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Abstract
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1 Introduction

Motivation. Unobserved heterogeneity across cross sectional units is ubiquitous in situations

of strategic interaction. The decisions of airlines to enter a given local market, for instance, may

be dramatically influenced by unobservable factors not captured by observables like market size

or average income. Similarly, there may be profound differences in the work and retirement

decisions of married couples that are not sufficiently explained by observed variables like age,

number of children, or religious background. Yet, understanding the extent of these differences

across many local markets or many couples is crucially important for making effective policy

decisions.

In this paper, we adopt a random coefficients approach to model such heterogeneity of play-

ers across different cross sectional units, e.g. local markets or couples. We consider the most

basic model of strategic interaction in a binary response, two player one-shot complete (perfect)

information game. To this end, we study a binary response linear index dummy endogenous

variable simultaneous equation model. This model has been extensively analyzed with non-

random coefficients and a scalar unobservable, see Amemiya (1974), Heckman (1978), Bjorn

and Vuong (1985), Bresnahan and Reiss (1990, 1991), Berry (1992), and Tamer (2003). More

recently, this line of work has been extended by Kline (2015) to allow for a scalar heteroge-

neous random parameter on the interaction term. Fox and Lazzati (2015) consider a complete

information game with multiple players and study its relation to the demand of bundles, while

allowing for unobservable heterogeneity as in Kline (2015). In contrast to all these references,

we focus on the two player game with possibly high dimensional unobservable heterogeneity.

To formalize our approach, under suitable assumptions on the solution of the game our

structural model maps into the following reduced form system of equations:

Y1 = 1{(B1 + ∆1Y2)X1 − Z1 < 0} (1.1)

Y2 = 1{(B2 + ∆2Y1)X2 − Z2 < 0}.

Here Yj denotes a binary action that player j may take. In the above retirement example,

Y1 = 1 denotes the decision of spouse 1 to retire. In the market entry example, Y2 = 0 denotes

the decision of firm 2 not to enter the market. We assume that this decision, for each player

j = 1, 2, is determined by whether the latent utility Y ∗j = Zj − (Bj + ∆jY−j)Xj is above or

below a threshold normalized to be zero; if the utility is above the zero threshold, (equivalently,

if (Bj + ∆jY−j)Xj − Zj < 0), player j chooses Yj = 1. This utility is partially determined by

observables, specifically, the covariates X̃j = (Xj, Zj), where Xj includes a constant and Zj is

a scalar1, as well as the action of the other player, Y−j. However, it is also partially determined

1We distinguish notationally between a single covariate Zj , whose coefficient we normalize to be unity almost
surely, and the remaining vector of covariates Xj . As is implicit in the binary nature of the actions, because
of the indicator function there is a choice of normalization. Throughout this paper, we assume that the sign
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by the unobservables Bj and ∆j, which determine how observable covariates, as well as the

action of the other player influence the latent utility.

The key innovation in this paper is allowing all the variables, including the unobserved pa-

rameters, to vary across the population, thus adopting a perspective of extensive heterogeneity.

We then provide a framework in which we establish point identification of the nonparametric

distribution of the random parameters. Our main identifying assumption is that all the ob-

servable covariates (X,Z) = (X1, X2, Z1, Z2) are independent of the unobserved random vector

(B,∆) = (B1, B2,∆1,∆2), conditional on additional covariates W . We think of the system

(1.1) as a system of simultaneous equations and note, as is well known in the literature, that

the properties of the model change fundamentally with the sign of the interaction effects, see,

e.g., Bresnahan and Reiss (1991), or Tamer (2003). Therefore, we focus largely on subcases.

In particular, we start out with the case where, in every market we use for identification, the

players behave as “strategic substitutes”, which is central to the literature on market entry.

In our setup, this means that there is always a negative externality from a player entering the

market on the net utility of the other player, but to a varying degree across markets. We also

cover the case of “strategic complements”, where the other player’s action positively affects the

player’s own utility, which is plausible, for example, in the joint work and retirement decision.

Our main result states that, in the case of strategic substitutes, the joint densities of B+ ∆

and B, respectively, are point identified. The intuition behind this result is as follows. One can

relate the joint characteristic function of B to the conditional entry probability of (Y1, Y2) =

(0, 0) and similarly that of B + ∆ to the conditional probability of (Y1, Y2) = (1, 1). The

exogenous variation of the covariates (Z,X) then allow us to trace out the joint characteristic

functions. To this end, the variation in the covariates has to be sufficiently large. Specifically,

we require that the covariates Z = (Z1, Z2) have joint full support. The support requirement on

other covariates X depends on assumptions we are willing to place on the density of interest. If

we assume that the characteristic function of the density is analytic, it suffices for X’s support

to contain a small open set. This requirement can be met in various applied examples, and

hence we view it as the main empirically relevant requirement. Alternatively, if we assume that

the density is entirely unrestricted, the covariates must have full support. While it highlights

the required variation in the covariates for achieving point identification without any restriction

on the density, this requirement is frequently unrealistic and also has limitations in terms of

consistency with other assumptions. Once the characteristic functions of B and B + ∆ are

recovered, we may identify the density of ∆ via deconvolution under the additional assumption

that B and ∆ are independent.

In either case, this result implies that the joint density of the interaction effects, f∆, is only

of one of the original random coefficients be the same for the entire population. This allows us to normalize
by this random coefficient and it is the corresponding variable which we denote by Zj . In an earlier version of
the paper (DHK (2014)), we show that the model is actually identified by (only) imposing a dual hemisphere
normalization condition, but the economic benefits of this greater generality are minor.
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set identified in general. However, under additional independence assumptions we obtain point

identification of f∆ and fB∆ as well. In the case of strategic complements, we show that the

joint characteristic function of (B1 + ∆1, B2) can be related to the conditional probability of

(Y1, Y2) = (1, 0) and similarly that of (B1, B2 + ∆2) is related to the conditional probability of

(Y1, Y2) = (0, 1). Therefore, these entry outcomes provide information that allows recovery of

the marginal distribution of the interaction effects under additional independence assumptions.

For example, ∆1’s distribution can be recovered from those of B1 + ∆1 and B1, however, the

joint density of interaction effects f∆ remains only partially identified in this scenario.

The identification principle put forward is constructive and can be employed to construct

nonparametric sample counterpart estimators, whose analysis we defer to the companion paper.

In addition to contributing to the abstract understanding of these models, we also augment our

approach to cover issues that are important in applications. In particular, as part of the main

result we consider the case where some of the covariates are market-specific and/or discrete, and

show that important features such as the mean and the marginal distributions of the random

coefficients can be point identified.

We further investigate the consequences of the presence of market-specific variables and

formally show that their presence generally prohibits us from identifying the joint distribution

of all coefficients. However, we also show that the joint densities of some subvectors of the

random coefficients are still identified, allowing recovery of economically meaningful objects

such as the distribution of the effect of a player-specific variable (e.g. market presence) through

strategic interactions. Using this result, we further provide partial identification results for

counterfactual objects that depend on the joint distribution of the coefficients.

Contributions relative to the Literature. Simultaneous discrete response models have

been studied extensively. Much of the literature has focused on identification and estimation

of structural parameters that are assumed to be fixed across markets. Ciliberto and Tamer

(2009), for example, estimate an entry model of airline markets assuming that the parameters

in the airlines’ profit functions are either fixed or depend only on observable characteristics of

the markets. A novel feature of our model is that the structural parameter may vary across

markets following a distribution which is only assumed to satisfy mild assumptions.

A key challenge for the econometric analysis of this class of models is the presence of a region

in which each value of payoff relevant variables may correspond to multiple outcomes. Tamer

(2003) calls such a region the region of incompleteness. Early work in the literature including

Amemiya (1974), Heckman (1978), and Bjorn and Vuong (1985) assume that a unique outcome

is selected with a fixed probability. More recently, Bresnahan and Reiss (1990, 1991) and Tamer

(2003) show that structural parameters can be identified without making such an assumption.

The former treats the multiple outcome as a single event and identifies the structural parameters

by analyzing the likelihood function. The latter treats the multiple outcome as is, but requires

the existence of special covariates that are continuously distributed with full support. See also
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Berry and Tamer (2006) for extensions.

As already mentioned, we nonparametrically identify the distribution of random coefficients

without making any assumption on the equilibrium selection mechanism, but utilize the as-

sumption that covariates are continuously distributed. Other recent work on identification in

complete information games (with fixed coefficients) includes Bajari, Hong, and Ryan (2010),

who establish identification of model primitives including an equilibrium selection mechanism

using exclusion restrictions, Beresteanu, Molchanov, and Molinari (2011) and Chesher and

Rosen (2012), who apply the theory of random sets to characterize the sharp identification

region of structural parameters, and Kline and Tamer (2012), who derive sharp bounds on

best response functions without parametric assumptions. Less closely related is the work on

identification, estimation and testing in games of incomplete information as in Aradillas-Lopez

(2010), de Paula and Tang (2012), and Lewbel and Tang (2012).

Our model is closely related to index models with random coefficients. In particular, it is

related to the work on the linear model in Beran, Hall and Feuerverger (1994) and Hoderlein,

Klemelä and Mammen (2010). It is also related to treatment effect models as in Gautier and

Hoderlein (2012), simultaneous equation models with continuous outcome as in Masten (2015),

and the triangular model in Hoderlein, Holzmann and Meister (2015, HHM henceforth). Since

we are considering binary dependent variables, our approach is also related to the nonpara-

metric approach of Ichimura and Thompson (1998) as well as Gautier and Kitamura (2013).

Related are also the models of Berry and Haile (2009), and Fox, Ryan, Bajari, and Kim (2012).

However, nonparametric identification of the distribution of random coefficients in a simulta-

neous system of binary choice models has not been considered in any of these references. This

paper therefore also contributes to the literature of nonparametric identification in simultane-

ous equation models as in Matzkin (2008), Berry and Haile (2011), Matzkin (2012), and Masten

(2015).

2 The General Structural Model: Setup and Identifica-

tion

In this section we introduce the basic building blocks of our model, and discuss identification

of the parameter of interest. We start by providing formal notation, and clarify and discuss the

assumptions. In the second subsection, we establish our main identification results and provide

extensive discussions.

2.1 Setup and Assumptions

We consider a simultaneous game of complete information with two players. For instance,

suppose that two firms (denoted by subscripts 1 and 2) decide whether or not to enter a
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market. Consider the following simultaneous equations model:

Y ∗1 = Z1 − (B1 + ∆1Y2)X1 (2.1)

Y ∗2 = Z2 − (B2 + ∆2Y1)X2, (2.2)

where, for j = 1, 2, Yj = 1 if firm j enters the market and Yj = 0 otherwise, Xj is a k×1 vector

of covariates, possibly including a constant term, and Zj is a scalar covariate whose coefficient

is normalized to 1. Bj and ∆j are 1× k vector random coefficients. Y ∗j is the latent utility of

taking action 1, and we normalize the latent utility of taking action 0 to 0. We allow all random

coefficients to depend additionally on observable covariates W , i.e., for each ω in a sample space

Ω, we may write Bj(ω) = B̃j(W (ω), ω), ∆j(ω) = ∆̃j(W (ω), ω) for some measurable maps B̃

and ∆̃. This means that, even conditional on W , B and ∆ are still random. For brevity of

exposition, we will suppress the dependence on ω or the conditioning on W .

