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Abstract 

There are pressures from the medical community to reduce total shock numbers during 

extracorporeal shockwave lithotripsy (ESWL) to reduce renal damage. This in vitro study looked at 

the modifiable factors of the technique to increase the effectiveness and efficiency. This is 

important as faster, more efficient, stone elimination would reduce symptom duration and limit the 

adverse effects of an acute episode of renal colic. Furthermore this would reduce the likelihood of 

incomplete fragmentation of the stones leading to readmission.  

An in vitro model for the kidney was designed. This enabled the systematic scientific study of 

fragmentation and its relationship with the parameters studied: shock rate, shock power1, power 

ramping2, and coupling gel consistency to discover which technical factor settings allow the most 

effective and efficient urolith fragmentation. Mathematical models, theories and hypotheses 

pertaining to these phenomena were employed. Each effect was tested individually by setting up 

the model kidney and using the ESWL machine to fragment a mock kidney stone.  

The results of 534 completed tests showed that shock rate had less impact on stone fragmentation 

than power in this model.  The rate experiments showed no statistical difference between the rates 

tested; however our observational evidence showed that stone fragments after ESWL to be smaller 

and more dust-like at the lower rates (60 and 70 shockwaves per minute (SW/min)) than the larger 

more sand-like particles when the testing was completed at faster rates (90 and 100 SW/min). This 

may be of clinical significance.  While examining power, the most effective and efficient power was 

80%, however again the clinical significance of using higher powers may outweigh the time savings. 

The requirement of a gas free coupling cannot be stressed enough as the tests conducted without 

gas in the coupling medium required both fewer shocks and lower powers (p<0.001).  

                                                             
1 Throughout this thesis “power” is mentioned. Altering the ESWL intensity alters the input voltage to the 
EMSE (electromagnetic shockwave emitter) coil which alters the intensity of the EMSE electromagnetic field. 
This in turn alters the intensity of the shockwave. In a clinical environment this is called 
increasing/decreasing the power. 
2 Ramping is the term used to describe shock waves which are first delivered at a low power setting before 
the power is gradually increased. 
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In conclusion, the results showed that diligent care during the ESWL procedure to choose the most 

effective and efficient shock rate and power, and the conscientious removal of gas from the coupling 

medium before treatment, improved the results of stone fragmentation. 
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Glossary 

 
 
 
Amplatz Sheaths - firm renal sheaths designed to allow smooth passage of surgical instruments 
into the nephrostomy tract. 
Collimation - is the process of restricting and confining an x-ray beam to a given area. It is achieved 

by electronically moving a lead diaphragm. Use of such minimises a patient’s exposure to 

unnecessary radiation. 

CT/U– Computed tomography/Urography. 

Empiricism - a philosophy describing the theory that regards experience as the source of 

knowledge. 

ESWL – Extracorporeal shockwave lithotripsy. 

Fench (Fr) - The diameter of a round scope or catheter in millimetres can be determined by 
dividing the French size by 3. For example, a 12 Fr scope has a diameter of 4mm.  
Fluoroscopy - a type of medical imaging that shows a continuous X-ray image on a monitor.  

Gating - used when the shockwave from the ESWL machine is coordinated with the patient's ECG 

tracing. 

Haematuria - the presence of blood or red blood cells in the urine. 

Hydrophilic guide wires - enhances catheter tracking with their lubricious coating and smooth 
surface. 
Iatrogenesis - inadvertent and preventable induction of disease or complications by the medical 

treatment or procedures of a physician or surgeon, from the Greek "brought forth by the healer". 

kJ - Kilojoule, an International System of Units unit of energy equal to 1000 joules 

Multiplaner - a technique used in two-dimensional imaging to generate oblique views. 

Nephroscope - an instrument inserted into an incision in the renal pelvis for viewing the inside of 

the kidney. 
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Percutaneous nephrolitholapaxy - a procedure which punctures the skin to create a tract which 

can be widened and used for the introduction of a nephroscope.  Smaller calculi are removed with 

forceps which is simply called nephrolithotomy. Larger calculi are shattered with electro-hydraulic 

shock waves.  

Power - Altering the ESWL intensity alters the input voltage to the EMSE (electromagnetic 

shockwave emitter) coil which alters the intensity of the EMSE electromagnetic field. This in turn 

alters the intensity of the shockwave. In a clinical environment this is called increasing/decreasing 

the power.  

Ramping - the term used to describe shock waves which are first delivered at a low power setting 

before the power is gradually increased. 

Shadowgraphy - an optical method that reveals non-uniformities in transparent media. 

Ureteroscopy – the procedure where a ureteroscope is passed into the urethra through the 

bladder and the ureter and possibly up to the kidney. 

Urolith - a calculus in the urine or the urinary tract. Also called a kidney/urinary stone depending 

on its location.  

Ventricular Tachycardia (VT) - a dysrhythmia (three or more consecutive ventricular ectopic 

beats) can progress to ventricular fibrillation, cardiovascular collapse and death. 

Volt (V) - the derived unit for electric potential.  

Watt (W) -  a derived unit of power. 
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Chapter 1 

Introduction 

 

1.1 Development of extracorporeal shock wave lithotripsy 

Extracorporeal Shock Wave Lithotripsy is the name given to an acoustic pulse used to fragment 

kidney stones (uroliths).  The idea of ESWL is to use shockwaves (SWs) generated outside the body 

(extracorporeal) to fragment the kidney stone (“lithos” is Greek for stone and “tripis” is Greek for 

breaking). Once the stone is broken down into a sand-like state, it can be passed naturally without 

the need for surgery. ESWL is unique in medical technology though it appears to have deteriorating 

outcomes over time. What has changed since the Dornier Human ESWL machine 3 (HM-3) ruled the 

stone kingdom? The shock wave generator in the HM-3 was quite crude, the machine was bulky, 

and the imaging was rudimentary. However, despite more up to date imaging, a sleeker design, and 

increasingly sophisticated generators, the stone-free results have not improved.  This could simply 

be due to improved imaging modalities following ESWL. A CTU, which is frequently used after 

ESWL, will display stone fragments less than 1mm in size. These were harder to diagnose on 

standard film imaging modalities which were used after ESWL when it was first introduced.  Or 

perhaps second and third generation ESWL machines are not as effective as the first generation 

machines? To analyse the problem we must look at the features of the original ‘gold standard’ HM3. 

The main difference is that the patients were partially submerged in a large bath of water. The 

water ensured that the shockwave transmitted from the ellipsoid reflector contained no barriers 

until it entered the patient. Also, as it was unclear what effect the shockwave would have on the 

patient’s cardiac rhythm, the SW were synchronised to the patient’s heart rate.   

Electrocardiography (ECG) gated shockwave trigger speed3, therefore resulting in a shockwave 

frequency of between 60 to 90/minute. Second and third generation lithotripters do not 

                                                             
3 Gating is the term used when the shockwave from the ESWL machine is coordinated with the patient's ECG 
tracing. It will only give a shock wave during the R wave of the ECG, instead of later in the cardiac cycle 
(absolute refractory period). It is used to avoid R on T phenomenon causing a dangerous arrhythmia; 
ventricular tachycardia (VT). 
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incorporate a water bath and are certainly more user-friendly. However this required the 

transmission of the shockwave through several membranes and transmission media. By the time of 

their commercial release, it had been noted that ECG gating was not needed in all but very rare 

occasions. As a result, shock rates of up to 120/minute were used in order to speed up the 

treatment.  

In 1969, two German physicists, Dr Guenter Hoff and Armin Behrendt from Dornier Systems, an 

aircraft manufacturer, discussed ideas on the technological use of SW (Gravenstein & Peter, 1986). 

One idea was that SW could be useful for medical purposes. The in vitro studies by Hoff and 

Behrendt showed that renal stones could be fragmented by these SW (Gravenstein & Peter, 1986). 

This led to a collaborative study with Dr Manfred Ziegler, a urologist.  

The early studies were concerned with the potential issue of SW causing tissue damage in 

surrounding organs and if so, the extent and nature of the damage. Chaussy et al. (1980) developed 

a canine model to implant human renal stones and test the performance of ESWL under conditions 

similar to clinical situations (Chaussy, Brendel & Schmiedt, 1980; Gravenstein & Peter, 1986). In 

addition to Chaussy, Brendel from Dornier was very involved with technical development and 

experimental testing. One of the major problems was locating the urolith on a three-dimensional 

basis. Ultrasound did not prove successful and therefore x-rays intersecting the target were used to 

locate the uroliths. Imaging accuracy is now an important part of ESWL as, without correctly 

imaging the stone, it cannot be targeted successfully (Tailly, 2013). 

The first patient was referred for ESWL surgery by the Department of Urological Surgery at the 

University of Munich. The patient was treated successfully on February 7, 1980 (Gravenstein & 

Peter, 1986; Hayes & Ding, 2012). The first one hundred patients to receive treatment with ESWL 

were treated by members of the Department of Urology Surgery. The clinical results of the first 21 

patients were published in 1980 (Chaussy et al., 1980; Gravenstein & Peter, 1986). The experience 

with this novel treatment proved so effective that there was a rapid growth of the indications and 

many more Dornier HM3 lithotripters were fitted worldwide (Tailly, 2013).  
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1.2 Current state  

About 10% of the total population of New Zealand will experience the formation of a kidney stone 

at least once in their lives (Davidson, Sheerin & Frampton, 2009a). This is similar but slightly higher 

than the rest of the Western world, where the lifetime prevalence of kidney stones is 8.8%. 

Internationally, the prevalence of stones among men was 10.6% compared with 7.1% among 

women (Scales, et al., 2012). Unfortunately, kidney stones have been observed in many cases to 

recur (Moe, Pearle & Sakhaee, 2010; Sakhaee, Maalouf & Sinnott, 2012a; Srisubat, et al., 2009). 

Surgically removing each occurrence can possibly place the kidney in jeopardy and increase 

morbidity for the patient (Srisubat et al., 2009). ESWL is non-invasive, yet a number of reports have 

shown that this process can cause substantial acute side effects (Davidson, et al., 1991; Doran & 

Foley, 2008; Tuteja, et al., 1997). This damage includes:  

● Bleeding within and around the kidney, as shown by a loss of image contrast between the 

inner and outer kidney in magnetic resonance imaging (MRI), perhaps due to a release of 

fluids throughout the kidney or a decrease in blood flow through the kidney. 

● Destruction of red and white blood cells in the blood system. 

● Injury to surrounding organs, including the liver, skeletal muscle tissue, pancreas and 

gastrointestinal systems. 

● Bruising of the skin where the shock wave enters and exits. 

● Blockage of the ureter by fragments of a kidney stone (Gravenstein & Peter, 1986; Polat et 

al., 2012; Tuteja et al., 1997).  

● Hypertension has also been reported as a possible sequela of ESWL (Lingeman, Woods & 

Toth, 1990). The long-term significance of this change in diastolic blood pressure following 

ESWL is unknown, but no evidence has been found to suggest this is a problem. 

Extracorporeal shock wave lithotripsy proved to be a major breakthrough in urology (Delius, 2002; 

McConnell, 2001). It is the procedure by which SW are generated at a point external to the body (F1 

point) and focused on a kidney stone in the body (F2 point) (see Figure 1-3, p.11). A key issue is the 

ability to focus the SW so that they damage only the stone and not the body. SWs are relatively 

weak at their source and can traverse the body without many undesirable effects (skin bruising and 

hematuria being the most common) (Handa & Evan, 2010). However, as the SWs are focused on a 

small single point (the focus), they are sufficiently powerful to fragment a kidney stone. This is 

guided by fluoroscopy or ultrasound to achieve accurate targeting. Fragmenting almost any stone 
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can be attempted with this technique, but success varies greatly depending on the size and location 

of the stone. Generally, for stones in the upper and inter-polar calyces and the renal pelvis, the 

upper size limit is 2 cm diameter, and for stones in the lower pole, the size limit is 1 cm diameter 

(Turk, Knoll & Petrik, 2014). Most stones in the upper ureter can be fragmented as well. The larger 

the stone, the higher the likelihood there will be a need for a second procedure. Contraindications 

to this procedure include active urinary tract infection, uncontrolled bleeding diathesis, poorly 

controlled hypertension and pregnancy. Relative considerations that may prohibit use of ESWL are 

obesity, deformity of body habitus, suspected anatomic obstruction, stones in a calyceal 

diverticulum and renal failure (Chaussy & Schmiedt, 1983; American Urological Association 

University, 2014; Turk et al., 2014). 

ESWL remains a primary treatment for urinary tract stones (Urology, 2012). However despite its 

success, ESWL has problems. The complications can be divided into two separate categories: 

obstructive problems caused by stone passage through the urinary tract, and tissue damage. 

Steinstrausse (literally German for ‘stone street’) is when a collection of stone fragments 

accumulate in the ureter and appear on a radiograph like a stone street. This occurs when the 

foremost fragment becomes lodged, causing subsequent fragments to become trapped behind it. 

Roughly two-thirds of steinstrausse will resolve spontaneously. For those that do not, placement of 

a percutaneous nephrostomy tube can encourage the passage of stone fragments by restoring 

ureteral peristalsis, or repeat ESWL to the foremost fragment can resolve the problem. However, if 

an infection develops associated with an obstruction, emergency decompression of the urinary 

system with nephrostomy drainage is necessary (Ramsey et al., 2010). Furthermore, the 

destructive forces generated when cavitation bubbles collapse (discussed in Section 1.4, p.7) are 

responsible for the ultimate stone fragmentation. However, they can also cause trauma to thin-

walled vessels in the kidneys and adjacent tissues (McAteer & Evan, 2008), which result in 

haemorrhage, release of cytokines/inflammatory cellular mediators and infiltration of tissue by 

inflammatory response cells (Handa & Evan, 2010). 

Within ESWL, misconceptions regarding fragmentation mechanisms, as well as treatment 

parameters such as dose, applied energy and focal area are still common (Loske, 2010).  The 

European Urological Society and the American Urology Association have some broad suggestions 

(American Urological Association, 2014; Turk et al., 2014; Urology, 2012) and these are followed 

along with urologist and patient preferences. ESWL machines focus SW to strengths needed to 
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fracture concrements. Side effects, some of them acute, have resulted from this procedure, including 

injury to soft tissue, hypertension and renal trauma (Lingeman et al., 1990). If the renal trauma is 

severe, it can lead to the permanent loss of functional renal volume (Krestin et al., 1993;  McAteer & 

Evan, 2008; Neri et al., 2000). The focusing of SW through various layers of tissue is a complex 

process which stimulates many bio-mechano-chemical responses. A number of considerations, 

described below, are necessary for an optimal result of ESWL.  

The precise solution to some clinical stone problems requires proper understanding of the 

relationship between the SW path, anatomy and the position and composition of the stone (Tiselius 

& Chaussy, 2012). Initially, treatment rate for ESWL was set to match the patient’s heart rate as it 

was believed that the SW may cause heart arrhythmia (Ramsey et al., 2010). This was discovered to 

be the case rarely, so SW were no longer synchronised with heart rate. In order to speed up 

treatment, faster shock rates were used as it was thought that the more shocks administered, the 

greater the fragmentation would be (Chaussy et al., 1980; Chaussy & Schmiedt, 1983; Jansson, 

Bengtsson & Carlsson, 1988). Given the recent improved understanding of the physics of ESWL, this 

upward trend may have been counterproductive as an inverse relationship between shock rate and 

stone fragmentation rates is likely (Gravenstein, 2000; Nguyen et al., 2015; Salem et al., 2014).  

Much research has gone into understanding how ESWL can be made more efficient and safe. The 

research to date has tended to focus on the two extremes of the shock rate – 1Hz versus 2Hz. It has 

been concluded that slower treatment shock rates (1 Hz) improve efficiency of ESWL by decreasing 

the number of SW used, the number of treatment sessions needed, and often the clinical 

complications associated with the treatment (Bhojani & Lingeman, 2013; Chen, 2012; Honey et al., 

2009; Ng et al., 2012; Riehle, Fair & Vaughan, 1986;  Semins, Trock & Matlaga, 2008). Those shock 

rates  are the two extremes of the scale (Hayes, 2011) and testing of rates more commonly used in 

clinical practice would be of benefit (Argyropoulos & Tolley, 2007; Chacko et al, 2006; Pace et al., 

2005). Though outcomes of ESWL have been deteriorating, there are two methods that could lead 

to improvement: reinvention of the lithotripter, or rediscovery regarding how to use it. The most 

pragmatic approach is to rediscover how to use it.  
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1.3 Efficiency and effectiveness of extracorporeal shockwave lithotripsy 

Two concepts that add an economic aspect to healthcare are effectiveness and efficiency. These 

acknowledge that there are priorities to be considered in human, physical and financial resources. 

A complication arises because it is not possible to only take into consideration measured 

improvements in health, but also negative impacts such as side effects or any iatrogenesis (Madore, 

1993). 

In its unadulterated form, measuring effectiveness compares two things that have an identical 

effect or the same purpose. If two drugs are each used to treat a particular illness, the more 

effective drug will be the one that treats the illness faster and with fewer or less severe side effects. 

This would be called the more clinically effective drug. With ESWL, the rate at which the least SW 

required to fragment the urolith, at the lowest power, so as to prevent unwanted adverse side 

effects, would be the most effective rate. The economic element of effectiveness introduces the idea 

of cost and refers to cost-effectiveness and cost reduction (Koo, Beattie & Young, 2010). For 

example, if two shock rates have the same effects (complete stone fragmentation with the same side 

effects), the more economically effective rate is the one that costs less; this would usually be a time 

cost. This introduces the concept of efficiency.  

Efficiency is a much broader concept and is the association between the level of resources invested 

in the health care system and the health improvements achieved (Hutubessy, Chisholm & Edejer, 

2013; Madore, 1993; Martini, Berta, Mullahy & Vittadini, 2014). Instead of measuring the shortest 

time for a given effect (stone fragmentation), efficiency tries to achieve the greatest effect per unit 

of cost (Brent, 2004). British clinical epidemiologist Archie Cochrane defined three concepts related 

to testing healthcare interventions (Cochrane, 1972): efficacy is the degree to which an intervention 

does more benefit than harm under ideal conditions (“Can it work?”); effectiveness measures 

whether an intervention provides a greater benefit than harm when provided under typical 

circumstances of healthcare practice (“Does it work in practice?”); and efficiency measures the 

result of an intervention in relation to the means it consumes (“Is it worth it?”). Trials of efficacy 

and effectiveness have also been described as explanatory and management trials respectively, 

while efficiency trials are more often called cost effectiveness or cost benefit studies. Cost-benefit 

analysis is a systematic approach to gauging the economic worth of a procedure. This is done by 

quantifying, in monetary terms, the costs of a project and comparing them with the benefits, also 
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expressed in monetary figures. Like cost-benefit analysis, the cost-effectiveness approach calculates 

the monetary value of all the procedure costs. The difference is that cost-effectiveness considers the 

outputs produced by a project, which are not measured in monetary terms, according to the 

Centers for Disease Control and Prevention (2014). Health-care research often uses cost-utility 

analysis to analyse the cost of health-care interventions in terms of lives saved, illnesses prevented 

or years of life gained. The resulting measure in cost-effectiveness analysis then is the cost per case 

prevented or cost per year of life gained. The purpose of efficiency is to effectively make the most of 

the results given a specific budget (Haynes, 1999). According to this concept, each service must be 

supplied at the lowest possible cost and make best use of the assets invested. Efficiency is different 

from effectiveness in that it considers costs in relation to benefits. With ESWL this would relate to 

the time the procedure lasts. However, if the most efficient shockwave rate appeared to be 120 SW 

a minute and many patients treated in this manner required a further treatment as the initial 

treatment did not work, could it really be called efficient? The time of the theatre staff and patient 

are initially reduced but this reduced time could then be doubled or tripled. Furthermore, this does 

not take into account the morbidity and discomfort associated with a subsequent ESWL treatment: 

fasting prior to the anaesthetic, blood tests, possible risks associated with stopping regular 

medications, bruising on the skin from the shockwave, among other things (Koo et al., 2010).  

