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Abstract

Background and objective

Mathematical models of the cardiovascular system involve parameters that can
be used to monitor cardiovascular state, such as volume status, vessel elastance
and resistance. /IMgif To do so, the model parameters have to be estimated from

data collected at the patients bedside. SUEH/that/ MdAEY /SIS LHBEASNY
T AV AanEY [t ignls/ segé! This work deals with a minimal model of the

cardiovascular system and investigates whether all its parameters G AMig/modeV
can be uniquely determined from clinically available data.

Methods

An error vector f{ldfidlY was built, representing the error between seven clini-

cally available haemodynamic measurements and the corresponding simulated

values. The sensitivity of this error vector to each model parameter was first

analysed, as well as the collinearity between parameters. WL/ g ooy mbdétion/
Then, to assess practical identifiability of the parameters, profile-likelihood

curves were constructed for each Wf/AME/Fé0M model parameterg. WWe/AHBEY
AT ALY T £ NG (OGS A o [P YA A TR [Py Attt

Abbreviations: CVS: Cardiovascular system; B/ A0VALS1L 5560/ IsHd/ XM/ SV : stroke

volume; ICU: intensive care unit; LVEDV: left ventricular end-diastolic volume; LVESV: left
ventricular end-systolic volume.




Results

Four of the seven model parameters //fGRioSetes Vol /oMUt i) sttt/
SAASAIECS CAGOALANGLAT /Y EALALAGE AOAY SRME/ Ay i tantcq/ were shown to be

practically identifiable from the selected data. The remaining three param-
eters are practically non-identifiable. Among these parameters, giWpiiL/Adlve
1E5666é{ one can be decreased as much as possible. The other two parameters/

KON ERY AT ) AR A S BISO XOIAiN/ are inversely correlated, which

prevents their precise estimation.

Conclusions

This work presented the practical identifiability analysis of a minimal cardiovas-
cular system model from a limited amount of clinically available data. ptesénidd/
T/ M /¥t The analysis showed that some of the parameters were practically
non-identifiable, thus preventing the use of the model as a monitoring tool.
SAMBAOM/ AEORH A0 TYe Kot/ S ENtEs ) AAOGLEN ABALROOYGL A AR A Aty
RTS8 itk | A At A AR SOG) / AROE A /Y dtaire The practically non-

identifiable parameters could be made identifiable using more or better quality

data, y/ e/ BEACEIY IAOMEIG.
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1 Introduction

Mathematical models of the cardiovascular system (CVS) can be used with
clinical data to monitor cardiac and circulatory state. To have clinical value,
these models must be patient-specific. Hence, the model parameters have to
be estimated from data such that model simulations represent the individual

patient’s state [20, 37, 28, 10]. PAyMOGOH stiaion moyRoas iy e
SVGLA SRS [T A NG Y A At it PAtRIOYer A/

There are two extreme approaches to CVS modeling. The first deals with
complex three-dimensional finite element models, involving millions of degrees
of freedom [13]. These models can be used to gain understanding on local parts
of the CVS. The second modeling approach deals with lumped-parameter mod-
els [4]. These models represent large sections of the CVS as single elements,
chambers or resistances, for example, and thus involve lumped parameters re-
flecting the global state of a patient.

Because of their lower number of unknown parameters, lumped-parameter
models can be more readily identified from clinical data and in real time [29,
10]. The CVS model presented in this work is a simple lumped-parameter one,
describing the whole CVS using three state equations and seven parameters
(see Figure 1). This model is the simplest possible closed-loop model of the
CVS. Very similar models have been used for precise modelling of ventricular
contraction [5] and study of averaged CVS dynamics [21].

From an experimental point of view, the three-chamber CVS model has been
used to compute total stressed blood volume and use this parameter as an index
of fluid responsiveness [25, 26]. The values of other model parameters, such as
circulatory resistance, ventricular end-systolic elastance and aortic elastance, are
also useful to clinicians, to assess the cardiac and circulatory state. Furthermore,
a nearly identical model has been used to estimate cardiac output in animals
equipped with a left ventricular assist device [33]. Finally, many other models,
more complex, can be seen as extensions of this simplest model [27, 36, 40, 37,
34, 20, 10].

A A4 3 A A AV 4 AR BT A A
e
KON B AR VWG4 TGN KAt YO [ vty \oes MG vy Dt FORmL Y/ ity e atidiag
ARAEY AL ALY YRV LI BO A DAL aAGAY IOAETAL Ol GRStV e/
S0 g SARAYATANGLY AW Rl ATRYEN At ety Wl it e ot Ao ity
A T/ et A A ol fritae/ [29).

1.1 Identifiability analyses

For CVS models to be used as diagnostic tools, their parameters need to be
uniquely identifiable. Determining if a model is identifiable involves investi-
gating if all parameters of this model can be uniquely determined from the
measured set of model outputs. There exist three different types of identifia-
bility analyses, according to whether the data is considered noise-free and/or
continuously sampled.



Structural (also called a priori or theoretical) identifiability analysis consid-
ers the available data to be noise-free and continuously sampled. Hence, there
is an assumption that the output data is ¢BOUMGES//MIIFLEEY Al infinitely
differentiable [41]. Such an analysis thus focuses on the model equations and
structure, and investigates if the relations between the measured outputs and the
parameters allow unique retrieval of the parameters. Structural identifiability
can be assessed using several methods, including differential algebra [1, 14, 16],
state isomorphism [41], and power series expansion [16, 31, 41].

A posteriori (also called sensitivity-based [16]) identifiability analysis con-
siders the data to be noise-free, but sampled at a finite number of time points.
The goal of an a posteriori analysis is to investigate whether the quantity of
experimentally available data is sufficient to uniquely determine all parameters.
The quality of the data is thus irrelevant, and this analysis does not require ex-
perimental data. Methods to test a posterior: identifiability include parameter
sensitivity analysis [16, 3] and parameter correlation analysis [16, 3].

LBy A B DY AL AL TN ATATSIS9 KOS AN Akt g At po et
VST 8 O AL oty VSN LY SIS T K (I AT e s et/
AV fytO AV vt 7Yy | BTl A OHTATAAY /15 & Aoy Litlitinti) Ko
DAGHAGAE et v/

Practical identifiability analysis takes into account the quality of the data,
namely their sampling and the measurement and modeling errors [16, 7]. The
question is thus whether the parameters still can be uniquely determined un-
der real experimental conditions. A practical identifiability analysis requires
actual experimental data. Methods to test for practical identifiability include
Monte Carlo simulations [16, 7] and building the parameters’ profile likelihood
curves [32, 2].

1.2 Goal

This work investigates the usability of the CVS model of interest in intensive
care units (ICUs). However, as will be explained further in detail, available ICU
data is often not continuous, but rather consists in beat-to-beat indices, such as
means or ranges of pressures or volumes during one cardiac cycle.

