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Abstract 

A cell-growth model with applications to modelling the size distribution of diatoms is ex­
amined. The analytic solution to the model without dispersion is found and is shown to display 
periodic exponential growth rather than asynchronous (or· balanced) exponential growth. It is 
shown that a bounding envelope (hull) of the solution to the model without dispersion takes the 
same shape as the limiting steady size-distribution (SSD) to the dispersive case as dispersion tends 
to zero. The effect of variable growth rate on the shape of the hull is also discussed. 

1 Introduction 

In this paper we study further a stochastic model for cell growth in plankton based on a modified 

Fokker-Planck equation which was examined in (Basse et al., 2004c) (a reference which we henceforth 

denote by I). We show that the steady size-distribution (SSD) obtained in I is in fact entirely due to 

the smoothing nature of the dispersion operator and that removal of this term in the model produces 

a solution which is, in most cases, discontinuous. All is not lost however, as we further prove in this 

paper that the hull (a bounding envelope, to be defined later) of the discontinuous solutions is, under 

certain conditions, the SSD solution obtained in I as the dispersion tends to zero and furthermore is a 

global attractor (in a sense). 
Many cell types exhibit logarithmic phase of cell growth (exponential growth). Previous work has 

shown that models based on that described in I can also exhibit that behaviour and, specifically, show 

SSD type behaviour. The solutions obtained in this previous work make the assumption of exponential 

growth rate to proceed. Here we obtain a full transient solution to our model and show how the SSD 

of the exponential growth phase appears out of our solution. 
The cells are assumed to be undergoing growth, division and mortality at known rates. 

Let n(x,t) denote the number density functions of cells of size x at time t; hence, for O :::; a < b 
the quantity J: n(x,t) dx is the number of cells between size a and size bat time t. In I the cell growth 

process was modelled by a modified Fokker-Planck equation of the form 

a a 
dt n(x,t) + dx (g(x,t)n(x,t)) + µ(x,t)n(x,t), a 2B( ax,t)n( ax,t) - B(x,t)n(x,t) 

a2 
+ dx2 (D(x,t)n(x,t)), (1.1) 
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where D (m2 / s) is the dispersion coefficient, g (m / s) is the rate of growth and µ ( 1 / s) is the rate 
of death. The function B ( 1 / s) is the rate at which cells divide into a equally sized daughter cells. 
Here a > 1 is regarded as a constant, and the functions D,g, µ and Bare all non-negative. A value of 
a = 2 is most appropriate for cell division in many problems, i.e. when a cell on division produces 
two daughter cells. However other possibilities exist, i.e. if n corresponds to a grouping of cells e.g. 

say n = 10 and two extra cells are produced through cell division (so that n = 12) then a = 1.2 
is appropriate. D, the dispersion coefficient, allows for varying rates of DNA content growth and 
intercell heterogeneity of DNA content. We show in Appendix B that D arises naturally when the cell 
growth process is modelled by a random walk. 

The partial differential equation (1.1) is supplemented by the boundary conditions 

Jim n(x,t) O; (1.2) 
x---+= 

a 
ax (D(O,t)n(O,t)) -g(O,t)n(O,t) 0. (1.3) 

The condition (1.2) is a decay condition on n as x--+ oo for any fixed time. Equation (1.3) is a "no 

flux" condition on the boundary x = 0 and represents the fact that cells may never have negative size, 
and thus no cells enter or leave the region x < 0. 

Of particular interest are solutions to the initial-value boundary-value problem (1.1) - (1.3) that 
correspond to SSD's; where the shape of the size-distribution remains constant while growing or 
decaying exponentially. 

In I separable solutions of the form n(x,t) = T(t)y(x) were assumed, (y(x) in this case would then 
be an SSD). This separation was shown to lead to the solution 

T(t) = ToeM, (1.4) 

where To is a constant. It was also shown that when the condition that y(x) is a probability density 
function is imposed, 

A= 1= ((a - l)B(x)- µ(x))y(x)dx, (1.5) 

with the sign of A determining whethecthe number density function decays or grows exponentially in 
time. Sufficient conditions were obtained for the existence of continuous SSD's. Existence of SSD's, 
however, does not tell us anything regarding their asymptotic stability. In the present paper we show 
an SSD to be, in a sense, a global attractor. Further information and references to work in the literature 
on this model may be found in I. 

An example of a model which is known to tend asymptotically to a steady size-distribution (or, 
more correctly, steady 'age'-distribution) can be found in (Chiorino et al., 2001). 

The model we study here can be considered as a limiting case of the Fokker-Planck model (1.1) 
and can be written as 

an ag(x)n(x,t) 2 
at(x,t)+ ax +µ(x)n(x,t) = aB(ax,t)n(ax,t)-B(x,t)n(x,t), t,x>O. (1.6) 

This equation is found from (1.1) by setting D = 0 and, as in I, setting g(x) and µ(x) to be growth 
and death rates depending purely on x; The functional equation (1.6) has hyperbolic characteristics 
associated with its principal symbol, and it is supplemented by the side conditions 

n(O,t) 

n(x,O) 

0, t > 0 

no(x), x2'.0, 

2 

(1.7) 

(1.8) 

". 
,· 



to ensure the problem is well-posed. Another condition we impose, for the sake of realism, is n 2'. 0. 
Following I we model the cell growth of diatoms, although we observe most animal cells display 

similar behaviour. Cell growth in diatoms is characterized by cell division only at a critical size l (we 
call this behaviour single size division). Evidence for this is developed in (Round et al., 1990), where 
size is characterized by DNA content. Cells double in size as well as doubling their chromosomes and 
segregate a full complement of components to each daughter cell. The DNA content passed on to each 
daughter cell in this case is prescribed fairly precisely as //2, where, as we have stated, the value of 
l represents the unique threshold value of the DNA content at which division occurs. This behaviour 
is in contrast with more complex organisms where cell division occurs over a specified size interval. 
Mathematically, we can model single size division by a function of the form B(x) = bo(x- l), where 
bis a constant and 8 denotes the Dirac delta distribution. In this case the equation (1.6) becomes 

011 og(x)n(x,t) 
at(x,t)+ ox +µ(x)n(x,t) = abnU-,t)8(x-l/a)-bnU-,t)8(x-l), (1.9) 

where x = 1- is to denote the limit as x---; l from below. We note that the continuity of n(x, t) cannot 
be guaranteed atx = l, therefore it does not follow that 8(x- l)n(x,t) = 8(x- l)n(l,t). We henceforth 
specify 8 (x - l)n(x, t) as denoting 8 (x - l)n(l-, t )--observing in this case that cells above size l do 
not take part in the division process-and this has been used in the statement of the right-hand-side 
of (1.9). We observe that it is also possible to use the limit from the right. This yields similar results 
but we feel it is not as physically relevant as continuity from the left, and thus do not go into detail 
regarding this case. 

Steady size-distribution behaviour is characterised by the distribution of cell sizes remaining a 
constant shape while growing or shrinking (usually exponentially). When the growth rate is expo­
nential the behaviour is also known as asynchronous or balanced exponential growth (AEG or BEG). 
Biological interest in this dates from Malthus(Malthus, 1798, 1970). SSD behaviour can also be ex­
pressed in terms of strongly continuous semigroups. A definition pertinent to the current work is given 
below and is based on the work of (Rossa, 1995). 

