Theme-Based Literate Programming

A thesis
submitted in partial fulfilment
of the requirements for the Degree
of
Master of Science
in the
University of Canterbury
by
Andreas Kacofegitis

Examining Committee
Neville Churcher (University of Canterbury) Supervisor, Examiner

Robert Biddle (Victoria University of Wellington) Examiner

University of Canterbury
2002

To my little brother Christophoros and my nephews, Christopher and
Michael Davis.

Abstract

In this thesis we introduce and evolve the paradigm of theme-based literate
programming (TBLP). TBLP enhances on the literate programming (LP)
model, as invented by Donald Knuth in the early 1980s. TBLP provides
a generic model that copes with current and future software development
methodologies and practices. We show that through this extended chunk and
processing model, XML-based support, and a pipelined document develop-
ment process, an elegant and powerful system of exposition and development
is facilitated. We introduce the concept of themes as a solution to breaking
the tyranny of dominant decomposition and show how TBLP can provide

equal opportunity perspectives.

Table of Contents

[Chapter 1: Literate Programming] 2
(1.1 'The Comprehension Problem — What?. 2
(1.2 A Briet Overview of Program Literacy|)

(1.2.1 A Birds’ Eye Viewof LP|)
(1.2.2 The Chunkl 6
(.23 Ground-levell oL 7
(1.3 Human(e) Order vs. Computer Order — Psychological Ordering| 10
(1.4 Common Literate Programming Features| 11
[L.41 Chunks versus Macrog 11
(1.4.2 Pretty-printing| 16
[1.4.3 Cross-Referencing and Indexing| 16
(1.6 When is One Considered Literate?l 17
(1.6 'T'he Propaganda on Programming Literately| 18
(1.7 Summary| 18

[Chapter 2: A Review of Literate Programming Applications| 20

2.1 WEBl 21
2.2 Nowebl 23
23 Nuwebl 26
2.4 Funnelweblo 27
RE_CLPl . ..o 29
2.6 LP Integrated Development Environments| 30
BT Ted . . . oo 32
2.8 Spider| 34
2.9 Documentation Toold L. 35

291 Javadod 35

£.9.3

perlpod| 39

[2.10 Summary and Comparison| 41

[Chapter 3:

A Review of XML-Based Literate Programming|

[Applications| 45
(3.1 xmltangle] 45
B2 xmElE 47
B3 XIPl. . . . 49
3.4 LPMLI 49
3.5 XML . . .o 54
B xmlPl. 56
BT DBLPl . . o oo 53
[3.8 Summary| 59
[Chapter 4: Literate Programming’s Limitations| 61
4.1 Application Specific Shortcomings{. 61
[4.1.1 Debugging| 61
[4.1.2 The Three-Syntax Problem| 62
4.1.3 Monolithic Files 64
[4.1.4 Tangling Creates Tangled Code] 65
[4.1.5 Scoping| 66
[4.1.6 Object-Oriented Limitations| 67
[4.1.7 Primitive Cross-Referencingl 67
[4.1.8 Limited Output Formats| 68
4.1.9 Static Documentationl 69
[4.1.10 Disparity between Document Editing and the Format-|
ted Document| L 69
4.2 Model-Centred Shortcomings|. 70
[4.2.1 One Psychological Flow — Limited Readership] 71
[4.2.2 Asymmetric Processing Model 72
[4.2.3 Fixed Chunk Typing Mechanism — Real World Over-|

dingl. 76

11

4.3 Titerature versus Documentationl 79
4.4 Summary| 80
[Chapter 5: Theme-Based Literate Programming] 82
(5.1 Theme Weaving| 84
011 The Need for a Tool of Abstractionl 85
[5.1.2 Theme or Psychological Order?| 88

(5.2 Multiple Themes: Theme-Paths and Chunk-Nesting] 89
[5.2.1 Processing Model: Separation ot Content and Ordering] 90
[5.2.2 Enhancing Chunk Composition| 96
[5.2.3 Chunk Representationl 105
[>.2.4 'The Repository of Chunks| 106
(H.2.5 Theme Modello 107
[5.2.6 Processing Model: Blending Weave and Tanglel. 108

(5.3 TBLP Development Emphasises Expression over Development| 112
[>.4 Equality of Concerns| 113
(5.5 Multiple Distributed Webs| 113
[0.6 Summary| 114

[Chapter 6: Implementation of the Theme-Based Literate Pro-|

[eramming Model 115

6.1 v d . 116
[6.2 T'he Literate Document Development Process| 117
[6.2.1 The Repository — Chunk Composition| 121
6.2.2 XML Theme Source Document! 125

[6.3 'The Context-Based Development Environment|. 128
[6.3.1 The Repository Widget|. 130
[6.3.2 The Theme Tree Widget| 138
[6.3.3 The Theme-View Text Widget|. 145
[6.3.4 Editingf. oo 151

[6.3.5 The “Chunk Development” Panell 157

11

[6.3.7 Theme Functionality| 166

[6.3.8 Loading and Saving — Repositories, Themes, and Projects[166
6.4 Internal Architecturel 168
(0.0 Summary| 175

[Chapter 7: Document Output, Version Management, and Stor-|

l[age Concerns| 176

(.1 XML Theme Document! 176

[7.1.1 ~An Condensed Processing Modell 177

(7.1.2 Theme Document Validity| 179

[7.2 Theme Document Output: Formatting 179

[7.2.1 Is XSLT the Only Option? Other Technologies|. 179

[7.2.2 Stylesheet Development| 181

[7.3 Chunk and Theme Storage| 189

[7.3.1 Storage Options|. 190

(4 The ID attributelo 193

(r.4.1 Multi-Valued Chunk Identifiers) 195

7.5 Version Control — Evolution and Utilisation| 195

[(.5. 1 Themes of Versiond 196
F52 1 Ted Ties of Chiinks Ok Version Comd

fEroll. 198

[7.5.3 Theme-Based Version Controll 199

[7.6 Summary| 200

[Chapter 8: An Approach to the Practice of Theme-Based|

[Literate Programming| 201

8.1 Underlying Aims| 202
8.2 'TBLP in Software Engineering|. 202
8.3 Guidelines for the Goodl 203
[8.3.1 Target the Intended Audience| 203
[8.3.2 Atomic Chunk Mapping Must be Strong| 204

v

[8.3.3 Consider Physical Chunk Scope as a Cohesive Measure| 204

[8.3.4 Use the Consequence of Cohesion To Determine a Chunk’s|

Sizel . .. 205
[8.3.5 Distinguish Comments from the Source Code| 205
8.3.6 One chunk —oneideal. 206
[8.3.7 Chunk first, code later] 208
[8.3.8 Dissassociate intent from implementation|. 208
[8.3.9 Create Selt-Documenting Hierarchies| 212
[8.3.10 Use Smooth Transition Between Levels of Abstractionl. 213
[8.3.11 Be lazy — write selt-documenting chunk names| 214
[8.3.12 Avoid Temporal Commentary — Reduce Chunk Cross-|
pling| 216
[8.3.13 Chunkify Programming Language Abstractions 217
[8.3.14 Don’t Use Implementation-Level Commands as Chunk]
Substitutes oL 219
[Chapter 9: Future Workl 220
9.1 Extending the Model 221
9.2 Tool Support| 223
[9.3 Human Computer Interaction| 227
[Chapter 10: Conclusion| 230
[Appendix A: Thoughts on Literate Programming| 233
[A.1 Documentation — How Should It Function? 233
AT TP D - g Code AL |
.......................... 234
[A.1.2 Perspective Simplifies Complexity| 237
[A.1.3 LP Versus Plain Old Documentation/Comments| 239
[A.2 An Abstract Processl oL 240
[A.3 The Affect of Programming Languages on LP Abstraction| . . 241
[A.3.1 The Power Paradigm of Literate Programming|. 242
[A.3.2 Psychological Scope|. 243

[A.3.4 A Super-Language] 249

[A.3.5 LP as Program Description Language 249

[A.4 Unordered Programming Languages vs. Psychological Ordering251

[A.4.1 Are Programming Languages Literately Enabled? . . . 251

[A.b Mis-direction of Focus? 253

[Appendix B: TBLP Methods in Software Engineering] 254

(B.0.1 A Layered Approach to Themes| 255

[B.0.2 Cross-Sections of Layers| 257

(B.0.3 Flexibility of Approach| 259

(B.1 A Set of Example Themes| 260

[Appendix C: Example Literate Programs| 269

(C.0.1 Example NowebProgram| 270

[C.1 An exampleofnoweb| 270

[C.1.1 Counting Words|. 271

I(C.2 Personal Greeter 283

|C.3 Scoping (In)capabilities|. 285

|C.4 Identifier Cross-Referencing (nuweb)| 287

[Appendix D: Theme Enabling Literate Tools| 288
[D.1 Supporting Multi-Themed Requirements with a Traditionall

Literate Tooll 288

[D.1.1 The Journey to Enlightenment| 288

[D.1.2° Noweb as a Development Plattorm|. 289

(D.1.3 The Bubblesort Theme-Setl. 290

[D.2 Requirements for an Alteration to Noweb| 291

[D.2.1 Model Enhancement ot Noweb — The Initial Attempt|. 294

[D.2.2 A Summary of the Initial Implementation| 298

(D.3 Initial Model++: The Displacement Modelf 299

[D.3.1 Implementation of an Enhanced Model 299

[D.3.2 A Summary of the Second Implementation| 303

vi

[D.4 Does Chunk Displacement Suffice?| 305

(D.4.1 Duplicate Chunks| 306

[D.4.2 Non-fixed Chunk Types — Higher Order Documentationi308

[D.5 Theme 1 Example: Bubblesort{. 314
[D.6 Theme 2 Example: Bubblesort Evaluation| 321
[D.6.1 Test Environment] 324

[D.7 Theme 3 Example: Bubblesort Algorithm| 326
[D.8 NowebTheme Converter] 328
[D.9 NowebDisplacement Theme Converter Overview| 335
[D.10 NowebDisplacement Theme Converter Elide| 338
[D.11 NowebDisplacement Theme Converter Displacel. 344
[Appendix E: Theme-Based Version Control 353
[E. 1 Multi-chunk version controll 353
[Appendix F: Reverse Engineering| 356
[F.1 Psychological Scope — Its Aftecton LP| 356
[F.2 Object Orientation| 358
[F.2.1 Class-Level Chunking/. 359

[F.2.2 Method-Level Chunking| 359

[F.2.3 Abstract Class Chunking 360

(F.2.4 Interface Chunking 361

[F.2.5 Try/Catch Chunking| 362

[F.2.6 Sub-Method Level Chunking|. 364

[F.3 Imperative Languages| 364
[References| 367

vii

Acknowledgments

I’d like to thank my supervisor, Dr. Neville Churcher, for his friendly
and willing support, influential ideas and ever-available advice. I'd also like
to acknowledge Ben Schmidt for acting as my (in)sanity checker during the
initial stages of this thesis. Malcom Williams for his interest and the many
interesting and thought-provoking discussions that we shared. James McNeill
deserves special mention for his help in the reasoning of the CBDE’s editing
environment (but moreso for the loaves of bread that he supplied me with).
Yen-Rong Sun (Dan) for his interest and insightful comments and impor-
tantly, cheerful personality. Dr. Greg Albertson for his advice and eagerness
to help. Stacey Mickelbart repaired the broken English that was this thesis.
And finally Nadine Fea for her support and understanding throughout (if not

solely for her coffee making abilities).

viil

This is a good idea to be sure; if you don’t understand it, then I haven’t
explained it well. If you don’t like it, then you don’t understand it. —
Andreas Kacofegitis June 12, 2002 13:03:28

Chapter I

Literate Programming

.. my enthusiasm is so great that [must warn the reader to discount
much of what I shall say as the ravings of a fanatic who thinks he has
just seen a great light. — D.E. Knuth [45]

Donald Knuth coined the term literate programming (LP) in the same
manner as the naming of the 1970’s phenomenon structured programming,
which encouraged the development of readable and maintainable programs.
Much as no-one would admit to writing an unstructured program, he dared
anyone to admit writing an illiterate program.

In this chapter, we define literate programming; what it means to be

‘literate’. We define literate programming by describing:
e the mechanical process of developing a literate program.

e what LP offers over other programming paradigms.

1.1 The Comprehension Problem — What?

“Even first hand instruction doesn’t help, as Chaim Weizmann
found when he took a long Atlantic crossing with Einstein in 1921:
“Finstein explained his theory to me every day,” Weizmann said, “and

soon I was fully convinced that he understood it.” — [§]

“Program comprehension is the process of acquiring sufficient knowledge
about a software artefact so as to be able to successfully accomplish a given
task.” [15]

Literate programming facilitates the development of programs in an ex-
pression and order that a programmer would use to explain them to a fellow
programmer, colleague, or maintainer: the target audience may vary. In this
way, literate programming aids in the comprehension of software.

Maintenance programmers spend about half their time studying source
code and related documentation [61], and 30-90 percent of software expen-
diture, over the lifetime of a system, is spent on software maintenance. It
makes sense to seriously consider how to best communicate what the original
programmer was thinking.

Software development is a difficult task. According to Brooks [10], it re-
quires the programmer to possess both general semantic knowledge (program
language and semantics) and domain knowledge (knowledge about the area of
program application). The transfer of domain knowledge from the real world
to source code must be communicated to the reader. Experimentation has
suggested that programmers with good domain knowledge are better able
to understand a program than programmers with general semantic knowl-
edge [15].

If we assume a programmer’s instructions to the computer are complete
and correct, and therefore reliable, it must follow that mis-comprehension
can only occur because a reader is unable to understand what was previ-
ously communicated to the computer. This is likely due to the loss of domain
knowledge information, rather than general semantic knowledge. Figure [L.1]
exemplifies this scenario. The reader is unable to acquire enough domain
knowledge to accomplish his task, causing a break-down in communication.
If, however, the mental model of a software artifact is successfully gener-
ated, program comprehension is successful. Note that programmer A and
programmer B are separated by a period of time — LP does not attempt
to solve the immediacy of communication. Programmer B therefore could
well be programmer A some time in the future attempting to comprehend
his own work.

The ability to comprehend software is dependent upon the efficiency of
software comprehension. We determine that the efficiency of software com-

prehension is based on two criteria:

A

TIME

i

:>

Figure 1.1: Programmer A expresses the problem domain to the computer.
Because the explanation of the problem domain is directed towards the com-
puter, a loss of domain-specific information occurs — Programmer B mis-
comprehends the instructions.

1. the speed of software comprehension, and
2. the ease of software comprehension.

Much as the analogy of the shortest distance between two points may not
be the quickest to travel (by land — a boggy marsh may prevent this), so
does it stand with comprehension. The most concise of program source code
is not always the best understood. A map is often used as a navigational and
distance measure even though the destination may be visible. So is it the
case with software development — although the functionality of the software
is apparent, further, more abstract instruction is required as to its method of
implementation. The point? Program source code itself is not always its best
descriptor (or documentation); contrary to what others may suggest [62].

How can literate programming aid in the speed and efficiency of compre-
hension? Let us answer this question by considering how literate program-

ming attempts to aid software comprehension.

1.2 A Brief Overview of Program Literacy

Knuth provided the term psychological order, based on the idea that a com-
puter program should be aimed at humans rather than the compiler that
produces the program. Realising that the ordering of source code for a com-
puter is different to the ordering of source code for a human, he developed
the WEB literate programming tool (discussed in Section 2] on page 2] of
Chapter [2)), giving programmers the ability to promote comprehension by
both of these audiences.

Literate programming fundamentally facilitates program comprehensi-
bility by allowing the programmer to associate documentation with code.
Furthermore, it allows the author of a program to place these segments of
documented code in an order deemed pertinent to a reader’s understanding.

Literate programming is not a panacea for application development. It
does not necessarily make programming easy, nor does it attempt to. The
literate programming process makes one think — hard. Literate program-
ming is not a substitute for good design: a bad literate program will be worse
than its non-literate equivalent. Literate programming is not a programming
language per se, but rather, a technique — an approach to the practice of
software development.

Having sufficiently lowered the reader’s expectations, we can raise them
again by noting that literate programming promotes the development of qual-
ity software. By virtue of the imposed overhead of thought, good quality

literate programs ensue.

1.2.1 A Birds’ Eye View of LP

What exactly is LP? How does LP aid in software comprehension? This
section considers the semantic and physical capabilities that must be offered
by a literate enabled environment.

To allow programming literacy, the following requirements must be met:

granularity of expression: It must possible to divide the program source

code into discretely large or small units.

associated
with

Code

references

Figure 1.2: A documentation chunk has a relationship with a code chunk.
This relationship is implied. Together, they form an atomic chunk. A code
chunk may reference other code chunks.

multiple orders of exposition: It must be possible to present the pro-
gram source units in at least two orderings, so that units are presented
in a manner, or order, that promotes comprehension of the intended

audience.

abstract representation: It must be possible to document each program
source unit such that it is explained in a manner that satisfies the

reader’s comprehension.

1.2.2 The Chunk

Although terminology differs among literate tools, we choose to adopt the
definition of a segment of code or documentation as used by LP tool devel-
opers such as Norman Ramsey — a chunkL.

A literate program is composed of a number of chunks. A code chunk is
accompanied by a documentation chunk. A code chunk may reference any

number of other code chunks. Together, a documentation and code chunk

L Other tools, some of which are covered in Chapter [l use terms such as macro, module,
scrap, or section.

for an atomic chunk, therefore representing the same unit of abstraction.
Figure[[.2 on the preceding page illustrates this relationship. The referencing
ability of code chunks builds a tree-like structure that, when processed in a
depth-first order, outputs the source code. This relationship is implied from
the lexical ordering of documentation and code chunks in the source web.

A code chunk receives a label that describes the purpose of the code
chunk. That is, a chunk’s label describes what it does, e.g., <<variable
declarations and initialisations>> or <<calculate grand total>>.
At initial glance, a chunk may seem similar to a function or method; however
this is not always the case, as discussed further in Section [[.2.3]

A documentation chunk is able to explain, in further detail, how the pro-
grammer arrived at the contained segment of code, why it was implemented
the way it was, alternate avenues that may have been explored, and other
pertinent information aimed at the intended reader.

In literate programming, documentation is commonly written before the
code is developed. Therefore, a documentation chunk generally physically
appears immediately before a code chunk. This is termed as a prevenient
approach to programming practice [56]. This is opposed to a post-hoc method
of documentation; that is, documenting what the code is doing, rather that
what it is meant to do.

A code chunk may reference, or include, any number of other code chunks.
A code chunk may not, however, reference itself. The lexical ordering of code
chunks throughout the document is what determines the “psychological flow”

of a program.

1.2.3 Ground-level

In order for a literate tool to develop literate programs, it must possess funda-
mental capabilities/functionality. We describe, using a minimalist approach,
what a literate programming tool must offer. A maximalist approach would
warrant a more speculative perspective, something employed by tools such
as Leo (see Section 2.7]).

hierarchy of code chunks: It must be possible to develop an implicit hi-

erarchy of chunks, which is generally performed by referencing defined

7

atomic chunk

chunks of code.

In order to build such a hierarchy, it must be possible to reference a
chunk from within the body of another chunk. For example, the follow-
ing chunks (extracted from the greet.nw Noweb file in Appendix [C.2))

without their documentation or code content form:

<LK*k>>=
<<greet process>>
<<greet declarations>>
<<greet process>>=
<<ask what the user’s name is>>
<<read name from input>>

<<print greeting>>

Figure on page [I3 presents the hierarchy derived by following the

references made by each chunk.

code chunk implementation: code chunks can be defined anywhere through-

out the literate program.

chunk labelling: In order to reference a code chunk, it must have a unique
identifier. This unique identifier has traditionally been the chunk’s
name or label (our tool differs by introducing a separate chunk attribute

for chunk referencing — see Section [.4]).

granular code chunks: Chunks of all sizes must be allowed. As an ex-
ample, it should be possible to encapsulate the entire program source
code within one chunkZ. Conversely, it should be possible to generate
chunks of zero characters in size. While these extremes of granularity
may not be considered good practice, the “normal” granularity of a

chunk would occur somewhere in between.

2by no means considered good practice — discussed in Chapter § on page 2011

accompanying documentation: It must be possible to accompany a code
chunk with documentation. No restrictions should be placed on the size

of the documentation chunk.

Childs [I7] provides a list of requirements that he considers imply the
definition of a literate program. These add context to our formal definitions
and therefore aid in the understanding of what literate programming is. A

selection of the list is presented:

e Documentation should include an examination of alternative solutions

and suggest future maintenance problems and extensions.

e Documentation should include a description of the problem and its

solution.

e The system should be presented in an order of logical consideration,

rather than syntactical constraints.

When chunks of the program are presented in an order aimed towards
the human reader, the psychological order of the program is expressed. The
ability to nest code chunks and the ability to attach to them supporting
documentation is what differentiates literate programming from other pro-
gramming and documentation techniques. Without this functionality, a tool

is not literate enabling (or enabled).

Implicit Chunk Typing

Note that chunks are not explicitly typed. A chunk’s type is implied from
a delimiter, or the previous chunk’s terminating character. For example,
Noweb uses the ‘@’ character as a documentation chunk delimiter (and code

chunk terminator) and the ‘<<>>’ characters to begin a code chunk.

Documentation Changes With Code

Documentation and code chunks form an atomic unit; both normally are

an expression of the other, implemented in a different level of abstraction

9

weave

however. The atomic chunk is contained in the same source file, in a cen-
tral physical location. The physical proximity of documentation chunks to
code chunks ensures the likelihood of simultaneous update to both chunks
when an edit occurs. This decreases the chance of obsolete or inconsistent

documentation or code.

1.3 Human(e) Order vs. Computer Order — Psychological Or-

dering

We know, from Section [[.2.2] that literate programming combines documen-
tation with code. We also know that a code chunk may reference a number
of other chunks.

Literate programming allows the programmer to express the ordering of
code chunks to the human differently than he would express this ordering to
a compiler.

Figure presents a flow diagram that abstractly represents the nature
of a literate program. Each named rectangle represents a code chunk in a
literate program®. (The name of each rectangle is the name of the chunk.)

Two orderings of chunks exist:

weave ordering The top—down, or sequential, ordering of chunks, where
order is maintained by the connecting dashed line from one chunk to
the next, occurs in the order in which chunks are displayed in the lit-
erate document. Effectively, this is derived from the lexical ordering of
chunks in the source file. This is the “psychological order” suggested
by Knuth — the program directed to the human. The process of gen-

erating the literate document is commonly known as weaving.

tangle ordering The order in which the computer will receive these chunks
— the traditional order. This is indicated by the solid line that begins
from the “root” (rectangle labelled ‘“*’) chunk. The root chunk in this
example happens to be the last chunk in the literate program. Following

the thick directed line from chunk to chunk presents a different chunk

3 see Appendix for the Noweb source of this LP.

10

order to the compiler. The chunks are output to the source code file.

This process is known as tangling.

The process of tangling and weaving is shown in Figure [[L4l The literate
source can be found in Appendix

The ability of a code chunk to reference a number of other code chunks
essentially generates a tree-like structure of chunks. Although Figure [[.4]
represents the order of traversal of the chunks of code, Figure more
accurately reflects the nested nature of code chunks. It illustrates that the
body of a code chunk may be composed of other code chunks.

Note also that each edge in the tree is a reference to a chunk — chunk
definitions do not occur more than once in the literate source. A chunk
reference can, however. The referencing of chunks is known as composition
by reference.

Figure shows the nesting of chunks in greater detail. Note that
<<Process all the files>> contains references to several other chunks.
Each chunk is enclosed in angle brackets. Note also that program source
code may be interspersed throughout a code chunk (marker ‘7’ indicates the
content of the <<Process all the files>> chunk).

Summarising, an LP tool generally offers the ability to tangle and weave
a literate program. The tangling process produces source code. The weaving

process produces the literate document.

1.4 Common Literate Programming Features

1.4.1 Chunks versus Macros

The chunk is described in Section [L2.2l Some literate programming tools,
such as WEB and FunnelWeb (examined in Chapter) offer parameterised
macros. These are simply chunks that accept arguments. The arguments are
represented in the chunk body by substituting the argument name with the
argument value within the chunk defintion. These are similar to a C macro
that is expanded in the source code by the C pre-processor. The most basic
of chunks is the one that accepts no parameters. Unless otherwise stated,

the word chunk throughout the rest of this text shall refer generically to
11

tangle

greet process

1;

greet declarations

T
1
|
¥

ask what the user’'s name is

P ¥

read name from input

-

print greeting

.‘___

T
1
|
¥

ala
™

tangle »
source code

finclude <=tdioc_h>

int mainf(woidl
fdefine FUFFER_SIZE 123
char buffer [BUFI'ER_S IZE];

printf("Please enter wour name: "]1;
fflush(=stdout] ;
fget=(buffer, BUFI'ER_SIZE.- =tdin] ;
printf("Helle #=", buffer];

return 0;

]

weave L
documentation™ ™~ P

y prints & personslisd;
vy e lis sversl stigs

This pragraan pr

Thar proesss af §

[T —e wsial by el prevciss
yreed p T
I'he buffer skl | as g charmiter srrar, The aiee of the halfier

ks tnkem feom the BUFFER_BIZE miacro s that jv enn be chnnged easily

greel des
#def ine BUFFER_SIZE 138
char buf fer [BOFFER.SIZE];

Doty
baftar, e In chusk |
BFFEABIZE, wed in chimk 14

ther piening

ask ahal thee user's mame i
printf{"Please enter your mame: *}; fflush(stdout};

The fgets function is used o el the wer's nuse, fgoes wis dioss hocns

geta does not el

read name from fpud 14
fgeteitaffar, BUFFER.SIZE, stdin);

we Foffer Ibh and JINFEALSIZE L b,

Figure 1.3: The helloworld LP. Weave/psychological order (dashed arrow)
and tangled order (solid arrow) are shown on the left. Upper right is the

tangled source. Lower right is the woven document.

12

Literate

program
Tangle Weave
Source Literate
code document
lCompile L:ormc:’r
Formatted
Executable Document

Figure 1.4: The document development process.

-

- greet process

- ask what the user's name is
- read name from input

- print greeting

- greet declarations

[Y N o e R

Figure 1.5: Code chunks may be nested such that a natural tree hierarchy is
generated.

13

da { Set wp option slection 4a)= (3h)
which = "lwc";
/# if no option is given, print 3 values */
if (argec » 1 &k #argv[l] == *-*) {
which = argv[i] + 1;

argec--;
ATEVH;
}
file_count = argc - 1;
1 Uses file count 3¢ and which Se.
Now we scan the remaining arguments and try to open a file, if possble.
2 The file is processed and its statistics are given. We use a do ... while loop
becanse we should read from the standard input if no file name is given.
4h { Proce ss all the files 4b)= {3b)
arge--;
do {

(f a file is given, try to open *(++argv) ; continue if unsuccessful oa)
{Initialize pointers and counters Ga)
{ Scan file 6c)
{ Write statistics for file 7b)
{ Clase file 5hy
{ Update grand totals 7c)
/* even if there is only one file */
} while (--argc > 0);

Here's the code to open the file. A special trick allows us to handle input
from stdin when no name is given. Recall that the file deseriptor to stdin is (0
that's what we use as the defanlt initial value.

-

g — i { Variables local to main 3e}4= [3h) <% Ade
- int ‘fd = 0;
5 ¥

/#* file descriptor, initialized to stdin #/

4l i De finitions 2c)4+= {2a) aZc¢ Sew
#define READ_ONLY O
/* read access code for system open */

Defines:
6 — READ OWLY . usexd in chunk fa.

Figure 1.6: A woven extract of Ramsey’s wc LP. The markers illustrate
features employed by some literate programming tools. ‘1" and ‘6’: cross-
referencing of the uses and definitions of identifiers. ‘2’: demonstrates a doc-
umentation chunk. ‘3’: demonstrates chunk referencing, ‘4’: shows a chunk’s
reference marker, ‘5’: a chunk’s name and cross-reference to where its initial
definition occurs, ‘7’: illustrates the body of a code chunk, ‘8’: cross-reference
details indicating in which chunks the chunk is referenced, and ‘9’: cross-
references to an additive chunk’s definitions.

14

both parameterised and parameterless chunks. When specifically addressing

parameterised chunks, we shall use the term macro.

Additive Chunks

Many literate tools allow a code chunk to be augmented throughout a pro-
gram. The resulting code chunk is a concatenation of all like-named code
chunks in order of implementation. Thus, code chunks such as the <<Variables
local to main>> chunk in Figure on the preceding page are combined
to create one segment of source code, and are termed as additive. Note the
‘3¢’ identifier after the chunk’s name which is a cross-reference to the chunk’s

Y

initial definition. Also note the ‘+=’ symbols, which indicate that a chunk
is additive. The chunks that comprise <<Variables local to main>> can
be found in 3c and 5d as denoted by the cross-reference information for that

chunk (indicated by marker ‘9’ in Figure [[.6]).

Labels and Abbreviated Identifiers

Using a chunk’s name, one is able to cross-reference or reference a chunk in the
body of another chunk. Thus, the name of a chunk is a chunk’s identification
(in the case of additive chunks, multiple chunks can possess the same name).
Furthermore, the chunk’s name is displayed in the resulting literate document
(as illustrated by marker ‘5’ in Figure [L6]).

Some literate tools provide the ability to use abbreviated identifiers so
that if the abbreviated name of a chunk is unique, the literate tool will re-
solve the reference. For example, a chunk may be named “alphabetically
sort all elements”. Referencing this chunk may be possible by simply enter-

9

ing “alphabetically sort...” if “alphabetically sort” uniquely resolves to the
intended chunk. Note the points of ellipses, which commonly indicate that

the identifier is abbreviated.

15

1.4.2 Pretty-printing

Language-aware tools such as WEB offer pretty-printing of code. Pretty-
printing is a point of debate in the literate programming® community. Many
argue that pretty-printing distorts source code such that it becomes unrecog-
nisable and difficult to read. Fox [26], in particular comments that pretty
printing can be far removed from its initial presentation in the source file
that it becomes unrecognisable. Others argue that pretty-printing offers the
ability to accentuate important parts of the source and thus makes it easier
to comprehend. Many of these issues are influenced by the nature of the
pretty-printer (some pretty-printers, for example the a2ps package simply
highlights key words, rather than combining and replacing symbols).

It is our opinion that pretty-printing, while making source code visually
pleasing, suffers because it is an automated process — which also happens
to be one of its stengths. As such, it is unable to highlight semantically
important areas of interest.

Chunks are abstract entities that capture a point of interest in the pro-
gram. They tend to be smaller segments than those of methods or functions.
With the help of an abstract and definitive chunk name and perhaps sup-
porting documentation, it is usually unnecessary to use pretty-printing to
highlight important areas of code. Pretty-printing is useful when a large
amount of code is presented in sequence; it is then able to uniformly repre-

sent syntactic features of the programming language.

1.4.8 Cross-Referencing and Indexing

Cross-referencing of chunks facilitates navigation throughout the document.
In a woven document, it can be used to follow the computer-oriented or-
der rather than the psychological flow imposed by the author. Figure
illustrates chunk’s <<Variables local to main>> cross referencing details.
Marker ‘4’ indicates that ‘4¢’ is the chunk’s referencing identifier. Marker ‘8’
indicates in which chunk’s <<Variables local to main>> is referenced.

