Cli+1] - C[i],Viz12, 5-1,
and 27 = u—C[i] ifi = |¥|. Similarly, for P, we have equivalent || disjoint partitions. PQY, the
1-th partition contains the g-grams in Qf; that start with the i-th symbol. Let ZF = |’PQZP |. Let
Z4, be the number of g-grams in Q(I; that started with distinct characters — simply, the number
of non-empty partitions in Q(I;. Thus, Z4, <m —q+1and Z4, < [X].

We note that a g-gram in one partition in Qi, say (’PQZP), can only match a ¢g-gram in the

corresponding partition in F, (i.e. a ¢-gram in PF;). Thus, we can limit the search to within
only the relevant partition in F. Also, we only need to do the search for the first character just
once for each distict symbol in QF. The running time will be in: O(Zq4, log(u) +q,cx Z7 ZF),
where ) ZFP=m—-q+1, and) s, Z7 = u. Since we already know Z7, the size of each
partition in F', instead of doing a sequential search until the end of the current partition in F', we
do a binary search. With this, the time for g-gram intersection can be reduced to: O(Z4, log(u)+

qu‘eE Zip 1OgZi]:)'

Algorithm 3

The final modification is based on the observation that we can obtain not only Z7, but also the
starting position of each distinct character in F' using the count array, C. Since both C' and F
are sorted in the same order, we can determine the start position (sp.) and end position (ep..) of
each character partition in F' by using C. We could compute sp. and ep. as needed, or we can
pre-compute them and store in 2|3| space. This reduces the first term in the complexity figure
for Algorithm 2, leading to a running time of O(Zq4, log |S|+ ¢, .5, 27 log Z7). We sumarize
the foregoing with the following lemma:

Lemma 2: ¢-gram intersection. Given T = tity...t,, transformed with the BWT, P =
P1P2 - - - Pm, an alphabet with equi-probable symbols ¥ = {01, 02,...,0s|} and the arrays F, Hr,C,
Algorithm 3 performs g-gram intersection in O(|X]log|X| + ¢(m — ¢) log \_;I) time on average,
and O(|%] log || + m? log 1) worst case. .

We omit the proof. Comapared to Algorithm 2, the improvement in speed produced by
Algorithm 3 can be quite significant, since typically |2| < u (e.g. for DNA sequences, or binary
strings with 1’s and 0’s). We conclude the discussion on exact pattern matching with the following
theorem:

Theorem 1: Exact pattern matching in BWT-compressed text. Given a text string
T = tity...ty, a pattern P = pipa,...,Pm, and an alphabet with equi-probable symbols ¥ =
{o1,09,...,01n}. Let Z be the bwt output when T is the input. There is an on-line algorithm
that can locate all occurrences of P in T, using only Z (i.e. without full decompression) ) in
O(u + mlog %) time on average, and in O(u + log |E| + mlogu) worst case.

€D

Sketch of Proof. The proof is based on two facts: 1) For exact pattern matching, ¢ = m
and Z4, = 1; 2) We need to consider just one partition in F', since we have a single non-empty
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partition in QF. That is, the partition in F' that starts with symbol P[1]. The O(u) time in the
theorem is needed to compute the V, F, Hr arrays. {
The worst case extra space for the algorithms above is in O(u + m + |X)).

5 Approximate pattern matching

There are two phases in our approach. In the first phase, we locate areas in the text that contain
potential matches by performing some filtering operations using appropriately sized g-grams. In
the second phase, we verify the results that are hypothesized by the filtering operations. The
verification stage is generally slow, but usually, it will be performed on only a small proportion of
the text. Thus, the performance of the algorithm depends critically on the number of hypothesis
generated.

Locating potential matches. The first phase is based on a known fact in approximate
pattern matching:

Lemma 3: k-approximate match (Baeza-Yates & Perleberg 1992) Given a text T, a
pattern P, (m = |P|), and k, for a k-approximate match of P to occur in T, there must exist at
least one r-length block of symbols in P that form an exact match to some r-length substring in
T, where r = |85 ]. O

This is trivially the case for exact approximate matching, in which £ = 0, and hence r = m.
With the lemma, we can perform the filtering phase in three steps: 1) Compute r, the minimum
block size for the ¢g-grams. 2) Generate Q7 and QF | the permissible r-grams from the text 7', and
the pattern P, respectively. 3) Perform g-gram intersection of Q" and Qf .

