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Abstract 

I collected moulted feathers from a captive group of little penguins [Eudyptula minor] over the 

course of two years for stable isotope analysis [SIA]. Diet was also sampled during this time, and 

I was able to connect the isotopic signatures of the food sources to that of the moulted feathers 

formed and thereby ascertain enrichment differences between diet and feathers. Feathers were 

also collected from three colonies of wild little penguins on the east coast of the South Island and 

from several sub-colonies on the West Coast. I used SIA of δ13C and δ15N of the feathers to 

determine whether trophic level depended on the geographic location of each colony. 

Relationships between the δ13C and δ15N stable isotope signatures of penguins from the wild 

colonies were then compared to the captive colony which comprised of individuals from around 

New Zealand. I next examined whether the “white-flippered penguin” [Eudyptula minor 

albosignata], a colour morph or subspecifies confined largely to Banks Peninsula, differed in 

stable isotope ratios from other populations. Finally, I also explored variation in isotopic 

signatures based on gender and geographic origin of the birds within the feathers produced by 

birds being fed on each diet/fish lot. I found that while the isotopic signatures of penguins fed on 

different lots of sprats were not significantly different in δ15N signatures, feathers produced on 

diet/fish lot 1 were different from other feather lots, and different from feathers produced from 

other diet/fish lots. There were no significant differences in either δ13C or δ15N isotopic 

compositions between penguins on the basis of their geographic origin in the captive population. 

Male and female birds also did not significantly vary in δ13C or δ15N when fed on an identical 

diet. Using δ15N, I found penguins on the West Coast occupied a lower trophic level than the east 

coast birds. Similar differences in the δ13C ratios also confirmed the birds on the two coasts were 

feeding on different prey species and were occupying different trophic levels. Surprisingly, a 

colony of the white-flippered morphs at Harris Bay was more similar in both δ13C and δ15N 

compositions to the more distant Oamaru population than to another, geographically closer, 

colony of the white-flippered morph in Flea Bay. My study confirms that SIA can be used to 

provide a general estimate of diet and analysis of feathers from wild populations could provide 

information on the diet [and trophic level] of free-living penguins. There was no difference 

between birds based on colony of origin when fed an identical diet, but there was variation 

between wild colonies, indicating that while diet influences the composition of the feathers, 

morphological differences do not. My study highlights the value of using SIA as a proxy for diet 

studies of wild seabirds. 
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Glossary 

 

δ symbol – used to express isotope values, it denotes a measurement of difference made relative 

to standards during sample analysis. 

‰ symbol – stands for parts per thousand or ‘permil’. 

δ13C – delineates a measure of the ratio of the stable isotope of carbon. The international 

standard used is Vienna PeeDee Belemnite. 

δ15N – delineates a measure of the ratio of the stable isotope of nitrogen. The international 

standard used is Air. 

 

 

All information for the definitions has been taken from Fry (2006). 

 

 

Abbreviations 

 

SIA – Stable Isotope Analysis 

IAC – International Antarctic Centre 
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Chapter 1 Literature review 

1.1 Introduction 

Seabirds generally occupy roles as the top predator in most marine ecosystems. As a group, they 

are wide-ranging, occur in a variety of habitats, and possess a wide variety of foraging strategies 

(Schreiber & Burger 2001). Some species can spend up to 80% of their time at sea feeding (Bost 

& Maho 1993). As a consequence of their diversity and range across the world’s oceans, seabirds 

have often been used as indicator species of the marine environment (Cairns 1987; Bost & Maho 

1993; Diamond & Devlin 2003). Recent concern over global climate change, including changes 

in ocean temperatures and weather patterns (Hoegh-Guldberg et al. 2007; Wilson et al. 2014), 

has led to concerns over the potential effects on food availability and foraging patterns of 

seabirds (Edwards & Richardson 2004). For any species, understanding how fluctuations in food 

availability and trophic level might affect the dynamics of a population will first require basic 

information on the role of each species in a local ecosystem and how that varies both spatially 

and over time.  

Marine ecosystems generally operate on a large scale and can be quite complicated, so a 

candidate indicator species needs to be one that responds to change and can act as an early 

warning signal. Because food sources are closely linked with the environmental condition of 

seabird foraging areas, they have been long used as indicators of ecological “health” (Cairns 

1987; Piatt et al. 2007) and various species have been used for bio-monitoring and as bio-

indicators (Furness & Camphuysen 1997). Changes in the physical environment of an ecosystem 

can influence prey availability, and in turn, regulate the number of predators. This suggests that 

top marine predators, such as seabirds, can be suitable indicators of long-term variability and 

change within the ecosystem in question (Durant et al. 2009). Because seabirds are dependent on 

the oceanographic conditions under which they carry out their lives (Diamond & Devlin 2003), 

and their populations likely reflect spatial and temporal variability in their prey, they can reflect 

the status of that environment (Trathan et al. 2015). The key to using seabirds to monitor 

changes in the marine environment is to choose a species that reflects various aspects that have 

an impact on the whole environment in a negative fashion and to select suitable methods for 

assessing how a species fits into a given marine food web. 

A first step to understanding the role of a species in a marine ecosystem is to determine its diet 

and how it fits into the local food web. The diets of seabirds have traditionally been investigated 

from an examination of stomach contents (Flemming et al. 2013) and through faecal analysis 

(Deagle et al. 2010), but such methods do not reveal the diet of a species over the long term and 
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variation in digestion rates of prey are also not taken into account by such “snapshot” approaches 

(Kelly 2000). An alternative approach is to use longer-term measures of diet as revealed through 

stable isotopic ratio analysis. Isotope analyses can provide both a short and long-term assessment 

of a species’ diet [if measurements are also made of potential dietary items], possible trophic 

level in the marine food web, and how this might be affected by environmental changes (Cherel 

et al. 2005a; Hebert & Wassenaar 2005; Jaeger et al. 2010; Polito et al. 2011), although baselines 

must be set with which to compare changes within a species and between species (Mizutani et al. 

1992). Stable isotope ratios can be used to map trophic levels within an ecological system and 

further mapping of food webs provides a wealth of information on the surrounding ecosystem 

(Graham et al. 2010). From the ratios between trophic levels in one species, a ratio map, with 

added layers of complexity, can be developed for different mixes of prey species (Bowen et al. 

2010). Stable isotope analysis [SIA] has been used to investigate the feeding biology of both 

living and prehistoric populations (Holdaway et al. 2013), and can provide information on diet 

from within a range of hours up to the lifetime of the animal, depending on the tissue sampled. 

Accordingly this method can be used in a wide variety of situations and studies. 

 

1.2 Stable isotopic analysis [SIA] 

Stable isotopes are a small percentage of elements that do not undergo radioactive decay (Inger 

& Bearhop 2008), but are subtly different because of one more neutron present which makes the 

atom ever so slightly heavier. For example, the rarer isotope of nitrogen has one more neutron 

and a heavier weight than its more common form. This small subset of heavier atoms can be 

tracked because they behave in predictable ways. SIA is the examination of a physical mass-

dependent phenomenon in which the lighter isotope of an element is preferentially used in 

metabolic processes over the heavier isotope. The discrimination against the heavier atom is 

predictable and can be tracked (Peterson & Fry 1987). The use of stable isotope ratios of carbon 

and nitrogen is based on the premise that the relative amounts of each isotope in animal tissues 

change [i.e., fractionate and undergo the process of isotopic discrimination] as metabolic 

processes preferentially incorporate lighter atoms during the assimilation of nutrients from the 

diet (DeNiro & Epstein 1976; DeNiro & Epstein 1978, 1981). When the stable isotopes of 

carbon and nitrogen are fractionated, the lighter atoms are used first as the nutrient source 

materials move through biological systems of either organisms or wider ecological systems. 

Measuring the magnitude in the shifts of relative abundance of the light and heavy isotopes can 

be used to track changes in temporal and spatial variability between populations in different 
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areas. The stable isotopes of [H] hydrogen, [C] carbon, [N] nitrogen, [O] oxygen, and [S] 

sulphur are considered the most useful as they have been well studied (Fry 2006). Isotope values 

are reported in parts per thousand, denoted by the symbol ‰ and the standard symbols for 

isotopic ratios, δ13C and δ15N, are used throughout this thesis (Coplen 2011). The δ/delta value is 

used to denote the relative difference of the ratio of the heavy isotope to the light isotope of the 

element (Fry 2006). 

 

1.2.1 Using SIA to monitor the marine environment 

Monitoring can be defined as “the process of gathering information about system state variables 

at different points in time for the purpose of assessing system states and drawing inferences 

about change in state over time” (Yoccoz et al. 2001). How can seabirds be used as indicators of 

productivity and marine ecosystems? Direct measurements of body mass and clutch numbers, for 

example, have been used as evidence for changes in the marine environment, but these 

measurements are only taken on land when the birds are accessible on the nest. More information 

is generally needed during the foraging periods and during the non-breeding season, but it can be 

difficult and expensive to track an individual bird’s behaviour at sea. If direct observation is not 

ideal for long-term collection of data, then one must be able to use other materials at hand. The 

collection of feathers, excrement and other metabolic products are valuable for SIA as these can 

provide a means of assessing different trophic connections and diet during breeding, differences 

between the sexes, and in some species, differences during non-breeding and breeding periods 

(Barrett et al. 2007). 

SIA has been in use for several decades by geologists (Kelly 2000; Sharp 2007) but only 

relatively recently was it discovered to be an ideal way to track chemical processes in biology 

and ecology (Chisholm et al. 1983; Swerhone et al. 1991; Tuross et al. 2008). Its use in 

ornithology and in marine ecosystems has grown rapidly over the last 25 years (Hobson 1991; 

Cherel et al. 2002; Cherel & Hobson 2007; Kojadinovic et al. 2008; Polito et al. 2011; Trueman 

et al. 2012). Carbon stable isotope ratios can reflect different foraging areas and reveal possible 

dietary information (Rubenstein et al. 2002; Rubenstein & Hobson 2004). Nitrogen isotope ratios 

show trophic level equivalency, and these can become more enriched as trophic level increases 

as more of the heavier isotope of the element is present as the lighter isotope has been 

preferentially used (Minagawa & Wada 1984; Hobson & Welch 1992; Hobson et al. 1994a; 

Forero et al. 2005; Moody et al. 2012). 
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Hobson (2011) outlined the three main applications of SIA in ornithology: delineation of diets or 

trophic relationships and sources of nutrients to individuals or populations, assessment of the 

relative contributions of endogenously and exogenously derived nutrients to reproduction in 

birds that travel to breed and, the assignment of origin to migratory individuals. SIA can be 

performed on various metabolic products that can be sampled either non-destructively, such as 

beak and claw samples, feathers, eggs, and blood, or by destructive sampling, such as bone 

collagen and organs (Hobson & Clark 1992c; Bearhop et al. 2003; Kojadinovic et al. 2008; 

Hipfner et al. 2010). Dietary information that spans different time scales can be obtained 

depending on the type of tissue chosen (Hobson & Clark 1992c).  

Periods of synthesis vary between different tissues of the consumer [i.e. the subject of the 

investigation]. Short-term changes in isotopes can be tracked using feathers, or blood (Cherel et 

al. 2005b), or eggs (Emslie & Patterson 2007), while medium to long-term changes have been 

determined using samples of either internal organs or bone collagen (Hobson & Clark 1992b; 

Bearhop et al. 2002). Nevertheless, the method is not without problems because confounding 

factors in tissue production could alter the isotopic ratios presented, if a process were nutrient-

limited and the organism mobilised stored dietary components, or if the isotopic discrimination 

in metabolic processes changed. Processes such as growth, migration, starvation, and moulting 

have been known to change the speed and energy sources of metabolic activity (Bearhop et al. 

2002). There are limitations to any one method, and an awareness is needed of other factors, in 

addition to diet, that may influence the isotopic reading in seabird tissues (Bond & Jones 2009). 

These factors can include body condition (Hobson et al. 1993), metabolic rate (Podlesak & 

McWilliams 2006), and foraging area (Quillfeldt et al. 2008). 

 

1.2.2 Trophic level and diet reconstruction using SIA 

SIA can be used as a representation of diet, in that it depicts metabolic processes, and also to 

identify the trophic level(s) of individual species (Jacob et al. 2005; Cherel et al. 2007a). 

Changes in stable isotope ratios can indicate a trophic level shift (Chiaradia et al. 2010), in either 

a seasonal fashion (Awkerman et al. 2007; Jaeger et al. 2010), or to reveal a shift in prey 

availability because of environmental change (Croxall et al. 1999; Edwards & Richardson 2004).  

Isotopic variation and gradations are present in the nutrient cycling of oceanic basins, both 

between, and also within each basin, spanning the base of the food web, from primary producers 

to the top predators/consumers; as a result such differences can produce geographically distinct 
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gradients in nitrogen and carbon isotopes (Kelly 2000; Graham et al. 2010). The variability of 

both δ15N and δ13C derives from differences in the isotopic ratios of carbon and nitrogen that are 

available for nutritional uptake by organisms at the base of a food web, and from there, on the 

variable expression of isotopic discrimination during the uptake process (Post 2002). 

Finding the source(s) of variation in isotopic signatures of different marine species, and 

understanding the degree and cause of the differences between the isotopic signatures of 

consumers and the resource, form the foundation of SIA in ecology (Boecklen et al. 2011). The 

underlying principle is that stable isotope deviations in consumers will reflect that of their prey 

as they become enriched in a predictable fashion (Kojadinovic et al. 2008). This is done with 

δ15N, which is a stable isotope of the element nitrogen (Fry 2006). The ratio of  nitrogen isotopes 

can exhibit a stepwise enrichment and this separation is caused by the selective retention of the 

heavy isotope and the excretion of the lighter isotope (Kelly 2000). To understand and trace 

pathways of isotopic discrimination, one must first determine the isotopic shift between 

consumer and diet, and have an awareness of how processing methods can affect resulting data 

(McCutchan et al. 2003). 

The isotope of carbon [denoted by δ13C] is used in a similar fashion, but it has been shown to be 

useful as more of an indicator of geographical latitude, or nutrient location of origin of dietary 

carbon, rather than for analysis of trophic level from δ15N (Post 2002; Kojadinovic et al. 2008). 

Carbon does not show the same differential function as nitrogen because it passes through an 

animal’s tissues. This is because the ratio of δ15N to δ13C has a linear covariant relationship 

(Kelly 2000). Primary producers have different δ13C values that vary predictably. The 

assumption is that if an individual has a similar isotopic ratio as the local baseline, then that 

individual can be considered a resident of that area of primary producers. If the individual has a 

different isotopic ratio, then it can be considered to be a resident from another isotopically 

distinct region (Graham et al. 2010). 

There are a number of alternative methods by which the diet and identity of prey species can be 

ascertained, including direct foraging observations (Kelly 2000), stomach flushing (Flemming et 

al. 2013), and DNA analysis of excrement (Deagle et al. 2010; Chiaradia et al. 2014), but each of 

these methods have their own set of biases. SIA can aid in diet reconstruction (Sydeman et al. 

1997; Chiaradia et al. 2014). Bayesian mixing models can help to identify the contribution of 

different food macronutrients that comprise the total dietary signal found in the consumer 

(Fernandes et al. 2014) and can help quantify the degree of certainty over the origin of the 

food/prey (Inger & Bearhop 2008). With a complementary approach, it has been shown that 
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creating a model where the DNA analysis of prey and the digestion rates of prey were combined 

with stable isotope mixing models has provided better estimates of actual diet in top marine 

predators (Chiaradia et al. 2014). 

SIA has been used to identify dietary shifts, and for linking reproductive failure as a result of 

dietary shift (Kowalczyk et al. 2014). Changes in prey species availability, to a lower nutritional 

and lower trophic level, have been linked to population declines (Karnovsky et al. 2012). 

Aspects of diet composition are complex and finding links that could contribute to reproductive 

failure could be related to both the availability and nutritional composition of each prey type 

available. If the main and/or desirable prey species types are reduced, then alternative sources 

must be used. Conversely, the less preferred source could also be scarce or nutritionally inferior 

to the preferred prey species. For example, Kowalczyk et al. (2014) found the adverse effect of 

reduced anchovy [Engraulis australis] abundance on breeding success in little penguins 

[Eudyptula minor] was further exacerbated by scarcity of alternate prey species. The ability to 

adjust to prey type availability is regulated by resource diversity and abundance; these are 

components of ecosystem status that affect more than just seabirds. 

Monitoring of trophic dimension and annual reproductive success of a generalist seabird species 

can bestow further awareness of resource diversity and abundance in localised foraging areas and 

prey type (Kowalczyk et al. 2014), but more than prey availability contributes to overall breeding 

success. Habitat availability and disturbance (Weerheim et al. 2003), predation by introduced 

predators (King 1974), and sea surface temperature all contribute (Chiaradia & Kerry 1999; 

Cullen et al. 2009). Sea surface temperature can influence which fish species are abundant, 

because temperature can affect several ocean processes (Chambers et al. 2014; Carroll et al. 

2016) as well as the ideal conditions for fish hatching and growth (Peck et al. 2012). An 

awareness of the whole picture is required to quantify appropriately the information found. 

