
A User Evaluation for Synchronous Collaborative

Software Engineering Tools

Carl Cook Warwick Irwin Neville Churcher

Technial Report TR-04/05, July 2005
Software Engineering & Visualisation Group,

Department of Computer Science and Software Engineering,
University of Canterbury, Private Bag 4800,

Christchurch, New Zealand
{carl, wal, neville}@cosc.canterbury.ac.nz

The contents of this work reflect the views of the authors
who are responsible for the facts and accuracy of the data
presented. Responsibility for the application of the ma-
terial to specific cases, however, lies with any user of the
report and no responsibility in such cases will be attributed
to the author or to the University of Canterbury.

This technical report contains a research paper, devel-
opment report, or tutorial article which has been submitted
for publication in a journal or for consideration by the com-
missioning organisation. We ask you to respect the current
and future owner of the copyright by keeping copying of this
article to the essential minimum. Any requests for further
copies should be sent to the author.

Abstract

Collaborative Software Engineering (CSE) is a rapidly growing field of
research, with commercial tools starting to incorporate new collaborative
features into their currently single-user products. We have undertaken
an empirical evaluation to investigate the envisaged benefits of code-level
collaboration for tools that we have developed. Results of our evalua-
tion show that for two typical programming scenarios, collaborative tools
achieve task completion rates that are at least twice as fast as their con-
ventional counterparts. Additionally, for a number of subjective aspects,
the participants were strongly in favour of using the new tools. From
these results, we are encouraged to continue developing our collaborative
tools, and to investigate other aspects of such tools within the context of
CSE.

Contents

1 Introduction 3

2 Background 4

3 Tool Overview 5
3.1 Controlling Crosstalk During Compilation 6
3.2 Implementation Notes . 8

4 Evaluation Method 8
4.1 Aim and Purpose . 9
4.2 Participants . 9
4.3 Physical Layout . 10
4.4 Apparatus . 10
4.5 Procedure . 11

4.5.1 Experimental Design . 11
4.5.2 Supporting a Minimal Code Repository Interface 13
4.5.3 Tool Modes . 14
4.5.4 Task Types . 14
4.5.5 Order of Groups and Tasks 15
4.5.6 Training Manual . 16
4.5.7 Evaluation Tasks . 17
4.5.8 User Survey . 17
4.5.9 Statistical Validity . 17

4.6 Summary . 20

5 Evaluation Results 20
5.1 Task Completion Times . 21
5.2 Subjective Assessment . 21
5.3 User Preferences . 22
5.4 User Comments . 22

6 Threats to Validity 23

7 Discussion 24

8 Conclusions and Future Work 25

A Evaluation Documents 28
A.1 Training Manual . 28
A.2 Training Tasks . 29
A.3 Evaluation Tasks . 30
A.4 Participant Surveys . 31

B Source Code 31

2

1 Introduction

Software Engineering appears to be more demand-driven from industry than
most other areas of Computer Science research. This can be seen by the adap-
tation of object-oriented programming—a paradigm changing event that was
initiated on perceived benefits and positive case studies rather than by prior
scientific research. Very little empirical research has been conducted related to
code-level collaboration, yet both Integrated Development Environment (IDE)
designers and end users appear enthusiastic about the current trend of support
for collaborative development.

It is therefore a worthy task to undertake a user evaluation into Collaborative
Software Engineering (CSE) in order to investigate and solidify the perceived
benefits from the aspect of empirical software engineering research. We are
also well suited to perform an evaluation at this point in time, as we have just
completed the development of a new set of CSE tools which were originally
reported in [5, 8].

The main premise of our research is that enabling more collaborative soft-
ware engineering through advanced tool support will in turn raise the very
restricted levels of communication within current software engineering practice.
To validate this premise, we will compare CSE tools with their conventional
counterparts, with the aim of showing scenarios where the collaborative tools
are better.

The term better, however, is difficult to define objectively within empirical
software engineering research. The definition of better for CSE tools can have
many meanings—faster task completion rates, easier to use, fewer bugs in the
resultant programs, more tolerance to large groups, encouragement of greater
communication between programmers, better program comprehension, better
awareness of other programmers’ changes to name a few. Additionally, it is
difficult to define the range of allowable values for external factors that affect
the evaluation, such as size, type and difficulty of evaluation tasks, experience
of participants, tools to be used within the control group, and features of the
tools being evaluated.

Accordingly, it appears highly challenging to design a test that can evaluate
all aspects of software engineering within a single context. We have therefore
limited the evaluation presented in this paper to the objective measurement of
task completion rates for mechanically scripted tasks between pairs of collabo-
rating users, as well as gathering subjective measures such as user preferences.
Our hypothesis is therefore that collaborative tools give task completion rates
superior to those of their conventional counterparts for selected typical coding
scenarios.

This paper gives full details of the experiment, including the methodology,
environment configuration and results. It is intended that this paper provides
enough details so that the experiment can be reproduced by other researchers
for comparison against other systems and types of users.

The remainder of the paper is structured as follows. Section 2 gives a brief
overview of CSE and related tools. Section 3 presents the CSE tools used within
the evaluation, including design and implementation details. Section 4 describes
the evaluation method in full detail, and section 5 reports the results from the
user trial. Section 6 discusses the key threats to validity of the results, and
section 7 provides a discussion of the entire evaluation. Finally, conclusions and

3

topics for future work are presented in section 8.

2 Background

In the last year many of the major commercial IDEs have taken significant steps
towards code-level real time collaboration. Of the four Java IDEs that have the
largest market shares, two of them now support shared development facilities,
and all four environments are promising more to come in the next major releases.

Eclipse [10] is arguably the most popular development environment for Java,
and has the support of many of the industry’s largest corporations. While
Eclipse itself does not support code-level collaboration, a new subproject called
the Eclipse Communication Framework [17] aims to allow the eclipse code repos-
itory and project model to be shared and collaboratively edited. The API to
perform basic sharing is available now, along with some example client applica-
tions.

Borland’s JBuilder [9] is another of the main IDEs in the Java development
market. It terms of collaboration it supports real-time remote refactoring and
integrates the StarTeam project management suite. Similarly, Sun’s JSE [16]
already supports a collaborative code editor and instant messaging channels,
with more plans for code-level collaboration in the next release.

Aside from fully-featured IDEs, many specialist tools support collaborative
modes of work. Poseiden enterprise edition, for example, allows the authoring in
real time of UML documents by any number of users in a distributed setting [2].
There are also collaborative plug-ins available for Oracle and Rational’s IDEs,
bringing them into the market for code-level collaborative development tools.

Within the field of research, there are numerous specific and ambitious soft-
ware engineering tools to accommodate a range of tasks. For collaborative
change impact reporting the Palantir architecture exists [21]. To visualise the ac-
tivity of large shared code bases, the Augur visualisation suite may be used [11].
For web-based shared UML editing, Rosetta is a well known tool [12], and for
distributed eXtreme Programming a new framework called Moomba has been
recently been published [20].

A tool that is indirectly related to CSE yet potentially very influential is
SubEthaEdit [19]. This is a shared text editor for the MacOS operating system,
and it recently won the MacOS X Innovators Award for best application. It has
no specific Software Engineering abilities except for basic syntax and method
highlighting, but if it continues to gain popularity with software developers then
IDEs might have to implement similar interfaces due to user demand.