In each market, the primitives of the game determined by (B,∆, X, Z) are assumed to be

common knowledge among the players. Throughout, we assume that the observed outcome

(Y1, Y2) is a pure strategy Nash equilibrium (PSNE) of the game. For example, when the other

player’s action adversely affects one’s payoff, i.e. ∆jXj ≥ 0, j = 1, 2, both players entering the

market is a unique pure strategy Nash equilibrium when Zj − (Bj + ∆j)Xj ≥ 0, j = 1, 2. From

the literature on binary choice models, it is well known that each of the equations in (2.1)-(2.2)

is only identified up to scale normalization (Ichimura and Thompson (1998)). By far the most

plausible normalization is that the sign of one of the random coefficients (e.g. the coefficient

on a cost shifter) is known, and hence we impose the assumption that the sign of the (possibly

random) coefficient on Zj is known to be positive and its value is normalized to 1, but see the

companion paper, DHK (2014) for a more abstract approach involving a slightly more general

hemisphere condition that essentially allows for a linear combination of coefficients to have a

known sign. We summarize our basic assumptions on the data generating process:

Assumption 2.1. Let k, l ∈ N. For each j = 1, 2, let (Zj, Xj,Wj) ∈ R1+k+l be player j’s

observable characteristics, and let (Bj,∆j) ∈ R2k be random coefficients, which may depend on

W . The observed outcome (Y1, Y2) is a pure strategy Nash equilibrium of the game characterized

by (B,∆, X, Z) with probability 1.

For each player, the coefficient Bj captures the marginal impact of player j’s own covariates

Xj on the latent variable Y ∗j , typically referred to as utility (we allow for Bj to include a random

intercept B0j). In contrast, the strategic interaction effect ∆j captures the impact of the other

player’s decision on the net utility of player j, both on the intercept and on the marginal

effects. i.e., if Y2 = 0, Y ∗1 equals Z1 − B1X1, while if Y2 = 1, Y ∗1 equals Z1 − (B1 + ∆1)X1.

This interaction effect ∆jXj = ∆0,j + ∆−0,jX−0,j comprises a strategic interaction effect on the

intercept, ∆0,j ∈ R, typically referred to as the interaction effect, but also an interaction effect
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on the responses ∆−0,j ∈ Rk−1 to changes in observable covariates X−0,j. In what follows, we

call ∆ = (∆1,∆2) the strategic interaction coefficients.

Note that Assumption 2.1 allows (Bj,∆j) to vary across markets. This allows us to flexibly

model unobserved heterogeneity in strategic interactions across different markets. To analyze

this model, we write Y = (Y1, Y2), Z = (Z1, Z2), X = (X1, X2), W = (W1,W2), B = (B1, B2),

and ∆ = (∆1,∆2). For any random vector Q, we denote its support by SQ. The (infinite

dimensional) parameter of interest is fB∆, the joint density of all random coefficients. We seek

to nonparametrically identify fB∆.

We will analyze this DGP in two strategic setups that will affect which conditional prob-

abilities we will employ to identify the parameters of interest. We want to emphasize the

importance of these setups for understanding the relation between the reduced form DGP and

the underlying structural model of a game of complete information. Table 1 summarizes the

payoffs of the game. Depending on the realizations of {(Xj, Zj,Wj, Bj,∆j)}j=1,2, there exist

four possible equilibrium outcomes: (Y1, Y2) = (0, 0), (0, 1), (1, 0), and (1, 1). In case of multi-

ple equilibria, one of them is selected from the set of equilibria by some selection mechanism

which we do not explicitly specify. Nonetheless, nonparametric identification of the structural

parameter, fB∆, is possible while staying agnostic about the selection mechanism. Within each

strategic setting, this can be done by investigating the conditional probabilities of the outcomes

that do not involve the unknown equilibrium selection mechanism (see Tamer (2003)).

Y2 = 0 (no entry) Y2 = 1 (entry)

Y1 = 0 (no entry) (0, 0) (0, Z2 −B2X2)

Y1 = 1 (entry) (Zj −B1X1, 0) (Z1 − (B1 + ∆1)X1, Z2 − (B2 + ∆2)X2)

Table 1: The Entry Game Payoff Matrix

The leading case studied in the literature is the case where the utility of each player is

adversely affected by the other players choosing action 1.2 We require that this holds for a set

of values of covariates, which we will use to identify the distribution of the random coefficients.

Formally,

Assumption 2.2. For each w ∈ SW , there exists an open set D(w) ⊆ R2(k−1) such that

∆0,1 + ∆−0,1x−0,1 ≥ 0,∆0,2 + ∆−0,2x−0,2 ≥ 0, almost surely, for all (x−0,1, x−0,2) ∈ D(w).

As we discuss in more detail below, D(w) is the set of values of non-constant covariates

(X−0,1, X−0,2), which will be used in our identification argument. We require that the sign of

2We use the utility specification Y ∗j = Z− (Bj + ∆jY−j)Xj , and hence, the entry of the other firm adversely
affects the player j’s own payoff when ∆jXj ≥ 0. This specification is used for the purpose of obtaining an
identification result whose relation to the existing results that use special regressors (see e.g. Lewbel, 2000) can
easily be understood.
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the interaction effects is known and non-negative for all (x−0,1, x−0,2) in this set. The leading

example for this situation is the market entry decision of two competitive firms. We will analyze

this case using an important insight of Bresnahan and Reiss (1991), who separate the outcome

space into three cases, no entry (0, 0), duopoly (1, 1) and monopoly {(1, 0), (0, 1)}. Under

Assumptions 2.1-2.2, this provides us with two separate conditional probabilities that do not

involve equilibrium selections which we invert to obtain the joint distribution of B = (B1, B2)

and that of B + ∆ = (B1 + ∆1, B2 + ∆2). From these individual pieces we recover the joint

density of ∆ = (∆1,∆2) by deconvolution when B is independent of ∆. Namely, we apply

Fourier inversion to the characteristic function of the interaction effects ∆ obtained from those

of B and B + ∆.3

However, we also study the case when the utility of each player is positively affected by the

other players choosing action 1:

Assumption 2.3. For each w ∈ SW , there exists an open set D(w) ⊆ R2(k−1) such that

∆0,1 + ∆−0,1x−0,1 ≤ 0,∆0,2 + ∆−0,2x−0,2 ≤ 0, almost surely, for all (x−0,1, x−0,2) ∈ D(w).

The most illustrative example for this situation is the joint retirement of husband and wife.

To analyze this case, we will again use insights of Bresnahan and Reiss (1991). In this case,

they separate the outcome space into three parts: Y = (1, 0), (0, 1), and the rest. We then

combine these three outcomes with insights from the deconvolution literature to obtain the

joint distribution of B, as well as the two marginal distributions of the ∆j.

Throughout, we tacitly assume that the distributions of B = (B1, B2) and ∆ = (∆1,∆2) are

absolutely continuous with respect to some σ-finite measure and denote the (Radon-Nikodym)

densities of B and ∆ by fB and f∆ respectively. In general, this allows for continuous, discrete

and mixed distributions.

We will also need enough variation in our covariates, in particular in Z. To formalize this

notion, we let SQ|T denote the support of a random variable Q given T.

Assumption 2.4. SZ|X,W = R2. Moreover one of the following conditions hold. (i) The non-

constant components of X are continuously distributed and have full support conditional on W ,

and D(W ) = R2(k−1); or (ii) The conditional support of the nonconstant components of X given

W contains the open set D(W ) ⊆ R2(k−1). For B = (B1, B2) = (B0,1, . . . , Bk,1, B0,2, . . . , Bk,2),

it holds that E[|Bi,j|p] <∞ for all i = 0, . . . , k, j = 1, 2, and p ∈ N, and

lim
p→∞

rp

p!
E
[( ∑

i=0,...,k,j=1,2

|Bi,j|
)p∣∣∣W] = 0, for all r ∈ R, a.s. (2.3)

Moreover, (2.3) holds for B + ∆ in place of B as well.

3We conjecture that it is possible to incorporate Tamer’s (2003) insight and use at least some of the infor-
mation in the monopoly case by distinguishing between the players.
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In Assumption 2.4, we require that Z has full support. This assumption is essential, as this

variable plays the role of the dependent variable in the linear random coefficients model. It

could be weakened to bounded support, if both the random coefficients and the covariates have

bounded support, such that the support of Zj still contains that of BjXj.

For other covariates, we consider two alternative conditions. Assumption 2.4 (i) specifies

X to have full support R2(k−1) and requires that the open set D(W ) (in Assumptions 2.2 and

2.3) coincides with the support. Under this condition, no additional assumption is required

on the random coefficient density to achieve point identification.4 However, full support is

frequently unrealistic, and alternative assumptions have to be imposed. A case in point is

Assumption 2.4 (ii), which substantially relaxes the full support benchmark assumption at

the expense of additional structure on the random coefficients density. We view this as the

main empirically relevant assumption. In line with Masten (2015) and Hoderlein, Holzmann,

and Meister (2015), a support containing an open set suffices for point identification provided

the random coefficients satisfy the moment condition in (2.3). Various commonly employed

distributions satisfy this moment condition. For example, this condition is satisfied when the

coefficients are normally distributed, or when they are compactly supported. Finally, note that

Assumption 2.4 excludes discrete covariates or variables that show up in both players’ payoffs

from X. However, even in the absence of this assumption some features of the model are still

(point or partially) identified, and the entire model may be point identified under additional

independence assumptions, see Theorem 2.2 below.

Now we turn to the key identification condition. We assume exogeneity of covariates X,Z.

Formally,

Assumption 2.5. (B,∆) is independent of (X,Z) conditional on W.

This is the central exogeneity assumption we employ. Allowing for the independence to be

conditional on additional covariates W is in line with the treatment effects literature, see, e.g.,

Heckman and Vytlacil (2007).

The leading special case is of course when there are no such covariates, in which case the

assumption simply states that the covariates X,Z are fully independent of all unobservables

in the system. This is a natural extension of assumptions made in the literature in the fixed

coefficients case (e.g., Bresnahan and Reiss (1991), Tamer (2003)). Since we are explicitly

considering random coefficients, our case is less restrictive than the commonly assumed full

independence of a scalar additive unobservable from the covariates, because this set-up is a

special case of our set-up. However, this assumption rules out correlation between (X,Z) and

the random unobservables. We remark that such dependence could be admitted, if there are

additional excluded instruments S, and a first stage equation is specified that allows recovery

4We however note that this assumption, without any further structure, has conflicts with Assumption 2.2
and 2.5 as we discuss below (Remark 2.1).
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of control function residuals as in Imbens and Newey (2009). These control function residuals

restore conditional independence, and serve as an important example for W .

Remark 2.1. We note that there is an interaction of Assumptions 2.2 (or 2.3), 2.4 and 2.5. This

is because Assumption 2.2 (or 2.3) restricts the sign of the interaction effect ∆jXj, Assumption

2.4 contains a support requirement for X, and Assumption 2.5 requires that ∆j and Xj are

(conditionally) independent. The consistency of these assumptions, therefore, needs to be

checked in each application. In particular, when Assumption 2.4 (i) is presumed, Assumptions

2.2 (or 2.3) and 2.5 are not compatible with each other in general.5 To see this, suppose

Xj contains a single nonconstant variable with a full support. If ∆j is nonzero, then the

sign of ∆jXj will take positive and negative values. When Assumption 2.4 (i) is assumed,

the compatibility of the assumptions therefore can only be ensured when ∆i,j = 0, a.s. for

i 6= 0, j = 1, 2. That is, the non-constant component of Xj do not enter the interaction effect

(but enters the payoff through BjXj). Hence, the interaction effect is

∆jXj = ∆0,j. (2.4)

In the context of market entry, this specification is called fixed competitive effects in Ciliberto

and Tamer (2009) (CT henceforth). In this special case, Assumption 2.2 is satisfied as long as

∆0,j ≥ 0, j = 1, 2 while Assumption 2.3 holds if ∆0,j ≤ 0, j = 1, 2. We note, however, that this

is rather a special case.