Let MQy = QFNQT | and 1y, = |IM Q4. Let MQ; be the i-th matching g-gram, Let M Q% [4]
be the j-th character in MQ}, j = 1,2,...r. Further, let M—QZ—[@] be the index of the first

character of MQj} in the array of first characters, F. That is, MQZ—[Z] =z, if Flz] = MQL[1].
We call MQy, the matching g-grams at k. Its size is an important parameter for the next phase.

By Lemma 1, the indices j and M—Qi[z] can be generated in O(1) time. By the same lemma,
step 2 above can be done in constant time and space. The cost of step 3, will grow slower than
,:fl logu. The time for hypothesis generation is simply the time needed for g-gram intersection,
where ¢ is given by Lemma 3. Plugging these into the analysis for Algorithm 3, we have the
following:

Lemma 4: Locating potential k-approximate matches. Given T = tity...t,, trans-
formed with the BWT, P = pipz...pm, an alphabet ¥ = {01,02,...,05}, and the arrays
F,andHr. Let k be given. The hypothesis phase can be performed in time proportional to:
Zap log(|X]) + Lk&.HJ Dies zFPlogz!F ¢

Verifying the matches. Here, we need to verify if the r-blocks that were hypothesized in
the first phase are true matches. The time required will depend critically on 7. We perform the
verification in two steps: 1) Using Hr and F determine the matching neighborhood in T for each
r-block in M@Qy,. The maximum size of the neighborhood will be m + 2k; 2) Verify if there is a
k-approximate match within the neighborhood.

Let V; be the neighborhood in T' for M Q3. the i-th matching g-gram. Let ¢ be the position in

T where MQ; starts. That is, t = Hr[F [M—Qkf[z]]] The neighborhood is defined by the left and
right limits: tjcpr and trigne viz: tiepe =t —k if t — k > 1; tiepr = 1 otherwise; tpgne =t +m+k
ift+m+k < u; trigne = u otherwise. Hence, the i-th matching neighborhood in 7' is given
by: N; = Tltieft...t.. . tright]. Thus, |N;| < m + 2k, V;,i = 1,2,...n,. We then obtain a set
of matching neighorhoods Spmo = {Ni,Na,... N, }. Verifying a match within any given N
can be done with any fast algorithm for k-approximate matching, for instance, Ukkonen’s O(ku)
algorithm (Ukkonen 1985). The cost of the fist step in the verification will be in O(ny). The cost
of the second step will thus be in O(npk(m + 2k)) < O(nrk(3m)) =~ O(nrkm).

Example. Let T = abraca and P = brace, with k = 1. Then, r = 2, and permissible ¢-
grams will be QF = {ac,br,ce,ra}, QF = {ab,ac,br,ca,ra}, yielding MQ; = {ac,br,ra}, and
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Nl = [3...6];N2 = [1,...,6];N3 = [2,...,6].

Matches will be found in N7 and N3 at positions 1 and 2 in T, respectively. <

We conclude this section with the following theorem:

Theorem 2: k-approximate matching in BWT-compressed text Given a text string
T = tity...ty, a pattern P = pipa...pm, and an alphabet with equi-probable symbols ¥ =
{o1,02,...,015}. Let Z be the bwt output when T is the input. There is an on-line algorithm
that can locate all k-approzimate matches of P in T, using only Z, (i.e. without full decompression

nor with off-line index structures) in O(u + |X|log|X| + mTQ log 557 + kElvamgl) time on average,
2
(lvrmel < u), and in O(ku + |£]log |E| + %= log r7) worst case.

Once again, we omit the proof for brevity. With the g-gram approach, we can treat exact
pattern matching as no different from k-approximate pattern matching. We just have k=0, and
hence no verification stage.

6 Results

7 Conclusion

Although the performance of the BWT has made it an important addition to the long list of text
compression algorithms, very little has been reported in searching directly on text compressed with
the BWT. The BWT with its sorted contexts however provides an ideal platform for compressed
domain pattern matching. This paper has described algorithms for on-line exact and in-exact
pattern matching directly on BWT-tranformed text.