Despite the flow of ideas for collaborative tools and frameworks, there have
been very few empirical evaluations into CSE tools, technologies and concepts.
While a multitude of empirical research has been published for the fields of
Groupware and Human-Computer Interaction, CSE tools can be more ambitious
in design and harder to evaluate. Even at a broader level, there is not a lot of
empirical research into general Software Engineering when compared to related
fields.

This background has listed selected tools and research projects related to
CSE. For a detailed annotated bibliography on the CSE tools mentioned above,
and related areas of research, please refer to [4].

4

3 Tool Overview

The CAISE architecture, as described originally in [5, 8], allows for the rapid
development of fully featured CSE tools. Before discussing the evaluation of two
CAISE-based tools as described in this paper, this section introduces the latest
version of CAISE tools, their basic functionality, and the background concepts
to synchronous collaboration.

The authors of the Concurrent Versioning System (CVS) say “CVS is no
substitute for communication” [1]. We concur that other code repository sys-
tems do no better. Therefore, the basis for the CAISE set of collaborative
software engineering tools was to allow programmers to work collaboratively
without sacrificing communication. The CAISE tools achieve this by keeping
all programmers group synchronised in real time, and at the same time providing
user awareness and project state information to the individual tools.

The CAISE architecture and supporting tools do not aim to replace systems
such as CVS; the ability to work in private at times and to be able to keep
different versions of programs separate are features that very few programmers
could do without. Our tools are designed support what code repositories do not
provide: communication between developers and tools during fine-grained real
time collaboration.

The CAISE infrastructure does not impose a specific methodology onto
CAISE-based tools, but tool developers can implement particular methodologies
if and when required.

Our system is ideal for distributed pair programming. We call it N-programming
as there is no theoretical limit to the number of people and types of tools that can
collaborate at any point in time. This is a significant advance over conventional
pair programming where up until now, collaborative technology limitations have
restricted programmers considerably.

Over the last twelve months we have worked intensively on two existing
CAISE-based tools to provide a realistic Software Engineering environment;
these tools are presented in figure 1. Recent improvements include:

• A relaxed-WYSIWIS display for all tools

• Round-trip engineering between all tools

• Collaborative undo within the editor

• An adjustable level of collaborative scope when compiling the project

• The artifacts panel now displays the current compilation state of each
artifact

• The editor provides remote modification highlighting and tele-carets

• Considerable user interface improvements have been made to accommo-
date the constantly changing state of each users display

• CVS has been integrated to allow a CAISE project to access a central
code repository

5

(a) A Java code editor. When viewed
in colour the remote text highlighting
and tele-carets are visible.

(b) A UML class diagrammer. Remote user positions are indicated
by blue markers.

Figure 1: CAISE development tools with CSCW awareness support.

By incorporating a CVS into the tools, a large set of developers can be
partitioned into several CAISE sub-projects, with CVS employed to synchronise
between sub-projects. See [7] for more details on this concept.

Please refer to [7] for the full documentation on the latest version of these
tools, how they maintain synchronisation with the CAISE server, and how to
develop new CAISE-based Software Engineering tools. Demonstrations of the
tools as they execute numerous tasks are available from www.cosc.canterbury.
ac.nz/clc/cse. This includes a demonstration of the tools operating in con-
ventional mode as they encounter and resolve a typical merge conflict.

3.1 Controlling Crosstalk During Compilation

Unexpected real time code modifications by other users, whilst surprising, do not
significantly degrade a developers ability to work within a collaborative setting.
If one developer is working on the same line of code as another developer, it is
likely to be beneficial if both parties pause and discuss the current activities,
although programmers may choose to ignore the presence of others and carry
on development. A major problem with real time development, however, is that
of compiling code during a time of concurrent development activity.

Ideally, if one developer makes a change that is unrelated to the area of the
program that another developer is currently working on, the second developer
should not necessarily be placed in a position where he or she is prevented from
compiling. This principle, known as private work, is one of the key elements to
CVS and related repositories. For CSE tools, however, if the first developer has
not completed their changes, or their changes are syntactically or semantically
incorrect, the project will fail to complete its build even for the second user

6

as the entire project is shared in real time. To resolve this problem, we have
refined the project build panel with a special collaborative view feature, which
is presented in figure 2.

Figure 2: Tools Panel with adjustable levels of project crosstalk.

The view facility within the project tools panel allows compilation to take
place from within three different modes: current, last parseable and last build-
able. These modes are depicted in figure 3. In current mode, the panel attempts
to build the latest version of the code, which will fail if any recent remote changes
have broken the build. In last parseable mode, the build only takes into account
the last syntactically correct version of each file. This way, if a remote program-
mer is current editing a file, the changes will only take affect once the code is
properly formed. In last buildable mode, the panel will produce an executable
based on the last version of the program that had no build errors.

Figure 3: The various modes of collaborative scope when compiling from within
a CAISE tool.

This has proved to be a particularly useful feature for real collaborative
software engineering, and we suggest it should be employed as a global strategy.
It may provide an alternative to partitioning a collaborative group in the case
of exceeding a tolerance threshold for remote user activity.

7

3.2 Implementation Notes

Implementing collaborative tools of any nature is a difficult task. To assist in
implementing CSE tools, the CAISE framework provides support for concurrent
artifact management and persistence, user management, a distributed event
model, and a plug-ins interface for adding new languages and server capabilities.

While the tools presented here appear may appear relatively intuitive to
design and implement, the coding effort to build fully-synchronous tools was
considerable even with the support of the CAISE infrastructure. An example
of the complex implementation process is collaborative undo. To support a re-
alistic software engineering experiment, it was decided that undo needed to be
supported within the text editor. Without undo, a mistake could be very costly
to correct, which would confound the task completion rates and would also be
likely to negatively affect the participants’ survey answers. Implementing collab-
orative undo, where the local user’s changes in a file are treated differently from
all remote users, is an extremely challenging task within the field of Computer
Supported Collaborative Work (CSCW) [22].

4 Evaluation Method

It is a challenging task to design a valid Software Engineering experiment of
any kind. For this reason many software engineers leave the task of empirical
evaluations to that of other disciplines within Computer Science, disciplines
such as Computer-Human Interaction where the number of variables to address
are fewer and the difficulty of isolating them is considerably less.

For those willing to design a credible Software Engineering experiment, the
first aspect is to determine precisely what it is we are measuring: task completion
times, software quality and bug rates, robustness and quality of design, and
other subjective measures such as perceived effort and frustration. Following
that, we may need to either isolate or explicitly control independent variables
such as the scope of the task, participants’ familiarity with the tool set, team
size and individual roles, and the type of task being performed. Additionally,
we need to address potentially confounding factors such as programmer abilities
and learning effects. Without isolating the independent variables and addressing
confounding factors, a vast number of variables could affect and distort our
findings.

Given that is is possible to identify a dependent variable, isolate and control
the independent variables, and remove all confounding secondary factors, there
are still two considerable issues to consider for software engineering experiments:
is the experiment still at a level realistic enough to show an effect that is globally
useful; and if an effect is observed, is it possible to claim causality rather than
just a correlation.

Once the researcher has convinced himself that such an experiment can be
designed to show causality and global significance, he can move on to perhaps the
toughest question facing CSE research: what should CSE systems be compared
against to give an objective and useful comparison?

8

4.1 Aim and Purpose

A concern of ours that has also been shown elsewhere is that programmers do
not use collaborative systems as much as they can and arguably should [13].
This experiment aims to show that a set of real-time collaborative tools not
only provide a more efficient alternative to concurrent program editing with
CVS, but participants also prefer using the new tools.