Definition: Let T(t) be a strongly continuous semigroup of bounded operators with infinitesimal 
generator A on a Banach space B. It is said that 

l. (T(t) )1;::o exhibits AEG with intrinsic growth rate Ao if there exists a non-zero finite rank pro­
jection P on B such that 

Jim lle-Ao'T(t) - PII = 0. 
(--+00 

2. (T(t) )1;::o exhibits Periodic Exponential Growth (PEG) with intrinsic growth rate Ao if there 
exists a non-zero finite rank projection P onto a subspace F of B and a periodic semigroup 
(R-r(t) )1;::o a rotation semigroup on F with period -r > 0 such that 

lim lle-.i.o1T(t)-R-r(t)PII = 0. 
/->= 

The above definition relates to a semigroup operator T(t) that maps the initial data, given by (1.8), 
into the solution n(x, t) at time t. The second part of the definition will later be seen to apply to the 
solution to (1.9). 
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In Section 2 we restrict analysis to the case where the two coefficients g and µ are constant. In 
Section 2.3 we show it is possible to express n(x,t) as the solution to a retarded functional equation. 
In Sections 2.4 and 2.5 we show that the solutions to (1.9) grow or decay exponentially with time, 
exhibiting periodic exponential growth as defined above. In Section 3 we show that (under certain 
conditions) the hull of the solution when D = 0 is equal to the limiting SSD (from I) as D ----> 0 with 
the requirement of continuity from the left. Finally, in Section 4 we find a general expression for the 
hull of n(x, t) with variable growth rate g = g(x). We often assume that a= 2 in parts of the remainder 
of this paper when the mathematics for general a > 1 is more complicated. 

2 Solution of the Differential Functional Equation 

When g andµ are constants, Equation (1.9) may be written 

n1 + gnx + µn = F(x,t), (2.1) 

with the right-hand-side defined as 

F(x,t) = abnU- ,t)8(x- l / a) - bnU- ,t)8 (x- l) - µn(x,t). (2.2) 

Observe that F(x,t) = 0 when x =/= l/a or x -j. l, and we can straightforwardly find the solution of 

the resultant homogeneous equation for x in any of the three regions R1 = (O,l/a), R2 = (l/a,l), 
R3 = (l,oo), as 

n;(x, t) = F;(x - gt )e-µ 1, i E {1,2,3}, (2.3) 

where n; denotes the solution of n within the region R;. This solution follows from the variable 
substitutions performed in (2.5) and the fact that the 8 distributions are zero in each region. 

Now consider the region R1; in this region, from (1.8) we have 

F1 (x) = no(x) H(x), 

where H denotes the Heavside function, so that 

111 x,t = g' ( ) {
11o(x- gt)e-µ 1 0 < t < er 

O t > f 
(2.4) 

In the following we assume that 110 E H0 , where H 0 denotes the Sobolev space of order zero (i.e. 

H 0 = L2) and that 110 has finite isolated discontinuities,. To proceed further we must consider the jump 
conditions across the boundaries of the regions R;, i E { 1, 2, 3}. To do this we first find a functional 

equation for n. 

2.1 Algebraic functional equation 

In this section we derive a functional equation for 11(x,t). To this end we first make the following 

substitutions in (1.9): 

.; = x - gt, " = t, (2.5) 

U(<;, 1:) = U(x- gt,t) = 11(x,t), 
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to yield the differential equation 

uT + µu = P(s,-rl = F(s + g-r, 1:). 

By use of an integrating factor the following expression is derived for U: 

U(s,1:) = ab ( [ z sJ) ( 1 s) µ[..1..._s._Tl -H '!:- --- II 1-,--- e ga g 

g ga g ga g 

b ( [l SJ) ( l S) µ[L_f_TJ J: µT -gH '!:- g-g 11 {-,g-g e 8 8 +C(1:,)e- , (2.6) 

where C is an arbitrary function of s yet to be determined. The substitution 11(x, t) = U (x - gt ,t) is 
now used to give 

11(x,t) = ab H(x-l/a)11 (z-,_!._ _ :.+t) eµ[f<,-i] _ tH(x-l)11 (z-,~-:.+t) eµ[i-f] 
g ga g g g g 

+C(x - gt )e-µ 1• (2.7) 

On setting t to zero, we find 

C(x) = 11o(x)H(x)--H(x-l/a)11 z-,--- eµ ca c ab ( l x) [..1...-!J 
g ga g 

+-H(x-l)n 1-,--- eµ c c, b ( [ X) [L-!) 
g g g 

(2.8) 

and on substituting the expression for C(x) back into (2.7), 

n(x,t) = n0 (x-gt)H(x-gt)e-µ 1 +-n z-,---+t eµ ca c Jt{(x,t) ab ( l x ) [..1...-!J 
g ga g 

_t" (z-/-:. +r) eµ[i-iLm(x,t). 
g g g 

(2.9) 

Here the functions Ji"{ (x,t) and ~(x,t) are defined as 

I I a <x < a+gt, 

otherwise, 

~(x,t) = H(x-l)- H(x-l-gt) = . { 
I l < x < l +gt, 

O otherwise. 

We note that these two functions only take on the values I or O and the regions in which these functions 
take on these respective values is shown in Figure 2.1. 

We observe equation (2.9) is a functional equation whose solution yields n. To solve this equation 
it is necessary to consider the jump conditions at x = l / a and x = l; a task which we now tum to. 

2.2 Jump discontinuities in n(x,t) 

In this section the jumps in n(x,t) at x = l/a and x = l are determined, and are used to find an 
expression for F3(l - gt) and a retarded functional equation for F2. 
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Figure 2.1: Regions of support for Ytl and $i. ,ffi is non-zero for -/x < x < -/x + gt; $i is non-zero 
for l < x < l +gt. The solution n(x,t) is zero for O < x < min{gt, l /a}. 

For any t > 0, we have 

lim_ n(x,t) =no(.!... - - gt) H (.!... - - gt) e-µt 
x-,1. a a 

" 
lim n(x,t) = no - - gt H - - gt e-µt + -n(l- ,t). ( 

l + ) ( l + ) ab 
x->{/ a a g 

Thus, 

( 
l + ) ( l - ) ab n a ,t -n a ,t = gnU-,t), a.e. t > 0. 

Figure 2.1 shows that when O < t < f -
8
~, then ,ffi (l+, t) = Ytl (l-, t) = 0. We therefore get 

b 
n(t+,t) - n(l- ,t) = --n(l- ,t), 

g 

l l 
a.e. 0 < t < - - - . 

g ga 

Figure 2.1 also shows that when t > f -
8
~, ,ffi ([+, t) = Ytl ( 1-, t) = 1; so in this case we get 

6 
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where we note the possible discontinuity in the function n in time by utilising the symbols t-, t+ to 
denote t from below and above. We are now in a position to find an equation for the jump condition 
across the boundary of the regions R2 and R3. From Equations (2.11) and (2.12), we see that 

0<t<1._J_ 
g ga' 

1._J_ <t 
g ga . 

(2.13) 
Thus, F3(I - gt) may be expressed solely in terms of F2, with F3(x) = n0(x) when x > l. All that 
remains now is to solve for F2. 