When Assumption 2.4 (i) is replaced by Assumption 2.4 (ii), consistency can be ensured

through support or sign restrictions on components of ∆j and Xj. If Xj’s support is restricted,

Assumption 2.4 (i) cannot be used. Therefore, we view Assumption 2.4 (ii) as the main empiri-

cally relevant assumption. We illustrate restrictions using the entry game in the airline industry

as in CT, in which −∆jXj (specified below) represents the opponent’s impact on airline j’s

profits. Consider the following specification (called the variable competitive effects in CT):

∆jXj = ∆0,j + ∆1,jX1,j, (2.5)

where X1,j is a scalar non-negative market presence index that measures the presence of the

opponent airline (e.g. # of flights operated by American Airline at an airport) in each market.6

Suppose that the opponent’s market entry itself and market presence adversely affect firm

j’s profit, i.e. ∆0,j ≥ 0,∆1,j ≥ 0, j = 1, 2. These restrictions ensure Assumption 2.2 with

D(W ) ⊂ R2
+ and are also consistent with the independence assumption (Assumption 2.5).

Since the covariate contains a non-negative variable, Assumption 2.4 (i) does not hold in this

case. However, one may proceed with Assumption 2.4 (ii) by assuming that the support of the

5We are indebted to a referee for pointing this out.
6See CT for details on the definition of the market presence index. CT assume that the coefficients are

non-random. Here, we allow them to be random.
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nonconstant covariates contains the open set D(W ).

In general, Assumptions 2.2 (or 2.3) and 2.4 (ii) restrict the signs of the interaction effects

only on a subset of the support of the non-constant covariates. Therefore, the support of some

(or all) of these variables may contain both positive and negative values. In this case, we only

use the open subset of the support on which the signs of the interaction effects are known.

Finally, we introduce an assumption that allows us to point identify the density of ∆.

Assumption 2.6. B is independent of ∆ conditional on W . The conditional characteristic

function φB|W (·|w) of B given W = w is non-zero almost everywhere for all w.

The condition on the characteristic function is standard in the deconvolution literature.

For example, consider the commonly studied case where the strategic interaction effect enters

only through the coefficient ∆0,j on the intercept i.e. ∆−0,j are zeros. Then, the condition is

satisfied when the corresponding characteristic function of B0,j has isolated zeros, which holds

for example when B0,j has bounded support, as in Carrasco and Florens (2010).

Remark 2.2. The independence assumption in Assumption 2.6 is solely used to recover f∆

(and hence fB∆). The researcher may want to consider a different assumption that allows

correlation between, say, B1,j and ∆1,j as they both capture potentially related effects of the

covariate X1,j. One alternative approach to achieve point identification would be to consider a

rank invariance or rank similarity assumption as used throughout the quantile treatment effects

and quantile IV literatures. This approach presumes that the direct effect Bj of a covariate

and the total effect Bj + ∆j that also incorporates the effect through strategic interactions are

governed by latent variables, say U0, U1, which determine the ranks of these effects. The rank

invariance assumption means U0 = U1, while the rank similarity only requires U0
d
= U1 and

allows unsystematic deviations in ranks through “slippages”. In the context of entry games,

these variables may be interpreted as an unobserved market characteristic that determines the

rank of the direct and total effects of a covariate.

If we avoid an assumption that determines the joint distribution of Bj and Bj + ∆j, this

generally leads to a partial identification result in a way that is quite analogous to the distri-

bution of treatment effects in the treatment effect literature (Heckman, Smith, and Clements

(1997), Fan and Wu (2010), Gautier and Hoderlein (2012)). We provide the main intuition

using the commonly studied case where ∆j = ∆0,j under the strategic substitution assump-

tion (∆0,j ≥ 0).7 Theorem 2.1 below shows that one may recover the marginal distributions

of B0,j and B0,j + ∆0,j from the conditional probabilities of the outcomes (0,0) and (1,1) re-

spectively. Identification of the distribution of ∆0,j, however, requires their joint distribution.

Note that identification of the distribution of ∆0,j has the same structure as recovering the

distribution of the treatment effect (∆0,j) from the marginal distributions of the (potential)

7This simplification is for convenience. The bounds below apply more generally to any pair of coefficients
Bi,j and Bi,j + ∆i,j with a sign restriction on ∆i,j .
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outcomes (Y1 = B0,j + ∆0,j) and (Y0 = B0,j) with a monotone treatment response restriction

(Y1 − Y0 = ∆0,j ≥ 0). A sharp bound on the CDF of ∆0,j under a sign restriction on ∆0,j is

derived in the recent work of Kim (2014). Hence, in this commonly studied example, one may

apply his result. We leave the more general setting where ∆j involves multiple terms for future

research.

2.2 Main Identification Results

In this subsection, we provide the main identification and non-identification results. Our first

main theorem establishes identification of the joint densities of all random coefficients in games

of strategic substitutes and strategic complements, respectively.8 While serving as a bench-

mark, this theorem, however, requires assumptions that may be problematic in a number of

applications. A particularly important case is when covariates are common across players (e.g.,

market environments, hence called market-specific covariates). In the second part of this sub-

section, we establish that in this special case the joint distribution of all random coefficients is

in general not point-identified. However, we also show that the joint distribution of some sub-

components of the parameter vector are point identified, as are the marginal distributions for

market specific variables, and all counterfactual probabilities that only depend on the marginals.

Finally, we obtain and characterize bounds on counterfactual probabilities that involve the joint

distribution.

2.2.1 A General Identification Result

Theorem 2.1. Suppose that Assumptions 2.1, 2.4-2.5 hold.

(i) Suppose Assumption 2.2 holds. Then, fB|W and fB+∆|W , the joint densities of B and

B + ∆ given W , respectively, are identified. If Assumption 2.6 holds, f∆|W , the joint density

of ∆ given W , is also identified.

(ii) Suppose Assumption 2.3 holds. Then, f(B1,B2+∆2) and f(B1+∆1,B2)|W , the joint densities

of (B1, B2 + ∆2) and (B1 + ∆1, B2) given W , respectively, are identified. If Assumption 2.6

holds, fB|W , the joint density of B given W , and f∆j |W , j = 1, 2, the marginal densities of ∆1

and ∆2 given W respectively, are also identified.

Remark 2.3. These results and Theorem 2.2 below are obtained using Proposition 1 in the

appendix, which identifies the characteristic function φU of a 1× 2k random coefficient vector

U from an integral equation of the following form:

P{Y1 = y1, Y2 = y2|X = x, Z = z} =

∫
1{z1 < u1x1}1{z2 < u2x2}fU(u)du . (2.6)

8More precisely, in the case of strategic complements, only the joint of all B’s and the marginals of the ∆j ’s
are identified.
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In the game of strategic substitutes, it is straightforward to see from (A.1) in the appendix

that (Y1, Y2) = (0, 0) i.e., no entry, is a unique PSNE when Zj < BjXj for both players. If (B,∆)

is independent of (Z,X), then letting U = B and (y1, y2) = (0, 0), we obtain identification of

fB from the proposition. In the same game, (Y1, Y2) = (1, 1) i.e. duopoly, is a unique pure

strategy Nash equilibrium when Zj > (Bj + ∆j)Xj. Hence, using the conditional probability

of the duopoly outcome and applying the proposition, one may identify the distribution of

U = B + ∆. With fB being identified, one may then identify f∆ by deconvolution under

Assumption 2.6.

In the game of strategic complements, (Y1, Y2) = (1, 0) is a unique PSNE when Z1 > B1X1

and Z2 < (B2 + ∆2)X2. Similarly, (Y1, Y2) = (0, 1) is a unique PSNE when Z1 < (B1 + ∆1)X1

and Z2 > B2X2. Hence, the densities of (B1, B2 +∆2) and (B1 +∆1, B2) can be identified using

the conditional probabilities of these outcomes. Again by deconvolution, one may then identify

the marginal densities of ∆1 and ∆2. However, a crucial difference from the case of strategic

substitutes is that we may not identify the joint distribution of the interaction effects. This is

because the conditional entry probability of the monopoly outcome (Y1, Y2) = (1, 0) (or (0,1))

is informative about only one of the interaction effects.

Remark 2.4. Our identification result can be extended to the case with J players where J ≥ 3.

In the case of strategic substitutes with more than two players, the no entry outcome (0, · · · , 0)

and “full entry” outcome (1, · · · , 1) still arise as unique equilibria. The no entry outcome for

example gives the following equation:

P{Y1 = 0, · · · , YJ = 0|Z = z,X = x} =

∫
1{z1 < b1x1} · · ·1{zJ < bJxJ}fB(b)db . (2.7)

Proposition 1 can be extended in a straightforward way so that the random coefficient density

can be identified from the equation above. This therefore enables us to identify the distri-

bution of B = (B1, · · · , BJ). With J players, however, the interaction effects become quite

high-dimensional. This raises a challenge for identification. We expect that our identification

strategy, which recovers f∆ through deconvolution of fB+∆ and fB does not extend readily to

this general case. However, identification of f∆ may be possible under additional symmetry

restrictions, for example, the existence of a potential function, as in Fox and Lazzati (2015).

We now extend Theorem 2.1 to allow for covariates with lower-dimensional support such as

discrete variables or market specific variables. These variables do not satisfy Assumption 2.4.

As we see in the next section in more detail, identifying the joint distribution of all coefficients

is not generally possible in the presence of such variables. However, it is possible to identify

key features of the random coefficients on those variables. To see this, suppose that each

player’s latent utility depends linearly on continuous covariates Xj and covariates X̌j ∈ Rǩ
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with lower-dimensional support:

Y ∗j = Zj − (Bj + ∆jY−j)Xj − (B̌j + ∆̌jY−j)X̌j, (2.8)

where B̌j and ∆̌j are 1 × ǩ random coefficients respectively. Consider the no entry outcome

(Y1, Y2) = (0, 0). Then, the utility from this outcome is Y ∗j = Zj −BjXj − B̌jX̌j, j = 1, 2, and

hence one may write Y ∗j = Zj − UjXj, where Uj’s first component (multiplying the constant

term in Xj) is B0,j + B̌jX̌j, and the rest of its components are the corresponding components

of Bj. Once the conditional density of B0,j + B̌jX̌j (conditional on X̌j) is identified, one may

identify features of B̌j under additional assumptions. For example, recovering the mean of

the random coefficients B̌j on X̌j from the conditional distribution of B0,j + B̌jX̌j is a linear

regression problem. Alternatively, if X̌j is a (scalar) binary variable and B̌j is independent of

B0,j, one can recover the distribution of B̌j by another deconvolution step. Finally, we note

that a market specific variable can be treated in a similar manner as covariates X̌j with lower-

dimensional support, and imposing the condition that X̌j = X̌. This last condition indicates

that X̌ is a variable common to both players. Since we can recover the distribution of the

variable B0,j + B̌jX̌ (conditional on X̌) and B−0,j for each player, we may apply the analysis

in this section to identify the marginal densities (i.e., fBj ,B̌j , f∆j ,∆̌j
for each player j = 1, 2),

as well as features that depend solely on them, e.g., certain counterfactual probabilities. Since

the presence of market specific variables has important consequences for the identification of

both joint and marginal densities, we postpone a more detailed discussion of this issue to the

subsequent two subsections.