There are many perceived benefits of using CSE tools: faster task completion
rates, greater levels of team efficiency, greater understanding of local and remote
changes, less or no delay between file updates, fewer or no merge conflicts, and
higher levels of communication between programmers. These are all anecdotal
claims however; very little empirical research has been conducted in terms of
supporting data.

We can only assert a small number of claims in any one trial. Therefore,
our primary goal is to illustrate the achievement of faster task completion times
using our collaborative tools when compared to an equivalent set of tasks using
conventional code repository practices.

As a subjective measure we also aim to assert perceived levels of code change
understanding, frustration, success and effort that are more favourable to the
collaborative tools than their conventional counterparts.

Finally, we also take the opportunity to ask how much users are likely to
use CSE tools in an array of settings. It will be most beneficial to discover
if the participants embrace or dismiss the concepts behind the tools. It has
been a fear that even though the tools appear superior to us as their designers,
‘real’ users will not like them regardless of the actual efficiency levels. Empirical
evaluations of other tools that seemed a good idea at the time have not always
gone according to the researchers’ expectations [3].

An auxiliary benefit of this trial is that we can assert that the tools hold
up to the fairly intensive test of use by complete outsiders. If the tools reduce
task completion times and are favoured by the users, this allows us to confirm
that their design, implementation and user interfaces are at least satisfactory in
terms of suitability for broad-scale Software Engineering.

4.2 Participants

For this experiment, 12 postgraduate Computer Science students were used,
which represented the entire class for an advanced Object Oriented design
course. By selecting this class we were confident that we had participants who
were interested and experienced in Software Engineering. We also could rely on
all participants having at least minimal operational experience in source code
repositories and group work. The students possessed grade point averages rang-
ing from satisfactory to excellent. While all participants were male with an
even spread of ages from 21 to 30, this is a fairly representative sample of the
professional software development population.

After identification of the likely participants, they were left to organise them-
selves into groups of two. Upon formation of the six groups, most pairs had
worked with each other in some Software Engineering context over the last two
years.

9

4.3 Physical Layout

Each evaluation session involved a pair of participants, with the layout of par-
ticipants and equipment presented in figure 4. As the physical location of par-
ticipants had the potential to alter the task completion rates, the environment
for the evaluations was kept constant for the duration of this experiment. For
this experiment, the configuration of the environment was designed to be rep-
resentative of a typical co-located programming setting.

Figure 4: Evaluation layout of experiment.

The participants worked within two meters of each other but the monitors
were only in line of sight if they looked over their shoulder to that of the other
participant. In this configuration, the participants were able to directly observe
and possibly circumvent the activities of each other, but only if they made the
conscious effort to draw themselves from their own work. They were at all times
able to communicate with each other orally without impairment. Finally, the
experiment was held in an isolated office without any risk of interruption or
interference.

An interesting point to note is that in a co-located setting such as the one
provided for this experiment, it is possible for one participant to observe the
work status of the other just by listening for keyboard typing.

4.4 Apparatus

Both the desktop workstations and the CAISE server ran the Fedora Core 3
operating system with the Linux 2.6.9-SMP kernel. The CAISE architecture
was compiled with Sun’s Java 1.5.0 Standard Edition compiler and executed
with the corresponding Hot-spot virtual machine.

The desktop workstations were 32-bit Dells with a single Intel Pentium-4
2.8GHz CPU. The CAISE server was a 64-bit ASUS machine with dual AMD
Opteron 2.0 GHz CPUs. All machines had 2 Gb of primary memory.

The desktop workstations hosted the standard Gnome X desktop running
at 1600 by 1200 resolution. On each machine ran a local instance of the CAISE
server process and the two CAISE tool applications. No other applications ran
on the workstations apart from the core Linux services. The server ran without

10

a display, again running only the core Linux services and the CAISE server
process.

The communication medium between the participating machines was a 100
Mbps switched Ethernet network, dedicated for the use of the participants’
desktop machines and the CAISE server.

4.5 Procedure

As explained in section 4.1, it is difficult to design an evaluation where a fair
comparison of conventional and collaborative tools can be made. In this section
we provide details of an experiment that negates as many confounding effects
as possible for a set of realistic programming tasks, and isolates the dependent
variable of task completion rates for objective measuring.

It is important to emphasise that we are investigating core speed in terms of
task completion rates. To do this, we must equalise the effects of programmer
ability, physical and mental effort of tasks, task types and scope, and effects of
different tools within the evaluation. By isolating these effects we have derived
an evaluation that appears somewhat mechanical, but we do in turn achieve a
fair measure of the core comparative speeds of the tools. A number of external
factors will affect the overall efficiency and effectiveness of collaborative tools,
but the experiment will still give us a useful and reliable insight of the CSE
tools.

4.5.1 Experimental Design

This section outlines the basic evaluation plan. For the full details of each aspect
of the evaluation, please refer to the corresponding related sections within this
paper.

Each evaluation session takes approximately one hour per participant group,
and only one group is evaluated at a time. The evaluation examined two tool
modes: conventional and collaborative, and two work modes: between files
changes and within file changes. This equates to four tasks per evaluation
session, as presented in table 4.5.5.

All tasks were performed primarily in the editor. The UML diagrammer was
available for visualisation of the changing program structure and for user pres-
ence awareness. In collaborative mode, the tasks could be performed using the
real-time file sharing support of the tools. In conventional tool mode, the partic-
ipants were able to share and synchronise their files with inbuilt code repository
support. The code repository interface was minimal to avoid confounding the
experiment, as explained in section 4.5.2. We believe that although we are
comparing two different modes of work, conventional versus collaborative, this
comparison is fair. Code repositories are the mainstream technology for col-
laborative software engineering, the only other commercial option today is pair
programming with a shared keyboard and display.

For both types of tasks, there was a deliberate and unavoidable conflict
between the instructions for both participants. Between-files tasks were such
as renaming a method for one participant while the second participant made a
new call to the method using the original name. Within-file tasks were such as
changing the structure of a complex control statement by one participant while
the second participant changed a conditional within the control statement. To

11

eliminate any variance caused by differing programmer abilities within groups,
or by differences in coordinated actions between groups, all tasks were scripted
and synchronised for each user.

Each task was hand timed, and students were instructed to work as fast
as possible without rushing; this ensured that the participants were focused on
completion rates rather than collaboration. To achieve the tasks, however, a
degree of collaboration was inevitable. This gives us confidence that the eval-
uation environment was realistic. The participants had a brief reading period
before being timed, where they could clarify any questions related to the task.
The participants were not permitted to discuss the task with each other at this
stage, however. They could only communicate with each other when completing
the task, both face-to-face and by observing the feedback from the tools.

When the inevitable conflict within each task was discovered, normally by
completing the scripted instructions and recompiling the code, the participants
were then instructed to access an answer sheet which contained the predeter-
mined resolution for the given task. Under normal conditions programmers
would discuss and resolve the conflict themselves, but again we needed to re-
move this factor from the experiment. Timing would stop as soon as the prob-
lem was corrected, the code compiled and synchronised, and the program was
demonstrated to execute correctly on the workstations of both users.

All evaluation tasks were based on a simple 1000 line graphical Java appli-
cation. The program consisted of eleven classes within a package that displayed
several animated sequences. While the program was relatively trivial, it did
contain some fairly complex design idioms such as behavioral, creational and
structural design patterns, use of collections classes, graphics code and event-
based actions. It was easy for participants to assert that their changes had
taken effect; the program at startup would show the animations in their current
state which could be immediately verified for correctness. A screen-shot of the
program in a typical state is presented in figure 5.