Greater effectiveness and efficiency require proper use of resources, appropriate delivery of 

treatment and sound management of health care funds (Madore, 1993). It seems difficult, if not 

impossible, to determine the optimum level of expenditure that should be allocated to ESWL; 

however, by using quality-adjusted life years (QALYs) and disability-adjusted life years (DALYs), it 

is possible to ensure that the budget is allocated in the most effective manner (Sassi, 2006). It is 

then up to the individual surgeon, using evidence-based guidelines, to decide on the clinical risks 

and benefits and agree on the patient’s clinical pathway.  

 

1.4 Physics 

Despite the success of ESWL, the mechanism of stone fragmentation and accompanying tissue 

injury due to focused waves needs to be better understood (Kaude et al., 1985). To correctly use 

ESWL, a basic understanding of the physics is required (Rassweiler et al., 2011). The properties of 

each lithotripter differ slightly from one to another, however the principle remains the same. 
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Whichever device is used, the primary role is to transfer and focus SW power from the lithotripter 

to a cigar-shaped volume along the lines of the shockwave path. This volume is often referred to as 

F2 and the shock generator as F1. The transfer of energy from F1 to F2 is described in detail in 

Section 1.5, p.10.  

Sound waves in medicine are well established, ultrasound for diagnostic imaging being the most 

prominent. SWs share numerous properties with conventional ultrasound, but there are differences 

that have a bearing on their clinical use.   

Fragmentation of kidney stones using focused SW forms the basis of ESWL. Non-medical research 

opened up the possibilities of breaking stones by subjecting them to high energy SW. Initially, a 

limiting factor was the expense and clinical suitability of generating the SW. Once a technique was 

found of producing the shockwave (through a spark discharge across an underwater gap) the wave 

could be viewed with clinical possibilities (Chaussy & Schmiedt, 1983). 

Fundamental differences in the properties of SW and ultrasound waves need to be considered. 

Figure 1-1 displays a pressure-time diagram of a shock wave.  

 

 

Figure 1-1 Time pressure graph of a shockwave (Rassweiler et al., 2011) 

Graph reproduced with permission from Professor Dr. med. Dr. Jens Rassweiler, Chairman EAU-section of Urotechnology, 
Klinikdirektor Urologie.  
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Figure 1-2, p.9 displays the same for an ultrasound wave. The shockwave consists of a single 

pressure pulse with a steep start and slow fall off, ultrasound waves display a more sine-wave like 

quality with trains of compressions and rarefactions.  Also, the two types of waves display different 

frequency patterns. Ultrasound has well-defined frequency characteristics, SW does not.  In both 

waves, a highly spatial concentration of acoustic energy is produced that is able to be focused to 

volumes of cubic centimetres or less. As a result both waveforms should have the ability to fracture 

certain concrements. However when transported over distance, the energy of the ultrasound waves 

is reduced by the surrounding tissue.  To calculate the fragmentation ability of the waveforms it is 

possible to transform the pressure-time distribution into the frequency domain (Gravenstein & 

Peter, 1986). Squaring the result shows spectral densities for both wave types. As the attenuation 

coefficient increases roughly with the square of the frequency, ultrasound waves are inappropriate 

for fracturing kidney stones as their power is decreased as they travel through the body (Zagsebski, 

1996).  

Several thousand SW are administered during treatment so as to attain a desirable fragmentation of 

the stone (fragments ≤ 4mm), which can then be passed naturally. This treatment has been 

generally effective for stone removal in most cases, eliminating the need for surgery (Chen, 2012). 

 

 

Figure 1-2 Time pressure graph of an ultrasound wave (Toronto Western Hospital, 2008) 
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Graph reproduced with permission from The Toronto Western Research Institute.   

 

As mentioned, shockwave patterns are not the same as ultrasound waves which are typically 

biphasic and have a peak pressure of 0.5 bar (Zagsebski, 1996). A shockwave pattern is uni-phasic 

with the peak pressures as high as 500 bars (Ogden, Toth-Kischkat, & Schultheiss, 2001). Therefore 

the peak pressure of a shockwave is approximately 1,000 times that of an ultrasound wave. These 

SW are short bursts of energy pulses of about 5 μs duration. There are two main effects of the SW. 

The primary effect is the direct mechanical forces that result in the maximal useful pulse energy 

concentrated at the target point where treatment is provided; and the secondary lesser effect is the 

indirect mechanical forces by cavitation. The importance of this, as shown in Figure 1-1, p.8 is if a 

second SW is administered before the first wave has completed its cycle. A certain portion of the 

primary wave will be affected in a negative manner by the second wave. Furthermore a portion of 

the second shockwave will be affected in a negative way by the primary wave. In other words, the 

principle of this positive and negative wave, which may affect how effective the wave is, relates to 

the time between positive and negative peaks. If the rate is too quick and the second positive peak 

is occurring at the same time that the previous wave’s negative pressure, they will cancel some of 

their respective destructive effect. If, however, the rate is too slow, treatment is less than ideal as 

the patient may remain under a general anaesthetic for longer than is necessary. This also has an 

effect on theatre turnaround time, which is an important financial consideration.  

To improve the destructive effects of ESWL, it is important to understand the mechanisms of the 

shock wave. Shock waves are high-energy amplitudes of pressure created in water by an abrupt 

release of energy in a small space. They multiply according to the physical laws of acoustics and are 

transmitted through media of similar densities ± water and soft tissue ± with very little attenuation, 

See Figure 7-1, The intensity transmission coefficient from water to a second medium, as a second 

of the impedance of the second medium (Smith, 2007), p.84.  However when a shock wave 

encounters an acoustic boundary (stone), the energy is used to overcome the tensile strength of the 

stone. As a result, the stone begins to fragment (Smith, 2007). Stone fragmentation principles are 

detailed in Section 3.3 Stone fragmentation theories, p. 50.  

The wave begins with an immediate jump to a peak positive pressure of about 40 MPa (Rassweiler 

et al., 2011). This is referred to as a “shock” or compressive phase. The transition is faster than can 



 

  21 

be measured and is less than 5 ns in duration. The pressure then falls to zero about 1 μs later. 

Following that is a region of negative pressure that lasts around 3 μs and has a peak negative 

pressure around –10 MPa; this is known as the rarefaction phase. The amplitude of the negative 

pressure is less than the peak positive pressure, and the negative phase of the waveform generally 

does not have a shock in it; in other words, there is no abrupt transition. Together the 5 μs pulse is 

generally referred to technically as a shock wave, shock pulse or pressure pulse. However, it is only 

the sharp positive pressure that is a shock (Preminger, Badlani, Kavoussi, & Smith, 2011).  

 

1.5 Focusing of the shock wave 

ESWL requires very precise focusing in order for a successful treatment.  To focus the SW on the 

stone, lithotripters use different methods. Point source generators (electrohydraulic) use ellipsoid 

reflectors to direct the wave to the stone. Line source generators use an acoustic lens 

(electromagnetic) or a dome shaped dish (piezoelectric). This thesis concentrates on the 

electrohydraulic lithotripter because this is the most commonly used in New Zealand.  

 

 

Figure 1-3 A schematic of a lithotripter and patient. The view is of the patient lying supine on the treatment 

table.  (Frantz, 2015) 
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 Image reproduced with permission from The Mathematical Association of America.  

 

The patient is positioned on the lithotripsy table supine, as shown in Figure 1-3 and a soft water-

filed balloon is placed in contact with their abdomen. The patient’s body is positioned so that the 

stone can be targeted precisely with the shockwave. As mentioned above the shockwave comes 

from outside the body and how the shockwave is targeted on the stone is discussed here.  

Part of each wave produced never hits the reflector, (light blue waves in Figure 1-3), and this part 

spreads out and eventually weakens. However, the part of the wave that does hit the reflector (dark 

blue in Figure 1-3) congregates on the other focus and its intensity causes the fragmentation of the 

stone. The important mechanism is the focusing property of ellipses and ellipsoids. Flanders (1968) 

provides us with a proof. The reflector is an ellipsoid of revolution about the major axis, so we only 

need to consider its profile - the ellipse. In addition, we must think of each little part of a wave as 

reflected ray (Smith, 1992).  

Figure 1-4, p.13 shows that if a ray leaves focus F1 (with position vector p) and strikes the ellipse at 

point A, then it will be reflected to focus F2 (with position vector q). The ellipse is given by a 

smooth parameterization r = r (t) where r is the position vector of A and t is time. Then the velocity 

vector dr/dt and its opposite -dr/dt are parallel to the tangent line at A, and by the law of reflection 

(angle of incidence = angle of reflection), we must prove that 𝛼 = 𝛽. Since 𝛼 and 𝛽 are each less 

than 180 degrees, this is equivalent to showing that cos 𝛼 = cos 𝛽 (Flanders, 1968).  

Frantz (2003) explains that if w=w (t) is a function of time t, then we can use the definition of vector 

magnitude and the dot product rule to compute: 

𝑑
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The standard definition of an ellipse is ∥ 𝑝 − 𝑟 ∥  + ∥ 𝑞 − 𝑟 ∥ = (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 
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p and q are also constant (time derivative 0). Take derivatives of both sides, using equation (*), and 

we get 

 − 
𝑑𝑟

𝑑𝑡
 .

𝑝−𝑟

∥𝑝−𝑟∥   
−  

𝑑𝑟

𝑑𝑡
 .

𝑞−𝑟

∥𝑞−𝑟∥ 
= 0 

which is the same as  ∥
𝑑𝑟

𝑑𝑡
∥ 𝑐𝑜𝑠 𝛼 = ∥

𝑑𝑟

𝑑𝑡
 ∥ 𝑐𝑜𝑠 𝛽  

therefore cos 𝛼 = 𝑐𝑜𝑠𝛽.  

This proof establishes the focussing accuracy of the lithotripter used in this thesis (Frantz, 2003, 

2015; Smith, 1992).  

 

Figure 1-4 The focusing property of an ellipse (Frantz, 2015) 

Image reproduced with permission from The Mathematical Association of America.  
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As shown the basic geometric principle used in electrohydraulic ESWL is that of an ellipse. SW are 

created at one focal point, F1, and converge on the second focal point, F2. The target zone is the 3D 

area at F2 where the energy is concentrated and fragmentation occurs. 

The target zone (F2) represents the area into which the waves are concentrated. A larger focal zone 

correlates to larger peak pressures and greater stone fragmentation potential4. This comes with an 

adverse effect of increased tissue damage. This study focuses on the Dornier electrohydraulic style. 

See Figure 2-4 Electrohydraulic generator (Pearle, 2012), p. 29.  

  

                                                             
4 The large focal zone increases fragmentation potential as respiration is less likely to move the stone out of 
the focal zone. This is especially important with smaller stones.  
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1.6 Coupling 

To limit energy loss a coupling agent, (often ultrasound gel) is used in the acoustic interface 

between the ESWL machine and the patient. During the coupling process air pockets are inevitably 

trapped in the coupling areas, which subsequently remain invisible to the operator as this area is 

pressed against the patient’s skin. As SW need a medium through which to travel and cannot travel 

through air, these bubbles are thought to decrease the efficiency of the shockwave (Pishchalnikov, 

Neucks, et al., 2006).  

During the transmission of a wave, energy is lost at interfaces with differing densities (Tipu & 

Jamalullah, 2011). A coupling medium is therefore necessary. This reduces attenuation and enables 

more of the shock wave power to reach its target – the stone. The original lithotripter submerged 

patients in a bath of degassed water which has acoustic impedance similar to soft tissue of the 

human body (Smith, 2007). The water bath was abandoned for a variety of reasons; that patients 

had to be anaesthetised while partially submerged in water was a driving factor. Some of the effects 

caused by the partial submersion were: 

● Haemodynamic changes – increase in central blood volume, stroke volume and cardiac 

output. 

● Increases in central venous pressure and pulmonary artery pressure. 

● Hydrostatic pressure on the chest and abdomen which decreases functional residual 

capacity and vital capacity. 

● Intrapulmonary pressure and the work of breathing increased due to altered compliance 

(Paul, 2006).  

Furthermore, there was always the electrical hazard to be aware of.   

Newer generations of ‘dry lithotripters’ were produced, a large water-filled balloon onto which 

ultrasound gel, or similar, was applied was used to act as a transmission devise. This replaced the 

large water-filled tank.  Water and ultrasound gel have similar densities to those of the soft tissues 

of the patient, see Figure 7-1, p.84 (Tipu & Jamalullah, 2011). This has been a major advancement in 

some respects (Jain & Shah, 2007). Dry lithotripters are more convenient and allow for greater 

flexibility for patient positioning, as the patient can assist with much of the initial positioning.  
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Importantly, the coupling agent used in dry lithotripsy can affect the stone fragmentation rate and 

should not be considered inert. Ultrasound gel is probably the optimum agent available for use as 

an ESWL coupling agent (Cartledge, Cross, Lloyd, & Joyce, 2001). Regardless of the transmission 

agent used, it is imperative that there are no air pockets and that the agent is applied in a manner 

that covers the entire shock wave head. Tiselius and Chaussy (2012) indicate that careful attention 

to this factor cannot be over-emphasized, as was noted during in vitro testing in the late 1980s by 

Coleman, Saunders, Crum, and Dyson (1987). At present there is no mechanism for removing gas 

bubbles from the coupling medium. Perhaps evidence from cementing operations - casing support 

and zonal isolation – will provide the answers as the cement industry continues to look at gas 

migration, its causes, consequences and solutions (Bonett & Pafitis, 1996).  
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Chapter 2 

Clinical Problem 

 

Having seen how the stone can be fragmented we need to look at how this can happen in practice. 

The first known uroliths were discovered in Egyptian mummies – a bladder urolith was discovered 

by English Archaeologist E. Smith from a 4500-5000 year old mummy in El Amrah, Egypt (Sandison 

& Tapp, 1998). The first known mention of surgery to treat uroliths was in the 8th century B.C by a 

surgeon named Sushruta in India. He provided detailed descriptions on uroliths and urinary 

anatomy, along with information on surgery (Shah & Whitfield, 2002). In the 4th century B.C., 

Hippocrates (ca 460 – 370 B.C.E) mentions uroliths in his Hippocratic Oath: 

“I will not use the knife, not even on sufferers from the stone, but will draw in favour of such men as 

are engaged in this work” (Edelstein, 1943 p.4) 

This suggests that the treatment of calculi was to be the province of specialised surgeons. 

Usual presentation is with loin pain, nausea, fever, and gross or discreet haematuria.  However 

kidney stones may also be asymptomatic (Scales et al., 2012). Standard assessment includes a 

detailed medical history, physical examination, medical imaging, blood analysis and urinalysis 

(Reynard, Brewster, & Biers, 2013). Principal imaging techniques are ultrasound and unenhanced 

CT with judicial use of contrast medium enhancement and plain abdominal x-ray (Rule, Krambeck, 

& Lieske, 2011). Secondary imaging techniques include excretory urography, magnetic resonance 

imaging, and antegrade or retrograde pyelography (Turk et al., 2014). 

Urolithiasis (the process of developing stones in the urinary system) typically occurs between 

thirty to sixty years of age. Its incidence is increasing exponentially and the current lifetime risk of 

developing a kidney stone is about 10% (15% of men and 6% of women) in New Zealand (Davidson 

et al., 2009a; Hayes, 2011). Kidney stones are not life-threatening in most cases, but can cause 

severe pain and increased morbidity for the patient, which can lead to hospitalisation and time off 

work (Abate, Chandalia, Cabo-Chan, Moe, & Sakhaee 2004; Meschi, Nouvenne, & Borghi, 2011; 
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Morton & Iliescu, 2004; Pak, 1998). For these reasons, together with the exponential increase in 

diagnosed kidney stones, research into the most effective method to treat these stones is not only 

warranted but perhaps overdue.  

In addition, kidney stones are associated with considerable costs to health services. The annual 

mean cost of a urolith in 2002 in New Zealand was $4274 (Davidson et al., 2009a). Twenty four per 

cent of the cost was for emergency visits, twenty three per cent for hospitalisations, twenty one per 

cent for operative procedures and eleven per cent accounted for patient workdays lost (Davidson, 

Sheerin, & Frampton, 2009b). Other sundry costs made up the remaining twenty one per cent. 

Therefore, economic information is of interest to health professionals involved in the diagnosis and 

treatment of Urolithiasis, in addition to those who plan and manage health services. Renal stone 

disease creates an economic burden on the community, not only through the direct costs of medical 

care and lost income, but also through the social cost of lost opportunity. The prevalence of renal 

stone disease is increasing, as is the cost of looking after patients with stones (Davidson et al., 

2009a; Turney, Reynard, Noble, & Keoghane, 2012). One reason for the increase in the production 

of stones is believed to be the increasing ‘westernisation’ of the world diet. Eating a high 

protein( (i.e., protein content of more than 25% of energy or more than 2 g/kg body weight per 

day), sodium, and sugar diet can increase a person’s likelihood of developing some types of kidney 

stones (Marckmann, Osther, Pedersen, & Jespersen, 2015). This is more pronounced with a diet 

high in sodium than one high in protein and sugars. Too much sodium in the diet increases the 

amount of calcium the kidneys must filter and increases the risk of kidney stones developing. 

Another reason for the increase in uroliths development is a population having a high Body Mass 

Index (BMI) (Meschi et al., 2011; Taylor, Stampfer, & Curhan, 2005; Wang, Chen, Song, Caballero, & 

Cheskin, 2007). Mean BMI in New Zealand adults has been increasing since 1997 (Hayes, 

Richardson, & Frampton, 2013).  

 

 

  



 

  29 

 

2.1 Imaging 

In order to treat the stone, it must first be visualised. This can be done using either fluoroscopy or 

ultrasound imaging. The fluoroscopy used is multiplaner in order to judge the depth of the target. 