From equation (2.10), we find that the jump condition across the boundary of the regions R1 and 
R2 gives 

where 
A= ab 

g ' 

a.e. t > 0, (2.14) 

and we have used Fi = no(x) H(x). It is convenient for the sequel to redefine the independent variable, 
and to facilitate this we let z = !; - gt, and u = l - !; > O; it then follows that 

F2(z) = no(z) H(z) + AF2(z + u), 
l 

z<­- a' (2.15) 

and for!; < z < l we clearly have F2(z) = no(z), as follows from (2.9) and (2.3). It should be observed 
that (2.15) constitutes a retarded functional equation for F2 when moving in the direction of the left­
hand axis of z. 1 

We will now proceed to find a solution to F2(z) for the special case when a = 2; which is of 
particular interest for diatoms and other animal cells. 

2.3 Solution of the functional equation for a = 2 

We now solve the functional equation (2.15) for F2 by recursion when a= 2. Observe that the 
mathematics is simplified since when a = 2, u = l / a = l /2. It is possibl~ to write down the solution 
for general a but the algebraic complexities make it cumbersome except for a specific a. We provide 
some considerations for more general a in the Appendix A.1. Thus, for this case (2.15) is 

F ( ) { no(z), 2 z = no(z)+AF2(z+D, 

From this we may conclude that 

F2(z)=no(z)+Ano(z+D, O<z<~ 

= Ano (z+ ~) +).2no(z+l), -~ < z < 0 

4 < z < l, 
I z < 2' 

(2.16) 

1When the take 8(x-l)n(x,t) = 8(x-l)n(/+ ,t), we obtain a functional equation for F3 of the same form as we obtain 
here, but with).,= ab/(b+ g). 
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and it follows by backward recursion 

( ) 1 111 ( ml) 1111+1 ( (111+ l)l) F2z =A no z+ 2 +/\, no z+ 
2 

, 
ml (111 - 1 )l -2 < z < ---'---------2--'-, (2.17) 

where O::; m E Z. Note that F2(z) is continuous at z = -ml/2 only if 

A111 no(O+) +).111+lno (~ +) = ). 111+1110 (~ -) +A'"+2no(l-) 

<==> no(O) = A 2noU-) -A [no]!j;~ · 

Thus in most cases F2, and therefore the solution n(x,t), will be discontinuous. 
We now derive an explicit solution for n(x,t) from the previous results. We have already found 

explicit solutions to F1(z), and F2(z), leaving the region l < x, which is governed by F3(z), to be 
addressed. It should first be noted that if no is piece-wise continuous then, by the expressions above, 
F2(z) will also be piece-wise continuous. Thus, from (2.13) we see that, almost everywhere2, 

(2.18) 

In effect, b / g is the proportion of cells dividing upon reaching size l. When b < g this ratio can be 
interpreted as the probability of any given cell dividing when it reaches size [. Moreover, we are 
forced to require b < g for the solution to have any physical relevance, since it is impossible for there 
to be a negative number of cells at any size. 

Equation (2.18) states the behaviour of F3(z) for z < l, where z is defined as the argument of F3. 
For z > l we merely need to note that F3(x) = 113(x, 0) when x > l (the domain of definition of n3(x,t) 
provides the restriction x > l). Thus, F3(z) = n0 (z) when z > [. 

We now have all the information we need to write the full analytical solution for n(x,t) (in terms 
of the solution in the three regions) as: 

111(x,t) =no(x-gt)e-µ1 H(x-gt), t > 0. (2.19) 

!<x-gt<l, 

{ 

no(x - gt )e-µ 1 , 

nz(x, t) = e-µt [). 111110 (x - gt+~)+ ,V11+1 no (x - gt+ (mil)/)] , -111/ < _ t < -(111-l)I 
2 X g 2 ' 

l <x-gt, 

x-gt < l, 

0::; m E Z, 

where in (2.21), the domain of definition of 112 in x has been extended to l < x. 
We end this section with a small lemma: 

Lemma 2.1. There exists a unique solution to (2.1) with no E H 0 (JR) which is in H 0 (JR). 

Proof Existence by the above construction, and uniqueness by standard contradiction. 

2We say 'almost everywhere' because the discontinuities in F2 can only be of measure zero. 
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2.4 Periodic nature of n(x, t) in time 

We again consider firstly the special case with a= 2. We now derive a formula for 112([,t) which will 
make apparent the periodic nature of the solution in the region t > x/ g. On replacing z with I - gt, 

and m by m 1 in (2.17), we see that 

!
no(/ - gt), 

F2(l-gt)= ... m-lt 
Ji, 111-

1
110 (z - gt+ Y) +Ji, 111 110 (l-gt+ ~), ml. < t < (111+!)/ 

2g 2g ' 

III E Z+, on a general interval. 

(2.22) 

Having found F2(l - gt), we can easily obtain an expression for n(l- ,t), which can be substituted 
back into equation (2.9) to obtain a solution for n(x,t) when t > i - -k, 

Now define the function 

h(t) = no(ml-gt)e(-µ+l)(t-!!f), ml (m+ 1)/ 
-<t< , 
g g 

(2.23) 

for any O :::; m E Z, with 

(2.24) 

and where Ji, = ab/ g. Examination of h shows that it is merely the extension of no([ - gt)e(-µ+J)t on 

0 < t < l / g as an l / g-periodic function for all t. We now claim that for t > l /2g we have 

112(!,t) =e-11 [h(t)+h(t-l/2g)] 

= F2(l - gt)e-µ 1• 

(2.25) 

We can see this is the case when we expand the right-hand-sideof (2.25) using (2.23) to yield 

e-Jt [h(t) + h(t - l /2g) J = e -µ(t-!!f) e -J!!f no(ml - gt)+ e -µ (,-<"';1
'' -ii) e -J(<"';111 

+ig) 110 ( (m - 1 )/ - gt+ l /2), 

2ml (2m + 1 )/ = e-µt[Ji, 2"'n0 (ml - gt)+ Ji, Zm-l no(ml - gt - l/2)], 2g < t < 
2
g · 

And, similarly 

Now, analysing the expression above in intervals of length l /2g shows 

{ 

no([ - gt)+ Ano(l - gt+ I /2), 

e-11 [h(t) + h(t - I /2g)] = e-µt ~~~10 (21- gt)+ ?i,n0 (l - gt+ 1/2), 

9 

(2.26) 

(2m+ l)l (2m+2)l 
2g < t < 2g . 

{ { 
2g<t<g, 
1.<t<ll 
g 2g 

(2.27) 



Thus, equation (2.25) has been shown to be correct in that it behaves in the manner specified by 
(2.22). We have now shown that n(l-,t) is periodic int (when t > l/2g) with period l/2g and has 
an exponential growth or decay determined by the Jin (2.24). Thus, from (2.9), we see that n(x,t) is 
periodic int for any fixed x when t > x/ g. 

In Appendix A. l we discuss the solution behaviour for any a > 1, and it is shown that n( 1-, t) is 
a temporally periodic function when t > 

8
~, with a period /(~~!); this is consistent with the period 

found here. A clear example of periodic behaviour at a fixed x is given in Figure 2.4, where the 
solution is also observed to be growing exponentially in time. 