A structural identifiability analysis of d/géfétA¢/the CVS model of interest has
previously been presented [23]. This analysis was performed using a modified
version of the differential algebra approach, to take into account the beat-to-beat
nature of ICU data. This analysis concluded that the seven model parameters
could be identified from clinically available data, under the assumption that
these data are perfect.

The logical next step is to investigate if such a result remains true when using
real digétél¢ experimentally measured data. Therefore, the goal of this study is
to POVigiH investigate the practical and a posteriori identifiability AHAfF¢S of
the lumped-parameter CVS model of interest, from beat-to-beat ICU data.



2 Methods

2.1 Cardio-vascular system model

Figure 1: Schematic representation of the CVS model.

The minimal lumped-parameter CVS model used is presented in Figure 1. It
consists of three elastic chambers representing the left ventricle (Iv), the aorta
(ao0) and one vena cava (vc). The aorta and the vena cava are described by:

Pao(t) = an VS,ao(t) (1)

Pvc(t) = Evc VS,vc(t)a (2)

where P is pressure, F is elastance and Vg is stressed volume. Stressed volume
represents the part of total volume that contributes to pressure generation [28].
The left ventricle is represented using the description of [38]:

P (t) = Ep e(t) Vs uo(t), ®3)

where Ej, is the maximum or end-systolic elastance, and e(t) is a time-varying
parameter called the driver function. The driver function represents the time-
varying normalised elastance of the left ventricle. It can take different forms,
but for the model to correctly mimic the left ventricular behaviour, the driver
function must be T-periodic, T" being the cardiac period, and range from nearly
0 (during diastole, when the heart is relaxed) to 1 (at end-systole, when the
heart is at its maximum stiffness). Several analytical models for the driver
function have been proposed in the literature [28, 4, 5].

The three chambers are linked by vessel resistances R., R, and R;, respec-
tively representing the circulation, the output valve and the input valve. Flow
Q. through the circulation is described by:

Qc(t) = R;C. (4)



The model assumes that: (i) there is flow through the valves only if the pressure
gradient is positive; and (ii) the flow through an open valve can also be described
by Equation 4, yielding:

Poeo Pl if P (t) > Pry(t)
Qi(t) = )
0 otherwise
w if Plv (t) > Pao<t)
Qo(t) = )

0 otherwise.

Finally, the continuity equation gives the rate at which the volume of the
chambers change:

VS,ZU (t> = Qz(t) - Qo(t)a (7)
VS,ao(t) = Qo(t) - Qc(t)v (8)
VS,vc(t) = Qc(t) - Qi (t) (9)

These equations state that the change of a chamber’s stressed volume, Vs, is
equal to the difference between flows coming into and going out of the chamber.
Summing the previous equation for all model chambers gives:

VS,lv(t) + VS,ao(t) + VS,Uc(t) =0. (10)

Since the CVS model is a closed loop, the flow coming out of a chamber is
the flow going into the next one, which explains why the right-hand side of the
previous equation is zero.

Ve Vs et (11)

Consequently, the total stressed blood volume Vg o+ contained in the system is
a constant model parameter:

VS,lv (t) + VS’,ao(t) + VS,vc(t) = VS7tat~ (12)

For large time scales, Vg o is not necessarily constant. Indeed, total stressed
volume can be modified by sympathetic nervous actions, time-dependent vascu-
lar properties, fluid exchange through the capillaries, haemorrhage, and others
[8, 39]. Equally, clinical treatment can add fluid. However, the total stressed
volume is constant over short and intermediate periods.

Overall, the model has seven parameters (n = 7 components, three elastances
Eiy, Eqo and E,, three resistances R;, R, and R., and Vg 4:) and one (g
time-varying parameter, the driver function e(t). The parameter vector is thus
defined:

pP= (El'u Equo Eye R; Ry R VS,tot)~ (13)

The T-periodic driver function, e(t), was intentionally left out of the parameter
vector. The cardiac period is indeed trivial to obtain from any haemodynamic



signal, and the particular form of the driver function does not matter in the
following specific analysis, as long as it satisfies the criteria introduced in this
section.

Matlab (2014b, MathWorks, Natick, MA) was used to solve model equations
and perform the parameter identification procedures. It was run on a standard
laptop computer.

2.1.1 Simulation

Figure 2 displays the result of a simulation of the CVS model using the param-
eter values given in Table 1. These values were chosen to produce physiological
pressure and volume curves. The simulation displayed in Figure 2 begins during
cardiac filling, so the input valve of the heart is open, while the output valve is
closed. Accordingly, flow through the input valve is positive and proportional to
the pressure difference between the vena cava and the left ventricle, P,.— P,. In
contrast, flow through the output valve is zero because the pressure in the aorta,
P,, is higher than that in the left ventricle, P;,. Consequently, venous stressed
volume, Vg ,., is decreasing, while left ventricular stressed volume, Vg, is in-
creasing. Since the left ventricle is filling, left ventricular pressure, P, gradually
increases.
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Figure 2: Simulation using the parameter values of Table 1. Left: venous (dash-
dotted dark grey line), left ventricular (black line), and arterial (dashed light
grey line) pressures. Right: venous (dash-dotted dark grey line), left ventricular
(black line), and arterial (dashed light grey line) stressed volumes.

At a moment dictated by the driver function, e(t), left ventricular contraction
initiates, causing a rapid rise in left ventricular pressure, which then becomes
larger than the upstream vena cava pressure. The input valve subsequently
closes, marking the end of filling. This closure allows the vena cava to fill,
which translates by a pressure and volume increase. Since the output valve is
still closed, the left ventricular volume remains constant at its end-filling value.

Left ventricular contraction is still going on, meaning that left ventricular
pressure keeps increasing, until it becomes larger than aortic pressure. At this



Table 1: Parameter values for the simulation of the CVS model presented in
Figure 2. In the equation of the driver function, time, ¢, is expressed in seconds
and "mod” denotes the modulo operator.

Parameter (units) Value

Ep, (mmHg/ml) 14

E,, (mmHg/ml) 1.2

E,. (mmHg/ml) 0.2

R; (mmHg s/ml) 0.05

R, (mmHg s/ml) 0.04

R, (mmHg s/ml) 2.0

VS,tot (ml) 250

e(t) (no units) exp [—20 ((t mod 1.1) — 1—21)2]

moment, the output valve opens, marking the beginning of ejection. Blood
flows to the aorta, filling the aorta and emptying the heart. Aortic pressure
subsequently increases, proportionally to the increase in aortic volume.

Aortic pressure, increasing because of filling, soon passes over left ventricular
pressure, which is decreasing because of the drop in left ventricular volume and
because the left ventricle starts relaxing. At this moment, the output valve
closes, marking the end of ejection. The output flow goes back to zero. Since
the input valve is still closed, the left ventricular volume remains constant at
its end-ejection value.

