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Abstract

We show that the circle space of a spherical circle plane is a punctured
projective 3-space. The main ingredient is a partial solution of the problem
of Apollonius on common touching circles.

1 Introduction

In 1974, K. Strambach [18] announced the result that all compact connected
Möbius planes have the same circle space, up to homeomorphism. He gives
strong arguments to support this statement, but some details in his construction
of a homeomorphism are not consistent. We add some further ideas sufficient to
make the proof work. In fact, our proof becomes simpler and does not use the
axiom of touching, hence we prove the result for spherical circle planes:

Theorem 1.1. The circle space of every spherical circle plane is homeomorphic to real
projective 3-space minus a point.

In the case of the classical Möbius plane, formed by the unit sphere S2 in R3

with its infinite plane sections as circles, the statement of this theorem is easily
verified. Indeed, under the polarity σ of P3R having S2 as its set of absolute
points, the planes meeting S2 in infinitely many points correspond to the points of
the projective space outside the sphere. The set of these points is homeomorphic
to the punctured projective space. (A different argument for the classical circle
space can be found in [10, p. 153].) Therefore, in order to prove the theorem, it
remains to show that all spherical circle planes have the same circle space, up to
homeomorphism.
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A. Lightfoot [9] considered embeddable spherical circle planes and obtained
the result of Theorem 1.1 in this special case, see [9, Theorem 4.3.7]. In his proof
he makes essential use of the fact that such circle planes sit in R3 and that circles
come from affine planes of R3.

2 Definition and basic properties

Definition 2.1. A spherical circle plane C = (S,K) consists of its point set S = S2,
the 2-sphere, and its set K of circles. Each circle K ∈ K is a subset of S homeo-
morphic to the unit circle S1, and for any three distinct points x, y, z ∈ S, there is
a unique circle K(x, y, z) joining them. Two distinct circles K, L are said to touch
in a point x if {x} = K ∩ L. We also say that L touches itself in any of its points.

A spherical Möbius plane is a spherical circle plane satisfying the axiom of touch-
ing: Given a circle K and two points x, y such that x /∈ K and y ∈ K, there is a
unique circle L = T(x, K, y) containing x and touching K in the point y.

The geometric operations K(−,−,−) and T(−,−,−) introduced above are
automatically continuous, see [15, 2.2] and [19, Satz 7.1]. Also the operation
∩ that sends a pair (K, L) of distinct circles with nonvoid intersection to K ∩ L
is continuous when we consider K ∩ L as an element of the symmetric square
S ∗ S = S × S/∼, where ∼ is the equivalence relation defined by (x, y) ∼ (y, x).
To make this work, we identify the singleton x with the pair (x, x).

Examples of spherical circle planes abound. A special class of examples are G.
Ewald’s ovoidal (or embeddable) planes [5]. Their point sets are strictly convex
closed surfaces S ⊆ R

3, and circles are the plane sections of S having more than
one point. The plane is a Möbius plane if and only if S is differentiable by [5, Satz
2]. Examples of a different kind are given by G. Ewald in [6]. See [10, Section
3.3] for more examples. Highly homogeneous spherical circle planes have been
classified by K. Strambach [16], [17].

Definition 2.2. A spherical circle plane C may be derived at any point p. The
derived plane Cp has point set Sp := S \ {p} and the set of lines Kp := {K \ {p} |
p ∈ K ∈ K}.

Thus, Cp is an R2-plane in the sense of [13, Section 31]. This means that the

point set Sp is homeomorphic to R2 and each line L ∈ Kp is a closed subset of
Sp homeomorphic to R, and that any two distinct points in Sp are joined by a
unique line. According to Skornyakov’s theorem, see [13, 31.22], the line space of
an R2-plane admits a unique topology making the plane a stable plane, that is,
rendering the set of pairs of intersecting lines open and the geometric operations
of join and intersection continuous. By uniqueness, this topology coincides with
the topology induced from K. Further properties of R

2-planes may be found in
[13, Section 31]. The circle plane C is a Möbius plane if and only if all derived
planes are affine planes.