Locating ‘3b” will reveal this information. Marker ‘3’ illustrates a number of

4 early mailing lists contained lively debate

16

chunk references. Each chunk reference displays the referenced chunk’s name
and a cross-reference to its place of definition.

The declaration and use of identifiers allows the programmer to identify
the scope and manipulation, or use, of an identifier. Language-aware tools
usually generate this information automatically. Language-unaware tools
rely upon the author of the program to manually signal the declaration of an
identifier. The tool then uses a heuristic approach to find the uses of each
identifier.

For example, Figure [L6] markers ‘1’ and ‘6’ show the definition and uses

of identifiers, respectively.

1.5 When is One Considered Literate?

What should a literate program look like? How should it read? What must
be communicated by the author to the audience? In Chapter B we examine
these questions and propose a number of guidelines for writing ‘good’ literate
programs. This section considers how a literate program should read, rather

than how it should be written.

Undue effort on the presentation of the documentation should not de-

tract from the quality of the program.

Bentley [6] and Knuth assert that a literate program should resemble a
novel-like entity that can be read from cover to cover; a work of literature;
something that can be read whilst sitting in a “comfortable chair” whiling
the evening away. Certainly the opportunity is available, through literate
programming, to develop interesting documentation; however, the emphasis
should ultimately lie in the quality of the program being developed. Effective
documentation is necessary and important to the comprehension of a pro-
gram, but should not be at the expense of the program’s quality. The two are
intimately related; however, the program is usually the ultimate expression

of concept?, and documentation the supporting agent.

5 unless, for example, a dissertation is the goal

17

We therefore suggest that a literate program is one that presents the
reader with the correct domain model such that he is able to understand
and extend the program effectively and efficiently. This would imply that
in order to correctly transfer domain knowledge, a literate program is not
necessarily read in its entirety. It could be (and is most likely) read as a
reference source. For example, the reader may need to alter one particular
part of the program. He therefore would need to know how that part of the
program works, and how it affects the program as a whole. Enabling this
understanding would allow the programmer to effectively and correctly alter
the program — without reading the entire literate program.

In summary, we consider literate programming to be the act of develop-
ing programs using psychological ordering, cross-referencing, and supporting
documentation to capture and present information that helps the reader af-
firm a complete mental model in order to alter, enhance, and/or understand

the program.

1.6 The Propaganda on Programming Literately

Little research has been performed on the effectiveness of LP in real-world
scenarios. Although research suggests [71), 20] suggest that LP is an effective
means for software development, and can help to reduce the learning curve
required to understand programs, the wider programming community has
been reluctant to adopt LP. This in itself does not suggest that LP is an
ineffective programming medium. It does, however, convey the need for
supporting tools and perhaps more concrete research on its effectiveness as

(1) a software development medium and (2) a medium of comprehension.

1.7 Summary

In this chapter, we have defined literate programming; at both the physical
and semantic level. We have considered its importance to the problem of
software comprehension. The rest of this dissertation is focused on delivering
and realising our enhancement on the LP paradigm. Our work in this area

evolves the concept of theme-based literate programming (TBLP).

18

Before introducing TBLP, and its physical realisation in Chapters[hland
respectively, we consider existing literate and documentation tools — Chap-
ter 2 focuses on common literate tools, Chapter [3 focuses on XML-based
literate tools — in order to determine both their strengths and weaknesses.
Chapter F] examines these weaknesses.

From the analysis of LP’s weaknesses and shortcomings, we propose, in
Chapter Bl a new set of models for literate programming, and thus, establish
the paradigm of theme-based literate programming. We also introduce a
framework for theme document development. Chapters [0l and [7] demonstrate
and discuss the implementation of our TBLP model.

Finally, Chapter [§ presents a styleguide for theme-based literate program-
ming.

Our work on TBLP extends that presented in [39]2.

6 Accepted

19

Chapter II

A Review of Literate Programming Applications

In this chapter, we introduce the reader to literate programming and
documentation tools and the functionalities that they offer. The process of
literate program development was discussed in Chapter [Understanding
this process aids one’s appreciation of the approach to developing literate
programs that the tools covered in this chapter enable.

A range of literate programming applications exist (an up-to-date list can
be found in [49]). There have been many attempts to improve upon Knuth’s
prototypical WEB. We first examine WEB and then investigate the offerings
made to the literate programming paradigm by these other tools. Specifi-
cally, Noweb, Nuweb, FunnelWeb, CLiP, Jaba, Leo and Spider are investigated.
We also investigate documentation tools. Namely, Javadoc, elucidative pro-
gramming, and Perlpod are examined.

In choosing a subset of literate programming tools, the following factors
were considered: originality of approach, contribution to LP, specific archi-
tecture, and functionality offered. We remain aware that other good LP tools
do exist.

Knuth wrote in his introductory paper on literate programming [45] that
LP is not suitable for the masses. Specifically, he targeted the computer
scientist as a potential user of literate programming. Many of the tools that
were based on WEB focused on a different user: the programmer. This should
be kept in mind whilst reading the comparisons of available tools. Tools may
make “improvements”, but many of these improvements are a simplification
of WEB. Through simplification, however, functionality can be reduced.

WEB is introduced first because it archetypically encompassed many of

the functionalities available from other LP tools. Thereafter, no order of

20

significance is given to the ensuing discussion of each tool.

2.1 WEB

WEB was developed by Donald Knuth in 1983 [44] following several proto-
type systems since 1981. WEB itself is also considered a prototype tool. It
is used to document programs written in the Pascal programming language
and uses TEXT as its document formatter. Knuth, however, suggested that
potentially any combination of document formatting language and program-
ming language could be used. Although prototypical, WEB contains many
of the concepts common in today’s LP tools. Anecdotally, it was developed
before the term became a popular one for the internet.

Knuth intended the editing of a literate program to be the sole means
of program development. To enforce this intention, he made the by-product
of WEB’s tangling process (the program source code) essentially unreadable;
identifiers are shortened and altered to upper-case equivalents, all comments
are removed from the program source code, and entries of the relative posi-
tions of the source code in the literate program are added. This unreadable
code helped enforce what Knuth saw as one of the ideals of literate program-
ming — the literate program provided the sole means of access to program
development. As such, the programmer is forced to develop the literate pro-
gram without referring to the raw program source code at all. We do not
adhere to this point of view and address it in Section [L.5l

WEB supports the use of ‘CHange’ files. These are used to facilitate
the update and maintenance of a program. The idea, which has since been
disregarded in LP tools, warrants special mention. A CHange file remains
external to the literate program. Updates to program source code may be
entered into this file. Upon tangling and weaving, these changes are reflected
in the ensuing documents. Multiple CHange files may exist and may be used
conditionally. It is therefore possible to develop a single program that can

be adapted to run under several different environments by using multiple

L As an aside, Knuth also wrote the programs for TEX and METAFONT entirely in
WEB, eventually publishing them in book form [46], [47]. These are probably the
largest literate programs ever published.

21

CHange files. Supporting tools such as webMERGE exist, which aid the
merging of CHange files with the literate source.

Brown and Childs [11] realised CHange files” importance when developing
their prototypical GUI (graphical user interface) environment for LP. They
considered their use as ‘good’ practice, as did Sewell [77].

WEB’s functionality is driven by the use of directives (27 in totalZ). Of

these directives, WEB provides two levels of macros. We define these as:

1. non-parameterised

2. parameterised

Both macro types may be referenced as abbreviated identifiers (see Sec-
tion [[L4.T]). Non-parameterised macros are akin to the ‘chunk’, as discussed
in Section [L4.Jl Parameterised macros possess the added ability to pro-
cess an argument, and present this argument anywhere in the body of the
macro. In offering program macros, WEB provided support to compensate

for shortcomings in the Pascal programming language [41), [45]:

it is impossible to have a PASCAL array whose bounds are
‘0..n — 17, or to write ‘20 + 3:” as the label of one of the cases in
‘case x + y’: WEB’s numeric macros make it possible for TANGLE to

preprocess such constraints [45].

Being Pascal-aware (possessing syntactical and semantic knowledge of
Pascal) allows WEB to:

e pretty-print and type-set program source code (code chunks), and
e automatically index and cross-reference identifiers in code chunks.

Being language specific, however, prevents the programmer from devel-
oping programs in other programming languages. Also, because TEX is the

document formatter, no other formatter may be used.

2 This abundance of directives, however, drove the development of the Noweb LP tool

(Section [2.2))
22

Pretty-printing is performed automatically, and although there is some
basic functionality to override aspects of this pretty-printing, it is otherwise
impossible to alter the nature of the layout and presentation.

WEB'’s restrictions on the programming language and document formatter
prompted the development of a family of LP tools. Some were based directly
on WEB and used a fixed formatting and programming language. WEB
directly affected the development of CWEB, and later FWEB, (each of which
cater to an increasing variety of programming languages — C and (later)
C++, Fortran, and Ratfor). Each implementation, however, was restricted
to a set of programming languages.

Although WEB’s output is limited to ETEX-based documents, the latest
CWEB supports output to PDF (portable document format), and navigatable
cross-referencing is achieved through hyper-links.

Some programmers were intolerant of language restrictions. This sparked
the creation of language-neutral, or language-unaware, general purpose liter-

ate programming tools, such as Noweb, FunnelWeb, and Nuweb.

2.2 Noweb

Noweb [70] is a popular LP tool. Its utilisation, along with CWEB, in GUI
tools such as Leo (covered in Section 7)) and LyX (see Section [2.6), is
perhaps, a testament to its popularity. It was developed by Norman Ramsey
and derives its name from an attempt to overcome some of what Ramsey
considered to be shortcomings of the WEB family [68] — hence ‘no web’.
Noweb addresses the following WEB deficiencies:

e language dependencies,

e a complex array of directives — too much effort was required to master
WEB

Y

e unadaptable pretty-printing, and

e the inability to use KTEX constructs.

23

Fundamentally, Ramsey’s argument was that WEB makes the exploration
of literate programming difficult [67]. He did not dispute the effectiveness of
WEB as an LP tool, but rather as an explorative aid.

Noweb provides a solution to these shortcomings by providing program-
ming language independence, a smaller set of directives, and no enforced
pretty-printing of source code. Perhaps coinciding with the attempt to sim-
plify and minimise the set of directives, Noweb offers an extremely extensible
pipeline architecture.

Noweb’s pipeline architecture follows the UNIX pipeline model. The
pipeline approach allows the output of one process to be treated as the input
of another process. This architecture allows ‘expert’ users to create filters
through which Noweb code is passed and altered. Such filters may take the
form of specific language cross-referencing agents (Chapter Bl discusses the de-
velopment of a set of Noweb filters as an attempt to enhance the LP model;
Appendices — [D.11] contain the source code for these filters). Pretty-
printing is also enabled through use of a filter. Indeed, Pretzel [30] is a tool
that has been specially adapted to offer such functionality®. This pipeline
architecture provides an extremely flexible manner in which to add function-
ality to Noweb whilst keeping the directives used in literate program source
code minimal.

A filter may be developed in any language (awk and Perl are examples),
so long as it is executable on the necessary operating system, and obeys the
relatively simple syntactic constraints set by Noweb [66]. Noweb distributions

come complete with a standard set of filters, two of which are:

disambiguate: allows abbreviated chunk identifiers.

elide: removes a code chunk from the literate document.

3 Pretzel itself is a tool that can be used not only in Noweb implementations, but as a
general purpose pretty-printer. Given a grammar and layout rules for that grammar,
Pretzel generates a module that is able to process the input source code file and output
a pretty-printed BTEX version. With some difficulty, it is possible to extend Pretzel
to cater to formatting languages such as Troff. Implementations currently exist for C,
Java, and Pascal.

24

Noweb permits identifier cross-referencing; it provides a framework and
sample filters for a wide range of languages. This cross-referencing can be
performed either manually (through use of the @_%def directive), or auto-
matically via a filter (that automates the inclusion of the @, %def directive).
A language-independent heuristic is used to locate occurrences of known
identifiers. Using such a heuristic can produce falsely-found identifiers, while
others may not be found at all. For example, Noweb will consider the two
identifiers varl and varl-temp to be the same, which is incorrect.

BTEX is generally used as the document formatting language; however,
Troff, HTML, or TEX are also supported. Although a diverse set of format-
ting languages may be used, the set is still fixed, thereby rendering the use
of a markup language such as XML impossible.

Noweb inherently supports multiple languages because it has the ability
to specify which code chunk is the root chunk when tangling the Noweb file.

Noweb does not support multiple input files. However, this limitation can
be circumvented utilising the document formatter’s file inclusion capabilities.
For example, use can be made of KTEX’s \include directive to include other
Noweb literate program segments. This method has restrictions, however.
Although it is possible to generate identifier references and indices that span
multiple documents (using the noindex command), it is not possible to refer-
ence chunks from different files. A chunk’s scope exists solely within the file
in which it is defined. Therefore, multiple file support is very limited, and is
purely enabled or disabled by the formatting language used.

Noweb cannot weave documentation that spans across several separate,
linked documents. For example, HTML output is constrained to one page —
cross-linking among pages is not possible. The scalability of this approach is
not feasible for large programs. Tools such as LaTeX2HTML, however, can
be used to convert BTEX documentation to HT'ML, providing a method to
circumvent the problem.

Noweb is available as a cross-platform (both *NIX and Microsoft Win-
dows) distribution, but requires the installation of the Icon programming

language.

25

Future improvements planned for Noweb? are:

e the ability to cross-reference among documents,
e casier porting and installation, and

e improved performance.

2.3 Nuweb

Nuweb?, developed by Preston Briggs [9], receives its inspiration from a num-
ber of LP tools: WEB, FunnelWeb, and Noweb. Simplicity is its emphasis.

Whereas Noweb’s extensibility lies in its command line options and filters,
Nuweb provides, as do most other tools, extensibility via in-source directives.
Nuweb uses directives to perform such operations as source code output (tan-
gling) to multiple files (utilising the ‘@0’ directive). Although multiple file
tangling is allowed, multiple file weaving is not; it is impossible to split wo-
ven output into separate, interlinked files. Nuweb is programming language
independent and utilises KTEX as its document formatter.

Source files are output by Nuweb only if the newer version differs from
the existing version. This process can be overridden, but can save significant
time spent on compiling source code that has not changed since the last
compilation.

Nuweb allows the programmer to manually define identifiers. As with
Noweb, a heuristic-based approach is then used to find occurrences of this
identifier. However, Nuweb does not perform cross-referencing of identifiers,
so identifier definitions can only be used for indexing purposes. Like Noweb,
this heuristic is not infallible. For example, the variable var in the expression
++$var is not recognised and thus not included as part of the index. Code
chunks are automatically cross-referenced.

The output of indices of file names, macros, and identifiers is optional

and can be included anywhere in the document.

4http://www.eecs.harvard.edu/ nr/noweb/plans3.html
5 which is itself a very good written example of LP

26

Nuweb’s relatively simplistic design takes the form of one monolithic C
program and allows it to be ported easily to different operating systems. As
such, it is not extensible beyond its own fixed functionality. For example,
Nuweb does not offer pretty-printing, and there is no facility to attach a
pretty-printing module (unlike Noweb’s extensible pipeline architecture, for
example).

Nuweb allows multiple input files to a maximum nesting of ten. Included
files are simply expanded within the parent file. This allows cross-referencing
among files.

nutweb [35] is an improvement on Nuweb and enhances its output capa-
bilities by enabling the output of TEX, as well as BTEX. It also provides pa-
rameterised macros, abbreviated identifiers, and the referencing of macros.
Additionally, it allows the layout of side-by-side code and documentation.
nutweb was developed by John Hurst of Monash University, Australia. xLP
was also developed by John Hurst and is an extension of nutweb that converts
XML-oriented Nuweb documents and outputs documentation in HTML. xLP
is discussed in Section B.1] on page 43l

2.4 Funnelweb

FunnelWeb [90] introduces its own typesetting language. Using this language,
the programmer is able to disassociate himself from a third-party document
markup language and use the macros provided. With this neutral approach,
the programmer is then able to select either HTML or TEX as the output
document set.

FunnelWeb alleviates, but does not solve the 3-syntax problem, by provid-
ing its own translatable set of typesetting commands. The 3-syntax problem
requires the author to utilise (1) a programming language, (2) a documen-
tation language, and (3) an LP language (discussed further in Section F.1.2))
and thus, arguably, places undue overhead on the LP author.

FunnelWeb’s typesetting commands are translated to either HTML or TEX
as selected by the programmer. This set is limited, however. It provides only
a subset of the typesetting commands offered by the other layout languages;

for example, the inclusion of graphics and figures is not supported. It is

27

possible to combine FunnelWeb-specific formatter commands with those of
other formatting language commands. The ability to bind to a particular
typesetter has a negative effect on portability to other typesetters, and thus
counters the attempt to keep FunnelWeb markup-neutral.

The FunnelWeb typesetting language contains a limited set of macros that

allow:

e new page headers,
e sectioning commands, and

e emphasis and literal commands for in-text typesetting.

Unlike in Noweb and Nuweb, macros can occur anywhere throughout the
literate program. That is, FunnelWeb allows the development of macros
within documentation chunks by allowing the programmer to insert documentation-
specific comments — a functionality in many other LP tools. The ability to
write comments allows the author to make informal notes that are not pre-
sented to the reader of the tangled or the woven document.

Like Nuweb, FunnelWeb has nested file support to a maximum depth of
ten, and source code may be output to multiple files.

FunnelWeb macros (which can accept a maximum of nine arguments)
make use of the ‘@ character to delimit macros. Because macros may oc-
cur in documentation, in typesetting commands, and in chunk-related macro
definitions, a FunnelWeb program tends to present a rather littered look (es-
pecially to the untrained eye).

If the programming language coincidentally makes regular use of the
macro delimiter symbol, FunnelWeb allows the programmer to define his own
delimiter symbol to be used throughout the program. This helps reduce the
clutter that occurs when the delimiter symbol is also a commonly used sym-
bol in the program and documentation source. This approach can, however,
detract from the comprehensibility of the literate program — a programmer
used to reading a FunnelWeb program delimited by the standard @ symbol
may find the # symbol, for example, difficult to read. Another downfall to
this approach is that the code might not be reusable. If a program uses the

28

default @ symbol, and imports a file written for another literate program,
which has been delimited using a # symbol, the programmer will be forced
to convert one of the files (which can have further repercussions upon the
reusability of the literate programs).

As default behaviour, macros (code chunks) can be defined and used once,
and once only; this contrasts with WEB, for example, which allows the use
of a chunk as many times as necessary. This default behaviour, which allows
for accurate error messages, may be overridden by the author by explicitly
stating that a particular macro may be used many times (@M), or not at
all (@Z). Macros can also be overridden, so that a particular macro can be
defined more than once, by adding up to five ‘@L’ symbols onto the end of
the macro. The macro with the fewest number of ‘@L’ symbols is used in the
tangling and weaving processes. Code chunks are additive.

Pretty-printing and identifier cross-referencing is unavailable in Funnel-
Web. FunnelWeb’s linear numbering of chunks in its literate documents can
make cross-referenced chunks difficult to find. Furthermore, code chunk def-
initions are encased in parentheses, which can give the reader the impression
that each chunk is correctly scoped and functionally independent.

FunnelWeb is well documented. A complete set of documentation® sets

exist for three target audiences — tutorial, developer, and reference.

2.5 CLiP

CLiP [87,186] (Code from Literate Programming) is an attempt to free literate
programming from specific document formatters, thereby enabling program-
mers to use commonplace document editors such as word processors? and text
editors to develop literate programs. The text editor used must be capable
of saving files in a text-based format (most editors are).

CLiP, like FunnelWeb, allows a user-definable token set to delimit docu-
mentation from CLiP parsable code.

CLiP is essentially a tangling agent. No explicit weaving takes place;

therefore, the literate program itself is also the final literate document. This

6 See www.ross.net/funnelweb/ for an internet-based version.
" The benefits of writing program source code in a word processor are debatable.

29

is an interesting approach because it has the derived benefit of solving the
3-syntax problem. One might argue, however, that CLiP has a distinct disad-
vantage because it is impossible to add formatting to documentation chunks
in any way. This is unfortunate because word-processors such as Microsoft
Word offer strong WYSIWYG (what you see is what you get) support. In
addition, source code cannot be pretty-printed.

Navigation within the document can be difficult due to CLiP’s inability
to support hyperlinks within the document. Programmers cannot utilise the
hyperlinking abilities of word processors such as Microsoft Word because they
require the markup to be saved with the final document, which would disrupt
transferability between text editors. Emacs users may find its bookmarking
system is useful to overcome this problem.

One interesting feature is the ability to suppress comments when tangling
CLiP. This can be beneficial when extracting data files from literate code, for
example.

An extension to CLiP, CLiPPrep®, provides macro support.

2.6 LP Integrated Development Environments

Several attempts at developing LP IDEs (integrated development environ-
ments) have been made. Some were developed as explorative aids to pro-
gramming, others to effect visualisation techniques, and still others to facili-
tate LP.

Applications range from applying GUI extensions to existing command
line systems. For example, Cockburn and Churcher [20] utilise Noweb as
their tools” LP language to incorporate novel visualisation techniques such
as fisheye views [28], degree of interest, and holophrastic [81] chunk display.
Jaba? [19] also supports direct-manipulation such that common LP instruc-
tions like chunk referencing are automated via the GUI. Other techniques,
such as Osterbye [58] and Trygve Reenskaug and Anne Lise Skaar [74], utilise
a programming environment, such as Smalltalk, to develop Smalltalk-based

LP IDEs (a programming environment within a programming environment).

8http://www.ddj.com/ftp/1997/1997.06/1iterate.zip/
9 Jaba only allows literate programming at the chunk level

30

= w0

hle Edit Insert Fnd Options View
[Ed] L_“j LUeLridrduuns

=) WidgetActivationk :’f*((l]ecilar;ations))i
WidgetActivat S e

%| show_scoreS
" £ f#{{HidgetActivationHethods>>{

%| enable_bution ffdoc{{HidgetActivationDoc>>§
- e s
4] disable_uCell S
%Veset_huard -
i protected void shou_scoreSheet { pr int ganeHum) £
ScoringMethods Tt

GuiConstructionM

pr‘q};%&ﬂgj.d enable_buttons { pr int gameHum} £
GamePlayingMeth ‘ ’
@ GuiYahtzee protected void disable AllCells) §
%|main protected woid reset_board(} f
e _a
E o i ¥

Figure 2.1: The Jaba LP editing environment. The left window displays a tree
view of the literate program (in woven scope). The right pane demonstrates
chunk holophrasting.

Most tools support, to varying degrees, navigation through hyperlinked
chunks. Thus, a chunk’s definition and implementation are cross-referenced.
Brown and Childs [II] WEB Interactive Environment cross-referenced and
therefore hyperlinked identifier definitions and uses. The degree of navigation
allowed is commonly dependant on the IDE’s support for the programming
language.

Many tools also present a separate hierarchical view of the literate pro-
gram, often as a tree-based representation of the tangle order of the docu-
ment. The text-based view displays the literate program, and therefore, the
psychological ordering of chunks.

Other attempts at IDE development are truly exploratory, such as that
of Gurari and Wu [32], who utilised pre-determined fonts to determine a
chunk’s type. This technique could be used to develop a comment-style
chunk by simply marking up the chunk with a non-conforming font type,
such that it is not processed in either the tangle or weave operations.

Extensions to common editing environments, such as Emacs, exist; en-

31

vironments for Noweb, Nuweb, and the WEB family facilitate literate pro-
gramming. The noweb-outline.el package generates outlined, hierarchical
views of the tangle order of a literate program, for example.

LyX [2], the BTEX word processor (since release 1.04) supports Noweb-
based literate programmingtd .

A significant and relatively successful contribution to LP IDEs is Leo,

which remains under active development (version 3.2 released in August

2002).

2.7 Leo

Leo [72] is a GUl-based LP tool. It supports Noweb and CWEB literate
programs. Literate programs are presented as trees of nodes. These nodes
form what is aptly called an outline of the literate program. Each node in
an outline displays either a chunk’s name, or the name attributed to the
outline node. The hierarchical view offered by an outline helps to establish
an overview of a literate program. Each outline node is edited and viewed in
the separate text editor as illustrated in Figure on the next page.

Aside from developing new nodes, outlines may also be composed by copy-
ing and cloning nodes. Copying an outline node permits the author to edit
the copied node without affecting the original node’s content. Conversely, a
cloned outline node’s edits affect all other clones.

The concept of cloning is unique to Leo, and allows multiple views of a
literate program to be composed. Given that a clone’s edits affect all other
clones, literate programs may suffer the penalties of decontextualised edits
(see Section [6.3.4]).

Leo decouples the hierarchical representation of a literate program from
the nested hierarchy of chunks. Thus, a chunk <<a>> may reference chunk
<>, but may contain outline node c as its immediate child in the outline.

Nodes may be moved about (up, down, left, right) the outline tree as
necessary. Nodes are viewed and edited as separate entities of a literate

program.

10 http://www.sad.it/~jug/lyx/lyxdoc/Extended/ documents LyX LP support

32

Li * C:\DownloadzileoileoDocs.leo

File Edit Outine ‘window Help
L 0| Commands Utilities ;I

o/ The LeoPywindow clazs

o/ The Preferences class

o The vnode clasz

------- ol [High-level routines)
[o/ Appendices
Bl [=1§ H =llo "W arld

--------- o << includes »»
--------- o/ << methods »»
[0| Sample Code

- o FileComnmarnds

------- o FileCommatds. cpp

: T ag List routines
o/ deleteT aglist
o/ getitag
o newt'tag
Export
Irmpaort
£ Reading
....... writing

iz node shows how to use LEO to create source files.

iz body text defines the top lewel code of the file
specified in the @root command below. The two child

odes contain more code.

0 create the file hello.c in the current directy just

ake sure this headline iz zelected and choosze the
Tangle commatnd from the File metm. When you look at
hello.c you will see that it contains commehts starting
prith ///. Leawe these commenhts alone: they are used by
the Untangle commatd.

[Aroot "hello.c™

o includes =>
koo methods »>=

Figure 2.2: The Leo LP editing environment. The upper window displays
the outline view. The lower pane displays the content of an outline node.

33

Leo’s interface, in which nodes may only be edited individually, eliminates
temporal, “chatty” writing, and helps maintain the mapping between docu-
mentation and code chunks — both chunk types are forced to represent the
same unit of abstraction. The lack of an overall low-level view of the literate
program, however, makes the scope of program, and indeed, documentation
artefacts difficult to ascertain (unless of course the entire literate document
is published). For example, variable i in a code chunk is presented in an
outline node. It is not immediately obvious what the scope of this variable
is.

Leo insists that code chunks be defined within the scope of the chunk
that they are referenced in. This means that a chunk’s implementation may
not appear anywhere throughout the literate document/outline, which is a
requirement of literate programming (see Section [[L2.3)). Although a chunk
may be cloned and included elsewhere in the literate program, the method of
development puts an emphasis on the traditional development of the tangled

structure and not literate program development.

2.8 Spider

Spider [69, [65] was written by Norman Ramsey (also the author of Noweb).
Given a language description, Spider creates instances of a tangle program
and a weave program. These program instances are then able to specifically
tangle and weave any literate documents composed with any programming
language.

Spider is an awk program that uses Silvio Levy’s WEB for C, (CWEB),
with the C interpreter removed and replaced by Spider. This approach to
LP, however, did not allow the creation of multi-language literate programs
due to restrictions inherited from the WEB family. Although potentially
any language is supported using Spider, arbitrary language support is not
possible; the language must be predefined.

Production on Spider has been frozen and Ramsey has since developed

the more successful Noweb.

34

2.9 Documentation Tools

In-source documentation tools allow the embedding and extracting of docu-
mentation or comments within the source code. The tools presented in this
section are not considered literate because they do not satisfy the require-
ments laid out in Chapter [Il, Section [[L2.1l Namely, they either do not have
granularity of expression, or they do not possess the ability to psychologically
order code for the reader’s benefit (multiple orders of exposition).

The tools covered in this section generate static documentation. The
document development process must be rerun in order to maintain current
documentation. Literate programs undergo tangling and weaving upon com-
pilation, thus ensuring the continual update of documentation and source
code.

This section is not a taxonomy of existing documentation tools, however
we have selected three tools of particular interest. We highlight their features
and functionality in order to contrast them with the literate programming
tools covered in Sections 2.1 — 2.5l

2.9.1 Javadoc

Javadoc was influenced by Knuth’s work on WEB [27]. As the name sug-
gests, it is a Java documentation utility. It uses comments embedded in the
program source code and knowledge of the Java programming language to
generate HT'ML pages that describe the class structure of a Java program.

The output of Javadoc is a set of highly interlinked web pages, whereby
the reader may dynamically explore the inheritance structure of a class, its
methods — overridden and overloaded, and a method’s parameters and re-
turn values.

Javadoc provides an effective mapping to Unified Modelling Language
(UML) class diagrams. Using HTML hyperlinks, it is possible to traverse
the class structure of a given program or set of classes. The consistent layout
and formatting of a Javadoc document adds to this mapping.

Javadoc generates its documentation by looking for predefined tags em-

bedded in comments. Documentation tags include:

35

2 Java 2 Platform SE v1.3.1: Class Stiing - Microsoft Internet Explorer O[]

Fle Edt View Favoies Toos Help

Overview Package [SFF® Use Tree Deprecated Index Help Java™ 2 Platform

PREY CLASS NEAT CLASS ERAMES O FRAMES $td. Ed.v1.2.1
SUMMARY: INNER | EIELD | CONSTR | METHOD DETAIL FIELD | CONSTR | METHOD
javalang

Class String

java.lang.Object
|
+--java.lang. String

All Inplemented Intexfaces:
Comparable, Sesislizable

rubic final class String
extens Object
implements Serislizabe, Comparable

The String olass teptesents character strings. Al string literals inJava programs, such as “abo, are implemented as
instances of this class.

Strings ate constant; their values cannot be changed after they are created. String buffets support mutable strings. Because
Stting objsots are immutable they can be shated. For example

String str = "abc':

is equivlentto
char data[] = {'a', 'B', 'c'}:
String str = nev String(daca);

Hete ate some more examples of how strings can be used

Systew. out.printin("ahe”) ;
String cde = "cde";

/€] Done 11 [intemet

Nl

Figure 2.3: Javadoc formatted API documentation of the java.lang.String
(Java 1.3) class.

@see: adds a hyperlinked “See Also” entry to the class

e @param: parameter definitions

e @exception: descriptions for exceptions
e @return: methods return value

e @author: the author of the document

e @version: the document version

Javadoc, for all its power of expression, is a lightweight documentation
system. It is simple to use and encourages a structured approach towards
documentation. Combined with a styleguide [53], documentation consistency
can be readily achieved. The styleguide also suggests a specific order of tag

layout.

36

Javadoc is aimed at providing API (application programming interface)
specification documentation. Specific documentation techniques are encour-
aged

One differentiating feature of Javadoc is the use of inheritance of doc-
umentation artefacts. A subclass inherits superclass documentation if sub-
class documentation does not exist. Documentation is also transferred to
overloaded methods, or to classes that implement a method in an interface.
That is, documentation used for a method m() is also used for the method
m()’, where m() ’ overloads m().