This can be used with either antegrade or retrograde contrast media for difficult-to-visualise 

calculi, although use of contrast media is rare as it typically only shows a filling defect which 

indicates a large stone. Large stones are rarely a problem to visualise (Lucas, Zheng, & Gravenstein, 

2014). Ultrasound can be used, and it has been incorporated into some machines. Ultrasound uses 

no ionising radiation and allows the treatment of radiolucent stones, which fluoroscopy does not 

(Hayes, 2011). Ultrasound use requires considerable skill and experience of the operator and, due 

to the interference and location of skeletal structures such as ribs, not all stones in the renal 

collecting system can be visualised. Furthermore it can be difficult to judge the degree of 

fragmentation during the ESWL treatment as a collection of crushed sand and gravel will appear 

remarkably similar to a solid stone on ultrasound whereas on fluoroscopy this can be better 

identified (Tiselius & Chaussy, 2012).  

To reduce the radiation dose received by the patient during an ESWL treatment, strict collimation 

must be used. Only during the localisation and positioning of the patient should the collimator ever 

remain wide. A reduction of up to twenty times the absorbed dose is possible if a tight square of 

7cm x 7 cm is used to monitor the stone’s progress.  However, it must be remembered that stones 

can move from one area of the collecting system to another during the treatment, sometimes by 

kinetic energy from the shockwave; these are colloquially referred to as ‘jumping stones’ (Chang et 

al., 2001). For this reason frequent monitoring of the treatment is advised and, in the case of a 

jumping stone, a reduction in power is recommended (Tiselius & Chaussy, 2012). Urinary tract 

stones have affected humans since civilisation began: they were first reported in the Aphorisms of 

Hippocrates and are still an important health problem. Aetiology is multifactorial and is discussed 

in Section 2.2, p. 18. Recent advances in diagnosis and treatment have proved significant and the 

urologist now has many options for treating urinary stones (Shung, Smith, & Tsui, 2012).  
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2.2 Aetiology 

As shown above, kidney stones are a problem and their incidence is rising (Coe, Evan, & Worcester, 

2005).  A precise causative factor is not identified in most cases (Abate et al., 2004; Parmar, 2004) 

and numerous authors have conducted studies involving fluid intake, as intermittent super 

saturation or dehydration is thought to be one cause of uroliths  (Chae et al., 2013; Curhan, Willett, 

Rimm, Spiegelman, & Stampfer, 1996; Curhan, Willett, Speizer, & Stampfer, 1998; Ferraro, Taylor, 

Gambaro, & Curhan, 2014, Ferraro, Taylor, Gambaro, & Curhan, 2013; McCauley, Dyer, Stern, Hicks, 

& Nguyen, 2012).  The pathogenetic mechanisms of kidney stone formation are complex and 

involve both metabolic and environmental risk factors (Sakhaee et al., 2012a). As kidney stones are 

often idiopathic in nature, several theories have been proposed about lithogenesis.  Recent 

evidence suggests a primary interstitial apatite crystal formation that secondarily leads to CaOx 

stone formation (Knoll, 2010). Also lifestyle and dietary choices may be important contributing 

factors but the pathogenesis and pathophysiology of Calcium Oxalate (CaOx) stones are still not 

completely understood (McCauley et al., 2012).  

Other scientific theories suggest the stones may form because the urine becomes too saturated with 

salts from excessive sweating and that can lead to the formation of stones, or that the urine lacks 

the normal inhibitors of stone formation (Frassetto & Kohlstadt, 2011; Tamošaitytė et al., 2013). 

These factors can lead to the formation of renal stones (Caballero & Molinari, 2011). Citrate is one 

inhibitor because it normally binds with the calcium that is often involved in forming stones (Ando 

et al., 2013; Chutipongtanate & Thongboonkerd, 2011; Frąckowiak et al., 2010; Khan, 2013a, 2013b; 

Rabinovich et al., 2006; Rodgers & Lewandowski, 2002; Semins & Matlaga, 2013; Sorensen et al., 

2012). Other inhibitors include magnesium, pyrophosphate, and certain enzymes (Tamošaitytė et 

al., 2013). There have been no large prospective controlled studies of citrate therapy to prevent 

renal stones, although some studies suggest a link between citrate therapy and the prevention of 

reforming stones post-ESWL (Sarica, Erturhan, Yurtseven, & Yagci, 2006; Soygür, Akbay, & Küpeli, 

2002). In a multivariate analysis, Goldberg et al (1989) reported that the most clearly established 

method that citrate prevents stone formation is to concentrate urine calcium, thereby decreasing 

the saturation of calcium oxalate (Goldberg, Grass, Vogl, Rapoport, & Oreopoulos, 1989). In addition 

citrate is an important blocker of calcium phosphate stone formation. However it is too simple to 

suggest that stone formation can be prevented by administering citrate to stone formers. A 
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disadvantage of administering citrate is that it increases the saturation of calcium phosphate. This 

increases urine pH and favours the forming of the less soluble brushite stones.  

A theory that was not well received for many years was developed by Dr Randall (Evan, Lingeman, 

Coe, & Worcester, 2006) who theorized that the areas of apatite plaque on the renal papillae are an 

excellent location for an overgrowth of CaOx to develop into a calculus (Matlaga, Coe, Evan, & 

Lingeman, 2007). This became known as the Randall plaque. On the other hand, many other types 

of stone formers do not demonstrate the classic Randall plaques (Blaschko, Chi, Miller, Fakra, & 

Stoller, 2013; Semins et al., 2008).  

Coe, Evan, Worcester, and Lingeman (2010) suggest that there is no single theory of pathogenesis 

which can properly account for urolithiasis. Using human tissue biopsies, intraoperative imaging 

and physiology data from ten different stone forming groups, they identified at least three 

pathways that lead to stones (Coe et al., 2010). The first and most common pathway is overgrowth 

on an interstitial apatite plaque as seen in idiopathic calcium oxalate stone formers; this is also 

noted in stone formers with primary hyperparathyroidism, ileostomy, and small bowel resection, 

together with brushite stone formers. In the second pathway, there are crystal deposits in renal 

tubules that are seen in all stone forming groups except the idiopathic calcium oxalate stone 

formers. The third pathway is free solution crystallization. Examples of this pathway are those 

patient groups with cystinuria or hyperoxaluria associated with bypass surgery for obesity 

(Blaschko et al., 2013). Although the final products (uroliths) may be very similar, the ways of 

creation are very different. This is of utmost importance for urologists when trying to predict which 

of their patients will form or re-form stones.  However, this is not so important at the end of the 

patient journey when stones need to be removed. 

What we do know from epidemiological evidence is that despite their often unknown origin, stones 

are more common among people with certain disorders (for example, hyperparathyroidism, 

dehydration, and renal tubular acidosis) (Curhan, 2007). Other risk factors are, as mentioned, 

people whose diet is very high in animal-source protein or vitamin C or who do not consume 

enough water or calcium. People who have a family history of stone formation are more likely to 

have calcium stones and to have them more often (Sakhaee, Adams-Huet, Moe, & Pak, 2002), 

however little information is available regarding whether the increased risk is attributable to 

genetic factors, environmental exposures, or some combination (Curhan, 2007). Racial and ethnic 
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differences are seen in kidney stone disease, occurring most often in Caucasian males and least 

often in African-American females. The prevalence in Asian and Hispanic ethnicities is midway 

between the two (Sakhaee, Maalouf, & Sinnott, 2012b). One randomised controlled trial (RCT) 

found no evidence that recommendations to follow a low protein, high fibre diet protected people 

with single calcium oxalate stones from recurrent kidney stones (Hiatt et al., 1996). Worth noting 

though is that the population in this RCT had already had one episode of urinary stones. 

Furthermore the authors were so surprised by this result that they wondered whether the subjects 

actually followed the diet.  

Finally, people who have had surgery for weight loss (bariatric surgery) may also be at increased 

risk of stone formation, which is thought to be due to fat malabsorption (Curhan, 2007; Romero, 

Akpinar, & Assimos, 2010; Scales Jr, Smith, Hanley, & Saigal, 2012; Whitson, Stackhouse, & Stoller, 

2010). 

2.3 Classification of stones 

Uroliths are made up of crystals that separate from the urine within the urinary tract (Khan, 1992). 

Correct classification of stones is important since it can affect treatment decisions and therefore 

outcome (Okhunov et al., 2013). Stones can be classified according to the following aspects: stone 

size, stone location, X-ray characteristics of stone, aetiology of stone formation, stone composition 

(mineralogy), and risk group for recurrent stone formation (Türk et al., 2011). Broadly, stones can 

be categorised into calcium-containing stones which are radio-opaque, and non-calcareous stones 

which are radiolucent. (Parmar, 2004). This is an important classification as it will dictate which 

image modality is used during treatment,  See Table 2 –1 A classification of urinary stones (Parmar, 

2004). 

 

Table 2 –1 A classification of urinary stones (Parmar, 2004) 

Composition Causative factors Frequency (%) 

Calcium oxalate, phosphate or 

combination 

Underlying metabolic abnormality 

Idiopathic  

60-80 

25 

Struvite (triple phosphate) Infection 10-15 
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Cystine Renal tubular defect 1 

Other (indigo, xanthine, indinavir,  

brushite) 
 1 

 

 

2.4 Management of the problem and future directions 

The natural course of untreated calculi has not been defined as clinically urinary stones require 

treatment of some sort. The decision for an active treatment is based on stone composition (if 

known), stone size, and symptoms.   

In the last decades of the previous century the treatment for kidney stones underwent some 

impressive changes.  Prior to 1980 open surgery was common and the majority of kidney and 

ureteral stones were removed this way—often via challenging procedures with considerable risk of 

complications, and frequently involving a long stay in hospital for recovery (Lingeman, McAteer, 

Gnessin, & Evan, 2009). Considering that stone disease is typically recurrent, stone formers often 

underwent multiple, highly invasive surgeries over time. ESWL offered an entirely new and 

noninvasive means to remove stones and held the promise of eliminating virtually any stone 

without injury to the kidney or urinary tract. 

It is thought that ESWL may be suitable for more than 90% of uroliths in adults, but success 

depends on a number of factors: 

a. The size and location of the stone (ureteral, pelvic, or calyceal) (El-Assmy, El-Nahas, 

Abou-El-Ghar, Awad, & Sheir, 2013; Hwang et al., 2014). 

b. The composition of the stone (see Table 2 –1 A classification of urinary stones 

(Parmar, 2004) although this can be difficult to predict preoperatively (Cortes, 

Motamedinia, & Gupta, 2011).  

c. Patient’s habitus – obesity, rather than a simply a high BMI, can cause a lower 

success rate after ESWL, as ESWL success depends on where the excess fat is 

situated. This is partly due to the difficulty in visualizing the urolith on ultrasound 

or fluoroscopy and also the skin to stone distance may exceed that recommended 
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for the lithotripter (Monga, 2011; Tsang, Fu, Wong, Ho, & Yiu, 2013; Wiesenthal, 

Ghiculete, Honey, & Pace, 2010).  

d. The efficacy of the lithotripter and the factors chosen by the operator.  

Each of these factors is influential on the success rate (stone free status) of ESWL.  

Extracorporeal shock wave lithotripsy in addition to the revolutionary advances in other minimally 

invasive and non-invasive management of stone disease e.g., ureterorenoscopy, percutaneous 

nephrolitholapaxy, have all played a major part in stone disease treatment. There are now 

numerous methods of treating kidney stones, as shown in Figure 2-1. Renal stone treatment 

options. 

 

 

Figure 2-1. Renal stone treatment options. 
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Of the stone treatment styles showed in Figure 2-1, the following procedures are of interest as they 

compete with ESWL to be the first choice of treatment or the reference standard:  

2.4.1 Surgical Options 

Percutaneous nephrolithotomy  

Percutaneous nephrostomy (PCNL) is a procedure that has been used since 1955 (Goodwin, Casey, 

& Woolf, 1955). However it was not until 1976 when it was first used for the specific purposes of 

removing a kidney stone (Fernström & Johansson, 1975). The procedure is mostly done under 

epidural, spinal or general anaesthesia (Agarwal & Agrawal, 2014), but can also be done under 

conscious sedation. There are several similar techniques used to puncture through the flank with a 

needle into the pelvi-calyceal system of the kidney at the point where access is desired, this access 

point is determined with fluoroscopy after previous imaging with CTU. A hydrophilic guide wire5 is 

passed into the collecting system through the needle. The tract is enlarged by passing serial or 

telescopic Teflon or metal dilators co-axially over the guide wire (Agarwal & Agrawal, 2014; Lipsky, 

Shapiro, Cha, & Gupta, 2013). 

Dilatation proceeds under fluoroscopic control to 24 - 30 French Gauge (Fr)6 and an Amplatz 

sheath7 is passed over the last dilator, to provide direct access to the collecting system. The 

nephroscope8 (size 21-26 Fr) is passed through the sheath to visualize the inside of the collecting 

system (Agarwal & Agrawal, 2014; Lipsky et al., 2013). Small stones (up to 8-10 mm in size) can be 

removed intact with forceps or basket (Agarwal & Agrawal, 2014). Larger stones need to be 

fragmented by intracorporeal-lithotripsy into removable fragments. Some studies (although these 

could not be pooled) that compare PCNL to ESWL show the stone clearance rate at three months to 

be statistically higher for PCNL (RR 0.39, 95% CI 0.27 to 0.56) in the lower pole of the kidney. 

Furthermore, retreatment rates and the use of additional procedures such as stenting were less 

                                                             
5 A hydrophilic guide wire enhances catheter tracking with its lubricious coating and smooth surface. 
6 The diameter of a round scope or catheter in millimetres can be determined by dividing the French size by 
3. For example, a 12 Fr scope has a diameter of 4mm.  
7 Amplatz Sheaths are firm renal sheaths designed to allow smooth passage of surgical instruments into the 
nephrostomy tract. 
8 A nephroscope is an instrument inserted into an incision in the renal pelvis for viewing the inside of the 
kidney. 
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with PCNL when compared with ESWL (RR 9.06, 95% CI 1.20 to 68.64). Mean duration (MD) of the 

treatments was less for ESWL (MD -36.00 minutes, 95% CI -54.00 to -17.90), as were complication 

rates and hospital stays (MD -3.30 days, 95% CI -5.45 to -1.15) (Srisubat et al., 2009). Many of these 

studies had low methodological quality and low patient numbers and were clinical reports. Large 

RCTs have been recommended to investigate the effectiveness and compare the effectiveness of 

ESWL and PCNL (Srisubat et al., 2009). What is suggested in these studies though is that PCNL may 

have a superior outcome when used to manage stones over 20mm in size (Resorlu et al., 2012; 

Srisubat, Potisat, Lojanapiwat, Setthawong, & Laopaiboon, 2014; Wiesenthal, Ghiculete, Honey, & 

Pace, 2011a).  

Endoscopic surgery or Flexible ureteroscopy  

This plays an important role in the treatment of renal calculi, especially for the more complex cases. 

Recent advancements have improved the efficacy of procedures. Endoscopic removal is associated 

with up to >90% calculus clearance rates. This is true for both retrograde and percutaneous 

approaches (Fuchs & Yurkanin, 2003; Srisubat et al., 2009). Most procedures are performed on an 

outpatient basis or a <23 hour inpatient basis (Akman et al., 2012). 

Over the past twenty years there has been a substantial advance in technology used in this 

procedure. Previously urologists had used blind basket techniques. Endoscopy under direct vision 

has decreased the complication rate associated with the procedure and currently occurs in less 

than 1% of all procedures (Pickens & Miller, 2013; Rajamahanty & Grasso, 2008). This had been as 

high as 6.6% for significant complications (Harmon, Sershon, Blute, Patterson, & Segura, 1997).  

The procedure includes the following steps: (a) preoperative ureteral stenting; (b) placement of  

hydrophilic wires; (c) semi rigid ureteroscopy prior to the procedure; (d) the use of a large access 

sheath (14F-16F) if multiple ureteral passages are expected; (e) the use of a two-working channel 

flexible endoscope; (f) an active flushing system (Miernik et al., 2012).  

Holmium lasers  

These have also been introduced as an energy source to fragment the stones. The narrow fibre of 

<1mm diameter allows use with mini- and micro- instruments, as well as flexible instruments 

(Zhang, Yu, & Yang, 2013). It also minimizes any accidental firing on the renal mucosa.  
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Cystolitholapaxy is also an effective and safe technique (Hofmann, Olbert, Weber, Wille, & Varga, 

2002; Singh & Kaur, 2011). However as the name suggests this is a procedure used to break up 

bladder stones. It is now rare for ESWL to be used for bladder stones so there is infrequently a 

choice to be made between ESWL and cystolitholapaxy.  

2.4.2 Medical options 

Forced diuresis 

This had been used in practice for the management of renal colic caused by renal stones, although it 

is now very rare. Intravenous fluid administration is a standard therapy for obstructing stones, but 

a Cochrane systematic review found no evidence to support the use of this treatment (Teichman, 

2004).  It is also possible that giving saline could exacerbate renal colic if stone passage is not 

facilitated (Coe, Parks, & Asplin, 1992; Micali et al., 2006; Worster & Richards, 2005).  

Alpha blockers  

Alpha blockers given daily can reduce the number of recurrent colic episodes. At the time of 

writing, Tamsulosin has been the most commonly used alpha blocker in studies to aid the 

spontaneous passage rate (Cakıroglu, Sinanoglu, & Uraz, 2013; Dellabella, Milanese, & Muzzonigro, 

2003; Falahatkar et al., 2011; Ye et al., 2011). Caution is advised that when using conservative 

management of stones, the patient should have no associated signs of infection, uncontrollable pain, 

or renal failure (Lipkin & Shah, 2006; Micali et al., 2006). Tamsulosin has also been reported to help 

in the treatment of all ureteral stones after ESWL (Cakıroglu et al., 2013).  

The various options must be weighed against each other to determine which is the most suitable for 

a particular stone and patient (Urology, 2012) whilst taking into account patient wishes (Abate et 

al., 2004; Aronne, Braham, Riehle Jr, Vaughan Jr, & Ruchlin, 1988; Bader, Eisner, Porpiglia, 

Preminger, & Tiselius, 2012; El-Nahas et al., 2012; Hyams & Matlaga, 2013; Kim et al., 2005; Lotan & 

Pearle, 2007; Molimard et al., 2010; Parks & Wike, 2010; Patel, Blacklock, & Rao, 1987; Taylor & 

Curhan, 2008; Wang, Huang, Routh, & Nelson, 2012) 
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2.5 History of Extracorporeal shock wave lithotripsy 

An accidental discovery of the effect of a shockwave was made in 1966 by an engineer, Claude 

Dornier, at the Dornier System GmbH. Dornier was working as a scientific advisor at Dornier and 

his early findings laid the cornerstone for the evolution of metal aircraft. During Dornier’s research 

in aerospace technology, he discovered a previously unexplained phenomenon. Pitting was 

occurring on the exterior of the aircraft as it neared the sound barrier – a unique event caused by 

the shock wave created in front of a droplet of vapour (Dornier MedTech, 2015). 