Suppose that K and L are two circles intersecting in two points x, y. Then y is
the intersection point of the two lines K \ {x} and L \ {x} in the derived plane Cx.
Therefore, we know from [13, 31.5b] that the intersection is transversal, that is, in
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some neighborhood of y, the traces of K and L are embedded like the Cartesian
factors of R2 = R × R. On the other hand, if two circles K, L touch in the point
x, then L \ {x} is contained in one of the two connected components of S \ K.
This implies that K and L intersect non-transversally in this case. Thus we have
proved:

Proposition 2.3. Two circles K and L in a spherical circle plane touch in a common point
x if and only if their intersection at x is not transversal.

Corollary 2.4. The pairs of touching circles form a closed subset of K ×K.

Proof. The set of pairs of circles intersecting in two points is open by Proposition
2.3. Since also the set of pairs of disjoint circles is open, the statement follows.

Let K be a circle and x, y be two points not on K. If x and y belong to different
connected components of S \ K, then no circle containing x and y can touch K.
However, if x and y belong to the same component, then the set Kx,y of all circles
passing through both points is a line pencil in the derived plane Cx, hence it is
homeomorphic to the circle S1, see [13, 31.17]. Given a point p in K, there is
a unique circle Lp in this set containing p, and it contains a unique further point
f (p) ∈ K; if Lp happens to touch K, then we interpret this as saying that f (p) = p.
The map f : K → K is an involution, i.e., f ◦ f = id but f 6= id. By continuity
of geometric operations, f is continuous, and hence conjugate to one of the two
linear involutions on S1. If f were conjugate to the antipodal map of S1, then
every pair of circles in Kx,y would have a common point in the complementary
component of K not containing x and y, a contradiction. Thus f has exactly two
fixed points, corresponding to exactly two circles in Kx,y touching K. By these
considerations, taken essentially from [3], we have proved the following result.
It was first obtained by K. Strambach [15, 3.13], but the method we used here
prepares a similar argument that we shall need in Section 3.

Proposition 2.5. Let K be a circle in a spherical circle plane (S,K) and let x, y be two
points not on K. If x and y belong to different components of S \ K, then there is no circle
containing these points and touching K.

If, on the other hand, x and y belong to the same component, then there are exactly
two circles touching K and containing x and y. This pair of touching circles depends
continuously on (K, x, y) by Corollary 2.4.

In the last proposition, fix the point x and move y to approach a point on K.
In view of Corollary 2.4, this shows that every point on K lies on a touching circle
that contains x. In fact, we can show more than that:

Proposition 2.6. For a point p on a circle K and a point x /∈ K, the set of all circles in
Kx touching K in the point p is homeomorphic to a closed interval, which may be reduced
to a point.

Proof. The map g : K \ {p} → Kx,p defined by g(y) = K(y, x, p) is continu-
ous and injective, hence its image is an open interval in the space Kx,p, which is
homeomorphic to the circle S1. The proposition follows; see also Figure 4 and the
example at the end of Section 3.

In a spherical Möbius plane, the following fact is rather obvious.
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Proposition 2.7. Let K be a circle and x be a point not on K. Then the set T (x, K) of all
circles in Kx touching K is homeomorphic to S1.

Proof. The point x has a neighborhood basis consisting of complementary com-
ponents of circles. In particular, there is a circle L separating K from x. Every
tangent circle T ∈ T (x, K) intersects L in two distinct points. We use this in order
to construct a homeomorphism f : L → T (x, K). Given a point y ∈ L, Proposi-
tion 2.5 asserts that there are exactly two tangents in T (x, K) ∩ Ky. They meet L
in a total of three points y, a, b; see the diagram on the left of Figure 1. Choose an
orientation on L and let g(y) ∈ {a, b} be the point following y in this orientation.
Let f (y) ∈ T (x, K) be the circle joining x, y and g(y). Then f is a continuous map
L → T (x, K), and we aim to show that f is bijective.
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Figure 1: The topology of T (x, K)

Every tangent T ∈ T (x, K) separates S into two disks, one of which contains
K \ T. The boundary of the other disk intersects L in an interval I bounded by
the two intersection points of T and L. If y denotes the first of these points of
intersection in the order of I induced by the orientation of L, then g(y) is the
other end point of I, and hence T 7→ y is an inverse map for f .