Documentation comments are only recognised when placed immediately
before class, interface, constructor, method, or field declarations. The scope
of documentation is therefore fixed; the ability to document method-level
statements is unavailable. Although limiting, this approach does add to the
uniformity of documentation, and avoids the problems of defining rules for
method-level programming abstractions of documentation. It is difficult to
generate consistent rules for method-level documentation, which in turn cre-
ates difficulties in the layout and presentation of the Javadoc HT'ML output.

As noted by Cockburn [19],

Javadoc is a post-hoc documentation strategy that requires that the
class has been developed into a syntactically correct (and presumably

complete) class specification.

This contrasts with LP, which promotes a pre-emptive documentation ap-
proach. Moreover, literate documents may be generated with syntactically

incorrect code chunks.

Java Doclet Technology

The Java Doclet documentation technology allows programs that “specify
the content and format of the output of the Javadoc tool” [52] to be written
in Java. The programmer is able to customise the output of Javadoc. Using

Java code and an API to Javadoc, the programmer may create custom func-

Yhttp://java.sun.com/j2se/javadoc/writingdoccomments/index.html

37

limited scope

tions to extract custom tags, manipulate them, and then output Java-based
documentation.

The Doclet technology is intended as an extension to the Javadoc tool.
As such, users should adhere to the platform of recommended practices in
the Javadoc specification. Although it is possible to extend the Doclet class
to generate within-method documentation, this approach does not form part

of the Javadoc recommendation.

2.9.2 FElucidative Programming

Friendly [27] wrote, describing possible future directions of the Javadoc tool:
“...programmers prefer a graphical user interface for literate programming
tools. Perhaps Javadoc should be integrated into this browser/editor so that
programmers can do side-by-side editing of source and comments...”. Elu-
cidative programming incorporates such an idea.

Elucidative programming, developed by Kurt Negrmark [56], is a docu-
menting technique that, unlike the other tools in this chapter, stores docu-
mentation separately from source code. Although the documentation is not
embedded in the program source, through the use of customised development
environments, documentation and source code are developed physically side-
by-side. A prevenient approach is encouraged, whereby documentation is
developed before program source code. Tool support for elucidative pro-
gramming includes an elucidative Emacs mode and an elucidative graphical
user interface system aptly named ‘the elucidator’.

Some of the important concepts of literate programming are encompassed
by elucidative programming; particularly the need to “address explanations
that maintain program understanding and clarify thought behind the pro-
gram”, contrasted with the Javadoc tool, for example, which solely provides
API documentation. The target audience and nature of documentation are
somewhat different than Knuth intended when LP was brought unto the
world. He envisaged a work of literature that read from cover to cover — a
novel-like work. Elucidative documentation practice considers program de-
velopers the target audience who use the documentation primarily as refer-

ence material (as do most other tools; both literate and ‘illiterate’). Although

38

program documentation should flow and remain consistent, emphasis is not
necessarily on providing an interesting and entertaining read.

Elucidative tools must be language-aware, because documentable pro-
gram units are equivalent to an abstraction in the programming language. A
programming language abstraction, for example, is a package, class, method,
function, or procedure; therefore, providing a fixed granularity of expression.
Hence, like Javadoc, the language awareness of the elucidative programming
tool is able to create hyperlinks between these programming language con-
structs and the supporting documentation.

To support mutual navigation between the code and documentation doc-
uments, hypertext anchors and links are included in both files. Although
program abstractions delimit each documentation unit, it is possible to refer
to units internal to a program construct. For example, one can explicitly refer
to a particular statement within a method by embedding “source markers”
in the method.

It should be noted that elucidative programming does not meet the LP
requirement of allowing multiple orders of exposition, however, abstract rep-

resentation is facilitated.

2.9.3 perlpod

The acronym Perlpod [3] (Perl Plain Old Documentation) is descriptive of
the functionality it offers and the documentation it generates. The intent of
Perlpod, according to its designer, Larry Wall, is simplicity, not power.

Perlpod allows the inclusion of directives (or ‘command paragraphs’) that
the perl compiler ignores when compiling the program. These directives allow
the inclusion of documentation within the program source.

Using directives means that a documentation section is devoid of the
idiosyncrasies of the documentation tool. As an example, it is possible for
programmers to include verbatim source code in the documentation without
special treatment. Moreover, the source code itself is unaffected by the use
of the documentation tool. Special treatment in Noweb, for example involves
escaping any occurrence of the ‘<<’ characters by prepending them with an

@ symbol. FunnelWeb also suffers from such issues, and is more susceptible

39

than other literate tools. For example, consider the following Perl expression:
@array = qw(john bill mary sue);

FunnelWeb required™:
@Qarray = qw(john bill mary sue);

The difference is subtle, yet requires adjustment of the code presented
to the compiler. This makes primitive operations such as cut and paste,
perhaps from a literate code chunk to a conventional source code file, less
straightforward.

The output of Perlpod is simply a linear representation of the documen-
tation chunks. Program source code is not extracted by perldoc (the doc-
umentation extraction utility), unless it is specifically included as part of a
documentation chunk; thus, source code must be duplicated in order to form
part of the documentation.

Perlpod is designed primarily as an API interface. If follows a less struc-
tured approach than Javadoc. Perlpod does not offer Perl syntax recognition
abilities and therefore cannot output, as Javadoc does, a list of methods of a
class, for example.

Perlpod does not distinguish between formatting and content. For exam-

ple, one of Perlpod’s directive sets is the unordered list construct:
e over
e back
e item

over begins the list and back ends the list. item creates a new item in the
list. The over directive takes a numeric argument that tells the formatter

how many spaces from the left hand margin the list should be placed™. The

12if the default macro delimiter is used
B3 the default value is four

40

distinction between formatting (the indent of the list items) and content (the
items of the list) is blurred.

Customised formatting commands allow the programmer to use bold
face, emphasise, use fixed width typewriter font, and so on.

Perlpod allows the generation of dedicated documentation towards a par-
ticular typesetting system (through use of the begin and for directives),
in the form of formatter specific sections. Thus, the author may stipulate
which document formatters may process a section of documentation. This
is a convenient alternative to embedding markup within a perl file, which
would not be interpreted correctly by an unsuspecting document formatter.

Supporting utilities in common perl distributions™ allow the transforma-
tion of Perlpod to HTML, manpage, KTEX, or text format. Using a pipline
approach, one utility, podselect, prints selected sections of documentation
to standard output, thus enabling an author to generate reader-specific doc-
uments. This is similar to Noweb’s elide filter, but also allows the exclusion
of the documentation.

Contrasted with Javadoc, Perlpod allows an author to have a direct influ-
ence on output presentation. Though this is possible using Doclets, Javadoc
largely separates formatting from content.

Perlpod’s simplicity is a testament to its success as an API documentation
medium. Perhaps this is because Perlpod is the only promoted perl documen-
tation tool. CPAN (Comprehensive Perl Archive Network — [1]) is an ex-
ample of a well-maintained, well-documented repository of Perl source code.
One noticable feature is the conformance to a documentation styleguide, such
as [50].

2.10 Summary and Comparison

We have discussed the prominent LP tools available. Others exist, but our
selection is based upon the degree of difference in the approach adopted by

the respective tools.

4 e.g., standard install with Linux Redhat 7.2 and Activestates’ Microsoft operating
system installs (www.activestate.com)

41

Table 2.1] summarises a comparison among the LP tools covered in this
chapter.

WEB is Knuth’s archetypical literate tool. Despite some of its facilitative
features, such as pretty-printing of program code and automatic indexing
and cross-referencing, it is a complex tool that has fixed dependencies on
Pascal as the programming language and TEX as its document formatter.
Derivatives of WEB, including Spider, were developed to enable support for
other languages; however, these tools also suffer from their dependecies on
programming languages and the use of TEX as their sole formatter.

The trade-off between fixed language and language-neutral tools is the
ability to cross-reference and index program-level abstractions. While WEB
and its immediate derivatives are programming language-aware, tools such
as Noweb, Nuweb, FunnelWeb, and CLiP are not.

Noweb was Ramsey’s attempt at solving many of the issues facing liter-
ate programming with the use of WEB. Noweb provides support for pretty-
printing (via filters), cross-referencing, and identifier indexing. Noweb has
relatively few directives, however, programmers can make use of its pipeline
architecture, through the use of filters, to extend its functionality™. This is
an effective method of separating document processing from literate source
development.

Nuweb is the simplest of the tools discussed.

FunnelWeb contains its own abstract typesetting macros. These macros
are translated to the appropriate document formatting language. Funnel-
Web and CLiP (through CLiPPrep) offer powerful additive macro capabili-
ties, whereby macros that accept multiple arguments may be defined. WEB
provides a limited, one-argument form of thist8.

CLiP is different because the layout and formatting is determined by the
document formatter chosen (e.g., Microsoft Word). CLiP relies upon the doc-
ument formatter to perform functions such as cross-referencing and indexing
of macros and identifiers.

Many of the LP tools have adopted the use of macros in the tradition of

15t is possible to generate filters that accept user-specified directives
16 although this limitation may be overcome through the use of nested macros

42

do1ddrD ut ofqereae,

"saangea) pojroddns Ioy) pue s[oo) surmtnersord 9yeIsr| 1z 9[qRL,

ou ou SOA SoA SoA Xopul IoYIjuap]

ou ou SoA SoA SoA Xopul yuny))

,OU SOA ou ou SOA SYUNYD POSLID}OURIR

90UdP

sok Sk sok sok ou -uodopul ogensue] SUTWRISOI]

ou SOA ou ou ou mdino oarvom SY-T}NIN

SoA SoA SoA SoA ou ndno o[Sury) S[y-13[MIN

ou SOA SOA ou ou ndur s[y-1ymiN
1091

ﬁmwwwwm ﬂ\ﬁ/w%ﬁm XA 151 ﬂw\m/wﬁm x4, syeurro} ndin

90uoP

SRV SRV ou ou ou -uodopur oSendue] JuryjesdAy,

ou ou SOA SOA SOA 9INYedJ SUIYD)RUW IOYLJUOP]

ou SOA SOA ou ou syunyp Jo

BUIULILJOI-SSOID S[Y-THNIN

ou SoA SoA SoA SoA SYUNYD JO SUIDUSINII-SSOL)

ou ou ou sok sok SuUIIRUW ISYIHUSPI JI)RWOINY

ou SRV SOA SOA SOA SYUNYO SAINPPY

ou ou ou ou SoA SIOUIIUSPI POJRIASI((Y

di1D gopAlRuUUNg gamnp gamoN gaM 1003 JT/a4n09,]

43

WEB. WEB’s macros were a system to bypass the shortcomings of the Pascal
language.

LP development environments also exist. Notably, the Leo tool uses out-
lines to illustrate program structure. Using this method, a literate program
is able to be presented in multiple views. The Glasgow Literate Program-
ming Project™ (not examined in this chapter) also promoted the concept of
multiple views (termed 'ribbons’), which was later discarded, however. Jaba
is a Java-based LP environment. Important features it incorporates are the
visualisation techniques of fisheye view, degree of interest, and holophrastic
chunk displays.

Many documentation systems exist are not literate-enabled. Javadoc,
based on the concept of literate programming, is a succesful documentation
tool for the Java programming language, which generates API documenta-
tion. Perlpod also allows the embedded use of documentation within the code
source, however, remains largely language unaware. Elucidative program-
ming stores both documentation and code files separately and requires tool-
based support to develop programs. Instead of producing a novel-like rep-
resentation of a program, elucidative programming’s attempt is to promote
the explanation of programming abstractions to aid as a reference source.

In Chapter B, we look at the XML-based literate programming tools. We
then analyse the common deficiencies of LP tools, and the model these tools

are based upon, in Chapter (4l

17 http://www.desy.de/user/projects/LitProg/glasgow/top.html

44

Chapter III

A Review of XML-Based Literate Programming
Applications

In this chapter, we investigate LP tools that combine XML (Extensi-
ble Markup Language [22]) with literate programming. LP with XML is
largely a prototypical domain, and relatively few tools that combine these
technologies exist. We examine these prototypical tools as serious attempts
to develop LP environments; we acknowledge, however, the probability that
these implementations will be altered and enhanced.

Most XML tools fundamentally follow the same paradigm as the more
traditional, non-XML LP tools presented in Chapter Pl The use of XML in
LP simply transfers functionality between paradigms; that is, the functional-
ity afforded by XML is not fully exploited by current XML LP tools (albeit
some tools exploit its functionality more than others).

The LP tools in this chapter are presented in no particular order.

3.1 xmltangle

Jonathan Bartlett wrote xmltangle, version 0.6, in an attempt to capture an
LP environment using XML, without being constrained to a DTD (document
type declaration®). His application consists solely of a tangle process —
unsurprising, given its title. For this reason, documentation chunks are DTD
independent — a DTD of choice may be used, however.

Code chunks are also DTD independent; however, they utilise XML pro-
cessing instructions for chunk directives. For example, chunk names use

the <?1p-section-id?>, <?lp-section-id-end?>) processing instruction.

http://www.w3.org/TR/REC-xml#dt-doctype

45

Other processing directives exist such as chunk references, output files, code
chunk implementation and formatting instructions. This method of code
chunk processing avoids the need to mark up a code chunk and its content,
and is unique to xmltangle. xmltangle uses a SAX parser to process XML doc-
uments (see Section [.2.1] on page [[79) and is developed using the Python
programming language.

The use of processing instructions, instead of DTD compliance, means
that the DTD(s) used for documentation chunk development do not need to
be extended, or indeed used. The repercussions of this are that the tangling
process of xmltangle’s literate programs can only be elegantly performed by
purpose built tools; this is what xmltangle does. Technologies such as XSLT
cannot elegantly transform processing instructions and their textual content,
as they do elements. The tangling process especially requires a customised
tool.

The use of processing instructions defeat the use of XML as a markup
language. Processing instructions are used predominantly to pass informa-
tion to applications in a way that escapes most XML rules. Moreover, DTD

use (instead of processing instructions) for code chunks has several benefits:
e validity checks may be performed on document content.

e editor support such as that of Emacs? may be used to facilitate XML

document development.

e syntactic consistency within documentation chunks, which are marked

up in XML, is maintained.

e indexing and cross-referencing of identifiers can be implemented as a
separate, extended, process; thus, code chunk source is marked up to

reflect this processing.

The weave process relies upon the author’s selection of DTD to markup

documentation appropriately and utilise methods of transformation at his

2 psgml-mode http://sourceforge.net/projects/psgml offers DTD-based XML edit-
ing functionality

46

discretion, such as XSLT. Again, processing and transformation is thwarted
due to the difficulty in transforming the code chunks (processing instructions
and their content).

The latest xmltangle (0.6 July, 2002) is a complete rewrite of the original
(0.1) and has fixed many of the original’s shortcomings. Indeed, it was the

original version that xml-lit’s implementation provided remedies for.

3.2 xml-lit

xml-lit [76] was developed by Rafael Sevilla in August 2001. It uses Clark’s
Expat XML parser® to tangle and weave XML-based literate programs. xml-
lit is a monolithic executable file comprising both a tangling and weaving
agent. It is compatible with version 0.1 of xmltangle.

The feature differentiating xml-lit from xmltangle is the use of DTD sup-
port for its code chunks and the use of a namespace for this DTD.

Following version xmltangle’s (0.1) DTD, xml-lit insists that each code
chunk is accompanied by the name of the source document where it will also
be tangled. Although this facilitates multi-file output, this tight coupling
means that a code chunk is unable to be output to a file other than that
initially stipulated. This largely defeats the purpose of allowing multi-file
output. The example listing presented in Figure B.I] on the next page is
taken from the xml-lit distribution. It illustrates that the code chunk will
be output to the file gnomovision.c. The referenced chunks must also be
output to the same file.

A code chunk’s identifier (its name) is unique, and thus, cannot be at-
tributed to another chunk. Code chunks are not additive, therefore.

Free text within a fragment element is woven along with the referenced
chunk’s name and a reference number, as a cross-reference to the chunk’s
implementation. Thus, a chunk reference’s display name can be different
from its reference name. This is unique to xml-lit.

The weave option produces an XML document; however, further parsing

of this document by an XSLT stylesheet, for example, is hindered due to the

3http://www.jclark.com/xml/expat.html

47

<programlisting>
<xml-lit:code xml-lit:filename="gnomovision.c">

int
main(void)
{
<xml-lit:fragmap xml-lit:name="localvars">
Local variables
</xml-1lit:fragmap>
<xml-lit:fragmap xml-lit:name="maincode">
Main code
</xml-lit:fragmap>
+

</xml-1it:code>
</programlisting>

Figure 3.1: A code chunk is defined within the fragment element. Code chunk
references are made via a fragmap element.

non-marked up nature of the resulting code chunks and code chunk references.
For example, the literate source excerpt of the previous example produces

the following when woven:

<programlisting>
—-—Code fragment from file: gnomovision.c--
int
main(void)
{
(localvars) [1]:

Local variables

(maincode) [2]:

Main code

b

</programlisting>

48

Note that the content of the programlisting element is free text.
Sevilla uses the DocBook DTD as a documentation option for his literate

programs. Any DTD may be used, however.

3.3 xLP

xLP [37], written by John Hurst of Monash University, is based on nutweb. It
extends Nuweb (discussed in Section on page 26)). It requires the literate
program to be written in nu(t)web source. Thereafter, it can be translated
into its XML equivalent.

The DTD for the nutweb XML source is hard-wired in the program source
code, and is therefore difficult to alter.

xLP comes with AXE (AJH'$¥ XML Engine) [36] which is a custom-built
conversion program to translate XML to either HTML or TEX. An interface
to the AXE program was also developed [82]. AXE bears similarities to
XSLT; however, it is not an XML-based language, but is arguably simpler
to use than XSLT.

3.4 LPML

LPML [89] (literate programming markup language) is an ambitious XML
LP tool. Many of its proposed features are unimplemented; the tool’s docu-
mentation stresses that it is in ‘pre-alpha’ status.

Despite its incomplete status, LPML offers some noteworthy features:

e the ability to generate a new HTML page by using a top level (item)
documentation chunk. Of the literate tools in Chapter 2 only Fun-
nelWeb (Section 2.4] on page 27]) offered this functionality. This is an
important feature, and one deemed necessary for literate programs that

deal with large programs.

e the ability to have variants® of code chunks. This feature allows a code

chunk to receive multiple definitions and conditionally tangle a chunk

4the author’s initials
5 The variants feature is unimplemented.

49

win32
e

B‘l

—'A\ /C—’D
B2

B\
linux

Figure 3.2: The variant tangling process.

variant based upon the variant adopted by the literate document. This
technique bears great similarities to the functionality offered by WEB’s
CHange files (see Section [2.1] on page [21).

The variants feature enables operating system-specific chunks to be
written (e.g., Linux and Win32). Upon tangling the source code, the
author may stipulate that the Linux variant is output. Figure
depicts this process. Chunks <<A>>, <>, <<C>>, and <<D>> all form
a literate program. The Linux variant is stipulated by the author.
Thus, the Linux variant of chunk <> (B?) is tangled; the Win32

variant of chunk <> (B') is excluded.

the nesting of code chunks within surrounding documentation.

A piece is a code chunk. The estimated DTD in Figure [B.4] shows
that piece elements (code chunks) are children of item elements (doc-
umentation chunks). This rule deviates from other tools’ treatment of
code and documentation chunks where the neighboring sibling relation-
ship of code and documentation chunks is regarded as an atomic unit.
Most LP tools associate a documentation chunk with a code chunk,

physically locating them as a sibling pair. By treating code chunks as

50

children (or nested elements) of documentation chunks, LPML enables
surrounding documentation — documentation both before and after a

code chunk.

Figure [3.4] shows an edited excerpt as an example of surrouding doc-
umentation (written using LPML). Note how the piece code chunk is
nested within the item documentation chunk. Two code chunks are
nested within one documentation chunk. The body of the documenta-
tion chunk begins before the first code chunk, and continues following

the end of the first and before the beginning of the second code chunk.

Code chunks must exist within a documentation chunk; they inherit their
name from the documentation chunk that contains them. Code chunks are
additive.

Code chunks are implemented by reference using the insert element. In
the woven document, this appears as a reference from chunk reference to
chunk implementation; the reverse-reference (cross-reference) from chunk im-
plementation to its uses is not displayed.

xmLP HTML literate documents are the sole product of the weave process.
Indexing and cross-referencing of identifiers (in code chunks) is not available
(although mentioned as a potential enhancement).

The implementation of LPML, and some of the practices suggested in its
supporting documentation, contravene a number of XML standards. Others
foster a confusing development environment. The following list describes

these violations.

badly structured XML documents: Badly formed documents® may be
tangled and woven. This inhibits LPML’s integration with XML tech-

nologies such as XSLT, which require a well-structured XML document.

LPML makes no use of the standard Expat libraries commonly used for
parsing XML. A by-product of the acceptance of badly formed XML

documents is that element content is able to include symbols such as

Shttp://www.w3.org/TR/REC-xml.#sec-well-formed defines what constitutes a well-
formed document

51

<item name="scan" label="Initial scan">
The intial scan of the input file is pretty straightforward. It
simply reads everything and

gather everything we need for tangling. First, let’s set up some
globals we’ll be using.

<piece>
Qitems = ();

$formatname = ’’;
</piece>

The way I’m doing this is that I’m effectively using the name of
the current item, and the

nothing in the code which formally precludes that.
<piece>
while ([[INPUT>)

{

<insert name=".handle_tags"/>

if ($piecename ne ’’) {

}
}
</piece>
</item>

Figure 3.3: An excerpt from the LPML implementation. A documentation
chunk may contain a nested code chunk. The ommitted sections are indicated
by the ellipses.

52

‘<’ (‘less than’ operator) and ‘>’ (‘greater than’ operator) rather than
substituting them with ‘<” and ‘>’ or using CDATAD sections.

Another result of bypassing common XML libraries is the reliance upon
parsing the XML document with regular expressions to extract ele-
ments, attributes, and content. Regular expressions are not recom-
mended for XML parsing and processing: issues such as multi-line
matching and greedy matching of symbols become problematic. As
a consequence of the use of regular expressions, two XML elements

cannot not occur on the same line.

peculiar attribute-naming requirements: LPML insists on the use of
“x.subsection” (where x is the name of the parent item) as the name
attribute of an item (documentation chunk) element. Conversion using
standard tools such as XSLT may not be possible without unneces-
sary contortion (string manipulation). This protocol also means that
an item chunk is coupled to its parent item. Reuse of documentation

chunks is therefore impossible.

unconventional element ordering: An item is essentially a documenta-
tion chunk. Although items might not be nested, a hierarchy is estab-
lished by the use of the item’s name attribute. An item is a child of
another item if its name attribute contains the intended parent’s name
(in the form xxx.yyy, where xxx is the name of the parent item, and
yyy is the name of the child item). A parent item causes a new HTML
page to be generated. A child item begins a new section in the HTML

page.
Note that in Figure 3.4l the approximated DTD shows that the item

element cannot be nested within itself. This means that sub-items are

not nested inside the item they are logically a child of.

The object element indicates the file to which proceeding code chunks

(chunks that occur after an object element) will be output. The code

7 character data — data that is not markup

53

chunks are not nested in the object element. It would be more intu-
itive, especially for later processing of the XML document (perhaps
by XSLT), to include the code chunks to be output to a given file as

children of the object element.

XML’s extensibility is not exploited by LPML. The fixed nature of the
elements used (they are hard-wired into the Perl program source code) means
that the implied DTD cannot be altered easily. For example, the interpreta-
tion of an item (which can generate a new HTML page, or an HTML heading)
is hard-wired into the LPML script. A programmer must alter the source code
in order to alter its action, rather than enabling customised event handlers
(in SAX tradition) or postprocessing on a resulting XML document before
its translation to HTML.

The format element is a parameterless macro allowing the definition of a
template file that an item element may adopt as a document layout frame-
work. Certain predefined, hard-wired attributes are used to include content
in the woven document. For example, ##body## is replaced by the body of
the woven document, allowing a template HTML page including this body

to be developed. However, user-defined attributes are not possible.

3.5 litXML

litXML was developed by Vincent J. Carey B. litXML was developed for use
with statistical software. It is also an exercise in developing a LP tool that
takes advantage of XML and its related technologies, such as XSLT.

This software has one unique feature that differentiates it from other

multiple tools; multiple presentation formats. Multiple literate documents, oriented

presentation towards different audiences, can be generated from the same source file.

formats

It is rare that only a single level of documentation suffices for sta-
tistical computing contributions. The code itself must be documented
in detail, but that is rarely of interest to users. User level code in the

form of a standalone document is often desirable. To this must be added

8 The package itself is downloadable from [16].

o4

litprog

format : name
html
head
title
body
hr : width
p
a : href
h2
center

hr : width

nbsp

table : width

tr :

td :
font : size

br :

a : href
object : language, itemname
item : format, display_class, labelname

code
p
a : href
i
ul
1i
code
a : href
i
br
b
code
piece : add-to
insert : name

Figure 3.4: Estimated DTD of LPML: Extracted from 1pml_alpha.xml with
the xml1Stat tool. Elements are presented in nested formation on the left
and their respective attributes are presented on the right.

95

the various types of on-line documentation that can be called upon in
the statcomp environment. — http://www.biostat.harvard.edu/~
carey/Aboutlit.html

Although the capabilities to output this reader/user specific documen-
tation are rudimentary, this is one of the few tools that incorporates this
useful concept. Essentially, chunks are conditionally woven based upon a
their modname value and their lexical ordering in the source file. Chunks are
thereafter marked up depending on the target audience. Transformation is
performed using an XSLT stylesheet.

litXML supports two types of code chunks. One may be referenced by
other code chunks, while the other may not. It is utilised as a top-level code
chunk to stipulate the output file of the tangled source. The use of two code
chunk types is slightly confusing.

Pretty-printing, identifier cross-referencing and chunk cross-referencing
are not supported; however, they may be implemented by extending the
existing XSLT stylesheets.

Although no explicit DTD was provided with this tool, we generated
Figure using our xmlStat tool. Note that code chunks can be nested as
children of any element. Note also that code chunks contain an attribute
(lang) for the implementation language of the code chunk — enabling chunk-

specific markup.

3.6 xmLP

Anthony B. Coates developed xmLP (version 1.0 [18]), a well-constructed LP
tool — one of the more polished tools examined in this chapter, both in de-
sign, and implementation — in the mould of FunnelWeb. It mirrors the macro
support available in FunnelWeb (Section 2.4 on page 27)). Warning errors are
generated by the accompanying xmLPvalidate.xsl XSLT stylesheet, which
is also faithful to FunnelWeb’s error messaging.

The weaving and tangling processes are completed by xmLPweave.xsl
and xmLPtangle.xsl, respectively. DocBook or XHTML are the suggested

markup languages for documentation chunks. The weave stylesheets are

56

article
hr :
section
code : modname, lang
fragment ;o id
fragmentRef : id
fragmentRef :id
title :
font : color
footnote
url
p
footnote
subsection
ol
1i
code : modname, lang
title
p
footnote
ul
1i
appendix
subsubsection : name
title
p
br
ul
code : modname, lang
title
p
img : src
title
abstract
par
ol
author
footnote
date
month
day
year

57
Figure 3.5: An Estimated DTD of litXML: Extracted from aboutlit.xml —

distributed with the litXML package.

DTD-independent, and are used to generate XML documents, essentially
copying documentation chunks unchanged and adding indexing attributes to
code chunks to aid cross-referencing.

Although multi-file output is not included in the XSLT 1.0 standard® (it
is recommended in the XSLT 2.0 working draftlm), the XALAN XSLT proces-
sor [25] allows additional processes to be created to enable multi-file output
(through the Ip:file tag). This method differs from IitXML’s (Section [3.3]),
which requires separate XSLT documents to output multiple documentd™.

xmLP (like FunnelWeb) does not suport identifier indexing and cross-
referencing. Additive code chunks are allowed. The DTD works well and
provides for intuitive use. Unique to xmLP is the use of the name element,

instead of an attribute, to identify a macro element (Ip:macro).

3.7 DBLP

After experimenting with literate programming through SGML and DSSSL [92],
Mark Wroth then developed DBLP [93].

DBLP uses DocBook [55] as the basis for its DTD specification. DocBook
is a set of DTD specifications used predominantly for the markup and prepa-
ration of technical documents. Compliance to DocBook’s rich set of markup
promotes the portability of technical documents and is thus well suited to

literate programming. DBLP incorporates extensions™ to allow for:

e formatting of cross-referencing macros (denoted by the xref element

and the xreflabel attribute of the programlisting chunk).
e literal characters to be output (e.g., greaterthan is translated to ‘>’).

The programlisting element from the DocBook specification was extended

to allow multi-file output and additive macros.

Yhttp://www.w3.org/TR/xslt

Ohttp://www.w3.org/TR/xs1t20/

I Carey, however, uses the multiple output feature for a different purpose; weaving dif-
ferent literate documents.

12 Effort was expended in minimising changes to the DocBook DTD.

58

DBLP also utilises Norman Walsh’s DocBook DSSSL stylesheets™, With
slight modifications, they also conform to LP requirements.

The system contains two DSSSL documents that perform the tangle and
weave operations. The weaving process supports HTML, but can also utilise

DocBook transformation stylesheets to produce other formats.

3.8 Summary

Several XML LP tools have been investigated. Many of these tools are still
in their prototypical stages of development. This reflects the relatively recent
emergence of XML and its related tools. Nevertheless, each tool has been
evaluated for its viability as an LP candidate.

Several of these tools do not deviate greatly from their more conventional
(non-XML) counterparts, covered in Chapter 2l xmLP, one of the more
complete implementations of the XML LP tools we studied, greatly resembles
FunnelWeb, and xLP is an extension on Nuweb.

Importantly, however, are the LPML and litXML tools’ proposed concepts
of chunk variants and multi-level documentation, respectively. Variants al-
low conditional tangling, while multi-level documentation allows conditional
weaving. We extend these concepts in our proposed model in Chapter Bl

XML offers extensibility to define, and then redefine, a document’s data
structure. It also facilitates ease of transformation, due to its well-formed
syntax and the use of tools such as XSL — hence it is becoming the preferred
choice of LP representation. Some tools, however, forgo this extensibility.
LPML hard-wires the XML DTD into the LP tool itself. This has reper-
cussions on the ability of the programmer to alter the DTD, and therefore
also on the functionality offered by the LP tool. It also affects, in the case
of LPML, the ability to output the literate document in different formats.
xLP also uses a fixed DTD, which makes alteration of the markup used for
documentation chunks difficult. Stylesheets can be utilised to alleviate this
problem. Fixed DTDs are inevitable to some degree, especially to represent
the literate programming model, and this is necessary to provide instructions

on code chunk definition and referencing. Tools such as xmltangle and xml-lit

B http://www.docbook.org/

59

often implement such a code chunk model. Through use of XML-based tech-
nologies (such as XSLT) for document transformation, as well as supporting
DTDs, LP development becomes more extensible. xmLP is a good example
of this adaption.

DocBook is a common choice for documentation markup. DBLP illus-
trates that with slight adjustments, DocBook may also be used to facilitate
tangling. Most literate tools use HTML as the woven format. HTML is
a convenient markup language and HTML browsers are commonplace and
functional, warranting their use as document viewers. The DocBook DTD
can be readily processed into several other formats, using pre-existing XSLT
(or DSSSL documents in the case of DBLP) stylesheets (e.g., pdf, rtf, XTEX).

