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Abstract

How can we rigorously prove that an algorithm does what we think it does? Logically
verifying programs is very important to industry. Floyd-Hoare Logic (or Hoare Logic
for short) is a set of rules that describe a type of valid reasoning for sequential program
verification. Many different attempts have been made to extend Hoare Logic for concurrent
program verification. We combine ideas from a few of these extensions to formalise a
verification framework for specific classes of parallel programs. A new proof rule to deal
with the semantics of mesh algorithms is proposed within the verification framework. We
use the framework and mesh proof rule to verify the correctness of Sung Bae’s parallel
algorithm for the maximum subarray problem.
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1 Introduction

This chapter presents a brief overview of relevant research into concurrent Hoare Logic,
the research objectives and an outline and justification of the research undertaken.

1.1 Background
Floyd-Hoare logic (or Hoare logic for short) is a set of rules that describe valid reasoning
in sequential program verification. It was developed in the late 1960’s by Floyd[10] (1967)
and then by Hoare[11] (1969). The core idea is to formalise the way the state space of
a program changes as the program is executed. Hoare had a desire1 that his work be
extended to verifying non-sequential programs too.

Since then Hoare logic has been extended to reason about many programming lan-
guages and semantic interpretations. Extensions in popular high level languages have been
formalised (Java[14],C++[17] and C#[21]). The main roadblock in the extension of Hoare
logic to parallel programs is the combinatorial explosion faced from analysing the order
of execution. Hoare[12], Lamport[16] and Milner[19][20] manage this by reasoning about
communicating sequential processes (CSP) instead of generalised parallel programs. Ow-
icki and Gries[22] use the idea of critical sections to manage interference and minimise
the effects combinatorial explosion. An approach by Stark[23] based on Owiki and Gries’s
method minimises the potential orders of execution by setting up a rely/guarantee frame-
work in which relationships between processes are formalised. Takaoka[24] uses Hoare logic
on generalised parallel programs using directed graphs and assertion matrices.

1.2 Project Objectives
The core objectives of the project are:

• To formalise and modify an existing framework to verify concurrent programs using
Hoare logic.

• To formally verify Bae’s parallel maximum subarray algorithm2 using the formal
framework.

1Hoare expressed the desire that others expand on his verification framework at the end of his celebrated
paper:“An axiomatic basis for computer programming”[11].

2Bae’s parallel maximum subarray algorithm appears as Algorithm 38 in his PhD thesis[3].
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The first objective involves both exploring existing framework and developing rules for
semantics not covered in the existing framework. The defined framework should be well
suited to verifying mesh algorithms (as this is what we will use it for). It would be desirable
if the approach were also general enough to be useful in verifying other algorithms.

The second objective is to use the formal framework to prove the partial correctness
(correct but may or may not terminate) of Algorithm 1 (Bae’s parallel maximum subarray
algorithm). The key component of this objective is to treat the algorithm formally, using
Hoare logic to reason about the semantics of mesh algorithms.

1.3 Justification
Verification of Bae’s parallel maximum subarray algorithm (known also as Algorithm 1
for this thesis) has been previously given in two sources: Bae[3] and Weddell[25]. Bae’s
verification relied on finding invariants and providing an informal (with regard to program
semantics) mathematical argument as to how the solution propagates. This style of veri-
fication relies on assumptions of how the program affects variables that are not formally
verified. The verification in Weddell[25] is formal with regard to program semantics. It pro-
vides a summary3 of parts of the proof without details. Restrictive assumptions are made
about the order of execution in each parallel process (perfect synchronisation is assumed).

A proof of Algorithm 1 based on formal semantics and without restrictive assumptions
would be useful in increasing confidence of its correctness. Algorithm 1 is one of the fastest
maximum subarray algorithms of its type and scales well[3]. Weddell[25] argues it will be
of use in radio and optical astronomy. It is therefore plausible that an increased confidence
in its correctness would be useful in an applied setting also.

1.4 Report Outline
To have a formal framework to prove the partial correctness of mesh algorithms, we need to
first define sequential Hoare logic. This is done in Chapter 2. We define the programming
language used in this thesis and introduce Hoare logic. The axioms and rules for reasoning
are also given in this chapter. This chapter is concluded with a discussion of the soundness
and completeness of Hoare logic.

In Chapter 3 we formalise an approach for extending Hoare logic to concurrent seman-
tics. The extension is consistent with the framework provided by the Chapter 2. We also
discuss a graph theoretical approach to dealing with parallel semantics and how synchro-
nisation can be simulated.

We use Chapter 4 to formalise the syntax and semantics of mesh algorithms. This
formality is needed for the partial correctness proof of Alogrithm 1, which is presented
at the end of the chapter. Many intermediate results are needed for the verification. We
present the proof in a top down manner, with the low level Lemmas appearing at the end
of the chapter.

3Takaoka has expanded parts the proof since the publication of [25].



1.4. REPORT OUTLINE 6

We conclude in Chapter 5. The more contentious notation used is summarised in
Appendix A.



2 Hoare Logic Framework

Sequential Hoare logic is discussed in this chapter. With the exception of notation, we
use the original concepts proposed by Floyd[10] and Hoare[11]. In Section 2.1 we define
the programming language used in this thesis. The remaining sections are devoted to
introducing Hoare logic. Section 2.2 gives the fundamental structure of Hoare logic and
presents two basic results. The axioms and rules for reasoning are given in Section 2.3.
In Section 2.4 we present several useful results which we use in subsequent chapters. The
chapter is concluded with Section 2.5 in which we discuss the soundness and completeness
of Hoare logic.

2.1 Commands
Definition 1. A command C is a syntactically correct statement of a programming lan-
guage that changes the program state when executed.

In this thesis we assume that program state is completely determined by the value of
each variable in the program. The underlying logic we use is first-order logic1 (sometimes
called first-order predicate calculus) with an appropriate domain of discourse (usually pro-
gram variables or integers depending on context). The programming language for this
thesis is standard pseudocode WHILE -langauge defined below (and by Bergstra[6]).

Definition 2. Let V be a variable and E be a term in first-order logic. An assignment
command

V := E

assigns the value of E to the variable V .

Definition 3. Let B be a quantifier free statement in first-order logic. Let C be a com-
mand. A while command

WHILE B DO C

checks whether B holds then executes C until B no longer holds. The statement B is
known as a boolean check.

1Blass and Gurevich[7] justify this choice but also advocate exploration of other potential logics.
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Definition 4. Let B be a statement in first-order logic. Let C1 and C2 be commands. A
strong conditional command

IF B THEN C1 ELSE C2

executes C1 if B holds and C2 if B does not.
A weak conditional command

IF B THEN C1

executes C1 if B holds. The statement B is known as a boolean check.