3 The Apollonius problem

This problem asks for the number of common touching circles of some given
configuration of three points and/or circles, where touching a point is interpreted
as containment. A simple instance of this problem is answered by Proposition
2.5. In spherical Möbius planes, the problem has been studied extensively by H.
Groh [7]. We need to generalize his result 5.4 to spherical circle planes. A more
sophisticated approach to the Apollonius problem in the Möbius case is given by
A.E. Schroth in [14, Chapter 7]; he uses an embedding of a Möbius plane into a
generalized quadrangle and obtains a complete result.

Before we state our result, note that two disjoint circles K, L separate the point
set S into three connected components, two disks bounded by a single circle
(K or L), and one annulus bounded by K and L together.
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Theorem 3.1. In a spherical circle plane (S,K), let K and L be disjoint circles, and
consider a point x in the annulus bounded by K ∪ L. Then Kx contains exactly four
circles touching both K and L. Exactly two of these separate K from L, that is, with the
exception of the points of touching, K and L lie in different complementary components
with respect to these circles.

Proof. 1) The proof will follow the same pattern as that of Proposition 2.5, which
is why we included the latter. Most of the time, we work in the derived plane Cx

with point set E = S \ {x}, and we use the terms ‘line’ and ‘tangent’ to designate
elements of Kx and of T (x, K) or T (x, L), respectively. By our hypothesis, K is
contained in the unbounded component of E \ L and vice versa.

Let T be a line touching K in a point p, and let G be a secant of K containing
p. Then G separates E into two open half planes, and splits T into two rays
contained in different half planes. At the same time, K is split into two half circles
K1 and K2. Fix an orientation of K and let K1 be the half circle beginning at the
point p. Now let T1 denote the ‘forward’ ray contained in the same half plane
which contains K1. The other ray T2 will be referred to as the backward ray of
T. This choice of T1 depends on the orientation of K, but not on the choice of a
secant. Now consider the situation of Proposition 2.5 with the same notation as
used there, and look at the two tangents of K passing through a point y in the
unbounded domain of E \ K. We observe that y belongs to the forward ray of
exactly one of these tangents, and to the backward ray of the other, see Figure 2.
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Figure 2: Forward and backward rays

2) Let g(y) ∈ T (x, K) be the tangent whose forward ray contains y. Then g is
a continuous map, and we obtain a continuous involution f : L → L by sending
y ∈ L to the second intersection point of g(y) and L, or to y itself if g(y) happens
to touch L. Clearly, f is not the identity, because Proposition 2.5 shows that there
are forward rays containing a point in the bounded complementary domain D of
L in E. The involution f cannot be fixed point free either, for in this case any two
forward rays properly intersecting L would have to intersect in D, producing a
point which lies on two forward tangent rays, a contradiction to step (1). This
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shows that f must have precisely two fixed points, that is, exactly two forward
rays touch L. In the same way, we obtain exactly two touching backward rays.
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Figure 3: Region bounded by forward rays

3) Suppose that g(y) is a secant of L. Then y is a transversal intersection point
of g(y) and L. It follows that the forward ray of g(y) intersects L twice, because
it enters the bounded component D and is closed in E. The result of step (2)
shows that the image of the map g is an interval in T (x, K) whose end points are
forward tangents of L, while the rest of the interval consists of secants. The circle
L is therefore contained in a region bounded by the two forward rays tangent
to L together with a (possibly degenerate) interval of K joining the two points
of touching; compare Figure 3. The first of the end points of this interval is the
touching point of the first tangent ray. These facts show that the first forward
tangent does not separate the circles K and L while the second one does. The
same applies to backward tangents, which completes the proof.

If we move x to approach a point p on K, then, in view of Corollary 2.4, the
touching circles provided by Theorem 3.1 will accumulate at circles touching K
in p. Hence, we obtain the following corollary.

Corollary 3.2. In a spherical circle plane (S,K), let K and L be disjoint circles, and
consider a point x on K. Then Kx contains at least two circles touching both K and L.
One of them separates K from L and some other one does not.

Here, separating K from L means for a circle T that each of the closed half
planes defined by T contains one of the circles K, L.