None of the tools covered are language-specific. They all aim for lan-
guage independence. Language-specific tools, such as WEB, allow identifier
indexing and cross-referencing, as do generic tools such as Noweb and Nuweb,
through heuristic means. This important and useful feature of LP tools can
greatly facilitate the understanding and navigation of literate documents.
Unfortunately, none of the XML LP tools contain these useful features. Only
LPML makes mention of the intent to support such functionality.

Also missing from the XML LP implementations are paramaterised macros.
In the case of xmLP, this is a design decision; Coates has opted to exclude
paramaterised macros from xmLP, but suggests that they may be included
in future versions. LPML approaches this functionality to a small degree
through use of its format element, which is used for the sole purpose of cre-

ating documentation templates.

60

Chapter IV

Literate Programming’s Limitations

In this chapter, we draw from our examinations of literate programming
applications in Chapters 2 and [l to discuss the limitations of literate pro-
gramming. The examination of these tools highlighted that LP’s shortcom-

ings predominantly extend from two areas:

1. the LP model and

2. a tool’s implementation of the LP model.

It is important to recognise that an LP tool’s limitations are not always
reflective of the LP model: the shortcoming may be implementation specific.
It is, however, the model-centred shortcomings that pose the greatest bar-
rier to LP’s acceptance in the software development community. We firstly
address, in Section 4.1, common implementation-specific shortcomings of lit-
erate tools. In Section 4.2l we examine the shortcomings of the LP model.
Finally, in Section [4.3] we present the philosophical issue of documentation

support and how the LP model can affect it.

4.1 Application Specific Shortcomings

4.1.1 Debugging

Literate programming’s most criticised shortcoming has long been the dispar-
ity between reported line error and the occurrence of the line in the literate
program. For example, a reported syntax error on line 32, for example, could
very well be found in the fifth line of the chunk <<generate sorted list
of client names>> which is located on line 2334 in the literate program.

This problem is caused by two factors:

61

1. the psychological ordering of the code chunks differs from the computer-

oriented order, and

2. added documentation between code chunks.

To locate the offending line of source code in a literate program, it is
common for a programmer to find the offending line in the tangled source
code file, gain an appreciation of the surrounding context of this line, and
search the literate program for the line’s occurrence — a clumsy process
indeed.

Certain literate tools, such as Noweb, Nuweb, and FunnelWeb, allow line
number indicators at chunk boundaries to be emitted. These can be used by
the C preprocessor, for example, to indicate the occurrence of the offending
statement in the literate program. The number of languages that accept
line directives is limited however, and thus this method is not reliable for all
programming languages.

The Leo LP tool, whilst promoting the understanding of the overall pro-
gram — well-named headlines and the tree-like representation of chunks is
effective — can exacerbate the debugging problem due to a node’s headline

not necessarily mapping to a chunk (documentation or source code).

4.1.2 The Three-Syntaz Problem

Commonly, three languages (hence ‘three’ syntax [24]) must be learned and

applied to develop a literate program. These are:
1. the programming language, e.g., Java,
2. the formatting language, e.g., IXTEX, and

3. the literate program’s language, e.g., Noweb.

The language of documentation, English in many cases, is excluded from
this list, however, forms a vital role in comprehension and communication.

Notational design languages such as UML add more complexity.

62

These languages arguably place undue overhead on the programmer and
require beginning programmers to become gain general semantic knowledge
of each language. Conversely, using conventional programming methods only
requires knowledge of the programming language.

FunnelWeb provides support that alleviates the three-syntax problem by
introducing a customised set of documentation chunk formatting instruc-
tions. The richness of these instructions is limited, however. Elaborate for-
matting requires the specific use of the selected document formatter’s com-
mands.

GUI tools provide environmental support to alleviate the burden of the
specific syntax of each language. The Jaba (see Section on page [30)) tool
enables direct manipulation [78] of chunks via its menu selections — this also
promotes syntactical correctness, which allows the programmer to focus on
chunk manipulation, rather than its representation. Leo, however, affords
direct manipulation to manage tree node development, however, in doing so,
introduces a fourth syntax. It requires the direct textual entry of the other
three syntaxes.

Solving the 3-syntax problem does not rid authors of the necessity to
conform to the each target processor’s requirements. Whereas the three-
syntax problem can be alleviated by introducing the use of XML, it is still
necessary to understand and conform to the semantic model of each target

language or process:

1. the LP tool’s processing requirements (chunk referencing must be re-

solved by adhering to the chunk model),

2. the document formatter’s processing requirements (the XML document

must be valid and verifiable), and

3. the programming language’s processing requirements (the source code

must compile).

63

4.1.3 Monolithic Files
Output

The weave process of most LP tools generates one monolithic document.
While this method is satisfactory for small programs, larger program read-
ability may suffer. Monolithic documents fail to convey the semantic group-
ing of sections (such as chapters and their contained sections) that printed
media are able to. They also fail exploit the cross-referencing, and hence, nav-
igation, that could occur between multiple documents. Furthermore, HTML
browsers don’t perform well with large documents.

Exceptions to the norm are FunnelWeb, its XML counterpart, xmLP, and
LPML, which provide the ability to generate multi-file woven output.

Noweb uses KTEX2HTML [23] to weave HTML documents from KTEX-
based literate programs. KIEX2HTML supports the segmentation of large
KETEX documents into smaller files, thus solving the monolithic file problem.
The conversion operation from ETEX to HTML is largely fixed, however. It
does not allow the author to adapt the translation of NTEX formatting rules.

In addition to monolithic output, literate tools do not provide an elegant
facility to either include or exclude documentation or code chunks from the
weave process; the [itXML tool, which facilitates conditional processing, is an
exception (examined in Section 3.5 on page [B4]).

Most tools facilitate multiple file output during the tangling process. Al-
though this was not possible with Knuth’s architypical WEB system, later
adaptations, such as CWEB, incorporated this functionality, which has be-
come a de-facto standard. Tools such as Noweb support this by allowing
user-specified root chunks. Thus, the author is able to commit the tangle

operation multiple times — each time with different root chunk.

Input

Most LP tools limit the use of multiple input files, if this support exists at
all. Although certain tools, such as Noweb, can be coerced into including

external files by using the document formatter’s (IXTEX) document inclusion

! Makefiles are commonly used to facilitate this

64

(\include) command, this practice does not marry well with the Noweb
cross-referencing heuristic (see Section [Z2]). Other tools, such as Nuweb and
FunnelWeb, allow the input of multiple files, but restrict the number of nested
filed. Leo supports the use of multiple input files.

The constraint of single file input can counter the concept that some
methodological implementations (Java as an object oriented programming
language for example) physically impose upon file structure. Classes are
often contained in separate files: merging multiple classes in the confines
of one file can detract from the modular distinction that OO imposes upon
classes. LP can therefore distort the modularity that other methodologies
attempt to impose, and therefore impose its own perspective on software
development?.

By virtue of their use of XML, LP tools such as xmltangle, xmLP, xml-lit,
and litXML can exploit XML capabilities® to allow multi-file input. Multi-file
input is reliant upon a conforming XML parser to resolve the inclusions, thus
LPML (see Section B.4] on page 49l lacks this ability.

4.1.4 Tangling Creates Tangled Code

WEB was developed with the underlying assumption that program devel-
opment would only occur using an LP tool. It therefore tangled program
source code such that it was purposely unreadable, and therefore uneditable
in its raw state. Such an assumption is not unreasonable. Firstly, LP is not
a widespread development methodology. Insisting on its use therefore, by
insisting on an environment within which a program is developed, might cre-
ate an even greater decrease in its utilisation. Some programmers may prefer
to program in a traditional manner, and rather than be forced to program
literately, abandon LP altogether®.

2 FunnelWeb and Nuweb allow a maximum of 10 nested files — a limitation that may
hinder large software development projects

3 While this is not necessarily bad in all cases, we believe that the author should be free
to decide which perspective he takes.

4 XML entity references or use of the XInclude (http://www.w3.org/TR/xinclude/)
standard (although this is mnot fully not part of the XML 1.0 standard
(http://www.w3.org/TR/REC-xml)).

5 and therefore remain illiterate

65

Secondly, insisting on LP’s utilisation assumes that LP is a superior pro-
gramming methodology. This may not be the case for all individuals, how-
everd,

Thus, we prefer that equal opportunity LP systems are developed whereby
unintrusive support, such that both programming literately or use of tra-
ditional programming means is provided (as suggested by Cockburn and
Churcher [19]). Facilitating equal opportunity functionality will alleviate the
problems of scoping (discussed in Section L1.5). Command-line based LP
tools are unable to offer this functionality, due to their combined chunk and
processing model (discussed further in Section on page [{0l Leo provides
equal opportunity development through the use of its ‘untangling’ capabil-
ity; however, this is provided so that the author may alter the tangled file
externally to the Leo IDE. Our new chunk model, presented in Chapter [5]

facilitates “equal opportunity” development.

4.1.5 Scoping

A code chunk’s implementation encapsulates a programming abstraction’s
semantic and logical scope. Difficulties can arise in determining this scope
because chunks may be composed by reference, therefore chunk implementa-
tion can occur in a physically distributed manner.

The following documentation chunk and code chunk serve as an example
(extracted from helloworld.nw, in Appendix on page 283)):

@ The greeting is printed using the printf function again, this
with a \texttt{\/s} format to insert the name.

<<print greeting>>=

printf ("Hello %s", buffer);

The intention of the chunk is obvious, especially after reading the leading
documentation. The scope of the variable buffer is not obvious. Because the
programmer lacks a complete view of the program’s scope it can be difficult
to identify exactly where the variable is defined, how it has been altered

before this chunk, and how other code chunks use this variable.

6 although these individuals’ colleagues may suffer when maintaining his software

66

time

Scoping problems also affect the detection of mismatched parentheses for
example.

Identifier cross-referencing in the woven document reveals the location of
identifier definitions and uses throughout the document (illustrated in Fig-
ure on page [[4]). The tangled source enables the realisation of the scope
of program artifacts because of its flow-based representation of the program
source code. In its unwoven state however, this information is difficult to
ascertain manually — it is in this state that literate programs are presented
for development. Editors that are LP-enabled and language-aware only are
able to reveal this information — only Jaba (see Section on page [B0)

facilitates such functionality.

4.1.6 Object-Oriented Limitations

Existing LP tools are unable to elegantly represent the OO concepts of over-
loading and overriding because representing methods with chunks that pos-
sess the same name are treated as additive chunks (see Section [[L41] on
page [[3)). Not only is treating two distinct chunks as additive an incorrect
representation in the woven document, the tangled source of this literate pro-
gram would place these chunks in the same physical location i.e., in the same
class file. This may be suitable for overloaded methods of the same class,
however, overridden methods will need to appear in distinct classes, and
therefore, different physical regions (separate Java class files, for example).

Identifier locating heuristics of tools such as Noweb and Nuweb are not
amenable to object oriented approaches where same-named identifiers may
exist, yet represent different programming abstractions. (Appendix il-
lustrates an example where an overloaded method is ambiguously referenced
and is discussed further in Section [L.1.7)

4.1.7 Primitive Cross-Referencing

Code chunk implementations and references are (commonly) cross-referenced
in the woven literate document. This is imperative to facilitate navigation
through the documentation. Many tools support cross-referencing between

chunks.

67

Cross-referencing between identifiers, however, is not fully supported by
all tools. Only language-specific tools that have an intimate knowledge of
the programming language such as Knuth’s WEB (and its derivatives) and
Jaba, are able to generate accurate cross-references to program artifacts.

Language-neutral tools, such as Noweb and Nuweb produce less accu-
rate identifier references. Both tools utilise heuristic-based (and therefore
sub-optimal) identifier matching algorithms. Appendices [C.3] on page
and [C.4] on page illustrate the limitations of a heuristic-based algorithm
(Noweb’s and Nuweb’s respectively). Specifically, Appendix illustrates
the limitations of identifier locating heuristics in OO languages: startEngine
is an overloaded method. Both startEngine methods are invoked by the
beginExcursion method of the Driver class. The identifier algorithm is
unable to differentiate between the two methods, however. To do so requires
language specific knowledge.

Although source code may be altered to accommodate a literate tool’s
heuristic shortcoming’s, this is an undesirable approach. Ramsey comments
that such errors may not necessarily be ‘bad’ in light of the time and effort

saved in generating a perfect indexer.

4.1.8 Limited Output Formats

Most LP tools adopt a fixed representation mechanism because they tie their
document output to a specific formatting language — KTEX, TEX, or HTML
in most cases. Although KTEX and TEX are powerful document preparation
systems, transformation to to other formats thereafter is difficult?. This is
due largely to the formatting-based, rather than semantic-based markup that
BETEX uses.

Furthermore, should the author choose to mark his literate program up in
HTML for example, transformation thereafter to a IXTEX format commonly
ends in unattractive results.

Document output of the literate program to an arbitrary document for-
matter is thus limited commonly to either HTML, or dvi (device indepen-

dent) file (which can be processed further to generate ps (postscript) and

" INTRX2HTML is a conversion utility that translates IXTEX to HTML

68

pdf (portable document format) files).
XML-based LP tools such as xLP, xmltangle, xml-lit, and xmLP (see Chap-
ter B]) generate an XML document that may be transformed, given the ap-

propriate translation stylesheet, into any document format®.

4.1.9 Static Documentation

WEB'’s roots stem back to 1981. TEX was used to generate literate documents
— static, printed documents. Practicalities, and environments, have changed
somewhat, since 1981. Software is large. The evolving nature of software can
render static documents quickly obsolete, or even incorrect. Referencing a
static document for software information can, therefore, be misleading and
incorrect. To overcome this limitation, methods of dynamic representation
must be developed to reflect the current status of a literate program. No

such literate tools exist.

4.1.10 Disparity between Document Editing and the Formatted Document

Although Sewell [77] suggests that LP reduces visual complexity in the lit-
erate document, Ngrmark [56] notes that this emphasis on the literate doc-
ument, and the beautification of it, is uncomplemented by a comparatively
ugly formatting environment. Ramsey and Marceau [71] note that the “dif-
ficultly reading the source and the marked difference between source and
listing complicate editing”.

Some LP tools place great emphasis on the final document’s presenta-
tion. Whilst benefiting the reader of the literate document, there is often
a proportional cost paid — the programming environment is then littered
with the LP tool’s primitive constructs and document formatting language’s
syntax.

XML LP tools exacerbate this problem. Although XML can be utilised
to make the documentation chunks and the literate tool’s constructs (thus
alleviating the three-syntax problem — Section on page [62]), XML is

8 forgoing the weave process of xml-lit makes translation to different document formats
easier — not as one would expect.

69

traditional LP

model

not easily processed by humans because of its verbosity. The XML literate

program is often dissimilar to the comparatively beautiful literate document.

Code Interference

The syntax of a literate tool can cause the distortion of source code when
there is a conflict between LP symbols and programming language symbols.

For example, the following Perl code
print << EOC;

in Noweb, must appear as:
print @<< EQOC;

in order to avoid the double angle brackets being interpreted as chunk de-
limiters.

Oddly enough, Simon Cozens’ webPERL &, a perl-specific tangle program
utilises the ‘@" symbol — the commonly used array symbol — as the chunk

delimiter.

4.2 Model-Centred Shortcomings

Figure on page B expressed the LP chunk model as defined by Knuth.
This model has been widely followed by most literate programming applica-
tions since. It shall be referred to as the traditional literate programming
model.

The traditional model constrains the development of literate program-
ming. Although the model supports simplicity, it is significantly restraining,
we believe, such that it limits the application of LP to the code development
phase of the software development life cycle (SDLC). The main problems

associated with the fixed model are:

Processing model and chunk model are combined: psychological flow

is limited to only one flow.

9 webperl1999

70

Asymmetric processing model: the model is unable to create higher-

order documentation chunks, and

Fixed chunk model: the chunk model’s supports only documentation and

code typed chunks,

Chapter Bl on page [82 proposes a new chunk model that solves these limi-

tations. We firstly consider why the existing LP model requires replacement.

4.2.1 One Psychological Flow — Limited Readership

LP is not reflective of the multi-dimensional process of software development,
nor the multiple views that may be required of a software system.

In the domain of ‘Separation of Concerns’, Harrison, Ossher, and Tarr
termed the inability to represent a problem or program in any manner other
than that dictated by initial decomposition of the problem, as inherently
enforced by the programming language, as the “tyranny of dominant decom-
position”™@ [59]. Essentially, Knuth partially overcame this with the intro-
duction of literate programming; however, the LP approach is restricted to
only one other representation.

The readership audience of an LP is potentially large, as is its develop-
ment audience; it would be unreasonable to suggest that one single document
is well suited to all audience’ requirements. Some common queries of a soft-
ware system are oriented towards its design, design decisions, requirements,
maintenance, development process of code, use of patterns, API, specific use
of variables, and testing of classes and methods. Should a literate program
contain all the required information in this list, it is impossible that its chunks
are ordered such that all audiences are satisfied. A literate program written
to explain the program’s development would not make a good API reference,
for example.

The traditional model of LP allows the programmer to produce a psycho-

logical ordering of chunks. For example, Figure [£.1] shows a literate program

10 Recent advances from this domain of ‘separation of concerns’ have given rise to tech-
nologies such as AOP and Hyperslices (discussed in Section [F.I.T] on page B3).

71

Separation of

Concerns

v A C

Figure 4.1: Chunks <<A>> <>, and <<C>> are presented in two psycholog-
ical orders: <>, <<C>>, and <<A>> and <>, <<A>> and <<C>>.

presented abstractly by three chunks <<A>> <> and <<C>>. The psy-
chological ordering of these chunks is enforced by the lines connecting each
square box. <> <<C>>, <<A>> is determined as the best psychological or-
der for human understanding. But what if you desire to present these chunks
in the order of <>, <<A>> <<C>>, for example? We are effectively asking
for two documents to be created from one source web. This is not possible in
the traditional model. Short of replicating the literate program and altering
the sequence of chunks, the literate model does not support such operations.

Leo, through its outline approach, uniquely supports multiple views. All

other tools do not.

4.2.2 Asymmetric Processing Model
Inability to Express Higher-Order Documentation

We argue that LP is largely limited to the software construction phase of the
SDLC and is commonly utilised for ‘documenting-in-the-small’ [85] because
of the fixed chunk and processing model employed by all existing LP tools.
The fixed model of LP makes it impossible to create relationships between
documentation chunks. As illustrated in Figure [L2, documentation chunks
have an implied association with code chunks. This association is implied
because documentation chunks are commonly used to explain a code chunk
that immediately follows (in lexical order) in the source web. In contrast,

code chunks may be nested, and thus form relationships with other code

72

requirements analysis

specification

design

construction

code

Figure 4.2: A layered representation of the software development life cycle.

chunks. The inability to develop nested documentation chunks causes, what
we term, an “asymmetry of processing”. This is because the recursive pro-
cessing of code chunks is different to the linear processing of documentation
chunks.

The asymmetry of processing effectively constrains literate programming
to the construction phase of the SDLC. The lack of nesting support for
documentation chunks prevents the development of higher-level (or higher-
order) documentation.

Figure 4.2 presents a diagram of the common phases in the SDLC. Source
code appears as the first, or bottom, layer™. Construction sits above source
code in the second layer. Literate programming commonly represents the
construction layer as documentation chunks. Thus, the construction and
code layers form the literate program as documentation and code chunks,
respectively.

While it is possible to represent any two layers of the SDLC with LP,
there is a limit to expressing only two. Commonly (almost always in fact), it

is the case that the construction documentation and source code layers are

111t is fully recognised that this may not necessarily be the case; although the phases are
commonly presented in a circular fashion that implies continual updating, the layered
model is more pertinent for our illustration, and does not detract from the cyclic nature
of the SDLC.

73

asymmetry of

processing

convergence of

layers

represented. It is possible, for example, to represent the analysis documenta-
tion, driving the specifications analysis layer, for example. It is not possible,
however, to elegantly include an entire third layer and create second-third
layer nesting relationships.

Attempting to incorporate three or more layers into a literate program
creates the phenomenon that we term as the convergence of layers — two
or more layers are forced to be represented by one chunk type. This has

negative side-affects such as:

Promoting undue emphasis on documentation: it is more difficult to
incorporate two layered abstractions in the same chunk whilst max-

imising comprehensibility.

Psychological ordering loses its dominance: because the varying parts
of a documentation chunk, which attempt to describe aspects of an
abstraction, naturally fit into more than one psychological order, the

emphasis, or direction of documentation can be lost.

Reverse engineering is complex: there is no clear manner to distinctly

(and automatically) separate these layers once compounded.

There is also an assumption that there exists a one-to-one mapping be-
tween all layered abstractions — that one code chunk is represented by one
documentation chunk, for example. This is often not the case; it is probable
that one documentation chunk will influence the development of many code
chunks (as depicted in Figure on the facing page). Only the LPML tool
(Section B4 on page M) facilitates the relationship of one documentation
chunk to multiple code chunks (by allowing surrounding documentation).
No other tools support this.

Thus, as Cordes and Brown proposed the use of LP to contain design
documentation [T2]T2, we assert that it is not possible to elegantly do so unless

(1) only design documentation will form the documentation chunks and (2)

12Tn a later publication [2I] however, Cordes and Brown recognise that LP “is a technique
to be used for system implementation.”

74

. -

Ap> B C

Figure 4.3: A one-to-many mapping commonly exists between high-level
SDLC chunks and code chunks. Chunk <<1>> has a ‘describes’ relationship
with chunks <<A>>, <>, and <<C>>.

a singular perspective is employed — multiple perspectives will document
overlapping sets of chunks, and thus require multiple psychological orders.

To allow high-level documentation, documentation nesting must be facil-
itated by the literate model. This is an impossibility using existing LP tools’
fixed chunk model.

Poor Reuse

We argue that the difference between the weave scope and tangle scope is
delibitating to LP. Given LP’s asymmetry of processing, it is impossible to
perform the same operations in the weave process as one is able to in the
tangle process. Whereas it is possible to reuse a code chunk in the tangled
source by referencing it multiple times, it is not so in the woven document
— a code chunk’s content cannot be displayed more than once.

Documentation chunks are also unable to be reused in the woven scope.
Exceptions exist however. Leo, through its cloning mechanism facilitates doc-
umentation reuse. Noteworthy is the Javadoc utility that provides inherent
documentation reuse by automatically promoting a documentation section to
an inherited artefact (e.g., method, class) unless documentation has already
been provided.

Code and documentation chunk reuse from multiple (external) webs is
also not facilitated with any elegance (Leo excluded) — although multiple
documents may be included, it is not possible to include specific parts of a

document only. Namespace support does not exist, either.

5

The disparity between weave and tangle is enforced by the impossibility to
include, and therefore reuse, documentation chunks in the tangled document.
Thus, if it is desired to include a documentation chunk in the program source
code as a comment, the author would be required to copy and paste the
documentation chunk into the code chunk and mark it up in appropriate
comment delimiters® (we illustrate how this may be performed with our
document development framework, in Section on page [I8T]).

Fized Hierarchical Chunk Model

The difference between the features of a code and documentation chunk is the
chunk’s type. The difference in functionality of each is a one-way association
from a documentation to a code chunk. The chunk model is thus has a fixed
hierarchy. This is illustrated in Figure [.2

The reverse relationship, as illustrated in Figure [£4] on the next page,
such as a code chunk that implements a unit test and generates test output
data in the form of a documentation chunk, is a scenario likely to be useful in
an XP environment. The code chunk can be viewed as hierarchically superior
in this case. Such representation is not elegantly possible with the current
LP chunk model.

4.2.8 Fized Chunk Typing Mechanism — Real World Overloading

Multiple chunk types are required for realistic software development. Current
programming requirements not only blur the distinction between code chunk
and documentation chunk, but also begin to render the chunk as a type-
overloaded entity.

Internet web pages, for example, are commonly developed through a com-
bination of HTML markup, a client-side scripting language (e.g., Javascript),
and a server-side scripting language (e.g., Perl). The code chunk is overloaded
with different code types. It is impossible to (elegantly) distinguish between
the three different code types. Literate tools commonly imply that two types

13 Utilising the pipeline architecture of tools such as Noweb to develop filters that present
documentation chunks in the tangled source is one solution to this problem. This is not,
however, an architecture that all LP tools employ.

76

references

(e

e associated

with

Figure 4.4: A code chunk has an association with a documentation chunk.
The LP model cannot elegantly represent such a relationship.

of chunks exist only — as this example illustrates, this is not always true.
The documentation chunk is broadly unspecific. It is impossible to spec-
ify the type of documentation contained in the chunk. A documentation
chunk could contain requirements analysis prose, a class diagram, or simply
an elaboration of thought. The distinction between code and documentation
chunks is blurred: is a UML notation segment documentation or code? Unit
tests in XP are considered as documentation (because they provide a frame-
work and direct the development of source code), however, are implemented

as source code.

4.2.4 Refactoring — Chunk Version Control

LP development, despite its coercive nature to require intensive thought, is
not immune to revision and enhancement. Literate tools do not facilitate
chunk-level version control, such as a chunk versioning scheme that facili-
tates the conditional tangling and weaving of specified versions of chunks.
Figure on the following page illustrates version-based processing.

The existing LP processing model is, thus, anti refactoring: it is not
amenable to the refactoring practices common in extreme programming [5]
(XP), for example, whereby code is continually reviewed, refined, and simpli-

fied. LP tools do not support the conditional processing of documentation,

7

Figure 4.5: Three versions of chunks <<A>> <> and <<C>> exist. An
elegant model would allow conditional processing of chunk versions, both in
the tangling and weaving operations.

code, or atomic (code and documentation) chunks. Commonly, the order of
chunk presentation in the woven document is dependent on the the lexical
ordering of chunks in the source web; commonly all chunks are woven. The
tangle process does not posses chunk versioning ability, either. Thus, it is
impossible to tangle or weave one of multiple versions of a given chunk into
the resulting document. The WEB™ | Noweb™ | [itXML™E and LPMLI tools

offer limited functionality, however do not perform all required operations.

Undo Factor

The atomic chunk — the combination of a documentation and code chunk
to represent the same abstraction — is often reluctantly undone, or refined,
to represent the abstraction (more) correctly — especially if the alteration
requires that both documentation and code chunks are edited.

Chunk versioning functionality would appease this problem (by allowing

chunk rollbacks), but not completely solve it, however. There is no apparent

14 WEB provides, through use of CHange files, the ability to replace code chunks only
— there is an assumption however, that the LP is near production quality. Thus, a
CHange file contains patches that may be integrated into the program source. Version-
ing, on the other hand, treats software development as a process whose quality increases
incrementally. Versioning enables each stage of this process to be captured.

15 through use of its elide filter to exclude code chunks from a woven document, or the
development of a filter to elide an atomic chunk (see Appendix [D.10])

16 [itXML facilitates conditional weaving

1T LPML proposes the use of code chunk variants.

78

method to support equal opportunity alterations such that an alteration in
the documentation chunk would be reflected in the program source code
(code chunk)E,

Altering one code chunk may render other code and documentation chunks
invalid. Thus, the navigation to affected chunk implementations throughout
the literate program can, relative to conventional programming methods, be

a large overhead.

4.3 Literature versus Documentation

In addition to the tool-based and model-centred limitations of literate pro-
gramming, we present this philosophical issue that focuses on the application
of LP documentation practice.

We disagree with Knuth’s position that a literate program should read
like a book from cover to cover. Not all programmers can match the literary
prowess of Knuth’s expository and entertaining literate programs. Further-
more, many readers will refer to the program as a reference source, looking
for explanation about a particular algorithm or variable or the interaction be-
tween two classes, not necessarily a complete understanding of the program
proper. Others have also raised these concerns [80, 50, [72].

We recommend that reference-style documentation is written. The focus
of documentation should be on software development rather than literary
excellence. Temporal, novel-like documentation detracts from the issue of
software quality. Cohesive units of code are better reflected by cohesive
units of documentation, thus helping authors refrain from writing temporal,
and therefore, highly coupled programs.

In Appendix [A. 1.1l we examine why documentation is necessary. Many
documentation types can exist, and, in Appendix on page 237, we as-
sert that particular types of documentation practice encourage alternative
perspectives on software development, thus resulting in better quality soft-
ware. Existing LP tools, apart from Leo (allbeit in an inelegant manner), do

not support a varying approach to documentation of software systems and

18 Systems, such as Together) do exist however that map edits to UML diagrams to Java
source code, however, UML is structured and maps well to program source code.

79

thus encourage a monotone style of writing — one approach, and therefore
perspective, is likely to be applied throughout the software’s development.
They do not allow the elaboration and inter-connection between different sets

of chunks required by such higher-order documentation (see Section 2.2 on

page [72).
4.4 Summary

We have discussed several limitations of existing literate programming tools.
We categorise these limitations into either implementation-specific, or model-
centred limitations. We consider model-centred limitations the most serious
of the two because they limit LP’s adoption and advance into common-place
software development environments. The fixed model approach adopted by
existing LP tools, not only is restrictive to some current methodologies, how-
ever, restricts LP’s future use also.

Of the implementation-specific limitations, we have discussed and demon-
strated that the cross-referencing and indexing functionalities supported by
literate tools are inadequate to cope with OO languages (for example). The
concepts of overloading and overriding tax the identifier matching heuristic,
and also prove that the coupling of the chunk naming mechanism with a
chunk’s identification reduces LP’s amenability to OO.

LP’s use of chunk references to develop in a physically distributed man-
ner produces scoping problems of code chunk identifiers; debugging is made
difficult because compiler reported line numbers do not correlate with the LP
source code and editing program artefacts that directly affect source code in
a physically separate areas can cause consistency problems.

Input file restrictions that necessitate the development of source code
in singular (or a limited set of) files can thwart the perspective imposed
by methodologies, such as OO, which encourages modular development, by
imposing a more global perspective. Furthermore, monolithic output of a
literate document can misrepresent the modular nature of a literate program.
Fixed output formats prevent the use of, and conversion to, other document
formatters.

Other limitations are LP tools” use of delimiting symbols that conflict

80

with programming language source, causing the escaping of relevant symols
in the source code. And finally is the disparity between beautiful literate
documentation presentation and comparatively ugly literate source.

We also examined the limitations of the LP model employed by existing
literate tools. Cheif amongst these model limitations is the limited psycho-
logical order that literate programs may be illustrated in. This is due to the
LP’s combined processing and chunk models.

The asymmetric processing model that prevents the expression of higher-
order documentation and also leads to poor chunk reuse, is caused by the
code and documentation chunks possessing different functionality — the code
chunk may be nested, the documentation chunk may not.

Furthermore, the fixed LP model’s documentation and code chunks do
not facilitate the representation of the diverse array of current notational,
documentation, code, and multi-media types necessary for software develop-
ment.

LP currently does not elegantly support a versioning system, however,
this would be useful functionality to offer to methodologies such as XP, for
use in refactoring, for example.

Finally, we discussed the philosophical issue of ‘the manner of program
documentation’ and concluded with our recommendation that novel-like lit-
erate programming is to be discouraged because this approach detracts from
the emphasis of good quality software development, and creates tempo-
ral, and therefore, coupled documentation chunks. The inability to express
higher-order documentation is limiting to the perspectives that a program-
mer can approach software development, through documentation, from.

Importantly, as we illustrate in the next chapter, our generic model and
document development framework facilitate multiple psychological orders,
multiple chunk types, and higher order documentation. We also provide an

elegant and workable chunk version management system.