2.5 Periodic Exponential Growth 

Here we relate the behaviour of the solution to the definition for PEG given in Section 1. Consider the 
solution n(x,t) restricted to O < x < l. The Banach space B that we are working on is the space of all 
tempered distributions with support on [O, I) considered as a subspace of the Sobolev space H-1• All 
restrictions of initial conditions to [O, I) are in this space. We restrict our discussion below to the case 
where a = 2; a case for which we have found the exact solution. 

We look for a strongly continuous semigroup T(t) mapping any initial distribution no(x) to the 
function n(x,t). This semigroup is fully specified by (2.19) and (2.20). It is clear that for any f EB 

we have 
lim T(t)f = f. 

,_,o+ 
(2.28) 

Thus T(t) is a strongly continuous semigroup on B. The generator A of Tis found by examining 

1
. T(t)f- f 
!ill . 

,_,o+ t 

From (2.1), we find that the action of the generator A on all piecewise continuous functions on [O, I) is 

Af(x) = -gfx(x) - µJ(x) + a.bo(x- l/a.)JU-). (2.29) 

The rotation and projection operators come from the fact that for every x < l, the solution is of the 

form e-11 p(t) fort:::: l / g, with p being the periodic function [h(t) -h(t - l /2g)] having period l /2g. 
Let 't' = l/2g. From (3.7) we see that when t > l/g we have 

n(x,t)=T(t)no(x)=H x-- -Be- 1p ---+t eµ'Ii-,, ( 
[ ) 2b J ( [ X ) [ I -'] 

2 g 2g g 
0 <x < l/2. (2.30) 

Let to = * be the least integer multiple of 't' greater than l / g. Then define the projection operator Pas 

So that we have 

Pf(x) = {
o, 
e110 T(to)J(x), 

0 <x < !, 
! < x < l, 

Pf(x)=H x-- -Bp ---+to eµ 2g 8. ( 
l) 2b ( l x ) [.1..-!J 
2 g 2g g 

(2.31) 

(2.32) 

We now choose RT(t) such that RT(t)P f(x) = e11T(t)f(x) for O < x <land t > to. To achieve this we 
first let 
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where the modulo operator is always condsidered to be positive. Following this, define 

{

f(x), 
RT(t)f(x) = µ(t-x) 

J(l;)e c , 

0 <x < ~' 

~ <x < l, 
(2.33) 

where the modulo operator is always considered to be positive. If we now set Ao = -J, the definition 

of PEG given in Section 1 will have been satisfied. 

2.6 Computational results 

A computer program was written in MATLAB code to evaluate n(x,t) for any initial conditions. 

Snapshots in time of n(x,t) are shown in Figures 2.2 and 2.3. The parameter values g = 0.3 and 

I = 3 mean that the periodic function h(t) - h(t - l /2g) has a period of five time-units. This periodic 

behaviour can be seen in the plots at multiples of five time-units. The snapshots at times that are 2.5 

modulo 5 show a discontinuity in the solutions which travels to the right as time increases. When 

this discontinuity hits l it returns back to l/2 and in this way is kept in the solution indefinitely. A 

proportion ( 1 - b / g) of the solution in R2 leaks through l and propagates out to infinity. 
Figure 2.4, showing the solution in time at x = 2, illustrates the periodic nature of the solution 

with exponential growth superimposed. 

Snapshots from 1=0 to 1=5 
1.4 .---,-----r---.---,----,--.---,-----r---.---, 

1.2 

i 0.8 

~ 

t 
~ 0.6 

0.4 

0.2 

o"--.......£.-"--"--'---'----"'~~-"~'----...1---'---'-----' 
0 4 5 6 10 

DNA content (scaled) 

Figure 2.2: Snapshots showing the first five time-units behaviour of n(x,t) with initial conditions 

given by a Gaussian with mean 2 and standard deviation 0.5 truncated at x = 0. The parameter values 

for the model are a= 2, b = 0.2, g = 0.3, l = 3 andµ= 0.025. 

From the results up to this point it is seen that the solution to the transient cell growth problem has 

the following characteristics: 

1. The solution exhibits an exponential growth or decay rate as determined by the value of J 
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Snapshots from 1=30 to 1=35 

- 1=30 
- 1=32.5 
- 1=35 

2.5 

t 
~ 1.5 

i z 

DNA content (scaled) 

Figure 2.3: Snapshots showing the behaviour of n(x,t) using the same parameters as in Figure 2.2 for 
time-units 30 to 35. By now the periodic behaviour in the section 1.5 < x < 3 is obvious. 

1.8 

1.6 

1.4 

cl 
c: 1.2 

0.8 

0.6 

8 10 12 14 16 18 20 
Time (arbitrary units) 

Figure 2.4: The behaviour of n(x,t) from Figure 2.3 at x = 2, illustrating the periodic nature of the 
solution superimposed with exponential growth. 

2. The solution is periodic at each x with a temporal period 

l(a-1) 
ga 
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3. The solution depends continuously upon the initial value condition, no. 

4. The solution does not exhibit any steady size-distribution behaviour. 

This last point could lead one to believe that the model we have been studying, which has a hyperbolic 
principal symbol, is not appropriate for the phenomena (SSD behaviour) we are interested in. How­
ever, as we will show in the next section a certain envelope of the solution which we have examined 
in this section has SSD type behaviour. Moreover, this envelope is identical in analytical detail to the 
separated solution obtained from the parabolic model (1.1) in I when D--, 0. 

3 The relationship between the SSD solutions as D --------+ 0 and the solution 
whenD = 0 

In this section it is shown that the hull of the solution to n(x,t) in the region O < x < gt is equivalent 
to an SSD solution to (2.1). The form of the SSD in this case is equivalent to the limit as D--, 0 of 
the SSD when D :/= 0, as described in I. This is arrived at by separation of variables, and imposing the 
condition that y is a probability density function, giving the growth rate A = ( a - 1 )by(I) - µ. 

3.1 Preliminary statements 

We begin by defining a bounding envelope of the solutions found in the previous section, namely 

N(x) = sup An(x,t)e11 , 
t?.x/g 

x:::0:0, (3.1) 

for any constant A:/= 0, and where J is the decay rate of the solution, as defined for a= 2 in (2.24) or 
for general a by (A.IO). From the solution found in Section 2.3 it is apparent N is a bounded function 
of x only. We define the hull of the solution to (2.1) to be the probability-density distribution 

N(x) 
H(x) = Jo= N(y) dy' x:::O: 0, (3.2) 

which produces an appropriate normalization to the hull when the integral in the denominator is finite. 
For any a > 1 it is shown in the Appendix A.I that 11(1-,t) behaves like a periodic function 

multiplied by an exponential growth/decay term for t > 
8
~. Thus, we may say 

nU- ,t) = Be-11 p(t), 
l 

t>­
ga' 

for appropriate constant B. Moreover, we know that p is G :_ 
8
~ )-periodic. 