The following theorem summarizes identification of features of the density of (B̌, ∆̌) when

the latent utilities are given as in (2.8).

Theorem 2.2. Suppose that Assumptions 2.1, 2.2, 2.4-2.6 hold with conditioning variables

(X̌,W ). Then,

(i) If, for any j, E[(B0,j,∆0,j, B̌j, ∆̌j)|X̌j,W ] = E[(B0,j,∆0,j, B̌j, ∆̌j)|W ], and E[(1, X̌ ′j)
′(1, X̌ ′j)|W ]

is positive definite almost surely, then, E[(B0,j,∆0,j, B̌j, ∆̌j)|W ] is identified;

(ii) If X̌j is a scalar binary random variable for j = 1, 2 such that B̌ ⊥ X̌|W , (B0,1, B0,2) ⊥
B̌|W , and the characteristic function φ(B0,1,B0,2)|W is nonzero almost everywhere, the joint den-

sity fB̌|W is identified.

Remark 2.5. For a semiparametric model in which (B̌, ∆̌) are non-random in (2.8), Theorem

2.2 implies that these non-random coefficients are identified if X̌j is a random vector such

that E[(1, X̌j)(1, X̌j)
′] is positive definite for j = 1, 2, or if X̌j is a binary random variable,

for j = 1, 2.9 This is because non-random coefficients automatically satisfy the (full or mean)

independence assumptions. We also note that an analogous result for games of strategic com-

plements can be obtained by similar arguments.
9See also Gautier and Hoderlein (2012) on binary regressors.
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2.2.2 Limits to Identification: A Non-identification result for the Case of Market-

Specific Covariates

To identify the joint distribution of (B1, B2) (or (∆1,∆2)), Assumption 2.4 requires all noncon-

stant components of X to be either continuously distributed and have a full support (Assump-

tion 2.4 (i)) or to have a support containing an open set (Assumption 2.4 (ii)). This assumption

is violated, for example, when X1 and X2 have a variable in common, e.g., a variable charac-

terizing the market environment. As we have seen in Theorem 2.2, with additional structure,

some features of the random coefficients are identifiable even in the presence of such a variable.

We show in this subsection that, in general, a violation of the support condition results

in a failure of point identification of the joint distribution of all random coefficients. Here,

we explicitly consider the settings where Assumption 2.4 is violated. For this reason, in what

follows, we will treat the market-specific variable as a component of X instead of treating it as

a component of another set of variables X̌ separated from X as done in the previous section.

More generally, if one of the covariates is a linear combination of the other covariates,

identification of the joint density fails. We formally state this result below. For this, we

assume that the model (2.1)-(2.2) has intercepts, say X0,1 = X0,2 = 1.

Theorem 2.3. Suppose that Assumptions 2.1 and 2.5-2.6 hold. Suppose that either Assumption

2.2 or 2.3 holds. Suppose that there is a covariate Xi,j with 1 ≤ i ≤ k − 1 and j ∈ {1, 2} such

that

Xi,j = a′X̃ , (2.9)

for some a ∈ R2k−1 not identically equal to 0, where X̃ is the 2k−1 vector of all other covariates.

Then, the joint densities fB|W and f∆|W are not identified.

This non-identification result is due to the lack of variation generated by the exogenous

covariates. Heuristically, even without Assumption 2.4, one may relate the conditional entry

probabilities to the characteristic functions of the random coefficient densities. For example,

in the case of strategic substitutes, the conditional probability of no entry can be linked to the

following characteristic function:

φB(t1, t1x1, t2, t2x2) = E[exp(i(B0,1t1 +B−0,1t1x1 +B0,2t2 +B−0,2t2x2))],

(t1, t2) ∈ R, (x1, x2) ∈ SX . (2.10)

A key step toward identification of fB is to trace out this characteristic function by varying

(x1, x2) (together with (t1, t2)) on a set that is rich enough to determine φB uniquely. However, if

some of the covariates have a linear relationship, one may only vary (x1, x2) on a low dimensional

set, which is not enough for determining φB. This is indeed the case if there is a market-specific
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covariate shared by X1 and X2. Related non-identification results are established in Masten

(2015) and HHM (2015), in linear simultaneous equations and triangular models, respectively

(we adapt the proof in HHM (2015) to our setup). To our knowledge, this type of non-

identification result in the context of discrete games is new.

Remark 2.6. Even though the joint distribution of all coefficients is not identified, many features

of economic interest can still be identified in the presence of a market-specific covariate. As we

have seen, Theorem 2.2 may be used to identify the conditional mean of the random coefficients

for example. Another observation is that, provided the market-specific covariates have rich

enough support, the marginal densities fBj , f∆j
, j = 1, 2 can still be identified. To be precise,

suppose that, for each j, all non-constant components of Xj have full support (although non-

constant components of X do not have a full support jointly). This is sufficient for tracing out

the characteristic function φBj (or φBj+∆j
) for each j. One can then employ the argument used

to prove Theorem 2.1 to identify the densities of these coefficients. The same result holds if we

replace the full support assumption on Xj with the weaker support condition that the support

of the non-constant components of Xj contains an open ball combined with an additional

moment condition in (2.3), in which sums are only taken across components of each Bj for each

j. We emphasize that this allows identification of counterfactual objects that depend only on

the marginal densities. These objects include, for example, the conditional entry probability of

player 1 given player 2’s entry:

P {Y1 = 1|Z1 = zc1, X1 = xc1, Y2 = 1} =

∫
1 {zc1 < (b1 + δ1)xc1} fB1(b1)f∆1(δ1)db1dδ1. (2.11)

From this quantity, one may also recover derivatives, i.e., marginal counterfactual probabilities,

and discrete differences in covariates.

In the next section, we provide additional sub-vector identification and partial identification

results that hold even in the presence of a market specific covariate. Importantly, using these

results, one can obtain bounds on counterfactuals that depend on the joint densities.

2.2.3 Sub-vector and Partial Identification in the Case of Market-Specific Covari-

ates

Even though the joint distribution (across players) of all coefficients is not identified in the

presence of market-specific covariates, many useful economic objects are still identified. In

this subsection, we use the fact that even with market-specific covariates the joint distribution

of some sub-vectors of random coefficients is still point identified while others are partially

identified to provide partial identification results for counterfactual probabilities that involve

the joint distribution of all coefficients.

To fix ideas, suppose that the first component of the non-constant covariates is a market
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specific variable and hence common across players X1,1 = X1,2. Then, the joint distribution

of (B1,1 + B1,2, B̃1, B̃2) is still identified under Assumption 2.2.10 Here B̃1 denotes B1 without

B1,1 and B̃2 denotes B2 without B1,2. More generally, the following corollary holds.

Corollary 2.1 (Sub-vector identification). Suppose the assumptions of Theorem 2.1 (Assump-

tions 2.1 and 2.4-2.6) hold except for one covariate that is a linear combination of other co-

variates Xi,j = a′X̃ with a ∈ R2k−1, 1 ≤ i ≤ k − 1, and j ∈ {1, 2}, where a’s components are

(a0,1, · · · , ai−1,j, ai+1,j, · · · , ak−1,2).

(i) If Assumption 2.2 holds, the joint density of(
B0,1 + a0,1Bi,j, . . . , Bi−1,j + ai−1,jBi,j, Bi+1,j + ai+1,jBi,j, . . . , Bk−1,2 + ak−1,2Bi,j

)
(2.12)

given W is identified. Furthermore, the joint density of(
∆0,1 + a0,1∆i,j, . . . ,∆i−1,j + ai−1,j∆i,j,∆i+1,j + ai+1,j∆i,j, . . . ,∆k−1,2 + ak−1,2∆i,j

)
(2.13)

given W is identified;

(ii) If Assumption 2.3 holds, the joint density of(
B0,1 + a0,1Bi,j, . . . , Bi−1,j + ai−1,jBi,j, Bi+1,j + ai+1,jBi,j, . . . , Bk−1,2 + ak−1,2Bi,j

)
(2.14)

given W is identified. Furthermore, for s = j, the joint density of(
∆0,s + a0,s∆i,s, · · · ,∆i−1,s + ai−1,j∆i,s,∆i+1,s + ai+1,s∆i,s, · · · ,∆k−1,s + ak−1,s∆i,s

)
(2.15)

given W is identified. For s 6= j, the joint density of(
∆0,s + a0,s∆i,j, · · · ,∆k−1,s + ak−1,s∆i,j

)
(2.16)

given W is identified.

The market-specific covariate example discussed above corresponds to X1,1 = a′X̃ with

a1,2 = 1, and all other components of a are zeros. Hence, if one’s main interest is in the joint

distribution of (B̃1, B̃2), the intercepts and the coefficients on the player specific variables such

as cost shifters or market presence, their joint distribution is still identified. Even further, the

joint density of the strategic interaction coefficients (∆̃1, ∆̃2) on these variables is also identified.

Corollary 2.1 is also useful for obtaining bounds on counterfactual probabilities that involve

joint distributions, when a market specific covariate X1,1 = X1,2 is present. The key are

the conditional probabilities assigned by the unidentified coefficients (B1,1, B1,2,∆1,1,∆1,2) to

10For illustrative purposes, we assume Assumption 2.2 throughout this subsection whenever we discuss this
example.
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two regions. For this, let us fix the identified coefficients (B̃, ∆̃) to (b̃, δ̃) and (X,Z) to a

counterfactual value (xc, zc). The first region, which is denoted R1(y1, y2|b̃, δ̃, xc, zc) ⊆ R4

under Assumption 2.2, is the region such that the model predicts (y1, y2) as the unique pure

strategy Nash equilibrium if and only if (B1,1, B1,2,∆1,1,∆1,2) falls in this region. The second

region, denoted R2(y1, y2|b̃, δ̃, xc, zc) ⊆ R4, is the region such that (y1, y2) is predicted as one

of multiple equilibria if and only if (B1,1, B1,2,∆1,1,∆1,2) ∈ R2(y1, y2|b̃, δ̃, xc, zc).11 As in Tamer

(2003) and Ciliberto and Tamer (2009), one may then derive a lower bound on the counterfactual

probability through the conditional probability of the unidentified coefficients over R1, while

an upper bound can be obtained from the conditional probabilities over R1 and R2. In our

setting, these bounds still depend on the distribution of the unidentified coefficients, which

can be restricted via Corollary 2.1. It turns out that such restrictions take the form of linear

constraints on the densities. The following corollary characterizes bounds that are obtained

using the restrictions imposed by the model.

Corollary 2.2 (Partial Identification of Counterfactual Probabilities). Suppose the conditions

of Theorem 2.1 (Assumptions 2.1 and 2.4-2.6) hold except for one covariate X1,1, which is

common between the two players so that X1,1 = aX̃ with a1,2 = 1, and all other components of

a are 0. Let wc ∈ SW and let (xc, zc) be a counterfactual value of (X,Z).