81

Chapter V

Theme-Based Literate Programming

The tutorial is made up by a single scenario, which is elaborated
into an increasingly complicated synchronisation scenario. We would
therefore like to be able to extract several different programs from the
tutorial, without having to state each in full. We have found no good
method of doing this in Noweb, and have in the tutorial a full example
program for each variant. This is not satisfactory, and we believe that
a specialised literate tool is necessary to produce tutorials and other

example based intruction material. — Kasper @sterbye [5§]

In this chapter, we present the work that is the basis for this thesis — the
development of a new chunk model to overcome many of literate program-
ming’s shortcomings.

We discussed the shortcomings of LP in Chapter] and concluded that
the chunk model supported by existing LP tools (examined in Chapters
and [3)) is LP’s most limiting factor. To summarise the major shortcomings
of the traditional LP model:

e only one psychological order may be woven and

e there is no support for the expression and implementation of higher-

order documentation.

We stress that the model-centred shortcomings remain LLP’s most serious
drawbacks. All other problems are implementation-specific and can be solved
via altered implementation or tool extensions.

Our new models comprise the concept of theme-based literate program-
ming (TBLP). TBLP, through the enhanced literate model, solves many of

82

LP’s shortcomings. TBLP has the advantage of facilitating multiple view pre-
sentation and editing, and also facilitating high-level documentation. Our de-
velopment framework allows the inclusion of processes at any stage through-
out the theme-development process, thus allowing extended tool support.
We extend our contribution to TBLP by physically demonstrating our chunk
model and processing model in Chapters[6land[7l via a tool-based archetypical
implementation.

This chapter is organised as follows: firstly, in Section 5.1, we provide mo-
tivation for TBLP. Section B.I.1] provides an overview of relevant research
in the area of separation of concerns and similar areas of multiple-view rep-
resentation. We then discuss, in Section [5.2] the chunk model and process-
ing model required to support TBLP. We show that separating the chunk
model from the processing model (Section [5.2.T]) allows multiple ordering of
chunks. Attempting to allow the development of higher-order documentation
and solve the problem of documentation chunk reuse, Section considers
nested documentation chunks as an option.

We arrive, in Section £.2.2], at a generic chunk model, which allows the
development of arbitrarily typed chunks, and also allows any chunk to be
nested. Section[5.2.3ldiscusses the representation of this generic chunk model.
Sections (2.4 - [5.2.4l discuss chunk storage and the affordance of chunk-based
version control that the new chunk and processing model allow.

The theme model is discussed in Section (.2.5. The effect of the generic
chunk on the processing model, and the processing model’s relevance to
theme composition are then presented in Section [5.2.0l Intriguing, is that the
new processing model requires a blend of the traditional weave and tangle
operations. Finally, the issues of TBLP theme document development and
multiple distributed webs are considered in Sections - B4

In Appendix [Bl we present an example of how stages of software develop-
ment, as a holistic process, may be represented using themes.

We stress that the model produced is elegant, powerful, and importantly
extensible. Our solution is a generic chunk (one that is not specifically a
documentation chunk or a code chunk, but one that may be attributed any

type), which is able to reference any chunk and likewise be referenced by any

83

chunk, and therefore one that offers equality of processing to all chunks. The

generic chunk enables freedom of expression, yet specific exposition.

5.1 Theme Weaving

LP allows the presentation of a program in a psychological order (the woven
order). The ability to present multiple woven orders is beyond the capabilities
of most existing LP tools.

Imagine, firstly, that LP does not exist. Now imagine a tool that allows
the presentation of source code in the order in which it is developed (much like
existing LP tools). This may be in a top-down, bottom-up, or nucleus-centred
approach. Another author, preferring to program in the traditional order
dictated by the compiler, might forgo the psychological ordering abilities of
LP, but would still like to develop method-level granular chunks — for the
purpose of threading a commonly themed set of chunks (methods in this
case) across multiple classes to highlight a significant aspect.

Imagine the ability to present this program to multiple audiences; to add
documentation to a program and order both the documentation and code to
the individual requirements of each audience so that its presentation enhances
the comprehension of each audience. Imagine the added ability to create con-
nections between the program’s architectural design and its source code, and
exploit these connections to illustrate to a human how the system architecture
conforms to a specific design pattern. Imagine informally annotating source
code, architectural specifications, and requirements analyses, such that these
annotations are non-existent in the customer-deliverable documents, but can
be viewed by the system developers. Audio and video recordings of customer
interviews could be included as part of the requirements analysis documents.
Imagine documenting an informal thought process and illustrating its pro-
gression throughout the entire software system’s development. Imagine that
the program’s source code forms part of a pedagogical book; you present the
source as a down-loadable internet document, however, you also include part
of this source in the book as an example listing.

Imagine that compiler messages are linked back to the respective code

chunks and are stored, along with chunk versions, to provide historical track-

84

ing and reasoning for syntactical alterations made to the program source.
Also, at all stages of the program’s development, unit tests are prepared and
executed upon the existing source code. The test results are presented as a
document that is linked to the problem source.

Now try weaving all of these documents using an existing LP tool, and
one web only. It may be possible to achieve one of these tasks — but certainly
not all. Although it is possible to write a new web and weave a document
for each of these specific tasks, this is a brute-force, inelegant approach.
The limitation of one psychological ordering in the traditional LP model is,
indeed, a serious drawback.

Each of these different views/uses of the software system is considered a
theme. All of these imagined themes can be delivered by theme-based literate
programming.

A theme, in TBLP, is defined as ordering of information, or chunks, to-
wards a specific audience. Two themes may exist which include exactly the
same chunks, for example, however order them differently for each audience
type in order to enhance comprehensibility. Another theme may contain only

a subset of these chunks.

5.1.1 The Need for a Tool of Abstraction

Advances in programming languages and development methodologies have
not always been well met by LP tools — OO (see Section L.1.6]) is an example
of a software development methodology that existing LP tools largely fail to
elegantly accommodate. As future advances in methodologies are likely to
alter in the aspects and perspectives they offer the programmer, so must LP,
as a development and representational tool, facilitate the expression of these
multiple perspectives and methodologies.

One area of software engineering attracting much recent attention is ‘sep-
aration of concerns’ [59] (the concept of concerns — identification, encap-
sulation, and manipulation of those parts of software that are conceptually
and pragmatically relevant — was introduced by Parnas [63]). Two emerging
implementations that encapsulate this concept are Hyperslices[59] and As-

pect Oriented Programming (AOP) [43]. HyperJ [57], an implementation of

85

equality of

concerns

Hyperslices, allows the development of software, written in Java, in multiple
perspectives. Aspect), AOP’s implementation, is similar, but composes soft-
ware through program transformation. AOP affects and manipulates code,
whereas Hyperslices composes programs through inclusion or preclusion of
programming abstractions.

Although HyperJ allows the development of software emanating from any
stage of the software development life-cycle (from a requirement specifica-
tion, for example), assumes that there exists a definitive mapping from re-
quirements specification to system architecture to source code development.
Mens [51], however, asserts that there does not always exist a direct mapping
of elements from the architectural to the code level. He highlights the need
for media that allow the development of software from these immediately
unmappable abstractions. TBLP provides an elegant framework with which
to represent and develop an equality-based separation of concerns. TBLP,
unlike the AspectJ and HyperlJ, is not limited to programming level abstrac-
tions, and can be used to contain abstractions that do not map explicitly to
programming level abstractions.

Essentially, Aspect) and HyperJ focus on expression of software systems
towards the computer. This is a fixed approach and suffers from what we
term as “the inequality of concerns” — the inability to express a ‘concern’ to
any given audience. We contrast this with “equality of concerns”, which al-
lows the expression of a theme towards any audience — be that computer(s)
or human(s). TBLP’s focus is, following Knuth’s premise for LP, to ex-
press the multi-dimensional aspects of software systems towards the humanZ,
Moreover, Batory asserts that refinements are all-affecting; source code is but
one affected artifact; “documentation, formal properties, performance mod-
els, and so on, change”. TBLP provides a framework for the consideration
of all of these artifacts.

Other attempts at providing multiple perspectives have also been made.

Morgensen, Tylvad, and Vestdam recognised the limitation of the existing

! The side-effect of AOP and Hyperslices is enhanced human comprehension due to a
flexible approach to the separation of concerns. In contrast, the side affect of TBLP is
quality program source code due to the ability to express to human audiences multiple
separation of concerns.

86

LP model, and through their DocSewer [33, B8] tool, facilitated multiple
‘threadings’ of documentation and code abstractions (hence Doc-Sewer, we
assume).

Specifically, DocSewer allows the documentation and extraction of the

following fixed abstractions:
e relationships in class diagrams

— class
— method

— class relations; generalisations

e source code

Thus, there is a finite granularity of programming abstraction that can be
documented. Furthermore, software development in a psychological order is
impossible. The author is forced to document in an annotated fashion after
the programming artifact has been developed.

Although both TBLP and DocSewer attempt to solve the problem of lim-
ited psychological orders, both approaches differ and give different results.
DocSewer is language and methodology specific. TBLP, in contrast, is lan-
guage and methodology unspecifc.

Together is an IDE that facilitates the development of object oriented
program source code. Development of source code is reflected by graphically
presented UML notations such as class diagrams, sequence diagrams, and use
case diagrams. The equal opportunity interface allows direct manipulation
of the UML notations to be reflected in the respective program source arte-
facts. Although TogetherJ presents a powerful and advanced programming
environment, programmers are governed by the tyranny of dominant decom-
position. They are constrained to development with UML notation (some
may see this as an advantage). Furthermore, the representation offered is
layer-based. Cross-sections of these layers to combine relevant artefacts of

source code, class diagrams and sequence diagrams, for example, are unable

2 yww.togethersoft.com/

87

to be displayed. Also, the interaction between layers assumes a one-to-one
mapping between programming abstractions. TogetherJ offers, through its
API, an extensible development environment.

Wikis [7] are interactive web sites that allow any page to be edited by any
visitor, via a customised markup language. Authors are free to edit or anno-
tate sections of prose and create new pages. A Wiki page is commonly used to
discuss a user-instigated theme. Themes evolve through user-contributions.
Further themes may be derived, and therefore, branched off by developing
new pages with referencing hyperlinks. Hyperlinks not only facilitate naviga-
tion, but also (1) encourage linking to related pages, and (2) avoid replication
of prose on a page.

Although Wikis are not commonly utilised for software development, their
allowance of multiple perspectives to eminate from a given subject, and their
affordance for meta-notation i.e., allowing authors to document existing doc-
umentation, provide a partial solution to the model-centred shortcomings
of existing LP tools — limited psychological ordering and no support for
higher-order documentation, respectively. Although Wikis facilitate the de-
velopment of ‘themes’, their solution is partial from an LP perspective; they
do not allow the reordering of documentation segments, nor do they allow

documentation segment reuse.

5.1.2 Theme or Psychological Order?

We define a theme to be a psychological ordering of chunks. A theme, how-
ever, also implies that there are many possible orderings of chunks that might
be composed from one or more webs (see Section [.5lon pageIT3]). A theme is
advantageous because it can be aimed specifically towards a given audience.
As the audience changes in ability and interest, the theme can be altered in
an attempt to satisfy the audiences’ ability to comprehend.

The traditional psychological ordering of chunks assumes a fixed audience
(there is a limit of one psychological order) and that the audience is interested
in all parts of the program (all chunks are presented in the woven document).
Themes, on the other hand, allow a more natural abstraction because they

do not require that all chunks are woven (or tangled); a subset only can be

88

presented, and in any order.

5.2 DMultiple Themes: Theme-Paths and Chunk-Nesting

A traditional web is composed of ordered associations of documentation and
code chunks. The presentation order of these chunks in the woven document
is dictated by their sequential ordering in the web.

We can view these implied sequential interconnections between chunks as
an acyclic, directed graph of nodes and edges. Figure [5.1] on the following
page shows four themes imposed on the one web. Each theme is a path that
moves from chunk to chunk, thereby generating a graph of nodes (chunks)
and edges. Two types of chunks exist — documentation chunks (square
shaped nodes) and code chunks (circular shaped nodes). The traditional
woven order is illustrated by the non-filled arrow.

Allowing the composition of multiple themes from a singular web means
that it must be possible to define a path that threads together a specific set
of chunks to form a psychologically correctly ordered theme. For example,
an alternative theme composition is demonstrated by the dotted lines in
Figure [5.1] that thread documentation and code chunks in a non-traditional
(non-lexically ordered) manner. The grey line illustrates code chunk versions
of “C1” that are ordered in a theme document. Theme composition can
therefore be considered an ordered collection of chunks.

Chunk composition differs to theme composition, however. Chunks are
nested structures, not sequentially linked entities. This is depicted by the
filled arrowed lines in Figure 5.1l which represent the tangle order.

Chunk ordering is therefore distinct from chunk composition. Chunk
ordering refers to the ability to determine a chunk’s position in relation to
other chunks. This is the process of theme composition. Chunk composition,
on the other hand, refers to the ability to build the content of a chunk with

(1) free text and/or (2) references to other code chunks.

89

Figure 5.1: Four orders/themes, indicated by the four different line types,
are generated from the one web.

5.2.1 Processing Model: Separation of Content and Ordering

Having determined that we require multiple themes to extend from a single
web, we now propose a processing model that facilitates the elegant devel-
opment and composition of multiple themes.

Figure B.2] on the next page illustrates the traditional processing model
used by current literate tools. This model makes it impossible to alter the
ordered placement of chunks to generate multiple woven documents. This is
because chunk implementation and chunk ordering are combined; the pro-
cessing model relies upon the lexical order of chunks in the source file to
govern the chunk’s placement in the literate program — hence, the limita-
tion of one psychological order.

The processing order is shown more definitively in Figure[5.3on the facing
page (as a lower-level abstraction of Figure [5.2]). It typifies the tangling and
weaving capabilities of the traditional processing model. Documentation
chunks are represented as numbered circles and code chunks are represented
as alphabetized squares. From the web, it is possible to tangle the source
by starting at the root chunk, which in this case is <<A>> and following
the directed arrows to the code chunks that are referenced. The resulting
tangled source is shown as the nested chunks <<A>> <>, and <<C>>. The

woven document is simply a reflection of the ordering of the chunks as they

90

N Source Code

Web

Literate
Document

Figure 5.2: The traditional processing model.

o

Tangled Document

5 ©%
H]

FETIT

o|®©® v ®
D®© =

<

(IIAIZIBI3I4fC)

Figure 5.3: A web offers only two chunk orderings.

91

the repository

occur in the web. Note that chunks <<1>> <<A>> <<2>> <>, <<3>>
<<4>> and <<C>> appear in the same order in both the web and the woven
document.

The ‘displacement’ model (described in detail in Appendix [D] Section [D.3]
on page 299)) illustrates that it is possible to separate a chunk’s implemen-
tation from its order of inclusion in a woven document. Chunks may be
presented in multiple orders and are not confined to appear in their lexical
ordering in the source web; they may therefore be ‘displaced’. Specifically,
to effect the displacement model, we implemented a filter for the Noweb LP
tool. The Leo LP tool also allows multiple views of the same literate program
by facilitating the development of multiple ‘outlines’. The Glasgow Literate
Programming Project also initially provided what Will Partain termed as ‘rib-
bons’. The implementation was later discarded because “No-one uses it, and
it’s pretty clunky in this system, both conceptually and implementation-
ally.”8

The displacement model enables multiple psychological orders to be wo-
ven from one web, or repository. It is more pertinent to use the term reposi-
tory to describe the storage of chunks as separate from their theme-ordering.

Figure 5.4l on the facing page illustrates that the separation of a chunk’s
ordering (the “Chunk Ordering” files) from its implementation (the reposi-
tory) enables authors to generate multiple woven documents. Note that the
web in Figure has now been replaced by (1) a repository of chunks and
(2) a set of “Chunk Ordering” documents; each of which contains the order
in which chunks are to appear in a theme. Thus, a weave operation now

involves:

e the processing of a “Chunk Ordering” document to determine the order

of chunk appearance,
e the extraction of the relevant chunks from the chunk repository, and

e the presentation of the theme document.

3http://www.desy.de/user/projects/LitProg/glasgow/top.html

92

W Source Code
- oe?
Chunk
Literate |
Document: 1

[

Repsitory

Chunk |
Ordering: 1

Weg Ve

o)
V]

Figure 5.4: The displacement model separates between chunk implementa-

tion and ordering, thereby allowing multiple weave operations to be executed
on the one literate program.

Repository Tangled Document

A

Weavable Documents

o o] © > ©
I@@Hﬂ H.

@
e E
3 @,
themel theme2
(2,B,3,C) (3/4,C,2,B,1,A)

Figure 5.5: The displacement model enables multiple documents to be de-
veloped from a repository.

93

Figure on the page before illustrates how the separation of content
and ordering affects LP at the chunk level. The repository contains the same
chunks as the web in Figure 5.3, however, it no longer maintains an implied
ordering of chunks; any chunk’s implementation may appear anywhere in
the repository. The lexical ordering of chunks in the repository is now a
redundant feature. The tangle process remains the same.

It is now possible to generate any number of woven documents, containing
chunks displayed in any order, which include or exclude any atomic chunk
(combination of documentation and associated code chunk). Because the
content each chunk is contained in the repository, the chunk ordering files
need only contain a list of references. In the example in Figure B3l two

documents have been woven:

1. Documentation chunks <<2>> and <<3>> are presented with their as-

sociated code chunks, <> and <<C>>, respectively.

2. The code chunks are presented in the order <<C>>, <> and <<A>>, as
opposed to <> and <<C>> in the last ordering. Note that chunk <<C>>
now has both documentation chunks <<3>> and <<4>> associated with
it.

Asymmetric Weaving

Two further implications arise from the employment of the displacement

model:

e Not all chunks must be output from the repository.

Theme one presents only code chunks <> and <<C>>. Theme two
presents chunks <<C>>, <> and <<A>>. This contrasts positively
with existing tools, which commonly output all chunks from a web

to the woven document (a shortcoming explained in Sections E.1.3] on

page [64] and £.2.4] on page [T7]).

e Theme-specific atomic chunks.

94

Although code chunk <<C>> appears in both themes, theme one as-
sociates only documentation chunk <<3>> with it, whereas theme two
associates both documentation chunks <<3>> and <<4>>. This im-
plies that a documentation chunk is marked up with the theme(s) in
which it may be included. (This was the method employed by the
‘switch’ model, which we implemented and describe in Appendix [D.2.1]
on page 294). Thus, the documentation chunk is not totally devoid of
knowledge of its inclusion in a woven themed document. This short-
coming is a result of the inability to reference a documentation chunk.
Documentation chunk referencing is discussed in more detail in Sec-
tion on the next page.

If we were to generate these two woven documents using the traditional
method, two separate webs (like that in Figure [B.3]) would need to be de-
veloped. The separation of chunk ordering from the repository thus allows

chunk reuse.

The Tyranny of Dominant Decomposition is Broken

The separation of chunks’ content and ordering allows LP to address separa-
tion of concerns (introduced in Section [4.2.1lon page[1l) on the programming
level; it is therefore amenable to technologies such as AOP and Hyperslices
(Section .11 provides further explanation).

The ability to present a program in multiple orders allows an order of
decomposition and expression to be undertaken that is not dictated by the
programming language or compiler. Although traditional LP allows a psy-
chological ordering of chunks, it offers only one such order of presentation.
The new processing model, which separates content from ordering (allowing
chunks in a repository to be referenced from “Chunk Ordering” documents),
allows the development multiple psychologically ordered documents from one
repository. Multiple concerns are now able to be represented; the following
sections, however, show how the literate model may be further improved to
allow the elegant and scalable implementation and representation of these

concerns.

95

5.2.2 Enhancing Chunk Composition

Having enhanced the processing model’s ability to separate content from
ordering allows the development of multiple themes from a single repository,
we will now examine enhancements to the chunk model that enable higher-
order documentation and more flexible chunk development.

The traditional code chunk model allows chunk composition via the ref-
erencing of code chunks. A tree-like structure is formed, and the traversal of
this structure, in a depth-first manner, is called the tangle process. This tan-
gling functionality is available specifically to the code chunk, but not to its
documentation counterpart thereby disallowing documentation chunk reuse.
(a shortcoming discussed in Section 49 on page[TH). In Section we solve
this shortcoming by facilitating the composition of nested documentation
chunks.

In order to elegantly facilitate higher-order documentation, in Section[5.2.2]
we propose a generic chunk model; an enhancement to the (nested documen-
tation) chunk model. A generic chunk allows chunk to be arbitrarily typed.
We also consider the repercussions, both positive and negative, that this

advance has on literate programming.

Nested Documentation Chunks

The code chunk provides a working nested model that we can transfer to the
documentation chunk. Figure on the facing page specifically shows
that a code chunk may reference, and hence be composed of, many other
code chunks. Existing LP tools are unable to compose documentation by
reference. We bestow these features upon the documentation chunk, as shown
in Figure [5.6(b)| on the next page.

Combining the ability to nest documentation chunks with the ‘displace-
ment’ processing model (introduced in Section [B.2.7]), we are able to generate
an immense array of documents from a repository (37, (’Z)z' combinations
of chunks may be generated, assuming (badly) that no chunk appears more
than once in the output document). For example, the two literate docu-
ments generated from the repository in Figure (5.7 on the facing page. The
repository contains code chunks (rectangles) <<A>>, <>, and <<C>>, and

96

references

describes

Code

references . references

(a) Partial Traditional Chunk Model: A code (b) A documentation and code chunk can be

chunk can be composed (by reference) of other composed (by reference) of other documenta-

code chunks. tion and code chunks, respectively.

Figure 5.6: We ehance the chunk model by enabling the documentation with
the same functionality as the code chunk.

Repository

56"
@@é

) B| theme2

| (A (B,(C))

o] =] =]
o] 7 [=]

themel
(1,(2,3),C,2,B,4,(5),A)

©@®0E
©
®
>|

Figure 5.7: Documentation and code chunks may be nested.

97

documentation chunks (circles) <<1>> <<2>> <<3>> <<4>> and <<5>>.
Theme one contains documentation chunk <<1>>, which is associated with
code chunk <<C>>. Note that the repository defines chunk <<1>> as composed
of chunks <<2>> and <<3>>. Both chunks <<2>> and <<3>> are displayed in
the literate document. Documentation chunk <<2>> appears again; however
it is now associated with code chunk <>. This illustrates documentation
chunk reuse — the lack of which is a shortcoming of current LP tools.

Theme two in Figure5.71is equivalent to tangled source code and contains
the nested code chunks <<A>> <>, and <<C>>. Note that theme one
contains documentation chunks that are tangled to produce the traditional
woven output.

In order to perform a tangle operation on a documentation chunk, each
documentation chunk must contain a referencable unique identifier. We
recommend a unique, automated, chunk identification (chunklD) naming
scheme, which is distinct from the descriptive label (name) given to a code
chunk. We find, in Section [T.4] on page [[93] that the traditional chunk nam-
ing mechanism is no longer feasible for the generic chunk model we next

propose.

The Generic Chunk

Having provided the documentation chunk with “nestability”, we now look to
enhance the chunk model’s extensibility. We propose a generic chunk model
and present a case for the generic chunk by defining the key restrictions of

the current nested chunk model (as covered in Chapter @]). These are:
e a fixed hierarchical chunk model,
e an asymmetric processing model,
e an unrealistic set of chunk types, and
e a uni-directional association between chunk types.

These limitations of the traditional chunk model highlight three impor-

tant requirements of an enhanced chunk model:

98

1. multi-directional association between
chunks,
A specific chunk hierarchy should not be en-
forced by the model. The association, or nest-

ing, of any chunks should be left to the au-

thor’s discretion.

2. limitless set of chunk types,
A chunk’s type should depend on its content

and intended use. The author should be free

to select an appropriate type for each chunk.
We envisage that the chunk’s name will indi-

cate the role it is used for.

3. a separate, non-discriminatory process-

ing model.

Chunks may appear in any document, be <> /\
it tangled or woven. The processing model

should process multiple chunk types, as dic- <> !
tated by the author. f <> A

These requirements are realised by a generalised chunk mode® — a
generic chunk that is able to be arbitrarily typed and nested is the ele-
gant solution that the rest of this dissertation is based upon, and represents
an entirely new chunk model allowing programmers, as document authors,

the freedom of arbitrary expression, yet specific exposition.

4 and the people rejoice, the streets come alive, peace reigns, and software engineers look
knowingly — they have just seen a great light

99

the generic chunk

A high-level representation of the generic chunk is presented in Figure [5.§]
on the facing page. A chunk may reference, and be referenced by, zero to
many other chunks. Chapter [0 discusses the composition of the generic chunk
in detail. We recommend, based on our findings, that a chunk contain the

following (minimum set of) attributes:
type: The chunk’s type should indicate the nature of the chunk’s content.
name: The chunk’s name should be descriptive of its content.

chunklID: This unique identifier allows it to be referenced by other chunks

and allows its inclusion in themes.

In addition, two further attributes will comprise the chunk’s attribute set

because of the functionality that they offer to the author:

version: A chunk belongs to a version hierarchy (explained further in Sec-

tion [5.2.4] on page [I07]).

variant: This allows demonstration by difference. It allows a chunk to receive
multiple implementations dependant on external factors, such as oper-
ating system (e.g, Win32 or Linux source code chunk) or language (e.g.,
English or Greek interface tutorial chunk) or display requirements (e.g.,
a segment of an XSLT stylesheet that formats cross-references receives
many different implementations — the author is able then to trial a
set of them before committing to one). It is usually the case that two
chunk variants would not be included in the same theme document.
Variant use is demonstrated in Section on page 164l

The traditional chunk model’s simplification to a generic representation
has positive implications, including, in no particular order, the following

major ones:

user-defined chunk types: The author may attribute to a chunk any type

necessary to represent its content. Authors can now definitively type all

100

chunk -~

* references

Figure 5.8: A chunk may reference, and be referenced by, zero to many
chunks. A chunk may not reference itself.

manner of chunks. These types can follow a notation convention such
as that suggested by UML — sequence diagrams and class diagrams

can be developed by aptly typed chunks, for example.

chunk reuse: Because any type of chunk in our model can be nested and
therefore referenced, it is possible to reuse any chunk by referencing
the same chunk twice (or more) in the same theme. As a consequence,
TBLP allows authors to display any type of chunk’s content multiple
times within the same literate document (Section 49 on page [T further

explains why reuse is not possible in the traditional LP model).

theme-based chunk formatting: A chunk, throughout a theme, can re-
ceive specific type-dependant formatting. For instance, a construction
documentation chunk is marked up in 10 point, Times, serif font for
presentation in a user-story theme; however, it would sensibly occur
as ‘raw’, unformatted text delimited by programming-language specific
comment syntax when included in the source code presented to a com-
piler. Existing LP tools do not offer this functionality?. For example,

an excerpt of the wc.nw literate program:

% Although it is possible to develop a filter in Noweb to generate such a tool. Other tools
that offer macro support allow the output of documentation chunks in the source code;
however, not the individual treatment of the chunk’s content.

101

@
The [[status]] variable will tell the operating system
if the run was successful or not, and [[prog_name]] is

used in case there’s an error message to be printed.

<<Definitions>>=
#define OK 0

/* status code for successful run */
#define usage_error 1

/* status code for improper syntax */
#define cannot_open_file 2

/* status code for file access error */
<<Global variables>>=
int status = 0K;

/* exit status of command, initially 0K */
char *prog_name;

/* who we are */

could be presented as the following source code using TBLP (note that

the documentation chunk is now presented as a source code comment):

102

/*
* The [[status]] variable will tell the operating
* system if the run was successful or not, and
* [[prog_name]] is used in case there’s
* an error message to be printed.
*/
int status = 0K;
/* exit status of command, initially OK */
char *prog_name;

/* who we are */

TBLP facilitates the visual differentiation of distinct chunk types. A re-
quirements specification chunk can be presented in an emphasised font
and receive a framed border, for example. The supporting achitectural
specification can be presented as a partial class diagram with support-
ing documentation to elaborate design decisions. This occurs by trans-
forming chunk content to markup languages such as XMI (XML Meta-
data Interchange), which can be further processed to generate UML
diagram notation. These processes can be integrated with the TBLP

development process as described further in Section on page [[17]

Traditional LP development cannot elegantly present and differentiate
between such hierarchical layers of documentation (higher-order doc-
umentation). The generic chunk facilitates the elegant distinction of

layers of abstraction.

multi-formatted themes: Each theme in our model can be formatted in
any number of ways according to rules imposed by each of a given set
of stylesheets. As an example, it is possible to generate a source code
theme to present to the compiler. The same source code theme can also
be formatted using a different stylesheet, and presented as an HTML

document for internet browsing.

103

This is a benefit of an extended processing model (described in Chap-
ter [6, Section [6.2)). Our processing model utilises XML and supporting
technologies such as XSLT to separate content development from for-
matting. The TBLP processing model thus considers theme develop-

ment and theme formatting as two distinctly separate operations.

positional chunk formatting: A chunk can receive specific formatting given
the combination of its type and its relative position to other chunks of

a given type and position, in the chunk hierarchy.

Thus, It is possible, for example, to apply differentiated formatting
amongst nested code chunks, in order to explicitly illustrate chunk

nesting. Section [[.2.2)) demonstrates how this is achieved.

Such visualisation methods can be extended to provide useful abstrac-
tions literate themes. Chunk relationships, chunk types, chunk (con-
tent) size, the number of chunk references made from/to a chunk (rem-
iniscent of Henry and Kanfura’s fan in/fan out [34]), or combinations
thereof, can be represented using colours, shapes, movement, and dis-

tance, in a virtual environment, for example.

centralised processing model: Each chunk contained within a theme can
undergo a mixture of the traditional weave or tangle operations, thus
solving the biased processing model (see Section @9 on page [7H). Our
new processing model is discussed further in Section on page [I08.

the need for a literate aware tool: TBLP treats chunk development and
theme development as two separate processes. Themes consist of an
ordered list of nested references to chunks that exist in the repository.
The author of a literate theme must organise and define the nature
of these references (discussed in Section [(.2.5]), whilst simultaneously
utilising the repository, a separate document, to define chunks that are

referenced.

Themes, as collections of nested references, are difficult to visualise.

Furthermore, the continuous movement between literate themes and

104

the repository introduces a tedious sequence of actions. Traditional
command-based system functionalities employed by existing LP tools

do not offer suitable functionality for TBLP development.

Tool support alleviates these shortcomings associated with a manual
implementation system. As chunks are manipulated and re-oriented
within a theme, and implemented in the repository, a TBLP tool should
offer dynamic update of a theme’s display. Whether such a tool distin-
guishes between theme development and repository (chunk) develop-
ment outright, or hides this distinction such that chunk development
is combined with theme development (a theme is presented as though

it contains free text) is a subject for further research.

Future research should also address whether such a tool is presented in
the form of an IDE or integrated with existing IDEs (such as Microsoft’s
NET development environment®) or editors (such as Emacs). Database
development environments, such as Jaddd, are also promising options.
We propose that TBLP needs to be a supported process rather than
an imposed one. Thus, modularised IDEs that are adapted through
programmable APT’s; will be prime candidates for TBLP adaptation.

We next discuss the storage issues of the generic chunk and their impli-

cations.