The study of isotopic ratios can now provide more information about different ecological and 

biological processes on the metabolic level of individuals and on the larger level of whole 

ecosystems. However, unless there is an appropriate baseline for comparison, the isotopic 

signature of a consumer is not sufficient to infer trophic position or carbon source (Post 2002). A 

baseline must be developed that, ideally, integrates isotopic movement at a similar time scale to 

that of the consumer in question, and one that covers the same time period, and captures the 

spatial variability that comes with complicated systems (Post 2002). Post (2002) also states that 

to obtain the resolution required to discern complex trophic interactions, stable isotopes must be 

used in conjunction with other information, such as direct diet analyses. Separating isotopic 



10 
 

signals of similar prey from coinciding trophic positions and allocating trophic niche variation 

when investigating and developing food web studies can be difficult (Iverson et al. 2007; Lorrain 

et al. 2009; Jaeger et al. 2010). Any one method, when used on its own, cannot provide a 

complete portrayal of food web function and structure. Only by applying a variety of research 

methods and by having an understanding of the life history and species interactions will a 

comprehensive view of the ecosystem be obtained (Layman et al. 2007). SIA is a powerful tool, 

but one to be used with other methods in a complementary fashion to form the most 

comprehensive picture. In some instances, information from captive populations can supplement 

our understanding of how isotopic ratios relate to changes in diet.  

 

1.2.3 SIA studies in captive species 

There are various considerations when carrying out observation and sampling of captive animals, 

including different energy requirements and metabolic rates (Hobson & Clark 1992b; Bearhop et 

al. 2002). The average age of the subjects can be skewed because of the longer life spans 

experienced in captivity. For example, the average life span for a wild little penguin is 6.5 years 

(Reilly & Cullen 1979) but the average age of the captive colony used in this study is 

approximately 10.3 years. 

Captive animal studies are invaluable for the development of an isotopic baseline for comparison 

(Mizutani et al. 1992) so that results from similar samples of wild populations are comparable. A 

number of studies on horses, pigs, and seals have been undertaken in which the isotopically 

distinctive diet of the captive animals was changed in an effort to find the time line of isotopic 

discrimination, or fractionation, in different tissue samples (Hobson et al. 1996; Kurle 2002; 

Ayliffe et al. 2004; Tuross et al. 2008). A study using blood and feathers of captive king penguin 

[Aptenodytes patagonicus] and rockhopper penguins [Eudyptes chrysocome] by Cherel et al. 

(2005b) found that nutritional status and quality and type of diet can influence isotopic 

discrimination. They also found that these two species of penguin were isotopically segregated 

even when they fed on the same diet. Stable isotope work on captive animals must be used with 

caution, because they are generally well fed on a fairly homogenous diet and can have a lower 

metabolic rate (Hobson & Clark 1992c) as a result of not spending their day in activities similar 

to that of their wild counterparts. 



11 
 

1.2.4 Use of feathers in SIA 

Feathers are inert once they have finished growing, and show the window of development and 

growth in the stable isotope ratios of the keratin (Cherel et al. 2005b). Because the penguin 

moults all at once, instead of throughout the year like most other birds, feathers grown during 

this time can represent the general isotopic composition of the diet from an intensive pre-moult 

foraging period (Cherel et al. 2005c) undertaken before the birds arrive on land to fast during 

their moult (Gales et al. 1988). Feather production in some penguins has been shown to start 

while the birds are pre-moult foraging at sea (Cherel et al. 1994). 

The collection of feathers is non-invasive, non-destructive, and results in no final harm to the 

birds. Feathers are easy and inexpensive to gather, especially if colonies are monitored on a 

regular basis, particularly during the moult season. Conversely, feathers can present a somewhat 

skewed picture because it, as noted by Hobson et al. (1993) during fasting, that variations in the 

rate of δ15N excreted have been observed because of the additional stress of going without food 

(Hobson et al. 1993). This has been shown to present as a moderate increase in the trophic level 

of the penguins (Cherel et al. 2005c) due to the source of the amino acids used for keratin 

production derived initially from dietary resources, and during the fasting phase, from 

endogenous protein reserves (Cherel et al. 1994). 

Comparing feather and prey isotope signatures between different seabird species has shown that 

differences in foraging areas exist, but when stable isotope data is unavailable for some species, 

other isotopic data of similar species has been substituted (Cherel et al. 2005b). This can be 

fraught, it has been shown that isotopic discrimination can vary within a species on different 

diets (Becker et al. 2007), let alone using a different species as proxy for another. Differences 

must be considered when the information used for comparison was derived from experiments 

that used different methods for sample preparation, such as the removal of lipids and the use of 

whole prey versus prey muscle. These subtle differences can affect the end isotopic reading 

(Cherel et al. 2005b; Post et al. 2007). For this reason, care must be taken when interpreting and 

comparing results.  

The knowledge of patterns of movement by wild animals is vital to ongoing conservation as well 

as a thorough understanding of feeding ecology and life history (Cherel & Hobson 2007b). 

Studies that undertake the comparison of different geographically located populations of the 

same species are invaluable towards this understanding of patterns of movement. Louzao et al. 

(2011) used blood samples to look for spatial connections between breeding and foraging 

grounds of an endangered European seabird and results suggest that each different population 
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was using a geographically separate foraging area. In another study, blood values of δ13C 

allowed Cherel and Hobson (2007b) to differentiate between sub-populations of penguin species 

that were found to be foraging in different areas within the same archipelago. If the isotopic 

range between geographically separated populations of the little penguin is known, then we 

could judge whether or not each somewhat isolated population [aside from other factors such as 

mammalian predation] were thriving, failing, or maintaining when compared to the overall 

population. 

 

1.3 Penguins as marine predators 

Penguins are a unique family of flightless seabirds, capable of living in extreme environments 

and found around most of the Southern Hemisphere, and in some cases right up to the equator 

(Gales & Stahel 1989). New Zealand is home to several species of penguin (Warham et al. 

1986). Penguins are predators and primarily obtain their prey by diving in subsurface marine 

waters (Croxall & Davis 1999). As a consequence, they are dependent on areas of high ocean 

productivity where they can find prey (Boersma 2008). High density penguin populations occur 

near upwellings, areas of cold nutrient-rich ocean currents rising to replace surface waters, and 

convergences, which are areas of ocean where different water masses join (Gales & Stahel 1989; 

Shealer 2001). These areas tend to possess characteristics that result in areas of high marine 

productivity and support extensive food webs/ecosystems, all of which contain creatures such as 

krill, fish, and squid that are eaten by penguins (Gales & Stahel 1989). These areas of high 

marine productivity are both ecologically and economically important.  

There are currently 16 accepted species of penguin (Boersma 2008). Some species, such as the 

Magellanic penguin [Spheniscus magellanicus], are migratory and visit their colonies only for 

breeding (Stokes et al. 2014), while other species are year-round residents, such as the little 

penguin and yellow-eyed penguin [Megadyptes antipodes] in New Zealand (Croxall & Davis 

1999). In general, sedentary penguin species are inshore feeders, whereas the migratory species 

typically feed offshore; this difference is most noticeable during the incubation period (Croxall 

& Davis 1999). 

Boersma (2008) found that the distribution and abundance of Magellanic penguins was closely 

linked to changes in prey. She observed over the course of several years that Magellanic 

penguins were traveling further and taking longer on foraging and incubation trips. By the end of 

her study, breeding penguins were found to be foraging 60 km further from the coast then they 
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did a decade previously, evidently to meet the migration of key prey species. She observed that 

because of the increased duration of the foraging trips, chicks were starving in the nest as the 

foraging parent was away for longer periods of time. Boersma (2008) cautions that climate 

warming is likely to shift prey species, which could reduce productivity of the birds if they have 

to expend more energy on travel. Where the foraging patterns of penguins have been linked to 

patterns of oceanographic production, changes in the diet of penguins could be a useful marine 

indicator of production (Boersma et al. 2009). 

Another example of penguins being used as a marine sentinel is a study by Croxall et al. (1999), 

who examined the availability of Antarctic krill and the way its abundance affected productivity 

responses of different seabirds. They found that during a decline in the krill numbers, the black-

browed albatross [Diomedea melanophris] maintained meal size at the expense of trip duration, 

because they had to fly to search for more food, but in contrast gentoo penguins [Pygoscelis 

papua] maintained trip duration, but with no increase in time spent foraging, and therefore 

suffered a decrease in meal size as a result. This sort of information on the relationship between 

predator performance and prey availability is important for an indicator species because it helps 

in the assessment of the potential consequences of competition between animals and humans for 

natural resources and further change in environmental cycles (Croxall et al. 1999). 

 

1.4 Climate change, prey availability and trophic mismatch in penguins 

Changes in prey availability can change the trophic level at which prey is taken (Chiaradia et al. 

2003; Emslie & Patterson 2007; Chiaradia et al. 2010). Depending on the nutritional value to the 

hunting bird, this change in trophic level can negatively affect breeding success (Gutowsky et al. 

2009; Morrison & Thompson 2014), and depending on how long a period this trophic misstep 

lasts, the feeding population could negatively suffer over a long enough period that it may not be 

able to sufficiently recover (Furness & Monaghan 1987). Kowalczyk et al. (2014) addressed 

concerns about the lack of high trophic and nutritional prey where they linked poor breeding 

success to low dietary diversity, and a good year for reproductive success, with the availability of 

high value prey, such as the anchovy. The little penguin was one species judged to be quite 

vulnerable to fluctuations in food availability (Gales & Green 1990). 

Mass mortality events, such as the 1995 and 1998 pilchard [Sardinops sagax] die off in the 

waters around southern Australia (Griffin et al. 1997; Whittington et al. 2008), and the resulting 

changes to consumer populations have been well studied. Surveys were carried out on the Phillip 
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Island population of little penguin during this time. Prey availability of pilchard was low and 

studies, though somewhat contrasting, found correlations to breeding success (Dann et al. 2000; 

Chiaradia et al. 2003). Dann et al. (2000) observed that of the 1,926 dead penguins found during 

the die off, 131 were from Philip Island and of those 86% were adult birds; only 14% were first 

year birds. Of the autopsies carried out, 90% showed death from starvation and mild to severe 

intestinal parasite presence (Dann et al. 2000). Chiaradia et al. (2003) pointed out that the little 

penguin, in the absence of the availability of pilchards, had shifted to other types of prey, 

including barrocouta [Thyrsites atun] and red cod [Pseudophycis bachus], and suggested that the 

absence of pilchards was not necessarily enough to reduce breeding success even after an initial 

bad year [December of 1995] of 0.3 chicks raised per pair. The next year’s breeding success was 

quite high [when compared to the average annual mean of 1.0 chicks raised per pair] at 1.3 

chicks raised per pair (Chiaradia, Costalunga et al. 2003), though the chicks produced were 

lighter at fledging than normal (Chiaradia et al. 2010). Although the diet had shifted to include 

other species, two years after the first pilchard crash in 1995, breeding was again low (Chiaradia 

et al. 2010). After a second crash of the pilchard in 1998, breeding success of the little penguin in 

Phillip Island was back within the overall average, and it is suggested that the penguins were still 

feeding on a varied diet without pilchards and avoided a repetition of the poor breeding season of 

1995 (Chiaradia et al. 2010).  

Widespread populations are thought to be less susceptible to localised environmental changes, 

meaning that one portion of the population can escape dealing with negative changes in another 

area. Changes in the oceanic conditions, diet segregation and nesting sites, if over a large enough 

area, could tip more than one population of penguins too far past the point of recovery (Furness 

& Monaghan 1987; Chiaradia et al. 2012). But first there needs to be an understanding of what a 

“relative range of normal” is in different areas with different environmental pressures (Mizutani 

et al. 1992; Inger & Bearhop 2008). A knowledge of the current average isotopic signature of 

key species could help to understand the effects that any changes could have on local 

populations.  

 

1.5 The little penguin 

The little penguin [Eudyptula minor] [Maori: Korora, (Taylor 2000)], is found around the coast 

of New Zealand. It is also commonly referred to as the little blue penguin, and as the fairy 

penguin in Australia, where it is found on the southern coast (Gales & Stahel 1989). The 

International Union for the Conservation of Nature [IUCN] Red List classifies this species as 
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decreasing but of “least concern” (BirdLife International 2012). The species has been classified 

as “at risk”, and declining in New Zealand (Miskelly et al. 2008; Robertson et al. 2013). 

The little penguin is an ideal study subject for understanding how birds interact with their 

environment and human impacts on this environment. Because of their widespread distribution 

throughout the coastlines of New Zealand, comparisons can be made between colonies that differ 

in local environmental conditions. Geographic variability between colonies on both the North 

Island and South Island also provides an opportunity to investigate possible differences between 

the colonies, using a variety of comparisons within the SIA arsenal. These differences could be 

dietary, physiological, or within ecological interactions, as well as male to female differences in 

foraging habits and differences in preferred prey among individuals within colonies. 

Introduced predators in both New Zealand and Australia are currently reducing the numbers and 

distribution of little penguins. Introduced predators of little penguins in New Zealand include 

stoats, ferrets (Hocken 2000), cats (Reilly & Cullen 1979; Gales & Stahel 1989; Reilly 1994), 

and dogs (Wilson et al. 2012). In addition to predation on the birds themselves, rats have been 

recorded preying on eggs (Gales & Stahel 1989). Further threats include direct conflict with 

human activity while on land [e.g. road kills], oil spills while at sea (White & Conayne 2012), 

and the indirect impact of human-mediated habitat modification (Heber et al. 2008; Wilson et al. 

2012), and death from rubbish in the bird’s environment (Dann 1991). Extensive mammalian 

predator trapping in some areas has had a documented positive effect on little penguin numbers, 

indicating the detrimental effects of introduced species (Allen et al. 2011). 

The little penguin, in the past, included several subspecies, but the limits of each have been the 

subject of much debate in the literature. Kinksy and Falla (1976) first addressed little penguin 

taxonomy by examining museum specimens and live birds. They proposed six subspecies of 

little penguin, consisting of five subspecies in New Zealand and the sixth located on the southern 

shores of Australia. This was undertaken as a preliminary study and was later found to be 

inconsistent with some basic parameters, such as seasonal variability and time of the year in 

body weight and pre-moult feather condition (Meredith 1984; Meredith & Sin 1988b). A genetic 

analysis, however, of four populations of the little penguin (Meredith 1984) suggested clines be 

used to describe geographically different groups instead of different populations being classified 

as different subspecies. Further support of the use of clines was suggested by Meredith and Sin 

(1988a), although they only sampled little penguin populations from the northern part of the 

South Island. More recently, Banks et al. (2008) compared mitochondrial gene regions between 

various Australian populations, and confirmed the existence of two main clades between 
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Australia and New Zealand but found little in the way of genetic separation of different 

Australian penguin populations. An Australian study, also using mitochondrial genes, established 

that there were some genetic differences between geographic colonies that progressed in a weak 

graded fashion, but this was only significant when the population of one Australian coast was 

compared to the opposite coast (Overeem et al. 2008). One study on the genetic differences of 

the little penguin suggested the existence of two clades; the Otago /Australian populations and 

the rest of the little penguin population found throughout New Zealand (Banks et al. 2002). The 

latest work using ancient-DNA by Grosser et al. (2016) has concluded that the current group of 

Otago birds have originated as the result of a recent colonisation from Australia.  

Despite the controversy over the subspecific status of little penguins, one population of this 

species has long been recognised as morphologically unique. The white-flippered penguin [in the 

past referred to as Eudyptula minor albosignata], as its name suggests, tends to possess flippers 

with a white strip around the outside of the entire flipper. These birds also tend to be a lighter 

grey blue and weigh on average 0.3 kg more than other little penguins, which range between 800 

g and 1 kg (Allen et al. 2011). The white-flippered penguin has been classed as an endemic 

subspecies, with an IUCN rating as endangered in Taylor (2000) and as nationally vulnerable in 

the Conservation status of New Zealand Birds document published by the Department of 

Conservation (Robertson et al. 2013). Banks et al. (2002), however, did not find any significant 

difference in mitochondrial sequences between this and other populations of little penguin. The 

white-flippered penguin is mostly confined to the Banks Peninsula area on the east coast of the 

South Island, although there are records from Oamaru, some 300 Km further south (Hocken 

1997). Surveys undertaken in 2000-2001 and 2001-2002 breeding seasons by Challies and 

Burleigh (2004) estimated the total population of white-flippered penguins at 10,460 birds. 

Evidence of predation by ferrets and stoats was noted during the course of the survey. They 

estimated that the current population of the white flippered penguin is much reduced when 

compared to the time of European settlement (Challies and Burleigh 2004).  

There are some who argue that the white flippered penguin should be classified as a separate 

species (Baker et al. 2006). On the other flipper, some have suggested that the albosignata 

subgroup is merely a colour morph (Sitar-Gonzales & Parsons 2012). Personal observation at the 

Antarctic Centre showed two individuals in a relationship of which one was a white-flippered 

female and the other a male from the West Coast of the South Island. They have been “together” 

for several years and have parented laid [real] and incubated [false] eggs as a couple so the 

possibility exists that the populations would be quite compatible should they be exposed to 

individuals from other areas. 
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1.5.1 Little penguin ecology and life history 

The little penguin is classed as polyphasic, as it can be active both during the day and also at 

night (Gales & Stahel 1989). On average, sleep duration measures four to eight minutes at a 

time, undertaken throughout the day and the night (Stahel et al. 1984), and as I have observed, 

these birds sleep while in the water or on land. If they have spent the night on land, they will 

then head out to sea at dawn and spend the day hunting for small prey (Gales & Pemberton 

1990). Time whilst at sea can vary, from a few hours to several days at a time, depending on the 

time of the year (Gales & Green 1990). 