The proposed algorithms could be further improved. For instance, the space requirement
could be reduced by considering the compression blocks typically used in BWT-based compression
schemes, while the time requirement could be further reduced by using faster pattern matching
techniques for the g-gram intersection. We note that the methods as described basically operate
on the output of the BWT transformation stage. One challenge is to extend the approach to
operate beyond the BWT output, i.e. after the later encoding stages in the BWT compression
process.



Appendix B

Evaluating Lossless Compression

This appendiz describes work carried out towards the initial topic of this report, the
evaluation of lossless compression methods with the Canterbury Corpus, and consists
of a combination of the initial research proposal and the mid-year progress report.

1 The Calgary and Canterbury Corpora

The Canterbury Corpus (and its predecessor, the Calgary Corpus), are collections of “typical”
files for use in the evaluation of lossless compression methods. The Canterbury Corpus consists of
11 files, shown in Table 1.1; an explanation of how the files were chosen, and why it is difficult to
find “typical” files, can be found in (Arnold & Bell 1997). Previously, compression software was
tested using a small subset of one or two “non-standard” files. This was a possible source of bias
to experiments, as the data used may have caused the programs to exhibit anomalous behaviour.

Several criteria were identified for choosing the Canterbury Corpus, including that it should
be representative of the files that are likely to be used by a compression system in the future; that
it should be widely available and contain only public domain material; that it not be larger than
necessary (to limit distribution costs); and that it should be perceptibly and actually valid and
useful. With these criteria in mind, about 800 candidate files were identified as being acceptable
and relevant for inclusion in a corpus, and compressed using a variety of compression techniques.
For each group of files, a scatter plot of file size before and after compression was produced, and
a line of best fit calculated using ordinary regression techniques. The “best” file in each category
was identified as the file that was most consistently close to the regression line, and was then
deemed suitable for inclusion.

These two corpora! have become de facto standards for evaluation of lossless compression
methods; in fact, (Salomon 1998) goes so far as to state that the Calgary corpus is “traditionally
used to test data compression programs”. Certainly both corpora have gained a great deal of
support in the compression community. The data in Table 1.2 was obtained by surveying the files
used in papers and posters presented at the Data Compression Conference in 1998 and 1999, in
a similar way to (Arnold & Bell 1997). The Canterbury and Calgary Corpora were by far the
most common data sets used for lossless compression testing (the next most popular would be the
Jefferson data set, which was used a total of only three times).

2 A system for maintaining the corpus results website

The web page at http://corpus.canterbury.ac.nz/ provides information about the corpora,
as well as links to download the files and a list of results for various compression algorithms
and software. The pages include results, discussion, analysis, and links to other benchmarks.

1Yes, “corpora” is the plural of “corpus”
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File Category Size
alice29.txt English text 152089
asyoulik.txt ~ Shakespeare 125179
cp.html HTML source 24603
fields.c C source 11150
grammar.lsp LISP source 3721

kennedy.xls  Excel spreadsheet 1029744
leet10.txt Technical writing 426754

plrabnl2.txt Poetry 481861
pttd CCITT test set 513216
sum SPARC Executable 38240
xargs.1 GNU manual page 4227

Table 1.1: Files in the Canterbury Corpus

1998 1999 Total %
papers posters papers posters

No test data used 26 20 20 27 93 326
Data not identified:
—Tlossless 1 11 12 4.2
—Tlossy 5 13 2 3 23 8.1
Data not used by others 16 10 25 13 64 225
Lena 4 5 10 2 21 7.4
Calgary Corpus 5 4 2 2 13 4.6
Canterbury Corpus 2 3 3 8 2.8
Barbara 1 2 3 1 7 2.5
Goldhill 1 1 4 1 7 2.4
Peppers 1 2 2 5 1.8
Girl 1 2 3 1.1
Jefferson 2 1 3 1.1
Austen 2 2 0.7
Bike 1 1 2 0.7
Bridge 2 2 0.7
Brown 2 2 0.7
Coastguard 1 1 2 0.7
JPEG2000 1 1 2 0.7
King James Bible 2 2 0.7
LOB 2 2 0.7
Mandrill/Baboon 2 2 0.7
Palette Image Corpus 1 1 2 0.7
Shakespeare 2 2 0.7
Stefan 1 1 2 0.7
Wall Street Journal 2 2 0.7
Total 80 73 79 53 285 100.0

Table 1.2: Test data used in Data Compression Conference papers and posters
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Figure 2.1: A typical maintenance run

Previously this results database was maintained by hand, but more recently it has been updated
to allow automatic maintenance of the pages.