The phenomenon was initially explored by the Dornier Company, and later in partnership with the 

University of Munich. Following extensive experimental testing on animals which had proved the 

safety and reproducibility of an in vivo shock wave, on the 2nd February 1980 in Munich, Germany, 

the first clinical application of ESWL was performed (Alder, 1987; Chacko et al., 2006). This human 

prototype, the HM1 (human machine 1) was produced by Dornier.  

The HM3 became available in 1984 and since then several generations of lithotripters have been 

introduced. They differ in their means of shock wave generation and other minor areas such as 

table design. All modifications have been in an effort to improve the success rates of the stone 

fragmentation, decrease the patient morbidity and improve ease of use. 

 

2.6 Principles of action 

A lithotripter needs three parts: a shock wave generator, a method of focussing the SW to a point, 

and a medium to allow the waves to travel from the source to the patient without attenuation. In 

addition to these, an imaging modality is needed. For this, fluoroscopy or ultrasound is used (Bach, 

Karaolides, & Buchholz, 2012). 

 

2.7 Shockwave generation 

Lithotripters differ from one another in the method used to generate the SW.  There are three types 

of lithotripters on the market that generate SW by different methods. These are shown in Figure 2-

2 Electromagnetic generator, p28, Figure 2-3 Piezoelectric generator, p. 28; and Figure 2-4 
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Electrohydraulic  generator, p. 29 (Matin, Yost, & Streem, 2001; Pearle, 2012).  In the current study, 

an electromagnetic shock wave generator was used. This machine was chosen to replicate a 

modified Dornier model HM-3, which is by far the most widely used and effective in renal stone 

operations (Albino & Marucco, 2012; Lingeman & Bhojani, 2013). The detailed design of the 

research lithotripter machine will be discussed in the next chapter.  

The electromagnetic generator consists of a magnetic coil surrounded by a shock tube containing a 

metallic membrane. When an electrical charge is applied to the coil, the metallic membrane is 

repelled due to its opposite charge.  This creates a shock wave that is focussed by means of an 

acoustic lens.  This style of generator has a large skin entry zone and small focus point, which is 

associated with less pain than electrohydraulic lithotripters (Lingeman, 2013).  

Electrohydraulic generators (also known as spark gap) were the original method of shockwave 

generation and used in the HM3. Their shock is generated from a single source (the electrode) 

discharging underwater. The gas explosion around the high voltage electrode causes vaporisation 

of water in a bubble. This rapid expansion and immediate collapse creates a shock wave that 

diverges from the point of origin. This can be focussed onto a point with an acoustic lens (Lukeš et 

al., 2012; Singh & Kaur, 2011).  
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Figure 2-2 Electromagnetic generator (Pearle, 2012) 

 

Figure 2-3 Piezoelectric generator (Pearle, 2012) 
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Diagrams reproduced with permission from Professor Margaret Pearl (Pearle, 2012), Copyright Massachusetts Medical 

Society.  

 

 

Figure 2-4 Electrohydraulic  generator (Pearle, 2012) 

Diagram reproduced with permission from Professor Margaret Pearl (Pearle, 2012), Copyright Massachusetts Medical 

Society.  

 
 
 
Piezoelectrical generators comprise a series of polarized polycrystalline ceramic elements that line 

a hemispherical dish and produce electricity via application of mechanical stress. The alternating 

stress/strain changes in the material and resulting simultaneous expansion when a high voltage 

charge is applied produces a shock wave (Singh & Kaur, 2011).  

Regardless of the type of lithotripter, the operator has the ability to control a limited, but 

nonetheless important number of factors. These may affect the success rates and are explored here. 

Currently there are guidelines but no set protocols for ESWL nor standardized parameters to 

characterize SWs physically or to define their optimal configuration (Rassweiler et al., 2011; Turk 

et al., 2014). It is widely known that treatment ‘practice pattern’ for ESWL differs depending on the 
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clinical setting and urologist. Practice patterns are affected by factors such as access to facilities and 

the proficiency and preference of the individual urologist. ESWL is not performed the same way at 

all institutions, or at all sites even within New Zealand. It is understandable that variations in 

patterns exist, but local practice often deviates from what is recognized as ‘best practice’ (Lingeman 

et al., 2009). This thesis aims to design a protocol to offer urologists the modifiable technical factor 

settings which allow the most efficient urolith fragmentation.  

Predominantly there is some discussion about the size of focal zone and the energy flux within it. 

Most urologists have their own theory on ideal treatments from their own subjective analysis from 

previous treatments. Shock wave rates range from 70 per minute to 110 per minute in New Zealand 

(Hayes, 2011). Generally speaking the power is kept low (8kJ) for the first 100-300 shocks and rises 

to 12-14kJ by around 1000 shocks in a near-linear fashion to improve stone fragmentation and 

reduce the risk of kidney trauma (Handa et al., 2009; Köhrmann & Rassweiler, 2011; Logarakis, 

Jewett, Luymes, & Honey, 2000; Ng, Lu, Yuen, & Gohel, 2014).   
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Chapter 3 

Literature Review 

 

The first step in answering my research question about improving the modifiable technical factors 

of ESWL, is to find out more of the history of the procedure and why we need this technology. In the 

last chapter, I explained the history of the technology and the need for improvements to be made.  

In this chapter I will examine and report on research that has been previously carried out in order 

to improve this procedure. This is crucial in order to ensure as little duplication as possible. 

 

3.1 Method 

In medical research, experimentation is always restricted to the availability of patients or 

specimens as subjects. In the particular case of ESWL, the literature exhibits an abundance of works 

reporting the practical experience of medical doctors. However, there is still a lack of information 

that might help to understand and to improve the fragmentation of kidney stones. 

I reviewed the pathophysiology and possible improvement measures of ESWL. See Appendix A; p. 

124 for search strategy. A thorough literature search was performed with the Medline, Science 

Direct and PubMed databases on ESWL between 1980 and 2015. Keywords relevant to the review 

were grouped into two categories to maximise the search results. The first group contained any key 

words relating to “urinary tract” (“kidney,” “renal,” “calyx,” “ureter”). The second group contained 

any key words within the category of “extracorporeal shockwave” (related terms: “extracorporeal,” 

“shockwave,” “shock wave,”  “ESWL,” and “ESWT”). Wild cards and truncation symbols were used 

where appropriate. Then the articles were manually screened to ensure that none of the returned 

articles fell within the exclusion criteria (See Appendix A). The “find similar” function in Medline 

and the reference lists in extracted articles were used to identify other articles that were potentially 

overlooked by the electronic searches. Inclusion criteria were RCTs, observational series, 



 

  44 

experimental studies, case studies, and reviews providing significant information. Based on this 

information, we were able to include the expert opinions of participating urologists, physicists, and 

lithotripter manufacturers. The date range was from 1980 to present because ESWL was first 

reported in the early 1980s.  

As mentioned previously, there are unwanted renal and extra renal side effects that can occur as a 

result of ESWL, in addition to the possibility of the modifiable technical factors not being at their 

peak.  Most of this research comes from research on animals and the work has shown that there are 

a variety of risk factors such as age, size of the kidney, the presence or absence of renal disease but, 

most importantly for this study, side effects are also dependent on the number of SW administered, 

the rate at which they are delivered and the power settings of the lithotripter (McAteer, Evan, 

Williams Jr, & Lingeman, 2009).   

3.1.1 Studies regarding shockwave rate  

There have been on-going efforts to improve treatment outcome since the introduction of ESWL in 

the early 1980s. One of the basic well-documented mechanisms discussed above well documented 

is cavitation. ESWL has been shown to cause cavitation9 erosion at the anterior surface of the 

urolith due to the implosion of the bubbles. However this only occurs when the bubbles are in 

contact with the stone (Greenstein & Matzkin, 1999; Li et al., 2013). When the bubbles are not in 

contact with the stone, they may act as a barrier to effective stone fragmentation. Transmitted 

energy would decrease when the next wave arrived due to the bubble acting as an impenetrable 

barrier. When the frequency increases, there is not enough time for these bubbles to disperse and 

they can form bubble piles by joining with others. Therefore, decreasing the frequency allows 

bubbles to dissipate and support better cluster bubble dynamics on the stone surface to promote 

superior fragmentation. For this reason, many studies have attempted to ascertain the ideal shock 

rate, not only to effectively fragment the urolith but to prevent renal damage (Semins et al., 2008).    

Busy Urology facilities will face time constraints and it is likely that most patients are treated at a 

rate in order to deliver the required number of shocks in the least amount of time rather than at an 

                                                             
9 Cavitation is the pitting of a solid surface as a result of the forces of repeated formation and collapse of 
bubbles in a surrounding liquid. These bubbles are caused by the shockwave  (Simpson & Weiner, 1989). 
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ideal rate (McAteer et al., 2009; Neisius et al., 2013). This is where stone fragmentation efficiency 

may differ from stone fragmentation effectiveness. See Section 4.2 on page 5. 

Many animals have been used in experimental models but the similarities of a pig’s kidney with that 

of a human (size, shape, and morphology) make the pig the most suitable (Connors et al., 2000; 

Delius et al., 1988; Paterson et al., 2002; Ryan et al., 1991).  In one study with pigs, however, it was 

shown that the choice of rate can affect the severity of the renal injury (Evan, McAteer, Connors, 

Blomgren, & Lingeman, 2007).  This discovery was a chance finding during investigations to 

characterize the performance of a low pressure wide focal-zone lithotripter, the Xinin XX-ES .A 

limitation of studying pigs’ kidneys is that, compared with human kidneys, they are hyper-mobile as 

they have very limited perinephric fat. The renal pelvis of the pig is also vertically longer than in 

humans, which may make stone fragment passage more difficult. However the calicies are 

shallower which may encourage fragment passage (Lazo, Vlatko, Florina, Nikola, & Dobrila, 2012). 

It is also possible to damage any kidney stones that are handled before being implanted into an 

animal which could result in micro-cracks developing prior to the ESWL procedure. Therefore 

manually inserting uroliths into a kidney may result in a false indication of effective fragmentation 

if the urolith had been damaged prior to the ESWL.  

A follow up study by the same authors with the HM3 demonstrated a significant reduction in renal 

damage when the pig’s kidneys were treated at 30 shocks per minute when compared to 120 

shocks per minute (Evan et al., 2008). In reality most urologists would find it difficult to treat their 

patients at the lower end of the scale (30 shocks per minute) as the treatment time would far 

exceed what is common now (Neisius et al., 2013). Furthermore the added risk of having a patient 

under an anaesthetic for this extended period must also be considered; therefore it is promising 

that solid laboratory data and some clinical studies show that injury is also reduced at 60 shocks 

per minute when compared to 120 (Connors et al., 2012). In the follow up study, the left kidneys of 

female anaesthetised pigs were treated with 2000 or 4000 shock waves at 120 SWs/min, or 

2000 SWs at 60 SWs/min. Measures of renal function (glomerular filtration rate and renal plasma 

flow) were collected before and 1 h after ESWL and the kidneys were harvested for histological 

analysis and morphometric quantitation of haemorrhage in the renal parenchyma, with lesion size 

expressed as a percentage of functional renal volume (Connors et al., 2012). Data from this study  

were compared with data from a previously published study (Evan et al., 2008) in which pigs of the 

same age (7–8 weeks) were treated (2000 SWs at 120 or 60 SWs/min) using an unmodified 



 

  46 

Dornier HM3 lithotripter.  Although lithotripter manufacturers were different in the studies, all 

other aspects were matching. The authors concluded that reduced tissue injury to the kidney and 

surrounding tissues was seen with these two machines because they were operated at a slow SW 

rate. A limitation of these comparisons is that in the first study the aim was not to look at tissue 

damage and rate but focal width. A further slight limitation is that the machines could not be set at 

the same SW rate, the XX-ES used 27 SW/min and the Dornier HM3 30 SW/min. These rates, 27 or 

30 SW/min, would not be used in a clinical setting.  

Greenstein and Matzkin (1999) evaluated the effect of the rate of shock wave delivery on stone 

fragmentation. They discovered that in an in vitro model ESWL is most effective when the SW are 

delivered at 60 shocks/min. Furthermore they reported higher energy levels than lower are more 

efficient for stone fragmentation. The in vitro model used was a net-like basket submerged in water, 

with the stone placed in the basket. The model is an established one but the size of the basket holes 

in this study were just 2.2mm in diameter. This allows a much smaller fragment to pass through 

rather than using a mesh diameter of 4mm, which is the diameter of the average human ureter 

(Tortora & Derrickson, 2008). Furthermore the research used so many shock rates (30, 60, 90, 120, 

and 150), powers (15, 20, and 22.5kV), and so few stones (n=118) that only a relatively large effect 

(of about the standard deviation) could be shown.  The mean time to stone destruction was used as 

the outcome which represents a clinically accurate result (Canseco, de Icaza-Herrera, Fernández, & 

Loske, 2011).   They recommended a clinical study verifying their laboratory findings. Also reported 

is a pronounced decrease in particle size when the shock rate is reduced from 120 to 30 SW/min. 

This result can lead to clinically superior outcomes as fewer particles are inclined to become 

trapped in the ureter which is perhaps why they chose a smaller basket mesh diameter.  

Paterson, Lifshitz, and Lingeman (2002) were concerned that treatment rates had increased to 120 

s/per minute with no obvious benefit in clinical outcome and in vitro studies were showing the 

opposite, a reduction in stone fragmentation success, to be true. Therefore, they tested the effect of 

the shock wave rate on stone fragmentation in an animal model. Again, a pig’s kidney was used with 

the benefits and pitfalls listed above being true. Model stones were placed via percutaneous access 

into the lower pole calix of the kidneys of pigs. ESWL was performed (400 SW uninterrupted at 20 

kV and a rate of either 30 or 120 SW /min) 2 hours later using a HM3 lithotripter. After en bloc 

excision of the urinary tract, stone fragments were collected and sieved through 2 mm mesh. The 

particles were weighed and surface area was determined. Results showed that stones treated at 30 
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SW per minute broke more completely (smaller fragments) than stones treated at 120 SW per 

minute. Limitations of this study include how difficult and therefore inaccurate it can be to 

determine the surface area of fragments of a kidney stone. Any error in measurement would reduce 

the rigour of the study.  

In another pig model, Gillitzer et al. (2009) compared fragmentation rates for renal stones treated 

with 60 vs. 120 SW/min at the same energy settings, using standardized validated artificial stones. 

In this instance the pigs were alive but anaesthetised.  ESWL was applied using an electromagnetic 

lithotripter at 60 and 120 SW/min; 3000 shocks were applied to each kidney with the same energy 

settings. Stone fragments were collected after nephrectomy, passed through calibrated test sieves, 

and weighed. Fragment size categories were stratified according to the sieve hole size as set by the 

manufacturer. Fragments of ≤4.75 mm were defined by the authors as capable of spontaneous 

passage although no critique is offered as to where this size came from and it appears a little larger 

than most similar studies. For each pig the number of stone fragments of the respective size 

categories was counted and weighed. Gillitzer et al. (2009) concluded that ESWL fragmentation 

with equal energy application yields significantly smaller fragments at 60 than at 120 SW per min. 

Again this would indicate superior clinical results. Having live animals increases the external 

validity of this research study. A functioning kidney and ureter can pass the stone fragments as they 

are broken and shattered thereby removing them from the path of subsequent SW and allowing 

further damage to be done to the stone. If a kidney was non-functioning, the stone fragments would 

stay in situ and prevent the full power of the wave from shattering the stone.   

Pishchalnikov, McAteer, Williams, Pishchalnikova, and Vonderhaar (2006), tested the hypothesis 

that stones break more effectively when the rate of shockwave delivery is slowed. A series of 

gypsum stones held in a 2-mm mesh basket were exposed to 200 SW at 30 or 120 s/min from a 

research electrohydraulic lithotripter (HM3 clone). Waveforms were collected using a fibre-optic 

probe hydrophone. High-speed imaging was used to observe cavitation bubbles in the water and at 

the stone surface. Their results showed that stone breakage was considerably improved at 30 SW 

per min than at 120 SW per min.  A limitation of not allowing the stone to fragment fully before 

analysis is that often fragmentation is a process whereby micro cracks are formed in the internal 

structure of the urolith for the first part of the treatment (Lokhandwalla & Sturtevant, 2000). 

Towards the end of the treatment the stone simply shatters due to the stone lattice no longer 

having the strength to keep the stone together. Uroliths are crystal aggregates, most commonly 



 

  48 

containing calcium oxalate monohydrate (COM) crystals as the primary constituent (Sheng, Ward, & 

Wesson, 2003). Stopping the treatment before this tipping point would give an inaccurate reflection 

of how the treatment would have progressed as the fragmentation is not linear.  

Vallancien et al. (1989), inserted solitary kidneys into plastic containers and used 3000 shocks at 

frequencies of 75, 150, 300, and 600 shocks/minute. They concluded that the lower frequencies of 

75 and 150 shocks/minute achieved a better quality fragmentation (finer particles) but at the cost 

of treatment time.  Again a limitation of this study is that the kidney was non-functioning and 

therefore would not accurately represent the level of power delivered, especially towards the end 

of the procedure as the concrement was plentiful. Another limitation of this study is the low 

numbers; only nine stones were tested, separated into five fragments of similar size. It is also 

unknown whether the stone lattice was damaged during the separation of the initial stones. If it 

was, this study would have little rigour.  The ESWL unit used in this study was a piezoelectric 

generator model so it is difficult to compare with the more common electromagnetic ESWL units.    

To determine the optimal frequency of ESWL, in terms of efficacy and duration, 170 patients 

between the ages of 18 and 69 years with radiopaque kidney stones were studied by comparing 

three different shock wave frequencies (Yilmaz et al., 2005). The patients were randomly divided 

into three groups. Group 1 (n = 56) received 120 SW per minute, group 2 (n=57) received 90 SW 

per minute, and group 3 (n=57) received 60 SW per minute. Also recorded for each operation were 

the duration, analgesic or sedative requirement, and any complications. The patients were 

reviewed in terms of successful treatment or otherwise, by radiography of the kidneys, ureters, and 

bladder and abdominal ultrasonography 10 days after the single-session therapy. This follow up 

time is at the shorter end of the scale, with most follow up imaging done at four weeks post-surgery 

(Freifeld et al., 2014). In this study Yilmaz et al. (2005), concluded that the efficacy of lithotripsy is 

dependent on the interval between the shock wave. If the frequency increases, the rate of 

lithotripsy success decreases. Therefore, lithotripsy efficiency is inversely proportional to the 

frequency, however they stop short at specifying the limits. Yilmaz et al. (2005), studied other 

factors too, such as tissue damage and added that when using a low frequency, tissue damage in the 

kidney, the repeat ESWL rate, and the requirement for analgesics or sedatives will decrease. 