Penguins are quite agile and dive in pursuit of prey. The foraging range of the little penguin can, 

again depending on the season, range up to several hundred kilometres from their colony 

(Weavers 1991; Collins et al. 1999). Because of the limitations of studying behaviour at sea, 

there is little information about their foraging techniques, although this species has been shown 

to engage in short and shallow dives (Ropert-Coudert et al. 2003). Diving studies have found that 

little penguins dive between 10 m to 20 m (Ropert-Coudert et al. 2006b), though dives of up to 

27 m (Bethge et al. 1997) and a maximum of 66.7 m (Ropert-Coudert et al. 2006a) have been 

recorded. 

Pursuit diving is used when penguins are foraging during the day (Shealer 2001) and on return 

trips to their colonies in the evening. They hunt during the day, though foraging trips at sea can 

last several days to a number of weeks depending on the season (Ropert-Coudert et al. 2006b; 

McCutcheon et al. 2011). During the breeding season, adults are restricted to the nesting area as 

they feed their young. Because the guard period for chicks needs to be short, foraging trips that 

are only within 20 km of the nest (Hoskins et al. 2008) are required before the bird returns to the 

nest, (Weavers 1991; Deagle et al. 2010; McCutcheon et al. 2011) so that one parent can relieve 

the other in nest-minding duties. As in other species, this is known as central place foraging; 

however, after the breeding season finishes, penguins are no longer bound to one place, so the 

potential exists for them to shift from being central place foragers and to therefore possibly 

widen the trophic niche in which they are able to hunt (Cherel et al. 2007a; Labbé et al. 2013; 

Chiaradia et al. 2016). 

Stomach sampling undertaken by several studies (Montague & Cullen 1988; Fraser & Lalas 

2004; Flemming 2012) has indicated that the little penguin tends to be a generalist forager, 

consuming small inshore species but also able to switch between different species depending on 

availability (Gales & Pemberton 1990; Flemming et al. 2013). In a stomach sampling study 

undertaken in Tasmania, Gales and Pemberton (1990) concluded that prey species can vary 
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significantly with season, year, and also across different locations. Small schooling fish appear to 

be the primary prey type (Ropert-Coudert et al. 2006b). 

A range of prey types have been recorded in the South Island at different colonies, with the result 

that there are distinct dietary differences in birds in each colony (Flemming et al. 2013). For 

example, whereas little penguins in the Oamaru colony had Graham’s gudgeon [Grahamichthys 

radiata] as the main prey mass, the Banks Peninsula population primarily prey on arrow squid 

[Nototodarus sloanii], slender sprat [Sprattus antipodum] and ahuru [Auchenoceros punctatus], 

and, in contrast, the Stewart Island populations of penguins mainly subsisted on arrow squid. 

These differences were based only on a survey of 69 stomach samples taken in late November to 

early December, and thus represents only one portion of a year, and in only one year. 

The little penguin is a burrow or crevice nester (Nelson 1980) and has been shown to travel up to 

a kilometre inland to get to their nesting site (Dann & Norman 2006). Breeding populations of 

the little penguin are found along the coasts of both the North Island and South Island of New 

Zealand and also on the southern shore of Australia (Meredith & Sin 1988a; Dann 1994; Heber 

et al. 2008; Chiaradia et al. 2012). Most adult penguins seem to stay within range of their 

original colony if they have survived their first year at sea (Fortescue 1995), but newly fledged 

young adults have been known to disperse much further afield (Furness & Monaghan 1987), and 

birds banded in Australia have been recovered up to 1,000 km away from the original banding 

site (Reilly & Cullen 1982; Gales & Stahel 1989). 

Breeding activities generally start in late September and continue to early January as shown in 

Figure 1.1. The timing of breeding shows considerable variation across years (Nelson 1980) and 

the start of the breeding season has been recorded as early as May in Australia (Reilly & Cullen 

1981; Robinson et al. 2005) and as late as September [refer Figure 1.1]. Breeding has also been 

documented as early as May and as late as September in some locations in New Zealand (Agnew 

et al. 2014), although late spring and start of summer is generally considered the beginning of 

breeding season (Gales & Stahel 1989). 
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Figure 1.1 The average annual cycle of the little penguin. 
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Penguins appear to mate for life, but  “widowed” and “divorced” penguins tend to nest, on 

average, three weeks earlier, before other, more established pairs (Reilly & Cullen 1981). Ocean 

temperature (Cullen et al. 2009), or sea surface temperature (Reilly 1994), and body condition 

(Robinson et al. 2005) are also possible factors affecting the start of the breeding cycle.  

Little penguins breed at two to three years of age (Agnew et al. 2014) and tend to lay two eggs, 

generally within three days of each other, and will incubate both eggs for approximately 35 days 

(Kemp & Dann 2001). In years of early egg laying double broods have been recorded and in a 

year of high food supply, a second set of double brooded chicks can be successfully fledged as 

well (Reilly 1994; Agnew et al. 2014).  

The two eggs are white and of roughly identical volume, weighing around 55 g (Gales & Stahel 

1989). I have, however, observed eggs from a white flippered penguin weighing up to 63 g. 

Hatching success of the eggs is generally around 60%, though years of low and high hatching 

success have been recorded and have been attributed to annual variations in prey availability 

(Kemp & Dann 2001). Once hatched, parents take turns guarding the chick(s) until about 5 

weeks of age, and then both parents forage at the same time to feed themselves and the rapidly 

growing chick(s) as they start to require more food (Reilly & Cullen 1981; Agnew et al. 2014). 

Development of the young happens over a fledging period of 56-70 days (Nelson 1980); they 

then spend the majority of their first year at sea (Reilly & Cullen 1981) and it is estimated that  

69 % do not survive that first year (Reilly 1994). The parents leave the nest to start their moult 

process and the newly fledged chick is left to learn how to swim and hunt. 

Moulting in penguins is unique, because no other bird undergoes this process in the same way; 

the moult is concentrated into three to four weeks and during this time the birds are unable to 

swim and therefore are unable to maintain a constant body temperature (Nelson 1980). The 

feathers of penguins are evenly packed all over their body, not in tracts like other bird types, but 

rather in a dense fashion of up to 30 to 40 feathers per square centimetre in some species 

(Dawson et al. 1999). February and March are when most little penguins tend to moult, though 

some moulting birds have been found as early as January and as late as June (Gales & Stahel 

1989). Because they are unable to swim for food during this period these birds will attempt to 

gain enough weight, nearly double of what they normally weigh, prior to starting the moult 

process (Gales et al. 1988). The high metabolic demands to sustain feather replacement results in 

a decrease of approximately 50 g of weight per day during the moulting process (Gales & Stahel 

1989) and therefore the birds must lay down enough fat to survive the fasting period (Gales et al. 

1988). In theory, the feathers are grown from fat stores gained just before the moulting period 



21 
 

starts, so new feathers reflect, isotopically, the combined signature of the prey consumed (Cherel 

et al. 2000; Jaeger et al. 2009). However, the process of the moult does not happen under normal 

metabolic conditions. Because of the fasting nature of the process for this family of birds, 

nutrients can be derived from diet initially, but as the moult continues, the source of keratin 

production comes from some fat and protein reserves, which have been ingested and stored prior 

to the pre-moult foraging period, the presence of which might alter the typical excretion rate of 

the heavier isotope of nitrogen [δ15N] (Cherel et al. 2005c). 

 

1.6 Outline of thesis  

Using the SIA of carbon and nitrogen in tissues such as feathers, it is possible to track, trace, and 

record changes in the feeding behaviour of a bird species over time. This may help predict what 

could occur, especially in different circumstances, such as changes in seasonal food availability, 

or in different parts of the range of a species. Documenting the pattern and scale of changes in 

carbon and nitrogen isotope ratios in feathers thus has the potential to provide a better 

understanding of the place of a species in its food web, and sets a baseline for measuring any 

further response to environmental pressures. For these reasons, in this thesis, I use isotope 

analyses to determine the trophic position with nitrogen isotopes and dietary carbon isotope 

signatures of little penguins in captivity and then examine other colonies in the wider South 

Island marine food web for the way in which this might vary both geographically and 

temporally. 

My first objective was to test the assumption that the stable isotope ratios of carbon and nitrogen 

can provide information on the approximate trophic position of the little penguin. To test the link 

between diet and isotope ratio, in a situation in which diet was known, I first measured the stable 

carbon and nitrogen isotope compositions of little penguin feathers and their diet in a captive 

colony housed at the International Antarctic Centre, in Christchurch, New Zealand. The annual 

moult feathers were analysed for stable isotope carbon and nitrogen ratios, and because the 

penguins had been fed a known diet, the isotope ratios of the feathers could then be compared 

with the ratios from the fish fed to the penguins. The captive group was composed of penguins 

rescued from the North Island, and two South Island colonies: from the West Coast, Dunedin, 

and from Flea Bay on Banks Peninsula. The colony also included several birds exhibiting 

characters of the formerly recognised “white-flippered penguin” from a large colony in Flea Bay, 

Banks Peninsula. The range of birds from different locations allowed further comparisons based 

on origin. This captive colony is formed of penguins who have sustained injuries in the wild that 



22 
 

prevent them from returning to their native environment once rehabilitation is complete. A 

calibration study group is essential to determine the type of isotopic discrimination with wild 

little penguins by testing the assumption that diet can be inferred from stable isotope ratios. The 

results of this calibration study are presented in Chapter 2. 

I then compared the isotope ratios of feathers collected from little penguins from three wild 

colonies around the South Island: Oamaru, Otago; Flea Bay, Banks Peninsula; and the West 

Coast. My objective was to test the hypothesis that different geographic populations of little 

penguins differ in their isotopic signatures. The utility of using the stable isotope method 

depends on the presence of significant isotopic differences in different areas (Hobson et al. 2001) 

and thus I tested whether there were different isotopic signatures between birds in the captive 

colony and their counterparts in wild colonies that live around the coast of New Zealand, and the 

way in which this varies temporally. I also tested the hypothesis that individual penguins, 

bearing different characteristics that are sometimes recognised taxonomically as a separate race 

or species [such as the so-called white-flippered penguin], differ in their position in the food 

chain from other populations of little penguins, and that they have different isotopic signatures 

when fed the same diet in captivity. The results of this work are given in Chapter 3. 

Finally, in Chapter 4, I review the findings, present the conclusions of this study, and suggest 

avenues for future research.  

Although the methods of this study are interlinked, each chapter is written to stand alone because 

the separate chapters are in preparation for submission for publication in refereed journals.  

 

1.7 Ethical considerations  

Because the collection of feathers is non-invasive and hence non-fatal to the bird, the ethical 

considerations for this study were limited. If addled eggs are present after the breeding season is 

finished, then again, no permanent harm would befall the birds, nor affect overall breeding 

success, if these eggs are inspected. Disturbance of the birds would be a concern, there is 

variation between different species reactions and would depend on time of year at point of 

collection, if this is during or after the moult, the damage to their psyche would, hopefully, be 

limited. 
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This study was carried out under permit authorisation number: 39867-FAU, issued by the 

Department of Conservation and with full permission from the University of Canterbury Animal 

Ethics Board. 
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Chapter 2 Calibration of captive colony to diet 

Abstract 

I collected moulted feathers from a captive group of little penguins [Eudyptula minor] over 

the course of two years for stable isotope analysis [SIA]. Because diet was sampled during 

this time, I was able to connect the isotopic signatures of the food source to that of the 

moulted feathers formed and thereby to ascertain the enrichment differences between diet and 

feathers; however the variation between different feathers produced on various diets was 

inconclusive. I found that while the isotopic signatures of penguins fed on different lots of 

sprats were not significantly different on δ15N signatures, feathers produced on diet/fish lot 1 

were different from other feather lots, and different from feathers produced on variable types 

of fish from other diet/fish lots. I also explored diet and feather variation in isotopic 

signatures based on gender and geographic origin of the birds, within individual diet/fish lot 

produced feathers. There did not appear to be any significant differences in either δ13C or 

δ15N isotopic composition between penguins on the basis of their geographic origin. Male 

and female feathers also did not significantly vary in δ13C or δ15N isotopic compositions 

when fed on an identical diet. My study confirms that SIA can be used to provide a reliable 

general estimate of diet location and analysis of feathers from wild populations could provide 

some information on the diet [and trophic level] of free-living penguins. 

 

2.1 Introduction 

Studies on animals in controlled environments can provide a useful framework for further 

research and as a prelude to similar studies on wild populations of the same species. This is 

especially true in situations with studies of diet using stable isotopic analyses [SIA], where 

there is a need to confirm a direct relationship between the diet of the animal and the isotopic 

signature of the tissue to be sampled. As a result, a number of studies have now examined 

stable isotopes in captive pigs, horses, seals, as well as several species of birds (Hobson & 

Clark 1992b; Kurle & Worthy 2002; Ayliffe et al. 2004; Tuross et al. 2008). For example, 

using a known diet, Kurle and Worthy (2002) confirmed that the diet of captive northern fur 

seals [Callorhinus arsinus] reflects isotopic enrichment in a predictable fashion, but also that 

enrichment levels can fluctuate depending on which type of tissue sampled. They also found 

that different tissues from the same individual are seldom uniform in their isotopic response 
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despite a consistent diet (Kurle & Worthy 2002). A similar study on horses concluded that 

different caches of nutrients within the body are not used uniformly but instead are dispensed 

within varying time frames, thereby leading to different isotopic signatures in different 

tissues (Ayliffe et al. 2004). As a result of these types of findings, Tuross et al. (2008) 

stressed that understanding the innate biological variability that exists under structured 

environmental conditions can provide the background needed for similar studies in less 

controlled environments, such as those that attempt to use SIA to assess the diet of free-living 

animals. 

Studying the diet of penguins and other seabirds is typically quite difficult, due to their wide 

ranging foraging trips out at sea, and potential variation in diet resulting from geographic and 

seasonal effects. SIA thus provides an attractive alternative to assess the diet of penguins with 

ease and at a larger scale than would otherwise be the case using more direct measures such 

as stomach or faecal analyses. There have now been a number of stable isotope studies on 

different captive populations of penguins (Mizutani et al. 1992; Cherel et al. 2005b; Polito et 

al. 2011a). In a fairly recent stable isotope study carried out on both wild and captive 

individuals of the little penguin [Eudyptula minor], McKenzie (2011) sampled blood and 

feathers in six little penguins over a period of two months to capture changes in isotopic 

signatures over one moult period. However, this study was based on a small number of birds 

and it is not clear how isotopic signatures may vary over a longer period of feather collection, 

or whether there are innate differences in the signatures of captive birds that are caused by 

factors other than diet, such as sex or geographic origin of the birds. 

For the research in this chapter, I used a captive group of little penguins at the International 

Antarctic Centre [IAC] in Christchurch, New Zealand as a means of calibrating the isotopic 

signatures of feathers to that of a known diet. The use of captive penguins in a controlled 

environment is an ideal way to test how the isotopic signature of an individual can react to 

known changes in diet. By feeding birds a known diet and then examining the isotope ratios 

in the moulted feathers produced on said diet, I tested if, and how, different batches of the 

same fish species affected the stable isotope reading of the feathers that were produced while 

birds were on that diet. Because the captive population of little penguins that I used also 

included individuals derived from geographically separated areas, including birds who in the 

past qualified as a subspecies, I tested whether individuals of the same species displayed a 

similar or dissimilar isotopic signature in response to a similar diet. Finally, isotopic 
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signatures could vary between the sexes, due to their differing physiologies and behaviours. 

By comparing males and females fed on the same diet, I was also able to assess variation in 

isotopic signatures that may be due to sexual differences that are not directly related to diet. 

The results of this research allowed me to test the assumption that the isotopic signatures of 

feathers from penguins reflect their diet, as well as estimating the amount of variation in 

those signatures that may be result either from the geographic origin, or from the gender of 

the birds.  

 

2.2 Methods 

2.2.1 International Antarctic Centre penguin colony 

Penguins were housed at the International Antarctic Centre in Christchurch, New Zealand. 

The birds in this captive population are deemed unable to survive in the wild as a result of 

injuries, as well as two birds that hatched in captivity and these are also housed with the wild 

hatched birds. At the time of this study, the population included birds from around New 

Zealand: one from Otago, two from the West Coast, eight from the North Island, and nine 

birds from Banks Peninsula. The latter are currently classified as the white-flippered penguin 

[Eudyptula minor albosignata], and there is some debate on whether it is considered a 

subspecies (Banks et al. 2002), or a colour morph (Sitar-Gonzales & Parsons 2012) of the 

little penguin. At present the New Zealand check list does not recognise any subspecies of the 

New Zealand little penguin (Checklist Committee 2010). 

The penguin enclosure can house a maximum of 26 little penguins although the most at any 

one time has been 24. The enclosure is open but fitted with a predator net over the top, thus 

the birds are exposed to all weather and daylight changes. Wooden nest boxes are provided 

on the beach area, and plastic retreat boxes are fitted to the shelving unit on one side which 

are accessible to the birds via tunnels. A freshwater pool [~ 80,000 litres] in the enclosure is 

filtered to prevent oil build up on the water. The water for the pool is supplied by the 

municipal system and the temperature, depending on the season, ranges between 14°C and 

23°C. A picture of the enclosure is shown in Appendix 3. 
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2.2.2 Moult timing of captive colony 

Little penguins in the wild moult after breeding, generally in January to February [Figure 

1.1]. The pre-moult foraging period is vital to support fasting during the period of feather 

replacement, which must occur on land, as moulting birds are not waterproof and are unable 

to fish. This means the feathers must be formed from nutrients stored in pre-moult foraging 

period and it is expected that the feathers would reflect the isotopic composition of the prey 

population consumed by the bird during this period.  