Figure 5: The graphical interface of the program being modified during the
evaluation sessions.

Upon completion of each task a survey was given to each participant to
answer in private. This allows us to compare the participants’ perceived levels of
frustration, success and effort for each tool mode and task type. Finally, another
survey was completed at the end of each evaluation session, giving us a subjective
summary of each users preferences and comments for later comparison.

12

4.5.2 Supporting a Minimal Code Repository Interface

For this experiment, it was very important to make interactions between the
source code repository and the client tools as simple as possible. If the interface
to the repository was cumbersome or complicated, it would greatly skew the
task completion rates that we are measuring.

We used CVS as the underlying repository, but the users were not aware
of this technicality. For our tool, CVS was encapsulated simply as a high level
and generic code repository. This is similar to the simple manner in which a
Wiki Web supports different versions of files, even though a complicated code
repository system is employed on the Wiki server.

Advanced users of CVS and other source code configuration systems will
know how to use its features to avoid potential merge conflicts and transac-
tional errors [13]. We are not looking at advanced users however, although we
do address this type of user in section 6. Therefore, we assume an average pro-
gramming ability and only simple use of a code repository system is required,
described and supported.

For this evaluation we decided to build code repository support into our own
set of tools. Accordingly, when the tools are started in conventional mode, they
keep all changes to files isolated from other users and changes between users
can be synchronised through a code repository menu. This menu is presented
in figure 6.

Figure 6: The syntax directed CVS interface.

Not only did we want the code repository to be a simple as possible to
use, and accordingly as fast as possible, we also wanted to ensure that our
participants did not make errors when synchronising their source files. We are
well aware that many users struggle with systems such as CVS; typical problems
include forgetting to download and work on the latest version of the repository,
forgetting to upload new or modified files back to the repository, and checking-in
a subset of files that build locally but will break the repository’s version of the
program.

Given the collaboration-intense nature of the evaluation tasks, we were cer-
tain that mistakes were likely if a conventional code repository interface was
provided. Accordingly, we developed a syntax directed interface to the reposi-
tory where only valid repository actions could be made given a set of local files
and a central code repository. Participants can only upload their files if they
have modified the latest version from the code repository. Similarly, the option
to download newer files from the repository is only available if the participant’s
local version is out-of-date. If the download option is available, a merge of all
newer repository files and the local copy is made automatically upon completion
of the download. This allows the user to upload the newly formed set of local
files once all required changes have been made, if any, without risking uploading
an out-of-date set of files.

13

Another aspect of the code repository interface is that it performs the upload
and download actions as a batch where all files are included for transfer. This
way we avoid problems where files are accidentally excluded resulting in skewed
sets of file between other users and the code repository. Participants only have
to be aware that they need to upload all their changes before finishing the
task. This ensures that the two users’ sets of files will be synchronised before
completion of the evaluation task; the second user will be forced to perform a
download and merge before the upload option becomes available for checking
back into the repository.

It took many prototype designs and pilot studies to create the code repos-
itory interface presented here. We believe that this type of syntax directed
interface is a highly appropriate mechanism to support making a comparison
between conventional and collaborative software engineering. We are able to
compare the essential differences between the two modes of work, but we no
longer have to address factors such as the time it can take to type in code
repository commands or to navigate through a cumbersome repository inter-
face, getting the code repository commands right for the current state of the
local files and the global repository, and the imbalance of repository experience
levels between participants.

As an aside, many users commented on how intuitive and easy-to-use the
code repository interface was, and they would like the same interface on all of
their usual Software Engineering tools.

4.5.3 Tool Modes

As this experiment compared conventional versus collaborative software engi-
neering task completion rates, we required our set of tools to run in both collab-
orative and conventional modes. In this manner, as long as the code repository
interface is minimal, there should be no confounding factors in terms of tool
type—the participants can use the same tool for both tasks, with very little
practical difference between the two tool modes.

When the tools were operating in collaborative mode, a central server was
responsible for supporting communication between all participating tools and
for keeping code synchronised in real time between participants. In conventional
mode, the central server was not employed; a local instance of the server process
was used to maintain code at the scope of each individual workstation. To
synchronise the code modifications between participants, the code repository
interface would access a CVS server on a local network file system partition.

The learning effects of individual tool modes is addressed in section 4.5.5.
Additionally, to keep the workstation memory loads constant between tool
modes, a local copy of the server process ran on each workstation in collab-
orative mode, albeit redundant.

4.5.4 Task Types

This evaluation assessed two types of task completion rates. One was for task
completion rates of between files changes, the other was within files changes.
Collaborative software engineering is normally a combination of both types of
programmer/file interaction, but we need to treat both cases separately in order
to remove any effect of interaction on task completion rates.

14

All tasks within both sets were designed to generate some sort of conflict
between the two participants. For between-files tasks, a transactional conflict
would occur, meaning there is a problem with the program semantics as a result
of the concurrent modifications. A transactional conflict is one where the syntax
of the changes is legal, but a semantic error would result once both participants’
modifications were synchronised. For example, one user might rename a method
while the second participant would make a new call to the method by the original
name. Only when the files are synchronised and the resulting code is rebuilt
will the error be exposed.

For between-files tasks, a merge conflict would result after each participant
had made their change and synchronised their code, meaning that there is a
problem with the program’s syntax as a result of the concurrent modifications.
A merge conflict results from overlapping modifications to separate local copies
of a source file; when the code repository system attempts to synchronise the
changes from multiple users it fails because of there is no deterministic way of
forming a final, conflict-free version of the file.

As an example of a merge conflict, one participant could be editing a se-
quence of statements within a method so that instead of evaluating several com-
plicated conditionals, the code is refactored as a more comprehensible switch/select
block. At the same time, the other participant might be editing a second copy
of the original file so that one of the conditionals is simplified syntactically. In
this case, most code repository systems would give a merge conflict error where
it is up to the participants to resolve the merge conflict manually and resubmit
the final version to the code repository.

4.5.5 Order of Groups and Tasks

The order of groups in which the evaluations were held and the order of tasks
that each group performed are presented in table 4.5.5 (Cv stands for conven-
tional mode, Cb stands for collaborative mode. T1 and T3 are between-files
tasks, T2 and T4 are within-files tasks). Careful consideration was given to the
design of task ordering between groups; the main objective was to negate or
minimise any learning effect of tool mode and task type.

Group Task Configuration Order
1 CvT1 CvT2 CbT3 CbT4 1 2 3 4
2 CvT1 CvT2 CbT3 CbT4 4 3 2 1
3 CvT1 CvT2 CbT3 CbT4 1 3 2 4
4 CbT1 CbT2 CvT3 CvT4 4 2 3 1
5 CbT1 CbT2 CvT3 CvT4 3 2 4 1
6 CbT1 CbT2 CvT3 CvT4 1 4 2 3

Table 1: Task types, tool modes and order of tasks.

We used each pair of participants for both the treatment and the control
group. To make this possible we employed separate yet similar tasks for each
tool mode; this is the reason why there are two tasks for each task type. By using
the each group as a treatment and control, we negate any imbalance between
individual groups. If one group is exceptionally good or bad at a given task,
they are likely to produce the same result for both tool modes.