However, the reduction in frequency results in a longer duration. Therefore, they concluded that 

performing ESWL at 90 SW per minute appears to be the optimal frequency. This is thought to be a 

trade-off between success and efficient use of theatre time.  
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Chacko et al. (2006), compared the efficacy of a slow rate (70 to 80 shocks per minute) and a fast 

rate (120 shocks per minute) for ESWL for solitary stones less than 2 cm located in the kidney or 

proximal ureter. Three hundred and forty-nine patients with a single, radiopaque kidney or 

ureteral stone underwent ESWL on a DoLi® 50 lithotripter. Patients were grouped based on stone 

size, stone location and whether a slower or faster treatment was used. Of the 349 patients 135 had 

a renal stone over 1 cm but under 2 cm, 137 had a renal stone less than 1 cm and 77 had a proximal 

ureteral stone with a surface area of between 30 and 90 mm2. Stone free rates were determined 

after approximately 1 month by a radiograph of the kidneys, ureters and bladder (Chacko et al., 

2006). Their results showed that in comparison to the fast rate groups, the slow rate groups 

required fewer shocks and needed lower power levels. Of patients with renal stones between 1 and 

2 cm 24 of 52 (46%) in the fast rate group were stone-free compared to 56 of 83 (67%) in the slow 

rate group (p <0.05) (Chacko et al., 2006). For stones with a surface area of 30 to 90 mm2 located in 

the kidney or proximal ureter there was a trend toward an improved stone free rates in the slow 

rate group but differences between the slow rate and fast rate groups were not statistically 

significant. A limitation of this study is with the difficulty of measuring such small surface areas 

accurately; any miscalculations could put the result out significantly.  

One hundred and fifty six patients were studied in prospective randomised trial to receive either 

slow (60 shocks per minute) or fast wave (120 shocks per minute) by Madbouly et al. (2005). 

Inclusion criteria included patients with a solitary radiopaque renal or ureteral stone. This ensured 

all the ESWL treatments could use fluoroscopy rather than ultrasound, eliminating the problem of 

different imaging methods. Also patients had a stone size limit of 30mm in diameter. No critique of 

the stone size is offered and this appears a large size as one treatment of ESWL is recommended 

and has excellent results for stone sizes up to 20 mm (Pearle et al., 2005; Pearle et al., 2001; Turk et 

al., 2014). The study included 114 men (73%) and 42 women (27%) with a mean age of 42 years, 

which is an over-representation of men despite the predominance usually associated with male 

nephrolithiasis in this age group. Stones occur more frequently in men as they enter their 40s and 

continue to rise into their 70s. For women the prevalence of kidney stones peaks in their 50s (Gault 

& Chafe, 2000; Scales Jr et al., 2007). However ESWL treatment does not favour one gender (El-

Nahas, El-Assmy, Mansour, & Sheir, 2007; Pareek, Armenakas, Panagopoulos, Bruno, & Fracchia, 

2005). The patients were randomly allocated to slow or fast rate and the groups were of similar size 

and had similar characteristics at baseline. The male to female ratio was comparable in each group.  
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The slow rate was used in 49% of patients and the fast with 51%.  The total number of shocks 

required for stone fragmentation (seen during the procedure) was significantly higher in the fast 

group (p < 0.004) and the treatment time significantly longer (p < 0.001). The authors defined 

success as being completely stone-free or having fragments less than 2mm in size visible on 

radiological follow up. The success rate was significantly higher with the slow rate (p = 0.034) and, 

as this style of treatment used less ESWL pulses overall, it can be expected that less tissue damage 

would also occur. 

Unconvinced that that there was one rate to suit all stones, a systematic review and meta-analysis 

was performed by (Li et al., 2013). The search included MEDLINE, Web of Science, and the 

Cochrane library. All RCTs that compared the effects for different rates (60, 90, and 120 per minute) 

were included in the analysis. They identified nine RCTs which involved 1572 cases.  This analysis 

looked to compare success rates on different stone sizes (using the binary classification of above 

and below 10mm). Overall, success rates for larger stones were significantly lower in the 120 

shocks per minute group than the 60 shocks per minute group (p < 0.001) and in the 120 shocks 

per minute than the 90 shocks per minute group (p<0.001). However the results were very similar 

in the 90 and 60 shocks per minute group. Treatment time was significantly shorter in the 120 

shocks per minute group vs all other rate groups (p<0.001). Interestingly in the small stone groups, 

there was no significant difference among the three.  

On the basis of these data, it seems realistic that a slower treatment rate improves both the safety 

and the efficiency of ESWL.  

3.1.1 Studies regarding power 

The efficacy, safety, feasibility, and outcome of a treatment must all be considered when deciding 

which parameters to use. The goals are to avoid auxiliary procedures and provide high clearance 

rates in the shortest possible time (McAteer, Evan, Williams, and Lingeman (2009). However 

patient safety is of utmost importance and some trading between stone clearance and patient safety 

may be needed. As shown, optimization of the pulse sequence of ESWL can significantly improve 

stone comminution while simultaneously decreasing the propensity for tissue injury.  

To determine the disintegration capacity of the shock wave various studies have been carried out, 

however, there is not as large a volume of published studies describing the role of shockwave 
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power as shockwave rate.  The power is another parameter which can be controlled by the 

operator by adjusting the generator voltage. Disintegration capacity is defined as fragmented 

volume in µl/pulse (Forssmann, 2006). The relationship between disintegration capacity and 

effective energy is not as linear as expected and, due to the potential negative side effects of using 

high powered SW on a kidney, the optimum and least destructive (to the surrounding tissues) 

power must be ascertained (Madbouly, Sheir, Elsobky, Eraky, & Kenawy, 2002). The European 

Association of Urology Guidelines on ESWL (Turk et al., 2014) state that starting ESWL using a 

lower energy setting with step-wise power ramping prevents renal injury. This is thought to occur 

from vasoconstriction during treatment (Handa et al., 2009;  Lingeman et al., 2009). However a safe 

maximum power is not given. This is discussed in Section 3.1.4 p.44 Studies regarding power 

ramping. 

Permanent renal damage following ESWL has not been reported to occur, although several studies 

have shown temporary acute functional and morphologic changes immediately after treatment 

(Littleton, Melser, & Kupin, 1988; Tiselius & Chaussy, 2012). For example, shock wave therapy has 

been directly associated with intrarenal haematomas, interstitial oedema, and temporary tubular 

dysfunction (Tiselius & Chaussy, 2012).  

In a paper by Auge and Preminger (2002) the clinical indications and efficacy of ESWL is reviewed 

and the authors discuss the potential adverse events associated with different ESWL machines at 

that time. They found no specific reasons why ESWL should not be used and why it should not 

continue to expand beyond the initial intended usage; indeed, they discussed how the clinical 

efficacy of ESWL was approaching or exceeding that of other modalities of minimally invasive 

surgery. They still advised caution and the need to be aware that high power could cause tissue 

damage.  Although many studies regarding ESWL side effects, especially the long term side effects 

such as the link to developing diabetes mellitus and hypertension (Dhar, Thornton, Karafa, & 

Streem, 2004; Krambeck et al., 2006; Sato et al., 2008) have produced no concrete evidence,  

enough suggestions exist to require caution and further examination. Cardiac premature 

ventricular complexes (PVC) are a well-known side effect of ESWL and, as a result, ECG gated 

treatments are common, especially among younger aged patients and right-sided treatments 

(Bergsdorf, Thueroff, & Chaussy, 2004). Individuals predisposed to developing cardiac dysrhythmia 

(CD) during ESWL need careful ECG monitoring during treatment (Skinner & Norman, 2012). 
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Ventricular Tachycardia (VT)10 during ESWL is a rare but potentially fatal adverse effect of ESWL 

(Skinner & Norman, 2012) and as a result the nature, duration, and treatment of these 

dysrhythmias have been studied (Mathers, Harding, Smeulders, Davies, & Hume-Smith, 2014). 

Evidence shows multifactorial causes of CD during ESWL, such as direct mechanical stimulation of 

the myocardium or a neurohumoral response to treatment or both (Skinner & Norman, 2012). 

Severe, life-threatening CD during treatment is exceedingly rare (Skinner & Norman, 2012). 

However the fact that CD occurs during ESWL and does not progress to significant physiologic 

events, and that they cease promptly with ECG-gating, warrants further investigation into 

understanding these phenomena (Mathers et al., 2014; Skinner & Norman, 2012).  

ECG-gating uses the QRS complex of the heart wave11. Gating ensures the lithotripter senses this 

heart wave through the ECG leads and can be programmed to sense the R or S wave of the QRS 

complex. The shockwave is delivered 20ms after this sensation. Furthermore there is a refractory 

period that prevents further shocks from being delivered within 500 ms of each other.  The reason 

for this delay in subsequent shocks is to avoid an R on T phenomenon causing VT (Shafquat, 2012; 

Skinner & Norman, 2012; Zanetti et al., 1999).   

One question that needs to be answered, however, is whether there is a threshold power which, 

once exceeded, means any increase in power will not affect stone fragmentation.  Rassweiler et al. 

(2011) suggests  that any energy above a threshold  Positive Pressure (P+) plays a minor role in 

stone disintegration, indicating that an overestimation has been placed on P+ in the past 

(Eisenmenger, 2001; Sapozhnikov, Maxwell, MacConaghy, & Bailey, 2007a). Granz and Köhler 

(1992) had previously discovered that focal shock wave energy represents the relevant parameter 

for fragmentation. They proposed Energy dose (Edose) as a method of measuring the power 

delivered to the stone: 

 

                                                             
10 VT is a dysrhythmia (three or more consecutive ventricular ectopic beats) can progress to ventricular 
fibrillation, cardiovascular collapse and death (Bergsdorf et al., 2004; Gravenstein & Peter, 1986; Ötünçtemur 
et al., 2012). 
11 This is the name given to the graphical deflections seen on the ECG and corresponds to the depolarization 
of the left and right ventricles.   
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“Edose(12 mm)=n Eeff(12 mm) where n is the number of applied shocks and 

Eeff(12 mm) is the effective energy—that is, the acoustic energy in the focus per 

shock wave delivered to an area 12 mm in diameter.” (Granz & Köhler, 1992). 

The power index (shock wave intensity × impulses), is often quoted as a dose, but this equation 

does not capture the width of the focal zone (Rassweiler et al., 2011). The concept of effective 

energy dose (Eeff at intensity level × impulses) accounts for spatial dependence of the focal spot. The 

energy delivered to the stone enables comparison of treatment strategies and the effectiveness of 

lithotripters, the success of ESWL at different intensity levels remains the same when the number of 

shots delivers an equivalent energy dose (Rassweiler et al., 2011). 

Caballero and Molinari (2011), describe a numerical approach to fragmenting the kidney stones by 

direct impact.  Their results show that there are two important delimiting levels of energy; an 

activation and a saturation limit.  Their work studied different energy levels applied directly to a 

test stone and they assumed full energy transmission. The first delimiting energy level is the 

minimum energy to be transmitted to the test stone in order to create a significant number of 

fractures. The second, the saturation level, indicates the power level beyond which any higher 

energy supplied would not create significantly more damage to the stone and might start to cause 

problems for a patient. Their activation energy was 0.08J and saturation energy 0.12J, although it 

must be remembered that this energy was directly applied to the stone and was therefore more 

aligned with intracorporeal shock wave lithotripsy.  For ESWL, some energy is dissipated at the 

interface of the therapy head and the patient’s skin and also as the wave propagates through the 

soft tissue structures towards the kidney stone. This is why much research has considered a 

patient’s BMI when discussing ESWL success rates (Takahara et al., 2012; Wiesenthal, Ghiculete, 

Ray, Honey, & Pace, 2011b). The greater the amount of soft tissue the shockwave must travel 

through, the less likely the therapy is to be successful (Olivi, Védrine, Costilles, Boiteux, & Guy, 

2011).  Caballero and Molinari (2011), further commented on a wave reflection phenomenon which 

lasts until the excess of the energy supplied at the impact is dissipated in terms of fracture energy. 

This is described as fragmentation at the rear surface of the urolith where the reflection of the 

compression pulse creates negative or tensile waves that travel backwards through the calculi. This 

is shown in the following video: 
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 http://youtu.be/rpdPw2oyUW0  

 

The blue circle represents the urinary stone and the red pressure wave is the P+ sent from the 

ESWL machine. As you can see, once the wave has passed through the stone, some of the energy 

returns (blue wave). The passage of time (in microseconds (µs)) can be seen at the top of the 

diagram.  

3.1.2 Studies regarding coupling 

Acoustic coupling with “dry” lithotripters is not as efficient as the original HM3 where a water bath 

was used (Becker et al., 1999).  Patient movement can further deteriorate the coupling as air 

pockets can arise (McAteer et al., 2009; Pishchalnikov, Neucks, et al., 2006). Clinically the problem 

of inefficient coupling is three-fold: inefficient coupling necessitates the delivery of more shocks 

than would otherwise be needed to fragment the urolith; the increased shocks increase the 

likelihood of adverse side effects; thirdly, the high variability of coupling, as shown by 

(Pishchalnikov, Neucks, et al., 2006), leads to a high variability in clinical outcomes, and diminishes 

the effectiveness of the treatment. This problem is made more difficult as there is currently no 

clinical way to measure the coupling interface during treatment. Tests have shown that there are 

some practical techniques that can be used to improve the quality of the acoustic coupling (Neucks 

et al., 2008).  These included how the gel is handled, how it is dispensed, how it is applied, and 

whether the gel is applied only to the ESWL machine or also to the patient. Neucks (2008) 

demonstrated that the efficiency of stone fragmentation was significantly superior when gel was 

applied from a large (5l) stock jug than from a smaller squeeze bottle (p<0.006). Inefficient 

coupling was also reduced by using the inflation feature of the ESWL balloon. Reduced handling of 

http://youtu.be/rpdPw2oyUW0
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the gel can also improve the quality of coupling, as can applying the gel as a bolus to the ESWL 

treatment head alone and allowing it to spread upon contact with the patient.  

Although studies had recognized that gas free coupling is essential for optimal energy transmission 

and efficient stone fracture, the fact that the coupling interface remains invisible still posed a 

practical problem in locating and removing air bubbles. In order to observe the coupling area 

during ESWL and continuously monitor the coupling zone in 30 routine treatments, Bohris (2012) 

installed a video camera in the therapy head and observed 30 routine shock wave lithotripsy 

treatments. The machine used was a DoLi SII lithotripter (Dornier MedTech®, Wessling, Germany) 

(Bohris et al., 2012). However, in this case it was not shown to the blinded operator which would 

resemble the standard clinical situation. The authors used three coupling gels, LithoClear®, 

Sonogel® and a custom-made gel of low viscosity. The ratio of air in the relevant coupling area was 

measured. Lithotripter disintegration efficiency was evaluated by in vitro model stone tests at an 

air ratio of 0%, 5%, 10% and 20%. In only 10 of the 30 treatments was a good coupling achieved 

(the authors considered less than 5% of air in the gel to be a good coupling). In eight treatments the 

ratio was greater than 20%. The best coupling conditions (least gas) were achieved with low 

viscosity gel. The mean ± SD number of SW needed for complete fragmentation in the model stone 

tests was 100 ± 4 for bubble-free coupling, and 126 ± 3 for 5%, 151 ± 8 for 10% and 287 ± 5 for 

20% air bubbles. A further advantage with this study was that treatment times were reduced by 

25%.  

A possible limitation of this study is that, as viscosity was the independent variable and the tests 

were not all carried out at the same time, a possible rise or fall in temperature could have 

influenced the viscosity (Doolittle, 1951). The precise dependence of the viscosity of liquids on 

temperature is complicated; however generally speaking, and in everyday working temperatures, a 

rise in temperature will decrease the viscosity of the liquid.  

In a similar study into “dry” lithotripters, Lopez, Chen, Deiling, Iames, and Young (2013) designed a 

coupling interface video camera which was installed in the therapy head of a Dornier Gemini 

lithotripter. This enabled all air bubbles observed in the coupling zone to be removed under visual 

control. The effect of this was tested for one year on treatment results (01/10/12 – 30/09/13) and 

compared to the results obtained in a “blind” coupling mode (01/04/11 – 30/04/12). The results 

showed that removal of air bubbles with the video camera from the coupling area reduced the 
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number of SW required by 25.4% for renal stones and 25.5% for ureteral stones (Lopez et al., 

2013). The energy level was reduced by 23.1% for renal stones and by 22.5% for ureteral stones. 

For renal stones the total applied energy was reduced by 42.9% (Lopez et al., 2013). Lopez 

concluded that controlled air bubble removal with a video camera proved significant in the 

realisation of bubble-free coupling. Bubble-free coupling significantly reduced the total energy 

needed to obtain comparable treatment results. Theoretically this should also lead to a reduced 

incidence and severity of shockwave-induced adverse effects (discussed in Section 3.1.2 p.38) 

(Lopez et al., 2013).  

As mentioned above, an in vitro study published in 2006 (Pishchalnikov, Neucks, et al., 2006) 

explored the effect of air bubbles confined in the coupling interface on the transmission of SW and 

stone fragmentation. Air in the coupling area reduced conduction of acoustic energy to the focal 

zone leading to a decrease in ESWL efficiency for stone fragmentation. They showed a near-linear 

correlation between stone fragmentation and air trapped in the coupling area: when only 2% of the 

coupling area was covered with air bubbles, efficiency of stone fragmentation decreased by 20% to 

40%. This undesirable effect was most noticeable after a coupling-decoupling-recoupling sequence, 

which can happen in the clinical situation after patient movement. Their data also showed that 

uniformity in coupling is hard to achieve. According to the authors this inconsistency in coupling 

quality could also pose a safety hazard: a higher shockwave dose than necessary could be delivered 

when by chance fewer air pockets are present than usual, resulting in conceivable injury to the 

kidney. 

Knowing that gas bubbles at the coupling interface occur and that these hinder the transfer of 

shockwave energy into the body and reduce the effectiveness of the treatment, Li, Williams Jr, 

Pishchalnikov, Liu, and McAteer (2012), explored whether the size and location of gas bubbles 

affect the stone fragmentation.  In their research gas was deliberately introduced in the coupling gel 

between the therapy head and the ‘skin’ of a phantom. Using a fibre-optic probe hydrophone to 

measure acoustic pressures and also to chart the dimensions of the focal zone of the lithotripter the 

effect of different coupling conditions (+/- gas) on stone fragmentation was assessed.  Similar to 

Pishchalnikov, Neucks, et al. (2006), the results showed that stone fragmentation decreased in 

proportion to the area of the gas bubble in the gel. A centrally positioned gas bubble blocking 18% 

of the transmission lowered stone fragmentation by an average of 30% compared to when coupling 

was unobstructed. As expected, the effects on stone fragmentation was greater for gas more 
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centrally located than for more laterally located bubbles. An 18% gas pocket located 2cm off axis 

reduced the fragmentation by 15%. However these off-axis gas pockets could affect the symmetry 

of the acoustic field. This may affect the focal width.  

Other research has been conducted into determining which coupling medium is preferable (Jain & 

Shah, 2007). Ultrasound gel and silicon oil were compared in a 2007 in vivo study. Destruction of 

the uroliths was greater in all cases where the gas had been removed from the coupling medium; 

however, it was significantly greater (p<0.001) when ultrasound gel with no gas bubbles was used.   