During the period in which I collected feathers, several individuals were found to be moulting 

six to eight months apart. Records have been kept for several years on moulting dates [Figure 

2.1]. From 2010 to 2011, 23 birds were present in the colony, and all moulted in a span of 

five months, from one bird in October to six birds moulting in February. Each bird only 

moulted once in this time frame. The summer season of 2011 to 2012 was similar with the 

exception of a female from the West Coast, which moulted in October 2011 and then six 

months later in April 2012. In the 2012 to 2013 summer period, the period of moult increased 

to span the period from July 2012 to May 2013. For example, one white-flippered male 

started to moult more often even though previously he had moulted only once a year [Note: 

he moulted four times from September 2013 to April 2015]. From July 2013 to June 2014, at 

least one bird every month [with the exception of June] was found moulting. It is not clear 

why moulting appears less regular in the captive population than observed in conspecifics in 

the wild, but this may be due the feeding arrangement [they are fed until satiation] and were 

not subject to a long fast during moulting as is experienced by wild birds.  

 

2.3 Stable Isotope Analysis [SIA] 

2.3.1 Food types, supplements and timing 

The captive penguins were fed on a variety of fish during this study, some obtained locally 

and some imported from Europe. The fish caught in European waters were provided frozen to 

the Antarctic Centre in batches, most which lasted several months. This consisted of small, 

whole European sprats [Sprattus sprattus] which originated from Major Fishing Area 027, in 

the Atlantic Northeast (Fisheries and Aquaculture Department 2015). The European sprat is a 

pelagic small schooling fish; it is zooplanktivorous and distributed from the North Sea and 
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Baltic Sea to the Black Sea and Mediterranean Sea (Peck et al. 2012). A total of 4 different 

lots of sprat were obtained during the course of this study, and as they may have different 

isotopic signatures, they were treated and analysed separately [and referred to as sprat lots or 

diet/fish lots 1 to diet/fish lots 4]. Later in my study, a shortage of sprats in lot 3 had to be 

supplemented with New Zealand caught salmon [Oncorhynchus tshawytscha], pilchard 

[Sardinops neopilchardus], and then with mackerel [three species found in New Zealand but 

managed as one; Trachurus declivis T. novaezelandiae, and T. symmetricus murphyi (Bird 

2011)] and anchovies [Engraulis mordox]. Sprats were preferred for health reasons 

(Veterinarian, Pauline Howard, pers. comm.), but the daily feedings were supplemented with 

anchovies, the most successful trialled fish, in addition to the sprats. The anchovy stocks 

were purchased from United Fisheries [Christchurch] and were apparently caught originally 

in the Pacific Ocean off the Northern California coast. Sprat lot 4 was supplemented with just 

anchovies. All information for labels of each fish/diet lot and type are listed in Appendix 2. 

These different types of fish were trialled on the whole colony, at various feeding times, not 

for the purposes of this study but in an attempt to stretch the supply of sprats available until 

more could arrive from Europe. The change in diet did however provide me with the 

opportunity to assess how the different types of fish might affect the isotope ratios found in 

the feathers grown at the same time. Samples of the various prey types were collected and 

analysed against the possibility that any birds who might have consumed them would have 

altered isotopic signatures in their feathers. The overall diet/fish lots can be considered more 

homogenous than found in the wild; however, because the time line for these diets was 

known, they could then be related to the isotopic signatures later obtained from the feathers 

that developed on each diet/fish lot. The time line of the change in diet/fish lots of the captive 

penguins is given in Figure 2.1. 

The penguins were fed twice a day, at 10:30 am and 3:30 pm. The birds were only fed whole 

fish, damaged or partial fish were discarded. The fish were rinsed in a sea salt water solution 

once thawed for use. The sea salt mineral composition list can be found in Appendix 1. 

Mazuri tablets were used to supplement the diet of the captive penguins. Two tablets were 

hidden in a fish, and attempts were made to get one vitamin-spiked fish into each penguin 

every day. Some of the birds regularly snagged a second vitamin fish because of the inexact 



  29 

 

nature of the delivery method. The nutritional content for Mazuri tablets are listed in 

Appendix 1. The Mazuri tablets are produced in the USA and imported to New Zealand. 

Three penguins, out of the 20 captive individuals, were also given 1/4 of a 1000 mg Nutri-

Zing tablet daily, a nutritional joint supplement that contains Green-Lipped Mussel, 

registered to United Fisheries in Christchurch, New Zealand and produced from local 

ingredients. The nutritional content is listed in Appendix 1. Both types of nutritional 

supplement were powdered and weighed into tin cups between 0.4 μg and 0.6 μg for 

sampling in the elemental analyser. 
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Figure 2.1: Time line for moult and changes in the diet of little penguins in a captive 

population at the International Antarctic Centre. Feather collection commenced in August of 

2012 [indicated by *]. The periods when birds were fed each of the different diets are indicated 

by the bars enclosed the month numbers [January as 1, December as 12] and labelled with the 

type of fish, though the different fish lots were started when the previous lot was finished, and 

not at the beginning or end of the month. Each lot of sprat represents a different shipment and 

was analysed separately; lots of sprat are numbered in order they were fed to the birds. The 

mackerel were fed to the birds during the changeover between sprat lots 2 and 3 but have been 

included in lot 3 as the one bird moulting at the end of sprat lot 2 was already in process and 

not eating when the mackerel was introduced at the end of lot 2. As no feathers were collected 

that could have been produced on sprat lot 5, but no comparison between lot 5 fish is included 

in this study. 
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2.3.2 Collection and preparation of fish for stable isotope analysis 

As each box of either sprat or other types of fish was opened for use at the IAC, one fish was 

removed, labelled, and kept frozen for later stable isotope analysis. Because there was 

initially one box of each potential new food type, several mackerel, salmon, and pilchards 

were collected from each box. Towards the end of the study, anchovies were included as a 

permanent addition to the diet [see Figure 2.1], and so I removed one fish for analysis from 

each box opened. All samples were stored frozen prior to processing and were freeze dried 

while frozen. Whole fish were freeze dried in two batches and stored in individual bags. The 

first batch of fish was freeze dried whole over four days. The second batch of fish was freeze 

dried for six days because one of the fish lots was extremely oily and I wanted to ensure there 

was no remaining water content. Each fish was percussively homogenised with a rolling pin 

until powdered. This powder was then weighed into tin cups to between 0.4 μg and 0.6 μg for 

sampling in the elemental analyser. Whole fish were used in this process as is recommended 

by both Cherel et al. (2005b) and Polito et al. (2009) when estimating the diets of wild 

penguins, even though the diet for this colony is known. 

 

2.3.3 Collection and preparation of feathers for stable isotope analysis 

Feathers from each bird were collected during each moult and were sealed in individual 

plastic bags labelled with the bird’s name and date of collection. If more than one bird was 

moulting at the same time in the captive colony, feathers were collected directly from 

individual birds. If only one bird was in moult, then feathers were collected from nesting 

material in their nest box. Because of the nature of this study, the delay from the feeding of 

fish to the penguins to sampling of feathers could be six months to a year, depending on the 

time of moult. The feathers were collected once the birds had their next moult, so one must 

keep in mind that the feathers had been “in use” and exposed to the elements.  

The feathers were first cleaned using the methods described in Greer et al. (2015), that is, a 

plastic tray with c. 2 L of distilled water and one small drop of Home Brand dish detergent 

was used. Feathers were washed individually, gentle brushing with a toothbrush, to remove 

dirt and faeces. After washing, they were rinsed in three separate beakers and agitated in 250 

mL - 500 mL of microfoil water per beaker. The washing solution and rinse water was 

changed after at least every 25 feathers to prevent oil build up. Individual feathers, generally 
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three per sampled moult, were then placed into one half of a glass petri dish, covered with a 

porous nappy liner held in place by rubber bands and placed into a fume hood for at least 24 

hours to dry. 

Once the feathers were dry, they were placed into small sealed universal bottles filled with c. 

20 ml of 2:1 chloroform/methanol solution for 24 hours. No more than six feathers were 

placed into each bottle at a time, and most samples consisted of three feathers. After 24 

hours, feathers were rinsed and agitated in two separate beakers which contained a 2:1 

chloroform/methanol solution of c. 20 mL. The 2:1 chloroform/methanol rinse solution was 

changed at least every 24 feathers. To dry the feathers, each sample was again placed into a 

glass petri dish, covered with a nappy liner and rubber bands and left in the fume hood for at 

least 48 hours. Once dry, the feathers were removed and placed into new labelled plastic bags 

until used for SIA.  

Prior to analysis, each feather was cut into small fragments using stainless steel scissors. Only 

the vane part of the feather was used. Feather pieces were then placed into small tin cups until 

a total of 0.4 μg and 0.6 μg was obtained [using a Mettler Toledo UMX2 microbalance]. Each 

cup was folded into a small ball and placed into a nunc tray to be processed by the elemental 

analyser. Because static electricity complicated the use of small size feather pieces during 

sample preparation, an anti-static bracelet was used. It was found that if the feathers were 

placed on the metal plate part of the bracelet, instead of the bracelet being worn, the static 

electricity was minimised. 

All work surfaces, with the exception of the scale [to avoid damage], were wiped down with 

70% ethanol to maintain sterility and prevent cross contamination of samples during 

processing. 

 

2.3.4 Mass Spectrometry 

Samples were analysed for δ13C, δ15N, %C and %N using a Costech Elemental Combustion 

System [ECS] 4010 [Costech Analytical Technologies, California, USA] connected to a 

Delta V Plus Isotope Ratio Mass Spectrometer [IRMS; Thermo Fisher Scientific, Bremen, 

Germany] via a Finnigan Conflow III [Thermo Fischer Scientific]. All samples were loaded 

into a ZeroBlank autosampler with an isolation valve [Costech Analytical Technologies] and 
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were individually combusted at 900°C under a continuous flow [c. 110 mL min -1] of ultra-

high-purity helium [>99.999%]. Molecular N2 and CO2 were separated using a gas 

chromatography column housed in the ECS and held at a static 45°C. IRMS fast peak jumps 

were calibrated at least daily, and reference gas linearity tests were performed at the start of 

every other analytical sequence. Internal precision [the standard deviation across ten 

reference gas analyses, i.e., zero-enrichment test] was determined prior to every analytical 

sequence and was always <±0.06‰ for both δ13C and δ15N. Data were normalised to 

international standards, Vienna PeeDee Belemnite for δ13C and Air for δ15N, using a stretch-

and-shift 2-point normalisation based on replicate analyses of certified reference materials 

within individual analytical sequences. External precision [the standard deviation of replicate 

analyses of certified reference materials and internal laboratory check standards over the 

course of the sampling] was <±0.20‰ for both δ13C and δ15N. 

 

2.4 Data analyses 

Feather samples were not included in analyses of the different fish lots if the moult/feather 

formation period occurred during or just after a diet change in which one fish lot was finished 

and a new one started. This was done in an attempt to only include feathers that were formed 

by a bird which had been on the same diet for at least one month before moulting 

commenced. Two birds that arrived into the captive colony have also had their first “wild” 

moult data removed from any data analyses of the captive colony as a whole because these 

feathers had been grown while the birds were still free-living and feeding in the marine 

environment on an unknown diet. 

Because there are more than two sets of samples to compare between the colonies sampled in 

this study, I used both the Shapiro-Wilk and the Bartletts tests to check for normality and 

homogeneity of variance to compare between the diet/fish lots and between the feathers 

produced on each diet lot. The data had non equal variance and a non-parametric Kruskal-

Wallis rank sum test was therefore used to test significant statistical difference. I then used 

TukeyHSD to show where the differences existed between samples. These tests were done 

using the R software package (R Development Core Team 2005).  

Excel® was used to carry out F-tests and t-tests, depending on variance, on the gender of the 

colony as a whole and within diet/fish lot 2. In analysing gender, diet/fish lot 1 moulted 
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penguins contained only one male, lot 3 contained only three individuals in total who 

moulted, and lot 4 contained included only one bird producing moult feathers. As a result, 

these birds were not included in the gender and origin analysis due to lack of samples within 

the last two batches of feathers produced. 

The enrichment values were found using δtissue ‒ δdiet (Germain et al. 2012). 

 

2.5 Results 

2.5.1 Diet 

The isotopic composition of the diet consumed compared to the feathers that were produced 

on those diets are shown in Table 2.1 and the scatter plot [Figure 2.2] and the differences in 

enrichment between fish to feathers in the whisker box plot Figure 2.3 [nitrogen] and Figure 

2.4 [carbon]. 

 

2.5.2 Nutritional supplements 

The isotopic ratios of the Mazuri tablets were substantially different from some of the fish 

types with the mean of δ13C at ‒22.88 ‰ ± 0.78 [range ‒23.91 to ‒22.21] and δ15N at ‒3.09 

‰ ± 0.66 [range ‒3.72 to ‒2.27]. Those that were statistically different for δ13C were 

anchovy [Kruskal Wallis: H=12.36, df=9, TukeyHSD P<0.001], lot 1 sprats [TukeyHSD 

P=0.022], lot 3 sprats [TukeyHSD P=0.014] and the pilchards [TukeyHSD P=0.0037]. The 

δ15N signatures that were significantly different included anchovy again [Kruskal Wallis: 

H=12.76, df=9, TukeyHSD P=0.020], lot 2 and lot 3 sprats [TukeyHSD P<0.001], salmon 

[TukeyHSD P=0.014] and mackerel [TukeyHSD P=0.026]. However, the expected impact on 

dietary feather readings was likely to be minimal as this supplement was only a small 

percentage of the diet consumed. 

The green-lipped mussel supplement was different from some of the fish samples. The δ13C 

signatures mean was ‒22.93 ‰ ± 0.25 [range ‒23.14 to ‒22.66] and δ15N at 6.60 ‰ ± 0.57 

[range 6.24 to 7.26]. The mussel pill was significantly different in δ13C from anchovies 

[Kruskal Wallis: H=12.36, df=9, TukeyHSD P<0.001], lot 1 sprats [TukeyHSD P=0.022], lot 

3 sprats [TukeyHSD P=0.032] and the pilchards [TukeyHSD P=0.0057]. However, both lot 2 
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and lot 3 sprats [H=12.76, df=9, TukeyHSD P<0.001] were the only samples significantly 

different in their δ15N from the mussel pill. This supplement contributes a small percentage to 

diet consumed because it was only given daily to three birds. It therefore has not been 

included in the whisker box plots because it does not apply to all the birds sampled in this 

study [Figure 2.3 and Figure 2.4]. 
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Table 2.1 Results showing mean, standard deviation [SD] and range of data of the stable isotope ratios of both diet items and feathers, produced 

on each diet/fish lot, of the little penguins from the captive colony of at the International Antarctic Centre. 

Diet     Feathers     

 δ 13C [‰]  δ 15N [‰]   δ 13C [‰]  δ 15N [‰]  

 Mean ± SD Range [‰] Mean ± SD Range [‰]  Mean ± SD Range [‰] Mean ± SD Range [‰] 

Sprat Lot 1 n=10 ‒20.54 ± 1.06 ‒21.98 to ‒18.62 

 

12.86 ± 0.59 12.01 to 14.12 Feathers Lot 

1 n=12 

‒18.33 ± 0.45 ‒18.99 to ‒17.38 16.41 ± 0.51 15.37 to 17.15 

Sprat Lot 2 n=10 ‒20.81 ± 1.33 ‒22.91 to ‒18.20 

 

14.02 ± 1.18 12.50 to 16.74 Feathers Lot 

2 n=16 

‒18.19 ± 0.26 ‒18.55 to ‒17.71 17.01 ± 0.70 14.88 to 17.61 

Sprat Lot 3 n=13 

Anchovy n=10 

Salmon n=3 

Pilchard n=2 

Mackerel n=2 

‒20.56 ± 1.06 

‒18.09 ± 0.70 

‒20.53 ± 1.84 

‒19.41 ± 0.21 

‒20.06 ± 0.09 

‒23.41 to ‒19.53 

‒19.12 to ‒16.94 

‒22.64 to ‒19.28 

‒19.56 to ‒19.26 

‒20.12 to ‒19.99 

13.76 ± 0.77 

12.21 ± 1.01 

12.43 ± 2.33 

7.73 ± 0.75 

13.10 ± 0.42 

12.00 to 14.95 

10.68 to 13.76 

9.89 to 14.49 

7.20 to 8.27 

12.80 to 13.39 

Feathers Lot 

3 n=3 

‒18.10 ± 0.34 

 

‒18.39 to ‒17.73 

 

17.39 ± 0.41 

 

16.93 to 17.69 

Sprat Lot 4 n=5 

Anchovy 

‒22.69 ± 0.88 

As above 

‒23.95 to ‒21.94 

 

10.59 ± 1.09 8.82 to 11.58 Feathers Lot 

4 n=1 

‒18.07  17.95  

Mazuri Tab n=4 

Mussel Pill n=3 

‒22.88 ± 0.78 

‒22.93 ± 0.25 

‒23.91 to ‒22.21 

‒23.14 to ‒22.66 

‒3.09 ± 0.66 

6.60 ± 0.57 

‒3.72 to ‒2.27 

6.24 to 7.26 

     

3
6
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Figure 2.2 

This graph shows the C and N isotope signatures of each diet prey type [of all diet/fish lots] in 

relation to feathers produced on each of the diet/fish lots. This graph encompasses all of the 

recorded diet compared to all of the feathers produced that could be linked to specific 

diets/fish lots. The “diet/fish lot” term is used interchangeably with “sprat lot” as sprat lot 1 

and sprat lot 2 were only comprised of sprats, but lot 3 and lot 4 had other species of fish in 

addition to the sprats. The standard deviation of each group is indicated by error bars. 
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Figure 2.3 Whisker box plots showing the isotopic difference in δ15N between 

the total diet and feathers produced whilst consuming different diet/fish lots. 