5.2.3 Chunk Representation

It is common for chunks to be collated in a common physical proximity, as a
group, in order to describe the same abstraction. These chunks, which may
be of any type, form an atomic chunk. Thus, an atomic chunk is composed
of a set of chunks that may each be of a different type, which describe the
same abstraction. Each of these chunks may be further composed of a set
of variously typed chunks representing a specific abstraction. We utilise the
composite pattern [29] to express this relation, as shown in Figure on the

next page.

Shttp://www.microsoft.com/net/
"http://www.jade.co.nz/

105

Ch unk

ﬁ

AtomicChunk | ChunkGroup |
lflt A
Code oc Test

Figure 5.9: The new chunk model.

Whether this atomic unit is explicitly represented (by a chunk), or implied
(by grouping chunks in close physical sibling-like proximity), as has been the
case in existing literate tools, is a matter for further research of the chunk
model’s representation.

Furthermore, an extended chunk model, likely to result from further re-
search, would facilitate sibling relationships such that chunks that do not
compose the body of the parent may be included as fostered siblings of child
chunks. Another candidate method of providing this functionality is to allow
the definition of parent-child relationships, thus allow the inclusion/exclusion
of chunks based on theme-specific instructions. It may well occur that an

enhanced theme model will suffice.

5.2.4 The Repository of Chunks

Every chunk is stored in a repository. The ordering of chunks in the repos-
itory does not affect chunk or theme development. A repository may be
thought of as a database of chunks. Any chunk may reference any other
chunk in the repository. Recursive references are disallowed, however.

A chunk’s storage in a repository is distinct from its inclusion in a theme.
Thus, a chunk may exist in a repository without being included in a sin-
gle theme. Furthermore, a chunk can be implemented without necessarily

existing in a theme document.

106

Granular Revision Control

As chunks are progressively altered and improved, providing a mechanism
that maintains each chunk’s state at each stage of its development produces
a powerful revision control system. Thus, if all chunk revisions are stored
in the repository and are referencable (and therefore considered as chunks
outright) all manner of historical theme representations are enabled.

In this manner, TBLP improves on traditional, file-based revision control
systems. Using the chunk model, it is possible to compose themes from any
version of any chunk. Themes may be rolled-back to stages of specific chunk
development for example. Historical themes that show a chunk’s progressive
development are easily compiled to generate theme document.

In order to facilitate chunk-based revision control, the chunk must contain
a version attribute. Also useful, although not critical, is a time attribute that
specifies the time a new version of the chunk was created. Chunk versions are
discussed further in Section B@l on page [[62]), while Section on page

provides details of their implementation and necessity.

5.2.5 Theme Model

A theme is an ordered collection of references to chunks in the repository.
Note that a theme itself does not contain free text. Chunks, which are
defined in the repository, are threaded together as references to generate a
literate document. A theme document bears similarities to the traditional
web source. As with the traditional web, a theme document contains lexically
ordered chunks. Each of these chunk references can reference a set of chunk
references also. This can continue recursively to create hierarchies of chunk
references. Nested references are reflective of a chunk’s composition as it
exists in the repository.

For each chunk reference, the theme model maintains a set of display
attributes that dictate the chunk’s appearance in the theme document.

The manner in which chunks within a theme are processed is dependent
on the processing model. We discuss the requirements of the amalgamated

weave and tangle processing model in the next section.

107

partial weave and

partial tangle

top-level chunks

5.2.6 Processing Model: Blending Weave and Tangle

As discussed in Section 49, the traditional LP processing model is unable to
equally process all chunk types in both the weave and tangle operations; it
is impossible to tangle documentation chunks into the tangled source. Thus,
the tangled scope and woven scope differ. Our TBLP chunk processing model
overcomes this drawback by allowing both the execution of the weave and
tangle operations in one theme document.

The generic chunk allows any chunk type to be nested. Therefore, what
was previously considered a woven document, which was effectively a sequen-
tial translation of the web to the literate document, can now also undergo
tangling operations to present nested documentation chunks. The ability to
nest all chunk types makes the process of tangling pervasive throughout the
weaving of a document, and the reverse is also true.

The amalgamation of the weave and tangle operations creates the need
for discretionary control of the display of chunks in a theme. It is not always
pertinent to display a chunk’s content in occurance in a theme, neither is it
always pertinent to display a chunk’s name each time it occurs in a theme.
Thus, documents may undergo both partial tangle and partial weave opera-
tions. These operations are dependent on the instructions contained in the
theme document.

Thus, the author may stipulate the presentation of each chunk’s occurance
in the theme document using this a simple rule-set. It may be feasible to
further decouple these rules such that a chunk’s content is hidden, but the
referenced chunks it contains are displayed. This would allow something
similar to a table of contents to be developed as a theme rather than achieve
the same result via document post-processing. Perhaps future research will

implement this functionality.

Theme Composition

A theme is composed of an ordered collection of nested chunk references. We

name such an ordered collection® ‘top-level’ chunks.

8 we borrow from XML terminology

108

We can think of this collection of chunk references as having a null root
(the theme beginning). The restriction on this root chunk, however, is that
it cannot contain free text. This maintains the difference between theme
development, and chunk development, conceptually clear and distinct. Each

chunk reference refers to a chunk that exists in the repository.

The Blending of Weave and Tangle

In this section, we emphasise the difference between LP and TBLP by com-
paring processing models. Although theme composition is the process of
ordering a collection of chunk nested references, further instructions about
the processing of these chunk references must be provided.

The traditional processing model consists of a tangle and weave operation.
Tangling consists of recursively displaying a nested code chunk’s content. A
(simple) weave operation presents the content of a chunk and outputs the
names of the referenced (nested) chunks contained therein.

In contrast, TBLP essentially combines the recursive traversal of a nested
chunk performed by a tangle operation with the ability to either display
a chunk’s content (as do the tangle and weave operations), or include the

chunk’s name (as does a weave operation). Inclusion of cross-references in

Repository

/a\ @
A @
/Q\ ® |

/o L @ theme1 (4,(B,(C)))

N

A—@—®
L@ /o E]
@ theme2 (a,(b)4,(5),A,(B))

Figure 5.10: Multiple chunk types exist and all may be nested.

109

the generated document is also an option. Note that the display of a chunk’s
name, content, and cross-reference details may be performed even for nested
chunks.

As an example, Figure [£.10] on the preceding page illustrates theme and
chunk composition. The example illustrates that some chunks require some-
thing akin to a tangle operation, while others require something akin to a
weave operation. Other combinations might also arise. The repository con-
tains three chunk types, denoted by the triangular, rectangular, and circular
shapes. The repository illustrates that chunk <<a>> references chunks <>
and <<c>>; <<A>> references <>, which references chunk <<C>>; and <<4>>
references <<56>>.

The theme composed from the repository orders chunks <<a>>, <<4>>,
<<56>> and <<A>> as the top-level chunks. Chunk <> is the only nested
chunk of <<a>> included; chunk <<c>> is excluded from the theme docu-
ment. Chunk <<4>> is included without including its nested chunk <<5>>.
Chunk <<5>> is included as a top-level chunk. Chunk <<A>> is included,
with chunk <>, however, chunk <<C>> is not included even though it is
referenced by <> in the repository.

It is insufficient, however, to merely indicate a nested chunk’s inclusion
(or not) in a theme document. A chunk’s presence may mean many things,

including:

e a reference to the chunk’s implementation elsewhere in the document,

or in another theme.

e a display of the chunk’s content.

The author must therefore also indicate each chunk’s display properties.
Combined with each reference, the following instructions pertaining to the

chunk’s display in the output document must also be given:

chunk content: Should the free text/content contained within the chunk

be shown?

chunk name: Should the descriptive name used to label the chunk be dis-

played in the literate document?

110

[a name=no cross-reference=no content=yes
[b name=no cross-reference=no content=yes]
[c name=no cross-reference=no content=no]

]
[4 name=no cross-reference=no content=yes
[5 name=no cross-reference=no content=yes]

[A name=no cross-reference=no content=yes
[B name=no cross-reference=no content=yes
[C name=no cross-reference=no content=no]

]

Figure 5.11: Display instructions are required for each chunk reference in a
theme document.

chunk cross-references: Should the chunk’s uses in this or other themes

be displayed?

An example set of possible display instructions (in notation form) for each
chunk is shown in Figure 5. 1Tl The top level chunks are effectively presented
as a list of nodes with accompanying instructions. A list is delimited by
the ‘[’ and ‘]’ characters. A nested chunk is presented as a member of a
parent chunk’s sublist. Thus, the set of theme-specific instructions can be
accurately represented as a list of lists.

An example of a traditional tangle process, as depicted by theme themel,

in Figure 5.0, would require the following theme instruction set:

[A name=no cross-reference=no content=yes
[B name=no cross-reference=no content=yes

[C name=no cross-reference=no content=yes]

111

The root chunk, <<A>> is the only top-level chunk included in the theme
document. Chunk <<A>>’s content is displayed; its name and cross-reference
details are not. Each nested chunk that composes <<A>> is recursively pro-
cessed — only the free text is displayed.

An example of the traditional weave process, as illustrated by theme theme2
in Figure is as follows:

[b name=no cross-reference=no content=yes]

[4 name=yes cross-reference=yes content=yes
[5 name=yes cross-reference=yes content=no]

[c name=no cross-reference=no content=no]

[5 name=yes cross-reference=yes content=yes]

Note that chunks <> and <<c>> act as documentation, and are there-
fore associated with chunks <<4>> and <<5>>, respectively. Also note that
the name and cross-reference details are not displayed for the documentation
chunks. This remains consistent with the display generated for traditional
woven documents. Note that chunk <<5>> appears as a nested code chunk
of <<4>>; however, its content is not displayed — only its name and cross-
reference details are. The cross-reference details displayed in the theme doc-
ument will allow navigation to the place in the document where chunk <<5>>
is defined.

5.3 TBLP Development Emphasises Expression over Develop-

ment

TBLP separates content from ordering (see Section .21 on page @) pro-
vides a clear distinction, unlike LP, between chunk development and theme
development. Although chunks may still be developed in a psychological
order, TBLP also facilitates the development of themes by reusing existing
chunks. Emphasis is placed, therefore, on expression of concept rather than

development of concept.

112

Although expression and development will never be completely separated
(and nor should they, we must be mindful of LP’s promotion of thinking
before developing), development with a mind for reuse of chunks will not
only create more cohesive and loosely coupled chunks, but also allow the

author to concentrate on theme-expression.

5.4 Equality of Concerns

All documents are generated from themes. Just as a document that follows a
psychological order of expression is a considered a theme, so is the source code
that is fed to the computer. The new processing model treats all documents
as equal products. The source code is no longer relegated to being a ‘tangled’
source. All documents are viewed as being of equal import, and all documents
are considered ‘literate’ to a specific audience.

This leads to an interesting phenomenon of TBLP — it is possible to
program in the traditional order dictated by the compiler, thereby avoiding
the need to program in a ‘literate’ fashion — after all, source code is just
another theme. Thus, any view that may be generated by a theme, is also

one in which a document may be edited.

5.5 DMultiple Distributed Webs

Although the focus of our discussion has been oriented towards a single repos-
itory and the composition of themes from this repository, we stress that
multi-web TBLP is key to solving issues of source reuse — documentation,
formalised notations such as UML, and source codd? are all examples of po-
tentially reusable chunks.

Essentially, multi-web TBLP allows the composition of chunks from many
sources to create one theme. The concepts described within this chapter are
applicable to distributed and multi-web literate programs. Although not
demonstrated in the TBLP implementation chapter (Chapter [), there is

scope certainly for consideration and development of distributed webs during

9 we do not refer to modular reuse such as replacing the need for shared libraries

113

further academic endeavour — we therefore place this in the future work
basket (discussed further in Section 0.2

5.6 Summary

We have developed a generic chunk model that allows non-discriminatory
processing, thus developing the paradigm of, what we term, theme-based
literate programming.

We derived the generic chunk model by allowing the separation of chunk
content and their ordering in a theme document. We were thus able to
develop multiple themes with chunks psychologically ordered appropriate to
audiences’ comprehension. We also allow for each nested chunk reference
in a theme, the author to stipulate whether the referenced chunk’s name,
content, and cross-reference details are displayed.

TBLP solves many of the shortcomings associated with traditional tools;
certainly most of the model-centered shortcomings. Specifically, in this chap-
ter, we have illustrated that TBLP, through the generic chunk model (al-
lowing arbitrarily typed chunks) allows the distinction of all types of chunks
(SQL, test source, unit test, user story, UML, requirements analysis, thoughts
on requirements, specification, are all examples of possible chunk types) —
solving the indecision of chunk categorisation. Also, hierarchical, multi-
layered chunks may be composed (to represent all phases of the SDLC for
example). Thus, the ability to develop multi-typed, multi-layered chunks
presents a viable solution to the tyranny of dominant decomposition.

In Chapter [l we demonstrate an implementation of our TBLP model.

114

Chapter VI

Implementation of the Theme-Based Literate

Programming Model

In theory, there is no difference between theory and practice. But, in

practice, there is. — Jan L.A. van de Snepscheut

This chapter describes the practical implementation of the theme-based
literate programming model as discussed in Chapter Bl The new processing
model and chunk models lead to the design of a new data model, and this
chapter is concerned with the realisation of these models as physical proofs
of concept.

The sequence of explanation in this chapter follows the initial stages of the
TBLP development process — the later stages are presented in Chapter [7
Firstly, in Section [6.2] we explain the development process, and then address
the implementation and support of its distinct stages.

The initial development stage of TBLP includes chunk and theme com-
position (Section [6.2.1)) The prototype tool, Context Based Development
Environment (CBDE) facilitates this composition (Section [6.3). The CBDE
was developed as a test framework for both TBLP environment development
and the conceptual advance of TBLP programming.

The CBDE implementation’s architecture and design is discussed in Sec-
tion [6.4]

Throughout this chapter, prose that is presented in an enclosed box is
used to demonstrate present or future design decisions of the CBDE’s devel-

opment.

115

6.1 Why XML?

XML is a popular and pervasive markup language used for data presentation
and storage. It is selected as the representation medium for TBLP because

it provides:

ubiquitous support: XML is supported pervasively throughout the world
wide web, open source, commercial, programming, and document au-
thoring communities. It is fast becoming the language of choice for
information storage, and data communications. Many software devel-
opment environments provide XML capabilities. Main-stream database
support is also growing (http://www.rpbourret.com/xml/XMLAndDatabases.
htm). Support, in the form of extended libraries, is available from many

programming languages. This support continues to grow.

XML provides technologies such as DOM, Schema, SAX, XSLT and
XSLFO. These are powerful parsing, storage, and transformation agents
that exist as cross-platform implementations. Markup languages such

as DocBook provide ready-to-use scientific documentation markup.

Future support is likely to benefit TBLP also. Navigation between
chunks and their display could be facilitated by XLink and XPointer
aware browsers. Further research will determine the usefulness of this

approach.

XML standards are developed by the W3C (World Wide Web Consor-

tium®), a vendor-unspecific entity focused on developing the technical

evolution of the “web”.

Moreover, it seems clear that XML is not simply a passing fad. It’s wide
acceptance has effectively etched its use into, at least, the short-term

future.

extensibility: Because XML separates content and formatting, documents
are easily transformed, and therefore processable and transferable be-

tween XML-enabled processes and applications. This makes XML a

Yhttp://www.w3c.org/

116

strongly feasible option for interfacing to each stage in the TBLP de-

velopment framework (see Section [6.2).

The implementation of the individual processes themselves become
black-box, modularised entities — importantly they must adhere to
the process-interface requirements?. Such an approach facilitates ex-
perimentation, which is an important consideration in an academic
endeavour such as this. It also promotes a plug-in approach whereby
processes may be inserted and/or replaced without disturbing other

processes in the pipeline.

XML enables document transformation to multiple document formats,
and thus, is unaffected by the monolithic output problem (see Sec-
tion LT3 on page [64]) that affects most non-XML LP tools.

human-legibility: XML can be written manually, or partially/fully auto-
mated through the use of conforming utilities. And although it is terse,
XML is human-readable.

Furthermore, XML helps alleviate the 3-syntax problem (see Section .1.2]
on page [62]). Users need only know two syntaxes — the programming
language and the relevant XML markup. Take note that authors are
not confined to mark chunk content up in XML. It is quite possible to

utilise other markup languages, such as IXTEX for example.

validity and verifiability: XML documents can be checked for validity
and verifiability.

6.2 The Literate Document Development Process

The literate document development process, as illustrated in Figure on
the following page, employs a pipelined architecture that allows the inclusion
of sub-processes at any stage. The process of document development forms

the basis of a framework for themed literate document development — in-

2 as far as the TBLP development framework is concerned

117

source development theme development

authoring Chunle
Repository

transformation

formatting

Figure 6.1: Literate documents are generated using the TBLP Development
Process framework.

118

terconnected, navigatable, formatted documents. The distinct stages in the

document development framework are:

1. Authoring:

e Repository/chunk development: individual chunk content added

as combinations of (1) free text and (2) references to other chunks.
e DTD development: each chunk conforms to a given DTD.

¢ XML theme source document development: chunks from
the repository are referenced. The XML theme source documents
are therefore linked to the repository. Chunk references are or-

dered. XML theme source documents contain no free text.

2. Transformation — XML theme document output: the refer-
ences made in the theme source document are resolved against the
repository. The result is an XML document with full content, presen-

tation, and formatting instructions.

3. Document formatting: The XML theme document is parsed using
an XSLT stylesheet(s) to generate a literate document(s) in the user-

specified format.

There is a clear conceptual and pragmatic distinction between chunk de-
velopment, theme development, document content, and document format-
ting. Although two or more of the distinct development stages may be in-
tegrated in future TBLP implementations (such as combining theme editing
with chunk editing to allow in-theme chunk editing), we design the CBDE
to enforce their separation (Section explains why the current prototype
doesn’t support in-theme editing).

The distinction between each of these stages has many consequences. The

most significant are as follows:

the separation of theme composition and chunk composition: Multiple
theme documents can be composed from a single repository, as dis-
cussed in Section [£.2.1] on page Q0.

119

the separation of chunk display and chunk formatting: Although a chunk
— its name, cross-references, and content — may be marked up for fu-
ture formatting, it is possible to display or prevent the display of any
one of these items (explained in Chapter [Section on page [T08]

separation of content and formatting: Any XML theme document may
be transformed by multiple XSLT stylesheets. This allows multiple
themed literate documents to be generated, each differentiated by its

formatting.

pre/post/intermediate processing: The pipeline process employed al-
lows sub-processes (other tools or technologies) to be inserted at any
stage in the pipeline. This is similar to the successful extensible ap-
proach adopted by Noweb and promotes the development of modu-
larised processes and support utilities. For example, in order to validate
XML documents at all stages of the development process, it is possible

to include a DTD validity checker to ensure document conformance.

process replacement: It is possible to replace any stage of our TBLP de-
velopment process, so long as the newly inserted process adheres to the
XML-based interface requirements of its surrounding processes. For
example, in order to generate PDF documents, it is possible to replace
XSLT with XSLFOP (or use XSLFO as a post-processor of XSLT's
output). It is therefore possible to replace the chunk-authoring and
theme-authoring environments (such as the CBDE) with other environ-

ments.

Each stage in the document development framework interfaces to the
previous and next stage. These interfaces must be adhered to in order to
facilitate process replacement and intermediate processing. These interfaces
are formed by the XML expected by each process. We discuss these in the
following sections.

The document development process employed by TBLP is similar to the
processing employed by existing XML-based publishing frameworks such

3http://www.w3.org/TR/xsl/slice6.html — forms part of the XSL standard.

120

as Cocoon (http://xml.apache.org/cocoon/) and Axkit (http://axkit.
org/). We offer the basis of a framework for document publication as well,
however, we also provide a framework for document composition. Document

composition occurs in stage 1 in Figure 6.1

6.2.1 The Repository — Chunk Composition

Chunk and theme composition are explained in Chapter B Sections
on page 08 and on page [I08], respectively. Briefly summarising: the
development stage involves both the population of the repository and the
generation of themes that reference these chunks in the repository. A theme
cannot contain free text; it can only contain chunk references. A chunk
may contain any number of chunk references. Any chunk reference that is
nested in a theme document must exist, as a chunk, in the repository; any
nested chunk reference reflects the referenced chunk’s parent’s content in the
repository.

The traditional literate model discriminated between a code chunk and
a documentation chunk. To provide equality of functionality to all chunks,
Section on page introduced our new concept of a generic chunk.
That is, the body of any type of chunk can be implemented by reference
much like the body of a code chunk in the traditional chunk model. A chunk
comprises the free-text that it possesses, plus indirectly, that of any chunks
that it references, illustrated in Figure on the following page. Chunk
composition occurs in the repository. This is illustrated in Figure and
modelled using a DTD in Figure on the next page.

The DTD stipulates that a repository document may contain any number
of chunks. Chunks may contain textual data (#PCDATA) and any number
of chunk references (chunkrefs). A chunk must possess a unique identifier
(chunklID). A chunkref references a chunk by the chunklID attribute — a chunk
reference’s foreign key (see Section [T4] on page [I93 for an explanation of its
implications on TBLP).

Both elements (chunk and chunkref) have a constraint stipulating that

a chunkID is mandatory. It is incorrect to reference a non-existent chunk.

121

chunk | chunkID | type | version

1

#

hd

chunkref | chunkID | ...

(a) A data model of a chunk. It may
reference zero to many chunks. A
chunk may not reference itself.

chunk

I

chunkref] text chunkref chunkref] test

(b) A chunk is composed of free text and chunk references.

Figure 6.2: A data model and composition representation of the chunk.

<!ELEMENT repository (chunk)x*>

<VELEMENT chunk (#PCDATA | chunkref)*>

<IATTLIST chunk chunkID ID #REQUIRED>

<!ATTLIST chunk version CDATA #REQUIRED>
<!ATTLIST chunk chunkName CDATA #IMPLIED>
<!ATTLIST chunk type CDATA #IMPLIED>
<IVATTLIST chunk variant CDATA #IMPLIED>

<!ELEMENT chunkref>
<!ATTLIST chunkref chunkID IDREF #REQUIRED>

Figure 6.3: A repository DTD.

122

Furthermore, a chunk must possess a version number® The chunkName, type,
and variant attributes can contain contain null values — the default for these
attributes implied by the DTD.

To allow nested documentation®, LP tools such as LPML (Section B.4))
have seen the inclusion of an additional element to the DTD, named docu-
mentation (or similar). Based upon this method of chunk model extension,
including different chunk types would require an additional entry in the DTD
for each supported chunk. An explosion of chunk element types would like-
wise see an explosion in the DTD ruleset — maintainability is negatively
affected. Contrastingly, because our model requires that any type of chunk
can nested, we impose the same nesting ability of a traditional code chunk
upon all chunk types. Therefore, the document author need only stipulate
the chunk’s type as an attribute of the chunk — thereby implying the creation
of a new chunk typéd. The chunk type, for example, may be a traditional code
or document chunk. Or, it is likely to contain a more specific description,
such as test code, requirements specification, or interface bug.

An example will prove more enlightening than the verbosity of our ex-
planation. We employ the DTD to compile a small repository of chunks;
presented in Figure [6.4]

There are seven chunks in this repository. Two are named <<define
printIterator>>, two are named <<initialise variables>>, and three
are named <<loop and print>> — each group of same-named chunks pos-
sessing chunks of type “construction documentation” (cons-doc) and “C
source code” (c-code). For example, although chunks with chunkIDs 1 and 2
possess the same name, they are of different types, and have dissimilar im-
plementations.

Chunk composition by reference is demonstrated in this example by chunks
<<2>> and <<3>>. Chunk <<2>> demonstrates the traditional reference that

code chunks make — it references chunks <<6>> and <<4>>. Chunk <<3>>

4The DTD stipulates that a version may have any character data; however, we define a
version number as containing numbers and delimiting decimal (‘.”) characters.

5 allbeit, nesting to two levels

6 although these types may be restricted by stipulating a limited chunk type set — a

useful approach to restrict the over-definition of chunk types

123

<chunk chunkID="1" chunkName="define printIterator"

type="cons-doc" variant="" version="1">
A function that iteratively prints out a string.
</chunk>

— <chunk chunkID="2" chunkName="define printIterator"
type="c-code" variant="" version="1">

1 void printIterator (int max, char * str) {
<chunkref chunkID="6"/>

<chunkref chunkID="4"/>

X
2 ™ </chunk>

\ a <chunk chunkID="3" chunkName="loop and print"

|| type="cons-doc" variant="" version="1">
|
| <chunkref chunkID="7"/>
. P </chunk>

type="c-code" variant="" version="1">
for (i = 0; i < max; i++) {

| printf ("%s\n", str);

.' ¥

| </chunk>

‘ <chunk chunkID="4" chunkName="loop and print"

<chunk chunkID="5" chunkName="initialise variables"

| / type="cons-doc" variant="" version="1">
I A Declare the ever-useful and practical "i".
</chunk>

{ <chunk chunkID="6" chunkName="initialise variables"

\ type="c-code" variant="" version="1">
7 int i = 0;
</chunk>

<chunk chunkID="7" chunkName="loop and print"

type="cons-doc" variant="" version="1">
Iteratively print the value of the string, max times.
</chunk>

Figure 6.4: A repository as it is represented using the XML DTD in Fig-
ure[6.3] An abstract representation (left) shows chunk references made.

124

<chunkref chunkName="define printIterator"
version="1" type="c-code" chunkID="2"

show="no" xref="no" content="yes" static="no">

s j
2 <chunkref chunkName="initialise variables"

version="1" type="c-code" chunkID="6"

’_L[/ </chunkref>

<chunkref chunkName="output string"

3 version="1" type="c-code" chunkID="4"
4 show="no" xref="no" content="yes" static="no">
. </chunkref>
</chunkref>

Figure 6.5: An XML theme source document contains only chunk references.
No free-text exists (white-space is ignored). The accompanying abstract
diagram illustrates the nested tree structure generated by chunk references.

illustrates that it is possible to compose documentation chunks in the same
manner — it references chunk <<7>>.

The <<loop and print>> doc chunk illustrates that nesting may also
be achieved using documentation chunks. The chunkref element within the
<<loop and print>> chunk refers to the <<loop and print2>> doc chunk,

which contains a textual description.

6.2.2 XML Theme Source Document

From the repository, let us develop a theme with content equivalent to a
traditional tangled document — program source code. The theme source
document contains only references to the chunks in the repository. It uses
the same notation to reference chunks as the repository document does. The
difference is that the theme source document is theme-specific; thus, each
chunk reference also contains presentation instructions. These are the show,
xref, content, and static attributes (Section on page [13§] discusses their
functionality further). Figure illustrates this. From this theme source,
we derive the theme DTD in Figure on the next page.

125

show="no" xref="no" content="yes" static="no">

<!ENTITY 7% switch.atts " (yes | no) ">

<VELEMENT chunkref (chunkref x*)>

<VATTLIST chunkref chunkID IDREF #REQUIRED>
<IATTLIST chunkref version CDATA #REQUIRED>
<IATTLIST chunkref chunkName CDATA #IMPLIED>
<IATTLIST chunkref type CDATA #IMPLIED>
<IATTLIST chunkref variant CDATA #IMPLIED>
<V'ATTLIST chunkref xref %switch.atts "no">
<IATTLIST chunkref show %switch.atts "no">
<IATTLIST chunkref content %switch.atts "no">

Figure 6.6: A theme source document DTD.

The content of this theme is destined for compilation by a C compiler.
Note that all the content attributes are set to yes indicating that the free
text of a chunk should be output. The xref and show attributes, however, are
set to no. This prevents the output of cross-reference details and the chunk’s
name together with the source code. It is pointless and damaging to output
the chunk-name and its cross-reference details to a compiler.

Note that three levels of nesting are present in the theme document.
Chunk <<1>> references <<2>> and <<3>>. <<3>> references <<4>>. This
nesting is reflective of the nesting of the related chunks in the repository.

Within the theme source document, chunks can be associated by nesting
or by proximity. This source document excerpt illustrates only association
by nesting; association by proximity is illustrated in the excerpt contained
in Figure on the facing page, where a construction documentation chunk
is utilised to describe a code chunk. Figure on the next page abstractly
depicts this relationship.

Although it is feasible to manually produce an XSLT stylesheet that trans-
forms an XML theme source document and its supporting repository into an
XML theme document (discussed in Section[I.J]on page [I76]), authoring tools

are required to ease this stage of the document development process. For this

126

<chunkref chunkID="1" chunkName="define printIterator" type="cons-doc"
version="1" show="no" xref="no" content="yes" static="no">

<chunkref chunkID="2" chunkName="define printIterator" type="c-code"
version="1" show="no" xref="no" content="yes" static="no">

Figure 6.7: Association by proximity occurs when two chunk references occur
as siblings and represent the same unit of abstraction.

proxumity reference

Figure 6.8: Association by proximity and association by reference. Both are
valid means of association in the new LP model.

127

purpose, the CBDE, presented in the next section, is utilised.

6.3 The Context-Based Development Environment

The context-based development environment (CBDE) facilitates the author-
ing of documents associated with the first stage of the theme-based literate
programming document development process. The CBDE is by no means
reflective of a commercial or final end-user product. It is an archetypical,

prototypical, TBLP tool designed and implemented as:
e an expression of the concept of TBLP, and
e a testbed for further development of TBLP.

TBLP provides a flexible document development environment. The chunk
model allows any chunk to be nested within any other chunk. Potentially,
it is a confusing environment. The dilemma is that we are enabling a state
whereby we say “You can do whatever you like.” However, we continue the
instruction: “But we would prefer that you did it this way.” The functionality
of suggestive guidance, which lies largely in the domain of human-computer
interaction (HCI), is difficult to attain, but can be adequately facilitated
by the following interface design criteria (an adaptation of Cockburn and
Churcher’s [20] criteria):

support visualisations of the literate program structure: Both high
and low level abstractions of the literate themes and repository are
necessary for LP comprehension. Moreover, support for visualisation
extensions, such as virtual 3D world representations of themed liter-
ate programs, also aid comprehension and analysis of theme-specific

statistics.

be an equal opportunity interface: Updates to chunks and themes should

update all related interface widgets? simultaneously.

7 the term widget is used commonly throughout the Tk library to describe a graphical
user interface component. We will use the same terminology throughout this chapter.

128

have minimal syntactic requirements: XML is not suitable for manual
input, nor is it suitably readable. A TBLP tool should ease the input
and readability of XML-based chunks.

contain tools for literate browsing: Navigation throughout themes should
be facilitated by the literate tool.

offer support for plug-in literate tools: Tools that help generate chunk
content from external entities — for example, a tool that parses and
converts compiler messages into chunks used by source-code testing

themes should be supported.

offer non-intrusive support: All programmers will not want to use an
LP approach to software development. The system should therefore
not force a literate style upon the programmer®. It turns out that this
capability is inherently supported by the TBLP model (source code is

‘just another theme’. We mention it, however, for completeness.

Our archetypical implementation serves as a starting point for the inves-
tigation of these concerns. The CBDE interface is developed as a reflection

of TBLP’s two fundamental areas of functionality:

1. chunk editing — manipulation and inclusion of free text and chunk

references, and

2. theme browsing — comprehension in context.