To reduce the risk of a learning affect on task type or tool mode, each group
had a different order of task type and tool mode. Group one, for example, first

15

did both tasks in conventional mode and then collaborative mode. Group two
did both tasks in collaborative mode first, followed by conventional mode. From
table 4.5.5 we can also see that the task modes were also alternated between
groups. If there was any learning effect from task type or tool mode, it was
likely to be countered by the nature of the group and task assignments.

Since participants acted as both the control and treatment group, the only
other confounding factor could come from differences within the sets of tasks.
While it may at first seem relatively simple to create two similar tasks for a each
task type, in practice this was quite challenging to achieve. We needed to ensure
that the tasks were distinct to reduce any learning affect yet nearly identical
in terms of syntax, semantics, typing effort and conflict resolution actions to
ensure that the tasks were objectively comparable.

In section 4.5.9 we show that from analysis of the experiment results there
was no significant difference between any pair of task types for each tool mode.
Again, if there was a significant difference within a set of tasks of the same
type, due to the design of the group and task order, the impact would be largely
negated.

4.5.6 Training Manual

Participants were given an intense 30 minute training session prior to completion
of the evaluation tasks. It is hoped that by giving a thorough training, learning
effects of tools and task types were minimised. To assist the training period, a
training manual was given to each participant a few days prior to the evaluation
session. This gave the participant a chance to gain an overview of the tools and
tasks, and allowed him or her to prepare questions for the training session.

The training manual provided the participants with an overview of the code
repository system, how to operate the code repository within the evaluation
tools, how the real time editor and awareness support components operate, and
how the basic editing and compiling functionality works for both tool modes,
such as cut, copy, paste, undo, compile and run. An excerpt from the training
manual is given in appendix A.1. The appendix also gives details on how to
obtain a full electronic copy of the training manual.

Training Tasks Within the training manual there are four mechanically-
scripted tasks to complete. Two of the tasks are conflict-free, the remaining
two contain inevitable conflicts. Two of the tasks involve within files changes,
the remaining two involve between files changes. The four tasks are performed
by each pair of users firstly using the tools in conventional mode, and then again
with the tools in collaborative mode. An excerpt from the training tasks sheet
is given in appendix A.2.

Answer Sheet Each conflicting task within the training session has a pre-
scribed resolution. When the participants encounter a conflict, they are in-
structed to refer to the training tasks answer sheet for the correct resolution.
The answer sheet simply details which parts of the code need to be replaced,
and what these lines of code need to be replaced with. Upon correct resolution
of the conflicting code changes, the program should compile again, and the task
is then considered to be complete. An excerpt of the training tasks answer sheet
is also given in the appendix.

16

4.5.7 Evaluation Tasks

The evaluation tasks were again mechanically scripted for each participant, with
check-boxes on the manuscripts to help prevent participants from skipping in-
structions or performing operations in an incorrect order. As in the training
tasks, an answer sheet was provided to resolve the resultant conflict from the
two sets of changes. An excerpt of the evaluation tasks sheet and answers is
given in appendix A.3.

Each participant worked as fast as they could on their set of instructions,
and the first group member to complete his work, including recompiling the code
and verifying that the application still worked properly, could submit his work
to the code repository first and not have to deal with any potential transactional
or merge conflicts. In all cases, the participant who finished his tasks second
had the task of correcting the now exposed conflict. For the tasks that were
performed in collaborative mode, the issue of which participant did the code
correction was determined by whoever discovered the conflict.

4.5.8 User Survey

A survey was given to each participant to complete in private at end of each
task. The aim of the survey was to provide a comparison between the evaluation
tool for the current mode and given task type against any previous experience
of collaborative Software Engineering tools.

For this survey we used NASA-TLX questions to determine and compare
the perceived effort, success and frustration levels of each participant [14]. By
using the standard NASA-TLX questions, we make our results available for
comparison against any other related studies that use the same survey technique.
We also added some additional subjective questions related to the understanding
of code changes and the perceived ease of file control.

A survey was also given at end of each session. This was purely for feedback
on the underlying concepts of our system, such as did the participant like the
concept of real time code sharing and editing, and would the user consider using
such systems if they were made available.

The questions for both surveys are given in the results section, and the full
surveys are given in appendix A.4. For both types of survey we used a 20 point
Likert scale in all questions; this is conventional for most NASA-TLX surveys
as it gives a far more accurate and robust representation than conventional five
point scales.

4.5.9 Statistical Validity

We need to ensure that any use of statistics is valid and justifiable before we
analyse the data and report the results. Aspects to consider when looking at the
statistical validity of empirical software engineering tasks include the choice of
statistical test, design of the experiment to eliminate confounding factors, and
post-evaluation analysis of data to ensure it fits with test.

Choice of Test We selected one-way analysis of variance (ANOVA) for this
evaluation. We are testing to see if there is any statistically significant difference
between the sample means, where separate tests are conducted for within files

17

and between files tasks. In the case of this evaluation there were only two means
to compare, so a two-sample t-test could have been used to give identical results.

We did not investigate interactions (two-way ANOVA) of tool mode and task
type. This would be an interesting aspect to explore, but it is not the focus
of this study. While we can not rule out that there could be some interaction
between the task type and tool mode, our study focused on specifically isolating
each task type.

From literature related to the use of empirical statistical analysis [15], it is
safe to assert a statistically significant, valid and meaningful difference between
two means if:

• The power of the test is not too high. A high power test is susceptible
to asserting that a negligible difference between two means is statistically
significant.

• All samples are a simple random survey (SRS) of the population, where the
population follows a normal or near-normal distribution. This also implies
that the samples should follow normal or near-normal distributions with
similar standard deviations to each other.

• The sample sizes are the same or similar to each other.

• The measures of both samples are independent of each other.

• There is no bias in the experimental design.

A related point to raise is that of a low powered test. If the aim of the
experiment is to assert that two or more means are the same, then a low power
test should not be used. A low power test which asserts that means are no
different risks a considerable possibility of being incorrect.

We believe that the evaluation has not breached any of the above guidelines,
and therefore the results of the statistical tests are significant, uncompromised,
and genuinely useful and applicable to the field of CSE research. Justification
of this claim is provided in the remainder of this section.

Design of Trial A common criticism of statistical tests is that unless there
is a large number of observed values, the results are not valid due to the low
statistical power of the test. This criticism is only valid when asserting simi-
larities between a set of means, not differences. For the evaluation presented in
this paper, we are only interested in finding a statistically significant difference
between the task completion rates for two tool modes; if any difference is found
then it is valid.

To assert a difference is a challenging task, however. We require means
quite distant from each other, and standard deviations small enough that they
do not overlap. To achieve both of these characteristics from the data we would
normally require a large, high power sample to reduce the standard deviation
size, or data that genuinely are from populations with well separated means.

For this evaluation the sample sizes were all the same within each statistical
test. Additionally, we are comfortable claiming that the pool of participants
was representative of the population, and can be considered as a SRS. This is
discussed further in section 6.

18

If we tested the two tool modes on the entire population we would expect
an approximately normal distribution of completion rates—most users would
complete the tasks near the population mean, with a decreasing number of
outliers either side of the mean. In other words, we foresee no skew or flatly
uniform distribution if the entire population were to be sampled.

We can safely assert that the task completion rates taken from both sam-
ples were independent of each other. In the case of this evaluation, the two
samples actually consisted of the same set of participants, but being examined
under different tool modes. As long as the learning effect was negligible, then
independent measures could be assumed.