Definition 5. Let C1, C2 . . . Cn be commands. A composition command

BEGIN C1;C2; . . . Cn; END

sequentially executes the commands C1, C2 . . . Cn.

Definition 6. Let C be a command and i, n be some variables not modified by C. A for
loop command

FOR i := 1 . . . n DO C

sequentially iterates through the assignments i := 1 . . . n and executes C after each assign-
ment.

In Chapters 3 and 4 we define more commands to deal with concurrency.

2.2 Hoare Triple
Definition 7. Let P and Q be statements in first-order logic. Let C be a command. A
Hoare triple has syntax2

{P} C {Q}
If P holds directly before the execution of C and C finishes executing then Q holds. The
first statement P is called the precondition and the concluding statement Q the postcon-
dition.

The Hoare triple is the core feature of Hoare logic. It allows us to rigorously define
the expected behavior of a program. It is important to note that we only define partial
correctness of a program; i.e. termination of execution cannot be guaranteed.

Proposition 8. Let P1, P2, Q be statements in first-order logic. Let C be a command.
Then

{P1} C {Q} {P2} C {Q}
{P1 ∨ P2} C {Q}

2Hoare’s[11] original notation for the triple was: P {C} Q. This was changed to the current form
(presumably) to be more consistent with set theory notation.
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Proof. Assume {P1 ∨ P2} C {Q} does not hold. Then there exists a program state such
that P1∨P2 holds directly before execution of C and Q does not hold after execution. But
P1 ∨ P2 implies P1 or P2 holds. Assume, with out loss of generality, P1 holds. Then there
exists a program state such that P1 holds directly before execution and Q does not hold
after execution. Contradicting the premise. Therefore {P1 ∨ P2} C {Q} .

Proposition 9. Let P1, P2, Q be statements in first-order logic. Let C be a command.
Then

{P} C {Q1} {P} C {Q2}
{P} C {Q1 ∧Q2}

Proof. Directly from the premises and definition 7, if P holds and the program finishes
execution then both Q1 and Q2 must hold. Hence {P} C {Q1 ∧Q2} .

2.3 Hoare Logic Axioms
Let P , P1, P2, Q, Q1, Q2, B and R be statements in first-order logic. Let V be a variable
and E be a term in first-order logic. Let C, C1, C2 be commands. With these assignments
in mind we consider the Axioms and rules of inference of Hoare logic.

Axiom 1 (Null Rule).
{P} {P}

Axiom 2 (Assignment Rule).

{P [E/V ]} V := E {P}

Axiom 3 (Strong Conditional Rule).

{P ∧B} C1 {Q} {P ∧ ¬B} C2 {Q}
{P} IF B THEN C1 ELSE C2 {Q}

Axiom 4 (Weak Conditional Rule).

{P ∧B} C {Q} P ∧ ¬B → Q

{P} IF B THEN C {Q}

Axiom 5 (While Rule).

{P ∧B} C {P}
{P} WHILE B DO C {P ∧ ¬B}

Axiom 6 (Compound Rule).



2.4. BASIC PROPERTIES 10

{P} C1 {R} {R} C2 {Q}
{P} BEGIN C1;C2 END {Q}

Axiom 7 (Precondition Strengthening).

P → R {R} C {Q}
{P} C {Q}

Axiom 8 (Postcondition Weakening).

{P} C {R} R→ Q

{P} C {Q}

Remark 10. Strictly speaking Axiom 7 and Axiom 8 are not axioms as they can be shown
directly from the definition of the Hoare triple. We include them as axioms as this is the
typical presentation[16][15][2].

Axiom 9 (For Rule). Let n be a positive integer. Let Pi be a sequence of conditions with
i ∈ {0, 1, 2, . . . n}. Then

∀i ∈ {1, 2, 3, . . . n} {Pi−1} k := i;C {Pi}
{P0} FOR k := 1 . . . n DO C {Pn}

Remark 11. We can give a formal justification of the previous rule. By sequencing rule
(Axiom 6), assignment rule (Axiom 2) and premises we have

{P0} k := 1;C; k := 2;C; . . . k := n;C {Pn}

. Which is semantically equivalent to

{P0} FOR k := 1 . . . n DO C {Pn}

.

For the remaining sections and chapters if it is obvious from the context whether some-
thing is a command, statement, variable or expression we omit the formal declaration.

2.4 Basic Properties
Proposition 12 (And Rule). Let P1, P2, Q1, Q2 be statements in first-order logic. Let C
be a command. Then

{P1} C {Q1} {P2} C {Q2}
{P1 ∧ P2} C {Q1 ∧Q2}
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Proof. By the first premise and precondition strengthening (Axiom 7) {P1 ∧ P2} C {Q1} .
Also by the second premise and precondition strengthening (Axiom 7) {P1 ∧ P2} C {Q2} .
Hence by Proposition 9

{P1 ∧ P2} C {Q1 ∧Q2}

Proposition 13 (Or Rule). Let P1, P2, Q1, Q2 be statements in first-order logic. Let C
be a command. Then

{P1} C {Q1} {P2} C {Q2}
{P1 ∨ P2} C {Q1 ∨Q2}

Proof. By the first premise and postcondition weakening (Axiom 8) {P1} C {Q1 ∨Q2} .
Also by the second premise and postcondition weakening (Axiom 8) {P2} C {Q1 ∨Q2} .
Hence by Proposition 8

{P1 ∨ P2} C {Q1 ∨Q2}

Proposition 14. Let a command C be

BEGIN

M := E1;
IF E2 > M DO M := E2;
IF E3 > M DO M := E3;
. . .
IF En > M DO M := En;
END

Then
{True} C {M = MAX E∈{E1,E2,...En}E}

Proof. When n = 1, by the assignment rule (Axiom 2)

{M = M} C {M = E1}

and the result holds.
Assume

{True} C {M = MAX E∈{E1,E2,...Ek}E}
holds.

When n = k+1 ifEk+1 < M andM = MAX E∈{E1,E2,...Ek}E thenM = MAX E∈{E1,E2,...Ek+1}E.
Furthermore

{Ek+1 = MAX E∈{E1,E2,...Ek+1}E}M := Ek+1; {M = MAX E∈{E1,E2,...Ek+1}E}

by the assignment rule (Axiom 2).