(i) Suppose Assumption 2.2 holds. Then, P{Y1 = y1, Y2 = y2|X = xc, Z = zc,W = wc}
belongs to the interval [PL(y1, y2|xc, zc, wc),PU(y1, y2|xc, zc, wc)] with

Pt(y1, y2|xc, zc, wc) =

∫
Pt(y1, y2|b̃, δ̃, xc, zc, wc)fB̃|W (b̃ | wc)f∆̃|W (δ̃ | wc)db̃dδ̃, t = L,U, (2.17)

where Pt(y1, y2|b̃, δ̃, xc, zc, wc), t = L,U are pointwise bounds on P{Y1 = y1, Y2 = y2|B̃ = b̃, ∆̃ =

δ̃, X = xc, Z = zc,W = wc} that are defined as:

PU(y1, y2|b̃, δ̃, xc, zc, wc) = sup
f∈FI,b̃,δ̃,wc

∫
R1(y1,y2|b̃,δ̃,xc,zc)∪R2(y1,y2|b̃,δ̃,xc,zc)

f(θ | b̃, δ̃, wc)dθ (2.18)

PL(y1, y2|b̃, δ̃, xc, zc, wc) = inf
f∈FI,b̃,δ̃,wc

∫
R1(y1,y2|b̃,δ̃,xc,zc)

f(θ | b̃, δ̃, wc)dθ, (2.19)

where θ = (b1,1, b1,2, δ1,1, δ1,2), and the identified set FI,b̃,δ̃,wc for the conditional density of θ is

characterized by linear equality and inequality restrictions and is given in the Appendix.

(ii) Suppose Assumption 2.3 holds. Then, P{Y1 = y1, Y2 = y2|X = xc, Z = zc,W = wc}
belongs to the interval [PL(y1, y2|xc, zc, wc),PU(y1, y2|xc, zc, wc)] with

Pt(y1, y2|xc, zc, wc) =

∫
Pt(y1, y2|b̃, xc, zc, wc)fB̃|W (b̃ | wc)db̃, t = L,U, (2.20)

11Bounds under Assumption 2.3 can be studied in a similar way with a slight difference due to the fact that
the joint distribution of the coefficients in (2.15) and (2.16) is unidentified (only the marginals are identified).

18



where Pt(y1, y2|b̃, xc, zc, wc), t = L,U are pointwise bounds on P{Y1 = y1, Y2 = y2|B̃ = b̃, X =

xc, Z = zc,W = wc} that are defined as:

PU(y1, y2|b̃, xc, zc, wc) = sup
f∈FI,b̃,wc

∫
R1(y1,y2|b̃,xc,zc)∪R2(y1,y2|b̃,xc,zc)

f(θ | b̃, wc)dθ (2.21)

PL(y1, y2|b̃, xc, zc, wc) = inf
f∈FI,b̃,wc

∫
R1(y1,y2|b̃,xc,zc)

f(θ | b̃, wc)dθ, (2.22)

where θ = (b1,1, b1,2, δ), and the identified set FI,b̃,wc for the conditional density of θ is charac-

terized by linear equality and inequality restrictions and is given in the Appendix.

We note that the pointwise bounds in (2.18)-(2.19) (and (2.21)-(2.22)) are optimal values

of linear programs, in which linear functionals of f are maximized subject to linear constraints

imposed on the density via FI,b̃,δ̃,wc . The bounds on the counterfactual probabilities are obtained

by integrating these pointwise bounds with respect to the density of (B̃, W̃ ), which is point

identified by Corollary 2.1. While estimation and inference are beyond the scope of this paper,

this characterization may be helpful for simplifying the computation of the bounds.

3 Conclusion and Outlook

This paper studies nonparametric identification of the joint distribution of random coefficients

in binary response static games of complete information. We give conditions under which

the joint distribution of random coefficients, except those on the interaction terms, is point

identified. We provide stronger conditions that allow point identification of the joint density

of the interaction coefficients. We also discuss various ways to extend our main identification

result, and adapt it to situation which involve market specific or discrete variables.

We have focused on nonparametric identification of the density of random coefficients from

uniquely predicted outcomes. An interesting direction would be to study possible efficiency

gains by considering simultaneously the two integral equality restrictions obtained from the

no entry and duopoly outcomes and additional integral inequality restrictions, which can be

obtained from the monopoly outcomes. We pursue this in another paper that studies a setting

in which the density of random coefficients are partially identified by integral equality and in-

equality restrictions. Another interesting direction would be to apply the developed estimation

procedure to empirical examples in which heterogeneity plays an important role.
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A Appendix

Recall that B = (B1, B2) and ∆ = (∆1,∆2) are 1 × 2k random coefficient vectors of interest.

Our principal objective is to identify, under different game specifications, various densities such

as fB|W and f∆|W , where W is either a null or nonnull vector of regressors. Proposition 1 below

will be the main result we use to achieve this objective. In this appendix, after establishing some

preliminary lemmas, we prove Proposition 1, which we then use to prove the main theorems in

the paper, Theorem 2.1 and Theorem 2.2.

Let U = (U1, U2) denote a general 1 × 2k random coefficient vector. For example, U may

stand for B, B + ∆, or similar objects. Let (y1, y2) denote possible realizations of the binary

outcomes (Y1, Y2). Note that the conditional entry probability P{Y1 = y1, Y2 = y2|X = x, Z =

z,W = w} is identified from the data. Moreover, this quantity is equal to∫
1{z1 < u1x1}1{z2 < u2x2}fU |XZW (u|x, z, w)du (y1, y2) = (0, 0), U = B (A.1)∫
1{z1 > u1x1}1{z2 > u2x2}fU |XZW (u|x, z, w)du (y1, y2) = (1, 1), U = B + ∆

when Assumption 2.2 (strategic substitutes) holds. This is because (Y1, Y2) = (0, 0) is a unique

pure strategy Nash equilibrium when Z1 −B1X1 < 0 and Z2 −B2X2 < 0, and (Y1, Y2) = (1, 1)

is a unique pure strategy Nash equilibrium when Z1−B1X1 > 0 and Z2−B2X2 > 0. Similarly,
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the conditional entry probability is equal to∫
1{z1 < u1x1}1{z2 > u2x2}fU |XZW (u|x, z, w)du (y1, y2) = (0, 1), U = (B1, B2 + ∆2)

(A.2)∫
1{z1 > u1x1}1{z2 < u2x2}fU |XZW (u|x, z, w)du (y1, y2) = (1, 0), U = (B1 + ∆1, B2),

when Assumption 2.3 (strategic complements) holds.

Proposition 1. Suppose SZ|X,W = R2 and U ⊥ (X,Z)|W . Suppose P{Y1 = y1, Y2 = y2|X =

x, Z = z,W = w} is equal to the quantities in (A.1) or (A.2). Suppose one of the following

conditions hold. (i) The nonconstant components of X have support R; or (ii) The support of

X contains an open set D. The moments of all components are finite E[|Ui,j|p] < ∞ for all

i = 1, . . . , k, j = 1, 2 and p ∈ N. In addition, for any r > 0,

lim
p→∞

rp

p!
E
[( ∑

i=0,··· ,k,j=1,2

|Ui,j|
)p∣∣∣W] = 0, a.s.

Then φU |W , the characteristic function of U given W , is identified.

Before we prove Proposition 1, we establish several useful lemmas. For ease of exposition,

we prove all results for the special case (y1, y2) = (0, 0) and W null. When W is nonnull, all

results generalize immediately by adding the conditioning variable in obvious places. The case

(y1, y2) = (0, 0) corresponds to the case U = B. The proof for this case is easily adapted to

cover the other cases, as we show.

Lemma A.1 below shows that

P{Y1 = 0, Y2 = 0 | Z = z,X = x}

=

∫ ∞
z2

∫ ∞
z1

[∫
1{s1 = u1x1}1{s2 = u2x2}fU(u)dλ1dλ2

]
ds1ds2 . (A.3)

where dλt denotes an increment along the hyperplane st = utxt, t = 1, 2.

It is convenient to introduce some compact notation. Write {Y = 0} for the event {Y1 =

0, Y2 = 0} and
∫∞
z

for
∫∞
z2

∫∞
z1

. Let S = (S1, S2). Note that when Y1 = Y2 = 0, Sj = BjXj,

j = 1, 2. Write {S = BX} for the event {S1 = B1X1, S2 = B2X2}. Next, write {Z < S} for

{Z1 < S1, Z2 < S2} and {Z < BX} for {Z1 < B1X1, Z2 < B2X2}. Note that {Z < BX} =

{Z < S}{S = BX}. Finally, write dλ for dλ1dλ2.

Lemma A.1. Suppose the conditions of Proposition 1 hold. Then

P{Y = 0 | Z = z,X = x} =

∫ ∞
z

[∫
{s = ux}fB(u)dλ

]
ds . (A.4)
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Proof. By (A.1),

P{Y = 0 | Z = z,X = x} =

∫
B|ZX
{z < bx}fB|ZX(b | z, x)db .

By the law of iterated expectations and the fact that {z < bx} = {z < s}{s = bx},

P(Y = 0 | Z = z,X = x) = ES|ZXP(Y = 0 | S = s, Z = z,X = x)

=

∫
SS|ZX

{z < s}
[∫
{s = bx}fB|SZX(b | s, z, x)dλ

]
fS|ZX(s | z, x)ds

=

∫ ∞
z

[∫
{s = bx}fB|SZX(b | s, z, x)dλ

]
fS|ZX(s | z, x)ds .

Consider fB|SZX(b | s, z, x)fS|ZX(s | z, x). Drop the subscripts. We get that

f(b | s, z, x)f(s | z, x) =
f(b, s, z, x)

f(s, z, x)

f(s, z, x)

f(z, x)

=
f(b, s | z, x)f(z, x)

f(z, x)

= f(b, s | z, x) .

By hypothesis, B ⊥ (Z,X). It follows that (B, S) ⊥ Z | X and so f(b, s | z, x) = f(b, s | x).

Finally, note that

f(b, s | x) = f(s | b, x)f(b | x)

= 1{s = bx}f(b) .

The last equality follows from the fact S = BX and so f(s | b, x) is a single point mass

distribution; f(b | x) = f(b) since B ⊥ X. Statement (A.4) follows. �

Let ∂z denote ∂z1∂z2 . Define ψ00(z, x) = ∂zP(Y = y | Z = z,X = x) and let {z = ux}
denote {z1 = u1x1, z2 = u2x2}.

Lemma A.2. Suppose the conditions of Proposition 1 hold. Then

ψ00(z, x) =

∫
{z = bx}fB(b)dλ .

Proof. If, for each c ∈ R,
∫∞
c
g(t)dt =

∫∞
c
h(t)dt, then g(t) = h(t) for almost all t ∈ R. This

simple fact is easily proved and is used repeatedly in the proof.

Note that (A.1) says that P{Y1 = 0, Y2 = 0 | X = x, Z = z} equals∫ ∫
1{z1 < b1x1}1{z2 < b2x2}fB1B2|XZ(b1, b2 | x, z)db1db2 .
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Since the two indicator functions depend on (B1, B2) only through (S1, S2) where Si = Bixi,

i = 1, 2, we get that P{Y1 = 0, Y2 = 0 | X = x, Z = z} is also equal to∫ ∫
1{z1 < s1}1{z2 < s2}fS1S2|XZ(s1, s2 | x, z)ds1ds2

=

∫ ∞
z2

[∫ ∞
z1

fS1S2|XZ(s1, s2 | x, z)ds1

]
ds2 (A.5)

=

∫ ∞
z2

g(s2)ds2 . (A.6)

Lemma A.1 shows that P{Y1 = 0, Y2 = 0 | X = x, Z = z} is also equal to∫ ∞
z2

[∫ ∞
z1

[∫
1{s1 = b1x1}1{s2 = b2x2}fB1B2(b1, b2)dλ1dλ2

]
ds1

]
ds2

=

∫ ∞
z2

h(s2)ds2 . (A.7)

Since fS1S2|XZ(s1, s2 | x, z) is a density, it follows from (A.5) that g(s2) is L1-integrable. By

the simple fact stated at the beginning of the proof, (A.6), and (A.7), g(s2) = h(s2) for almost

all s2. It follows that h(s2) is L1-integrable. Deduce from the simple fact, (A.6), (A.7), and the

Lebesgue Differentiation Theorem (Rudin (1974),Theorem 8.17) that

∂z2

[∫ ∞
z2

g(s2)ds2

]
= −g(z2)

= −
∫ ∞
z1

fS1S2|XZ(s1, z2 | x, z)ds1 (A.8)

= −
∫ ∞
z1

[∫
1{s1 = b1x1}1{z2 = b2x2}fB1B2(b1, b2)dλ1dλ2

]
ds1(A.9)

= −h(z2)

= ∂z2

[∫ ∞
z2

h(s2)ds2

]
.