As discussed in previous sections, we have taken strong steps to eliminate
or reduce any bias within the experimental design. Potential sources of bias are
learning effects on tool mode and task type, and we have taken steps to eliminate
this. We have also taken steps to remove any other confounding factors such
as programmer ability and scope of tasks by isolating and mechanising the
experiment as much as possible. A classic source of bias in evaluations where
students are enlisted as participants is that of self-selected data. We eliminated
this risk by ensuring that the entire class took part in the evaluation, not just
the students who showed interest.

Post Data Analysis After completing the evaluations and collecting the raw
task completion rates and survey responses, it was possible to verify our as-
sertions of normally distributed samples and equivalent sample standard devia-
tions.

The first step in any post-data analysis is to plot the results and confirm
that the distribution looks normal and the standard deviations are also of ap-
proximately the correct magnitude. In the case of this experiment the data for
both the objective measures and the subjective measures appeared satisfactory.

To formally test for equivalence between standard deviations, the rule

max(s.d.) <= 2×min(s.d.)

is often followed [18]. All our statistical tests conform to this rule for task
completion rate comparisons. As we wanted to test for significant differences
within the survey questions, we also checked our survey results. All but three of
the twelve survey tests for statistical differences passed this rule. For the three
tests that failed in terms of having equivalence, the p values were all so small
that it is safe to assume that the result were still significant in determining a
statistical difference [18].

A final concern that we could dismiss by statistical investigation was that
of unfair variance within tasks of the same type. As the experimental design
required two unique tasks for each type, we need to ensure that the completion
times were similar for each task within both tool modes. If no significant differ-
ence is found in times between both tasks within each task set, this eliminates
any speculation of a confounded experiment due to non-equivalent tasks. While
any disparity between tasks is negated by the order of the groups and tasks, it
is beneficial to assert that there is no disparity in the first instance.

Our hypothesis is that there is no difference between the means of the groups
that completed the two different tasks for each given task type and tool mode.
For all ANOVA tests, we compute the F statistic which is the ratio of variance

19

between and within groups. A low F statistic implies that there is a lot of
variance between groups compared to the within groups variance, meaning it
is likely any difference between the means is due only to chance. When testing
the F statistic, we compare this to the F (I − 1, N − I) distribution, where I is
the count of groups and N is the count of all samples taken. We reject the null
hypothesis that the means are equal if the calculated F test statistic is larger
than the critical value of the F distribution for the corresponding degrees of
freedom (I and N) and confidence level. In other words, we check the allowable
variance against the actual variance found in the given trial. If the variance
ratio is below the critical point for statistical difference, we can not reject the
null hypothesis of equal means.

If we inspect the resultant p values from an ANOVA report, we reveal the
actual probability that the difference between the sample means has occurred
purely by chance. When we say, for example, that we have a computed F1,4

statistic of 0.13 with a p value of 0.74, this implies that for 74 trials out of every
100, the difference occurred purely by chance. In this case, we have no evidence
to reject the null hypothesis that the sample means are the same. This high
likelihood of detecting a difference only by chance reflects two distributions that
are centered around a similar mean with distributions that overlap considerably.
As an alternative view, the F test statistic of 0.13 is considerably lower than
the critical value of 7.71 for F1,4 at the 5% significance level.

After performing the test we were not able to show differences between any
of the means within a set of tasks for a given tool mode. In collaborative mode,
the between files test gave F1,4=1.81, p=0.25 and the within files test gave
F1,4=0.13, p=0.74. In conventional mode, the between files test gave F1,4=4.69,
p=0.10 and the within files test gave F1,4=0.37, p=0.58. This gives evidence
that there may not be any difference between tasks for a given task type and
tool mode, as we propose, but to claim outright no significant difference with a
test of such a low power would be considered unwise.

4.6 Summary

The experimental design took a considerable effort design, with duties includ-
ing precise and unambiguous training manual and task wording, order of task
design, and verification of statistical validity. We were also required to derive
two similar yet distinct conflicting tasks for both within files and between files
experiments, and numerous pilots of the evaluation were undertaken to ensure
that the individual sessions ran smoothly. Accordingly, it is envisaged that this
experimental design can be replicated to save the time of others, perhaps even
using the same set of tasks. Additionally, by using the same experimental de-
sign and set of tasks in other studies, an objective comparison between different
tools can be made.

5 Evaluation Results

This section provides details on the findings of the evaluation for the six groups
of participants. The results are discussed further in section 7.

20

5.1 Task Completion Times

The task completion times for the tools in collaborative mode were at least twice
as fast as the times recorded for the tools in conventional mode. The compara-
tive differences are presented in figure 7. For within file tasks the difference was
highly significant, (F1,10 = 38.3, p<0.01) as were the between file differences
(F1,10 = 34.2, p<0.01). These significance levels give us confidence that the
results were not obtained by chance; we expect to achieve the same result for
99.9% of trials that repeat this experiment.

Figure 7: Mean task completion times. Error bars show the mean ± one stan-
dard error.

5.2 Subjective Assessment

Table 5.2 presents the findings of the survey given at the end of each task
within the evaluation sessions. As mentioned previously, the survey is based
on the NASA-TXL index with a 20 point Likert scale. From the table we see
that for both task modes, participants felt strongly that they understood the
changes of others better, and it was markedly easier to control source files using
the tools in collaborative mode.

NASA Task Load Index: Within, Between
Understanding
own changes

Understanding
others’ changes

Ease of File
Control

Perceived
Effort

Perceived
Success

Perceived
Frustration

Collaborative:
Mean 14.7, 12.1 18.8, 9.2 16.3, 15.9 3.9, 2.9 17.9, 16.3 3.7, 4.3
(s.d.) (4.9, 4.2) (1.4, 5.9) (3.5, 3.5) (3.5, 2.5) (2.2, 2.5) (2.4, 2.8)

Conventional:
Mean 9.0, 8.8 4.5, 1.8 8.4, 7.6 5.3, 7.5 15.5, 14.4 6.1, 8.3
(s.d.) (4.5, 6.0) (4.3, 1.4) (4.3, 5.6) (3.8, 5.5) (3.6, 4.3) (4.0, 5.7)

<.01; *<.05 ***,– ***, ***,*** –,* –,– –,*

Table 2: Summary of the subjective measures for tasks: NASA-TLX workload
ratings. Possible values range from 1 (low) to 20 (high).

For perceived frustration, perceived effort and awareness of local changes,
there was a statistically significant difference between the mean response in one
of the two task modes in favour of collaborative mode. For the remaining task

21

mode in each survey question, the difference was still favourable towards col-
laborative mode, but the difference was not statistically significant. For the
perceived success survey question, neither task mode gave a significantly dif-
ference in mean response, although the participants again showed a lenience
towards the tools when running in collaborative mode.

5.3 User Preferences

Table 5.3 presents the findings of the survey given at the end of each evaluation
session. This survey focused on general user preferences using a 20 point Likert
scale. The questions within this survey are also presented in table 5.3.

Order Question Response:
mean (s.d.)

1 In a collaborative, distributed setting, how useful do you think this type
of system will be?

15.7 (2.1)

2 In a collaborative, co-located setting, how useful do you think this type
of system will be?

15.8 (1.9)

3 How much does it help to have the source code shared and managed for
you?

16.4 (2.2)

4 How often would you like to work on collaborative tasks with a system
such as this (a system that updates and shares source files in real time)?

14.3 (2.2)

5 How useful did you find the ability to know what the current global state
of the project is?

14.8 (3.5)

6 How adequately was the awareness support provided (such as user location
feedback)?

13.0 (4.1)

Table 3: Summary of the subjective measures for overall preference. Possible
values range from 1 (low) to 20 (high).