(3.3) 

Now, in the region O < x < gt (see Figure 2.1) we have 
8
~ - ~ + t > 

8
~; or t - ~ > 0. So that 

( 
_ / X ) -JI ( / X ) n l , - - - +t = Be p - - - +t . 

ga g ga g 
(3.4) 

Therefore, 

( 
_ / X ) -JI ( [ X ) n l , - - - + t = Be p - - - + t , 

g<X g g<X g 
0 < x < gt. (3.5) 
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Moreover, 

0 < x < gt. (3.6) 

We may thus substitute the right-hand sides of the above equations into (2.9) to give 

n(x,t)=-Be- 1p ---+t eµ"iii-ii£i(x,t)--Be- 1p ---+t eµii-ii£z(x,t), ab J ( [ X ) [ I -'] b J ( [ X ) [' '] 

g ga g g g g 
(3.7) 

when O < x < gt. 

3.2 Calculation of the shape of the hull 

In this section we calculate the shape of the hull of the transient solution.3 To expedite this we find 
N(x) (which we also refer to as the hull) with the intent of scaling afterwards to finally obtain H(x). 
Note that when O < x <gt, £i (x, t) = 1 for all x > l / a and O otherwise; likewise £z(x, t) = 1 for all 
x > land O otherwise. Again we consider the three regions Rt, R2 and R3. 

When x E R 1 and x < gt, equation (2. 9) shows that n(x, t) = 0. Therefore, the hull in the region R 1 

is 
N(x) =0. (3.8) 

When x E R2 and x < gt, we have 

n(x,t) = -n z-,---+t eµ iiii-, ab ( [ X ) [ I -'] 

g ga g 

B ab (J-µ)[1-L] -Jt ( l X ) -e g ga e p - - - + t . 
g ga g 

(3.9) 

Thus, 

( ) n(x,t)e
11 

ab (J-µ)[1-LJ { ( )} N x = sup = -e g ga sup p t . 
t>! B g t>1+L 

g g ga 

(3.10) 

The bracketed term in the above equation shall now be denoted by N(l) since, given J as in (A.10), 
we see that 

n(z- t)e11 

NU-)=sup ' =supp(t)= sup p(t), 
t>L 8 t>L t>!+L 

g g g ga 

(3.11) 

for any x > 0. This makes the hull continuous from the left (although we could just have easily let the 
hull be undefined at x = l). 

3Toe shape of the hull is the same when o(x-l)n(x,t) = o(x-l)n(/+,1) is chosen rather than o(x-l)n(x,t) = o(x­
l)n(l- ,t). Thi~ is because the shape of the hull is derived from (2.9) with the sole alteration of limits from below(/-) being 
replaced by limits from above (I+). 
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Finally, when x E R3 and x < gt we have 

n(x,t) = 

(3.12) 

We observe that since p is G-
8
~ )-periodic, 

(3.13) 

(3.14) 

so that when l < x, 

N(x) 

(3.15) 

We defer the normalization of H until we discuss the solutions of I. 

3.3 Equivalence of the hull to the limiting SSD solutions as D = 0 

In I the SSD solutions in the limiting case are derived by separation of variables when D :/= 0 and then 
taking the limit as D -----t 0. It was shown that by separation of variables and imposing the condition 
that y(x) was a probability density function, a specific growth or decay rate could be obtained of 
A = (a - l)by(l) - µ, where y(l) is the value of the SSD at x = l. The limiting SSD's are then 
expressed using a constant Li= (a - l)by(l), where for notational convenience we have redefined 
the L used in I to Li. These limiting SSD's are equivalent to the separated solution found by letting 
D = 0 at the outset (with a suitable change to the terms involving 8 such as we made in (1.9)). It 
should be noted that L1 is the growth/decay rate A plus µ. Thus, if in this case we define 

ga (ab) 
L=-J+µ= /(a-l)ln g 

and recognize that H (l) in this case is the analogue of y(l) in I, we get 

15 

O<x<fx, 
{;<x<l 
l <x. 

(3.16) 

(3.17) 



The above expressions are of exactly the same form as the limiting SSD solutions as D --> 0 with the 
understanding that H(l) corresponds to y(l). The only difference between them being the constants L 
and Li. In both cases, however, L (or Li) is the growth rate plusµ. 

The requirement that L = Li gives a restriction on y(l) as follows: 

ag (ab) (a-l)by(l)= l(a-l)ln g 

or 

ag (ab) 
y(l)= bl(a-1) 21n g · (3.18) 

This implies that the limiting SSD from I is continuous from the left. Moreover, the hull when D = 0 is 
exactly equal to the limiting SSD as D--> 0 when L =Li, H (l) = y(l). Thus, the hull is the equivalent 
of the limiting SSD as D --> 0 with the requirement of continuity from the left.4 This SSD is a 
probability density function, so that we have appropriately normalised the hull by setting H(l) = y(l). 
Note that such a limiting SSD only exists for g < ab (i.e. ln(ab/g) > 0). Moreover, from Section 4.4 
we see that the hull in the region x < l is equal to ( 1 - b / g) tfJ (x), where tP (x) is the hull in the region 
l / a < x < l with its domain of definition extended to l < x. The non-negativity of the hull therefore 
requires that b ::; g. Hence we require that b::; g < ab for the hull to match a limiting SSD from I . 
We now make the following observations: 

1. H(x) is independent of the initial condition no 

2. H(x) is a global attractor in the sense that for any finite interval O::; x::; a, 

sup An(x,i-)el-r--> H(x), 
t<T<t+}-fa-

as t --> oo, for some constant A. We henceforth refer to the above expression (with or without 
the scaling constant) as the transient hull of n(x,t). 

3. If g ~ ab then L::; 0 and N ¢:.Li. This makes it impossible to match any limiting SSD's from I 
since in I they are probability density functions. 

Figures (3.1) and (3.2) show examples of hulls for different sets of parameters. Figure (3.2) 
illustrates what the (unscaled) hull looks like when g > ab; observe that it cannot be made into 
probability density function by scaling and hence cannot match any limiting SSD from I. 

4When o(x-i)n(x,t) = o(x-/)n(l+,1) is chosen, we obtain the conditiony(/) = b(aa!!1)1 1n ( *8). This is the condition 

for the limiting SSD to be continuous from the right. Similar comments for the right-continuous case apply as in the left­
continuous case. Moreover, if we do not consider by convention that n(x,t) is continuous from the left in x, the result 
regarding the equivalence of the hull and the limiting SSD continuous from the left holds for almost every x > 0 rather than 
for all x. 
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1.2 

0.8 

0.6 

0.4 

Figure 3.1: A plot of the hull when a= 2, l = 0.2, b = 3, g = 4 and N(l) = 1.3. 

4.5 

3.5 

1.5 

0.5 

0.1 

Figure 3.2: An unscaled hull when ab< g. Parameters are a= 2, b = 2, g = 5, l = 0.2, N(l) = 1.3. In 
this case there is no limiting SSD from I continuous from the left corresponding to the hull. Obviously 
in this case there is no appropriate normalisation to make the hull a probability density function. 

4 Variable growth rate and the shape of the hull 

If we now specify a positive function g(x) E H 1 for the growth-rate of cells of size x instead of a 
constant g as we have used up to this point, we obtain the equation 

111 +g(x)nx+g'(x)n+µn = ab8(r7-l/a)n(l-,t)-b8(x-l)nU-,t). (4.1) 



The use of a variable g function can allow the one compartment model to represent (to an extent) 
different stages of cell-growth, in which different growth rates might be experienced. In (Basse et al., 
2004a,b), the phases G1 and G2 of human cell growth, occurring immediately after (G1) or before 
cell division (G2), effectively act as (stochastic) time delays. This may be approximated loosely by a 
growth function which is constant except on two finite intervals around I/ a and I where the growth 
rate is reduced. 