Finally, left ventricular pressure keeps decreasing, until it becomes lower
than the upstream vena cava pressure. At this moment, the input valve opens,
and the cardiac cycle resumes.

Several cardiac cycles may be simulated if desired, thanks to the periodicity
of the driver function. In this work, only steady state simulations are used, and
steady state is assumed to be reached after simulation of 100 cardiac cycles.

2.1.2 Output vector

The m x 1 output vector that is considered in this work is:

maxp Vi, (t) — ming Vi, () SV
7 Jr Vio(t) dt Vi
maxy Py.(t) — ming P, (t) PP,
Yy = % fT Pue(t) dt - Poe (14)
maxy Pyo(t) — ming P,y (t) PP,
% fT Pa?(t) dt Pao
maxrp Pao (t) dPao/dtmaz

In other words, y contains the following seven (m = 7) indices:

e Stroke volume (SV), equal to the range of left ventricular volume during
one cardiac cycle,



e Mean left ventricular volume over one cardiac cycle, Vj,

e Venous pulse pressure (PP,.), equal to the range of vena cava pressure
during one cardiac cycle,

e Mean vena cava pressure over one cardiac cycle, P,

e Aortic pulse pressure (PP,,), equal to the range of aortic pressure during
one cardiac cycle,

e Mean aortic pressure over one cardiac cycle, Py,
e Maximum derivative of aortic pressure over one cardiac cycle, d Py, /dtmaz-

The availability of these measurements in an ICU environment is discussed in
Section 4.1.

These indices are all computed on one cardiac cycle and are thus called
beat-to-beat indices. In this work, they were computed at steady state, during
the last of the 100 simulated cardiac cycles. As an example, the simulation
presented in Figure 2 is associated to the following output vector:

49.82 ml
111.91 ml
7.01 mmHg
ymodel — 10.66 mmHg . (15)
46.41 mmHg
101.72 mmHg
370.29 mmHg/s

2.2 Experimental reference data

Experimental animal data was used [l /BAVADYEL/ JISWIEAYIBHY to investigate
practical identifiability. This data came from measurements on one gfég&tEtA56d
27 kg pig, performed with the approval of the Ethics Commission of for the Use
of Animals at the University of Liege, Belgium.

TVE MK AP MU A ot BRI £/ MDY Y] Y et O
Z%%%gﬂwwﬁ/ﬁﬁ;éﬂ/i/ﬁ//f/ﬁiﬁ/)é/ﬁ/ﬁﬂ%f/ﬁ/f/}ﬁff/d&!ﬂYM&K/MW?H/MQWWWW

The pig was first given a muscle relaxant, sedated and anaesthetised. Me-
chanical ventilation was performed at a positive end-expiratory pressure of
5 cmHs0O. After induction of anaesthesia, the animal’s heart was accessed
through a median sternotomy.

Catheters (Transonic, NY) were positioned to provide continuous recording
of:

e Left ventricular pressure FY/
o Ligtt Yttt and volume Vi),



e Aortic pressure B/,

e Inferior vena cava pressure JPyA1).

For the present analysis, these four measurements were studied over six consec-
utive respiratory cycles, recorded during steady experimental conditions. These
data are displayed in Figure 3.
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Figure 3: Experimental data. Top: aortic (dashed light grey line), left ventric-
ular (black line), and venous (dash-dotted dark grey line) pressures. Bottom:
left ventricular volume.

From these measurements, the 7 components of the output vector were cal-
culated for each cardiac period, as dictated by Equation 14. This procedure
resulted in 16 replicates of the output vector. The 16 versions of the m compo-
nents of the output vector are displayed in Figure 4.
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Figure 4: Components of the output vector, computed on the 16 beats of exper-
imental data. A: mean aortic pressure (broken line) and aortic pulse pressure
(vertical arrows). B: mean vena cava pressure (broken line) and vena cava pulse
pressure (vertical arrows). C: maximum derivative of aortic pressure. D: mean
left ventricular volume (broken line) and left ventricular stroke volume (vertical

arrows).
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The 16 replicates of the output vector were then averaged, thus neutralising

11



the effect of mechanical ventilation on the haemodynamic signals. This process
also allowed the computation of standard errors, o;, for each component of

the measured output vector, y9a® Weatit/heat/ itido. The mean beat-to-beat
indices and their standard errors are summarised in Table 2.

Table 2: Summary of the experimental data.

i Notation (units) Mean, yde*  Standard error, o;
1 SV (ml) 34.83 1.78
2 Vi (ml) 88.89 0.98
3 PP,. (mmHg) 0.91 0.23
4 P,. (mmHg) 13.23 0.20
5 PPa (mmHg) 29.45 0.35
6 Pao (mmHg) 62.71 0.25
7  dPuo/dtmaes (mmHg/s) 169.44 1.41

2.3 Error function

The practical identifiability analysis was carried out using the output set con-
taining the seven beat-to-beat indices. A quadratic error function was built
from this output set, and defined:

-3 (2 "

© g;
i=

we #

SV — SV(p) ) * PPy, —PPuy(p) ) ?
1111188111111 N1 TRk 11111

PP,. — PP,.(p >)2+ Viw — Vio(p )>2

/// 1T R T
- Py — Poe(p)\’

//&// ///Wfﬁ/o///////////// /////7/?‘#//////>//

. dPao/dtmax—dPao(p>/dtm> |

NI TR [ Bt 1111111111911

where tH#/ SLHNE /A4 v 09 (p) contains the simulated outputs, depending on
p. WHe/diitpiits The components y@'® are the measured outputs presented in
Table 2, not depending on p. The denominator of the fraction in Equation 16
is the standard error, o;, related to each output measurement, also presented in
Table 2. Such a formulation of the error function drives the parameter identifi-
cation process towards maximum likelihood parameter values [32, 41].

(17)
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2.4 A posteriori identifiability analysis

The aim of an a posteriori analysis is to know which parameters have the largest
influence on the output vector. This question can be answered using the sensitiv-
ity matrix [16]. The scaled m X n sensitivity matrix, S, contains the derivatives
of the output vector, y, with respect to the vector of model parameters, p [3]:

Oy Ap;

Sij =
J 8])]‘ P=Po SCZ

. (18)

In the previous equation, pg denotes the initial parameter values, Ap; is a mea-
sure of the range of p;, and SC; is a scaling factor for y;. Since no information
is available beforehand on the range of p;, Ap, can be taken as po; [3]. In the
present case of weighted least squares, SC; needs to be taken as o; [3]. In this
work, the derivatives in the sensitivity matrix are computed by central difference
approximation, which is the simplest method [3].