M = MAX E∈{E1,E2,...Ek}E ∧ Ek+1 > M → Ek+1 = MAX E∈{E1,E2,...Ek+1}E
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so by previous result and precondition strengthening (Axiom 7)

{M = MAX E∈{E1,E2,...Ek}E ∧ Ek+1 > M}M := Ek+1; {M = MAX E∈{E1,E2,...Ek+1}E}

Hence by the weak conditional rule (Axiom 4)

{M = MAX E∈{E1,E2,...Ek}E} C {M = MAX E∈{E1,E2,...Ek+1}E}

and by the sequencing rule (Axiom 6) and induction hypothesis

{True} C {M = MAX E∈{E1,E2,...En}E}

Corollary 15. Let a command C be

BEGIN

m := E1;
IF E2 < m DO m := E2;
IF E3 < m DO m := E3;
. . .
IF En < m DO m := En;
END

Then
{True} C {m = MIN E∈{E1,E2,...En}E}

The proof of Corollary 15 is omitted as it is effectively the same as the proof of Propo-
sition 14.

Remark 16. In both Proposition 14 and Corollary 15 we may omit the first lines of the
commands and replace E1 with the variable in question (M or m respectively).

2.5 Soundness and Completeness
A logic is given credibility if it can never prove anything that is not true and can prove
everything that is true (within the domain the logic is defined for).

Definition 17. A Hoare logic3 is sound if every Hoare triple that can be proven is true
(by semantic meaning of a Hoare Triple).

Definition 18. A Hoare logic is complete if every Hoare triple that is true can be proven.

3We say a Hoare logic as opposed to just Hoare logic. We do this as the choices of programming
language, underlying logic and Hoare style rules can make Hoare Logics behave very differently from
eachother.
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In 1978 Cook[8] proved the completeness and soundness of a typical Hoare logic. A
sound and complete underlying logic and a ALGOL-like language was used for the proof.
Since then Apt[2][1] has summarised soundness and completeness of many other Hoare
logics (including nodeterministic Hoare logic).

A Hoare logic cannot be complete if the underlying logic is incomplete. This is very
relevant as Peano arithmetic and ZFC are the main ways we reason about integers and are
incomplete.



3 Parallel Hoare Logic

In this chapter we formalise an approach for extending Hoare logic to concurrent semantics
(Section 3.1). The extension is consistent with the framework provided by the previous
chapter. In Section 3.2 we informally discuss how synchronisation of parallel processes can
be simulated with no specific synchronisation semantics. We present a simplified version
of the graph theoretic approach of Takaoka[24] in 3.3. Section 3.4 is concerned with other
approaches to parallel extensions of Hoare logic and the way they interact with the graph
theoretical approach.

3.1 Preliminaries
In this thesis we consider concurrent execution as multiple commands simultaneously ex-
ecuting. We make no assumptions about the relative order in which they execute. We do
however assume that each assignment and boolean check in each command is atomic. This
means no variable can simultaneously be assigned a value and referenced by any command.
Except for local or auxiliary variables, all variables are assessable from any concurrently
executing command.

Definition 19. Let C be a command. A local variable V in C is a variable such that no
other command (outside C) may reference V . We refer to C as the territory for the local
variable V .

Remark 20. In light of Definition 19 we may even have two or more local variables in a
program state with the same label. To quash ambiguity we must define when we are using
such local variables and ensure none have overlapping territory.

Definition 21. Let {C1, C2 . . . Cn} be a set of commands. A cobegin command

COBEGIN C1||C2 . . . ||Cn COEND

concurrently executes each member of {C1, C2 . . . Cn}. The cobegin command does not stop
execution unless(/until) each process terminates. The set of commands {C1, C2 . . . Cn} are
the concurrent commands of the cobegin command.

Remark 22. In Definition 21 all the subscripts on the commands (including n) are not
program variables. They are therefore not accessible from the program. They are simply
part of the labels for the concurrent commands.

14
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Definition 23. Let C be a cobegin command. A shared variable V in C is a variable such
that V is assigned a value in a concurrent command of C and V is referenced (i.e. assigned
or read) by at least one other concurrent command of C.

Definition 24. Let C be a cobegin command. An interference point of C is a boolean
check or an assignment statement that uses a shared variable.

Remark 25. Without interference reasoning about parallel programs is very similar to
reasoning about sequential programs. It is therefore a key goal of concurrent Hoare logic
to manage interference to simplify the verification process.

3.2 Synchronisation
We don’t support specific synchronisation procedures in the pseudocode WHILE -langauge
we present for this thesis. However, a slight synchronisation can be simulated using multiple
cobegin statements.

Example 26. Consider the following COBEGIN command:

COBEGIN

Cmix Cmix Cmix
Cbake || Cmix || Cwait
Cwait Cice Ceat
Ceat Ceat

COEND
Suppose we want to ensure all concurrent commands wait for each other to finish Cmix

before continuing. Suppose also that we wish Cbake to finish execution before Cice begins
execution. Lastly, suppose Ceat should not begin execution untill all other processes have
finished. Instead of using formal synchronisation procedures for the concurrent commands,
we may rewrite the cobegin command as:
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COBEGIN

Cmix || Cmix || Cmix
Cmix
COEND

COBEGIN

Cbake || Cwait
COEND

COBEGIN

Cwait || Cice
COEND

COBEGIN

Ceat || Ceat || Ceat
COEND

3.3 Program Graphs
A more formal treatment of the concepts in this section can be found in Takaoka[24].

Definition 27. Let C be the COBEGIN command:

COBEGIN C1||C2 . . . ||Cn COEND

Let A = {a1 . . . an} and B = {b1 . . . bn} be sets of control points for C1 . . . Cn. We say A is
connected to B if there exists an atomic action (assignment, boolean check) in a Ci such
that:

• Directly before the execution of the action each Ci is at control point ai.

• Directly before the execution of the action each Ci is at control point bi.

We denote A being connected to B by: C(A,B).

Definition 28. Let C be the COBEGIN command:

COBEGIN C1||C2 . . . ||Cn COEND

Let Ai be the set of control points (any gap between atomic statements) in each Ci. A
program graph G = (V,E) is a directed graph with vertex set V and edge set E such that:

V = A1 × A2 × . . . An

E = {(A,B) ∈ V 2 : C(A,B)}
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Remark 29. A program graph’s vertices may be thought of as the program’s current point
of execution. Edges may be thought of as the atomic actions that, when executed, can
progress a control point. A path from the initial set of control points to the final set of
control points can be thought of as an execution of the whole program.