The results of the user preferences survey was encouraging—all responses
ranged from positive to extremely positive. The participants foresee the col-
laborative tools as useful in both co-located and distributed settings, they find
the real time synchronisation of code helpful, the feedback support was also
perceived as useful, and they would use CSE tools such as the those used in the
evaluation often if made available.

5.4 User Comments

Instances of recurring comments made during and after the trials are listed in
table 5.4. Of the positive comments we conclude that all users enjoyed using
the system, and they claim that they would use it for most situations given the
opportunity. They also stated that they liked having the source code managed
for most tasks. These comments are corroborated by the results of the user
preferences survey reported in section 5.3.

Of comments to help improve the system, a private work facility is now at
the top of our list for future work; we had considered the idea before and users
appear to be asking for it as well. The remaining comments for improvement
were all related to usability issues we know that we must address as soon as
possible.

22

Type Comment
✓ “The system made coding more enjoyable.”
✓ “I liked the concept of real time development.”
✓ “The collaborative [user] tree was really helpful.”
✕ “The [editor] lag was a bit annoying.”
✕ “A private work area is needed for offline [development] spikes.”
✕ “The editor needs tele-scrollbars to give a better indication of where other users

are within the same file.”

Table 4: User comments.

6 Threats to Validity

A threat to validity that all empirical researchers face is that of the appropriate
use of statistical tests. As discussed in section 4.5.9, we believe that our design
of experiment and use of statistics is valid and meaningful.

Another aspect that is open for discussion for many evaluations is that of
assuming the trial group is in fact a SRS of the global population. This judge-
ment can be made by software engineers, statisticians, or perhaps more suitably
both groups. A statistical purist might argue that a SRS has not been made in
the case of this evaluation, as we have taken the entire population of the class.
Alternatively, a software engineer can argue that this class is a SRS from the
population of typical every-day software engineers. Typical programmers are
hard to define, but experienced and competent Software Engineering students
are probably a suitable average.

Perhaps the threat to validity with the most impact within this evaluation
is that of the source code repository interface. If the interface is too simplistic,
advanced repository users will not be able to use the repository in their usual
manner to avoid getting into programming deadlocks and conflicts when using
the tools in conventional mode. For the set of participants used in this trial, not
one participant mentioned that the interface appeared limited, which suggests
that only highly experience code repository users know how to use them to avoid
concurrency issues as shown elsewhere [13]. We are still confident, however,
that the experiment was indicative of activity commonly associated with code
repository usage, particularly by non-expert users.

On a similar topic, it is conceivable that the user survey results between pairs
might have unfairly high variance due to the imbalance of work—as discussed
in section 4 the first person to check his or her files back into the repository has
less work to do than the remaining participant. We envisage that the combined
opinions of each group should give a fair comparison against the mean efforts
in collaborative mode. It does imply, however, that the tests for differences
between means are potentially less significant than if the effort levels between
participants were perfectly balanced.

A constant factor that we have kept in mind since the idea of performing
user evaluations on our set of tools was that of keeping the experiments realistic
yet measurable. If the experiments are too sterile then we risk having results
that are valid but not genuinely useful in a global context. Unfortunately, the
tasks do need to be reasonably sterile to enable them to be repeatable and
free from confounding factors. While we have designed the tasks as somewhat

23

artificial, particularly from the aspects of scripted participant instructions and
conflict resolution, we believe that the evaluation is a reasonable approximation
of tasks and conflicts that will be encountered in everyday Software Engineering.

7 Discussion

The results obtained for task completion rates and subjective measures were sur-
prisingly good considering that no attention had been paid to making the tools
particularly user friendly or refined. While we were very confident that there
would be some difference between the two tool modes in favour of collaboration,
we were surprised that the differences were so large. More pleasing, however,
was the subjective results which showed that users liked using the system and
agreed with our own perceived benefits to software engineering. It was always
a concern that even though the users could perform the tasks faster, they did
not like using the tools in collaborative mode.

While the evaluation tasks involved at least a degree of collaboration between
users, the tasks were not designed specifically in favour of a highly collaborative
approach. Therefore, for tasks that are highly collaborative, such as debugging
or demonstrating new ideas, we have reason to believe that the tools in col-
laborative mode would perform even better than in this experiment. Similarly,
as the users only had about ten minutes worth of training in collaborative tool
mode, we observed that the collaborative features of the tools were not used to
their fullest potential. Given more experienced users, it is highly possible that
the task completion rates could have been improved upon, and the feedback on
the collaborative mode of work might have been even more positive.

When referring back to the data presented in figure 7, there was a consider-
ably larger gain for collaborative within files tasks than collaborative between
file tasks. A likely explanation for this is that it is not possible to avoid trans-
actional conflicts in between files tasks as it is to avoid merge conflicts during
within file tasks. Programmers still have to discover the transactional error and
then correct it for between file tasks, whereas with within files tasks they can
detect the potential conflict and avoid it altogether. Regardless of the relative
difference between the two tool modes, between files tasks are still a lot faster
in collaborative mode than conventional mode because the error is detected
immediately, not after a file merge and rebuild.

An interesting observation during the experiments was that when partici-
pants did not stop and talk with each other in collaborative mode for within
files tasks, they still managed to accomplish their code changes without no-
ticeable hindrance. They simply engaged in a brief ‘editing war’ where even
though their changes were being interrupted, both users very soon had their
code changes in place. Under normal circumstances we would expect users to
slow down and discuss collaborative edits that occur in the same region of code,
but some participants in this experiment were highly task oriented due to the
nature of the evaluation.

We feel confident that our results can be used beyond the scope of this
evaluation, within reason. Given larger numbers of users within a group, a
wider range of users, and different types and sizes of tasks, we believe that our
tools would give similar results to those reported in this paper. Certainly some
common tasks, such as algorithm design and development, should be performed

24

in a private work area, but the majority of Software Engineering tasks are likely
candidates for CSE tools such as ours. As the number of users in a group
increases, so too does the amount of collaborative user activity, but the same
problem also faces conventional tools and code repository systems.

In summary, all of the measurable aspects of this evaluation produced pleas-
ing results, which assists us in confirming both the quality of the current set
of CAISE tools as well as the principles of the underlying architecture. Addi-
tionally, we have also engaged in other forms of evaluations for the set of tools
currently under investigation. For example, we recently proposed a set of heuris-
tic evaluations for CSE tools that promote their continual improvement during
the entire development life-cycle [6]. Accordingly, the set of CSE tools presented
in this paper are constantly refined through such heuristic evaluations, which
allows us to anecdotally confirm the solidity of their design.

8 Conclusions and Future Work

Synchronous Software Engineering, including associated tools, is an area of ac-
tive research at present, with many new tools being introduced both throughout
the research field and the software engineering industry.

We have developed one of the first sets of general-purpose tools to engineer
software collaboratively and in real time. Many questions arise from these tools
and the associated modes of work, such as do the tools really work in prac-
tice, and will programmers want to develop software collaboratively given the
technologies to do so. It is very important to start objectively evaluating such
tools; there have been many papers of tools that appeared as good ideas in the
research lab but when evaluated failed to reach the expectations of both the
researchers and test users.