Now repeat the argument for the partial with respect to z1. Define

g̃(s1) = −fS1S2|XZ(s1, z2 | x, z)

h̃(s1) = −
∫

1{s1 = b1x1}1{z2 = b2x2}fB1B2(b1, b2)dλ1dλ2 .

Since fS1S2|XZ(s1, s2 | x, z) is a density, it follows from (A.8) that g̃(s1) is L1-integrable. By

the simple fact, (A.8), and (A.9), we get that g̃(s1) = h̃(s1) for almost all s1. It follows that h̃(s1)

is L1-integrable. Deduce from the simple fact, (A.8), (A.9), and the Lebesgue Differentiation
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Theorem that

∂z1

[∫ ∞
z1

g̃(s1)ds1

]
= −g̃(z1)

= fS1S2|XZ(z1, z2 | x, z)

=

∫
1{z1 = b1x1}1{z2 = b2x2}fB1B2(b1, b2)dλ1dλ2

= −h̃(z1)

= ∂z1

[∫ ∞
z1

h̃(s1)ds1

]
= ∂z1∂z2P{Y1 = 0, Y2 = 0 | X = x, Z = z} = ψ00(z, x)

which is what we wanted to show. �

Define ‖x‖ = ‖x1‖‖x2‖.

Lemma A.3. Suppose the conditions of Proposition 1 hold. Then∫
SZ|X

exp(itz)ψ00(z, x)dz = ‖x‖
∫
Rk×Rk

exp(itbx)fB(b)db .

Proof. By Lemma A.2,∫
SZ|X

exp(itz)ψ00(z, x)dz =

∫
SZ|X

∫
exp(itz){z = bx}fB(b)dλdz .

To evaluate the integral on the right, we start by parametrizing the hyperplanes z1 = b1x1

and z2 = b2x2. Let B(1) = {B(1)
1 , . . . , B

(1)
k−1} denote an orthonormal basis for the subspace

0 = b1x1. Likewise, let B(2) = {B(2)
1 , . . . , B

(2)
k−1} denote an orthonormal basis for the subspace

0 = b2x2. Note that each B
(j)
i is orthogonal to xj. Also, in keeping with previous notation, B

(j)
i

is a 1× k vector.

For j = 1, 2, let MB(j) denote the (k − 1) × k matrix formed by stacking the k − 1 basis

vectors B
(j)
1 , . . . , B

(j)
k−1 on top of each other. Hence, for every row vector rj ∈ Rk−1 we have

bj ≡ zjx
′
j‖xj‖−2 + rjMB(j) on the hyperplane zj = bjxj. We reformulate the integral as follows:∫

SZ|X

∫
exp(itz){z = bx}fB(b)dλdz

=

∫
SZ|X

∫
Rk−1×Rk−1

exp(itz)fB(z1x
′
1‖x1‖−2 + r1MB(1) , z2x

′
2‖x2‖−2 + r2MB(2))dr1dr2dz

=

∫
SZ2|X2

×Rk−1

∫
SZ1|X1

×Rk−1

exp(itz)fB(z1x
′
1‖x1‖−2 + r1MB(1) , z2x

′
2‖x2‖−2 + r2MB(2))d(r1, z1, r2, z2) .

The notation d(r1, z1, r2, z2) in the last line emphasizes that, by the Tonelli-Fubini Theorem,

the order of integration does not matter. We take d(r1, z1, r2, z2) = dr1dz1dr2dz2.
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For j = 1, 2, construct the k× k matrix Mj consisting of the 1× k vector x′j‖xj‖−2 stacked

on top of the (k − 1) × k matrix MB(j) . Consider the transformation bj = (zj, rj)Mj. Note

that Mj is equal to an orthonormal matrix with its first row multiplied by ‖xj‖−1. It follows

from elementary properties of determinants that the Jacobian of the transformation equals

det(M−1
j ) = ±‖xj‖. Deduce that drjdzj = ‖xj‖dbj.

Note that z = bx is on the hyperplanes. For compactness, formally write dr for dr1dr2,

db for db1db2, and zx′‖x‖−2 + rMB for z1x
′
1‖x1‖−2 + r1MB(1) , z2x

′
2‖x2‖−2 + r2MB(2) . Put it all

together, applying SZj |Xj = R, to get∫
SZ|X

exp(itz)ψ00(z, x)dz =

∫
SZ|X

∫
exp(itz){z = bx}fB(b)dλdz

=

∫
SZ|X

∫
Rk−1×Rk−1

exp(itz)fB(zx′‖x‖−2 + rMB)drdz

=

∫
SZ2|X2

×Rk−1

∫
SZ1|X1

×Rk−1

exp(itz)fB(zx′‖x‖−2 + rMB)‖x‖dr1dz1dr2dz2

= ‖x‖
∫
Rk×Rk

exp(itbx)fB(b)db .

�

Lemma A.4. Let B = (B1, . . . , Bk) be a k-dimensional random vector. Assume that the

moments of all components are finite, that is, E[|Bi|p] < ∞ for all i = 1, . . . , k and p ∈ N. In

addition, assume that for any r > 0,

0 = lim
p→∞

rp

p!
E[(|B1|+ |B2|+ . . .+ |Bk|)p].

Finally, assume that the characteristic function φB of B is known on some open neighborhood

U ⊂ Rk. Then φB is identified on Rk.

Proof. We follow a similar proof strategy as in HHM Lemma A.2. The characteristic

function φB can be approximated by the p-th Taylor polynomial for some point b0 ∈ U . The

Taylor remainder for some point b ∈ Rk is bounded by

(RpφB)(b; b0) ≤
∑

α∈Nk,|α|=p+1

(b− b0)α

α!
‖DαφB‖∞ .

In this formula the multi-index notation is used with respect to α. This means α = (α1, α2, . . . , αk) ∈
Nk, |α| :=

∑k
i=1 αi, α! :=

∏k
i=1 αi!, and

DαφB =
∂|α|φB

∂bα1
1 ∂b

α2
2 . . . ∂bαkk

.
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Using,

‖DαφB‖∞ ≤ E[|Bα|] = E[|Bα1
1 Bα2

2 . . . Bαk
k |] ≤ E[|B1|α1|B2|α2 . . . |Bk|αk ]

we get

(Rpf)(b; b0) ≤ ‖b− b0‖p∞ E

 ∑
α∈Nk,|α|=p+1

|B1|α1|B2|α2 . . . |Bk|αk
α!


≤ ‖b− b0‖p∞ E

[
(p!)−1 (|B1|+ |B2|+ . . .+ |Bk|)p

]
≤ ‖b− b0‖p∞

p!
E [(|B1|+ |B2|+ . . .+ |Bk|)p] .

Hence, the Taylor approximation converges point-wise to φB on Rk. Thereby φB is identified.

�

We are now prepared to prove Proposition 1.

Proof of Proposition 1: Fix t = (t1, t2) ∈ R2 and consider the following conditional

expectation:

φ(t | x) ≡ EZ|X=x

[
exp(itZ)ψ00(Z, x)

fZ|X(Z | x)

]
=

∫
SZ|X

[
exp(itz)ψ00(z, x)

fZ|X(z | x)

]
fZ|X(z | x)dz

=

∫
SZ|X

exp(itz)ψ00(z, x)dz

= ‖x‖
∫
Rk×Rk

exp(itbx)fB(b)db .

The last equality follows from Lemma A.3.

Note that the integral in the last expression can be written as E [exp(i(B1σ1 +B2σ2))]

where σ1 = t1x1 and σ2 = t2x2. This expectation equals φB(σ), the characteristic function of B

evaluated at σ = (σ1, σ2). Since we can identify both ψ00(z, x) and fZ|X(z | x) for each (z, x),

we can identify φ(t | x) for each t and x. When (i) holds, the map from x to σ is one-to-one

and onto Sσ = Rk × Rk. Deduce that we can identify φB(σ) for each σ. Alternatively, when

(ii) holds, consider the set Dσ = {σ : σj = tjxj, j = 1, 2, t ∈ T, x ∈ D}, where T ⊂ R2 is an

open set. For our purposes, it suffices to take T = (ε,∞)2 for some ε > 0. We may identify

φB(σ) for each σ ∈ Dσ. Note that, for each j, tj equals the first component σ1,j of σj, and

xj = σj/σ1,j. Therefore, the inverse map σ 7→ (t, x) is well-defined and continuous. By (ii),

T ×D being open, and σ 7→ (t, x) being continuous, Dσ is open. By (ii) and Lemma A.4, φB

is uniquely determined by its restriction to an open set. Deduce that φB is identified for each

σ. �
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We are now ready to prove the main identification results. Again, we prove all results for

the case W null. We therefore denote the open set in Assumptions 2.2 (or 2.3) and 2.4 by D.

When W is nonnull, all results generalize immediately by adding the conditioning variable in

obvious places.

Proof of Theorem 2.1: We start by proving part (i) of the theorem. Let D = R2(k−1) if

Assumption 2.4 (i) holds. Let D be an open subset of S(X−0,1,X−0,2) if Assumption 2.4 (ii) holds.

For each j = 1, 2, let xj = (1, x−0,j), where (x−0,1, x−0,2) ∈ D. Consider the case (Y1, Y2) =

(0, 0). By Assumptions 2.1-2.2, it is straightforward to check that (Y1, Y2) = (0, 0) is a unique

PSNE when Z1 < B1x1 and Z2 < B2x2. Hence, equation (A.1) holds with (y1, y2) = (0, 0)

and U = B. Assumptions 2.4-2.5 then ensure the remaining conditions of Proposition 1. By

Proposition 1, φB, the characteristic function of B is identified. It follows that we can identify

fB(b) by Fourier inversion:

fB(b) =

∫
Sσ

exp(−i(b1σ1 + b2σ2))φB(σ)dσ . (A.10)

Hence, fB(b) is identified.

Next, we consider the case (Y1, Y2) = (1, 1). By Assumptions 2.1-2.2, (Y1, Y2) = (1, 1) is a

unique PSNE when Z1 > (B1 +∆1)x1 and Z2 > (B2 +∆2)x2. Let {Y = 1} denote {Y1 = 1, Y2 =

1} and let
∫ z
−∞ denote

∫ z2
−∞

∫ z1
−∞. Let U = B+ ∆ and u = (u1, u2) = (b1 + δ1, b2 + δ2). Let {s =

ux} denote {s1 = u1x1, s2 = u2x2}. Mimic the argument in the proof of Lemma A.1, making the

obvious changes to get P{Y = 1 | X = x, Z = z} =
∫ z
∞

[∫
{s = ux}fU(u)

]
ds. Define ψ11(x, z) =

∂zP(Y = 1 | X = x, Z = z) and let {z = ux} denote {z1 = u1x1, z2 = u2x2}. Mimic the

argument in the proof of Lemma A.2 to get ψ11(x, z) =
∫
{z = ux}fU(u)dλ. Mimic the argument

in the proof of Lemma A.3 to get
∫
SZ|X

exp(itz)ψ11(x, z)dz = ‖x‖
∫
Rk×Rk exp(itux)fU(u)du.