2.4.1 Parameter importance index

To evaluate the sensitivity, J;, of the output vector to the jth parameter, p;,
the following index can be computed [3]:

2.4.2 Collinearity index

Computing the collinearity index allows testing if pairs of parameters exert the
same influence on y. The motivation to perform such an analysis is that, if two
parameters have very similar effects on the error vector, they will not be easily
identifiable together.
For the computation of the collinearity index, the normalised sensitivity
matrix, S, is defined as:
Gy = 2
jv/m
Then, the n submatrices Sj are defined as the m x j matrices containing the
j first columns of S, corresponding to the output sensitivities to the j first
parameters. The principle of the collinearity index is to compute the smallest
eigenvalue, \;, of each of the j x j matrices SJTQJ The index is then defined as:

(20)

1

The larger the index, the more the parameters p; to p; are linearly related.
According to Brun et al. [3], critical values for 7; lie between 5 and 20.

(21)
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2.5 Practical identifiability analysis

The practical identifiability analysis used in this work relies on the framework
described by Raue et al. [32]. As mentioned in the introduction, the other meth-
ods for practical identifiability analysis involve Monte Carlo simulations. The
method of Raue et al. was preferred because of its solid, statistically justified
framework for declaring parameters practically identifiable or not, while Monte
Carlo methods do not provide clear thresholds for practical identifiability [16].
In addition, the method of Raue et al. can easily be applied to the beat-to-beat
data that is available in ICUs.

The method of Raue et al. is described in Appendix A. Therefore, only its
basics will be recalled in this section. The main element of the method is the
profile likelihood functions, ¥ p,, that have to be constructed for each parameter
p;. These functions follow the least steep direction on the surface of the error
function, . If the profile likelihood function of the parameter p; crosses a
pre-defined threshold, the parameter is declared practically identifiable.

2.6 Initial parameter values

Solving the minimisation problems stated in Equations 40 and 41 requires using
a minimisation algorithm, which starts from an initial point, pg, provided by
the user. The closer this initial point is to the optimal parameter value, p*, the
faster the minimisation process.

In addition, the a posteriori analyses are local procedures, because they
depend on the parameter values py at which the sensitivity matrix is computed.
Consequently, for these procedures to be relevant, it is important to choose
initial parameter values that are as close as possible to the optimal ones.

KLY For these two reasons, formulae were derived for precise com-
putation of initial parameter values. Initial parameter values were obtained
using the available data in combination with the model equations presented
in Section 2.1. The derivation of the following approximate formulae is given
detailed in Appendix B.

1. The cardiac period was computed as the mean distance between successive
minima of aortic pressure: T = 1.04 s.

2. The initial value of the circulatory resistance R. was computed as:

P, — P
% = 1.5 mmHg s/ml. (22)

3. Aortic elastance E,, was estimated by fitting the following equation to
aortic pressure during diastole:
an (t - tEE)

Poo(t) = exp (— I ) Poo(ter)- (23)

where tpp denotes the end of ejection, identified as the point at which
left ventricular pressure drops below aortic pressure. The computation
provided E,, = 0.98 mmHg/ml.

R.=T
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4. Left ventricular end-systolic elastance Ej, has been computed as:

= 1.0 mmHg/ml. (24)

The driver function, e(t), was then obtained as:

(o) = P

~ B v V(D) (25)

It was specifically found using measured left ventricular pressure for P,
and left ventricular volume for Vj,. The resulting curve was then ap-
proximated by its Fourier series up to the tenth harmonic. This Fourier
approximation was used to drive the three-chamber model. Figure 5 shows
the experimental driver function and its approximation.

t
o
©

Driver function (no units)

0 0.2 0.4 0.6 0.8 1
Time (s)

Figure 5: Experimental driver function (grey dots) and its Fourier series ap-
proximation (black line). The latter is used to drive the CVS model.

5. Output valve resistance was initialised using:

o dugs (P(®) = Pao(t)) dt
° SV

= 0.0099 mmHg s/ml, (26)

where tpr and tgg denote the beginning and end of ejection, identified
as the points at which aortic pressure crosses left ventricular pressure.

6. Input valve resistance was initialised using:

o _ diar (Pocl) = Pu(t)) ¢
‘o SV

= 0.0030 mmHg s/ml, (27)

where tpp and tpp denote the beginning and end of filling, identified as
the points at which vena cava pressure crosses left ventricular pressure.

15



7. Venous elastance F,. was estimated using:

PP..
Epe =2 S\;° = 0.034 mmHg s/ml. (28)

8. To determine the initial value of Vs ;o¢, the following equation was used:
Pao p’UC

Euo | Eue

Vs,tor & Viv + = 550 ml. (29)

Figure 6 displays a simulation performed using the previously computed initial
parameter values.

80 110 ¢
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= 70 +
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0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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Figure 6: Model simulation using the initial parameter values. Left: venous
(dash-dotted dark grey line), left ventricular (black line), and arterial (dashed
light grey line) pressures. Right: left ventricular volume. For each curve except
left ventricular pressure, the horizontal lines represent the reference mean, and
the vertical arrows represent the reference range. The slope of the oblique, light
grey line is the reference value for dP,,/dtmqz-

3 Results

3.1 Parameter importance index and collinearity index

The sensitivities, ¢;, computed using Equation 19 are displayed in Figure 7.
The parameter to which the output vector, y, is the most sensitive is Vg ;0.
The 2nd to 4th most influential parameters are vena cava elastance, F,., aortic
elastance, F,,, and circulatory resistance, R.. The remaining parameters are,
in order of decreasing sensitivity, left ventricular elastance, Ej,, output valve
resistance, R,, and input valve resistance, R;.

The computed collinearity index, ;, is displayed in Figure 8. As can be
observed, the first six parameters are not strongly collinear with each other.
However, when considering all seven parameters, the collinearity index equals 34,
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Figure 7: Parameter importance indices, d;, calculated from Equation 19.

indicating a strong relationship between the 7th parameter, Vg ;,, and another
one. Analysing the sensitivity matrix reveals that this other parameter is F,..

]
n N w [}
o a1 o o

Parameter collinearity index, ~
s o

o

o

Figure 8: Parameter collinearity index, ;. The dashed lines indicate the max-
imum and minimum critical thresholds reported by Brun et al. [3].

3.2 Optimal parameter values

The optimal parameter values found by solving the parameter identification
problem in Equation 40 are displayed in Table 3, along with their initial values.
The simulation carried out using the optimal parameter values is displayed in
Figure 9 and the corresponding calculated values of the beat-to-beat indices are
displayed in Table 3. The corresponding value of the error is ¢(p*) = 102.99.
As can be seen by GUiifiating observing Table 3, the final errors between
measured and simulated mean arterial pressure, range of arterial pressure, max-
imum derivative of aortic pressure, mean venous pressure and mean ventricular

volume are small (BEAGAY Y/ MY /IH /Y below 8 %). Conversely, the simulated
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Figure 9: Model simulation using the optimal parameter values of Table 3. Left:
venous (dash-dotted dark grey line), left ventricular (black line), and arterial
(dashed light grey line) pressures. Right: left ventricular volume. For each
curve except left ventricular pressure, the horizontal lines represent the reference
mean, and the vertical arrows represent the reference range. The slope of the
oblique, light grey line is the reference value for dP,,/dtmaz-

Table 3: Optimal and initial parameter values, along with corresponding simu-
lated outputs and their references.