A series of scripts has been developed using Python and Unix shell scripts to provide a modular
approach to maintaining the website, as shown in Figure 2.1. Each method/file combination is
run several times by the run script, and the results are then “crunched” by the mkcrunch script,
which calculates the mean results over all runs to avoid errors. The speed statistics are also
“normalised” against a run of the standard UNIX compress utility, to avoid bias due to abnormal
loads on system resources.

Once the “crunched” data has been produced, the mkreport script is used to massaged into
a more useful format (mkcrunch produces code readable by Python, but not by many humans).
Again, a modular approach has been applied, and mkreport passes its input to several Format-
ter objects, each specialised to a particular output format. Current formatters include HTML
(which produces HTML tables), INTEX (tabular format), and comma-delimited text (suitable for
importing into spreadsheets such as Microsoft Excel).

Finally, the “.phtml” (“Python HTML”) files produced by mkreport are run through mkhtml
to add formatting changes like heading styles and footer data. This is so that the formatting of
the site may be kept separate from the data it contains, and the look and feel of the site can be
updated without re-running the compression tests (a lengthy process!)

It is possible to add results to the database without their being automatically generated by
run. In such a case, all that is needed is a set of results that complies with the format of the
.crunch files produced by mkcrunch. Each .crunch file contains results for each file in a given
collection, as well as details about the run, including when it was completed, by whom, and on
what system.
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3 Issues with the current system

The Canterbury Corpus was primarily intended to replace the Calgary Corpus, which was showing
its age. Unfortunately, the new collection of files has aged even more quickly than its predecessor,
and may no longer fully reflect the range of files that need to be compressed. In particular, large
files (in the order of tens or even hundreds of megabytes) are no longer uncommon, and there are
many new file formats which could be investigated. To this end, several new “collections” have
been added to the project, including a collection of large files.

Additionally, the files in the Canterbury Corpus were carefully chosen to examine “typical”
behaviour on the part of the compression software. However, it is often useful to investigate
“worst case” behaviour. An “artificial” collection has been added, consisting of files for which the
compression methods may exhibit pathological or worst-case behaviour—for example, files full of
randomly-generated characters, a file consisting of a single letter ‘a’; or a file with many repetitions
of a short sequence.?

Perhaps a more serious concern is the issue of compression speed. For the corpus to provide
reliable results, the compression tests should ideally be run under identical test conditions. In
practice, this is never possible. Issues such as processor speed and available system resources can
have a dramatic effect on the running time of a program. To counter this, all speed measurements
are given relative to the time taken by the standard UNIX compress utility, as mentioned above.
This ensures that the times listed in the results remain consistent.

However, if an author of a new compression program wishes to add his or her results to the
list, there may be genuine reasons why the software cannot be tested in this way. Perhaps the
software was written for a different architecture, or the program is unable to be released for reasons
of commercial sensitivity. In such cases it will be necessary to assess the speed of such software
absolutely—that is, without respect to the system on which the tests were run. Possible solutions
to this problem are discussed in Section 7.3.

It will also be necessary to be able to verify that the results submitted for inclusion on the
website were actually generated by the compression software. Such verification may be possible
by means of testing software which outputs an encrypted version of the results.

4 Statistical Analysis

4.1 Analysis of existing Corpus data

An additional statistical investigation has been performed on the Corpus results, including the
addition of standard deviation reporting to the results website. Scripts have also been developed
for the automatic generation of graphs of the results from the Corpus, which may be made available
online.

4.2 Pseudo-random files

A considerable investigation has been undertaken into the behaviour of compression algorithms on
random files (that is, files with no discernibly deliberate patterns), to approximate the behaviour
of such compression programs over all files.

The first part of this investigation was a study of the distribution of the compressed sizes of
random files, based on the observation that the average size of compressed text over all files of
length | must be at least . To this end, a collection of empirical data has been made over a
large set of randomly-generated files, and initial graphs have been generated to ascertain areas of
further study; however, detailed conclusions have yet to be drawn.