Definition 30. Let C be the COBEGIN command:

COBEGIN C1||C2 . . . ||Cn COEND

Let G be a program graph for C. We associate an condition Pα to each vertex α =
{a1, a2 . . . an} in G. For each edge e in G let Ce be the action associated with e. For a
given set of vertex conditions G is a proof graph for C if for each edge e = (α, β) in G:

{Pα} Ce {Pβ}

Remark 31. For a boolean check B, the edge failing that check gets associated with the
action ¬B.

Remark 32. For Definition 30 we have to have a way of verifying Hoare triples for boolean
checks. As boolean checks make no changes to the program state space we treat them in
the underlying logic. This means if B is a boolean check:

{P} B {Q} ⇔ P ∧B → Q

Remark 33. If C is a command and G is a graph associated with C. Suppose G is a
provable graph and the condition P is associated with the initial control points. Suppose
also, that the condition Q is associated with the final control points. Then

{P} C {Q}

That is if we have a provable graph then we have partial correctness. We are not equipped
with the preliminaries to prove this result so we instead treat it as an informal axiom.

Example 34. Let C be the following COBEGIN command:
COBEGIN

WHILE x < y DO || WHILE x < y DO

x := x+ 1; y := y − 1;
COEND

A proof graph for C is given in Figure 3.1

3.4 Program Graphs Revisited
There has been a considerable amount of research into proving concurrent program correct-
ness by reasoning about interference. Owicki and Gries[22] use critical sections to manage
interference. They require that each variables which may cause interference be declared
at the start of each critical section. Lamport[16] and Milner[19][20] use communication
between local processors to minimise interference. We may combine these ideas with the
graphical approach from the previous section. We do this by only considering interference
points instead of all control points.
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Figure 3.1: Proof graph for Example 34.
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1,1 1,2

2,1 2,2

x:=1; while x<10 do x:=x+1; y=x+w

y:=y+1 y:=y+1

x:=1; while x<10 do x:=x+1; y=x+w

3,1 3,2
x:=1; while x<10 do x:=x+1; y=x+w

z:=2;
z:=w+z
y:=z+y

z:=2;
z:=w+z
y:=z+y

Figure 3.2: Interference graph for Example 35.

Example 35. Let C be the parallel command
COBEGIN

x := 1 y := y + 1
WHILE x < 10 DO || z := 2
x := x+ 1 z := w + z
y := x+ w y := z + y

COEND
An interference graph for the previous command is given in Figure 3.2. By the former

program graph definition (Definition 28) this program would have 12 or more vertices.



4 Mesh Hoare Logic

In this chapter we formalise the syntax and semantics of mesh algorithms (Section 4.1). We
also present a partial corectness proof of Sung Bae’s parallel maximum subarray algorithm
(Algorithm 1). The algorithm is presented in a similar way as by Bae[3]. It has some subtle
differences to the versions of the same algorithm presented by Weddell[25] and the earlier
Bae[5] (the update operation is split into two parts). Section 4.2 contains the final proof
rules required for the verification and Section 4.3 contains the proof of partial correctness.

4.1 Mesh Algorithms
Definition 36. Let I be some countable index set (of any dimension). Let A be a sequence
of variables indexed by I. We call A an array. For each i ∈ I we call the variable A[i] an
array variable. If I is multidimensional we index the elements of A by the components of
the vectors in I.

Remark 37. In this thesis we assume that array variables can not index arrays. We make
this assumption so we can treat array variables with the same axioms as other types of
variables. Justification for such an assumption is given by the examples in [18].

Definition 38. Let C be a command and I be some countable index set (of any dimension)
not modified by C. An indexed cobegin command

COBEGIN ||i∈IC COEND

concurrently executes C for each value of i. Each value of i is a local variable in C labeled
as i (Remark 20). If i is a vector (i.e. the index set was multidimensional), then the
components of i are also local variables in C.

Remark 39. Let I = {i0, i1 . . . in} be a countable index set. Informally the semantics in
Definition 38 can be thought of as:

COBEGIN i := i0;C||i := i1;C|| . . . ||i := in;C COEND

With each assignment to i being for a local variable i. In Remark 20 we discussed conditions
where this ambiguity is acceptable although we do not give a formal syntax for local variable
name sharing.

20
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Definition 40. Let the indexed cobegin commandM be given by COBEGIN ||(i,j)∈IC COEND

where I is some countable 2−dimensional index set of integers. M is a mesh algorithm if
it has the following two properties:

• Assignments in C are made only to array variables indexed by (i, j).

• References to array variables in C must have index in the range (i±1, j) or (i, j±1).

• M has no shared variables (Definition 23).

Remark 41. Informally we may think of each concurrent command in M from Definition
40 as a mesh cell. Then, each array variable indexed by (i, j) are the cell’s registers. The
second condition ensures arrays only access registers in adjacent cells. Mesh algorithms
are interference free by the last property.

Example 42. Algorithm 1 is Bae’s parallel mesh algorithm for the maximum subarray
problem. Given a 2−Dimensional array a the algorithm finds the sum of the maximum
rectangular subarray in a. Informally we make think of the solution as propagating down
and to the right in the mesh of cells. After a certain number of steps the solution is in the
bottom right cell.

Let I be the index set given by {1, 2, 3, . . . N} for some positive integer N . Under these
conditions Algorithm 1 contains three mesh algorithms. The mesh algorithm on lines 1−12
of Algorithm 1 is known as the setup phase. The two other mesh algorithms (lines 15− 26
and 27-34) are embedded in a for loop and can be thought of as update operations.

To verify these COBEGIN commands are mesh algorithms, we observe only array vari-
ables with index (i, j) are in assignment statements. Only array variables in the the same
cell or adjacent are referenced. Lines 27 − 34 are the only places other array variable
indexes are referenced in the algorithm and no array is used for assignment and reference
in this block. Hence all three COBEGIN blocks are mesh algorithms.