Figure 2.4 Whisker box plots showing the isotopic difference in δ13C between 

the total diet and feathers produced while consuming different diet/fish lots. 

3
8
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2.5.3 Diet to feathers in Lots 1 and 2 

Birds that were fed on sprat lot 1 and sprat lot 2 received no other types of fish. All 

sprat lots sampled in this study were caught over a two-year period. The mean of sprats 

from lot 1 for δ13C is at ‒20.54 ‰ ± 1.06 [range ‒21.98 to ‒18.62] and δ15N at 12.86 ‰ 

± 0.59 [range 12.01 to 14.12]. Lot 1 sprats were not significantly different from any 

other sprat lots in either δ13C [Kruskal Wallis: H=10.41, df=7, lot 2, TukeyHSD 

P=0.99, lot 3, TukeyHSD P=0.99 and lot 4, TukeyHSD P=0.055] or δ15N [Kruskal 

Wallis: H=8.35, df=7, lot 2, TukeyHSD P=0.096, lot 3, TukeyHSD P=0.12, and lot 4, 

TukeyHSD P=0.080]. 

The feathers produced on sprat lot 1 [n=12] showed a mean δ13C signature of ‒18.33 ‰ 

± 0.45 [range ‒18.99 to ‒17.38] and δ15N at 16.41 ‰ ± 0.51 [range 15.37 to 17.15]. Lot 

1 produced δ13C feather signatures that were not significantly different from any other 

feathers produced during this study [Kruskal Wallis: H=0.48, df=3, lot 2, TukeyHSD 

P=0.93, lot 3, TukeyHSD P=0.90 and lot 4, TukeyHSD P=0.73]. The δ15N signatures in 

the feathers produced on lot 1 were significantly different from the rest [Kruskal 

Wallis: H=7.60, df=3, lot 2, TukeyHSD P=0.0077, lot 3, TukeyHSD P=0.0091, and lot 

4 feathers at TukeyHSD P=0.029].  

The enrichment of diet to feathers in lot 1 for carbon was 2.36 ‰ and for nitrogen was 

3.66 ‰ [Figure 2.3 and Figure 2.4].  

The sprat lot 2 mean signature for δ13C was ‒20.81 ‰ ± 1.33 [range ‒22.91 to ‒18.20] 

and δ15N at 14.02 ‰ ± 1.18 [range 12.50 to 16.74], respectively. The δ13C of sprat lot 2 

was not significantly different from any of the other sprat lots in δ13C [Kruskal Wallis: 

H=10.41, df=7, lot 3, TukeyHSD P=0.99 and lot 4, TukeyHSD P=0.14] but the δ15N 

was significantly different between lot 4 and lot 2 [Kruskal Wallis: H=8.35, df=7, 

TukeyHSD P<0.001] but not between lot 2 and lot 3 [TukeyHSD P=0.99]. 

The lot 2 feather [n=16] δ13C mean signature was ‒18.19 ‰ ± 0.26 [range ‒18.55 to ‒

17.71] and δ15N at 17.01 ‰ ± 0.70 [range 14.88 to 17.61]. Feathers produced on lot 2 

were not significantly different in their δ13C signatures [Kruskal Wallis: H=0.48, df=3, 

lot 3 feathers TukeyHSD P=0.98 and lot 4 TukeyHSD P=0.85] or in δ15N for lot 3 and 

lot 4 [Kruskal Wallis: H=7.60, df=3, lot 3 TukeyHSD P=0.51, and lot 4 feathers 

TukeyHSD P=0.35].  
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The enrichment from diet to feathers from lot 2 was 2.64 ‰ for carbon and 3.47‰ for 

nitrogen [Figure 2.3 and Figure 2.4]. 

 

2.5.4 Diet to feathers in lot 3 sprats and supplemental fish 

The mean δ13C signature of sprat lot 3 was ‒20.56 ‰ ± 1.06 [range ‒23.41 to ‒19.53] 

and δ15N was 13.76 ‰ ± 0.77 [range 12.00 to 14.95]. Sprat lot 3 was significantly 

different in δ13C from sprat lot 1 [see above] and from sprat lot 4 [Kruskal Wallis: 

H=10.41, df=7, TukeyHSD P=0.028]. The δ15N of sprat lot 3 was different from that of 

lot 4 [Kruskal Wallis: H=8.35, df=7, TukeyHSD P<0.001]. 

Sprat lot 3 was not significantly different in δ13C signatures from the mackerel [Kruskal 

Wallis: H=10.41, df=7, TukeyHSD P=0.99], pilchards [TukeyHSD P=0.54] or the 

salmon [TukeyHSD P=0.99] but was different from the anchovies [TukeyHSD 

P<0.001]. The δ15N of sprat lot 3 was different from the pilchards [Kruskal Wallis: 

H=8.35, df=7, TukeyHSD P=0.0018] and anchovies [TukeyHSD P=0.002] and not 

different from either the mackerel [TukeyHSD P=0.94] or the salmon [TukeyHSD 

P=0.71]. 

Anchovies were used to supplement sprat stocks [lot 3 and lot 4] from 16 June 2014 to 

7 December 2014. The isotope ratios of the anchovies were a fairly distinct group from 

the sprat lots, with their mean at ‒18.09 ‰ ± 0.70 [range ‒19.12 to ‒16.94] for δ13C 

and 12.21 ‰ ± 1.01 [range 10.68 to 13.76] for δ15N. However, the anchovies were not 

significantly different in either the δ13C signatures, with mackerel at [Kruskal Wallis: 

H=10.41, df=7, TukeyHSD P=0.32], pilchards [TukeyHSD P=0.96] or the salmon 

[TukeyHSD P=0.054], or δ15N signatures of the mackerel [Kruskal Wallis: H=8.35, 

df=7, TukeyHSD P=0.95], the pilchards [TukeyHSD P=0.51] and the salmon 

[TukeyHSD P=0.96]. 

The supplemental fish included mackerel, which was trialled on the population during 

feeding times occasionally between May and June 2014, pilchards, trialled over 9 days 

in June 2014 and salmon, which were trialled during three feedings, two days in June 

2014 and one day in August 2014. The mean isotopic signatures for these fish are given 

in Table 2.1.  
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Because only three birds underwent their pre-moult weight gain over the period of fish 

trialling, the supplemental fish is counted as a small percentage of the possible diet 

consumed by the three birds. The mean of the feathers [n=3 birds] produced on sprat lot 

3 [with probable supplemental fish addition to the diet of these three birds] is, for δ13C, 

‒18.10 ‰ ± 0.34 [range ‒18.39 to ‒17.73] and δ15N at 17.39 ‰ ± 0.41 [range 16.93 to 

17.69]. The δ13C signatures of lot 3 feathers were not significantly different from the 

other lots: lot 1 [Kruskal Wallis: H=0.48, df=3, TukeyHSD P=0.89], lot 2 [TukeyHSD 

P=0.98] and lot 4 [TukeyHSD P=0.94]. However, lot 3 produced δ15N feather 

signatures that were significantly different from lot 1 [Kruskal Wallis: H=6.39, df=3, 

TukeyHSD P=0.021] but not different from either lot 2 [TukeyHSD P=0.58] or lot 4 

[TukeyHSD P=0.88]. 

The enrichment of the feathers produced on the lot 3 diet had an increase of 4.41 ‰ for 

the nitrogen and 1.42 ‰ for the carbon [Figure 2.2 and Figure 2.3]. 

 

2.5.5 Diet to feathers in lot 4  

Sprats in lot 4 had a mean of ‒22.69 ‰ ± 0.88 [range ‒23.95 to ‒21.94] for δ13C, and 

for δ15N 10.59 ‰ ± 1.09 [range 8.82 to 11.58]. The δ13C for lot 4 are significantly 

different from lot 3 [Kruskal Wallis: H=10.41, df=7, TukeyHSD P=0.029] while the 

δ15N signatures are significantly different from lot 2 [Kruskal Wallis: H=8.35, df=7, 

TukeyHSD P<0.001] and from lot 3 [TukeyHSD P<0.001]. Anchovies were also used 

to supplement feeding the captive colony during the use of sprat lot 4. 

The feathers of one bird were collected at the end of this study. The δ13C signature for 

this individual was ‒18.07 ‰ and the δ15N signature was 17.95 ‰. There was no 

significant difference found between this feather sample produced by lot 4 fish for the 

δ13C signatures of the other feather lots, but there was a significant difference in the 

δ15N between lot 1 feathers [Kruskal Wallis: H=7.60, df=3, TukeyHSD P=0.029] and 

lot 4. 

The difference between the sprat signature of lot 4 and this individual’s feathers are 

curious in the whisker plot figures [Figure 2.3 and Figure 2.4]. There was a 6.23 ‰ 

difference between the diet and feathers for nitrogen, and although the nitrogen 

signatures for both of the fish types were quite close, the carbon signatures were quite 
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different. The carbon difference between sprat and feathers was 4.09 ‰, again much 

higher than expected, though only 0.0073 ‰ difference between the anchovy and 

feather signatures, but because this was based on only one individual, this result should 

be treated with caution. 

 

2.5.6 Origin of birds and isotopic signature 

In an effort to investigate further the possible existence of physiological effects, based 

on area of origin and possible subspecific distinctions, on the isotopic composition of 

the little penguin, statistical comparisons were done. If there were differences present 

between birds originating from various areas, then this would preclude the use of stable 

isotopes as proxies for diet because the physiology of the birds, and not the 

environment, would be the controlling factor. 

If the origin of each of the birds is analysed, within the context of comparing all feather 

signatures [Table 2.2], there was no significant difference between the subgroups in 

either the δ13C [Kruskal Wallis: H=2.082, df=4, TukeyHSD all comparisons P=0.26 or 

higher] or the δ15N [Kruskal Wallis: H=2.544, df=4, TukeyHSD all comparisons P=0.1 

or higher].  
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 δ 13C (‰) 

Mean ± SD 

Range δ 15N (‰) 

Mean ± SD 

Range 

West Coast   

n=7 

‒18.45 ± 0.30 ‒18.87 to ‒18.16 17.18 ± 0.35 16.57 to 17.56 

North Island 

n=20 

‒18.23 ± 0.57 ‒19.35 to ‒17.27 16.68 ± 0.63 14.88 to 17.39 

White-flippered 

n=32 

‒18.12 ± 0.37 ‒18.99 to ‒17.29 16.70 ± 0.62 15.37 to 17.95 

Canterbury   

n=2 

‒18.64 ± 0.14 ‒18.73 to ‒18.54 17.30 ± 0.21 17.15 to 17.44 

Otago            

n=2 

‒17.94 ± 0.37 ‒18.20 to ‒17.67 15.59 ± 1.41 14.59 to 16.59 

Male 

n=18 

‒18.36 ± 0.46 ‒19.24 to ‒17.48 17.10 ± 0.51 16.08 to 17.95 

Female 

n=45 

‒18.14 ± 0.43 ‒19.35 to ‒17.27 16.58 ± 0.66 14.59 to 17.75 

To control for any effect of diet, I only used the results of feathers from birds fed on lot 

1 and lot 2. Figure 2.5 shows origin of the birds based on each diet/fish lot. Lot 1 

feathers [n=12] had no significant differences in the δ13C [Kruskal Wallis: H=0.853, 

df=3, TukeyHSD P=0.52 or higher] and lot 1 feathers δ15N also had no significant 

difference [Kruskal Wallis: H=2.05, df=3, TukeyHSD P=0.27 or higher]. 

In the lot 2 feathers [n=16] there were no significant differences in the δ13C signatures 

of any of the birds by origin [Kruskal Wallis: H=1.19, df=4, TukeyHSD P=0.52 or 

higher]. The δ15N signatures were also non-significantly different between any of the 

sub groups based on origin [Kruskal Wallis: H=1.05, df=4, TukeyHSD P=0.63 or 

higher] with the difference between the West Coast group and the white-flippered 

group not significant [TukeyHSD P=0.99]. 

Table 2.2 Isotopic results for all feather samples from captive colony based on origin 

and gender. 
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Figure 2.5 

Feathers produced on each diet/fish lot by origin, graph A denotes lot 1, graph B 

represents lot 2, graph C denotes lot 3, and graph D represents lot 4. WC stands for the 

West Coast, WF for white-flippered birds, NI as North Island and Cant as Canterbury. 

Standard deviation is shown by the error bars for each group. 
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2.5.7 Gender and isotopic signature 

When the isotopic signatures of the feathers of the whole colony were analysed [also 

see scatterplot Figure 2.6 graph B], there was a significant difference found between 

the male and female in the δ15N [t=-2.99, df=61, P=0.0040] but not for δ13C [t=-1.81, 

df=61, P=0.076]. To better control for diet, I compared only feathers from birds fed on 

lot 2 [female n=10 and male n=6; the lot 1 grouping only had one male moult]. The 

δ15N signatures of lot 2 approached significance [t=-2.07, df=10, P=0.066], which 

suggests some effect of gender on the isotopic signatures even when males and females 

were on the same diet. The δ13C signatures were, again, not signifficanly different [t=-

1.018, df=14, P=0.33]. 
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Figure 2.6  

Graph A: All of the collected 

feather data from the 

International Antarctic Centre 

[IAC] colony divided into 

colony of origin. The two birds 

new to the colony had their 

first moult in captivity 

discarded from this data set. 

Standard deviation is shown by 

the error bars for each group. 

White-flippered birds were 

originally from Banks 

Peninsula [Flea Bay area] and 

the Canterbury bird was found 

on New Brighton Beach in 

Christchurch. 

Details about the Otago moults 

are further discussed in 

Appendix 4. 

Graph B: Captive colony male 

to female comparison of all the 

collected feather data from the 

IAC population. The lack of 

foraging activity in this colony, 

ideally, removes the bias of 

gender specific foraging 

behaviour. There is also a 

gender imbalance in numbers 

for this colony, favouring the 

female side. The two birds new 

to the colony had their first 

moult in captivity discarded 

from this data set. Standard 

deviation is shown by the error 

bars for each group. 
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2.6 Discussion 

My objectives for this portion of the study were, first, to measure the enrichment values 

between diet and feathers, and then to investigate if and how diet/fish lots differed, and 

if they did differ, how those differences might have affected the feathers produced on 

each diet. I found significant differences in the isotopic signatures between the later lots 

of fish, but sprat lot 1 was not significantly different from any of the other sprat lots 

used, even though the feathers produced on sprat lot 1 were significantly different from 

feathers produced on lot 2, lot 3, and lot 4. On the other hand, lot 2, lot 3, and lot 4 did 

not produce feathers that were statistically different from each other, despite the 

addition of different types of fish in lot 3 and the continued use of anchovy to 

supplement sprat lot 4. This suggests that although there were differences in isotopic 

signatures between the different types of fish fed to the captive penguins, these did not 

necessarily lead to similar differences in the isotopic signatures of the feathers 

produced at the time. 

One potential explanation for the lack of differences in isotopic signatures of feathers 

despite the birds feeding on a diet that was known to differ isotopically is that they did 

not consume a substantial enough portion of the different types of fish in lot 3 or lot 4 

to influence their resulting feather isotopic signatures. Furthermore, birds fed on 

diet/fish lot 3 and lot 4 only produced three moults and one moult, respectively, and 

this small sample size limited my ability to detect anything but the largest difference. 

My second and third objectives were to investigate variation within the captive colony 

based on gender and origin of the captive birds in the wild. When I investigated 

differences in isotopic signatures in relation to gender using all of the feather data 

gained from the wild colony, I found a statistically significant difference between the 

male and female birds in their δ15N signatures, but when controlling for diet and 

examining gender within food lot 2, the values between the genders were not different 

enough to be significant [although they did move in the direction predicted]. There 

were no significant differences in the δ13C signatures when analysed for gender. There 

were also no significant differences found in either δ13C or δ15N based on origin when 

the entire colony was compared or within diet/fish lot 1 or lot 2 when controlling for 

diet. 
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2.6.1 Diet 

Because sprat lot 1 is not significantly different from the other sprats, but that lot 1 

produced feathers that are different in their δ15N values [but not in δ13C] from the other 

feather lots could result from a number of factors. Sprat lot 1 was particularly long 

running, just over 12 months of being fed to the captive birds, so a larger amount of 

fish was provided to be fed to the captive population. The assumption that this lot was 

all caught at the same time in the same general area might not apply because of the 

larger amount of fish. Because sprat lot 1 is not different to sprat lot 2, sprat lot 3, or 

sprat lot 4 in either δ13C or δ15N, but sprat lot 2 is different from lot 4 in δ15N [but not 

δ13C] but not to lot 3, and lot 3 and lot 4 are both quite different in both δ13C and δ15N, 

this would suggest that sprat lot 1 came from a variety of locations. It is a possibility 

that such a variation in locations of sprat lot 1 could have caused the variation in lot 1 

produced feathers that were significantly different from all the other diet/fish lot 

produced feathers. This does not necessarily explain the lack of difference of feathers 

produced on lot 2, lot 3 or lot 4. 