3.1.3 Studies regarding power ramping 

Operator technique in ESWL is critically important, and it is promising that simple, practical steps 

can be taken which appear to improve the safety and efficacy of the treatment (Lingeman, 2012).  

In 2010 Lambert et al. published a paper in which they described that an escalating power 

treatment strategy produces better stone comminution than a fixed strategy. The study suggests 

that there may be a protective effect against damage caused by ESWL with an escalating treatment 

strategy (Lambert, Walsh, Moreno, & Gupta, 2010), however the paper does not give suggested 

power levels.  At a similar time Honey, Ray, Ghiculete, and Pace (2010), investigated immediate vs. 

delayed power escalation during ESWL and how efficiency is affected by the energy setting of the 

lithotripter, the consumption level of the electrode, and the rate of shock wave administration. They 

concluded that delayed power escalation might not provide superior stone fragmentation 

compared with conventional, immediate power escalation (Honey et al., 2010). Similarly Berwin et 

al. (2009), writes that it is also extremely important for the operator to increase the power in 

gradual increments to aid the development of pain tolerance without giving any suggested powers. 

This paper assumes that patients are not under a general anaesthetic and caution must be advised 

when comparing these results to any study where the patients have been treated with ESWL under 

a general anaesthetic as there have been studies that show that general anaesthesia is associated 

with a statistically significantly more successful treatment outcome (Grobler, Hayes, Frampton, & 

English, 2014; Sorensen, Chandhoke, Moore, Wolf, & Sarram, 2002).  It is further discussed that 

tolerance has long been identified as a factor influencing successful treatment of renal calculi by 

ESWL. Their retrospective analysis (n=179) of patients who had received their first treatment of a 

solitary kidney stone showed that young women with a normal Body Mass Index (BMI) had a lower 



 

  58 

pain tolerance. It must be noted, however, that this does not include patients who receive general 

anaesthetic sedation for their treatment (Sorensen et al., 2002).   

To investigate the idea that a brief pause (3 minutes) in the delivery of SW shortly after the 

beginning of the ESWL treatment provides a protective effect on the kidney; Handa et al. (2012) 

tested ESWL on pigs with and without this pause. Three ESWL protocols were used that did not 

involve a 3 minute pause in shock delivery (2000 SW at 24kV, 100 SW at 12kV plus a 10 second 

pause followed by 2000 SW at 12kV, and  500 SW plus a 10 second pause followed by 2000 SW at 

24kV).  The shockwave rate was 120/minute and a Dornier HM3 was used for all experiments. 

Renal function was measured before and after ESWL and following ESWL the kidneys were 

examined for ESWL-induced lesions. The data from these studies were compared to similar studies 

which included a 3 minute pause. The primary function of this research was to investigate the 

undesirable effects of ESWL rather than stone fragmentation. If ESWL is linked with adverse 

outcomes, especially the more severe side effects, it would raise concerns about the long term 

safety of ESWL. Therefore these experiments are important, as developing ESWL treatment 

protocols that could reduce or prevent these side effects would help to mitigate these concerns 

(Handa & Evan, 2010; Janetschek et al., 1997; Krambeck et al., 2006; Willis et al., 2006).  

Handa et al. (2012) also showed that a ramped treatment protocol initiates renal protection, 

certainly with regards to mean lesion size and that this reduction was greatest when treatment 

included a 3 minute pause or when using various power- ramping protocols.  

A RCT (n= 50) at an outpatient urology clinic aimed to evaluate the results of conventional and 

ramped ESWL (Demirci et al., 2007). Twenty five patients were treated in each group with no 

differences observed between the two groups as to the localisation of uroliths. No differences were 

shown, either, in the number of ESWL treatments the patients needed for stone clearance. However 

there were slight differences between groups with respect to age (conventional group 39.9 and 

ramped group 41.4 p>0.05) and also stone size (mean stone size for conventional group 0.70+/- 

0.41cm and 0.83 +/- 0.51cm for the ramped group p>0.05). The results were compared eight weeks 

after treatment and the stone free results were significantly higher in the ramped group (stone free 

96% vs 72% p<0.05). No increase in morbidity was shown despite the superior outcome (Demirci 

et al., 2007).  
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3.2 Stone fragmentation outcomes  

Following Chaussy in 1980, over 500,000 ESWL treatments have been reported worldwide. Success 

rates and retreatment rates have ranged from 44 to 90% and from 3 to 30%. See Table 3-1 Stone 

fragmentation outcomes and Table 3-2, p.48 Success rates for second and third generation 

lithotripters, and Table 3-3, p.49 Success rates for second and third generation lithotripters.  

Table 3-1 Stone fragmentation outcomes 

Authors Number of patients Stone free Retreatment 

Chaussy and Schmiedt  (Chaussy & Schmiedt, 

1983) 
4981 90% 12% 8 

Drach (Drach, Dretler, & Fair, 1986) 21122 66% 16% 

Lingeman (Lingerman, Newman, & Mertz, 1986) 9823 72% 20% 

Palfrey (Palfrey, Bultitude, & Challah, 1986) 6544 44% 14% 

Riehle (Riehle et al., 1986) 4675 75% 5% 

Das (Das, Dick, & Bailey, 1987) 10004 85% 4% 

Politis (Politis & Griffith, 1987) 1060 74% 8% 

Mays (Mays, Challah, & Patel, 1988) 9336 45% 4% 

Rigatti (Rigatti, Francesca, & Montorsi, 1989) 25577 72% 20% 

Cass (Cass, 1995) 3121 70% 4% 

Total 13384 70% 14% 

1 Includes 32 patients with ureteral stones 

2 Includes 14% with staghorn stones 

3 Includes 194 ureteral stones 

4 Includes patients with ureteral stones 

5 Includes ureteral stones and staghorn stones 

6 Includes 112 patients with staghorn and 20 patients with ureteral stones 

7 Includes staghorn and ureteral stones but stone free rate only includes renal stones. 

8 Stone free percentage shown indicates clinical status after one or more treatments. 
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The outcomes for second and third generation lithotripters often appear inferior to the original 

HM3 and are listed in Table 3-2 Success rates for second and third generation lithotripters. This 

inferior success rate may in fact relate to more sophisticated imaging systems (such as Computed 

Tomography Urograms (CTU)) which enable more accurate viewing of stone fragments after the 

procedure than a plain radiograph would, and perhaps those treatments labelled as successful prior 

to CTU examinations being commonplace would not be labelled as such now.   

Another possible reason for the inferior success rates could be due to the early success and rapid 

growth of ESWL technology. As mentioned in the Introduction, due to the early success of the ESWL 

procedure there was a rapid uptake of the original Dornier HM3. However this was a large, 

expensive, machine and only suited urology clinics and hospitals with a large urinary stone 

throughput.  The shortcomings included: 

● High capital investment was needed. 

● Large space required to house the machine. 

● Treatments required general anaesthesia. 

● Lower ureter stones were difficult/impossible to treat. 

These issues prompted several companies to manufacture second generation ESWL units. These 

remedied many of the shortcomings: 

● Less capital investment required. 

● Less theatre space needed. 

● Various types of anaesthesia could be considered. 

● Versatile targeting allowed the entire urinary tract to be targeted and treated. 

This is discussed in more detail on p.49.    

Furthermore the second generation machines were constructed to allow the urologists to perform 

auxiliary endourological procedures, such as inserting a urological stent to aid the passage of stone 

fragments (Tailly, 2013). 
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Table 3-2 Success rates for second and third generation lithotripters  

Author Number of patients Stone free Retreatment 

Electrohydraulic    

Graff (Graff, Benkert, Pastor, & Senge, 1989) 265 68% 14% 

Talati (Talati, Shah, & Memon, 1991) 464 73% 46% 1 

Cass (Cass, 1991) 480 64% 6% 

Swanson (Swanson et al., 1992) 281 58% 9% 

Simon (Simon, 1995) 500 75% - 

Elhilali (Elhilali et al., 1995) 169 73% 13% 

Lalak (Lalak, Moussa, Smith, & Tolley, 2002) 467 68% - 

Totals 2626 68.43% 17.6% 

Electromagnetic    

Wilbert (Wilbert et al., 1987) 698 65% 12% 

Clayman (Clayman, McClenn, Garvin, Densted, & 

Andriole, 2009) 
266 71% 7% 

el-Damanhoury (el-Damanhoury, Schärfe, Rüth, 

Roos, & Hohenfellner, 1991) 
2117 65% 12% 

el-Damanhoury (el-Damanhoury et al., 1991) 25 100% 20% 1 

Köhrmann (Köhrmann, Potempa, & Rassweiler, 

1991) 
185 83% 19% 1 

Psihramis (Psihramis, Jewett, Bombardier, 

Caron, & Ryan, 1992) 
1000 52% 19% 

Liston (Liston, Montgomery, Bultitude, & 

Tiptaft, 1992) 
500 78% 32% 1 

Mobley (Mobley, Myers, Grine, Jenkins, & 

Jordan, 1993) 
11516 69% 16% 

Coz (Coz et al., 2000) 828 87% 21% 1 

Total 171135 74.44% 17.56% 
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Table 3-3 Success rates for second and third generation lithotripters  

Author Number of patients Stone free Retreatment 

Piezoelectric    

Vallancien (Vallancien G et al., 1988) 386 74% 14% 

Bowsher (Bowsher, Carter, & Philip, 1989) 398 53% 62% 

Rassweiler (J. Rassweiler et al., 1989) 378 72% 45% 

Miller (Miller et al., 1989) 461 51% - 

Tan (Tan, Tung, & Foo, 1990) 180 64% 40% 1 

Cope (Cope, Middleton, & Smith, 1991) 220 75% 51% 1 

Laugani (Laugani, Grunberger, & Godec, 1991) 600 61% 23% 

Mykulak (Mykulak, Grunberger, & Macchia, 

1992) 
130 57% 21% 

Total 2753 63.38% 36.57% 

 

 

Stone free is considered the gold standard for determining success of ESWL treatment. However 

there is no uniformity in the literature as to what defines a successful treatment. Some studies use 

the term “clinically insignificant fragments” (CIF). However, a number of authors (Osman et al., 

2005; Osman et al., 2013; Rebuck, Macejko, Bhalani, Ramos, & Nadler, 2011; Streem, Yost, & 

Mascha, 1996) have shown that this term is inappropriate as these fragments do not always remain 

clinically insignificant. Streem (1996) studied 160 patients left with CIF (stone fragments less than 

4mm). Only 24% ultimately became stone free. 42% of the patients showed no change and 18% 

actually showed an increased stone burden. Furthermore, 43% of patients experienced an episode 

of renal colic or required intervention. Khaitan (2002) and colleagues report similar findings and as 

a result ESWL outcomes should be reported as either stone free or not (Khaitan et al., 2002).  

These newer machines, despite their ease of use and lower costs, may have proved to be a double-

edged sword, though, and many urologists have experienced and realized that successful stone 
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disintegration does not come automatically. The less desirable consequences which accompanied 

the second generation models were: 

● Some stone centres invested in low cost technology, especially in regards to the imaging. As 

we saw in the previous chapter, without adequate imaging the stone cannot be treated 

successfully. 

● The rapid expansion of the technology resulted in a dilution of clinical experience. 

● Less investment in suitable training of urologists or other staff operating lithotripters. 

● The above resulted in poorer results with ESWL than could have been achieved. 

● Still no developed protocols for the new machines, for instance no suggested power or 

shock rate.  

A number of considerations are necessary for an optimal result (Tiselius & Chaussy, 2012). 

Selection of appropriate treatment variables in terms of shockwave number, power and frequency, 

is an important requirement for accurate disintegration and prevention of complications. Good 

understanding of these factors in addition to the physics of SW is necessary for a successful 

application of this treatment concept. Fragmentation theories are investigated and explained in the 

following section.  

 

3.3 Stone fragmentation theories 

ESWL repeatedly focuses SWs on kidney stones to disintegrate them. Numerous studies have 

attempted to explain the mechanism of stone fragmentation (Chaussy et al., 1980; Rassweiler et al., 

2011; Zhong, Xi, Zhu, Cocks, & Preminger, 1999). The ideal scenario is an ability to exploit the 

difference between the stone and tissue physical properties, in order to make stone fragmentation 

more effective without increasing tissue damage. Initial fragmentation occurs similar to the fracture 

of any brittle object, during a process where cracks begin as a result of stresses generated by 

applied SW. Cracks form in areas where shock wave–induced stress exceeds a critical value 

(Chaussy et al., 1980; Rassweiler et al., 2011). Further disintegration occurs as a result of growth 

and coalescence of these cracks under repetitive loading and unloading (Zhong et al., 1999). Besides 

established mechanisms which detail initial fragmentation-like tear and shearing forces 

(Lokhandwalla & Sturtevant, 2000), spallation (Zhong et al., 1999), cavitation (Crum, 1988), and 

quasi-static squeezing (Eisenmenger, 2001), further insight was gained by the studies of 
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Sapozhnikov et al. (2007a) and Sapozhnikov, Maxwell, MacConaghy, and Bailey (2007b) who 

introduced the theory of dynamic squeezing. These theories are driven by the lithotripter-

generated shock wave and possibly also by cavitation effects in the surrounding fluid 

(Lokhandwalla & Sturtevant, 2000). 

3.3.1 Tear and shear forces 

These are unaligned forces pushing one part of the stone in one direction, and another part of the 

stone in the opposite direction (Nash & Potter, 1998). When the length of the pulse is shorter than 

the stone, then, due to the geometry of the stone surface and its internal structure, the compressive 

phase of the shock wave will produce pressure gradients.  This can result in shear and tensile 

stresses in the stone (Rassweiler et al., 2011). These stresses can fragment the stone (Chaussy et al., 

1980). In this model, shock wave reflection from the stone–water interface, together with pressure 

inversion and cracking off of concrements by the tensile stress of the reflected wave, is emphasised 

(Rassweiler et al., 2011).  

3.3.2 Spalling 

This is a process in which fragments of material (spall) are ejected from the stone due to impact or 

stress. In this context of impact mechanics, it refers to the ejection or vaporization of stone 

fragments from the stone during impact by a shockwave. The fluid of the distal stone surface 

represents an acoustically soft interface, and the leading compressive phase will be reflected as a 

tensile wave. The power of the tensile stress depends on the difference in acoustic impedance and 

the shape of the stone surface. Using high-speed shadowgraphy12 to image stress waves in 

translucent model calculi, Rassweiler et al. (2011) observed maximum tension occurs within the 

distal part, which results in a fracturing about a third of the way from the distal end (Sapozhnikov 

et al., 2007b; Zhong et al., 1999). The mechanism is not unlike freezing water inside a brittle 

material. 

3.3.3 Quasi-static squeezing 

If the focal spot is broader than the stone, then pressure waves travel in the fluid around the stone's 

surface. The front compressive phase can create circular stresses, which act on the stone by quasi-

                                                             
12 Shadowgraphy is an optical method that reveals non-uniformities in transparent media.  
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static squeezing, inducing a binary fragmentation with the first cleavage surfaces parallel or 

perpendicular to the axis of shock wave propagation (Hernandez, 2003; Sapozhnikov et al., 2007b). 

This process assumes that the shock wave velocity in the surrounding fluid is much lower than the 

elastic velocities within the stone (Rassweiler et al., 2011). The longitudinal shock wave moves 

through the stone, leaving the thinner waves in the fluid encircling and squeezing the stone 

(Eisenmenger, 2001; Sapozhnikov et al., 2007b). For squeezing to be effective, the focal width of the 

lithotripter must be wider than the stone; this is an important clinical consideration when choosing 

a lithotripter model. High fragmentation efficiency will be promoted by large focal diameters up to 

20 mm, and it is not necessary for a steep shock front to exist. Data suggest that positive pressure 

(P+) could be reduced to 10–30 MPa—sufficient to overcome fracture thresholds (2–10 MPa) 

(Rassweiler et al., 2011). This hypothesis has started discussions about the importance of larger 

focal sizes and lower pressures compared with small focal sizes with high pressures in large-

aperture sources (Fuchs, Miller, Rassweiler, & Eisenberger, 1984; Rassweiler et al., 1990). 

3.3.4 Cavitation 

In addition to the direct shock wave forces mentioned, cavitation generated by the negative 

pressure phase of SW occurs in the fluid surrounding stones and within micro cracks or cleavage 

interfaces (P-). Numerous individual bubbles form on the surfaces of stones, but the bubbles do not 

remain independent but instead combine to form groups. These groups of bubbles form before 

collapsing to a narrow point of impact (Pishchalnikov et al., 2003). For initial fragmentation, 

cavitation is less relevant as there are fewer micro cracks but becomes increasingly important as 

stone fragments become smaller. Cavitation-induced erosion is especially observed at the anterior 

surface of stones (Crum, 1988; Delius, Brendel, & Heine, 1988). Cavitation damage to stones is 

attributable not to the action of individual bubbles, but to the growth and collapse of bubble 

clusters (Pishchalnikov et al., 2003).  Suppression of cavitation using highly viscous media, hyper 

pressure, or overpressure significantly reduces disintegrative shock wave efficacy (Delius et al., 

1988). Their tests may explain some of the reasons why stones in the common bile duct are more 

difficult to destroy and why, after the initial clinical uses with gastroenterology, ESWL is no longer 

used for gall stones.  As the gall stones in the bile duct are surrounded by tissue, this prevents 

cavitation from destroying them. Identifying the role of cavitation in stone fragmentation has led to 

efforts to improve the action of cavitation bubbles, such as dual SW generated using a piezoelectric 

source fitted to an electrohydraulic system, with an additional discharge circuit to produce the 
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second pulse.  This novel concept and associated technologies may be used to upgrade other 

existing lithotripters and to design new shock wave lithotripters for improved performance and 

safety (Zhou, Cocks, Preminger, & Zhong, 2004b). However, cavitation can be somewhat 

disadvantageous for fragmentation: if the produced gas bubbles last for many seconds, they can 

attenuate the following SW (Pishchalnikov et al., 2003). 

3.3.5 Dynamic squeezing 

In dynamic squeezing, fragmentation occurs by shear waves created inside the stone driven by 

squeezing waves from the lateral stone borders, which in turn are created by the quasi-static 

squeezing forces (Rassweiler et al., 2011). The theory is based on a model that accounts for all 

acoustic phenomena inside and outside of the calculus, including transmission, reflection, mode 

conversion, and diffraction, and shows that peak loading induced in kidney stones is generated by 

constructive interference from shear waves launched from the outer edge of the stone with other 

waves in the stone (Cleveland & Sapozhnikov, 2005). Following predictions from this numerical 

model, Sapozhnikov et al (2005) presented experimental evidence of dynamic squeezing 

(Sapozhnikov et al., 2007b), demonstrating that shear waves initiated at the corners of the stone 

and driven by squeezing waves along the calculus led to the greatest stress, whereas reflected 

longitudinal waves at the posterior surface had less influence. 

3.3.6 Dynamic fatigue 

Stone disruption inflicted by ESWL accumulates during the course of treatment, leading to eventual 

fragmentation of the stone configuration (Lokhandwalla & Sturtevant, 2000). Therefore, stone 

comminution is described as a gradual process consisting of a beginning (based on dynamic 

squeezing), growth (associated with cavitation), and coalescence (because of increasing fragility). 