In Möbius planes there are exactly two circles in Kx that touch both K and
L. However, in spherical circle planes we may have two closed intervals of such
touching circles in Kx, one consisting of separating circles and the other of non-
separating ones; we do not know whether even more involved situations may
occur. In fact, the set of circles that touch K in x and L in a fixed point y may even
be homeomorphic to a closed interval. A simple example for this behaviour can
be found by considering the strictly convex closed surface S ⊂ R3 which is the
union of a closed hemisphere of the unit 2-sphere S2 and a fitting cap of a larger
sphere. More precisely, let

S = {(u, v, w) ∈ R
3 | u2 + v2 + w2 = 1, u ≥ 0}∪

{(u, v, w) ∈ R
3 | u2 − 2ru + v2 + w2 = 1, u ≤ 0}
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where r ≥ 0. In case r = 0 we obtain the unit 2-sphere S2, but for r > 0 the
surface S is no longer differentiable at points whose u-coordinate is 0. We use
stereographic projection π from the north pole n = (0, 0, 1) onto the uv-plane.
π(S \ {n}) consists of the open half-plane H = {(u, v) ∈ R2 | u > − 1

r }. Any
circle through n will appear as a straight line in H, and two such circles K1 and
K2 touch in n if and only if π(K1) and π(K2) are disjoint, that is, the underlying
Euclidean lines are parallel or intersect in a point outside H. The entire spherical
circle plane can be represented in H; straight lines have to be extended by the
point n at infinity.

b T2

T1

T3

T4

K

L H

Figure 4: Circles touching K and L

The intersection of S with the uv-plane is the circle

L = {(u, v) ∈ R
2 | u2 + v2 = 1, v ≥ 0} ∪ {(u, v) ∈ R

2 | u2 − 2ru + v2 = 1, u ≤ 0},

which is shown in Figure 4. This set has a ‘left’ tangent T1 in (0, 1) and a ‘right’
tangent T2 in the same point. If K is a line as in Figure 4, that is, above T1 and
T2 and not intersecting these tangents in H, any straight line between T1 and T2

touches K in n and L in (0, 1), and separates K from L. One such line is shown in
Figure 4 as a dashed line. One similarly has tangents T3 and T4 to L at (0,−1); any
straight line between them touches K in n and L in (0,−1), but does not separate
K from L. Of course, there are further tangents touching L in points 6= (0,±1)
and still disjoint from K except for n.

4 Flocks

Definition 4.1. Let n, s ∈ S be two points, thought of as the north pole and the
south pole. A flock with carrier {n, s} is a set F ⊆ K of mutually disjoint circles
covering S \ {n, s}.

When working with flocks, it is convenient to use the extended circle space
K̄ := K ∪ S with the following topology. Open sets in K are open in K̄, and a
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neighborhood of x ∈ S consists of a neighborhood U of x in S together with all
circles contained in U.

Proposition 4.2. In the extended circle space K̄, the closure F̄ = F ∪ {n, s} of a flock
with carrier {n, s} is homeomorphic to the interval [−1, 1] of real numbers, with n and s
corresponding to the end points. A homeomorphism is given by intersecting flock circles
with a meridian M, i.e., with a semicircle joining n and s.

Proof. The map f : M → F̄ sending a point to the unique flock circle containing it
(and sending n and s to themselves) is clearly bijective. Next, we prove continuity
of f . Suppose that xk → x in M \ {n, s}. We have to exclude the possibility that
(some subsequence of) f (xk) converges to some circle K other than f (x). We have
x ∈ K, and if f (x) intersects K transversally at x, then f (xn) intersects f (x) for
large k, a contradiction. There remains the case that K touches f (x) at the point
x. By the same reason as before, K and all circles f (xk) must be contained in the
same disk bounded by f (x). But then the region bounded by K together with
f (x) cannot contain points of any flock circle. Now suppose that xk → n and that
f (xk) accumulates at some circle K. Then n ∈ K and K must intersect some flock
circle transversally, a contradiction. Thus, we have proved that f is continuous.
By compactness, f is a homeomorphism.

Flocks of circles are an important tool for the introduction of coordinates in the
circle space. Their existence has been proved for Möbius planes by K. Strambach
[18], see also [11] and [12]. Our proof for spherical circle planes will resemble the
existing proofs. The main ingredient is the following consequence of our previous
results.

Proposition 4.3. Let K and L be disjoint circles and consider a point x in the annulus
A ⊂ S bounded by K ∪ L. There exists a circle M ⊂ A containing x and separating K
from L.