Note that the actions of editing and browsing are treated as distinct and
separate operations because (1) there is a clean mapping between the pro-
cesses of repository (chunk) development and theme composition (see Chap-
ter B, Sections B.2.2] and [5.2.0]), (2) it promotes comprehension in context
(discussed in Section on page [I51]), and (3) it forms well to the Model
View Controller design pattern used to develop the CBDE (explained in Sec-
tion on page

8 Contrary to Knuth’s approach to LP.

129

Thus, the CBDE allows the operations of chunk editing and theme brows-
ing in physically separate areas. Figure on the next page shows the
text edit and theme browsing environments with Norman Ramsey’s wc.nw
(converted and) loaded®. The text view widget on the lower right of the
application is the editing pane. In this window, the programmer is able to
edit (the content of) any given chunk. All other windows in the CBDE are
used to browse theme/chunk information. Specifically, the display-oriented

widgets are:

1. the repository widget (displayed in Figure [6.10) that floats next to the

main CBDE window,
2. the tree view widget, and

3. the theme text view widget.

6.3.1 The Repository Widget

The repository widget, illustrated in Figure on page [[32] reflects the
chunk repository’s contents. It presents a complete list of all chunks, each of
which can be included in any theme.

Each row is dedicated to the display of the attribute values of one chunk.

Specifically, the data displayed is:

e the chunk’s name,

e a drop-down list box of themes that a chunk is included in,
e a drop-down list box of chunk versions,

e the chunk’s type, and

e the chunk’s unique identification (chunklD).

9 Refer to Appendix [C.0.1] on page P70 for the original literate document.

130

©00

Fle Windows Display Theme

T

‘Commit Chunk Edit Chunk I Remove Chunk Reference | Output XML Hide Markup

new theme | we.nw new theme | we.nw |
[atine ot oo Bl T eeer o7 A
T opfitons Tree View | "-"wit’stutus ot comare. smiony o+ Theme Text View
Definitions 7+ vho we are */ J
efinitions Now we come to the general layout of the [[main]]
efinitions f\gi';rflgi\gc *argu)
B-Gjobal variables m‘v;*a:\g:d;:“ of arguments on UNIE command line */

char **argv;

Glohal variables b /* the arguments, an array of strings */

[~ The main program prog_name = argv[0];

EThe main program

[Variables local to [[main]] exit(status);
}

[~Set up option selection

If the first argument begins with a " {\tt-}', the
[~Process all the files user is choosing the desired counts and specifying
the order in which thev should he disolaved.

|

—Print the grand totals if there were nmultiple files

* chunkName="The main

chunkref variant="" chunklD="chd" version="1" typ

variables local to [[main]] progran” main(’ arge, "argv)
int arge; .
H-variables local to [imain]} ch;: r:\::;.l:;;of arguments on UNIX command line */
[variables local to (main]] /* the arquments, an array of strings */
i {
~Variables local to [[main]] <chunkref variant: chunkID="chS" wversion="1" type="code" chunkName="Variables
local to [[main]]"»></chunkref> prog name = argv[0];
[~ Set up option selection
<chunkref variant="" chunkID="ch6" version="1" type="code" chunkName="Set up
Process all the files option selection churk:
<chunkref variant="" chunkID="ch7" version="1" type="code" chunkName="Process
B-process all the files all the files"></chunkref>

¢chunkref variant="" chunkID="ch20" version
grand totals if there were multiple files"></chunk

" type="code" chunkNane="Print the
ef> exit(status);

If a file is given, try to open [[*(++argv)]]; [[cont P
/ Initialize pointers and counters ¢/churkrefs chunk Edit Pane
S =

Create a Chunk | Reference a Chunk | Alter Chunk Details |

Hame: |The main program ChunkiD: Jehd Version:]
Type: code Include Chunk In Current Theme?: _{ Chunk Development Panel

Create New Chunk |

~l

Figure 6.9: The CBDE environment with Norman Ramsey’s Noweb version
of wc loaded.

131

[S.00
Versions
Add Chunk To Theme |
A Chunk | Included in Themes IVersiuns |Type| ChunkID
| 2 ¥| doc ch23
| ﬂ Jr ﬂ code ch0
Header files to inchude | 2 ¥| doc ch24
Header files to include | g Jn ﬂ code chl
Definitions | 2 4| doc ch2s
Definitions | 3 ¥ code ch?
Global variables | 2 & code ch3
The main program | 3 ¥| doc chz6
The main program [AL 4| code cha l
/ Variables local to [[main]] | 3 ¥| doc chz7
= I

Figure 6.10: This CBDE repository, a separate window from the main CBDE
interface, shows some of the chunks generated from developing the literate
program in Figure [6.91 on the preceding page.

The repository widget has two modes of chunk display: (1) display each
and every version of every chunk (as illustrated by Figure on page [[39)),
and, (2) display only the default chunk versions (as illustrated by Figure[6.10]).
Thus, the second mode saves on screen real estate and eases the locatability
of chunks. The programmer is able to alter views by choosing the “Show
Versions” option in the “Versions” menu. The version and theme list boxes
allow greater functionality than the static display of data. Sections

and [76] investigate these two items respectively.

Chunk Versions

The CBDE facilitates chunk version development (as discussed in Section
on page [[95)). The progressive development of a chunk generates multiple
versions, and each of these is stored in the chunk repository. Each version
is considered a chunk in its own right (therefore possessing an automatically
generated chunklD, see Section [[4]) and is physically grouped together with
the chunk versions that comprise the same chunk version-tree in the reposi-
tory widget. The order of display of chunk versions sorted in numerical order.

(See Section [05] on page [[98 for an example of chunk version hierarchies and

132

a description of the version numbering system.)

Figure on page illustrates an example where three chunks exist
in the repository: chunks <<A>>, <>, and <<C>>. Note that chunk <<A>>
has three versions; 1, 1.1, and 1.1.1, each with a unique chunkID; chi,
ch4, and ch5, respectively. chb is the default version of the version-tree
for chunk <<A>>. The default version is always highlighted with a green
background™@. A yellow background™ denotes a non-default version. Either
may be selected and included in a theme.

A default chunk version exists for each version-tree of chunks. It is usu-
ally the version that has been most recently edited and committed to the
repository, however, any chunk version may be set as the default chunk ver-
sion using the chunk development panel’s “Alter Chunk Details” tab (see
Section [80).

While the repository is in default mode, it is possible to view the details
of a non-default chunk version. By clicking on the chunk’s “Versions” drop-
down list box, and clicking on the desired version, any chunk version can be
displayed. All other versions of a chunk are then hidden.

Figures on the next page, shows the selection of version 1 from the

default state of version 1.2.

Default Versions

The default chunk version indicates to the programmer the development state
of a chunk (because further development of a chunk should be performed by
altering the default chunk) and, therefore, which chunk version should be
included in a theme. Defaulting to previous versions can occur, and revision
control branches can be created (in the mould of version control systems
such as RCS (Revision Control System [84]) and CVS (Concurrent Versions
Systent™)). Thus, it is possible to nominate a chunk version as the default
of the chunk group.

Also, chunk editing creates a new chunk, with an incremented version

10 appearing as a dark shade of grey
1 appearing as white
2 http://www.cvshome.org/

133

= Repository

cool [REIEETIIN] 000
Varsions Versions
Add Chunk To Theime _ HAald Chunk To Theme _
Q.::r_ Included in Themes _.._.mqm__u:w _._.{um_ Chunk H n____..!_ Included in Themes _ﬂnﬁgu _gm_ Chiunk
A 3 iz % HA che A | 2 e * NA ch
B | AL ¥/ HA chz B | LARL
1.1
c | L 3/ HA ch3 c | 2 haa
1.2
4 / -
= |] =l == |

(a) Chunk <<A>>’s default version 1.2 is highlighted. (b) The drop-down list box reveals all available versions of
chunk <<A>>

208
Add Chunk To Theme _

Y Chunk | Included in Themes | versions [Type | chunk

A # 0 *| Ha chi

B | M_ [M_ HA ch2

c | AL ¥ HA ch3

i

~ I -

(c) Version 1 is selected. Note the non-highlighted back-
ground; version 1 is not the default chunk.

Figure 6.11: The repository widget provides the ability to hide and select versions of a given chunk.

134

[rEEEs e 800
Versions
Add Chunk To Theme |
A Chunk| Included in Themes |Versions |Type| ChunklD
a H A em
a LR Al Ha cha
a ¥ L] A chs
E | AL | mA chz
Vi c | H Lt HA ch3
= =

Figure 6.12: The CBDE repository showing three versions of chunk <<A>>;
1,1.1, and 1.1.1. Version 1.1.1 with chunkID ch5 is the default chunk of
the group.

number, which is automatically made the default. For instance, version 1.1
of chunk <<A>> is the default version. Altering version 1 of chunk <<A>>
will cause a new chunk to be created with version 1.2 as its version number.
Version 1.2 now becomes chunk <<A>>’s default version. Figure [6.13 on the
following page shows the updated repository after performing this operation.
Section [86] on page explains how to perform chunk rollbacks using the
CBDE, while Section on page discusses the need for versioning and

how it is implemented.

Viewing Themes a Chunk is Included In

The drop-down list box in the “Included in Themes” column contains the
list of all themes that a set of chunk versions is included in. Remember
that in the default view, only the default chunk versions are displayed —
all other versions in the group are hidden. Which chunk is included in the
listed themes is ambiguous, so we have marked each theme with a preceding
asterisk (‘*’). Any themes in the drop-down list box without prepended
asterisk’ include chunks of other versions in the group. Figure shows a

drop-down theme list box.

135

Versions
Add Chunk To Theme |
A Chunk| Included in Themes |Versions |Type| ChunklD
a 3 A wa et
a 3 Jia | na cha
a 3 aa | na chs
a 3 iz | na che
/ B | 3 | na ch2
~ L=

Figure 6.13: The CBDE repository showing version 1.2 of chunk <<A>> as
the default.

= Repository
Versions
Autd Chunk To Theme |
Ay Chunk| Incluided in Themes]\.r'ersiuns [Typa| ChunkID
A | | 3 w2 ¥ na ch7
B |* Themel I ¥ na chz
L e

Figure 6.14: Chunk <<A>>, version 1.2.1 is included in Themel and Theme3,
however, not in Theme2. Another chunk in the group of versions is included
in Theme2.

136

It is a limitation of the BrowseEntry Tk widget that no other
reasonable measures can be taken to indicate which themes
a chunk version is included in. For instance, it would be
convenient to use a colour scheme; perhaps blue to indicate
the raised chunk is included in the theme, and grey, or a
lighter shade of blue to indicate that another chunk version
of the group is included in the theme. The BrowseEntry widget

allows only textual content presented in a default font using

a default size.

Clicking on any one of the themes in the drop-down list box will raise the
respective theme tree (see Section on the next page) and theme text
view (see Section on page [[45]) widgets, and also highlight the chunk’s
occurrence in the given tree. Thus, the repository is able to to satisfy such

queries as:

“In which themes is chunk A referenced?”

e Clicking on chunk <<A>>’s theme list box will reveal the answer.

“In which themes is version 1.2 of chunk A referenced?”

e Selecting version 1.2 in the “Versions” list box of chunk <<A>>. Click-
ing on version 1.2’s theme list box will reveal the themes that reference

version 1.2 (designated with an asterisk prepended to the theme name).

“Locate version 1.2 of chunk A in Themel”

e (Clicking on the theme that version 1.2 is included in will bring the
Themel theme tree and Themel theme text view widgets to the fore.
Version 1.2 of Chunk <<A>> will be highlighted in both widgets.

Including a Chunk in a Theme

Chunks may be selected singly or as a group using the mouse or keyboard hot-

keys (pressing the space-bar when the relevant chunk is highlighted or using
137

the arrow buttons with the shift button held down) for inclusion in a theme.
Selecting a range of chunks and pressing on the “Add Chunk To Theme”
button will result in the chunks’ inclusion in a theme. Double-clicking on a
specific chunk’s row has the same result.

Chunks are displayed in their order of development, however, a chunk’s

chunkID does not necessarily indicate its relative time of development.

6.3.2 The Theme Tree Widget

The collection of theme trees is contained in a Notebook widget. A Tk Note-
book widget can contain any number of pages. Each page is devoted to the
display of a given theme tree. Specifically, an HList in the form of a scrolled
tree (ScriTree of the Tree widget setD) is used.

The tree view shows all chunks included in a theme as well as their nested
structure. Figure on page [I31] shows an example of a theme tree; the left
panel contains this tree widget. Chunk nesting (inclusion by reference) forms
a tree of chunk references. As an example, chunk <<A>> references chunk
<>. Chunk <> will therefore be displayed as a child of chunk <<A>>.
Figure on page [[47] illustrates this scenario.

Alongside each chunk node in the tree exist four neighboring check-

theme-specific buttons that allow manipulation of the theme-specific attributes of a chunk:

attributes
1. show

2. xref
3. content

4. static

The state of the show, xref, and content options translate directly to the
chunk-display display attributes of a chunk in the literate document. Clicking on these
attributes checkbuttons will select (set to on), or de-select (set to off), the related

option. It will also set the related XML attribute in the theme text widget

13 gee man Tk::Tree in the Perl Tk documentation set

138

to “yes” (selected) and “no” (de-selected). Using this method, it is possible
to control the display properties of each chunk referenced by a theme. The
static button, which allows the author to prevent a chunk reference from
being updated when edits, rollbacks, chunk version default changes occur,
may also be selected or de-selected.

Sections [79 - [79] discuss these attributes in more detail.

Navigation and Chunk Selection

Each node in a tree represents a chunk reference made in a theme docu-
ment. Clicking on the nodes of a tree highlights the respective chunk in the
related text widget. In addition, the chunk’s details are displayed in the
“Chunk Development” panel (Section explains further). Figures on
page[I3Tland on page illustrate chunk selection. The tree view panel
in Figure shows the chunk <<The main program>> highlighted with a
light-grey background. The theme text panel shows <<The main program>>
chunk also with a highlighted background — this time lightyellow.

A mouse-click® on a chunk in the tree widget automatically scrolls the
theme text widget to the area where the chunk exists. The opposite is also
the case: a mouse-click on a chunk in the text widget will automatically scroll
and highlight the related chunk in the tree widget.

This function can be utilised as an effective navigation tool. Combined
with the repository widget, and its ability to locate chunks in themes, (by
clicking on the theme name in the themes drop-down list box), referenced

chunks can be located easily.

Nested Chunk Hierarchies

In combination, the tree and text widgets can be used as effective abstrac-
tion agents. The tree widget provides a hierarchical (table of contents-style)
theme representation; given well named chunks, it is possible to create a hi-
erarchy that effectively tells the story of the literate document — in essence,
a summarised view of a theme (Section on page describes this fea-

ture as important for the development of “good” literate programs). This

M or press of the space-bar

139

navigation

feature is similar to the outlines approach used by tools such as Leo and Dan
Schmidt’s emacs Noweb-outline mode (http://www.dfan.org/real/noweb.
html). The textual view offered by the theme text widget (see Section 6.3.3))
is referred to for content-level chunk detail. The hierarchy of chunks is not
as prevalent in the theme text widget. The tree widget is an abstract replica
of this hierarchy. Figure on page [147] illustrates the difference between
the hierarchical view of the theme-tree and the theme content browser. Even
with such a simple example, one appreciates the clarity of the tree represen-

tation.

Atomic Chunk and Relationships

Chunks are currently represented as a hierarchical structure where there
exists a direct parent-child relationship between chunks. Definition of explicit
relationship types amongst chunks, however, are not currently supported
by the chunk model and therefore, not offered by the CBDE. It is deemed
pertinent to the growth of TBLP, however, to investigate an extended generic
chunk model (Section on page further explains our initial thoughts
about this extended model.).

Folding Tree View

Each sub-tree in the tree-hierarchy is either expanded or contracted, thus
providing a folding tree view. The default is to display all nodes in the tree.
By clicking the ‘-’ symbol to the left of the parent node, however, the node
is set to a “closed” state. A closed state means that the chunk’s children
(chunks that it references) are folded, or hidden. It is important to note that
this feature does not affect the final literate document in any way, but is

purely an interface display option.

15 Existing command line-based LP tools are unable to offer chunk outline views; a
traditional-style literate document shows only nested chunks of an immediate code
chunk. For example, it is impossible to view the grandchildren of a given chunk. Thus,
tool-based facilities are required.

140

Note that we find this functionality to be rather unnecessary®.
It is enabled, however, due to its ease of implementation. If
a programmer deems it necessary to use this functionality
often, it is best to create a new theme that includes only the

high-level chunks deemed important.

¢ although future research will clarify

The show Button

The show check-button toggles the display of the chunk’s name in the literate
document. It is possible to prevent the chunk’s name from appearing in the
literate document (final output). As an example, the chunks <<A>> <>
and <<C>> in are referenced in the three themes, Themel, Theme2, and
Theme3 in Figure on the following page. These three themes illustrate
the possible results utilising the chunk display attributes check-buttons. Note
that Themel displays all chunk names as does Theme2. Theme3 displays only
the names of the top-level chunks.

Contrast this with existing literate document formatting: fixed output
requires that code chunks are displayed with their chunk names at the top
of the chunk implementation. Traditional literate program documents also
lack the ability to associate a chunk name with the document chunk; a label
for the document chunk is not supplied, and therefore not displayed. TBLP
allows any variation (as described in Chapter [Bl) — name labels for all chunk

types, or chunks displayed without their names, for example.

The xref Button

The xref button toggles the display of a chunk’s cross-references in the final
theme document. A chunk’s cross-references appear as a list of hyperlinks
(in the case of HTML documents) to the chunk’s uses in all themes.
Setting the xref check-button to its on (“yes”) state enables the output
of a chunk’s cross-references; to its uses in all theme documents loaded in
the CBDE, resulting in the display of a chunk’s cross-references in the final

theme document.

141

/3 Theme1 - Microsoft Internet Explorer

File Edt “iew Favoites Tool: Help

|»

Themel

=d= Thamal: [1] Theme2: [1] Theme3: [1]

Content of Chunk &
=H= Themel: [1] Theme2: [1] [&] Theme3: [1] [

Content of Chunk B.
== Themel: [1] Theme2: [1] [Theme? [1] [4] [3]

Content of Chunk C.
|ﬁ§| I_ l_ l_ E Local intranet -
/3 Theme3 - Microsoft Internet Explorer
File Edit ‘“iew Favortes Tooke Help
- I
Theme3
== Thamel [1] Theme2 [1] [£] Theme3 [1] [[E]
Content of Chunk C.
/3 Theme2 - Microsoft Internet Explorer B> Theme! [1] Theme? [1] (2] Theme? [1] (2]
File Edit “iew Favoites Tool: Help
- l Content of Chunk B.
Theme2
Content of Chunk C.
== Themel [1] Theme2 [1] [Theme3 [1] [[E]
=H=
=A= Themel [1] Themes [2] Theme3 [3]
Content of Chunk B. BT
< Themel [1] Theme2 [1] [2] Theme3 [1] [2] [3] eten :
Content of Chunk B.
==
Content of Chunk C.
Content of Chunk &
=H= Themel [1] Themea [1] [Theme3 [1] [
|3§|] l_l_’_ Local intranet o |ﬁi‘] I_I_’_

Figure 6.15: Three HTML theme documents illustrate the possibilities of
representation by utilising the chunk display attributes. Note also the hier-
archical (nested) representation of the chunks — these reflect the respective
theme hierarchy.

142

This powerful feature facilitates cross-theme and intra-theme navigation
— an important difference to traditional literate program cross-referencing.
Traditional literate documents provide cross-references between chunk defini-
tions and their use. In contrast, TBLP cross-referencing does not distinguish
between a chunk’s definition and its use. This is because a chunk is imple-
mented in the repository — although its content can be displayed in a theme
document.

A chunk may appear multiple times within a theme, and in many dif-
ferent themes. Its appearance, or lack thereof, depends on the show and
content attributes. Regardless of these attribute’s settings, each occurrence
is cross-referenced if cross-referencing is set to “yes”. The example themes
in Figure clarify this concept. A cross-reference appears as the name
of the theme that the chunk in which the chunk is referenced, followed by a
numbered list of hyperlinks that link to the chunk’s specific reference in that
theme. In Themel, note the cross-reference details of chunks <<A>>, <>,
and <<C>>; all chunks have xref set to “yes”. Theme2 illustrates selective
cross referencing — the two top-level chunks, <> and <<A>> do not dis-
play their cross-references. Note however that chunks have xref set to “no”
may still be referenced. Theme3 illustrates that only the top-level chunks

have their xref attribute switched on.

The content Button

The content check-button toggles the display of the content of a chunk (free
text and chunk references), effectively facilitating chunk holophrasting [81].
In this manner, chunk content can be folded in the theme view text widget.

Chunk holophrasting affects the output of a chunk in the literate docu-
ment. This technique should not be used as a display minimiser in an effort
to reduce the real estate that a chunk occupies in the text widget, which is
a function of the tree-view widget.

Switched on, a chunk’s content is displayed. Switching content to off
(“no”) will also turn off the show, xref, and content options of the chunk’s

descendants.

143

It may aid theme development to decouple the display of a
chunk’s content from the display of its references. Thus, it
would be possible to hide the display of a chunk’s free text
whilst allowing the display of its chunk references. The author

is then able to develop a theme that effectively generates a

table of contents.

Traditional LP code chunk references are effected in TBLP by setting
content to “no” and setting xref and show to “yes”. This is illustrated by top-
level chunks <> and <<A>> in Theme2 in Figure All themes illustrate
the output of nested chunk content to varying degrees. Chunk <<A>> clearly
illustrates the recursive display of chunk content. Nested chunk content is
highlighted by different background colours.

It is interesting to contrast the display of Themel and Theme2’s top-level
<<A>> chunk. In both cases, the chunk’s content is recursively displayed,
however, Themel illustrates that it is possible to also display each chunk’s

name and cross-reference information.

The static Button

Finally, the static check-button disallows a chunk reference from being up-
dated to the default chunk version. Under normal circumstances, when a
chunk is edited and then committed back to the repository, all occurrences
of that chunk are updated to the new chunk version. This avoids the incove-
nience of manually making the necessary updates. Any chunk that has static
set to “yes”, however, will not be updated.

Take note that the static setting is global for every child parent chunk
relation in every theme. For example, if chunk <> is nested inside chunk
<<A>> and <>’s static attribute is set to “yes”, all occurances of <>
as a child of <<A>> are also set to “yes”. This avoids issues such as chunk
content inconsistencies and hierarchical propogation of version updates.

Preventing a chunk’s update is convenient when a theme specifically dis-
plays evolutionary or historical information about a chunk. It would be
incorrect to update such a theme’s chunks because it is the chunk versions

themeselves that are of specific interest.

144

The static value is set to “no” (off), by default.

Vertical Buttons

The two buttons (containing up and down arrows) located above the tree
widget allow a top-level chunk to be moved before or after one of its sibling

chunks.

6.3.3 The Theme-View Text Widget

One text widget exists for each theme. The theme view text widget is a
more detailed low-level representation of the theme tree (see Section [6.3.21on
page [[38)). It reflects the unformatted content that will be displayed in the

final literate document.

Note that the content of the final document is shown — not
the content’s formatting instructions. Formatting instruc-
tions are contained in a separate XSLT document. It is likely

that future work would facilitate the (dynamic) display of the

final document.

The theme-view text widget is read-only; however, it is automatically up-
dated to reflect chunk edits. Editing is discussed in Section [6.3.4] on page [I51l

Theme/Chunk Display

Because themes are stored as XML documents (storage is discussed in Sec-
tion [7.3]), we have decided to also display them as XML documents. Miss-
ing, however, from the XML theme view document is the XML declaration

“<?xml version="1.0"7>" and the theme root element.

Chunk Attributes FEach chunk reference is delimited by a chunkref ele-
ment. The attributes and their values reflecting the chunk’s name, version,
chunkID, and variant are displayed for each chunk. Note that these are the
repository attributes of a chunk. The show, xref, content, and static vari-
ables (discussed in Section on page [I38)) are also displayed, reflecting

145

the check-button options in the theme’s tree widget. For example, if the
theme tree widget shows that chunk <> is referenced by chunk <<A>>,
and chunk <> has show set to “yes”, xref set to “no” and content set to
“no”, and the variant attribute is given a default value of null (no value), we

would expect the following XML, or similar, to appear in the text widget:

<chunkref chunkName="A" chunkID="ch6" version="1.2" show="yes"
xref="no" content="yes" variant="">
<chunkref chunkName="B" chunkID="ch2" version="1" show="yes"
xref="no" content="no" variant=""/>

</chunkref>

The theme text and theme tree widget representations of this example

are presented in Figure [6.3.3 on the facing page.

Free Text

XML markup is displayed in a light-grey font. The choice of colour is an effort
to emphasise the textual content of a chunk, which is presented in standard
black font. (Figure on page [[48 shows an example theme document
presented in a theme-browser widget.)

A chunk’s free text is displayed within a <chunkref/> element. Remem-
ber that the display of a chunk’s references is coupled with the display of its
free text. Thus, if a chunk’s content is to be displayed, the textual content
as well as the nested chunk references are also displayed™d.

The author is then able to work through the chunk tree and determine

the display details of each chunk.

16 similar to a traditional weave operation

146

(a) A theme tree widget showing chunk A referencing chunk B.
Both chunks have their theme attribute check-buttons set to
either an ‘on’ or ‘off’ state.

ABC

<chunkref chunkID="ch7"
s ic="no" chunkNam
hunkref chunkID=

static="no" chunkName="B"

xref="no" version="1.2.1" type="NA"

" type="NA"

(b) A theme text view widget reflecting the theme attribute settings in Figure|6.16(a)

Figure 6.16: The theme attributes of each chunk in the theme tree are re-
flected in the XML markup of that chunk in the text view widget.

147

new theme | WC.nw |

< fehunkref:(chunkref chunkID="ch2" content="yes" xref="no" version="1" type="code"
chunkMame="Definitions" static="no" show="no":#define OK i}

/* status code for successful run +/
#define usage_error 1
/* status code for improper syntax */
#define cannot_open file 2

/* status code for file access error */
<ehunkref chunkID="ch2l" content="no" xref="no" wersion="1" type="code" chunkName="Definitions"
static="no" show="no":</chunkref><chunkref chunkID="chlZ" content="no" xref="no" wersion="1"
type="code" chunkName="Definitions" static="no" show="no":>< chunkref:<chunkref chunkID="ch9"
content="no" xref="no" wersion="1" type="code" chunkName="Definitions" static="no
show="no">< fchunkref »< /chunkref><chunkref chunkID="ch3" content="yes" xref="no" version="1"
type="code" chunkName="Global wariables" static="no" show="no":int status = OK;

/* exit status of command, initially OK */
char *prog_name;

/* who we are */
<ehunkref chunkID="chlS" content="no" xref="no" wersion="1" type="code" chunkNams="Glohal wvariahbles"
static="no" show="no"»</chunkref < /chunkref »<chunkref chunkID="chI6" content="vyes" xref="no"
wersion="1" type="doc" chunkName="The main program" static="no" show="no":
Mow we come to the general layout of the [[main]]
function.
<fechunkref:<chunkref chunkID="chd" content="yes" xref="no" version="1" type="code" chunkName="The main
progran” static="no" show="no":main(argc, ~acgv)

int argec;

J* mmber of arquments on UNIX command line */
char **argv;
J/* the arguments, an array of strings */

i
cohunkref chunkID="chE" content="no" xref="no" version="1" type="code" chunkName="W¥ariables local to
[[main]]" static="no" show="no":</chunkref: prog_name = argw[0];

<chunkref chunkID="ch&" content="no" xref="no" version="1" type="code" chunkName="Set up option
selection” static="no" show="no":</chunkref:

<chunkref chunkID="ch7" content="no" xref="no" version="1" type="code" chunkName="Process all the
files" static="no" show="no":</chunkref:

<ehunkref chunkID="ch20" content="no" xref="no" wersion="1" type="code" chunkName="Print the grand
totals if there were multiple files" static="no" show="no":</churkref: exiti{status);

}
< fehunkref:<chunkref chunkID="ch27" content="yes" xref="no" version="1" type="doc"
chunkName="¥ariahles local to [[main]]" static="no" show="no":

If the first arqument begins with a *{\tt-}', the

user is choosing the desired counts and specifying

the order in which they should be displayed.

Each selection is given by the

initial character {lines, words, or characters).

For example, ~{“tt-cl}' would cause just the

romber of characters and the romber of lines to

be printed, in that order.

We do not process this string now; we simply remember where it is. /
——

Figure 6.17: A theme text view of Norman Ramsey’s Noweb version of wc
loaded. XML is displayed in light-grey.

148

Create a Chunk | Reference a Chunk Nmmbeuﬂsl

Name: B ChunkID: chz Version: 1
Type: NA Include Chunk In Current Theme?: |

Create New Chunk

Figure 6.18: The Development Panel populated with chunk <<A>>’s details
after clicking chunk <<A>> in either the repository widget, the theme tree, or
the theme text widgets.

The display of a chunk reference’s attributes can clutter the
theme text panel, thereby obscuring more important informa-
tion and decreasing the readability of the theme document.
XML documents are not suitable or easily-read representa-
tions of prose or program source code as. It is probable that
future enhancements of the CBDE will present each theme
as a more readable marked-up document that is adaptable
by the user, both in granularity of detail — such that only
user-specified attributes of a chunk are displayed, and in the

formatting of content — such that chunk content is presented

in a more readable font, colour scheme, and so on.

Chunk Selection

Clicking on a chunk in the text widget causes two actions to occur:

1. The tree widget locates, highlights, and (if necessary) automatically

scrolls to the respective chunk.

2. The “Chunk Development” panel is populated with the chunk’s details
(this is the same functionality as clicking a chunk in the theme tree-view

— Section [(1 explains).

The Hide Markup Button

The “Hide Markup” button (positioned on the button panel) allows the pro-
grammer to toggle the display of the XML chunk markup. Hiding the markup

149

aids the readability of a theme because it allows the author to concentrate
solely on the textual content of each chunk.

When a chunk’s markup, and therefore its attribute details, are hidden,
it is still possible to determine the chunk the content belongs to by clicking
on the content of interest; the corresponding chunk in the tree widget is
then highlighted. Specific chunk details are also displayed in the “Chunk
Development Panel”.

Figure on page [I[31] shows a theme text view with the chunk XML
markup hidden. It also illustrates how a chunk (<<The main program>>, in
this case) can be highlighted with a different coloured background. Note also
the chunk details in the development panel. Figure can be contrasted
with Figure [6.17 on page[I48. It is clear that Figure 617 s readability suffers
due to the XML markup display.

Whether XML markup is displayed or not does not affect the output

document in any way.

Theme Document Traversal

All output documents are themes. Source code documents are therefore ‘just
another theme’. Consider the following scenario: after outputting theme
“Ramsey’s wc source” to a file (wc.c) and compiling it, the compiler reports
an error on line 121. Right-click “Ramsey’s wc source” text theme widget
in the CBDE. Select the “View” and then the “Goto Line” options of the
cascading raised menu that is raised. Enter “121” in the dialog box that
appears. The text widget scrolls to line 121 of the “Ramsey’s wc source”
theme text view widget.

Editing the related chunk(s) — <<Scan file>> (see Section on the
facing page), and re-compiling wc.c fixes the bug. Literate program de-
bugging problem solved (Section L.T.1] on page [61] discusses the debugging
problem).

Figure demonstrates that source code documents are themes in
TBLP. It also demonstrates, importantly (to our non-literate friends), that
programmers can edit these documents, and thus still use a conventional pro-

gramming approach using TBLP. Of course, in a multi-user environment,

150

each user is free to use whatever approach suits best.