4.2 Mesh Hoare Logic Rules
Proposition 43 (Simplified For Rule). If k does not appear in Pi for i ∈ {0, 1, 2, . . . n}
then

{Pk−1} C {Pk} {k = i} C {k = i}
{P0} FOR k := 1 . . . n DO C {Pn}

Proof. Let i ∈ {0, 1, 2, . . . n}. By the Proposition 12) and the premises

{Pk−1 ∧ k = i} C {Pk ∧ k = i}

Which by post condition weakening (Axiom 4) implies

{Pk−1 ∧ k = i} C {Pi}
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Algorithm 1 Sung Bae’s Mesh Algorithm for the Maximum Subarray Problem

1: COBEGIN ||(i,j)∈(I∪{0})2
2: r[i][j] := 0;
3: sum[i][j] := 0;
4: min[i][j] := 0;
5: max[i][j] := −∞;
6: rL[i][j] := 0;
7: minL[i][j] := 0;
8: sumL[i][j] := 0;
9: maxL[i][j] := −∞;

10: sumU [i][j] := 0;
11: maxU [i][j] := −∞;
12: COEND

13: FOR step := 1 . . . 2N − 1 DO

14: BEGIN

15: COBEGIN ||(i,j)∈I2
16: IF j <= step DO

17: BEGIN

18: r[i][j] := rL[i][j] + a[i][j];
19: min[i][j] := minL[i][j];
20: IF min[i][j] > sumL[i][j] DO min[i][j] := sumL[i][j];
21: sum[i][j] := sumU [i][j] + r[i][j];
22: IF sum[i][j]−min[i][j] > max[i][j] DO max[i][j] := sum[i][j]−min[i][j];
23: IF maxU [i][j] > max[i][j] DO max[i][j] := maxU [i][j];
24: IF maxL[i][j] > max[i][j] DO max[i][j] := maxL[i][j]
25: END

26: COEND

27: COBEGIN ||(i,j)∈I2
28: rL[i][j] := r[i][j − 1]
29: minL[i][j] := min[i][j − 1];
30: sumL[i][j] := sum[i][j − 1];
31: maxL[i][j] := max[i][j − 1];
32: sumU [i][j] := sum[i− 1][j];
33: maxU [i][j] := max[i− 1][j]
34: COEND

35: END
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as k does not appear in Pi. Therefore by assignment rule (Axiom 2) and sequencing rule
(Axiom 6)

{Pi−1} k := i;C {Pi}

The result yields by observing the choice of i was arbitrary and an application of Axiom
9.

Axiom 10 (Mesh Rule). Let C be the concurrent command of a mesh command

COBEGIN ||(i,j)∈IC COEND

for some countable index set I. Let P be a condition. Let {Q(i, j) : (i, j) ∈ I} be a set of
conditions.

{P ∧ (i, j) ∈ I} C {Q(i, j)}
{P} COBEGIN ||(i,j)∈IC COEND {∀(l, k) ∈ I Q(l, k)}

4.3 Verification of Sung Bae’s Algorithm 38
Remark 44. Throughout the verification of Algorithm 1 we make use of invariants. Con-
sider one of the following conditions P . At the end of step z, for each index (y, x) ∈ I,
P (x, y, z) holds. At the start of step z, for each index (y, x) ∈ I, P (x, y, z − 1) holds.

For a given x, y and z, we refer to the subarray with top left corner a[y+ x− z][1] and
bottom right corner a[y][x] as the strip of a[y][x]. We refer to the subarray a[y][1] to a[y][x]
as the row of a[y][x]. A concurrent process (or cell) is considered active at z if x ≤ z.

We assume if a summation sign has invalid boundries it defaults to 0 (e.g.
∑0

i=1 = 0).
Similarly we assume MIN defaults to 0 and MAX defaults to −∞ for out of bounds cases
and when x ≤ z(+1) does not hold. We make the final assumption that if an array is
being accessed with a negative index, the array gives the value at index 0 (e.g. a[−10][3] =
a[0][3]). An informal description of each invariant is presented under each.

Pr(y, x, z)⇔ x ≤ z → r[y][x] =
x∑

α=1

a[y][α]

If cell (y, x) is active at z, then r[y][x] is the sum of all entries in the row of a[y][x].

Psum(y, x, z)⇔ x ≤ z → sum[y][x] =

y∑
β=y+x−z

x∑
α=1

a[β][α]

If cell (y, x) is active at z, then sum[y][x] is the sum of all entries in the strip of a[y][x].

Pmin(y, x, z)⇔ x ≤ z → min[y][x] = MIN α∈{1,2,...x−1}

y∑
β=y+x−z

α∑
α=1

a[β][α]
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If cell (y, x) is active at z, then min[y][x] is the minimum prefix sum in the strip of a[y][x].

Pmax(y, x, z)⇔ x ≤ z → max[y][x] = MAX β,β∈{y+x−z...y},α,α∈{1,2...x}

β∑
β=β

α∑
α=α

a[β][α])

If cell (y, x) is active at z, then max[y][x] is the maximum subarray of the strip of a[y][x].

PrL(y, x, z)⇔ x ≤ z + 1→ rL[y][x] =
x−1∑
α=1

a[y][α]

If cell (y, x) is active at z + 1, then rL[y][x] is the sum of the row of the cell to the left of
a[y][x] (a[y][x− 1]).

PsumL(y, x, z)⇔ x ≤ z + 1→ sumL[y][x] =

y∑
β=y+x−z−1

x−1∑
α=1

a[β][α]

If cell (y, x) is active at z+ 1, then sumL[y][x] is the sum of the strip of the cell to the left
of a[y][x] (a[y][x− 1]).

PminL(y, x, z)⇔ x ≤ z + 1→ minL[y][x] = MIN α∈{1,2,...x−2}

y∑
β=y+x−z−1

α∑
α=1

a[β][α]

If cell (y, x) is active at z + 1, then minL[y][x] is the minimum prefix sum of the strip of
the cell to the left of a[y][x] (a[y][x− 1]).

PmaxL(y, x, z)⇔ x ≤ z+1→ maxL[y][x] = MAX β,β∈{y+x−z−1...y},α,α∈{1,2...x−1}

β∑
β=β

α∑
α=α

a[β][α])

If cell (y, x) is active at z + 1, then maxL[y][x] is the maximum subarray of the strip of
the cell left of a[y][x] (a[y][x− 1]).

PsumU(y, x, z)⇔ x ≤ z → sumU [y][x] =

y−1∑
β=y+x−z−1

x∑
α=1

a[β][α]

If cell (y, x) is active at z, then sumU [y][x] is the sum of all entries of the strip of the cell
above a[y][x] (a[y − 1][x]).

PmaxU(y, x, z)⇔ x ≤ z → maxU [y][x] = MAX β,β∈{y+x−z−1...y−1},α,α∈{1,2...x}

β∑
β=β

α∑
α=α

a[β][α])
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If cell (y, x) is active at z, then maxU [y][x] is the maximum subarray of the strip of the
cell above a[y][x] (a[y − 1][x]).

PU1(y, x, z)⇔ Pr(y, x, z) ∧ Psum(y, x, z) ∧ Pmin(y, x, z) ∧ Pmax(y, x, z)

The invariant for the first update phase (lines 16-25) of Algorithm 1.

PU2L(y, x, z)⇔ PrL(y, x, z) ∧ PminL(y, x, z) ∧ PsumL(y, x, z) ∧ PmaxL(y, x, z)

The invariant for the left type registers. This invariant is used for the second update phase
(lines 28-33) of Algorithm 1.