Other possible causes of the variation of lot 1 feathers to the rest include the production 

of feathers from unequal use of internal nutrient reserves (Ayliffe et al. 2004). 

Furthermore, only female birds were initially sampled in the beginning of feather 

collection until it was decided that a larger project could be derived from the captive 

birds. Other influences to consider might be human error in feather collection, feather 

colour, or penguins which previously underwent incomplete moults. Feather colour has 

been shown to cause variation in isotopic signatures between black and white parts of 

feathers (Michalik et al. 2010) and both breast [white] feathers and body [blue] feathers 

were sampled in this study. Some of the captive birds at the IAC have undergone only 

partial moults, generally of either of the head and neck area, or of the breast area. 

Although this happened rarely (personal observation), it is possible that there may have 

been feathers collected after a full moult which contained feathers produced on two 

different diets. Further research would be useful because it could be used to investigate 

what might cause the bird to only partially moult, especially because all penguin 

species are assumed to undergo a full moult every time. 
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Ultimately, the fish in this study can really only be indicative purely to a general area 

and the overall trophic levels of creatures inhabiting that region. It is difficult to be 

specific to location when the samples [fish] have the ability to swim around. At least 

the birds breeding colonies do not shift in location overnight. The combination of SIA 

with stomach sampling would be the ideal for in depth further research (Chiaradia et al. 

2012) of diet types. 

 

2.6.2 Origin and gender 

The fact that these birds have all been fed on the same diet for some time helps to 

remove outside factors that can influence isotopic reactions in terms of sexually 

dimorphic foraging behaviour (Awkerman et al. 2007), possible subspecific 

physiological differences and dietary influences of colony of origin (Hocken 1997; 

Allen et al. 2011; Flemming et al. 2013). That there are differences between the 

isotopic signatures of various colonies has been established [see chapter 3], but, less so 

the exact nature of how these differences come about. The objectives for this portion of 

the study were to investigate the variation present within subgroups, such as male 

versus female, and to explore the white-flippered morph versus the rest of the little 

penguins, and to see if birds from different areas of New Zealand reacted in a similar 

fashion when the local diet is replaced with a consistent one.  

There does appear to be some segregation between the male and female moult data 

when all the feather data from the whole colony is examined [Figure 2.6B] but none 

that was significant when feathers produced on a diet/fish lot, in an attempt to control 

for diet, were investigated. Lot 2 feathers, produced from feeding on sprat lot 2, did not 

show any statistically significant differences, in either δ13C or δ15N, between male and 

female little penguins. I was not able to examine gender in sprat lot 1 produced feathers 

because there was only one male moult collected during sprat lot 1. This is because the 

project initially had been to investigate only female feathers and egg shell differences 

but then it was extended to the parameters of the current study. 

This lack of significant differences could be that although there have been some trophic 

level differences between male and female little penguins in the wild due to the 

variation in foraging behaviour, the homogenous diet of fish combined with the lack of 
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foraging activity in captivity would have led to the same efforts on the part of both 

male and female captive birds. More research is needed to further confirm this line of 

inquiry for this species. 

Because there were no significant differences in either the δ13C or the δ15N signatures, 

either within diet/fish lot 1 or lot 2, or within all feather data derived from the captive 

colony [Figure 2.6A], the origin of the birds do not contribute to variation of the overall 

feather isotopic signatures. The white-flippered penguin, once regarded as a subspecies 

of the little penguin, did not display subtle metabolic differences in feather production 

based on taxonomic position or area of origin. 

This captive group has provided a range of samples over a sufficient period of time to 

show that the stable isotopic ratios can vary between individual birds despite continued 

consumption of the same diet. The IAC started with a pre-formed population of North 

Island-derived birds in 2006, but did not start accepting rescued white-flippered birds 

until sometime later, in late 2007, so the age of the North Island birds, on average, 

could be significantly higher than the white-flippered birds that had been rescued after 

the IAC colony had formed. This study was not able to address any questions about age 

nor the possibility of change in isotopic readings due to metabolic processes 

undergoing adjustment because of ageing in the birds. It must also be taken into 

account that the average age of a wild little penguin is less than that of a captive bird at 

the IAC. It is possible that isotopic ratios due to age could respond in various ways; 

however, exact age can be difficult to acquire for animals in the wild (Mizutani et al. 

1992). Further research is needed to explore and to quantify the way in which 

differences in increasing age can have an impact on the stable isotope results. Salt 

water exposure on wild penguin feathers must also be considered as a variable when 

comparing a wild population to this group of captive birds, who swam only in fresh 

water. 

There are limitations to be considered when using captive animals for stable isotope 

analysis especially when the subjects are on a restricted diet, which possibly causes 

physiological stresses that might alter the isotopic discrimination and therefore final 

results (Hobson & Clark 1992b). Factors that also might affect the results include 

average age of the captive colony, level of physical activity [low because the birds used 

in this study were fed twice a day and did not hunt for their fish] and as a result, a 
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possible difference in metabolic rate. Metabolic rates in captive birds are lower and this 

could affect the isotopic turnover rate (Hobson & Clark 1992c). The birds in captivity 

have very little choice when it comes to their diet and in the wild have more 

flexibility/preferences in their foraging behaviour (Davies et al. 2009), and as a 

consequence individual bird choice/prey availability could also influence wild isotopic 

results and could not be accounted for in a captive trial. 
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Chapter 3 Geographic variation in the stable isotope composition of little penguin 

feathers in New Zealand 

Abstract 

My objective in this chapter was to compare the stable isotopic composition of feathers 

between several little penguin [Eudyptula minor] colonies. Feathers were collected 

from three colonies on the east coast of the South Island and in several sub-colonies on 

the West Coast. I used stable isotope analysis [SIA] of δ13C and δ15N of feathers to 

determine whether trophic level depended on the geographic location of each colony. 

Correlations between the δ13C and δ15N stable isotope signatures of penguins from the 

wild colonies were then compared to a captive colony at the International Antarctic 

Centre comprised of individuals from around New Zealand. I also examined whether 

the “white-flippered penguin” [Eudyptula minor albosignata], a colour morph formerly 

recognised as a subspecies confined largely to Banks Peninsula, differed in stable 

isotope ratios from other populations. Based on δ15N ratios, I found penguins on the 

West Coast showed a lower trophic level than the east coast birds. Similar differences 

in the δ13C ratios also confirmed the birds on the two coasts were feeding on different 

prey species and thus were occupying different trophic levels. Surprisingly, a colony of 

the white-flippered morphs at Harris Bay was more similar in both carbon and nitrogen 

compositions to the geographically more distant Oamaru population than to another, 

geographically closer, colony of the white-flippered morph in Flea Bay. This suggests 

that the carbon isotope signatures reflect the location of the foraging area and the 

approximate trophic level of the birds during their pre-moult foraging period, and are 

not due to sub-specific differences. Isotopic compositions of captive penguins, which 

were fed primarily on fish sourced from Europe, were quite different from the 

compositions of all wild populations, confirming the link between differences in diet 

and differences in isotopic ratios. 
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3.1 Introduction 

The stable isotopic compositions in feathers of carbon and nitrogen are well established 

proxies for conditions connected with geographic location of diet and trophic position 

(Cherel & Hobson 2007; Cherel et al. 2007). Differences in location should be reflected 

in the stable isotope compositions because carbon has been shown to correlate with 

origin of nutrients in food webs while nitrogen can reflect differences in trophic level 

(Cherel & Hobson 2007). A number of researchers have used stable isotope analysis 

[SIA] to identify the foraging areas used by marine predators, such as several penguin 

species foraging in the Southern Ocean (Cherel & Hobson 2007), and the prey 

availability of key species, such as the Antarctic krill [Euphausia superba] consumed 

by four different top Antarctic predators (Croxall et al. 1999). SIA can be a valuable 

tool in studies of foraging behaviour, because it can provide an overall picture of the 

foraging habits of a species (Jaeger et al. 2009; Flemming & van Heezik 2014), 

especially when used to identify foraging areas of seabirds while at sea, which by their 

nature, are difficult to follow effectively without further impacting on normal 

behaviour. 

Knowing the general diet and trophic levels of seabirds would give us a benchmark to 

measure future changes against. Establishing an initial array of data of stable isotopic 

compositions, of various tissues, across a number of seabird species could assist in 

future investigations in response to change in environmental conditions [e.g., climate 

change], prey species availability [e.g., overfishing], and the ability of food webs to 

support higher trophic level marine predators. For example, Hilton et al. (2006) 

investigated the causes of decline in the sub-Antarctic rockhopper penguin [Eudyptes 

chrysocome] using SIA of feathers from museum collections. Using museum skins in 

addition to collection of contemporary feather samples from several sites to cover a 

period of 148 years, they found evidence of decreased primary productivity in δ13C, and 

using δ15N, a long-term decline in trophic level, which were then correlated with sea 

surface temperatures. Together, this indicated a shift in diet over time, especially in 

warmer years, to prey that occupied a lower trophic level and suggesting declines were 

due to ongoing habitat change (Hilton et al. 2006). 

The little penguin [Eudyptula minor] is a good model with which to examine variation 

in stable isotope ratios as they occupy a high trophic level and are generalist feeders, 
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but with some evidence for variability in diet between colonies and over different 

seasons and this flexibility of diet is then reflected in their trophic interactions 

(Chiaradia et al. 2012; Flemming 2012; Flemming et al. 2013). In both New Zealand 

and Australia, little penguins have been found to feed on several different species of 

fish, either small near shore schooling fish or pelagic juveniles, as well as some 

cephalopods, although the exact species and range of species in the diet varies 

geographically across their distribution (Klomp & Wooller 1988; Fraser & Lalas 2004; 

Flemming et al. 2013). Overall, fish comprise more than 95% of the diet and they are 

caught primarily by pursuit-diving (Marchant & Higgins 1990). 

In this chapter, I take advantage of this foraging plasticity to examine variation in stable 

isotope ratios among a variety of little penguin colonies around the coast of New 

Zealand. I also compared the isotope ratios of birds from the wild with individuals in a 

captive colony that was fed on fish imported from Europe. I hypothesized that each 

colony would have varying carbon values, though perhaps tempered by geographical 

proximity, as the prey in each region are likely to be more similar. In contrast, I 

expected little penguins to have fairly similar nitrogen values across all colonies 

because they should, in theory, still be foraging at a comparable trophic level, even if 

prey species differed slightly. In comparison, birds from the captive colony should 

differ from wild birds given the distinctly different origin of prey consumed. Finally, I 

also compare the isotopic compositions of little penguins with the white-flippered 

morph of the little penguin, which was formerly recognised as a distinct subspecies 

restricted to the Banks Peninsula area of the South Island. If this morph differs in 

trophic level and diet from its congeners, then such a difference may be detected in its 

isotopic signatures. Together, the isotopic compositions will also provide a benchmark 

for future use, if a changing climate affects the prey base and thus the trophic level of 

little penguins over the coming decades. 

 

3.2 Methods 

The location of the wild little penguin colonies sampled for this study are shown in 

Figure 3.1. The Oamaru site is one of the three situated on the east coast of the South 

Island and has a current population of 120 breeding pairs. Both the Flea Bay [1304 
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breeding pairs/nests] and Harris Bay [35 breeding pairs] penguin colonies are located 

on Banks Peninsula and are comprised entirely of the white-flippered penguin morph. 

Penguins were also sampled from a range of sites on the West Coast of the South Island 

and these sites include the Punakaiki River Road Reserve [2-6 breeding pairs], Bullock 

Creek Road Reserve [5-6 pairs], Joyce Bay Road Reserve Colony [21-35 pairs], Nile 

River Road Reserve Colony [22-32 pairs], Rahui Colony [9-16 pairs] and White Horse 

Creek [17 -21 pairs]. Locations of these colonies are shown in Figure 3.1B. 

Feather collection was carried out by the local rangers or caretakers in each area. In 

Oamaru, feathers were collected during weekly nest-box checks. Between two and four 

feathers were collected per bird and stored in plastic screw top vials. All penguins 

sampled in Oamaru were female. Samples from Flea Bay penguins were collected 

during February 2015; feathers were identified as coming from each box, though two 

feather samples were from individual moulting birds identified by bands, and initially 

stored in paper envelopes. Harris Bay penguin feathers were collected from banded 

individuals and placed in individual plastic Ziploc bags and were collected in February 

2015. The West Coast penguin feathers were either collected from road-killed birds or 

from nest boxes, and were also stored in plastic bags, labelled either as a road killed 

bird or from nest box number. The road-kill birds are referred to as the accidental death 

samples and were collected from 2009 until January 2012 from a variety of locations. 

The burrow/nest box feathers collected were mostly collected during the moult season 

of 2013, but there were some samples from some of the same locations collected in late 

2012.  

For comparison, I also analysed the stable isotope ratios of captive little penguins held 

in the Antarctic Centre [see chapter 2]. Feathers were collected and analysed for a total 

of 20 captive penguins. Nine of the penguins in the captive colony were classified as 

“white-flippered” penguins and originated from the Flea Bay colony on Banks 

Peninsula. 

 

3.2.1 Stable Isotope Analysis [SIA] 

The methods used to process feathers and measure the stable isotopes of both C and N 

are described in detail in Chapter 2. Briefly, the feather processing involved washing 
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the feathers with microfoil/distilled water and a small amount of detergent. Feathers 

were washed individually, with gentle brushing with a toothbrush, to remove dirt and 

faeces, and then rinsed in microfoil water. The washing solution and rinse water were 

changed after at least every 25 feathers to prevent oil build up. Individual feathers, 

generally three per sampled moult, were then placed into a one half of a glass petri dish, 

covered with a porous nappy liner held in place by rubber bands and placed into a 

fume-hood for at least 24 hours to dry, then into small sealed universal bottles filled 

with approximately 20 mL of 2:1 chloroform/methanol solution for 24 hours. After 24 

hours, feathers were removed from the solution, rinsed and agitated in two separate 

beakers containing the 2:1 chloroform/methanol solution, of c. 20 mL, and then placed 

in petri dishes to dry for at least 48 hours in a fume hood. 

Once dry, each feather was individually cut into small fragments; only the feather barbs 

on one side of the pennaceous part of the vane, not the rachis or the philoplume [as 

shown in Appendix 3],was used for analysis as this was generally sufficient for 

sampling purposes. These pieces of feather were placed into small tin cups, individually 

tared on a 7 decimal point scale [Mettler Toledo UMX2 microbalance]. Once within the 

required weight range, each cup was folded into a small ball and placed into a nunc tray 

to be processed by the elemental analyser. Samples were analysed for δ13C, δ15N, %C 

and %N using a Costech Elemental Combustion System [ECS] 4010 [Costech 

Analytical Technologies, California, USA] connected to a Delta V Plus Isotope Ratio 

Mass Spectrometer [IRMS; Thermo Fisher Scientific, Bremen, Germany] via a 

Finnigan Conflow III [Thermo Fischer Scientific]. 

 

3.2.2 Comparison of potential prey isotopic signatures with penguin signatures 

Although I was unable to sample and measure the isotopic compositions of potential 

prey items of little penguins in each of my study sites, I was able to make one such 

isotopic comparison with the penguins feathers on the east coast, as the isotopic 

signatures of the plankton and fish in this region have been measured as part of another 

project (D. G. Bennet, pers. comm.). Prey items were sampled between one and seven 

km off of the Kaikoura coastline; these plankton and fish samples were collected in 

January and February, during the same year in which the pre moult foraging period 
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occurred for the penguin colonies sampled on the east coast of the South Island. I then 

compared the fish and plankton isotope signatures to that of the three wild little penguin 

colonies on the east coast of the South Island that were sampled in this study. 

 

3.3 Data analysis 

I used Shapiro-Wilk and Bartletts tests were used to check for normality and 

homogeneity of variance, respectively. Because the data had non-equal variance, a non-

parametric Kruskal-Wallis rank sum test was used to test significant statistical 

difference, and this was followed by Tukey HSD tests to show where significant 

differences between colonies existed. These tests were done using the R software 

package (R Development Core Team 2005).  

For samples collected from West Coast penguins, two subgroups had equal variance as 

shown by F-test and so I then compared using t-tests in Excel®. All West Coast data 

was combined for comparisons between colonies, but was then divided by subgroup for 

analysis within just the West Coast area. Comparisons between the captive birds 

originating from the West Coast and from the white-flippered morph colonies were 

done also using F-test and t-test functions in Excel®. 
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Figure 3.1  

[A] Map of the South Island showing the little penguin 

colonies that were sampled during the course of this study. 

[B] Details of colonies around Westport on the West Coast. 