Equation ( 4.1) can be reduced to a form similar to (2.1) by a series of transformations which shall 
now be shown. Let 

Then 

t 1 
x' = Jo g(s) ds; u(x',t) = n(x,t). 

ax' 
g(x)nx = g(x)ux1 ax = llx', 

Now let h(x') = g'(x). We then have 

111 + u _ _, + h(x')u+ µu = abo(x-1/a)nU- ,t) - b8(x-l)n(l- ,t). 

We now make note of the fact that 

j 8(x-l)nU-,t)dx'= f 8~(--;/nU-,t)dx 

=H( -l)n(l-,t) 
x g(l) 

= H(x' -x'(l)) u(x';~;~,t), 

(4.2) 

(4.3) 

(4.4) 

and also of the fact that a similar result holds when we replace l / a by l. Therefore if we integrate 
both sides of (4.4) with respect to x' and subsequently differentiate by x', we obtain 

lit+ ux' + h(x')u + µu = g(~:a) 8(x' -x'(l/ a) )u(x'(l)- ,t) - gfl) 8(x' -x' (l) )u(x'(l)-, t). (4.5) 

Finally, let 

w(x',t) = ll(x',t)exp [fox' h(s) ds]. (4.6) 

Then 

lit= w1 exp [- fox' h(s) ds]; 11,_, = (wx' -h(x')w)exp [- fox' h(s) ds]. (4.7) 

Thus, when we express (4.1) using the independent variable x' and dependent variable w, we obtain 

(w,+wx + µw)exp [- fo\(s) ds] = g(~a) 8(x' -x'(l/a))w(x'(l)-,t)exp [- l'('\(s) ds] 

- gfl) 8(x' -x'(l))w(x'(l)-,t)exp [- l<(I) h(s) ds], 

implying 

w1 +w__, + µw ab · [ 1x'(l) ] -(I/ )8(x'-x'(l/a))w(x'(l)-,t)exp - h(s) ds 
g a .f(l/a) 

- gfl) 8(x' -x'(l))w(x'(l)- ,t). (4.8) 
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Notice that the differential equation above is similar to (2.1) with g = I. The differences being that 
the constants multiplying the delta functions have been changed. 

4.1 The hull of w 

In this section we find the hull of w, which we shall then use to find the hull of n for a general positive 
growth function g(x). The hull in this case is taken in the region x! < t. First, notice that 

ab [ rxUl ] ab ( J1 
g'(.;) ) 

g(l/a) exp - jx'(l/a)h(s) ds = g(l/a) exp - I/a g(S) d£ 

ab g(l/a) ab 
g(l/a) g{J) g(l)' 

(4.9) 

This simplifies ( 4. 8), so that it is now virtually the same as the constant growth case (2.1) when g = I. 
Similar steps to those used in the case where g is constant may now be taken to find the solution of 

w. As mentioned above, w satisfies (2.1) for g = 1 with the modifications of the right hand side being 
divided by g(l) and both l, l / a being replaced by x'(l), x'(l/ a) respectively. Note that x'(l/a) < x!(l); 
therefore we can treat x' (/) and x' (l /a) much like l and l / a in the case with constant g to give the 
result that w(x!(l),t) is a [x'(l)-x'(l/a)]-periodic function multiplied by an exponential function for 

t > x! ( l /a). Specifically 
w(x'(l),t) =Be-11 p(t), t > x'(l/a), (4.10) 

where p(t) is the afore-mentioned periodic function, Bis a constant and 

J = -[x'(l) -x'(l/a)i-1 Inc~~))+µ. ( 4.11) 

This leads to a hull of the same shape as in the constant growth case with ~b replaced by ;My and 

!!. replaced by b. The hull must then be multiplied by g 

exp [- fox h(s)ds] 

to find the hull U of u. Following this, the hull N of n is 

N(x) = U (t gts) ds). 

From the above observations, we find the hull W of w to be 

W(x') 

W(x') 

W(x') 

0, O<x'<x'(~), 
g~~) W(x'(l))e-L(x-x(·&)), x' (-!;) <x' <x'(l) 

_p_W(x'(l))e-L(x-x(l)) (ae-L(x(l)-x(-!,)) - t) 
g(l) 

gtl) W(x'(l))e-Lt' ( aeLt'(k) _eLt'(l)), x'(l) <x'. 

where L = -J + µ as in the constant growth case. 
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Remark: The hull W is an attractor of the transient hull, 

sup w(x',-r)eh 
t";;,1:'5,1+~'(/)-x'(l/a) 

in the same way as in the constant growth case (i.e. uniformly on finite intervals [O,a], 0 <a<=). 
Correspondingly we have 

N(x) = sup w(x',t)exp [ f' h(s) ds+Jt] 
t>x' Jo 

is an attractor of the transient hull of n, given by 

sup w(x',-r)exp[r'h(s)ds+J-.]. 
1-x'(l)+.t'(l/a)-5,1:9 Jo 

In the above statements all hulls have been left unscaled. 

4.2 A consideration to simplify the calculation of the hull of n 

We claim that the hull N(x) of n(x,t), for variable growth-rate g(x), satisfies the differential equation: 

(g(x)N(x))' + LN(x) = abo(x-l/a)NU-) -bo(x- l)NU-). (4.16) 

Putting the above equation through the transforms described in Equations (4.2) and (4.6); having N(x) 
transform to U(.x!) via the transformation in (4.2), then to W(.x!) via the transformation in (4.6), we 
find that ( 4.16) is satisfied if and only if 

W' +LW = g~~ 8(x' -x'(l/a))W(x'(l)-)- gtl) 8(x' -x'(l))W(x'(l)-). (4.17) 

It is easy to check that W(.x!) satisfies Equation (4.17). Thus, after applying reverse transformations 
to W and U, we see that the hull N (x) satisfies ( 4.16). 

Note that (4.16) is the same as that for the separated solution (SSD) y(x) in I with D = 0. (Again, 
the value of Lis different when we approach the problem via separation of variables.) Note that here 
we cannot say that the hull matches a limiting SSD as D -> 0, since the separated problem when D =J. 0 
seems intractable, so a proof is yet to be found. 

4.3 The general shape of N(x) 

The solution to N(x) is obtained by using the fact that 

g(x)N'(x) + (L+ g'(x))N(x) = 0, xff. {l,l/a}, (4.18) 

and jump conditions on Nat x = l/a and x = l, found by integrating both sides of (4.16) over an 
interval containing l (resp. l / a) and letting both limits of the integral tend to l (resp. l / a). The jump 
conditions are as follows: 

1;a+ _ ab _ . 
[Nl1;a- - g(l/a/(l ), [ 11+ b -

N 1- = - g(l/(l ). (4.19) 
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From this we find a three-part solution: 

N;(x) = C;exp (-f gt) ds) [g(x)i-
1

, i E {1,2,3}, (4.20) 

where the domain of N; is R; for i E {1,2,3} and R; is as we have defined in Section 2. Note that for 
notational convenience we set N(l) = N(/-) = N2(l). 