Finally, mimic the argument in the proof of Proposition 1 to get that φU = φB+∆ is identified.

If Assumption 2.6 holds, φU(σ) = φB(σ)φ∆(σ) and φ∆(σ) is well-defined almost everywhere.

Deduce from this and φB being identified by the previous step that φ∆(σ) is identified. By

Fourier inversion, f∆(δ) is identified. This proves part (i).

Next, we prove part (ii) of the theorem. Consider the case (Y1, Y2) = (1, 0). By Assumptions

2.1 and 2.3, (Y1, Y2) = (1, 0) is a unique PSNE when Z1 > B1x1 and Z2 < (B2 + ∆2)x2.

Let {Y = (1, 0)} denote {Y1 = 1, Y2 = 0}. Let U = (B1, B2 + ∆2) and u = (u1, u2) =

(b1, b2 + δ2). Let {s = ux} denote {s1 = u1x1, s2 = u2x2}. Mimic the argument in the

proof of Lemma A.1, making the obvious changes to get P{Y = (1, 0) | X = x, Z = z} =∫∞
z2

∫ z1
−∞

[∫
{s = ux}fU(u)

]
ds. Define ψ10(x, z) = ∂zP(Y = (1, 0) | X = x, Z = z) and let

{z = ux} denote {z1 = u1x1, z2 = u2x2}. Mimic the argument in the proof of Lemma A.2 to

get ψ10(x, z) = −
∫
{z = ux}fU(u)dλ. Mimic the argument in the proof of Lemma A.3 to get∫

SZ|X
exp(itz)ψ01(x, z)dz = −‖x‖

∫
Rk×Rk exp(itux)fU(u)du. Finally, mimic the argument in the

proof of Proposition 1 to get that φU(σ) is identified.
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Now, let V = (B1 + ∆1, B2). If we consider the case (Y1, Y2) = (0, 1) and mimic the

argument in the last paragraph, we get that φV (σ), the characteristic function of V , is identified.

Therefore, the characteristic functions of B2 + ∆2 and B2 are identified as follows:

φB2+∆2(σ2) = φU(0, σ2), and φB2(σ2) = φV (0, σ2). (A.11)

By Assumption 2.6, φB2+∆2(σ2) = φB2(σ2)φ∆2(σ2) and φB2(σ2) 6= 0 for almost all σ2. Hence,

φ∆2(σ2) is identified. Similarly, φ∆1 is identified.

Finally, if Assumption 2.6 holds,

φV (σ1, σ2) =

∫
exp(i(σ1(b1 + δ1) + σ2b2))fB(b)f∆1(δ1)dbdδ1

=

∫
exp(i(σ1b1 + σ2b2))fB(b)db

∫
exp(iσ1δ1)f∆1(δ1)dδ1 = φB(σ)φ∆1(σ1). (A.12)

As φV and φ∆1 are already identified, φB is identified. The proof of part (ii) of the theorem

now follows from Fourier inversion applied to φB, φ∆1 , and φ∆2 . �

Proof of Theorem 2.2: In what follows, we write Uj = (U0,j, U−0,j), where U0,j = B0,j +

B̌jX̌j , and U−0,j = B−0,j is the random coefficients on the non-constant components of Xj.

Similarly, we write Vj = (V0,j, V−0,j) with V0,j = ∆0,j + ∆̌jX̌j and V−0,j = ∆−0,j.

The proof of the identification of the distributions of U and V is identical to that of Theorem

2.1 (i) except for the presence of X̌. Therefore, argue as in the proof of Theorem 2.1 (i) and apply

Proposition 1 with (X̌,W ) as conditioning variables, which identifies φU |X̌,W and φU+V |X̌,W , the

characteristic functions of U and U + V conditional on (X̌,W ). By Assumption 2.6, it follows

that φU+V |X̌,W (σ | w) = φU |X̌,W (σ | x̌, w)φV |X̌,W (σ | x̌, w) and φV |X̌,W (σ | x̌, w) is well-defined

almost everywhere. Deduce from this that φV |X̌,W is identified.

(i) For each j, let φUj |X̌,W (σ | w) be the characteristic function of Uj | X̌,W . Then, by the

previous step, the map σ1 7→ φU0,j |X̌,W (σ1 | x̌, w) = φUj |X̌,W ((σ1, 0, · · · , 0) | x̌, w) is identified.

By a property of the characteristic function and (2.8), one has

i−1 ∂

∂σ1

φU0,j |X̌,W (σ1 | x̌, w)
∣∣∣
σ1=0

= E[U0,j | X̌ = x̌,W = w]

= E[B0,j + B̌jX̌j|X̌ = x̌,W = w] = E[B0,j | W = w] + E[B̌j | W = w]x̌j, (A.13)

where the last equality follows from the mean independence assumption. Taking expectations

with respect to X̌, one then obtains,

E
[
i−1 ∂

∂σ1

φU0,j |W (σ1 | X̌,W )
∣∣∣
σ1=0

(1, X̌ ′j) | W
]

= E[(Bj, B̌j) | W ]E[(1, X̌ ′j)
′(1, X̌ ′j) | W ]. (A.14)

By hypothesis, E[(1, X̌ ′j)
′(1, X̌ ′j)|W ] is positive definite and is hence invertible. Therefore,
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E[(B0,j, B̌j)|W ] is identified. The proof of identification of E[(∆0,j, ∆̌j)|W ] is analogous and

therefore omitted.

(ii) By the previous step, φ(U0,1,U0,2)|X̌,W is identified. By assumption, Wj is a binary variable

for j = 1, 2 and hence (2.8) implies the following objects are identified:

φ(U0,1,U0,2)|X̌,W (σ1, σ2 | (0, 0), w) = φ(B0,1,B0,2)|W (σ1, σ2 | w) (A.15)

φ(U0,1,U0,2)|X̌,W (σ1, σ2 | (1, 1), w) = φ(B0,1+B̌1,B0,2+B̌2)|W (σ1, σ2 | w), (A.16)

where (σ1, σ2) ∈ R2, and the equalities follow from Uj = B0,j + B̌jX̌j and (B, B̌) ⊥ X̌ | W . By

the conditional independence assumption (B0,1, B0,2) ⊥ B̌ | W , it follows that

φ(B0,1+B̌1,B0,2+B̌2)|W (σ1, σ2 | w) = φ(B0,1,B0,2)|W (σ1, σ2 | w)φ(B̌1,B̌2)|W (σ1, σ2 | w). (A.17)

By assumption, φ(B0,1,B0,2)|W is nonzero almost everywhere. Therefore, φ(B̌1,B̌2)|W (σ1, σ2 | w) is

identified for almost all (σ1, σ2). The conclusion then follows from Fourier inversion. �

Proof of Theorem 2.3: We show the result with W null below. By Lemma A.2 the

observations in the model are equivalent to projections of fB on two dimensional subspaces

of R2k defined by z = bx. Here z = (z1, z2)′ parametrizes this plane. We denote by Px the

set of all observed projections, i.e Px = {(z1x
′
1, z2x

′
2)′|(z′1, z′2)′ ∈ Sz}. If there is a non-trivial

homogeneous polynomial p : R2k → R that vanishes on⋂
x∈SX

Px,

a second random variable B̃ exists which does not equal B but is observationally equivalent

to B. This statement was proved by an explicit construction for B̃ in Cuesta-Alberto, et al.

(2007) Theorem 3.5.

Without loss of generality we assume that Xi,j = X1,1 and we split a′X̃ = a′1X̃1 + a′2X̃2

with a1 ∈ Rk−1, a2 ∈ Rk, X̃1 = (X0,1, X2,1, X3,1, . . . , Xk,1)′. and X̃2 = (X0,2, X1,2, . . . , Xk,2)′.

By assumption, neither a1 or a2 is identically 0. Define the homogeneous polynomial of degree

2

p(X) ≡ X0,2(X1,1 − a′1X̃1)−X0,1a
′
2X̃2.

Then for every x ∈ SX and for every y ∈ Px

p(y) = z2(z1x1,1 − z1a
′
1x̃1)− z1z2a

′
2x̃2 = z1z2(x1,1 − a′1x̃1 −′2 x̃2) = 0.

Hence, p vanishes on
⋂
x∈SX Px. This implies that the distribution of B is not identified. �
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Proof of Corollary 2.1: (i) Note that by Lemma A.3∫
SZ|X

exp(itz)ψ00(z, x)dz = ‖x‖
∫
Rk×Rk

exp(itbx)fB(b)db . (A.18)

is identified. The integral on the right hand side reads

∫
Rk×Rk

exp(itbx)fB(b)db =

∫
Rk×Rk

exp

(
it

k−1,2∑
r=0,s=1

br,sxr,s

)
fB(b)db

=

∫
Rk×Rk

exp

(
it
∑

r 6=i,s 6=j

(br,s + ar,sbi,j)xr,s

)
fB(b)db. (A.19)

Now the identification of the joint distribution of the coefficients in (2.12) follows by the ar-

gument in the proof of Theorem 2.1. Applying the same argument to ψ11 and replacing br,s

with br,s + ∆r,s yields identification of the joint distribution of the coefficients Br,s + ∆r,s +

ar,s(Bi,j + ∆i,j) with (r, s) 6= (i, j). Apply the deconvolution argument as in the proof of The-

orem 2.1. Then, the identification of the joint distribution of the coefficients in (2.13) follows.

This establishes (i).

Without loss of generality, suppose j = 1. Mimic the argument above and apply it to ψ10.

Then, it yields

∫
SZ|X

exp(itz)ψ10(z, x)dz = ‖x‖
∫
Rk×Rk

exp

(
it
∑

r 6=i,s 6=j

(ur,s + ar,sui,j)xr,s

)
fU(u)du, (A.20)

where U = (B1, B2 + ∆2). By the argument in the proof of Theorem 2.1, the joint distribution

of the following coefficients are identified:(
B0,1 + a0,1Bi,1, · · · , Bi−1,1 + ai−1,1Bi,1, Bi+1,1 + ai+1,1Bi,1, · · ·

B0,2 + ∆0,2 + a0,2(Bi,1 + ∆i,1), · · · , Bk−1,2 + ∆k−1,2 + ak−1,2(Bi,1 + ∆i,1)
)
. (A.21)

Applying the argument to ψ01 identifies the joint distribution of following coefficients:(
B0,1 + ∆0,1 + a0,1(Bi,1 + ∆i,1), · · · , Bi−1,1 + ∆i−1,1 + ai−1,1(Bi,1 + ∆i,1),

Bi+1,1 + ∆i+1,1 + ai+1,1(Bi,1 + ∆i,1), · · · ,

B0,2 + a0,2Bi,1, · · · , Bk−1,2 + ak−1,2Bi,1

)
. (A.22)

By the deconvolution argument as in the proof of Theorem 2.1, the joint distribution of the

coefficients in (2.15) and that of (2.16) are identified. Finally, apply the deconvolution argument

in Theorem (2.1) again to deconvolve the distribution of the coefficients in (2.14) from those
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in (A.21) and that of (2.16), which we identified in the previous step. This establishes (ii). �

The Definitions of the Sets in Corollary 2.2:

For each (y1, y2) ∈ {0, 1}2, letR1(y1, y2|b̃, δ̃, xc, zc) denote the set of values for Θ = (B1,1, B1,2,

∆1,1,∆1,2) under which the model predicts (y1, y2) as the unique PSNE under Assumption 2.2.