Once the stone’s molecular structure is destroyed, the mechanical stresses of the shockwave 

produce micro-cracks, which result in sudden break-off of particles of the calculus. This theory 

relates physical stone properties (fracture toughness, acoustic speed, density, void dimensions) to 

shock wave parameters (peak pressure, pulse width, pulse profile) (Köhrmann & Rassweiler, 2011; 

Lokhandwalla & Sturtevant, 2000). 

This chapter described how other researchers have reported their work in order to improve this 

procedure and looked at the theories on stone fragmentation. We have seen that the rate of the SW 
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has been studied and that there is evidence that a slower rate of between 60 and 90 SW/min offers 

a more effective stone fragmentation than a faster rate of 120 SW/min. Although there are far fewer 

reports on the relationship between shock power and stone fragmentation we have also seen that 

the power of the SW can alter the success of the fragmentation of the stone. However, in the clinical 

trials the researchers advised against using very high powers as care must be taken with the kidney 

tissue and surrounding organs when using high powered SWs. Other theories such as SW power 

ramping and gas free coupling were shown to be important when using ESWL.  

The reasons SWs fragment stones were also discussed and the evolution of the ESWL machines 

have been described with reasons for this development. In the following chapter I will discuss my 

own experiments of the modifiable factors that can improve stone fragmentation.   
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Chapter 4 

Research Design 

 

This chapter discusses the approach used for the in vitro experiments used to answer the research 

question. Different machine parameters which can easily be adjusted by the ESWL operator were 

selected and systematically tested to ascertain which provided the most efficient and effective 

fragmentation result. Our own experiments differ from the research summarised in the previous 

chapter as it looks at all the modifiable factors, In particular we tested the effect of SW rate and 

power simultaneously and concentrated on the SW rates and power levels that are commonly used 

in the clinical environment.  

 

4.1 Methodology 

Different authors have measured fragmentation of stones in a variety of ways. For this study an 

empirical method13 was chosen. This approach has a number of attractive features: it can produce 

results that can be summarised, compared, and generalised. A simulation model for the kidney was 

designed. This enabled the systematic scientific study of a quantitative property (fragmentation) 

and its relationships with the parameters studied: mathematical models were then applied to these 

phenomena.  Two methods were available. The first was a kidney harvested from a pig with a 

plaster ball inserted and then fragmented using ESWL. However a problem with this model is that 

the kidney does not have any dynamic drainage as it would if the pig were alive. This would leave 

the plaster fragments in the line of the SW and in so doing absorb some of their power. A more 

realistic model was chosen. This was a mock kidney suspended in water with a wire mesh basket 

used to catch the stone fragments. The drainage is provided by gravity as, when the fragments are 

                                                             
13 Empiricism is a philosophy describing the theory that regards experience as the source of knowledge. 
Empirical methods try to answer research questions by obtaining direct, observable information. This 
information is called data and is used to test ideas (Punch, 2013) 
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broken from the stone, they fall from the basket and are out of the way of the following shocks. 

Although this model will typically promote faster clearance of fragments than a kidney14 draining to 

the ureter it is closer to reality than a non-draining model (Cui, Thomee, Noble, Reynard, & Turney, 

2013; Mustafa, 2012).  

 

4.2  Aim  

According to research findings summarised in the literature (in Chapter 3, p.31) there are some 

conditions of ESWL that may give better outcomes.  

1. Treat at a slower rate. 

2. Use lower powers than previously thought. 

3. Ensure the patient remains motionless throughout the treatment (through 

anaesthesia). 

4. Ensure the coupling medium allows transfer of the shockwave. 

5. Use a power ramping technique. 

The aim of this research was to see which modifiable technical factors give the most efficient stone 

fragmentation. Due to the clinical nature of 3, this aspect is beyond the scope of this thesis.   

 

4.3 Method 

In some recent studies, stone fragmentation is measured in vitro and the fragmentation efficiency is 

defined in terms of the per cent weight loss of the stone following shock wave therapy. The mass of 

the fragments that do not fall through a standardized sieve is used to determine fragmentation 

success (Canseco et al., 2011).  Canseco et al. (2011) use a method that requires a fixed number of 

shocks to be applied to each model stone and the remaining stone mass is weighed to indicate how 

much fragmentation occurred. Our study measured the stones until complete fragmentation had 

occurred, as observational evidence indicates that stone fragmentation does not follow a linear path 

                                                             
14 Within the kidney three angles are prominent.  The inner angle between the axis of the lower pole 
infundibular and ureteropelvic axis (1); the inner angle between the lower pole infundibular axis and main 
axis of pelvis-ureteropelvic (UP) junction point (2) and the inner angle between the lower pole infundibular 
axis and perpendicular line (3).  This model best demonstrates a urolith in either angle two or three.  
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but rather the urolith gets weakened and damaged by the first shocks and fragmented by the latter 

ones. Therefore Canseco et al’s. (2011) method was not suitable for this research.  This observation 

was backed up by our own experiments.  Furthermore despite this research being in vitro, we 

attempted to mimic clinical conditions, therefore complete fragmentation of the urolith is the 

desired result.  

The experimental protocol used in this study was carried out in accordance with Dornier Medtech® 

protocols for calibrating their lithotripter. The initial sample consisted of five hundred and fifty 

three identical calcium sulphate dehydrate (plaster) balls of 300mg each sourced from Dornier, 

Germany which were used to mimic kidney stones. Their constituents were checked at the 

Canterbury Health Laboratory in Christchurch and found to be as described. For a detailed analysis 

of the similarity between the plaster balls and various kidney stones, please see Figure 5-9, p.66. 

Eleven of the stones did not get used due to operator error and a further eight were excluded from 

the analysis due to experimental error15.  

  

                                                             
15 The reason for these exclusions is discussed in detail in the Results chapter.  
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Chapter 5 

Model Stone Test 

 

In the previous chapters we have seen how other authors have reported their findings in both in 

vitro and in vivo studies and looked at the science behind the phenomena. This chapter describes 

the in vitro experiments used in this research.  

 

5.1 Set up 

1. Water circuit of the Lithotripter inspected to check it complied with the Dornier® values 

before performing the Model Stone Test. 

2. One litre of distilled water was boiled ‘whirling’ for five minutes. 

3. Water was cooled fast to 35 0C (by putting the container with the boiling water into another 

container with cold water) 

4. One stone at a time was soaked for 20 minutes in the water. 

5.1.1 Performance of model stone test for rate and power. 

1. Therapy head moved into the treatment position. 

a. The therapy head must be positioned so that it is at 90o to the vertical.  

2. Dornier apparatus is then bolted to the treatment head. See Figure 5-1 Bolts to hold kidney 

apparatus in place, p.60 and Figure 5-2 ESWL head with test kidney bolted to it, p. 60  

3. Ultrasound gel was applied in an even fashion to the coupling bellows. 

a. Gel was inspected visually for bubbles of gas and removed by smearing if necessary. 

4. The test container was filled with the water at 350C (a temperature chosen to mimic the 

condition of the human body (Houdas & Ring, 1982)) See Figure 5-3 Testing apparatus 

being filled with heated water, p.61. 
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5. The basket (silicone mesh16) was screwed into the apparatus (mesh diameter 4mm). See 

Figure 5-4 Mesh basket ready to be screwed into place. p. 61. 

6. One soaked model stone at a time was placed in the basket, ensuring the stone was below 

the water level. See Figure 5-5 Stone left soaking below the water level. p. 62.  

7. The bellows was set to pressure 6 to ensure complete contact with kidney apparatus. 

8. Trigger mode (rate) was set at the following speeds 60, 70, 80, 90, and 100 SW/min17. 

9. Power was set for 40%, 50%, 60%, 70%, and 80% of maximum power, chosen to mimic the 

two clinical extremes. See Table 5-1 Explanation of machine settings for an explanation of 

these percentages. 

10.  5 stones were treated at each power level for each rate. 

11. The shockwave was started and left to run continuously until the fragments of the model 

stone had completely fallen through the basket. See Figure 5-6 Remaining stone fragments 

at conclusion of one stone test. p. 62.  

12. The number of SW which were needed for the complete disintegration of the model stones 

was recorded.  

 
 
 
Table 5-1 Explanation of machine settings 

Shockwave intensity (kV) Machine setting (Power) % 

12 10 

12.8 20 

13.5 30 

14.2 40 

15.1 50 

16 60 

16.9 70 

                                                             
16 It is not thought that the silicone mesh attenuated any shockwave power due to its silicone composition 
being identical to the silicone membrane of the bellows. However, if it did, the effect would have been the 
same for each stone tested.  
17 The rates and power levels were chosen based on the clinical extremes of the scales and what is reported in 
the international literature.  
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17.8 80 

18.9 90 

20 100 

 

 

Figure 5-1 Bolts to hold kidney apparatus in place 
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Figure 5-2 ESWL head with test kidney bolted to it 
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Figure 5-3 Testing apparatus being filled with heated water 

Balloon not inflated.  
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Figure 5-4 Mesh basket ready to be screwed into place. 

 

Figure 5-5 Stone left soaking below the water level. 

Balloon now inflated to 

correct pressure.  

Wire basket containing mock 

kidney stone below the water level.   
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Figure 5-6 Remaining stone fragments at conclusion of one stone test. 

 

5.1.2 Performance of model stone test for power ramping.  

1. Set up procedure shown in 5.1, p.58.  

2. Model Stone Test on p.58 followed. 

3. Steps 1-7 as shown in rate and power tests followed. 

4. Trigger mode set to 100 shocks per minute. 

5. 65 stones treated in this manner to act as a control at power levels 40%, 50%, 60%, 70%, 

and 80%. See Table 5-1: Explanation of machine settings, p.62. 

6. 65 stones treated in a power ramping technique. 

a. Power started at 40% 

b. 100 shocks given 

c. Power increased to 50% for 100 shocks 

d. Power increased in 10% increments for 100 shocks  until power level 80% 

e. Shockwave continued at 80% power until complete stone fragmentation. 

Fragmented stone pieces.  
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7. The number of SWs which were needed for the complete disintegration of the model stones 

was recorded. 

5.1.3 Performance of model stone test for gas in the coupling medium.  

1. Set up procedure shown in Section 5.1, p.58.  

2. Model Stone Test on p.58 followed. 

3. Steps 1-7 as shown in rate and power tests followed. 

4. 72 model stones fragmented in this manner to act as a control. 

5. 20 ml of air deliberately injected into coupling medium. See Figure 5-7: Injection of air into 

coupling gel, p.64. Figure 5-8: View from the top to show visible bubbles of air in gel, p.64 

shows the apparatus sitting on top of the coupling gel with gas bubbles visible.18 

6. 72 model test stones treated with air in the coupling medium. 

7. The number of SWs which were needed for the complete disintegration of the model stones 

was recorded. 

  

                                                             
18 It was observed that occasionally some of the gas migrated out of the gel leaving less than the injected 20ml 
in situ.   
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Figure 5-7 Injection of air into coupling gel. 
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Figure 5-8 View from the top to show visible bubbles of air in gel. 

As discussed, coupling gel is needed between the lithotripter head and the apparatus in order for 

the SW to pass from the lithotripter to the stone without an acoustic barrier.  For all the studies, 

except for the studies where air was deliberately introduced, the coupling gel was visually 

inspected to ensure no air bubbles affected the procedure. Efficacy of ESWL is significantly 

correlated to air bubbles within the coupling gel and can be improved significantly by eliminating 

the bubbles from the coupling medium (Jain & Shah, 2007; Lopez et al., 2013).    

As the entire experiment could not be completed in one session, a calibration plaster stone was 

fragmented at the beginning of each experimental session to ensure the ESWL machine had a 

consistent output.  

The ideal case of a single spherical stone immersed in water was chosen for simplicity. We believe 

that our model is valid because the main objective of our study was to provide a comparison 

between the effects (rate, power, power ramping, and gas bubbles in the coupling medium) on 

stone fragmentation caused by conventional ESWL. 

Revealing the association between the parameters of SW and their ability to fragment stones is the 

first step. The next step needs to include an investigation of the mechanism of the process.  
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Figure 5-9 Analysis of mock stone.   

 

5.1.4 Explanation of Figure 5-9 Analysis of mock stone 

As mentioned before in this document (Classification of stones. Section 2.3, p.21), there are a large 

variety of kidney stones with very different mechanical properties requiring different powers to 

break up. This makes our test stone (KS1) the most suitable type of stone to focus our simulations 

on as it is slightly harder to break than the common forms of kidney stones.   

Radiographic techniques are the main non-invasive method used to determine the composition of 

kidney stones. Dual Energy CT enhances regular CT as the stone graph plots the energy ratio of the 

stone against the known energy ratio of the different compounds. 
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The energy ratio (see numbers in the ROI box) is simply the Hounsfield Unit (HU) density of the 

stone at 100kV over the HU density of the stone at 140kV (There will always be slight differences 

between these two figures due to x-ray photon energy) 

The white slope line (ratio) is the predetermined differentiation between calcified and uric acid 

stones based on a study performed on a large number of known composition stones. 

This chapter has explained how the experiments were conducted and why this particular method 

was chosen. In the following chapter the results of the experiments are presented, which will show 

what modifiable factors can affect the efficiency and effectiveness of ESWL.  
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Chapter 6 

Results  

 

The aim of this thesis is to investigate the effectiveness and efficiency of stone fragmentation using 

ESWL.  

Efficiency and effectiveness of extracorporeal shockwave lithotripsy are described on p.5. But for 

simplicity the effectiveness is described as the least number of shocks needed to cause stone 

fragmentation and the efficiency is the least amount of time needed until stone fragmentation.  

The estimated marginal means of the shock numbers were analyzed as this gave us the mean 

response for each factor, adjusted for any other variables in the model. Estimated marginal means 

is a term used in the Statistical Package for the Social Sciences (SPSS) programme referring to un-

weighted means. This is necessary when comparing means of unequal sample sizes, where it was 

necessary to take into consideration each mean in proportion to its sample size. The reason for the 

different sample size was that, prior to each set of stone tests, one calibration stone was fragmented 

at a fixed rate and power (rate: 100, power 80%). This was to ensure the shockwave produced by 

the generator was identical at the start of each test session.  Therefore more mock stones were 

fragmented at these power and rate settings than any other. As these calibration tests were 

consistent and showed that for the same SW power and rate settings the lithotripter achieved very 

similar fragmentation rates, it was decided to include these results in the analysis as the additional 

tests would reduce the standard error of the mean (SME).  When all the categorical predictors were 

manipulated, these factors remained independent. This is the only situation where the estimated 

marginal means will be the same as the straight means from descriptive statistics. Means were 

compared using a binomial logistic regression analysis that simultaneously tested the effects of the 

number of shocks administered at each shock rate on success.  

Two sets of results are presented for the shock rate and power to show which modifiable machine 

settings can achieve the most effective and efficient urolith fragmentation. The results aim to show 
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which power level and rate should be used in clinical practice to achieve the most effective and 

efficient stone fragmentation differ slightly from one another. The first set (Results with no post hoc 

outliers removed, p.69) includes all test results completed. The second set (Results with outliers 

removed. p.73) excludes eight of the 138 test stones for rate and power as they appeared to be 

outliers. The eight stones excluded had a fragmentation shock result greater than 1000. The mean 

fragmentation shock number was 577.46 with a std. deviation of 248.71 as shown in Figure 6-1. 

The reasons for the outliers are discussed in Section 6.2 p.73. 

 

Figure 6-1 Histogram of all shock results completed for shock rate and shock power.  Frequency refers to the 

number of times a test stone was fragmented at the rate shown. Result refers to the shock number when 

complete fragmentation was achieved.   

6.1 Results with no post hoc outliers removed 

Figure 6-2 shows the relationship between power and the total number of shocks. The rate is 

shown using different colours.  In this analysis it can be seen that at a rates of 70, 80, and 90 

SW/min, the power at which fragmentation occurs with the least number of shocks is 80% power, 



 

  85 

which is not surprising in this model. There is not a statistically significant difference between these 

three rates.  This is the most effective power and rate combination.  

 

 

Figure 6-2 The relationship between power and rate and the total number of shocks needed to fragment the 

test stones. 

 

As shown in Figure 6-3, Relationship between mean number of shocks needed to break the stone 

and rate, p.71 in this experiment model rate has less to do with stone fragmentation than power. 

Although a rate of 80 SW/min does fragment the renal stone with the greatest effectiveness, the 

result is not statistically significant.  
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Figure 6-3 Relationship between mean number of shocks needed to break the stone and rate. These results 

are the mean result of all the test stones and therefore incorporate all power levels tested.  

 

Figure 6-4 shows the relationship between the mean number of shocks required to fragment the 

mock stone and the power of the shocks. As can be seen the higher power settings require fewer 

SWs to fragment the stone. However the relationship is not linear with the decrease in mean 

number of shocks from 70% to 80% power being about a third of that seen for a decrease from 

40% to 50%. This is shown in Figure 6-5 Negative exponential of mean number of shocks required 

for fragmentation and power, p.72. 
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Figure 6-4 The relationship between the mean number of shocks required to fragment the stone and the 

power of the shocks 

 

 

 

Figure 6-5 Negative exponential of mean number of shocks required for fragmentation and power 
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6.2 Results with outliers removed. 

There are two reasons for presenting a second set of results. Firstly, initially this project was solely 

testing the modifiable factors of rate and power. During one or two experiments I noticed that the 

shock number was much greater than in previous tests with the same or similar machine settings. 

This is when I discovered the effect that gas in the coupling medium has on the efficacy of ESWL. 

This led to further tests being conducted on stone fragmentation with or without gas in the 

coupling medium, as described in Section 5.1.3, p. 63.  

Furthermore, often during the experiments of shock rate and shock power the kinetic energy of the 

SW knocked the mock stone out of the direct line of the following waves.  The stone would usually 

roll back to the correct position due to gravity. However occasionally it would remain in the new 

position for a few shocks and even more occasionally it would get stuck there for the duration of the 

treatment. As shockwaves act like other sound waves, the further the mock stone was away from 

the focal zone, the less power the stone would have received, see Inverse square law, p.74. 

Interestingly this can happen in the clinical situation (Steinholt, 2013) where it is estimated that up 

to 50% of SWs miss the target stone due to either stone movement from kinetic energy or 

respiratory motion.  For this reason only the results below 1000 were used for the analysis. This 

excluded eight mock stones.  
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6.2.1 Inverse square law 

A SW like other sound waves behaves in accordance with the inverse square law. This law states 

that the intensity, I, is related to the distance, r, from the source by the relation  

𝐼 ∝  
1

𝑟2
 

 

(The Open University, 1996 p.5.7) 

 

Therefore if a stone was moved out of the correct position, all shockwaves thereafter would only be 

delivered with a decreased effectual power. This resulted in a far greater number of SWs needed for 

stone fragmentation.  