Parameter (units) Initial, pg  Optimal, p*

Ej, (mmHg/ml) 1.0 1.1

E,, (mmHg/ml) 0.98 2.2

E,. (mmHg/ml) 0.034 0.023

R; (mmHg s/ml) 0.0030 0.00010

R, (mmHg s/ml) 0.0099 0.11

R, (mmHg s/ml) 1.5 2.5

Vs,tot (ml) 550 760

Output, y (units) Initial Optimal Reference
SV (ml) 29.50 2018 34.83 £ 1.78
Vi, (ml) 80.67 89.90  88.89 +0.98
PP,. (mmHg) 0.85 0.40  0.9140.23
P,. (mmHg) 13.75 14.25  13.23+ 0.20
PP, (mmHg) 19.57 28.89 29.45+0.35
Py, (mmHg) 55.76 62.45  62.71+0.25
dPao/dtmas (mmHg/s) 256.86 169.94  169.44 + 1.41
Objective, ¥ (no units) 5482.7 102.99

SV and range of venous pressure are respectively 42 and 56 % off the measured

value.
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3.3 Profile likelihood functions

Figure 10 presents the profile likelihood function for each of the seven model
parameters. From this figure, the bounds of the confidence intervals on each
parameters can be obtained. More specifically, as dictated by Equation 42, the
two bounds are the parameter values for which the profile likelihood functions
cross the threshold

¢ = h(p*) + Ay = 102.99 + 14.07 = 117.06. (30)

Using this definition, thé/fdlldtiil¢ approximate parameter confidence intervals
can be obtained, as displayed in Table 4.

By 51 10994 0900 pevat ek
Bt 2300 o ok
By A0 PHORB) vtk

(31)
(32)
(33)
T 15 KPR DT A ¥R o (34)
(35)
(36)
(37)

32

33

B 001 PR oyt 35
By 15 [y ) iR 5
Vot /B0 k-

The confidence intervals of the parameters Ej,, F,,, R, and R. are bounded
fitifé. This outcome proves the practical identifiability of these parameters.

36

37

Table 4: Upper and lower bounds of the likelihood-based parameter confidence
intervals. To update
Parameter (units) Lower bound Upper bound

Ei, (mmHg/ml) 1.0 1.1
E.o (mmHg/ml) 1.8 2.7
E,. (mmHg/ml) None 0.070
R; (mmHg s/ml) None 0.054
R, (mmHg s/ml) 0.09 0.13
R, (mmHg s/ml) 2.0 3.1
Vs.tor (ml) 310 None

The profile likelihood for the parameter FE,. has a clear minimum, but flat-
tens for small values of this parameter. Consequently, no lower bound for the
confidence interval of this parameter can be found using the previously described
approach. This observation implies that the parameter F,. is practically non-
identifiable.
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Figure 10: Profile likelihood functions for each of the seven model parameters.
The star denotes the minimum value of the objective function. The horizontal
dashed line denotes the threshold for practical identifiability and the vertical
ones delimit the parameter confidence intervals. To update

The profile likelihood for the parameter R; is always decreasing when this
parameter decreases. Here also, no lower bound for the confidence interval of
this parameter can be computed. Therefore, the parameter R; is practically

non-identifiable.  /IMe/ erey Vox et IOV [&XeW it) eV i) s/ s/ 553/ o/
Tt BRAAGNEIGAY sttt/

The profile likelihood for the parameter Vs ;,+ remains stationary for high
values of this parameter. Consequently, the confidence interval of this parameter
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has no upper bound. This observation indicates the practical non-identifiability
of this parameter.

4 Discussion

4.1 Choice of the output vector

The output vector, y, that was used in this work does not depend on time. The
reason for this choice is twofold. First, the temporal evolution of all signals is
not always available in the ICU, such as for ventricular volumes. Furthermore,
even if haemodynamic monitors used in the ICU display the continuous pressure
curves, these data cannot always be exported [6]. Consequently, only beat-to-
beat indices, such as means and ranges of signals over one cardiac period, are
usually available when using such monitors.

Second, the cardiac and vascular state is not usually assessed using contin-
uous curves. Instead, clinicians use beat-to-beat indices, such as mean arte-
rial pressure, arterial pulse pressure, mean venous pressure, or SV. The out-
put vector used in this study contains seven beat-to-beat indices YHAY/GEY BH

YEAAT) IRV bt/ ) ALl AKEN) KRR EALY /TN TG el etV O Ay

YA NAL Tidic64, whose clinical availability is described in this section.

Fi¥stl SV can clinically be obtained using thermodilution or echocardiogra-
phy [10]. Pironet et al. recently proved it to be a necessary measurement for
identification of lumped-parameter CVS models [24]. This measurement thus
had to be included in the gysilaBlé/ dath output vector. The fact that the stan-
dard error, o1, was large for this measurement can be attributed to two factors:
the low precision of the catheters to measure ventricular volume, and the strong
influence of mechanical ventilation on SV [22], as can be observed in Figure 4.

Mean left ventricular volume, Vj,, was also included in the output vector
used in this study. Its knowledge is intuitively needed for practical identification
of left ventricular end-systolic elastance, Fj,. Otherwise, there is no way of
knowing the location of the pressure-volume loop on the volume axis, which in
turn makes Ej, undetermined. Consequently, Vj, was used in this study, as it
was available from the animal experimental data.

However, V, is not directly available in an ICU setting. An approximation
from available ICU data is thus necessary, and can be obtained as follows.
He¢hitd/ Mean left ventricular volume can be approximated as the mean of left

ventricular end-diastolic, V},(tgp), and end-systolic, Vi, (tgs), volumes:
‘711, ~ 0.5 Wv(tED) + 0.5 Wv(tES)' (38)

Since SV is defined as the difference between V, (tgp) and Vi, (tgs), the previous
equation can also be written:

Vie = Viy(tgp) — 0.5 SV. (39)
DSUE [y /il | AONR MAal [EN BEADY] eIy o fdétinéd The remaining unknown

volume, V},(tgp), can be obtained using echocardiography [10] or approximated
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from the measurement of global end-diastolic volume provided by cardiovascular
monitoring devices (/IO AmeY [30].