Similarly, for each (y1, y2) ∈ {0, 1}2, letR2(y1, y2|b̃, δ̃, xc, zc) be the set of values (b1,1, b1,2, δ1,1, δ1,2)

under which (y1, y2) is predicted as one of multiple PSNEs under Assumption 2.2. Following

an argument similar to Bresnahan & Reiss (1990,1991) and Tamer (2003), we have:

R1(0, 0|b̃, δ̃, xc, zc) =
{

(b1,1, b1,2, δ1,1, δ1,2) ∈ R4|zcj < b1,jx
c
1,j + b̃jx̃

c
j, j = 1, 2

}
, (A.23)

R1(0, 1|b̃, δ̃, xc, zc) =
{

(b1,1, b1,2, δ1,1, δ1,2) ∈ R4|zc1 < b1,1x
c
1,1 + b̃1x̃

c
1, z

c
2 > b1,2x

c
1,2 + b̃2x̃

c
2

}
∪
{
b1,1x

c
1,1 + b̃1x̃

c
1 < zc1 < (b1,1 + δ1,1)xc1,1 + (b̃1 + δ̃1)x̃c1,

zc2 > (b1,2 + δ1,2)xc1,2 + (b̃2 + δ̃2)x̃c2

}
, (A.24)

R1(1, 0|b̃, δ̃, xc, zc) =
{

(b1,1, b1,2, δ1,1, δ1,2) ∈ R4|zc1 > (b1,1 + δ1,1)xc1,1 + (b̃1 + δ̃1)x̃c1,

zc2 > (b1,2 + δ1,2)xc1,2 + (b̃2 + δ̃2)x̃c2

}
∪
{
b1,1x

c
1,1 + b̃1x̃

c
1 < zc1 < (b1,1 + δ1,1)xc1,1 + (b̃1 + δ̃1)x̃c1,

zc2 < b1,2x
c
1,2 + b̃2x̃

c
2

}
, (A.25)

R1(1, 1|b̃, δ̃, xc, zc) =
{

(b1,1, b1,2, δ1,1, δ1,2) ∈ R4|zcj > (b1,j + δ1,j)x
c
1,j + (b̃j + δ̃j)x̃

c
j, j = 1, 2

}
;

(A.26)

and

R2(0, 0|b̃, δ̃, xc, zc) = R2(1, 1|b̃, δ̃, xc, zc) = ∅ (A.27)

R2(0, 1|b̃, δ̃, xc, zc) = R2(1, 0|b̃, δ̃, xc, zc)

=
{

(b1,1, b1,2, δ1,1, δ1,2) ∈ R4|b1,jx
c
1,j + b̃jx̃

c
j < zcj < (b1,j + δ1,j)x

c
1,j + (b̃j + δ̃j)x̃

c
j, j = 1, 2

}
.

(A.28)

For each j ∈ {1, 2}, let δ−1,j denote a vector that stacks all components of δj except δ1,j. For each

(y1, y2) ∈ {0, 1}2, let R1(y1, y2|b̃, xc, zc) be the set of values (b1,1, b1,2, δ) under which the model

predicts (y1, y2) as the unique PSNE under Assumption 2.3. Similarly, let R2(y1, y2|b̃, δ̃, xc, zc)
be the set of values under which (y1, y2) is predicted as one of multiple PSNEs. These sets are
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given as

R1(0, 0|b̃, xc, zc)

=
{

(b1,1, b1,2, δ) ∈ R2+2k|zc1 > b1,1x
c
1,1 + b̃1x̃

c
1, z

c
2 > (b1,2 + δ1,2)xc1,2 + (b̃2 + δ−1,2)x̃c2

}
∪
{

(b1,1 + δ1,1)xc1,1 + (b̃1 + δ−1,1)x̃c1 < zc1 < b1,1x
c
1,1 + b̃1x̃1, z

c
2 > b1,2x

c
1,2 + b̃2x̃2

}
R1(0, 1|b̃, xc, zc)

=
{

(b1,1, b1,2, δ) ∈ R2+2k|zc1 > (b1,1 + δ1,1)xc1,1 + (b̃1 + δ−1,1)x̃c1, z
c
2 > b1,2x

c
1,2 + b̃2x̃2

}
R1(1, 0|b̃, xc, zc)

=
{

(b1,1, b1,2, δ) ∈ R2+2k|zc1 > b1,1x
c
1,1 + b̃1x̃

c
1, z

c
2 < (b1,2 + δ1,2)xc1,2 + (b̃2 + δ−1,2)x̃2

}
R1(1, 1|b̃, xc, zc)

=
{

(b1,1, b1,2, δ) ∈ R2+2k|zc1 < (b1,1 + δ1,1)xc1,1 + (b̃1 + δ−1,1)x̃c1, z
c
2 < b1,2x

c
1,2 + b̃2x̃2

}
∪
{

(b1,1 + δ1,1)xc1,1 + (b̃1 + δ−1,1)x̃c1 < zc1 < b1,1x
c
1,1 + b̃1x̃1,

zc2 < (b1,2 + δ1,2)xc1,2 + (b̃2 + δ−1,2)x̃c2

}
; (A.29)

and

R2(0, 1|b̃, xc, zc) = R2(1, 0|b̃, xc, zc) = ∅ (A.30)

R2(0, 0|b̃, xc, zc) = R2(1, 1|b̃, xc, zc)

=
{

(b1,1, b1,2, δ) ∈ R2+2k|(b1,j + δ1,j)x
c
1,j + (b̃j + δ−1,j)x̃

c
j < zcj < b1,jx

c
1,j + b̃jx̃

c
j, j = 1, 2

}
.

(A.31)

Let θ = (b1,1, b1,2, δ1,1, δ1,2). For each (b̃, δ̃, wc), the identified set FI,b̃,δ̃,wc for the conditional

density of θ in Corollary 2.2 (i) is defined as

FI,b̃,δ̃,wc =
{
f ∈ L1(R4)|f ≥ 0,

∫
f(θ | b̃, δ̃, wc)dθ = 1,∫

eit1(b1,1+b1,2)+it2(δ1,1+δ1,2)f(θ | b̃, δ̃, wc)dθ

= φB1,1+B1,2|B̃,W (t1 | b̃, wc)φ∆1,1+∆1,2|∆̃,W (t2 | δ̃, wc), ∀(t1, t2) ∈ R2
}
. (A.32)

We note that φB1,1+B1,2|B̃,W and φ∆1,1+∆1,2|∆̃,W are identified by Corollary 2.1. Hence, all re-

strictions on f are linear. The same comment applies to FI,b̃,wc defined below.

Let θ = (b1,1, b1,2, δ). For each (b̃, wc), the identified set FI,b̃,wc for the conditional density of
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θ in Corollary 2.2 (ii) is defined as follows:

FI,b̃,wc =
{
f ∈ L1(R2+2k)|f ≥ 0,

∫
f(θ | b̃, wc)dθ = 1,∫

eit1(b1,1+b1,2)+it′2δ̃1f(θ | b̃, wc)dθ = φB1,1+B1,2|B̃,W (t1 | b̃, wc)φ∆̃1|W (t2 | wc), ∀t1 ∈ R, t2 ∈ Rk−1∫
eit1(b1,1+b1,2)+it2(δ1,1+δ1,2)+it′3δ̃2f(θ | b̃, wc)dθ = φB1,1+B1,2|B̃(t1 | b̃, wc)φ∆1,1+∆1,2,∆̃2|W (t2, t3 | wc),

∀(t1, t2) ∈ R2, t3 ∈ Rk−1
}
. (A.33)

�

Proof of Corollary 2.2: (i) The counterfactual probability for (y1, y2) ∈ {0, 1}2 is

P(y1, y2|xc, zc, wc) =

∫
P(y1, y2|b̃, δ̃, xc, zc, wc)fB̃|W (b̃ | wc)f∆̃|W (δ̃ | wc)db̃dδ̃, (A.34)

where P(y1, y2|b̃, δ̃, xc, zc, wc) is the conditional probability of (Y1, Y2) = (y1, y2) given (B̃, ∆̃, X, Z,W ) =

(b̃, δ̃, xc, zc, wc), and we note that fB̃|Wf∆̃|W is identified by Corollary 2.1. By the definitions of

R1 and R2 and letting θ = (b1,1, b1,2, δ1,1, δ1,2), we have∫
R1(y1,y2|b̃,δ̃,xc,zc)

fB1,1,B1,2,∆1,1,∆1,2|B̃,∆̃,W (θ|b̃, δ̃, wc)dθ

≤ P(y1, y2|b̃, δ̃, xc, zc, wc)

≤
∫
R1(y1,y2|b̃,δ̃,xc,zc)∪R2(y1,y2|b̃,δ̃,xc,zc)

fB1,1,B1,2,∆1,1,∆1,2|B̃,∆̃,W (θ|b̃, δ̃, wc)dθ, (A.35)

for any (b̃, δ̃) ∈ SB̃|W × S∆̃|W , where fB1,1,B1,2,∆1,1,∆1,2|B̃,∆̃,W is the conditional density function

of (B1,1, B1,2,∆1,1,∆1,2) given (B̃, ∆̃,W ). This density is not identified but belongs to the

identified set FI,b̃,δ̃,wc in (A.32) due to Corollary 2.1 (i) and Assumption 2.6. Take an infimum

(and supremum) on the left hand side (and the right hand side) of (A.35) with respect to the

conditional density over FI,b̃,δ̃,wc . Then,

PL(y1, y2|b̃, δ̃, xc, zc, wc) ≤ P(y1, y2|b̃, δ̃, xc, zc, wc) ≤ PU(y1, y2|b̃, δ̃, xc, zc, wc). (A.36)

Multiplying fB̃|Wf∆̃|W , which is identified by Corollary 2.1, to these bounds and integrating

them yields the conclusion of (i).

(ii) Write the counterfactual probability for (y1, y2) ∈ {0, 1}2 as

P(y1, y2|xc, zc, wc) =

∫
P(y1, y2|b̃, xc, zc, wc)fB̃|W (b̃ | wc)db̃, (A.37)

where P(y1, y2|b̃, xc, zc, wc) is the conditional probability of (Y1, Y2) = (y1, y2) given (B̃,X, Z,W ) =
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(b̃, xc, zc, wc). By the definitions of R1 and R2 and letting θ = (b1,1, b1,2, δ), we have∫
R1(y1,y2|b̃,xc,zc)

fB1,1,B1,2,∆|B̃,W (θ|b̃, wc)dθ

≤ P(y1, y2|b̃, xc, zc, wc)

≤
∫
R1(y1,y2|b̃,xc,zc)∪R2(y1,y2|b̃,xc,zc)

fB1,1,B1,2,∆|B̃,W (θ|b̃, wc)dθ, (A.38)

for any b̃ ∈ SB̃|W . Note that the conditional density fB1,1,B1,2,∆|B̃,W belongs to the identified set

FI,b̃,wc by Corollary 2.1 (ii) and Assumption 2.6. The rest of the argument is then the same as

(i).
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