The condition that N2(/) = N(l) fixes the value of C2, giving 

N2(x) =N(/)exp (l gt) ds) :t~· (4.21) 

The jump condition at x = l fixes C3 and leads to the result that N3(x) = (1 - b/ g(l) )N2(x), where the 
domain of definition of N2(x) has been extended to l < x. 

Finally, the jump condition at x = i implies 

so that 

Therefore, 

ab 
N1(l/a) =Nz(l/a)- g(l/atz(l), 

[ 
ab ] ( tfa L ) 

C1 = N2(l/a)- g(l/at2(l) exp Jo g(s) ds g(l/a) 

= N2(l) [ exp (lo' gt) ds) g(l) - ab exp (l/a gt) ds)] . 

N2 (l) ( tfa L ) [ ( fl L ) ] 
N1 (x) = g(x) exp lx g(s) ds exp Ji;a g(s) ds g(l) - ab . 

(4.22) 

(4.23) 

(4.24) 

The choice of L, however, forces N1 (x) to be identically zero, since L = [x' (/) - x' (I/ a) J-1 ln ( M), 
and so, in (4.24), 

exp (J;a gt) ds) g(l)-ab= exp(L[x'(l)-x'(l/a)])g(l)-ab = g~:)g(l)-ab =0. (4.25) 

We may thus summarise the solution of the hull N(x) as follows: 

(4.26) 

with N continuous from the left at l. 
From this it can be seen that a necessary and sufficient condition for positivity of the hull is that 

b s g(l). This is the analogue of the condition b s g for positivity of the hull for constant growth rate. 
Moreover, for the unscaled hull to have a finite integral the condition we require is g(l) < ab. Thus, 
the conditions needed for the hull to be a probability density function are b ::; g(l) < ab. 
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4.4 Verification that the variable g hull reduces to the constant g hull when g is con­
stant 

We now show that the above expression matches (3 .17) when g is constant. Let N denote the hull 
from (4.26) and H denote the hull from (3.17), with H(l) = N(l). Consider (4.26) when g is constant. 

It is easy to check that Lin this case is the same as in (3.17), namely 

L= l(:~l)ln(:b)· 

The hull N(x), in the region l/ a < x '.S l, is now, 

N(l) exp [~(l -x)] = N(l) :b exp { ~ [z -x-f In ( :b)]} 

= N(l) :b exp [-~ ( x - l)] , (4.27) 

which is the same expression as in (3.17). Now consider (3.17) when I< x. Let c/>(x) = H(x) for 

l / a < x '.S l, and extend the domain of definition of</> to l < x. Note that in the region l < x we have 

(4.28) 

But from what we saw in (4.27) we can now see that 

H(l)exp[-~(x-1)] =</>(x). (4.29) 

Thus, Equations (3.17) and (4.26) agree for l/a < x. Moreover ,both equations agree when O < x < 
l / a, where they both specify the hull as being zero. Thus, they specify the same hull when g is 

constant. 
Incidentally, in the calculation of the hull for variable g the supremum of the periodic function 

p(t) is taken over x1 < t, which becomes x/ g < t, as expected, when g is constant. 

4.5 Example of a specific growth function 

We now give an example growth function g(x) to illustrate the effect that the varying growth rate has 

on the shape of the hull. We have constructed g(x) so that it is approximately constant except in two 

regions around l / a and l respectively. The specific function we use here is 

g(x) = 3-2G (x, l )-G(x,l), (4.30) 

where 

(
-(x-y)2) 

G(x,y) = exp 2(0.2)2 . (4.31) 

A plot of this growth function is shown in Figure 4.1. The regions of slower growth in the above 

growth function are designed to simulate time-lag before and after cell division, as in the G1 and G2 

phases of human cell growth mentioned above. 

The hull corresponding to the growth function g(x) is shown in Figure 4.2. One would expect the 

cells to collect in the regions of slower growth, and thus affect the shape of the hull in a similar way. 
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Figure 4.1: An example growth function g(x). It consists of a constant minus two gaussian-like 
functions with peaks at .Jx and l. In this case l = 0.4 and o: = 2. The regions of slower growth 
in the above growth function are designed to simulate time-lag before and after cell division. This 
is characteristic of human cell-growth, where the cells go through G1 -phase immediately after cell 
division and G2-phase immediately prior. 
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Figure 4.2: The hull corresponding to the growth function in Figure 4.1, with o: = 2, b = 1.6, l = 0.4 
and N(l) = 1.3. The cells tend to collect in the regions of slower growth. 

23 



5 Conclusions 

The transient hull of the solution to (2.1) with g(x) E H 1 displays SSD behaviour when the growth 
and division parameters satisfy the inequality 

b:::; g(l) < ab. 

It was found that g(l) < ab in order for the (unscaled) hull to be in L 1; this is essential in order for the 
H to be a probability density function as is also required in I for y(x). The transient hull distributions 
track along the SSD path 

n(x,t) rvH(x)eA 1
, 

A= -J 

(5.1) 

(5.2) 

for large time t where the sign of the exponent J is determined by the equation (A.10)). Therefore the 
cell cohort has survival or extinction outcomes if 

1 (ab) [JI 1 d]-1 {>µ survival(J<O), 
n g(l) I/a g(s) s < µ extinction (J > 0). 

This applies to both of the constant-growth and variable-growth cases. In the constant-growth case 
these conditions become: 

In (ab) ag {> µ survival (J < 0), 
g l( a - 1) < µ extinction (J > 0). 

When g is constant, the hull of the solution for models with hyperbolic symbol provides a solution 
of the limiting case of SSD's of models with dispersion as the dispersion tends to zero. This has 
implications for cell growth models of this kind. 

A variable growth-rate changes the shape of the hull, and if it can be shown that the hull in this 
case is the limit as D -. 0 of SSD's dependent on D, then potentially the general expression for the 
variable growth-rate hull could be used in the inverse problem of determining the growth rate at each 
size of a population of cells. 

Recent investigations of cell cohorts other than the plankton cells also satisfy the assumptions of 
this model; in particular the assumption of division at a fixed size with fixed division rate (B(x) = b8(x - l)). 
Basse et al. (2004b) have investigated a multi-compartment cell population model for human tumour 
cell lines with compartments for each phase of the cell-cycle. When this four compartment model is 
collapsed into a lumped compartment model such as we have here, we obtain division at fixed size. 
This justifies to some extent the assumption, made in this paper, of single size division expressed 
using 8. 
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A Appendix 

A.1 Periodic behaviour of n2 ( l, t) as t --+ 00 for 1 < a 

In this section it is shown that n2(l,t) is an /(~~ 1Lperiodicfunction fort> 
8

~ when 1 < a. 
For I/a< x < l, we know that F2 (x) = n0 (x)H(x). This, combined with (2.15) gives us the 

necessary information to calculate the behaviour of F2(z) as z decreases. In the following working we 
will assume no(z) = 0 for z :S 0. Thus, no(z) = no(z) H(z). First let A = ~b, then we have 

F2(z) = no(z) H(z) + Ano ( z + t -{;) , !._ - (1- !__) < z < !__, 
a a a 

(Al) 