Proof. As in the proof of Theorem 3.1, we work in the derived plane Cx. The two
separating common tangents T1, T2 of K and L intersect in a point p, and in the
line pencil of p they define two open intervals. One of them consists of common
secants of K and L, and the lines in the other interval are disjoint from both circles
and separate them.

Theorem 4.4. For every pair of points n, s ∈ S there exists a flock F with carrier {n, s}.

Proof. Let {Uk | k ∈ N} be a countable basis for the topology of S. Inductively
we define Fk to be a circle meeting Uk and disjoint from F1, . . . , Fk−1. Such a circle
Fk can be found using Proposition 4.3 if Uk contains points that lie between two
previously chosen circles. If this is not the case, choose x ∈ Uk. If none of the
circles F1, . . . , Fk−1 separates x from n, choose an auxiliary circle separating x from
n and apply 4.3 to this circle and the previously chosen circle closest to x. Proceed
similarly with n replaced by s. There results a partial flock P = {Fk | k ∈ N}
whose union is dense in S.

Now let F be the closure of P in K. Then F covers S. If two circles K, L ∈ F
intersect, then some approximating circles Fk and Fl also intersect, by arguments
as in the proof of Proposition 4.2. The contradiction shows that F is a flock.



The circle space of a spherical circle plane 359

5 The circle space

The main purpose of this section is to prove Theorem 1.1, using the tools pre-
sented in the preceding sections. In particular, we make use of a flock F with
carrier {n, s}, where n and s are arbitrary distinct points. Our first aim is to intro-
duce a kind of polar coordinates on the point set. A point p ∈ S is specified by its
latitude and longitude. The latitude a of p is determined by the flock circle Fa ∈ F
containing p and takes values in the interval [−1, 1] ≈ F̄ , the values −1 and 1
pertaining to s and n, respectively. For the longitude, we use the pencil Kn,s of
longitudes. Being a line pencil in the derived plane Cn, this pencil is a topological
circle. Its twofold covering space K̃n,s may be thought of as the space of meridians
(semicircles joining n to s) and is again a topological circle, parametrized by the
interval [0, 2π] subject to the identification 0 = 2π. The longitude ϕ of p is the
parameter of the meridian containing p and is arbitrary for p ∈ {n, s}. We write
(a, ϕ) for the point with coordinates a, ϕ.

Introducing coordinates for circles is much more difficult and cannot be done
using a single chart from the start. We split the space K into two subsets K1 and
K2 which are not disjoint. Both contain the circles passing through n or s, and
those containing s receive different coordinates when regarded as members of K1

or K2. The longitudes occur twice in K1 and twice in K2, carrying two sets of
coordinates in each chart. The circles containing n also belong to the intersec-
tion of the two charts, but their coordinates agree, so the charts may be glued
together, resulting in a closed ball D3, as we shall see. After gluing, all coordi-
nates are unique, except for circles containing s, which have two distinct sets of
coordinates. Thus it will turn out that the space K is a quotient of D3 modulo
an identification given by the orbits of a fixed point free involutory homeomor-
phism of its boundary sphere. To be precise, one of the orbits of the involution
is missing. Now we use a well-known theorem by Brouwer and Kerékjártó [2],
[8], see also [4] and [1] for completions of the proof. It asserts that every fixed
point free involution of S2 is conjugate to the antipodal map x 7→ −x. The con-
jugating homeomorphism may be radially extended over all of D3, so this shows
that the resulting quotient space of D3 is homeomorphic to the real projective 3-
space P3R. Due to the single missing orbit, we obtain that the circle space is the
punctured projective space.

Before we define the sets Ki, let us first describe how the coordinates will be
defined. For every circle K, there is a continuous mapping K → F̄ sending a point
in K to the unique flock circle containing it; if applicable, n and s are mapped to
themselves. This gives us a compact subinterval of F̄ ≈ [−1, 1], and we let the
maximum a and the minimum b of this subinterval be coordinates of K. Note
that by Proposition 2.3 the flock circles Fa and Fb touch K. The map K 7→ {a, b}
is continuous, and we have a = b if and only if K ∈ F . In that case, the circle is
already determined by its coordinates.