PU2U(y, x, z)⇔ PsumU(y, x, z) ∧ PmaxU(y, x, z)

The invariant for the up (or above) type registers. This invariant is used for the second
update phase (lines 28-33) of Algorithm 1.

PU2(y, x, z)⇔ PU2L(y, x, z) ∧ PU2U(y, x, z)

The invariant combining both up and left invariants for the second update phase (lines
28-33) of Algorithm 1.

PU(z)⇔ ∀x, y ∈ (I ∪ {0})PU1(y, x, z) ∧ PU2(y, x, z)

For all x, y the previous invariants all hold at step z.

The correctness proof proceeds in a top-down manner. The lemmas used are given after
the usage points.

Theorem 45 (Partial Correctness of Algorithm 1). Let C be Algorithm 1. Let I be the
index set given by {1, 2, 3, . . . N} for some positive integer N . Let

Q⇔ max[N ][N ] = MAX β,β,α,α∈I

β∑
β=β

α∑
α=α

a[β][α]

then {true} C {Q} .

Proof. Let CS and CU be lines 1−12 (setup phase) and 14−34 (update phase) of Algorithm
1 respectively. By the sequencing rule, Lemma 47 and Lemma 48:

{PU(step− 1)} CU {PU(step)}

Hence as step does not appear in PU(i) for any i and is not assigned a value in CU ,

{PU(0)} FOR step := 1 . . . 2N − 1 DO CU {PU(2N − 1)}

by Proposition 43. Therefore by Lemma 46 and the sequencing rule (Axiom 6):

{True} CS FOR step := 1 . . . 2N − 1 DO CU {PU(2N − 1)}

But PU(2N − 1)→ Pmax(N,N, 2N − 1)→ Q, so by postcondition weakening (Axiom 4)

{True} CS FOR step := 1 . . . 2N − 1 DO CU {Q}
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Lemma 46. Let C be the setup phase of Algorithm 1 (lines 1 − 12). Let PU(0) be the
invariant condition given in Remark 44. Then

{true} C {PU(0)}

Proof. Let Cs be given by

r[i][j] := 0;
sum[i][j] := 0;
min[i][j] := 0;
max[i][j] := −∞;
rL[i][j] := 0;
minL[i][j] := 0;
sumL[i][j] := 0;
maxL[i][j] := −∞;
sumU [i][j] := 0;
maxU [i][j] := −∞;

Let
reg0 = {r, sum,min, rL,minL, sumL,maxL, sumU,maxU}

reg∞ = {max,maxL,maxU}

Q1(i, j)⇔ ∧R∈reg0R[i][j] = 0

and
Q2(i, j)⇔ ∧R∈reg∞R[i][j] = −∞

By repeated application of the assignment rule (Axiom 2):

{true} Cs {Q1(i, j) ∧Q2(i, j)}

Hence by precondition strengthening (Axiom 7)

{true ∧ (i, j) ∈ I2} Cs {Q1(i, j) ∧Q2(i, j)}

So by Example 42 and Axiom 10

{true} ||(i,j)∈(I∪{0})2Cs {∀(l, k) ∈ (I ∪ {0})2Q1(l, k) ∧Q2(l, k)}

Because of the defaulting behavior discussed in Remark 44 we have:

∀(l, k) ∈ (I ∪ {0})2Q1(l, k) ∧Q2(l, k)→ PU(0)

Hence by postcondition weakening (Axiom 4)

{true} ||(i,j)∈(I∪{0})2Cs {PU(0)}
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Lemma 47. Let C be the first update phase of Algorithm 1 (lines 15− 26). Then

{PU(step− 1)} C {∀x, y ∈ (I ∪ {0})PU1(x, y, step)}

Proof. Let Cu be given by

BEGIN

r[i][j] := rL[i][j] + a[i][j];
min[i][j] := minL[i][j];
IF min[i][j] > sumL[i][j] DO min[i][j] := sumL[i][j];
sum[i][j] := sumU [i][j] + r[i][j];
IF sum[i][j]−min[i][j] > max[i][j] DO max[i][j] := sum[i][j]−min[i][j];
IF maxU [i][j] > max[i][j] DO max[i][j] := maxU [i][j];
IF maxL[i][j] > max[i][j] DO max[i][j] := maxL[i][j]

END

Consider the r[i][j] assignment of Cu. By Lemma 49 we have:

{PrL(i, j, step− 1)} r[i][j] := rL[i][j] + a[i][j] {Pr(i, j, step)}

Let Cmin be given by:

min[i][j] := minL[i][j]; IF min[i][j] > sumL[i][j] DO min[i][j] := sumL[i][j]

By Lemma 50 and Corollary 15 we have:

{PminL(i, j, step− 1) ∧ PsumL(i, j, step− 1)} Cmin {Pmin(i, j, step)}

By Lemma 51 we have:

{Pr(i, j, step) ∧ PsumU(i, j, step− 1)} sum[i][j] := sumU [i][j]+r[i][j] {Psum(i, j, step)}

Hence by sequencing rule (Axiom 6) and the assumption ∧(i, j) ∈ I we can establish the
precondition

Pmax(i, j, step−1)∧PmaxL(i, j, step−1)∧PmaxU(i, j, step−1)∧Psum(i, j, step)∧Pmin(i, j, step)

before the max[i][j] assignment conditionals. Therefore by Lemma 52, Proposition 14 and
precondition strengthening (Axiom 7):

{PU(step− 1) ∧ j ≤ step ∧ i, j ∈ I} Cu {PU1(i, j, step)}

Also, as the invariants say nothing if x > z (or j > step) so we have:

PU(step− 1) ∧ j > step ∧ i, j ∈ I → PU1(i, j, step)

Therefore by the weak conditional rule Axiom 4:

{PU(step− 1) ∧ i, j ∈ I} IF j <= step DO Cu {PU1(i, j, step)}

Hence by Axiom 10 and Example 42:

{PU(step− 1)} C {∀x, y ∈ (I ∪ {0})PU1(x, y, step)}

The case of x = 0 ∨ y = 0 is invariant in C and therefore is justified in PU1(step).
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Lemma 48. Let C be the second update phase of Algorithm 1 (lines 27− 34). Then

{∀x, y ∈ (I ∪ {0})PU1(x, y, step)} C {PU(step)}

Proof. Let Cu be given by

rL[i][j] := r[i][j − 1]
minL[i][j] := min[i][j − 1];
sumL[i][j] := sum[i][j − 1];
maxL[i][j] := max[i][j − 1];
sumU [i][j] := sum[i− 1][j];
maxU [i][j] := max[i− 1][j]

The only assignment statements are made to registers of the form RL and RU . Hence

∀x, y ∈ (I ∪ {0})PU1(x, y, step)

is invariant in Cu. As each assignment in Cu is to a different array we may verify each of
the corresponding invariants in PU2L(i, j, step) and PU2L(i, j, step) individually.