It is easily shown by induction that 

F2(z) = no(z) +Ano (z+i-{;) + ... +A111no (z+m [1-{;]), (A.2) 

{;- m (1 -{;) < z < {;- (m -1) (1 -{;) , 
(A.3) 
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for all O < m E Z. However, no(z) = 0 when z < 0 and it is desirable that terms equal to zero be 
removed from the expression for F2(z). To this end we proceed by noting that there exists some 
0 :::::; k E Z such that 

fx-(k+1)(1-fx) <0. (A.4) 

Thus, let G(z) = F2(z) in the region -!; - k (z - -!; ) < z < -!;- (k- 1) (l - -!; ) . That is, let 

G(z) =no(z)+ ... +J..kno (z+k [z-f;J), f;-k (1-f;) < z < f;-(k-1) (z-f;) (A.5) 

We then have5 

{
G(z) f;-k(l-{;) <z< (l-f;), 

~W= I I I no(z)+,11,G(z+l-a) O<z<a-k(t-a)· 

Again, it is easily shown by induction that 

{ 

,VG(z+J[l-{;]) 

F2(z) = }.)no (z+) [l -{;]) 

+;.,H'c (z+ (j + 1) [z - {;]) 

!;-(k+ j) (l-{;) < z < -(j-1) (t -!;) , 

-) (l - {;) < z < {;-(k+ j) (t -{;)' 

for all O :::::; j E Z. Replacing z with l - gt, we find 

(A.6) 

(A.7) 

{ 

}.,jG (l - gt+ j [l - -/;]) j f - u - 1) g~ < t < ( k + j + 1) G -g~) , 
F2(l-gt)= Ajno(l-gt+J[t-f;]) 

+,V+ 1c (t - gt+ (J + 1) [t - -!;]) ( k + j + 1) u -g~) < t < (j + 1) f - jg~ , 
(A.8) 

for all O:::::; j E Z. Thus, n(l- ,t) may be expressed, fort> 
8
~ 

where 

nU- ,t) = n2(l,t) = e-µt F2(l - gt)= e-Jt p(t), 

ga 
J=-l(a-l)ln(A)+µ, 

and p(t) is the ( f -
8

~ )-periodic function defined fort > 
8
~ by 

(A.9) 

(A.10) 

j f - (j - 1) g~ < t < ( k + j + 1) u -g~) , 
( ) (J-µ)(1-J[L.l..]) pt=e gga I 

no (I-gt+) [l- a]) 
{ 

G(l-gt+J[t-f;]), 

+~hc(t-gt+(J+ 1) [z--!;]), (k + j + 1) G - g~) < t < u + 1) f - jg~. 
(A.11) 

0 :::::; j E Z. The desired result has thus been proved. 

5Since ti - k (t - ti) > 0, know that ti - (k- 1) (1 - ti) > (t - ti). Hence the upper-bound of z < (t - ti) in the 

following equation. 
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A.I.I The case when a = 2 

Here it will be shown that the working above reduces to the answer obtained in the main body of the 
paper when a = 2. First note that a = 2 implies k, the greatest integer for which 

_!___kl(o:-1) >O 
ga ga - ' 

is 1. Thus, the domain of definition of G(z) becomes O < z < l /2, with 

G(z) = no(z) + Ano(z + l /2), (A.12) 

where A = 2b / g in this case. Also, since a = 2, one of the time intervals in the piece-wise definition 
of p(t) disappears, and the resulting expression for p(t) is 

p(t) = /J-µ)(t-jt,){no(t-gt+j;g) 

+Ano(l-gt+(j+l);g) }, 

where O ::;: j E Z. 

l l 
(j+ 1)

2
g < t < (j+2)

2
g,(A.13) 

It is now straight forward to check that the F2(l- gt)= eµ' n2(l, t) = e(-J+µ)t p(t) satisfies Equation 

(2.22) fort> "ii· 

B Appendix 

In this section we show a derivation of (1.1) with constant coefficients g, D andµ. 

B.1 The discrete system 

Consider a number of cells either growing or shrinking by Llx in each discrete time interval of Llt. 
Cells of size x divide at any given instant of time with a probability of B(x)Llt into a daughter cells of 
sizex/a. 

Let the probability that a cell grows at any time-step be p and the probability that a cell shrinks 
be q = 1 - p. Further, let n(x, t) be the number density function for cells of size x at time t. Then the 
discrete system may be expressed as, 

l
x+t.x/2 

x-t.x/2 
n(s,t) d~ = l x-t.x/2 1x+3t.x/2 

p n(s,t-Llt)(l-B(~)Llt)ds+q n(~,t-Llt)(l-B(s).1t)ds 
x-3t.x/2 x+t.x/2 

l
ax+at.x/2 

+a ax-at.x/Z B(~)(Llt)n(~,t-Llt) d~, x >> Llx. (B.l) 

Assuming II has only isolated points of discontinuity, then as Llx--) 0 we may approximate this as 

n(x,t) = pn(x- Llx, t - Llt)(I - B(x- Llx)Llt) + qn(x+ Llx,t - Llt)(l - B(x- Llx)Llt) 

+ a 2B( ax)(L1t)11( ax,t - Llt), (B.2) 

for almost every x > > Llx. 
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B.2 The continuous limit 

Consider now the expression for n(x,t) when x > 0. Assuming that Lix and Lit are small in relation 
to x and t, and further that the terms on the right hand side of the equation can be expanded in Taylor 
series around x and t, we find: 

on on (Lix) 2 o2n 
n(x- Lix,t -Lit)= n(x,t) -LixT - LitT + --~ + ... , 

ax at 2 ax 
(B.3) 

on on (Lix) 2 o2n 
n(x+Lix,t-Lit) = n(x,t) +Lix~ -LitT +--~ + ... , 

ax at 2 ax 
(B.4) 

on 
n(x,t-Lit) = n(x,t) -Litat + .... (B.5) 

Each partial derivative in the above expression is calculated at x and t. Substituting the above into the 
expression for n(x, t), letting s = p - q and using the fact that p + q = l, we find 

2 (Lix)s (Lix) 2 
n,=-[pB(x-Lix)+qB(x+Lix)Jn(x,t)+a B(ax)n(ax,t)-~nx+ 

2
Lit n.u+ ... , (B.6) 

with the remaining higher order terms all having (Lit)k(Lix)j, k 2:: 0, j 2 1 as a factor. Consider now 
the limiting process as the parameters Lit, Lix and s tend to zero. Supposing also that as Lit -+ 0, the 
parameters Lix ands are 0( v'Tt). Then let, 

g = Jim (Lix)s, 
L1x,L1t,e---->0 Lit 

D = Jim (Lix)2. 
L1x,L1t---->0 2Lit 

(B.7) 

Note that the higher order terms vanish as Lit, Lix, s -+ 0. Thus we obtain 

n1 = -gnx+Dn.u-B(x)n(x,t)+a2B(ax)n(ax,t), x> 0, (B.8) 

as the continuous limit of the discrete process described above. This is equivalent to (1.1) with no 
death and constant D and g. To add a death rate µ into the equation, it is required to multiply the 
right-hand side of (B.1) by (1- µLit) to describe a proportion (µLit) of cells dying at each time step. 

A similar derivation to the one shown above, without the division function B(x), can be found in 
(Okubo, 1980). 
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