If a 6= b, we need a third coordinate for our circle K. We shall use the two
intersection points of K with the middle circle Fm, where m = 1

2(a + b). The
fact that there are always two intersection points causes the trouble, forcing us
to make a choice. What we do is to divide K into K1 and K2 in such a way that
it is possible to choose an orientation coherently for all circles in a given set Ki,
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and then we generally choose an intersection point depending on this orientation.
Specifying an orientation of K amounts to choosing a connected component U of
S \ K, and the preferred intersection point in K ∩ Fm will be the initial point of the
closed interval Fm ∩ U, in the sense of the orientation of meridians given by the
angle parameter. The coordinate set of K will be (a, b, ϕ), where ϕ is the angle
coordinate of the preferred intersection point.

Given the coordinates (a, b, ϕ) of K, we can determine the preferred intersec-
tion point x = (m, ϕ) of K and Fm. According to Theorem 3.1, there are exactly
four circles containing x and touching Fa and Fb, so K must be one of these. Ex-
actly two of the four circles separate the two flock circles and, hence, the poles n
and s. This fact, together with suitable orientation conventions, will allow us to
distinguish between the four circles determined by (a, b, ϕ).

Here then is the definition of K1. This set consists of all circles that either
separate the poles n and s or contain one of them. The orientation of K ∈ K1 is
given by the complementary component U containing s, unless s ∈ K, in which
case U is the component not containing n. This does not determine the orientation
of longitudes, and in fact, each longitude is counted as two elements of K1, with
opposite orientations.

Next, we define the set K2. It contains the circles that do not separate n and s,
including those that contain one or two poles. The orientation convention differs
from that of K1. The component U is defined to be the one containing s, if s /∈
K; if s ∈ K, then U is the component containing n. Longitudes are given two
orientations like in K1.

The orientation conventions for K1 and K2 match for all circles except those
passing through s; for the latter, we have made opposite choices.

Now we start visualizing the coordinate patches. At the beginning, we fix
the angle coordinate. By combining the contributions from K1 and K2, we shall
obtain a half disk H lacking the end points of the diameter that defines it. The
remainder of the diameter represents the flock circles, which need no angle co-
ordinate. To be more explicit, we want H to be the part of the unit disk in the
(u, v)-plane defined by u ≥ 0, with the points (0,±1) omitted. Hence we may
later use ϕ in order to describe the body of revolution obtained by rotating H
about the v-axis.

For fixed ϕ, we represent K1 as the triangle in the (a, b)-plane defined by −1 ≤
b ≤ a ≤ 1. Its vertices are (−1,−1), (1, 1), and (1,−1), see Figure 5. The first
two vertices do not represent circles, and (1,−1) represents a longitude. (Note
that, since ϕ parametrizes meridians, every longitude will occur twice). The flock
corresponds to the side a = b of the triangle, and the other two sides a = 1 and
b = −1 consist of the circles passing through n and s, respectively.

The triangle will be mapped homeomorphically to the part of H below and
on the line u + v = 1, with the side a = b going to the diameter, the side b = −1
going to the quarter circle from (0,−1) to (1, 0) with the orientation indicated in
the figure, and the side a = 1 going to the segment defined by u + v = 1.

For K2, we picture the coordinates in R2 as (−b,−a), in order to facilitate the
subsequent mapping into H. Thus, our triangle looks the same as before, but now
the side −a = −b is not there, the side −b = 1 represents circles containing s, the
side −a = −1 represents circles containing n, and the vertex (−b,−a) = (1,−1)
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Figure 5: Gluing together the coordinate patches

represents a longitude. This triangle is mapped to the part of H on and above
the segment u + v = 1, and we can insist that this matches the previous home-
omorphism coming from K1 in the case of circles passing through n (the angle
coordinates for these circles do match). The missing side −a = −b is compressed
to the missing boundary point (0, 1) of H, and the side −b = 1 of the triangle is
sent to the quarter circle joining (1, 0) to (0, 1), with the orientation indicated in
the figure.

We leave it to the reader to check that this representation has all the features
announced above. We only mention some of the trickier points. For instance, the
circles containing s but not n occur twice on the boundary of the ball obtained by
rotating H, with distinct values of ϕ, and with different signs of v. The longitudes
occur twice on the equator v = 0, with distinct values of ϕ. Every point z in the
ball D3 except those with v = ±1 represents a unique circle, which depends
continuously on z. Circles passing through s occur twice as images, other circles
occur exactly once. The former implies that one has a continuous fixed point free
involution on S2 \ {(0, 0,±1)}, and this involution extends to a continuous fixed
point free involution over all of S2 interchanging the two points (0, 0,±1).