 

 

A 

B 

A 

Maps were produced on ArcGIS 10.4 for 

Desktop – ArcMap Product version 

10.4.0.5524 
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3.4 Results 

3.4.1 Isotopic compositions of little penguins in wild colonies 

The average δ13C and δ15N isotopic compositions of little penguins across all the wild 

colonies are given in Table 3.1 and plotted in Figure 3.2. The δ13C signatures of the 

feathers differed significantly among penguin colonies [Kruskal Wallis: H=104.7, df = 

3, Tukey HSD P<0.001], however, there was no significant difference between the 

Oamaru and Harris Bay penguin colonies [Tukey HSD: P=0.80]. This pattern was 

echoed with the δ15N signatures, with a significant difference among the colonies 

[Kruskal Wallis: H=59.92, df = 3, Tukey HSD P<0.001], but again with no difference 

between penguins from Harris Bay and Oamaru [Tukey HSD: P=0.61]. The δ15N 

signatures between Harris Bay and Flea Bay [Tukey HSD: P=0.0080] show a 

significant difference between the two white-flippered colonies. 

Table 3.1 Mean, standard deviation [SD] and the range of δ13C and δ15N for feathers of 

little penguins sampled at all wild colonies. All West Coast data was combined in this 

table for the comparison between colonies.  

Colony location δ 13C [‰] 

Mean ± SD 

Range [‰] δ 15N [‰] 

Mean ± SD 

Range [‰] 

Harris Bay n=10 ‒20.12 ± 0.25 ‒20.43 to ‒19.72 15.93 ± 0.43 14.93 to 16.43 

Flea Bay n=48 ‒19.41 ± 0.33 ‒19.90 to ‒18.49 15.58 ± 0.44 14.31 to 16.32 

West Coast n=26 ‒18.49 ± 0.70 ‒19.59 to ‒16.80  14.72 ± 0.66 13.36 to 15.80 

Oamaru n=12 ‒19.99 ± 0.26 ‒20.40 to ‒19.65 16.15 ± 0.47 15.35 to 17.03 

 

Comparison of samples collected from the birds in the accidental death series with that 

of the burrow-collected moult feathers [Table 3.2], showed the two groups were quite 

different. Statistically significant differences were found between the accidental death 

series and the burrow collected feathers in both δ13C [t=3.18, df=25, P=0.0039] and 

δ15N [t=2.44, df=25, P=0.017].  
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Table 3.2 Mean, standard deviation [SD] and the range of δ13C and δ15N for feathers of 

little penguins sampled on the West Coast. Data from the West Coast colonies is 

divided into burrow collected feathers and accidental death feathers for analysis within 

West Coast area as shown below. Accidental refers to samples collected from road kill 

birds year round [2009 to early 2012, though some of the samples did not have a 

collection date noted] while the burrow feathers were collected from nest boxes at the 

end of the moulting season [2012-2013]. 

West Coast δ 13C [‰] 

Mean ± SD 

Range [‰] δ 15N [‰] 

Mean ± SD 

Range [‰] 

Accidental n=13 ‒18.12 ± 0.71 ‒19.39 to ‒16.80 15.03 ± 0.65 13.49 to 15.80 

Burrow n=14 ‒18.84 ± 0.48 ‒19.59 to ‒18.02 14.43 ± 0.55 13.36 to 14.42 

 

3.4.2 Isotopic compositions of captive vs wild birds 

The captive white-flippered penguins were significantly different for both δ13C 

[t=13.96, df=54, P<0.001] and δ15N [t=7.65, df=55, p<0.001] from the white-flippered 

morph penguins at Flea Bay, and in the δ13C [t=19.75, df=23, P<0.001] and δ15N 

[t=4.44, df=22, P<0.001] from the white-flippered penguins at Harris Bay. Thus, the 

isotopic signatures of the wild birds showed no similarities with those of the captive 

birds that originated from the same geographic area but were fed on a diet of European 

origin [Figure 3.3A]. A similar result was found when comparing the captive birds 

sourced from the West Coast with their wild counterparts; there was a significant 

difference between the two groups for δ15N [t=‒13.55, df=18, P<0.001] but not for δ13C 

[t=‒0.17, df=33, P=0.86; see Figure 3.3B].  

 

3.4.3 Relationship between isotopic signatures of little penguins and their potential 

prey  

When the isotopic compositions of birds from the east coast colonies were compared to 

those of the Kaikoura fish samples, the mean difference between possible diet and 

feathers was 5.04 ‰ for nitrogen and 1.34 ‰ for carbon [Table 3.2; Figure 3.4]. In 

contrast, these do not match the mean of the captive colony enrichment factors of diet 

to feathers. Overall, the captive colony, as shown in Chapter 2, had a mean of 

difference between diet and feather of 3.57 ‰ ± 0.13 in nitrogen and 2.5 ‰ ± 0.20 for 
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the carbon [only using first two diet lots as the last two lots only had n=3 and n=1 

feather samples].The West Coast contrasts between Kaikoura prey signatures to 

feathers are 3.88 ‰ for nitrogen and 3.00 ‰ for carbon. The plankton to fish nitrogen 

is 1.42 ‰ and carbon 0.83 ‰, showing the expected enrichment of trophic level and 

similarity of location. 

A linear regression is shown for the δ13C and δ15N isotopic signatures for possible prey 

from the Kaikoura area more closely intersects for the isotopic signatures for penguins 

on the east coast than the West Coast colonies [Figure 3.4], suggesting that despite the 

prey not being sampled in the immediate area of the east coast penguin colonies, the 

possible diet and trophic level are likely to be similar to that found in Kaikoura. The 

data of the plankton and fish [Table 3.3] that have been sampled could be considered to 

represent a much generalized overview of the isotopic signatures of the east coast of the 

South Island, but not specific enough to represent the areas in which the sampled east 

coast colonies would have been carrying out foraging activities [shown in Figure 3.4]. 

 

Table 3.3 Mean, standard deviation [SD] and the range of δ13C and δ15N for 

plankton/fish data. Plankton and fish were collected in January and February of 2015, 

and from two to seven km off the coast of Kaikoura [north of Banks Peninsula on the 

east coast of the South Island of New Zealand] (Bennet pers. comm.). 

east coast δ 13C [‰] 

Mean ± SD 

Range [‰] δ 15N [‰] 

Mean ± SD 

Range [‰] 

Plankton n=262 ‒22.01 ± 1.78 ‒26.04 to ‒13.56 9.42 ± 1.56 3.74 to 15.56 

Fish n=77 ‒21.18 ± 1.04 ‒24.97 to ‒20.40 10.84 ± 1.57 8.25 to 14.01 
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Figure 3.2  

Isotopic feather signatures from all little penguins used in this study, including 

wild birds from both the West Coast and three colonies on the east coast of the 

South Island, as well as captive birds. Note that birds from Banks Peninsula are 

comprised of the “white-flippered” morph. IAC = International Antarctic Centre. 

The east coast signatures group together but differ to both the feather signatures 

from West Coast birds and captive birds. Note the feathers from a bird introduced 

into the captive colony from Dunedin as a newly-fledged adult are indicative of 

Otago coastline signatures. This bird’s next moult was not in line with the rest of 

the captive colony until undergoing her third moult [Appendix 4]. Another new 

bird to the captive colony, found on New Brighton beach, underwent a moult in 

recovery and diet was unknown, on his next moult he was in line with the rest of 

the captive birds. Figures also show, using error bars, mean ± SD. 
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B: Comparison of δ13C and 

δ15N ratios between penguins 

sampled on the West Coast and 

captive penguins originating 

from the coast. Wild samples 

were collected from either 

burrows or directly sampled 

from road-killed birds 

[Accidental Death]. There is a 

significant difference between 

the wild and captive birds and 

then between the accidental 

death feathers and the burrow 

collected moult feathers. 

Figures also show, using error 

bars, mean ± SD. 

Figure 3.3:  

A: Comparison of δ13C and 

δ15N ratios between two 

colonies of “white-flippered” 

penguin on Banks Peninsula. 

Ratios of feathers moulted from 

captive individuals originating 

from the Flea Bay [Captive WF 

moults] colony are also plotted 

to show the significant 

difference of the captive birds 

on a European fish based diet. 

Figures also show, using error 

bars, mean ± SD. 
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Figure 3.4 

Isotopic signatures for east coast plankton and fish samples collected in 2014 in 

comparison to isotopic signatures from wild penguins. This shows the linear 

relationship between nitrogen enrichment levels as trophic level increases for the 

colonies located on the east coast.  However, as the prey data was collected further 

north of the wild colonies, this is only a general relationship reflecting a possible 

indication of east coast prey signatures rather than specific to the foraging area of 

the sampled wild colonies. West Coast feather signatures are put in for comparison 

but note those samples were collected from 2009 to 2013. Figures also show, using 

error bars, mean ± SD. 
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3.5 Discussion 

In comparing the isotopic results of each wild colony, I found that, with the exception 

of the Oamaru and Harris Bay colonies being quite similar, the West Coast was 

different from all other colonies, as was Flea Bay. My original hypothesis was that the 

Flea Bay and Harris Bay colonies would have been quite similar due to their relative 

close geographic positioning and that the two locations are both predominantly 

composed of white-flippered penguin morph. However, this was not the case, 

suggesting that the geographic location of the colony had a bigger bearing on the 

isotopic signature [and thus diet and trophic level] than any potential taxonomic 

ranking. I also found that captive penguins, fed on a diet sourced largely from Europe, 

had a different isotopic signature than any of the wild populations sampled, supporting 

my conclusion that the differences among wild populations were likely due to 

differences in their diet.  

Little penguins are known to feed on a variety of prey species, and across their range 

they are considered to be generalist feeders (Flemming et al. 2013). Each colony 

appears to exploit geographically separated foraging areas, such as has been found in 

other studies, for example, the Balearic shearwater [Puffinus mauretanicus] (Louzao et 

al. 2011), and from a variable range of prey species showing flexibility in foraging 

habits (Weavers 1991; Chiaradia et al. 2016). The similarities in isotopic signatures I 

found between the Oamaru and Harris Bay colonies could therefore be predominantly 

attributed to remarkably similar prey species types or different prey species operating at 

a parallel trophic level in terms of δ15N.  

It is remarkable that the δ13C signatures were also quite similar between the Oamaru 

and Harris Bay colonies, especially since Flea Bay is located between Oamaru and 

Harris Bay and the values from there were quite different from those at Oamaru and 

Harris Bay. What is different about how penguins in these two colonies of white-

flippered birds forage? It would be interesting to see if the Oamaru and Harris Bay 

colonies remain isotopically similar over several different moult seasons, and whether 

the Flea Bay and Harris Bay colonies shift to become more similar than observed in 

this study. The differences between these two fairly closely located colonies show the 

need for more information on isotopic variation based on each locale, including 

isotopic studies on their prey base. More research is needed before generalizations can 
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be made about diet in one area versus another, and further collection of feather samples 

from different colonies of the white flippered morph located around Banks Peninsula 

would be ideal for future research. 

My conclusion that the white-flippered morph penguins do not display an isotopic 

signature that distinguishes them from birds in other little penguin colonies [i.e., those 

without white flippers] supports the removal of the subspecific status for birds with that 

pattern of plumage. My results instead suggest that any variation in the isotopic 

signatures of white-flippered morph penguins results is more likely to be based solely 

on location/diet of the colony and not on any underlying taxonomically-based 

difference in how they produce feathers, confirming, in this instance at least, that these 

birds are not different from other little penguins. This result supports the genetic 

evidence that the white-flippered morph penguin is not separable from other little 

penguins (Banks et al. 2008; Peucker et al. 2009), or at the very least, that differences 

in diet and trophic level cannot be used as features that distinguish this morph from 

other little penguins. 

The signatures of West Coast penguins differed between the accidental death series and 

the burrow-collected samples. I do not have an explanation for this difference, but it 

may be due to the time span over which the accidental death series feathers were 

collected, ranging from 2009 to early 2012, while the burrow-collected samples were 

only sampled during the moult season spanning late 2012 to early 2013. Annual 

differences in prey available could affect the isotopic signatures of feathers [even on 

the same individual] but this was a factor I was unable to study. The difference could 

also be due to differences in degrees of feather degradation between the two groups. 

Because the feathers were collected from burrows and nest boxes and were in storage 

for a year before sample processing took place, there may have been some change in 

the isotopic signatures of the feathers. The accidental death series birds, once collected, 

were placed in the freezer for some time and then feathers sampled several years later 

in some cases. Furthermore, the feathers collected from accidentally killed birds were 

‘in use’ until the moment of death and not subject to outside forces of decomposition 

(Sugiura & Masuya 2015). 

Ideally, it would have been valuable to have directly compared the isotopic signatures 

of potential prey items in each of the areas being used by each colony for foraging with 
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that of the feathers of birds from that colony. Apart from the fact that the exact foraging 

areas are not known for each of the different colonies [except in a general sense of 

being nearby], it was not logistically possible to sample prey items of wild penguins in 

the timeframe of my study. However, I was able to undertake one comparison using a 

series of plankton and fish isotopic data that was collected and analysed in conjunction 

with my project. Although the prey samples were collected slightly north of the area 

that penguins in the east coast colonies in my study likely foraged, the data nonetheless 

does provide a generalized picture of the isotopic relationships of the area. 

The plankton and fish results followed the expected linear relationship, showing an 

increase in trophic levels, and this was consistent with the wild east coast colonies, 

suggesting that fit was actually quite good, especially when considering the poorer fit 

of West Coast colonies and the captive flock. A small population of little penguins does 

breed in the Kaikoura area, and it would be useful to sample the feathers for a more 

direct comparison with the prey isotope data. My expectation is that the Kaikoura 

penguins would probably show quite similar isotopic signatures to that of other east 

coast colonies [especially Flea Bay]. 

In comparing captive birds [from Chapter 2] to the wild penguin colonies, the wild 

feathers show isotopic signatures that could only be gained from their prey species and 

foraging location in the wild. The captive birds have little variation that could be 

attributed to their geographic origin and instead reflected only the increased trophic 

level and location of a European fish-based diet. This is further demonstrated by the 

first two moults in captivity by a female juvenile little penguin from Otago. She 

exhibited an isotopic signature similar to the West Coast compositions despite her 

eventual shift to fall within the isotopic range of the rest of the captive colony [see 

Appendix 4]. Similarly, an adult captive male originating from Canterbury [and thus 

with a signature that reflects an unknown diet] underwent a moult with the vet while 

recovering from surgery, before he came to the IAC, but then his isotopic signature 

later shifted to be within line with the rest of the captive colony. Thus, the isotopic 

signatures of the wild colonies appear to reflect only the diet consumed in the foraging 

range and not on underlying physiological differences. The isotopic signatures of 

captive animals generally reflect the diets consumed (Kurle 2002; Cherel et al. 2005b; 

Germain et al. 2012) and as the isotopic compositions of the captive penguin feathers 
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are different from that of the wild birds, then it must hold that the diet fed to the captive 

birds is different from the wild consumed diet. 

The trophic level of penguins in the wild colonies sampled in this study were all higher 

than found in an Australian study, with their δ15N signature at 13‰, though they 

appeared to use muscle tissue as their sample type, and gained their samples 

opportunistically from birds that had died of natural causes or after an oil spill 

(Davenport et al. 2002). Thus is it possible that differences in the sample type [muscle 

vs. feather] and season could be a contrasting factor to the range found in this study. Of 

course, the trophic level of the birds sampled could also have shifted in subsequent 

seasons. Chiaradia et al. (2016) found significant differences in blood δ13C and δ15N of 

little penguins among the different stages of breeding and between years. However, 

Kelly (2000) points out that feathers, when compared to other tissues, tended to be 

among the more enriched. Variation between sampled tissues and colonies over several 

different seasons need to be identified at the start of a temporal isotopic baseline, and 

ideally, for different areas. 

I was unable to account for variation in isotopic signatures that could be due to seasonal 

or annual changes, or to age of the birds. For example, there could be seasonal shifts in 

the physiology and metabolism of the birds, which would in turn affect their isotopic 

signatures. Conversely, the results reported in Chapter 2 of this thesis might suggest 

that physiology is not a primary control on the isotopic composition of little penguin 

feathers. Nevertheless, because penguins moult and re-grow their feathers in a much 

shorter time period than most other seabird species, and do it at a fairly consistent time 

of year, this seems unlikely unless age becomes a factor. As the life span of little 

penguins in the wild is only six to seven years (Reilly & Cullen 1979), but up to 24 

years of age in captivity (personal observation), this could be an interesting avenue of 

further study. 

Finally, further research is needed on the methodology of using feathers in stable 

isotope ecology (Bortolotti 2010). How long should a feather be left in the burrow 

before collection if not directly sampled from the bird? Does the isotopic signature of 

the feather alter as it grows older [before collection or in storage] or decays? A variety 

of insects, bacteria, and fungi feed on and degrade feathers (Sugiura & Masuya 2015) 

and information is needed to find at what point does this process starts to undermine the 
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original isotopic signature of the feather. Colour of the feather might also contribute to 

variation in isotopic ratios presented (Michalik et al. 2010). More information on the 

building blocks of feather growth is also needed, such as knowledge of what nutrient 

pools the feathers are formed from and how long those various molecules are present in 

the penguin before “use”. 

In conclusion, my study has confined that the isotopic signatures of little penguins 

differ geographically and that this likely reflects broad scale differences in diet and/or 

trophic level. However, further work is needed to detail exactly how diets might differ 

at a species specific level, especially when prey species can occupy similar trophic 

levels in different geographic areas. Although significant differences in isotopic 

composition were found between some of the colonies, the exceptions [i.e., the 

similarity of some geographically separate colonies], are intriguing and require further 

study. I hope that feather collection will continue, and further, to confirm if the 

variation found in this study in the isotopic compositions between colonies, and 

whether these signatures change in the future as we continue to alter and disrupt the 

marine environment. 
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Chapter 4 Conclusions 

4.1 Revision of findings 

This study compared little penguins [Eudyptula minor] in two different types of 

environments, that of the rehabilitated captive bird and that of the wild penguin. I used 

stable isotope analysis [SIA] of δ13C and δ15N to investigate the isotopic compositions 

of little penguin feathers in relation to their diet in a captive colony and then made 

further comparisons with, and between, four wild colonies.  