JEMYd), Systemic arterial pressure, P,,(t), can be obtained using an arterial
line. This measurement allows the computation of Pu,, PPao, dPuo/dtmas (as
explained by Equation 14), tgr, tgr, tgg, tgr, and T, which are all needed for
parameter identification. The value of dP,,/dt e, was included in the output
vector because it is an index of contractility [17] and has been linked to identifi-

ability of the output valve resistance [12]. OV, IS/ WHER ] MELodineg/thg
UL e e s s e o

Fourth, central venous pressure, P,.(t), is usually provided by a central
venous line. Its mean, P,., and AMiplitiide range, PP,., can then easily be
obtained.

Finally, practical determination of the driver function, e(t), requires simul-
taneous measurements of left and right ventricular pressures and volumes at
different afterload levels. These measurements are not generally made in a clin-
ical setting. However, the driver function has been shown to be relatively similar
for all human hearts [35]. This makes a priori generic driver functions a sensible
assumption, which suppresses the requirement for precise determination of this
function.

4.2 Practically identifiable parameters

TG/ Rt/ O V) Gontidoned ekl o i el ot et /e sttty
00 ey KVALKAAY B8y 6 RRAAN Y ALt O RS DY ebontoe TGS sy At i/ o
SRHYTYSVOMAGHS LAY A/ 6 SIS RN O e v EXARCAROMY A0 ALY Dt ey /
LAY A Tt Y AOARIATIS NLERNTey Sty Attt W /it fony Nmieesty/ L/
SRR OB AALOHY AL/ BN IR g1 T A0 Bt Vs e hes gttt
1At/ e AR EXVACAAOY 4 NPT ROAAGIAS Y AR A/ LA A/ Y IR

This study showed that parameters Ej,, F.,, R. and R, from the three-
chamber CVS model are practically identifiable. They can thus be used to
assess a patient’s cardio-vascular status.

The left ventricular end-systolic elastance, Fy,, is an index of left ventricular
contractility. However, because of the model assumption that left ventricular
unstressed volume is zero, in other words, Vs;, = Vj,, this index is different
from the widely used end-systolic elastance introduced by Suga and Sagawa [38].
While the latter requires recording left ventricular pressure and volume during
changes in preload or afterload, the former can be computed from measurements
available in the ICU, which represents an important advantage.

Parameters F,, and R. can be assimilated to the parameters of a two-
element windkessel model [42]. Such a model has been used to assess arterial
elastance and resistance for more than 100 years [42].

Finally, the parameter R, represents the flow resistance of the output valve
of the left ventricle. Therefore, R, can be used to assess the status of this valve,
from data available in the ICU.
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4.3 Practical non-identifiability of R;

As shown in Figure 10, the lower the parameter R;, the lower the value of
the error function. The main reason for this observation is MHKEA/ ) MW/ /TAY
that simulated P, is too high, compared to its reference value, as can be seen
in Table 3. WY IAOYE SIOMAGY F70d s PN [ORRetn el /a) ot/ il
R, This error is linked to the fact that reference vena cava pressure is very
close to reference left ventricular pressure during diastole, as can be seen in
Figure 3. Such a situation can be physiological, as the whole right circulation
is located between the two points of measurement, inferior vena cava and left
ventricle. However, the right circulation is not included in the model, and
a vena cava pressure close to left ventricular pressure hinders cardiac filling.
Consequently, for the simulated left ventricle to fill correctly, the parameter
identification process tried to decrease R; as much as possible.

The valve parameter R; has previously been shown to be difficult to identify
with precision in another study performed on the same CVS model [25]. J

AROUMEH IYGOY] AT UL Kl ¢/ Ot RO A DM SESGN AN G Lt e sl
LU VAL ey [R50 1Y R TARAA) A1) A fte il PO e AELARAKY | ¢

DA A#tEY/ In addition, a sensitivity analysis on d/4ik4MaMhét an 11-chamber
CVS model also showed the firy ihpilf input valve parameter to have a weak

influence on the model outputs [9], as was also the case in this work.
To avoid dividing by values close to zero in the simulations performed in this
work, a numerical lower bound had to be set for the parameter R;. This bound

was chosen to be 10 mmHg s/ml. [IH/WAY St/ A/ 1 /7] O 0k (ORI §/
TARAAN A6 RS IADLE Y f Yoty AN o Y9/ AT 77 Aty et/

The practical non-identifiability of the parameter R; does not hinder the clin-
ical use of the model. Indeed, as previously mentioned, this resistance lumps
together the whole right circulation, from the tricuspid to the mitral valves. Re-
lating changes in this parameter to actual physiological changes is thus difficult.

4.4 Practical non-identifiability of E,. and Vs

The fact that the profile likelihood for Vg ;o (respectively E,,.) remains station-
ary for high (respectively low) values of this parameter comes from a correlation
between Vs 1ot and E,.. This correlation was already mentioned in Section 3.1
and is presented in Figure 11. The imposed values of Vg, are displayed hori-
zontally, and the value of F,. after solving the minimisation problem in Equa-
tion 41 is displayed vertically. The five other parameters also vary during the
minimisation process.

The reason for this correlation is that Vs ;. can be increased arbitrarily if
the venous elastance is decreased accordingly so that the venous chamber stores
enough blood. This case results in the same values for the model outputs, except
the amplitude of the venous pressure curve, PP,,.. For example, Figure 12 shows
seven simulations of the three-chamber CV'S model using parameter values along

the flat portion of the profile likelihood for Vs ... I/ DALAMIELENYS/ M etl/ Y
TRV 31 TG V5 ik YDA T/ 0 T LA 35 A A T KA g fo ity The
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Figure 11: Correlation between the imposed values of Vgio: and the corre-
sponding identified values of E,. after solving the minimisation problem in
Equation 41. To update.

venous elastance @f/thé/ It/ Galitil/ MG Moo was decreased to compensate for

the larger Vg 4o, thus resulting in the same mean venous pressure P,. The Loy
simulations of Figure 12 are thus extremely similar, the only visible difference
being the venous volume curve and the amplitude of the venous pressure curve,
hence the lack of identifiability.

Table 5: Balytietets Ny I i RGN, OF e/ Mt o harabdt/ N3 modey

sl i) e/ 2/
VIrasietly sy N/l Niltig/2
/) I /I
BN g iily/ /1151 /1IN
Hib (otiaa iy /115811 /I
HAL G 0 /1 RE4 11102911/
/e st/ /1Ry 111005/
T4/ BLE 1) 1/ R0A ) /110
TEE S 1171111/ 1B
VIl Atth) | 01111/ o

) A RO O TN BT

Theoretically speaking, the information about the amplitude of the venous
pressure curve included in the error vector should allow the method to dis-
tinguish between the two cases. However, in the data used in this work and
presented in Table 2, this amplitude is very low compared to the other pressure
signals, and its measurement error is high. Consequently, inconsistencies in the
amplitude of the venous pressure influenced the error vector very little. As a
result, using such data, the parameters are practically non-identifiable. It is
expected that larger values of PP, could solve this issue. Access to the second
differing output, Vs .., is practically impossible, because it does not correspond
to an actual physical volume.
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Figure 12: Superimposed time courses of the model variables for several pa-
rameter values following the profile likelihood of Vs tot. The horizontal lines
represent the reference mean, and the vertical arrows represent the reference
range. The slope of the oblique line is the reference value for dP,,/dt 0

The practical non-identifiability of Vg ., could prevent the use of this pa-
rameter as an index of fluid responsiveness. Consequently, the strength of the
correlation between E,. and Vg, should first be assessed before trying to
identify the clinically important parameter Vs:.t. As previously mentioned,
this correlation is expected to be lower if the amplitude of PP, is higher than
in the present study. If the correlation remains strong, F,. can be kept at its
initial value, but the resulting identified value of Vs, has to be interpreted
with this assumption in mind.