Through our evaluations we have shown examples where our set of CSE
tools not only significantly outperform their conventional counterparts, but users
prefer using them, their perceived success is higher, and their perceived effort
and frustration levels are lower. Our results strongly suggest that collaborative
tools such as text editors can improve the productivity of software development.
Subjective results also suggest that providing users with a constantly updated
global project state appears to help developers rather than hinder. Most other
aspects of participant feedback were highly positive as well.

In summary, we can now confirm through empirical results that our anecdo-
tal assumption of moving software engineering tools into the realm of computer
supported collaborative work has real benefits in terms of task completion rates,
and other perceived benefits as well. We have also shown that our tools stand
up to testing with users that have had no previous exposure or experience to
them, even when completing considerably comprehensive tasks within a non-
trivial application. From the results of this statistical evaluation, previous posi-
tive feedback from associated researchers and software engineers, and continual
refinement from heuristic evaluations, we are strongly encouraged to continue
further research and development of collaborative tools for software engineering.

This evaluation was restricted to investigating the effects of collaboration
on core task completion rates where all other software engineering factors were
controlled. We encourage other researchers to repeat this experiment on their
tools for comparison. For our research, an important further step is to investi-

25

gate how users interact with each other and the collaborative tools given more
complex and open-ended sets of development tasks.

We also advocate investigations into actions of participants at a fine-grain
level during collaborative tasks over long periods of development [6]. Given the
positive user feedback from this evaluation, and the reliability of the latest ver-
sion of CSE tools, a longitudinal study of collaborative development behaviour
will be the basis of another future study.

References

[1] Brian Berliner. CVS II: Parallelizing Software Development. In Proceed-
ings of the USENIX Winter 1990 Technical Conference, pages 341–352,
Berkeley, CA, 1990. USENIX Association.

[2] Marko Boger, Thorsten Sturm, Erich Schildhauer, and Eliza-
beth Graham. Poseidon for UML User Guide, 2002. URL
http://www.gentleware.com/support/documentation.php4.

[3] R. P. Carasik and C. E. Grantham. A Case Study of CSCW in a Dispersed
Organization. In CHI ’88: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pages 61–66, New York, NY, USA,
1988. ACM Press. ISBN 0-201-14237-6.

[4] Carl Cook. Collaborative Software Engineering: An Annotated Bibliogra-
phy. Technical Report TR-COSC 02/04, Department of Computer Science
and Software Engineering, University of Canterbury, Christchurch, New
Zealand, June 2004. Work in Progress.

[5] Carl Cook and Neville Churcher. An Extensible Framework for Collabo-
rative Software Engineering. In Deeber Azada, editor, Proceedings of the
Tenth Asia-Pacific Software Engineering Conference, pages 290–299, Chi-
ang Mai, Thailand, December 2003. IEEE Computer Society.

[6] Carl Cook and Neville Churcher. Modelling and Measuring Collabora-
tive Software Engineering. In Vladimir Estivill-Castro, editor, Proceedings
of ACSC2005: Twenty-Eighth Australasian Computer Science Conference,
volume 38 of Conferences in Research and Practice in Information Tech-
nology, pages 267–277, Newcastle, Australia, January 2005. ACS. 25%
acceptance rate.

[7] Carl Cook and Neville Churcher. Collaborative Software Engineering
Tools. Technical Report TR-COSC 05/05, Department of Computer Sci-
ence and Software Engineering, University of Canterbury, Christchurch,
New Zealand, August 2005.

[8] Carl Cook, Neville Churcher, and Warwick Irwin. Towards Synchronous
Collaborative Software Engineering. In Proceedings of the Eleventh Asia-
Pacific Software Engineering Conference, pages 230–239, Busan, Korea,
December 2004. IEEE Computer Society.

[9] Borland Software Corporation. What’s New In Borland JBuilder 2005.
White Paper, September 2004. URL ??

26

[10] eclipse. Eclipse Platform Technical Overview Version 2.1. White Paper,
February 2003. URL http://www.eclipse.org/articles/.

[11] Jon Froehlich and Paul Dourish. Unifying Artifacts and Activities in a
Visual Tool for Distributed Software Development Teams. In 6th Inter-
national Conference on Software Engineering (ICSE’04), pages 387–396,
Edinburgh, Scotland, United Kingdom, May 2004. IEEE.

[12] Nicholas Graham, Hugh Stewart, Authur Ryman, Reza Kopaee, and Rittu
Rasouli. A World-Wide-Web Architecture for Collaborative Software De-
sign. In Software Technology and Engineering Practice, pages 22–32, Pitts-
burgh, Pennsylvania, August 1999. IEEE.

[13] Carl Gutwin, Reagan Penner, and Kevin Schneider. Group Awareness
in Distributed Software Development. In CSCW ’04: Proceedings of the
2004 ACM Conference on Computer Supported Cooperative Work, pages
72–81, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-810-5. doi:
http://doi.acm.org/10.1145/1031607.1031621.

[14] S. G. Hart and L.E. Staveland. Development of NASA-TLX (Task Load
Index): Results of Empirical and Theoretical Research. In P.A. Hancock
and N. Meshkati, editors, Human Mental Workload, pages 139–183. Elsevier
Science, 1998.

[15] C. Helberg. Pitfalls of Data Analysis (or how to avoid lies and damned lies).
In Third International Applied Statistics in Industry Conference, Dallas,
Texas, U.S.A.,, June 1995. URL my.execpc.com/ helberg/pitfalls.

[16] Sun Microsystems Incorporated. Sun Java Studio
Enterprise Edition. Datasheet, July 2005. URL
www.sun.com/software/products/jsenterprise/ds jsenterprise.pdf.

[17] Scott Lewis. Eclipse Communication Framework. Internet Homepage, April
2005. URL http://www.eclipse.org/ecf/goals.html.

[18] David S. Moore and George P. McCabe. Introduction to the Practice of
Statistics. W H Freeman and Company, New York, 2nd edition, 1993.
ISBN 0-7167-2250-X.

[19] Martin Ott, Martin Pittenauer, and Dominik Wag-
ner. SubEthaEdit. Web Site, July 2005. URL
www.codingmonkeys.de/subethaedit/collaborate.html.

[20] Michael Reeves and Jihan Zhu. Moomba A Collaborative Environment for
Supporting Distributed Extreme Programming in Global Software Devel-
opment. In Jutta Eckstein and Hubert Baumeister, editors, Lecture Notes
in Computer Science, volume 3092, pages 38–50. Springer-Verlag, January
2004.

[21] Anita Sarma and Andr van der Hoek. Palantr: Coordinating Distributed
Workspaces. In 26th Annual International Computer Software and Appli-
cations Conference, Oxford, England, August 2002. IEEE.

[22] Chengzheng Sun. Undo as Concurrent Inverse in Group Editors. ACM
Transactions on Computer-Human Interaction, 9(4):309–361, 2002. ISSN
1073-0516.

27

A Evaluation Documents

The full task sheet, training manual, answer sheets and participant surveys are
available for download from www.cosc.canterbury.ac.nz/clc/cse.

A.1 Training Manual

Excerpt from the introduction

Excerpt from the CVS interface section

28

A.2 Training Tasks

Excerpt from a conventional between files training task

Excerpt from the training tasks answer sheet

29

A.3 Evaluation Tasks

Excerpt from a conventional within files evaluation task

Excerpt from the evaluation tasks answer sheet

30

A.4 Participant Surveys

Excerpt from the end of task survey

Excerpt from the end of session survey

B Source Code

The Java source code for both the training and the evaluation applications are
also available for download from www.cosc.canterbury.ac.nz/clc/cse. This
includes the images used for the animations.

31