The thrust of my argument has been that the stable isotopic composition of fish from a 

known diet would directly affect the isotopic composition of little penguin feathers, as 

supplied by moult feathers. These enrichment factors, once determined from the 

feathers of captive little penguins, could then be used to compare their conspecifics 

from wild colonies. I also investigated the extent to which geographic variation [i.e., 

colony of origin] had an effect on the possible physiological formation of the feathers, 

based on location in which various birds originated from, including whether this 

aligned with possible subspecific limits, such as the white-flippered penguin. Penguins 

with the characteristics of the white-flippered morph are found only on the east coast of 

the South Island and they have obvious morphological differences from the rest of the 

little penguin populations found throughout New Zealand and Australia, although are 

not currently considered as a subspecies (Checklist Committee 2010). I wanted to 

ascertain if there were any significant isotopic variance in the feathers of this once 

subspecies when fed on the same diet as the rest of the captive colony. 

The final goal of this study was to compare feather isotope ratios from four 

geographically separated little penguin colonies, between the colonies themselves and 

then to the isotopic signatures of the wild birds to the captive birds. The feathers 

collected from the wild colonies also yielded useful information to contribute to the 

general available knowledge base for this species and for contribution to future stable 

isotope mapping of the oceans surrounding New Zealand. These objectives have been 

fulfilled. This study is, to the best of my knowledge, the first long term study of stable 

isotopes undertaken on little penguin feathers in a captive environment. 

The first objective was to measure the enrichment factors using the isotopic signatures 

of captive little penguins fed on a known diet, but one that was different from that eaten 



  71 

 

by wild birds. The results confirmed the link between diet and differences in isotopic 

signatures. The enrichment factors I found in the captive little penguin colony will also 

assist in creating the bigger picture isotopically when research is undertaken on wild 

little penguin colonies. Stable isotope compositions of feathers [and other tissues] have 

revealed the generalised feeding behaviour of animals (Mizutani et al. 1990), and 

controlled studies (Cherel et al. 2005b; Polito et al. 2009; Polito et al. 2011b) in which 

enrichment factors were found and have then been used to reconstruct dietary inputs 

(Polito et al. 2011a). Coupled with other dietary studies of the little penguin (Flemming 

et al. 2013), long term feather collection could help indicate shifts in diet and trophic 

level now that the species-specific enrichment factors of δ13C and δ15N are known for 

the little penguin. 

The second main finding of this study was, when controlled for diet, that the captive 

birds showed no variation in isotopic signatures based on gender or the area of their 

origin in the wild. Because the captive colony contained birds that had originated from 

the North Island, the West Coast of the South Island, and several white-flippered 

individuals from Banks Peninsula, there was a variety of birds which may or may not 

have reacted in similar ways to the same diet; namely, possible differences in the 

isotopic fractionation in their metabolization of diet and subsequent feather growth. The 

same principle also applies to potential differences between genders when controlled 

for gender-specific foraging behaviours. 

Subspecific status for the white-flippered penguin has been contested by genetic studies 

carried out on various populations of the little penguin. Subspecific categorisation has 

been an issue since Kinsky and Falla (1976) proposed six groups to categorise the 

various populations of the little penguin. Studies by Banks and colleagues (Banks et al. 

2002; Banks et al. 2008) found that there were genetic differences between little 

penguins found in Australia and the Otago area of the South Island, and the rest of the 

little penguin population of New Zealand, a result later confirmed by Grosser et al. 

(2016). The lack of isotopic variation in the feathers between white-flippered and other 

little penguins that I found in this study is an important result because this suggestion 

confirms that the use of stable isotopes as proxies for diet research of the little penguin 

will not be influenced by varying metabolic responses to diet and feather formation 

such as that may be expected between different subspecies. Nevertheless, the genetic 
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differences suggest that further research on how the Otago/Australian birds respond to a 

controlled diet shared by other New Zealand little penguins would be worth 

investigating. 

Because little penguins have been shown to change their foraging behaviours 

depending on time of year (McCutcheon et al. 2011; Chiaradia et al. 2016), and 

certainty of sexing birds in the field is somewhat limited (Renner & Davis 1999), my 

finding that captive male and female penguins do produce feathers of similar isotopic 

compositions while being fed an identical diet contributes to the wider understanding of 

gender specific foraging behaviour. Nevertheless, more research is needed as there was 

possible variation between the sexes, shown by the P-value approaching significance. 

I then built on the findings about captive penguins, the diet and feathers in this study, 

and compared the isotopic compositions of feathers collected from wild little penguins. 

Again the results provided confirmation that the isotopic signatures appeared to be 

influenced, or possibly even driven by diet. There were striking significant similarities 

between a colony of the white-flippered morph, at Harris Bay on Banks Peninsula, and 

those at Oamaru, which is mostly composed of little penguins (Hocken 1997). The 

interesting thing is that these two colonies are 220 km apart and lie on opposite sides of 

Flea Bay [also located on Banks Peninsula], another colony dominated by the white-

flippered morph, which did not show the same similarities in isotopic composition of 

feathers. This contributes to the conclusion that the Oamaru penguins and Harris Bay 

penguins were foraging on similar isotopic types of prey that occupied comparable 

trophic levels because both the δ13C and δ15N compositions were significantly similar. 

Furthermore, Flea Bay feathers were found to accord with isotopic prey data from 

Kaikoura, 150 km north along the east coast, on the other side of Harris Bay. 

This finding further confirms the lack of a physiological difference in feather 

production of the white-flippered morph from that found in other little penguins, and 

instead suggests that the isotopic compositions of feathers are more influenced by 

geographic location and trophic level of diet. Confirmation of this variation is shown by 

the distinctive isotopic signatures of feathers from Flea Bay penguins and the West 

Coast colonies, indicating that the birds in each area that are occupying slightly 

different trophic levels or at least feeding on different types of prey in their different 

foraging areas. 
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4.2 Limitations of the study 

Feathers, if they are the only sampling medium, possess potential characteristics that 

might affect the isotopic data. Research has shown that different colours within a 

feather can provide differing results (Michalik et al. 2010), but that also raises the issue 

of the time taken for feather growth (Bortolotti 2010) because different portions of the 

feather can present different signatures when an individual feeds on different food 

items over the course of growing its feathers. 

Taking feather samples from penguins, which undergo a concentrated moult, would 

hopefully mitigate some of the doubts about how changes in diet affect the signatures 

of feathers as they develop. This is because penguins fast during their annual moult, 

when most other bird species do not, and thus one would not expect the δ15N 

composition to be altered which would present a skewed trophic level derived from 

different prey being eaten during different periods of feather growth. There are, 

however, still limitations because feathers only represent one portion of the foraging 

activity of the penguin over the course of a year, and other tissues may need to be 

analysed to assess changes in diet, or trophic level, at those times of the year when 

feather growth is not occurring. In contrast, the annual pattern of moult does provide a 

consistent annual “snapshot” of diet and trophic level using SIA and thus a long-term 

collection and analysis of feathers may be able to provide evidence of possible dramatic 

changes [decade to decade] in the marine environment as compared to one or two 

seasons of variation.  

Other variables which could also have affected the results of this study include the lack 

of salt water exposure to feathers from birds in the captive population. The feathers of 

little penguins in the wild would, of course, be exposed daily to salt water. The captive 

penguins, at least in the period after they entered the population, had their feathers 

exposed only to the fresh water provided in the pool in their enclosure. Would 

differences in exposure of this type, as well as other environmental factors, [preen oil or 

anything not removed by the sample cleaning process], explain the variation I found 

between captive and wild penguins? In the first instance it seems unlikely, because the 

feathers in the two groups did not appear physically different, but it would be worth 

investigating experimentally by, for example, immersing feathers from the captive 

penguins in salt water for a period and then comparing their isotopic signatures with 



  74 

 

that from control [wild penguin] feathers. Further consideration should also be given 

how feathers are stored and the state they were collected in, and whether decomposition 

becomes an influencing factor. 

The use of the captive population to gain an enrichment factor was useful in that it 

provides a baseline for future comparisons. Nevertheless, this enrichment factor reflects 

only one prey species [when considering the first two diet/fish lots]. Would the 

enrichment factor change in response to a more varied but still consistent diet? Data on 

blood samples would show those variations in isotopic response, such as may have 

happened when the captive birds were subjected to supplemental fish trials [the last two 

diet/fish lots sampled], but the diversity of the supplemental fish consumed may not 

have been consistent enough to show a marked change in feather composition overall. 

 

4.3 Future research 

The information gained from SIA can be useful to infer general details about the diet of 

the animal sampled. Ideally, when combined with other sampling methods, it offers a 

well-rounded picture of the various mechanisms and conditions under study. It would 

be ideal to gather blood samples from the captive little penguins used in this study at 

regular intervals throughout the course of a year to discover and map fluctuations on a 

known diet [with variation of prey species]. Furthermore, a more detailed study using 

SIA of blood could be used to ascertain if seasonal factors influence the isotopic 

results, as well as providing a comparison of isotopic responses between the different 

ages of the birds. The ideal would be to undertake sampling of eggshell and the 

contents of eggs produced by the captive birds while on the known diet to be able to 

compare between diet, feathers produced on diet, and eggs formed. If long-term 

sampling of the diet were undertaken, eventual sampling of beak and claw samples 

could also be linked to various food sources, in addition to providing an investigation 

of beak and claw growth rates of these birds in captivity. 

Other prospects for study within the captive colony also include the introduction of 

juvenile birds [“grown” on a wild diet] into the captive population to find out at what 

point they no longer use internal nutrient resources gained from their parents, and 

instead begin to show the signatures of the captive diet. Another avenue is the 
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observation of some partial moults on a couple of the birds in the captive colony, of the 

head and neck area only, to see if such a phenomenon is a symptom of a non-varied 

diet, or whether it has been observed in the wild. 

The methodology of SIA of feathers in ecology also requires further research, both in 

the criteria in the collection and suitability of feathers after a certain point of 

decomposition, and also in the duration or age of feathers in long term storage. Salt 

water exposure and other environmental factors [e.g., preen oil], as well as colour, are 

also avenues for further investigation as to how those factors might influence isotopic 

measurements. 

The collection and analysis of feathers from wild little penguin colonies along various 

portions of the coast of the South Island would be worth continuing. In addition to the 

role such a collection would play in the creation of a long-term feather bank, such as 

was used by Hilton et al. (2006) and by Farmer and Leonard (2011), it would also be 

interesting to see if the Harris Bay and Oamaru little penguin populations continue to 

remain similar, or if the Flea Bay penguin populations and those at Harris Bay would 

ever align, and then if this alignment corresponds to overlap in their foraging areas. 

That would also require high precision [GPS] tracking of the birds at sea. 

 

4.4 Concluding statements 

Because of their relatively long life span, seabirds are ideal subjects for studies of 

possible environmental changes over large spatial and temporal scales (Diamond & 

Devlin 2003). Little penguins in particular appear to be a useful monitoring species 

because they would reflect different geographical areas and as a consequence different 

responses to their geography, and therefore a range of comparisons could be drawn 

between many different colonies. The use of stable isotopes would be an ideal research 

methodology to add to monitoring systems already in place, especially with regard to 

long term tracking of prey availability, trophic level variation, and species plasticity.  

This study has ascertained the enrichment factor of diet to feather formation in captive 

little penguins and found that there is no variation between genders or between sub-

populations based on origin that might be caused by physiological differences. This 



  76 

 

knowledge contributes to our overall understanding of this species and its possible 

range of responses when exposed to various environmental pressures. The surprising 

similarity in isotopic composition of feathers from two geographically relatively distant 

colonies [Oamaru and Harris Bay], with a third [Flea Bay], between these sites, 

showing different values, and then aligning with prey species some distance away 

[further up the east coast at Kaikoura], was intriguing. This “bunny-hopping” of 

isotopic similarities along the east coast highlights the need for further investigation of 

differences in the behaviour and ecology of little penguins throughout their range, a 

project that would be supported by continued feather sampling. Results such as these 

provide ammunition for an argument for the need for long term feather collection to 

further investigate patterns and foraging behaviours of this unique bird. 

Feather isotopic chemistry shows a general indication of area of diet origin and trophic 

level. Because it is only a general indication, long-term collection is needed to 

demonstrate any large shifts or changes over time. Given the relative ease of collecting 

and analysing feathers, the use of feathers would be an optimal use of resources and 

could act as a supplement to other methods, or tissues, sampled when studied colonies 

are undergoing annual checks. With the marine environment likely to change 

significantly over the next century, the use of SIA may provide a valuable tool to track 

how these changes affect little penguins, so that potential causes of any future decline 

[or increase] in their populations can be identified. 
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Appendix 1 

Nutritional supplements 

(PMI Nutritional International 2016) 

 

(United Fisheries 2016) 
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Appendix 2 

Diet/Fish lot labels 

Sprat Lot 1 

10 kg boxes 

Block frozen sprats 

Batch:601050465G 

Size: 60-65 pieces/kg 

Pack date: 17-12-2011 

Best before: 17-12-2013 

Caught in the Northeast Atlantic, FA027 

EU approval number: UK CQ 019 EC 

 

Sprat Lot 2 

20 kg boxes 

Product: Whole round frozen sprat [Sprattus 

sprattus] 

Temp: -20 degr C. 

EU Approval no: D-MV-EFS 008 

Season of catch: January 2013 

Area of catch: FA027 

Use by date: Jan 2014 

Storage -18° 

P&P PO BOX 504 

2220Am Katwijk Holland 

DED-MV 

EFS-008 

 

 

 

 

 

 

Sprat Lot 3 

20 kg boxes 

Product: Whole round frozen sprat [Sprattus 

sprattus] 

Temp: -20 degr C. 

EU Approval no: MV25003 

Season of catch: September 2013 

Area of catch: FA027 

Use by date: Sept 2014 

P&P PO BOX 504 

2220Am Katwijk Holland 

DED-MV 

EFS-008 

 

Supplemental fish trialled along with Sprat Lot 3: 

Salmon 2 kg boxes 

Oncorhynchus tshawytscha 

Smolt 0-30g 

Product of NZ 

Lot #: 1211 34 5485 

Packed by: The New Zealand King Salmon Co. 

Limited 

10-18 Bullen St. Nelson 7011 

Packed on 20-Nov-12 13:39    -18° 

The mackerel were supplied by Independent 

Fisheries in Christchurch. The pilchards and 

anchovies did not come with labels. After 

enquiring with United Fisheries, the anchovies 

were found to be wild caught (off the coast of 

California) lot #64877, however no paperwork 

was supplied. 
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Sprat Lot 4 

10 Kg boxes 

Product: Whole round frozen sprat [Sprattus sprattus] 

Temp: -20 degr C. 

EU Approval no: UK CQ019 EC 

Season of catch: September 2013 [24th] 

Area of catch: FA027 [Northeast Atlantic] 

Use by date: Sept. 14 

Produced in the UK by: 

Falfish Ltd. Cardrew 

Industrial Estate, Redruth 

Cornwall, TRI51SS, UK 
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Appendix 3 

Photos relevant to study  

A little penguin feather collected during the course of this study showing the parts of the feather used in 

SIA. 

Afterfeather 

Not used 

Rachis 

Not used 

Pennaceous or vane 

part of feather 

Used in this study 
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Feeding time at the International Antarctic Centre. First part of the feeding was fish being thrown into the pool, then the second portion on the 

beach for birds unable to swim and eat at the same time due to their injuries.  
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Appendix 4 

Wild birds integrated into the captive colony 

When a new male, found on a beach in Canterbury, was brought to the IAC, his first set of 

moulted feathers, grown while in recovery from an injury sustained in the wild, replaced with 

feathers from a pre-moult diet supplied at the Antarctic Centre, show the isotopic signature of his 

recovery diet. His recovery diet is largely unknown though he was fed some anchovy during his 

recovery, spanning approximately six months; it is not known if this was during the pre-moult 

weight gain period. The next moult for this bird was well within the captive colony range fed on 

the diet provided. 

Another arrival in December of 2012, a juvenile female, was recovered from Dunedin with a 

paralyzed left flipper; the vet contracted to the IAC determined that she had hatched with a birth 

defect in the nerves that control the left flipper. This bird was fed, from Otago waters, by her 

parents until fledged and she would have only been out in the water on her own for a couple of 

days since she had not yet starved. Her results, towards the bottom of Figure 3.2 can thus be 

cautiously considered representative of the prey consumed by her parents around Dunedin. 

Unlike the Cantabrian male, this Otago female’s second moult, feathers produced while 

consuming the captive diet, was not close to captive feather signatures of the rest, and it was only 

her third moult in captivity that her feathers fell within the average range with the rest of the 

captive colony. Unfortunately, these results are only comprised of one bird from so cannot be 

considered fully indicative of those coastal isotopic signatures for the Otago female, without 

further research into those areas.  

The delay of the juvenile bird in coming into line with the rest of the captive colony, but the 

adult male not evidencing the same delay, was intriguing and would benefit from further study. 
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