ARV A RN A A TG AR Ay pasta e oy (e DG AROAMAG O
0 131 A0 ST A [N [AT00 b b ATV Y A e GOV O PG ifiAg
LY [ OARYAG L ARG OO Y AL OO e 1Y ettt e i Aoy
T AR Bl ALY 15 K DA/ S0t 10 AR A YO VA G Y A el i/

4.5 Comment on structural identifiability

The method developed by Raue et al. and used in this work allows determi-
nation of practically non-identifiable parameters as those which have infinite
confidence intervals. Interestingly, this method may also evidence structurally
non-identifiable parameters. Structurally non-identifiable parameters are linked
by a perfect correlation so that every change in one parameter can be exactly
compensated by a change in another parameter. This situation results in a
uniformly flat profile likelihood curve [32].

As can be observed in Figure 10, none of the profile likelihood curves was
uniformly flat, implying that no structurally non-identifiable parameters have
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been detected. A previous study on the same model using an alternative analy-
sis methodology has confirmed the absence of any structurally non-identifiable
parameter from the same dataset [25]. However, the fact that no structurally
non-identifiable parameters were detected does not prove structural identifiabil-
ity of the model. Proving the structural identifiability of the model requires a
mathematical demonstration [24].

4.6 Precision of the initial values

To evaluate the quality of Equations 22 to 29 used to compute the initial pa-
rameter values, the initial total relative error between reference and identified
parameters was assessed using Table 3. Its value ranges from 5 to 2894 % My/tdy
2VYJf). Interestingly, the largest error was related to the non-identifiable valve
parameter, R;. The second largest error is related to the second valve param-
eter, R,, and amounts to 91 % §/lk. The high degree of error of the initial
values provided by Equations 26 and 27 has previously been observed [29].

If these largest errors are not considered, the initial error on the remaining
five parameters Ejy, Fqo, Eye, Re and Vg o ranges from 5 to 55 % MY/t 6614,
indicating good precision for Equations 22, 23, 24, 28, and 29 providing suitable
starting points.

4.7 Limitations

The results discussed in this study only apply to the CVS model presented in
Figure 1. If a different model is investigated, the analysis should be repeated.
In addition, the data used in this work comes from a single porcine experiment.
Although porcine models are considered a close match for human hemodynam-
ics, the finding of this analysis must be confirmed in a broad cohort of critically
ill human patients. In particular, Docherty et al. found differing levels of prac-
tical identifiability depending on the patient state [7]. However, to do so, the
analysis can easily be transposed to other models and data sets.

Like any other model, the minimal CVS model used in this study represents
an approximation of the reality. Such simplifications are necessary to ensure
identifiability of all the model parameters with readily available data. The
mismatch between the model and the reality has only a small effect when using
the model for monitoring cardiac and vascular state. However, predicting the
effects of treatment may potentially cause larger errors because of unmodelled
dynamics, such as reflex actions for example.

5 Conclusion
This work investigated the practical identifiability of the parameters of a three-

chamber CVS model, from clinically available data. Elastances of the heart and
aorta, as well as output #ip)it valve and circulatory resistance are all practically
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identifiable from the data used. These parameters are important for clinicians,
as they contain the essential information about the cardiac and circulatory state.

The resistance of the input ittt valve was found to be practically non-
identifiable from the data used. If no supplementary data is available, this
parameter has to remain constant and left out of the parameter identification
process. A formula has previously been proposed to approximate the value of
this parameter from clinically available data [29]. If the value of this parameter
needs to be precisely known, knowing the flow through the input Hiltpt/ valve,
for instance using echocardiography, can solve the problem.

The total stressed blood volume parameter, Vg o, and the vena cava elas-
tance, F,., were also found to be practically non-identifiable from the data
used. This situation is due to a correlation between Vg, and E,.. This cor-
relation is stronger if the range of vena cava pressure is small, which was the
case in this work. To identify the clinically important parameter Vs ;. with
the three-chamber model, investigators should first assess the importance of the
aforementioned correlation.
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A Practical identifiability analysis

The practical identifiability analysis performed in this work was based on the
methodology introduced by Raue et al. [32]. The necessary details are recalled
in the following sections.

A.1 Profile likelihood

The first step of the practical identifiability analysis following the method of
Raue et al. is the computation of the profile likelihood function, 1 py,, for each
parameter p;. To compute this function, one first solves the standard parameter
identification problem:

p* = argmin ¥(p). (10)

That is, one needs to find the parameter vector p* that minimises the error
function, ¢, of Equation 16.

Then, knowing the vector p*, the n profile likelihood functions can be cal-
culated for each of the n model parameters, p;, as [32]

YL (pi) = ming(p), with j € {1,...,n}\{i} (41)

where p; is a priori fixed at a value different, but close, to its optimal value p;.
For example, 1.1p}.
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The optimisation is therefore performed on the remaining n — 1 parameters.
The procedure is then repeated for another different value of p;, such as 1.2p7,
as much as necessary to create a function of p;. The resulting profile likelihood
function helps to detect if the 1 surface is sufficiently steep across all directions
to allow practical identifiability.

Matlab was used to carry out the parameter identification procedures. It was
run on a standard laptop computer. Parameter identification was performed
using the nonlinear simplex method of Nelder and Mead [19], starting from the
previously derived initial parameter values.