By Lemmas 53-58 and the assignment rule (Axiom 2) we find that the verification relies
on the preconditions:

Pr(i, j − 1, step)

Pmin(i, j − 1, step)

Psum(i, j − 1, step)

Pmax(i, j − 1, step)

Psum(i− 1, j, step)

Pmax(i− 1, j, step)

The precondition
(∀x, y ∈ (I ∪ {0})PU1(x, y, step)) ∧ i, j ∈ I

implies all the listed preconditions and is invariant in Cu. Hence by precondition strength-
ening (Axiom 7) and Axiom 12:

{(∀x, y ∈ (I ∪ {0})PU1(x, y, step)) ∧ i, j ∈ I} Cu {PU1(i, j, step) ∧ PU2(i, j, step)}

Therefore by Axiom 10 and Example 42:

{∀x, y ∈ (I ∪ {0})PU1(x, y, step)} C {PU(step)}

The case of x = 0 ∨ y = 0 is invariant in Cu and therefore is justified in PU(step).

Lemma 49. Pr(i, j, step)[rL[i][j] + a[i][j]/r[i][j]]⇔ PrL(i, j, step− 1)
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Proof.

Pr(i, j, step)[rL[i][j] + a[i][j]/r[i][j]]

⇔j ≤ step→ rL[i][j] + a[i][j] =

j∑
α=1

a[i][α]

⇔j ≤ (step− 1) + 1→ rL[i][j] =

j∑
α=1

a[i][α]− a[i][j]

⇔j ≤ (step− 1) + 1→ rL[i][j] =

j−1∑
α=1

a[i][α]

⇔PrL(i, j, step− 1)

Lemma 50.

PminL(i, j, step−1)∧PsumL(i, j, step−1)→ Pmin(i, j, step)[ MIN (minL[i][j], sumL[i][j])/min[i][j]]

Proof. Assume

minL[i][j] > MIN α∈{1,2,...j−1}

i∑
β=i+j−step

α∑
α=1

Then

sumL[i][j] = MIN α∈{1,2,...j−1}

i∑
β=i+j−step

α∑
α=1

as it must have the elements of the last column.
In either case:

⇒ j ≤ step→ MIN (minL[i][j], sumL[i][j]) = MIN α∈{1,2,...j−1}

i∑
β=i+j−step

α∑
α=1

a[β][α]

⇒ Pmin(i, j, step)[ MIN (minL[i][j], sumL[i][j])/min[i][j]]

Lemma 51. PsumU(i, j, step−1)∧Pr(i, j, step)→ Psum(i, j, step)[sumU [i][j]+r[i][j]/sum[i][j]]

Proof. If j = step then sumU [i][j] defaults to its original value (sumU [i][j] = 0) and

⇒r[i][j] =
i∑

β=i

j∑
α=1

a[β][α]

⇒sumU [i][j] + r[i][j] =
i∑

β=i+step−step

j∑
α=1

a[β][α]
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If j <= step− 1 then:

sumU [i][j] + r[i][j] =
i∑

β=i+j−step

j∑
α=1

a[β][α]

In either case:

⇒j ≤ step→ sumU [i][j] + r[i][j] =
i∑

β=i+j−step

j∑
α=1

a[β][α]

⇒Psum(i, j, step)[sumU [i][j] + r[i][j]/sum[i][j]]

Lemma 52.

Pmax(i, j, step−1)∧PmaxL(i, j, step−1)∧PmaxU(i, j, step−1)∧Psum(i, j, step)∧Pmin(i, j, step)

→ Pmax(i, j, step)[ MAX (max[i][j],maxU [i][j],maxL[i][j], sum[i][j]−min[i][j])/max[i][j]]

Proof. Assume the maximum (of the MAX argument in Pmax(i, j, step)) contains a[i][j]
and a[i + j − step][j]. ByPsum(i, j, step) ∧ Pmin(i, j, step), the maximum is given by
sum[i][j] − min[i][j] as sum[i][j] is the sum of the strip i + j − step . . . i up to j and
min[i][j] is the minimum prefix sum along the same strip (A formal justification of these
argument can be found in Bae[4]).

If the maximum contains a[i][j] but not a[i + j − step][j], then as it is rectangular it
contains no element of a from row i + j − step. Therefore, by Pmax(i, j, step − 1), it is
given by max[i][j].

Assume the maximum does not contain a[i][j] but contains an element a[x][j] for some
x. Then, as it is rectangular, it contains no element of a from row i. Therefore, by
PmaxU(i, j, step− 1), it is given by maxU [i][j].

Conversely, suppose the maximum does not contain a[i][j] or an element a[x][j] for any
x. As it is rectangular, it contains no element of a from the column j. Therefore, by
PmaxL(i, j, step), it is given by maxL[i][j].

In any case

Pmax(i, j, step−1)∧PmaxL(i, j, step−1)∧PmaxU(i, j, step−1)∧Psum(i, j, step)∧Pmin(i, j, step)

→ Pmax(i, j, step)[ MAX (max[i][j],maxU [i][j],maxL[i][j], sum[i][j]−min[i][j])/max[i][j]]

Lemma 53. PrL(i, j, step)[r[i][j − 1]/rL[i][j]]⇔ Pr(i, j − 1, step)
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Proof.

PrL(i, j, step)[r[i][j − 1]/rL[i][j]]

⇔j ≤ step+ 1→ r[i][j − 1] =

j−1∑
α=1

a[β][α]

⇔(j − 1) ≤ step→ r[i][j − 1] =

j−1∑
α=1

a[β][α]

⇔Pr(i, j − 1, step)

Lemma 54. PminL(i, j, step)[min[i][j − 1]/minL[i][j]]⇔ Pmin(i, j − 1, step)

Proof.

PminL(i, j, step)[min[i][j − 1]/minL[i][j]]

⇔j ≤ step+ 1→ min[i][j − 1] = MIN α∈{1,2,...j−2}

i∑
β=i+j−step−1

α∑
α=1

a[β][α]

⇔(j − 1) ≤ step→ min[i][j − 1] = MIN α∈{1,2,...(j−1)−1}

i∑
β=i+(j−1)−step

α∑
α=1

a[β][α]

⇔Pmin(i, j − 1, step)

Lemma 55. PsumL(i, j, step)[sum[i][j − 1]/sumL[i][j]]⇔ Psum(i, j − 1, step)

Proof.