By passing to the corresponding quotient of D3, we obtain a continuous bijec-
tion onto K. Now both the quotient and K are 3-dimensional topological mani-
folds (for K, see [15, 2.9]), hence a continuous bijection is a homeomorphism by
domain invariance. This ends the proof of Theorem 1.1.

The homeomorphism obtained here can be further extended to one from the
extended circle space.



362 R. Löwen – G. F. Steinke

Theorem 5.1. The extended circle space K̄ of every spherical circle plane is homeomor-
phic to P3R \ X, where X is an open ball. This is a 3-dimensional topological manifold
with boundary with the point set S forming the boundary.

Proof. From the coordinates (ak , bk, ϕk) it is possible to recognize whether or not
a sequence of circles Kk converges to a given point p = (a, ϕ). If p = n or s, then
convergence to p just means that bk → 1 or ak → −1, respectively. Convergence
to any other point point p means that both ak and bk converge to a and ϕk → ϕ.
Note that this convergence can only occur for circles in K2 (ie, circles that do
not separate n and s). This implies that, given two spherical circle planes, we
can extend the homeomorphism of their circle spaces constructed in the present
section. Then the homeomorphism type of K̄ can be determined in the case of
the classical Möbius plane. That the classical Möbius plane has P3R \ X as its
extended circle space may be seen by extending the argument given for K in
Section 1.
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Figure 6: Obtaining the extended circle space

We can also modify the gluing process used before, see Figure 6. We are keep-
ing the coordinates for K1 and K2. However, for fixed ϕ, now all three vertices of
the triangles are there and also the side −a = −b in the coordinate triangle for K2

is there, the latter representing the points on the meridian Mϕ of all points that
have angle ϕ. For K1 the triangle is mapped homeomorphically to the quarter
circle below the u-axis. The triangle for K2 is mapped to the quarter circle above
the u-axis minus a semi-circle of radius 1

2 with centre at (0, 1
2), where the side

−a = −b is taken to the boundary of this semi-circle. Rotation about the v-axis
yields the ball D3 from which a smaller open ball is missing. The identifications
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on the boundary of D3 are the same as before so that we again obtain a projective
space P3R, but now minus an open ball.

6 The flag space

It would be desirable to prove a similar theorem about the flag space, consisting
of all pairs (p, K) ∈ S × K such that p ∈ K. A. Lightfoot [9, Theorem 5.1.1]
showed that the flag space of a spherical circle plane is a 4-dimensional topolog-
ical manifold. Furthermore, in [9, Theorem 5.2.1] he proved that the flag space
of an embeddable spherical circle plane is homeomorphic to the flag space of the
classical Möbius plane and the latter is determined in Theorem 5.2.4. Combining
these two results one has the following.

Proposition 6.1. The flag space of an embeddable spherical circle plane is homeomorphic
to a subset of S2 × P2R, namely, to the complement of the set {(x,±x) | x ∈ S2}.

The flag space of the classical Möbius plane can also be obtained by taking the
tangent bundle of S2, passing to the projective closure in each fiber, and deleting
the zero section. In order to see the latter we take up ideas from the introduction.
Let σ be the polarity of P3R having the sphere S = S2 as its set of absolute points,
and let E = P3R \ D3 be the set of exterior points with respect to S. Then the
circles are the sets qσ ∩ S for q ∈ E. By the properties of a polarity, a point p ∈ S
belongs to a circle K = qσ ∩ S if and only if q ∈ pσ ∩ E. Now for p ∈ S, the plane
pσ is the tangent plane TpS, extended to infinity, that is, the projective closure TpS

of the tangent plane in the analytic sense. Here, TpS should be considered as a

projective subspace of P3R, and we have TpS ∩ E = TpS \ {p}. Hence the pairs
(p, q) corresponding to flags are indeed the elements of the projectively closed
tangent bundle minus its zero section. The projective tangent bundle is trivial,
because all fibers can simultaneously be projected to the plane 0σ at infinity by
central projection from the origin. However, the zero section is not a factor of the
product S × P2R but rather equals the set {(x,±x) | x ∈ S}.
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