The following graphs are for the test results excluding those eight which were affected by either the 

gas in the coupling gel or the inverse square law power issue.  

 

S = shock wave source 
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As shown in Figure 5-6 the most effective power with which to fragment a mock stone using this 

model is again 80% power and there is no statistically significant difference between a SW rate of 

70, 80, and 90.   

 

Figure 6-6 The relationship between power and rate and the total number of shocks needed to fragment the 

test stones.  

 

Figure 6-7, p.76 shows that in this experimental design, rate has far less to do with stone 

fragmentation than shock power.  I was expecting a greater difference between the 60 and 100 

SW/min results as explained by the shock or compression phase and the rarefaction phase. See 

Figure 1-1 Time pressure graph of a shockwave (Rassweiler et al., 2011), p. 8. Each wave needs 

time to complete both the compression and rarefaction phase in order to provide ideal stone 

fragmentation. If the time is not sufficient to allow both phases of the wave to complete, the 

rarefaction of the second wave affects the compression of the first wave and so on. This effectively 
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reduces the amplitude or power of each SW. However as the most destructive part of the wave is 

the initial P+, the negative pressure of the wave (P-) may have a lesser role than thought, especially 

at higher powers. This adds weight to the theory of a P+ threshold developed by Rassweiler et al. 

(2011) discussed above in Studies regarding power on p.38.  

 

 

Figure 6-7 Relationship between the mean number of shocks needed to fragment the stones and rate. 
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Figure 6-8 Mean number of shocks required to fragment the stone and power of the shocks 

 

Again we can see that in this model, the higher power SWs fragment the mock stones more 

effectively and again the relationship is not linear. See Figure 6-9 Negative exponential graph, p.77 

showing the relationship between power and mean number of shocks. 

 

Figure 6-9 Negative exponential graph showing the relationship between power and mean number of shocks.  
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As can be seen in Figure 6-8, p.76 and Table 6-1 the mean number of shocks needed to fragment the 

stone does not decline in a linear manner, with the decrease from 70 to 80 being about 1/3 of that 

seen from 40-50, so there is a diminishing reduction with increasing power.  

 

Table 6-1 Mean number of shocks needed to fragment the stone 

 

 

Figure 6.10 and Table 6-2, p.78 show the effect on the number of shocks required when a ramping 

technique was used. In these studies tests were completed at a fixed shock rate of 90 SW/min and 

40, 50, 60, 70, and 80% power and then similar tests were completed using a fixed rate. In this 

instance, the power was started at a low level (10%) and every 100 shocks was increased by one 

machine unit (See Table 5-1 Explanation of machine settings, p.59) until either the stone 

fragmented or power level 80% was reached. As expected when using very low power (40%), the 

shocks needed for fragmentation were much greater (22%) than the power ramping tests. 

However, at the other power levels a fixed power level proved to be more effective than ramped 

power. This is likely as a result of the very low powers that the ramped experiments started at and 

the number of shocks used at these low powers. These figures must also be traded against the 

clinical evidence that shows a power ramping technique can help the patient tolerate the procedure 

(unless a general anaesthetic is used, in which case patient compliance is not an issue (Sorensen et 

al., 2002)) and also that protocol initiates renal protection certainly with regards to mean lesion 

size that can develop on the kidney during treatment. This reduction was greatest when treatment 

included a 3 minute pause or when using various power ramping protocols (Handa et al., 2012).  
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Figure 6-10 The effect on the number of shocks required when a ramping technique was used. 

 

Table 6-2. The effect on the number of shocks required when a ramping technique was used. 

Shocks     

Power Mean 

Std. Error of 

Mean 

% relative to 

Ramp 

40 764.7 7.8 -23.12% 

50 616.6 7.7 0.72% 

60 515.9 6.8 16.93% 

70 442.2 6.8 28.80% 

80 385.1 6.8 37.99% 

Rampe

d 621.1 13.1 0.00% 
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Figure 6-11 and Table 6-3 show that having a coupling medium free from gas results in a 22% 

reduction in the number of shocks needed to fragment the stone. In these experiments it was not 

possible to always have exactly the same amount of air in the coupling gel as some would 

occasionally bubble out of the gel; however the binary of gas or no gas provided a considerably 

different result. These results suggest that poor coupling in ESWL acts as a substantial barrier to 

the transmission of shockwave energy to the stone. As stone breakage was sensitive to air pockets 

at the coupling interface it seems reasonable that variability in the quality of coupling could 

contribute to variability in clinical outcomes (Pishchalnikov, Neucks, et al., 2006).  

 

 

Figure 6-11 Difference in the number of shocks needed when the coupling medium (gel) has gas introduced. 

 

Table 6-3 Difference in the number of shocks needed when the coupling medium (gel) has gas introduced.  

Gas In Gel Mean Std. Error of Mean 

No gas 442.2 6.2 

Gas 537.7 21.2 
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Gas worse by 21.60% 

 

As can be seen in Figure 6-12, when time is looked at by itself a rate of 90 and 100 SW/min and 

80% power is the most efficient and Figure 6-13 displays a graph of the time taken to fragment the 

stone at different power levels. We can see here that as the power increases the time decreases 

although this is not a linear decrease.  

 

 

When specifically looking at the efficiency of the SW, the following can be seen: 

 

 

Figure 6-12 Time taken to fragment stone 
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Figure 6-13 Time to fragment the stone in relation to power 

 

Figure 6-14 shows that similar to effectiveness, the efficiency of ESWL improves with higher 

powers and similar again is the non-linear improvement in stone fragmentation with increasing 

power.  

 

Figure 6-14 Time to fragment the stone and rate 
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Figure 6-7, p. 76 showed that a 60 SW/min was the most effective rate to fragment a mock stone 

although the result was not statistically significant. Figure 6-14 shows that despite a rate of 

60SW/min having a greater effectiveness, a rate of 100 SW/min has a greater efficiency.   

Chapter 7 

Discussion 

 

Over the last thirty years various technical improvements in shock wave lithotripsy have been 

introduced by different lithotripter manufacturers. However the overall performance of modern 

shock wave lithotripters has not reached the standard that was set by the original Dornier HM3 

(Gerber, Studer, & Danuser, 2005; Lingeman, Kim, Kuo, McAteer, & Evan, 2003). The fact remains 

that the technical improvements made have led to providing greater user convenience and device 

multi-functionality rather than greater stone fragmentation and less tissue injury in ESWL 

(Lingeman et al., 2003). Therefore, the need for a better understanding of the technical factors that 

can be controlled is clearly warranted in order to use these second and third generation 

lithotripters.  

Research in recent years suggests that stone fragmentation by ESWL is multifaceted and a 

progressive procedure.  A number of forces are at play including stress waves, cavitation and 

squeezing (Zhong, Zhou, Zhu, Cocks, & Preminger, 2003; Zhu, Cocks, Preminger, & Zhong, 2002). 

The experimental design described in this thesis considers all of these factors but cannot, due to its 

in vitro method, assess the effect on tissue injury. Zhu et al. (2002) propose two mechanisms that 

may be responsible for ESWL-induced surrounding tissue injury, namely shear stress (Howard & 

Sturtevant, 1997) and, more importantly, intraluminal cavitation (Zhu et al., 2002). Therefore, a 

rational strategy to improve ESWL technology should be the optimization of these critical factors 

(stress waves and cavitation) for maximal fragmentation gain with minimal side effects. 

Encouragingly, laboratory studies show that tissue damage, such as cavitation, which can form from 

bubbles within the blood, does not readily occur within patent vessels, otherwise ESWL would 

cause vascular damage frequently. The mechanisms of action involved in the effect of shockwave 

rate are different for stone fragmentation and tissue injury. With stone fragmentation, cavitation 
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bubbles collapse on the stone surface and erode fragments that are too small to be affected by 

internal shear stresses (Lingeman et al., 2009).  

There are many ways to improve the stone fragmentation results with ESWL. The modifiable 

technical factors discussed here can facilitate a greater success rate when attention is paid to the 

methods that have been shown to work well. There is no evidence that slowing the shock rate 

improves the effectiveness of the stone fragmentation. There is strong evidence that increasing the 

power of the shockwave increases the fragmentation effectiveness and efficiency, however the 

benefits to a power ramping technique are less clear in vitro. Measures to ensure adequate and 

bubble free coupling, including at a minimum visual inspection before the ESWL treatment is 

started and following any movement by the patient should be used as there is strong evidence to 

show that having gas in the coupling medium reduces the effectiveness of the shockwave.  

 

7.1 Rate 

As shown in Figure 6-7, p.76, a rate of 60 SW/min enhances fragmentation effectiveness at all 

power levels used, but the result is not statistically significant. However from observational 

evidence, the stone fragments appeared smaller and more dust-like at lower rates (60SW/min and 

70SW/min) than the larger sand-like particles produced at the faster rates (90Sw/min and 

100Sw/min). This is likely to lead to enhanced clearance as the smaller fragments can pass more 

easily in the urine. This is consistent with the literature. However Figure 6-14, p.81 shows us that a 

faster rate (100SW/min) can lead to a faster treatment. As discussed in Section 1.2. 

 

7.2 Power 

The higher power levels allow more effective and efficient fragmentation. However as also shown 

the increase in efficiency and effectiveness does not increase in a linear fashion with increasing 

ESWL power. Therefore a power setting of 70% is recommended as international literature 

recommends power levels to be as low as reasonably achievable to prevent tissue damage. 70% is 

an appropriate level due to the fragmentation achieved at this level and the lower increases in 

fragmentation achieved by increasing the power. 
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7.3 Coupling 

Air pockets within the coupling gel dramatically decrease stone fragmentation effectiveness by 

22%. See Figure 6-11 Difference in the number of shocks needed when the coupling medium (gel) 

has gas introduced, p.79. The experiments in this project used 20ml of air injected into the coupling 

gel. In some experiments, some of this gas would bubble out leaving me unsure of how much 

remained. For this reason the studies with gas have a higher std. error than those without gas. 

However of the two categories it was clear that any extra gas in the coupling gel resulted in a 

significantly greater number of shocks needed to fragment the stone. Of all the modifiable factors 

investigated, the gas in the coupling gel has proven to be the most important. This makes sense 

when the graph for the intensity transmission coefficient for an acoustic wave traveling from water 

to another medium with different impedance is viewed, see Figure 7-1 The intensity transmission 

coefficient from water to a second medium, as a second of the impedance of the second medium 

(Smith, 2007), p.84. As shown the transmission from water to tissue (as would occur when the 

shockwave leaves the therapy head) is very efficient, the water to stone transmission is also very 

efficient with between 75% and 95% of the energy transmitted into the kidney stones. However the 

water to air transmission has an extremely small coefficient and less than 0.1% of the energy of a 

shockwave in water will pass into air.  This further establishes the need for great care when using a 

dry lithotripter to ensure that air pockets are removed in the coupling gel.  
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Figure 7-1 The intensity transmission coefficient from water to a second medium, as a second of the 

impedance of the second medium (Smith, 2007) 

 

7.4 Ramping 

Using an in vitro system that mimicked stone fragmentation Zhou, Cocks, Preminger, & Zhong, 

(2004a) exposed mock kidney stones to 1500 shocks at a shock rate of 60 per minute. They 

concluded that to progressively ramp the lithotripter power produced the best overall stone 

fragmentation. This is discordant to my own results, see Figure 6-11 Difference in the number of 

shocks needed when the coupling medium (gel) has gas introduced, p.79. One reason is likely to be 

the extended number of overall shocks they applied to the stones. In my experiments many 

hundred shocks were administered at very low power levels before the ramping technique brought 

the power to a level where treatment might be given clinically. As I used, on average, a third of the 

number of shocks that Zhou et al. (2004a) used, it is likely that they had more shocks delivered at 

the higher powers and therefore achieved greater fragmentation. The clinical need for power 

ramping is discussed by (Maloney et al., 2006) and is beyond the scope of this thesis.  
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The final conclusions are presented in Conclusion and Implications of Research on p.88. 

Recommendations are given from the results above.  

 

7.5 Advantages of this study 

Randomised controlled trials are often presumed to serve as the reference standard to assess 

medical procedures. However, in the early stages of investigation, in vitro studies play an extremely 

useful role. There are benefits in terms of reduced costs, reduced ethical considerations, and a more 

straightforward ability to assess the dependent variables.  

With regard to ethical considerations, there is a universal belief that no unnecessary human testing 

should be undertaken (Niazi, 2014). This experimental design has produced guidelines which can 

be used in clinical practice or tested further, perhaps in the form of an RCT. However as some shock 

rates and powers have been eliminated, the amount of human testing has been reduced. 

Furthermore, having identical test stones of known size and composition reduced the variables 

tested. There were no confounding factors in our study such as age, gender, or stone composition.  

The internal validity, as shown in the similar results for each test level, was high.  The same ESWL 

machine was used for all test stones and only one person completed all the testing. Therefore the 

reliability was excellent. 

Our in vitro model kidney is limited by an artificial environment: in contrast the kidneys in vivo are 

surrounded by fat and tissue, but shockwaves are known to pass through these tissues nearly 

unchanged, see Figure 7-1, and the focal zone area is the area of highest energy density.  

 

7.6 Limitations of this study 

7.6.1 Stone microstructure 

The kidney stone in this model is a sphere of 10mm radius. Although it is known that renal stones 

have a shell-like microstructure (i.e. the microstructure consists of concentric thin layers with 

different mechanical properties), for the present study the stone is assumed to be homogeneous 

and amorphous. The present work has simplified the microstructure of the stone to a homogeneous 
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material.  As mentioned above, uroliths have a shell-like microstructure. The existence of such a 

microstructure which contains components/material properties would introduce internal 

reflection points to the tensile/compression stress waves. In addition to these effects, particles 

within the stone with different stiffness’s would help the crack initiation into the urolith. While 

failure would occur at an earlier time, it is not clear to assess if material heterogeneity would 

reduce or increase the energy absorption capacity of the stone. To this end, the model could be 

improved by incorporating a microstructural shell to the stone.  

7.6.2 Stone shape 

In the presented work KS1 stones are modelled as spherical particles. However, genuine renal 

stones will exhibit different random external shapes which may have some influence on the results. 

In particular, an irregular stone shape might lead to a different initiation and saturation limit values 

although it would not preclude the existence of both limits. 

7.6.3 Stone size 

The present study has considered a fixed stone size, i.e. 10mm, and therefore the values of the 

presented energy levels and shock rates are directly related to this stone size. Although proposing a 

universal scaling law representing the absorbed energy as a function of stone size would be of great 

interest, it was left out of this thesis because some factors complicate the scaling behaviour.  

7.6.4 Lithotripter used 

There are numerous commercial lithotripters available, manufacturers include: Dornier®, Wolf 

Piezolith®, Siemens Lithostar®, Technomed Sonolith®, XiXin XX-ES® (Köhrmann & Rassweiler, 

2011). All of these tests were run on a Dornier Doli II® which has an electromagnetic generator and 

a focal zone of 12mm2.  For lithotripters with a different focal zone areas or different style of 

generator, further research is advised.  
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Chapter 8 

Conclusion and Implications of Research 

 

This study identifies areas for education to improve efficient stone fragmentation guidelines. 

Effective communication of the most up-to-date evidence and current recommendations for ESWL 

will be important in assuring that optimal treatment patterns are followed. The results shown in 

this in vitro study will lead to further research where clinical results can be analysed using the 

guidelines developed here. A major goal of future ESWL research would continue to be optimisation 

of ESWL treatment protocols to achieve superior stone comminution but also include minimal 

tissue injury. This must be closely linked with a cost effectiveness analysis; however, it must be 

remembered that economic analyses don’t always include costs outside the health sector. If poor 

delivery of the ESWL treatment necessitates a patient undertaking many additional sessions, this 

would increase the costs 19 to the individual and their family.  If a health system perspective is taken 

in the economic sense these costs will not be looked at, however if a societal perspective is taken 

then they should be included. It must also be stressed that any pressure to increase efficiency in the 

ESWL setting may lead hospitals to lower effectiveness and therefore an ultimately lower efficiency. 

This must be looked at with more than an econometric model; however this extension is left for 

future research. 

 

8.1 Advance in knowledge 

ESWL is the only non-invasive means to treat uroliths, which makes this technique particularly 

valuable. The severity of the negative effects of ESWL, such as soft tissue injury depends on multiple 

factors and it typically takes thousands of SWs to treat a urolith. Due to the immediate success and 

apparent ease of applying this treatment little has been done to define the limits of ESWL. Patients 

may therefore be receiving more SWs than necessary to remove their stones.  Simultaneous and 

                                                             
19 Costs include pain and suffering, time off work, and transport etc.  
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dedicated application of the ideal ESWL modifiable factors results in a more effective efficient 

fragmentation of the renal stone which is likely to cause less injury and improve stone 

fragmentation.  

This study has shown the following protocol should be adopted in clinical practice if the desired 

result is a more efficient urolith fragmentation. These modifications are easily adopted by the 

operator of the ESWL unit and, if followed, are likely to result in more efficient urolith 

fragmentation.  

● The most effective shockwave rates are 70 - 90 shocks per minute. However the most 

efficient rate is 100 SW/min so, taking both results into consideration, a rate of 90 SW/min 

is recommended.  

● The most effective and efficient power is 80% power. However from the literature it can be 

seen that the higher power shockwaves can cause clinical problems and as shown in 

Section 6.2 p.73, shock power does not increase stone fragmentation in a linear way. 

Therefore the lower of the most advantageous shock rates is advised, 70%.  

● Gas free acoustic coupling between the water cushion of the treatment head and the 

patient’s skin is paramount. This is crucial for effective shock wave transportation. 

● Maintain careful imaging monitoring during the procedure. If the urolith moves from the 

target zone, the treatment should be stopped and re focussed. Movement can occur 

through stone movement and/or patient movement. 

 

8.2 Implications for patient care 

Improving the renal stone fragmentation and lowering the number and duration of further 

treatments or adjunct therapies reduces patient morbidity.   
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Appendix A  

Literature Search Strategy  

 

Search terms (wildcard 
characters such as * also 
used) 

Kidney OR renal OR calyx OR ureter 
Extracorporeal OR shockwave OR shock wave OR 
ESWL OR ESWT 
The related articles function was also used to 
broaden the search and additional studies were 
manually searched in the reference lists of 
retrieved articles.  

Databases searched CINAHL, ProQuest, PubMed, and Science Direct 

Part of journals searched Keywords in abstract and title, subject heading where 

possible  

Years of search 1980-2015 

Language   English  

Types of studies to be 

included 

Randomised controlled trials, observational series, 

experimental studies, case studies, meeting abstracts, 

and reviews 

Inclusion criteria  Studies that included different success rates related to 

changing either the rate, power, or using a power 

ramping technique. 
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Population generalizable to New Zealand 

Exclusion  Studies that evaluated differences in outcomes by non-

surgical factors, including: 

Anaesthesia type 

Imaging type (ultrasound or fluoroscopy) 

Studies that evaluated differences in outcome by 

patient factors, including: 

Age 

Gender 

Race/ethnicity 

 

 

 