PsumL(i, j, step)[sum[i][j − 1]/sumL[i][j]]

⇔j ≤ step+ 1→ sum[i][j − 1] =
i∑

β=i+j−step−1

j−1∑
α=1

a[β][α]

⇔j − 1 ≤ step→ sum[i][j − 1] =
i∑

β=i+(j−1)−step

j−1∑
α=1

a[β][α]

⇔Psum(i, j − 1, step)

Lemma 56. PmaxL(i, j, step)[max[i][j − 1]/maxL[i][j]]⇔ Pmax(i, j − 1, step)
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Proof.

PmaxL(i, j, step)[max[i][j − 1]/maxL[i][j]]

⇔j ≤ step+ 1→ max[i][j − 1] = MAX β,β∈{i+j−step−1...i},α,α∈{1,2...j−1}

β∑
β=β

α∑
α=α

a[β][α])

⇔(j − 1) ≤ step→ max[i][j − 1] = MAX β,β∈{i+(j−1)−step...i},α,α∈{1,2...(j−1)}

β∑
β=β

α∑
α=α

a[β][α])

⇔Pmax(i, j − 1, step)

Lemma 57. PsumU(i, j, step)[sum[i− 1][j]/sumU [i][j]]⇔ Psum(i− 1, j, step)

Proof.

PsumU(i, j, step)[sum[i− 1][j]/sumU [i][j]]

⇔j ≤ step→ sum[i− 1][j] =
i−1∑

β=i+j−step−1

j∑
α=1

a[β][α]

⇔j ≤ step→ sum[i− 1][j] =
i−1∑

β=(i−1)+j−step

j∑
α=1

a[β][α]

⇔Psum(i− 1, j, step)

Lemma 58. PmaxU(i, j, step)[max[i− 1][j]/maxU [i][j]]⇔ Pmax(i− 1, j, step)

Proof.

PmaxU(i, j, step)[max[i− 1][j]/maxU [i][j]]

⇔j ≤ step→ max[i− 1][j] = MAX β,β∈{i+j−step−1...i−1},α,α∈{1,2...j}

β∑
β=β

α∑
α=α

a[β][α])

⇔j ≤ step→ max[i− 1][j] = MAX β,β∈{(i−1)+j−step...i−1},α,α∈{1,2...j}

β∑
β=β

α∑
α=α

a[β][α])

⇔Pmax(i− 1, j, step)



5 Conclusion

In this chapter we summarise the research undertaken (Section 5.1), clarify which parts
are original (Section 5.2) and describe potential future work (Section 5.3).

5.1 Summary of work and objectives
This project had two primary goals:

• To formalise and modify an existing framework to verify concurrent programs using
Hoare logic.

• To formally verify Algorithm 1.

The first objective was achieved incrementally throughout each chapter. Chapter 2
provides the standard sequential basis and formulation of Hoare logic. The framework
relies heavily on local variables (Definition 19) and shared variables (Definition 23) to
reason about interference. These definitions and a complete discussion of them is provided
in Chapter 3. The semantics defined in Definition 38 and Definition 40 were also key aspects
to the framework (Section 4.1). The final and most important part of the framework is
the mesh proof rule given in Axiom 10. This proof rule was presented in Section 4.2.

We have provided a full proof (Theorem 45) of the partial correctness of Algorithm 1 in
Section 4.3. This proof was formal with regard to semantics and did not make restrictive
assumptions about the order of execution. In some ways it can be thought of as a slight
extension of some of the results from Bae[3] and Weddell[25]. The second objective has
therefore been met.

5.2 Original Aspects
Although many of the definitions and theories in this thesis were independently formulated
they are by no means original. Where the concepts can be credited to a particular author
we have made an effort to refer to a publication indicating this. However, in many cases
the concepts are standard and no specific publication exists.

Each proof presented (unless otherwise stated) is the authors original work (although
in some of the trivial cases similar proofs will exist).

Specifically, there are two main original results in the thesis. The first is Axiom 10 in
which we give a potential proof rule for mesh algorithms. The proof of Theorem 45 (the

33
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partial correctness of Algorithm 1) and the associated lemmas using Hoare logic framework
is the second.

5.3 Future Work and Reservations
There are many aspects to the research for this project that could be developed further.
There are also reservations we have about the usefulness of the research conducted for this
project. We describe some of each below:

The partial correctness of Algorithm 1 was one application of the framework we devel-
oped. It would be desirable to know if other mesh algorithms and even other classes of
parallel algorithms can be verified using the same framework.

In Section 3.4 we present a combination of ideas but do not thoroughly explore or
formalise them (besides Example 35). This is a potential route for further research.

No discussion of soundness or completeness is given for the framework we provided. To
give the framework more credibility soundness must be established (this should be trivial
based on the lack of shared variables in the semantics). To establish its usefulness, the
degree to which it is complete should be investigated.

How much confidence does a very long proof of partial correctness give us? We essen-
tially have a new problem of verifying a proof instead of a computer program. De Millo[9]
argues that such proof verification is essentially a social process. If that is indeed the case,
then a proof of partial correctness only provides us with greater confidence and does not
truly prove correctness.

In Hoare’s 1996 paper[13] (Unification of theories: A challenge for computing science),
Hoare neatly summarises another key issue facing formal verification:

“Researchers into formal methods (and I was the most mistaken among them)
predicted that the programming world would embrace with gratitude every as-
sistance promised by formalisation to solve the problems of reliability that arise
when programs get large and more safety-critical. Programs have now got very
large and very critical – well beyond the scale which can be comfortably tack-
led by formal methods. There have been many problems and failures, but these
have nearly always been attributable to inadequate analysis of requirements or
inadequate management control. It has turned out that the world just does not
suffer significantly from the kind of problem that our research was originally
intended to solve.”
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A Notation

A.1 Logic Symbols

In order of precedence:

• ¬: logic ’not’.

• ∧: logic ’and’.

• ∨: logic ’or’.

• →: logic implies.

• ∃: existential quantifier.

• ∀: universal quantifier.

• ⇔: logic equivalence.

A.2 Abbreviations

• P [X/Y ]: The condition P with all instances of Y replaced by X.

• ∧i∈IPi: The conjunction of all Pi for i ∈ I.

• MIN i∈I E: The minimum value of the expression E for any i ∈ I.

• MAX i∈I E: The maximum value of the expression E for any i ∈ I.

• I2: The direct product of the set I with itself.
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