2Such artificial files proved very useful in the investigation of a compression scheme brought to the curators of
the corpus for testing. Its author claimed that the program was capable of compressing any file to a nearly constant
ratio of around 7%—which is clearly impossible. Suspiciously, it was even able to compress completely random files
to this remarkable ratio. The only drawback to the system was a mysterious loss of free hard drive space, roughly
equal to the size of the file being compressed. . .
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Figure 4.2: Graph of average ‘bloat’ on compressed files. The y-axis measures the per-byte file
size difference between compressed files and the uncompressed files, on average

A second study of random files compared the sizes of files before and after compression. Fig-
ure 4.2 shows the results of this experiment. A series of sets of pseudo-random files of increasing
sizes was generated, and compressed by each compressor in the Corpus compressor set. The dif-
ference between the average output size of these files and the input size was divided by the input
size to obtain a ‘bytes-per-byte’ measure of the difference in file size. Results showed that this
difference was very large for small files (the worst case was 36 bytes-per-byte for bzip2-1 on a
single-character file), but decreased almost exponentially, so that for files of more than about 80
characters, most of the compressors had stabilised at under two bytes-per-byte of ‘bloat’.

It must be remembered that these tests were performed on random files, and as such, the idea
of ‘compression’ is almost farcical, since compression systems, by nature, rely on the existence of
patterns in the input. Nevertheless, by examining the behaviour of these compressors on random
input, we can gain an insight into their behaviour over all inputs.

5 Performance Measurement

Some headway has been made on the issue of performance of compression software. A selection
of programs designed to exhibit ‘compression-like’ behaviour has been developed, and it is hoped

that further experimentation with these programs will reveal a suitable method for determining
the relative speed of compression software.

6 Reliability of Results

Tentative research has been made into the issue of the verification of compression results from
third parties, especially in light of a recent ‘compression scam’. However, this initial research has
proved largely fruitless, due to the inherently complex nature of such verification, and this topic
has been postponed, at least for the moment.
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7 Proposed research

7.1 User interface

To simplify the process of maintaining the results website, a graphical user interface has been
developed which allows the user to perform various mundane or complex tasks with relative ease.
For example, by selecting a menu item it is possible to generate the reports, process the HTML
files, move them onto the server, set correct file permissions and remove “artifact” files created in
the process. By automating such tasks, the capacity for inadvertent error is greatly reduced.

There is still substantial room for improvements to the interface, including adding the facilities
to add new files or compression methods.

7.2 Data analysis

At present the data presented on the results website is relatively rudimentary—only the raw results
and the statistical mean are given. However, given the automated nature of the maintenance
process, it would be a simple matter to add other statistics (for example, the standard deviation
of the compression ratios for a given algorithm) to the site.

7.3 Cross-platform benchmarking

As mentioned above, the question of performance measurement poses a definite problem. The
current system, which uses compress to measure the relative speeds of compression software, is
a good solution for many existing methods, but may lack wider applicability because current
software tends to be geared more and more towards the Windows/Intel platform, and as such will
be incompatible with the current UNIX-based benchmarking system.

Although compress is available for a number of different platforms, it is difficult to tell whether
the UNIX version will be “the same” as the DOS version, and so on. In fact, even when compiled
from the same source code, two versions of compress may differ in performance because of optimi-
sation routines built into the source code by means of conditional #defines. Thus the end result
is a program that runs as fast as possible on each target platform, but whose internal behaviour
may vary to take advantage of each platform.

It is proposed that research be undertaken to investigate whether such optimisations make any
real difference to the performance of compress (or any other compression software we may wish
to test). Omne possible method of testing this would be to write a program that compiles on as
many platforms as possible, and whose behaviour does not depend on idiosyncracies of the target
platform. Such software need not necessarily be a compression program, as long as it performs the
same sort of tasks, e.g. complex array processing, file input and output and sub-byte processing.

8 Conclusions

Although the Canterbury and Calgary Corpora are already widely used, there is significant oppor-
tunity to make results more accessible via the Canterbury Corpus Website. In particular, more
accurate time measurements are called for, as well as methods for verifying results remotely.
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