A.2 Likelihood-based confidence intervals

A confidence interval for a parameter at a level of confidence 1 — « is a set
that contains the true value of the parameter with a probability greater than
1 — « [18, 32]. Raue et al. present two approaches for computing confidence
intervals: asymptotic and likelihood-based [32]. These authors recommend the
use of likelihood-based confidence intervals when the amount of experimental

data is low.
The likelihood-based 1 — « confidence interval of the parameter p; is the

interval [32]:
{pi | YpL(pi) —¥(P*) < Au} (42)

where A, is a threshold depending on the desired confidence level o. In other
words, the confidence interval on p; is the set of p; values for which the pro-
file likelihood is lower than the optimum value of the error function, plus a

given threshold. JVHie/KOUNGOMASAROA I 1] 1 EOMBAGAOG LYY O at ey sttt
Zﬁ%%%ﬁ/W#W#W/W/WW/W#WMWMW/é//ﬁtﬁb%ﬂiﬂz&//#ﬂafﬁé/ﬂ/ﬂ)/dﬂ

The threshold A, can be determined using the fact that ¥pr (p;) — ¥ (p*)
follows a x? distribution [15]. Consequently, to determine if ¢py (p;) is signifi-
cantly different from 1 (p*) at a level of confidence «, A, must be taken as the
100(1 — «)th percentile of the x? distribution. Pointwise confidence intervals
can be determined by using a x? distribution with 1 degree of freedom. Simul-
taneous confidence intervals can be determined by using a x? distribution with
n 7 degrees of freedom [32], where n // is the number of parameters W/ tH¢/MModey
W AAHY.

In the present problem, n = 7 and « is chosen to be 5 %. Consequently,
for pointwise confidence intervals, A, is equal to the 95th percentile of the 2
distribution with 1 degree of freedom, or 3.84 [18]. For simultaneous confidence
intervals, A, is the 95th percentile of the y? distribution with 7 degrees of
freedom, or 14.07. For increased robustness, and to account for potential un-
derestimation of the measurement errors, simultaneous confidence intervals are
used in this work.
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A.3 Detection of identifiability from the profile likelihood

Using the previously described approach, three situations can be detected:
structurally non-identifiable parameters, practically non-identifiable parameters
and practically identifiable parameters [32]. First, if the profile likelihood of a
parameter is uniformly flat, this parameter can be stated as structurally non-
identifiable. Indeed, an uniformly flat profile likelihood for one parameter means
that, whatever the value of the parameter, an optimal error value, ¢ (p*), can
be retrieved by varying the other parameters. There consequently exists a func-
tional relation between some of the parameters [32], causing their structural
non-identifiability.

The profile likelihood of a structurally identifiable parameter p; is not flat
and has a clear minimum at p}. For a parameter to be practically identifi-
able, its profile likelihood function must be steep enough, so that it crosses
the A, threshold for values of the parameter higher and lower than is optimal
value. According to Equation 42, this situation results in a finite confidence
interval for the parameter. If the profile likelihood function of a parameter is
not steep enough to cross the A, threshold for values of the parameter higher
and lower than its optimal value, this parameter can be said to be practically
non-identifiable. Consequently, a structurally non-identifiable parameter is also
practically non-identifiable.

B Derivation of the initial parameter values

B.1 Input valve resistance, R;
The combination of Equations 5 and 7 during filling (Q, = 0) gives:

Vsao(r) = D000, (43)

Integrating this equation from beginning (tpr) to end (¢gr) of filling gives:

"EE (P (t) — P
Vsylv(tEF) . Vs’lv(tBF) _ tsr ( vc(t;{. lv(t)) dt. (44)
(2
Since Vg 1, (tpr) is the maximum of Vg, during a cardiac cycle, and Vg, (tgr),
its minimum, the left-hand side of the previous equation equals SV. Therefore,
one obtains Equation 27. This equation can be graphically interpreted by stating
that the area between venous and cardiac pressures during filling is equal to the
product of SV and R;.

B.2 Output valve resistance, R,
The combination of Equations 6 and 7 during ejection, when @; = 0, reads:

_ F)lv(t) - Rzo(t) )

Vs,o(t) = R

(45)
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Integrating this equation during ejection, from tgg to tgg, gives:

t
o (Pro(t) — Pao(t)) dt
VS,lv(tEE) — VS,Z’U(tBE) — _ftBE i .

(46)

Because Vg, (tpg) is the maximum value of Vg, and Vg, (tgg), its minimum,
the left-hand side is equal to —SV. Rearranging terms yields Equation 26.
The graphical interpretation of Equation 26 implies that the area between left
ventricular and aortic pressures during ejection is equal to SV times R,.

B.3 Circulatory resistance, R,

The circulatory resistance can be exactly obtained using Equation 4, integrated
over one cardiac cycle:

Sy (Paolt) = Poc(t) At Poy— P
foT Que(t) dt fOT Que(t) dt

where P,, and P,. are mean aortic and vena cava pressures. The integral of the
circulatory flow is equal to the blood volume going through the output valve
during ejection. In turn, this volume is equal to the change of cardiac volume
during ejection, SV. Therefore, Equation 22 is obtained.

R.= T, (47)

B.4 Left ventricular end-systolic elastance, E,

Equation 3 can be written as:

Plv (t)
= Fy, e(t). 48
Ve ~ 2 (t) (48)
Taking the maximum of this equation over one cardiac cycle gives:
P, (t
max Vsllv((g) = mng(ElU e(t)) = Ep max e(t) = Ejyp. (49)

Equations 24 and 25 are obtained assuming that that left ventricular un-
stressed volume is zero, meaning that Vs, = Vj,. This approximation is jus-
tified in this work, because Ej, need not be precisely estimated. Indeed, in
the data used in this work, preload and afterload do not vary. Consequently,
the points of end-systole do not move, and the exact slope of the end-systolic
pressure-volume relationship is not important.

B.5 Aortic elastance, E,,

During diastole, volume change in the aorta is described by the combination of
Equations 4 and 8:
Poo(t) — Pye(t)

VS,(L() (t) - R

(50)
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If P,. is neglected with respect to P,, and Equation 1 is used, one gets:

) an V ao t
Vs,aolt) ~ TS’()- (51)

Solving this ordinary differential equation for Vg ,,(t) yields:

an (t - tEE)

Vs.a0(t) = exp (— 7

)VS,ao(tEE)a (52)

where tgp denotes the end of ejection. Multiplying both sides of Equation 52
by E,, yields Equation 23.

B.6 Vena cava elastance, F,.
Equation 9 during systole, when @; = 0, reads:

VS,vc(t) = Qc(t) (53)
Circulatory flow is assumed to be constant and equal to its mean value, thus:

sV

VS,vc(t) ~ T

(54)
Integrating this equation from beginning, tps to end, tgg, of systole gives:

SV
Vswe(tes) — Vswe(tBs) = ?(tES —tBs). (55)

Multiplying both sides by E,. and using Equation 2 gives:

A\
tgs _tBS)- (56)

P’uc(tES) - Pvc(tBS> ~ Evc?(

Finally, assuming Pyc(tps) — Poe(tps) ~ PPy and tps—tps = T/2, one obtains
Equation 28.

B.7 Total stressed volume, Vs,

Equation 12 is averaged on one cardiac cycle, giving:
VS,lv + VS,aa + VS,’UC = VS,tot~ (57)

Then, Equations 1 and 2 can also be averaged, yielding Equation 29.
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