6.3.4 FEditing

The editing text pane in the lower right hand side of the CBDE in Figure
on page [[31] allows the editing of individual chunks. Unlike the theme text
view widget, this is a writable, or editable Text widget.

The purpose of having a separate chunk editing widget distinct from the
theme environment — the text and tree theme widgets — is due to the desire
to ensure editing is largely a theme-unspecific, theme-context-free operation.
By doing this, chunk editing is universal and occurs across all themes that
include a chunk. Chunk editing is therefore all-contextually relevant. We
refer to the editing approach employed by CBDE as repository-based chunk
editing.

Repository-based chunk editing is so termed because it transparently al-
lows the author to adapt the repository. This method of editing encourages
the separation of content and presentation — the author concentrates, when
editing, on developing the content of the chunk. He is not concerned about
how the chunk will appear within its referencing themes (although it must
be logically and syntactically correct). Repository-based chunk editing also
maps well to the model-view-controller pattern adopted by the CBDE, which
is discussed in Section [6.4]

De-contextualised Chunk Editing

A different approach would be to allow in-theme editing, such that the au-
thor, though editing the repository, was given the impression that a spe-
cific theme contains chunk content and is being edited™. Thus, it would
be possible to maintain repository-based chunk editing using an in-theme
approach. In-theme chunk editing, however, promotes de-contextualised ed-
its. Although we have no empirical evidence to support this claim, we be-
lieve that the author will not be as aware of the effect of the edits on other

themes. Editing a chunk in one theme might render another theme invalid.

17 (it is debatable whether this incorrect impression should be given.)

151

repository-based

chunk editing

in-theme editing

wC source code _ we.nw _

H Chunk

g .

E-+
Header files to include
Definitions
Global variahles
Functions
EThe main program

[~variables local to [[wvain]]

[Set up option selection

El-process all the files

| If a file is given, try to open [[*(++argv)]]:
[Initialize pointers and counters

E.mﬁm: file

Fill [buffer]] if it is empty; [[break]] at
[Write statistics for file

[Close file

“Update grand totals

~ Print the grand totals if there were multiple fi

WC Source code _ W.nw _

char buffer[buf size];

/* we read the input into this array */
register char *ptr;

#* first unprocessed character in buffer */
register char *buf_end;

J/* the first unused position in buffer */
register int o;

#* current char, or # of chars just read */
int in word;

#* are we within a word? */
long word_count, line count, char count;

#* # of words, lines, and chars so far +/

prog_name = argv[0];

which = "lwc";

#* if no option is giwven, print 3 walues */
if (argc » 1 &% *argw[l] == '-') {

which = argw[l] + 1;

argo--;

ALQV++;

i

file_count = argc - 1;

argo--;
do {

if (file_count > O
&% (fd = open(*{++argv), READ ONLY;} < 0) {
fprintf (stderr,
"%s: cannot open file %s'n",
prog_name, *argv);
status |= cannot_open_file;
file_count--;
continue;

)

ntr = hif end = tiffar-

152

<chunkref wariant="" chunkID="chf" wersion="1" type="code" chunkName="S=t up

option selection”:which = "lwc";

J* if no option is given. print 3 values */
if (arge » 1 &% *argw([l] == '-') {

which = argw[l] + 1;

argo--;

ALGV++;

I

file_count = arge - 1;

N

|]

Hame:
Type:

Create a Chunk _ Reference a Chunk _ Alter Chunk Details _

Setup option selection ChunklD: chi
code Vanrant:

<fchunkref >

Version: 1

Default Versior

[= |

Figure 6.19: Theme wc source code shows that it is possible to view a literate program in the traditional compiler-
oriented order. The chunk edit pane is ready to edit <<Scan file>> (chl16).

Although the chunk edit might be appropriate for the theme being edited,
other themes referencing the edited chunk become semantically, and even
syntactically, compromised.

As an example, consider the following: theme a contains the following

badly scoped chunk:

<chunk chunkName="chunkl" type="c-code" version="1">
for (i=0; i<max; i++) {
add(i, max);

</chunk>

Note the lack of a closing parenthesis in the for loop. This chunk is
included in theme a, which compiles and runs well.

Theme b also includes this chunk; however, its tangled source does not
compile due to the missing closing parenthesis. Spotting the badly scoped
chunk, the programmer, allowed to edit the chunk while working in theme b,

inserts the closing parenthesis at the end of the chunk.

<chunk chunkName="chl" type="c-code" version="1">
for (i=0; i<max; i++) {
add(i, max);
}

</chunk>

This in turn alters theme a’s chunk. Theme b now compiles, however
theme a doesn’t. There are many other similar scenarios where such de-
contextualised edits could prove problematic. TEX, I¥TEX, XML, and HTML
are all examples of document type-setting languages where extra, or ommit-
ted delimiters or elements can cause unexpected errors.

Although the ultimate solution is to develop well-formed chunks from the
onset, a currently feasible solution, given the programmer’s dilemma, is one

of the following:

1. Create a new chunk in theme b that adds the missing parenthesis.

153

<chunk chunkName="chO" type="c-code" version="1">
<chunkref chunkName="chl" type="c-code" version="1">

by

</chunk>

2. Alter theme a’s chunks so that they are properly scoped, thereby gen-

erating compilable code for theme a and theme b.

We have demonstrated the grammatical discrepencies that can arise with
decontextualised chunk editing. Using a separate chunk editing pane also

separation of encourages the separation of content from presentation — something firmly
content and employed by the XML paradigm. TBLP chunk editing focuses on two things:
presentation (1) the textual content of a chunk, and (2) the chunks that it may reference.
This is distinct from the display of a chunk within a given theme; the alter-

ation of display attributes of a chunk is theme-specific and therefore is not

performed in the text edit widget.

Editing a Chunk

By selecting the chunk to be edited via the theme tree or theme text-view
widgets, and then clicking the “Edit Chunk” button, the chunk — its con-
taining XML element and attributes — and its content are displayed in the
text edit widget. Both the chunk’s textual content and its referenced chunks
are displayed.

The chunk displayed in the text edit pane is a representation of the chunk
as it exists in the repository. Note that in Figure on page [152 the
chunk reference made by <<Scan source>> does not display theme-specific
attributes (the xref, show, content, and static attributes and their values are
not displayed). This is because theme-specific attributes do not exist in the
repository.

Whilst a chunk is in ‘edit’ mode, content (chunk references and free-text)

can be added, deleted, or moved.

154

Deleting a chunk reference:

1. Selecting the chunk to be deleted on the tree widget.
2. Clicking the “Remove Chunk Reference” button.

Adding a chunk reference:

1. Positioning the text-insertion cursor at the point where the chunk

reference should be inserted.

2. Choosing the appropriate chunk via the “Chunk Development”
panel or the repository widget and clicking the appropriate chunk
inclusion button (see Section on page for details on in-
cluding a chunk from the repository, and Section on page

on including a chunk from the “Chunk Development” panel).

Note that the manual entry of XML markup can be a tedious,
error prone, and time-consuming operation. The CBDE automat-
ically generates chunk and chunkref XML elementsI®, In fact, the
programmer does not enter any TBLP-based XML throughout the
development of a theme document. A chunk’s free-text content
(which could be DocBook XML markup, for example), must be

manually input.

Altering, inserting, and deleting the textual content of a chunk: As
supported by the Tk Text widget, right-clicking on the widget causes
a menu with various editing and search options to appear. Cutting,
pasting, and copying is supported through this menu, and via the com-
mon Microsoft Windows key bindings of Ctrl-C, Ctrl-X, and Ctrl-V for
copy, cut, and paste operations, respectively. The pop-up menu also
supports a line positioning functionality such that a particular line may
be selected to appear to in the text widget (see Section 81l on page

for use of this function).

18 This helps to alleviate the 3-syntax problem discussed Section EL1.2] on page

155

Committing a Chunk

The edited chunk can be committed to the repository by pressing the “Com-
mit Chunk” button. This action causes the repository to be updated and for
the update to be reflected in the repository widget. Namely, committing a

chunk causes the following:

e The newly committed chunk becomes the default version. The new
version is a new chunk that receives an incremented version number as
well as its own unique chunkID (Section on page discusses the
version numbering system, Section on page [I30) discusses version-

ing within the context of the repository widget).

e All occurrences of the old version of the chunk, in all themes, are re-
placed with a reference to the new version, unless the old chunk refer-

ence’s static attribute is set to “Yes”.

e Chunk references with static attributes set to “Yes” are not updated
(Section [79 on page [I44] explains the static attribute.).

The edits to a chunk will be dynamically reflected in the theme view text
widget after they are committed.

Note that all chunk content entered in the text edit widget is stored in a
DOM::Text node. The escaping of common programming language symbols
such as ‘<’, and ‘>’, represented by entity references such as ‘<’ and
‘>” respectively, is performed automatically by the CBDE. This avoids
distorted interpretation and laborious input issues associated with the testing
of literate program input. It also served useful when importing existing
Noweb programs, such that the chunk content did not need to be explicitly
marked up with CDATA ‘<! [CDATA[’ and ‘11>’ delimiters.

The downside to this is that text nodes must be post-processed in order
to extract XML elements. A future implementation of the CBDE would allow
the author to automatically mark up CDATA sections and use a SAX parser
to filter the XML chunk content.

156

6.3.5 The “Chunk Development” Panel

The chunk development panel is a tabbed Notebook of pages that facilitates
chunk creation, attribute alteration, and chunk referencing. These three

features are presented in the following sections.

Creating a Chunk

The development panel’s “Create a Chunk” tab facilitates the addition of new
chunks to the repository. To do this, the Name, Type, and Variant entry™
boxes are completed by filling in the necessary values. The chunkName, type,
and variant attributes, as illustrated by the DTD in Figure on page [122]
are not necessarily completed.

In order to create a code chunk named “stress test”, for example, enter
“stress test” into the Name entry box and “test source” in the Type entry
box: then click the “Create New Chunk” button. The chunk is given an au-
tomatically generated chunkID and chunk version number. If the Version text
box is left empty, the chunk receives an initial version number of 1; however,
any valid version number can be attributed to this new chunk. The Variant
entry box, which allows the distinction between alternative implementations
of a chunk, can also be completed. Figure85on the following page illustrates
the results of this example. The result of adding a new chunk is reflected in
the automatically updated repository.

A chunk’s name is displayed in the theme tree and also appears in the
chunkName attribute as displayed in the theme text view, chunk edit, and
repository widgets. All other attributes are also displayed in the theme text
view, chunk edit, and repository widgets.

Selecting the “Include Chunk In Current Theme?” check-button allows
newly created chunks to be included as chunk references in the currently

raised theme document. Chunk referencing is explained in Section 5l

19 Entry is a Tk widget.

20 Planning is required to create a list of descriptive and relevant chunk types. This task is
imperative to the intuitive development of readable literate programs. The type attribute
pertains to the type of chunk; conventional literate programming made the distinction
between “code” and “documentation” chunks. TBLP enables the programmer to enter
any type deemed pertinent to describe the nature of the chunk’s content.

157

Create a Chunk | Reference a Chunk | Alter Chunk Details

Name: [stress tes| ChunklD: Version:
Type: test source Variant: Include Chunk In Current Theme?: |

Create New Chunk |

Yersions

Add Chunk To Theme

Chunk| Included in Themes | Versions | Type | ChunkiD

Y

|
= I
(a) Complete the chunk’s Name and Type Entry boxes appropriately.
Create a Chunk | Reference a Chunk | Altar Chunk Detalls |
Name: [stress tes| ChunklD: Version:
Type: test source Variant: Include Chunk In Current Theme?: |
[Fem=TioT Tl Crot How cunk |
Versions
Add Chunk To Theme |
X Chunk |Included in Themes |Versions |Type ChunkID
stross test | g [ﬂ test source chl
A
= 1

(b) Click the “Create New Chunk” button, and the repository is automatically updated
to reflect the addition of a new chunk.

Figure 6.20: The process of creating a new chunk: The appropriate chunk
details are completed in the “Create a Chunk” pane of the Chunk Develop-

ment Panel (Figure [6.20(a)). Figure [6.20(b)| shows the result of creating a
new chunk.

158

Create a Chunk | Reference a Chunk | Alter Chunk Details
Name: The main program ChunkID: chzf Version: 1
Type: documentation Variant:

Include Chunk Reference

Figure 6.21: The “Reference a Chunk” tab in the “Chunk Development”
panel. <<The main program>>, from Ramsey’s wc.nw is selected to be in-
cluded by reference. The attribute values can be automatically completed
as a result of clicking on the chosen chunk in the repository, theme tree, or
theme text view widgets.

The theme tree, theme text view, and repository widgets are responsive

to new chunks and are updated to reflect these changes.

Reference a Chunk

Referencing a chunk is performed via either the repository widget or the
“Reference a Chunk” tab in the chunk development panel, as displayed in
Figure [6.21l Referencing a chunk is mode dependent:

1. When in “Edit Chunk” mode, the referenced chunk is nested within
the edited chunk.

2. When not in “Edit Chunk” mode — we’ll call this “Theme browse
mode” — the referenced chunk is added to the currently raised theme

as the last top-level chunk.

To reference a set of chunks, regular expression?! matches are made
against chunk attribute values. It is possible to reference any number of
chunks using this technique.

Some examples follow:

e If a chunk with chunkID, ch9, is to be included in a theme, the user

simply enters “ch9” in the respective entry widget.

21 Perl-style regular expressions.

159

e [f the author wants to reference chunks with chunkIDs ranging from
ch3 through to ch5, the regular expression “ch[5-9]” will return these

chunks.

e A more practical example is to reference all versions of chunk <<a>> of
type code. These chunks would perhaps be included in a theme that
aims to show the evolutionary progression of a chunk’s development.
“a” and “code” are entered in the chunk name and chunk type text

entries respectively. All chunks that have a chunk name “a” and type

“code” will then be included in the theme.

This is a powerful feature. All variations of regular expressions can be
used to include any set of chunks. All matches are included as chunk refer-
ences in either the theme or chunk being edited (depending on the mode, as

already described in this section).

160

An improvement to this functionality is to return a list of
chunks that match the input details, allowing the programmer
to select certain chunks that are returned to be referenced.
This differs to the existing functionality whereby all chunk
matches returned are referenced.

Extending this feature is essentially creating a search mech-
anism for chunks. This feature could also be extended to
search the content of a chunk. A combination of XML XPath
language and such regular expression searching would provide
a powerful search mechanism that would allow queries such

as:

Which chunks make use of the ‘isMatch’ variable?

Which chunks reference chunk ‘x’?

Which chunks does chunk ‘x’ reference?
e How many chunks does chunk ‘x’ reference?

e How many times is chunk ‘x’ referenced?

Alter Chunk Details

The “Alter Chunk Details” tab facilitates the change of a chunk’s name, type,
variant, and version number. These changes are dynamically reflected in the
browsing widgets (the repository, and theme tree and text view widgets).
For example, to rename chunk <<A>> to chunk <<X>>, the “Alter Chunk
Details” tab is raised. Chunk <<A>> is selected (in one of the browsing wid-
gets). This action populates the entry widgets of the “Alter Chunk Details”
page with the details of chunk <<A>>. “A” can now replaced with the value
“X” in the Name entry box. Figures on the next page and on
page illustrate this operation in three distinct stages, with the results

reflected in the automatically updated display widgets.

Note that the alteration of chunk’s name is localised to that chunk; its

161

| nBc| ABC |

[
= <chunkref chunkID="ch&" content="yes" xref="no"
Gl |Show|>0'ef| Conwml Slatig | wersion="1.2" type="NA" static="no" chunkMName="4"
B . show="yes">
i cchurkref chunkID="ch2" content="no" xref="no"

version="1" type="NA" static="no" chunkName="E"
T show="yes"></chunkref> </chunkref>

Create a Chunk | Reference a Chunk [Alter Chunk Details]

Name: A ChunklD: chi Version: 1.2
Type: MNA Default Versiml

Alter Chunk |

| = Repository T 200

Versions
Add Chunk. To Theme |
I Chunkl Included in Themes |\.r‘ersinns |Type| ChunkID
A | ¥ 2 ¥ HA che
B | L ¥ HA chz
c | ¥ | ¥ HA ch3
|
P =

Figure 6.22: Chunk <<A>> is presented in the repository, and tree and text
theme widgets.

related versions are unaffected, and thus, retain their same name.

The Default Version Entry The “Default Version” entry box on the
“Alter Chunk Details” tab is used to nominate any chunk, by means of its
version number, as the default version of the chunk version-tree to which it
belongs. This action causes the nominated default chunk to be highlighted
in the repository widget (Section on page discusses default chunk
versions).

Enabling the selection of the default chunk is conceptually similar to
RCS or CVS version control systems that allow version branching to occur:
a current working document may be rolled back to a previous revision, and

from there, work continues on the document. This operation creates a branch

162

Create a Chunk | Reference a Chunk I Alter Chunk Details

Name: [ChunkID: ché Version: 12
Type: N, Default Versiurl
Alter Chunk |

(a) Enter ‘X’ in the Name Entry box and the “Alter Chunk” button

pressed.
ABC | aBC |
1
q <chunkref chunkID="ch&" content="yes" xref="no"
Chunt. |Shuw|mr|(:ontent| Slatic | wersion="1.2" type="NA" static="no" chunkName="X"
=. show="yes" >
g <chunkref chunkID="ch2" content="no" zref="no"
XI L A L o I wersion="1" type="NA" static="no" chunkName="E"
show="yes"r< churkref > < chunkref s
B m o | |

(b) After pressing the “Alter Details” button, ‘X’ appears in the repos-
itory. ..

| T Regositorg T 200

Versions

Add Chunk To Theme |

j Chunkl Included in Themes | Versions | Typel ChunklID

® ¥ [z 4| HA chb
| 3 3

B | g [1 g HA ch2

i c || g [g HA ch3

(c) ...tree and text theme widgets.

Figure 6.23: The chunk alterations are made and automatically reflected in
the display widgets.

163

in the document version tree. The CBDE applies a similar version model,
except that the granularity of version control is far finer — at the chunk level
— and hence, far more powerful. Chunk-based version control is explained
further in Section [Z.5

As an example, chunk <<A>> has been revised three times throughout
development, thereby creating a version hierarchy of 1, 1.1, and 1.1.1. The
current default version of chunk <<A>>is 1.1.1. It is determined, however,
that version 1.1 is a better option for reasons of program efficiency. Version
1.1 is made the default chunk by:

1. Clicking on the existing chunk in the theme text (or theme tree). The
chunk’s details are displayed in the raised Chunk Development panel.

2. Clicking the “Alter Chunk Details” tab to move this tab to the front.
3. “1.17 is entered in the Default Version Entry.

4. The Alter Chunk button is pressed.

6.3.6 The Variant Attribute

TBLP provides a method to program, or demonstrate, by difference. Minor
differences in the way we wish to treat elements drive the need to substitute
one chunk for another. Examples are language translations of a chunk or
source code chunks that implement an operation that differs for two operating
systems.

Another example use for demonstration by difference is in the develop-
ment of XSLT stylesheets. Using the CBDE, we are able to develop a variety
of xslt-source chunks that are utilised to perform the same function, how-
ever, each producing different results. For example, cross-references between
chunks in an HTML document may be displayed in a number of ways. The
current method, as discussed in Section on page [I8T] generates a list
of hyperlink with a textual representation of the theme name the chunk is
included in (illustrated in Figure on page [I84)). The XSLT source is
presented in Figure on page [I[67 in <<theme name xrefs>>. Another

164

[Fepository 1 XX
Versions
Add Chunk To Theme |
A Chunk| Included in Themes |Versions |Type|Chunle
a 3 [zt L ma ch7
a 3 A na o
a 3 Al na cha
a 3 Ll na chs
a 3 [z Ll na che
i Create a Chunk | Reference a Chunk | Alter Chunk Details | :
£ Hame: & ChunklD: ch?
| Type: MA Variant:
Atter Chunk |

Version:

Default Yersion 1

1.21

(a) Version 1.2 is the default of chunk <<A>>. <<A>>’s attribute details are entered
in the “Alter Chunk Details” tab. The desired default version (1) is entered in the
“Default Version” entry box.

| = Repos ttory 1 0200
Versions
Add Chunk To Theme |
Al Chunkl Included in Them |Type| ChunklD |
a | ¥ fza | na o ch7
a | L A ma ch
a | ¥ [4| na chd
a |l | Jiaa 4| na chs
a | 3 [z | na che
B | L | na ch2
- c | L | na ch3
= I

(b) Version 1 is now the default version of <<A>>.

Figure 6.24: The process of altering the default chunk version.

165

method, contained in <<numbered xrefs>> is present a list of numbered
cross-references and display the theme name when a mouse pointer is placed
over the link.

These two chunk variants would commonly appear in the same theme
document as immediate siblings. When an XML theme document is output
by the CBDE (Section [l on page examines the XML theme document),
the author stipulates (via the theme menu; see Section [6.3.7)) the variant of
chunks that should be output. Chunks that possess a different variant are

not output (unless they contain the default null value).

6.3.7 Theme Functionality

The theme menu enables the creation of new themes. This results in a new
set of theme tree and text view widgets appearing in the respective tabs.
Themes may also be deleted, thereby destroying the respective theme wid-
gets. A theme’s name can be changed at any time. The “Remove Path from
Theme” option removes a highlighted reference from a theme. The update
is automatically reflected in the theme widgets. The “Stipulate Variant” op-
tion raises a dialog box that allows the author to stipulate the chunk variants

that should be output in the XML source document.

Theme Document Processing

The “Run XSLT on Theme” option in the theme menu allows the author to
choose a stylesheet to transform the currently raised theme with. The result-
ing file is output to a file that receives the theme’s name and an extension
of .out.

The Saxon < XSLT engine is utilised to process the theme XML docu-

ment.

6.3.8 Loading and Saving — Repositories, Themes, and Projects

A project consists of a repository and any number of themes that are com-

posed from the repository. Themes, like the repository, can be saved individ-

2Zhttp://users.iclway.co.uk/mhkay/saxon/

166

<chunk chunkID="1" chunkName="generate xrefs"
type="xslt-source" variant="" version="1">

<xsl:template match="xref" mode="cross-reference">
<chunkref chunkID="2"/>
<chunkref chunkID="3"/>
</xsl:template>

</chunk>

<chunk chunkID="2" chunkName='"theme name xrefs"
type="xslt-source" variant="expanded" version="1">

[<xsl:value-of
select="position()"/>]

</chunk>

<chunk chunkID="3" chunkName="numbered xrefs"
type="xslt-source" variant="compact" version="1">

[<xsl:value-of
select="0theme"/>]

</chunk>

Figure 6.25:

200
Remove Path from Theme
Delete Theme

Create New Theme

Change Theme Mame
Stipulate Variant

Bun XSLT on Theme

Figure 6.26: The CBDE Theme menu.

167

(D

[elEEil oo
Load Project

Save Project

Load Theme

Save Theme

Load Repository
Save Repository
Import noweb File
Quit

Figure 6.27: The CBDE File menu.

ually or together as a project. Saving a project consists of storing the chunk
repository and all themes currently loaded (in-memory) in the CBDE.

Loading individual themes is possible, provided that the relevant chunk
repository has been loaded previously. Loading a project loads the corre-
sponding chunk repository, and the accompanying themes, into the CBDE
system.

Loading and saving functionality is available in the File Menu, as shown
in Figure [6.27] The details of persistent storage and retrieval are discussed
further in Section [7.3] on page [I89

Importing Noweb Files

To maintain compatibility with existing tools, we developed a Noweb con-
version class that converts Noweb source to TBLP CBDE readable source.
The Noweb syntax is relatively simple and therefore easily filtered. Because
TBLP does not facilitate additive code chunks (see Chapter [l Section [[L4.1]),
all additive chunks are nested within a code chunk that is created specifically

to contain and order these chunks.

6.4 Internal Architecture

The data storage, display of theme content, and editing of content are devel-
oped with respect to the Model View Controller (MVC) design pattern [29].
The CBDE is implemented utilising the MVC design pattern as follows (a

168

\Y v
A updates .| Theme
Repository "| Text View
A ¢ Y
updates Text Edit updates
M M
Repository| alters alters | Theme |
DOM | ' pom [®
C |
Pevelopme
Panel updates alters
Y
v C
updates) :
»| Tree View Display

Attributes |

Figure 6.28: High-level view of the CBDE’s system architecture illustrating
the adoption of the Model (M) View (V) Controller (C) pattern.

high-level view is illustrated in Figure [6.28):

Model: A separate DOM is utilised to store each theme and repository
(Section [L3.1l on page discusses the selection of DOM).

View: Tk classes that form the display widgets (repository, theme tree, and

theme text view) reflect a view of the model.

Controller: The chunk text edit widget, the theme tree-view widget’s chunk
attribute buttons, and the chunk development panel facilitate the model’s

manipulation.

The MVC architecture facilitates the replacement of an archi-
tectural component — replacing the DOMs that implement
the model with customised data structures, for example —
without the need to alter the view and controller implemen-

tations.

169

Perl (5.6) is used as the implementation language and the Tk module
utilised for interface development. The XML::LibXML (version 2.4.13) mod-
ule is DOM2 compliant and is based upon the Gnome libxml223 library. It is
utilised throughout to provide DOM support (the repository and each theme
is stored in DOM structures) and XML validation and verifcation throughout.
Node searching on the DOM structures is performed using the (extended)
XML: :LibXML: :findnodes () method, which provides access to the XPath
API in libxml2.

Several classes are utilised to manipulate the theme DOMs (control), and
dynamically update the display widgets to reflect alterations (view). The

classes that facilitate mapping and version relationships are:
o Theme
e Resolver
e PathUnits
o ClonedChunks

e AbsChunk

Specifically, these classes facilitate;

e the mapping of chunk references made by each tree-node and theme-
view text widget to the relative position in the theme and repository
DOMs. This is illustrated in Figure on page [I72l The theme
tree view chunk attribute check-boxes are utilised to manipulate the
display attributes of the respective chunk in the theme DOM. Edits of

the repository are reflected in the structure of the theme tree.

e tree-based chunk version relationships. The tool facilitates chunk ver-
sion management (the chunk model does not currently facilitate the

definition of multiple hierarchical chunk relationships — see Section

B http://xmlsoft.org/

170

on page 222 for further explanation) and maintains the association be-
tween chunk versions and their hierarchical state. This is illustrated in
Figure [6.30] on page [I73)

Each theme in a project is represented by a Theme object. This Theme
object contains one Resolver. The Resolver object is used to resolve the
mappings between the nodes in the GUI theme tree and text view widgets
and their related chunks. These mappings are expressed in the form of a set
of paths (PathUnits) — each unit of a path contains a reference to a chunk
(AbsChunk).

For example, a tree widget contains a set of nested chunks; <<A>>, <>,
and <<C>>. Figure on page [I73] illustrates the nesting arrangement
in a theme tree view widget. As illustrated in Figure on page [174],
the PathUnits object maps paths to these three chunks: path .1 leads to
chunk <<A>> .1.2 to <>, and .1.3 to chunk <<C>>. A path therefore
contains a series of units, each which reference a chunk: effectively unit .1
references <<A>>, unit .2 references <>, and unit .3 references <<C>>.
Thus, we are able to determine stateful information about the nesting of
chunks; not only that the path .1.3 leads to <<C>>, but also that <<A>> is
a parent of <<C>>.

One PathUnits object is instantiated for each Resolver, and therefore,
each Theme. The PathUnits object contains references to chunks, which exist
as an instance of the AbsChunk class.

The creation of a chunk instantiates an AbsChunk object, which contains

the following details:

e the chunk’s name (chunkName).

the chunk’s type.

the chunk’s version.

the chunk’s variant.

the chunk’s unique identifier (chunklID.

171

ABCl

Chunk

Figure 6.29: The CBDE (middle) maps theme tree (left) chunk references
to the theme DOM (top right). The CBDE also reflects alterations to the

<7znl wersion="1.0"7:

<thems nams="A4EC"»

<chunkref chunkID="ch?"

content="yes"

zref="no
version="1.2.1"
type="N&"

chunkName="4"
static="no"
show="yes"»

content="no"
xref="no’
version="1"

show="vyesz"~>
</chunkref »
</theme>

«?zml version="1.0"7:
pository ">

<themns namns="_:
<chunk chunkID="chl"
</chunk»

<chunk chunkID="ch2"
</chunk>

<chunk chunkID="ch3"
<#chunlk>

<chunk chunkID="chd"
</chunk>

<chunk chunkID="chS"
<chunks

<chunk chunkID="che"
<#chiunl >

<chunk chunkID="ch?"
<chunkref

<chunk>
<«/theme>

repository DOM (bottom right) in the theme tree.

172

<chunkref chunkID="ch2"

version="1" type="Ha"
version="1" type="HA"
version="1" type="Hi"

wersion="1.1"
version="1.1.1"
wversion="1.2"

wersion="1.2.1"

type="Hi"

type="N&"

type="Hi"

chunkName="4">»
chunkHams="B">
chunkName="C" >

chunkName="4">»

chunkName="4">»

chunkName="4"

type="Hi" chunkName="24"»

>

<7&ml version="1.0"7

{theme name="_repository":

<chunk chunkID="chl"
verszion="1"
chunkName="4"3

< <chunk:

<chunk chunkID="ch2"
version="1"
chunklame="E"»

<~chunk»

{chunk chunkID="ch3"
version="1"
chunkName="C"»

<<chunlk»

<chunk chunkID="chd"
wversion="1.1"
chunkName="4"»

</chunk >

¢chunk chunkID="cht"”
wversion="1.1.1"
chunkName="4"»

</chunk »

<chunk chunkID="ché&"
version="1.2"
chunkNams="4">

</chunk >

<chunk chunkID="ch?"
version="1,2 1"
chunkName="4"> |

<chunkref
chunkID="ch2"
content="no"
wref="no"
version="1"
type="HA"
chunkHName="E"
show="no"~»

< chunk»

{/thems>

wideid in Themes | versions | Type| Cwnsin
i 5 A on?

) I A wa em
& A wa om
1
H

[A wa chs

hz Amn o

Figure 6.30: The CBDE maintains a chunk’s version hierarchy (middle) and
expresses it via the repository widget (right). The chunk model does not

maintain this information, hence it is not expressed in the (edited) repository
DOM (left).

Chunk | Show| Xref| Content| Static

Figure 6.31: A series of nested chunks illustrating the hierarchical nature of
paths.

173

PathUnits object

PATHS ‘ | ‘.I.EJ ‘ 1.3 ‘

v Y
PATH { { " ’ {
UNITS -

]
v O ® ©

Figure 6.32: A populated PathUnits object contains two arrays. The PATH
UNITS array uses the each path unit as an index value. A reference to a
chunk is stored in each element of this array. The PATHS array contains the
list of paths.

e the clone-set (version hierarchy) the chunk belongs to.

[ts purpose is to abstractly define (hence AbsChunk) a chunk separate from
the underlying repository data structure — although much of the information
of a chunk is retrievable by the DOM (model) structure, we alleviate some of
the workload of DOM queries by facilitating this light-weight data structure,
thereby incurring a smaller time penalty than would be incurred quering the
DOM — the price paid is the maintenance of each chunk’s attribute value
updates.

The AbsChunk class is little else than getter and setter methods for the
accessing and initialising/updating of a chunk’s attributes. The constructor
(the new method) is notably important because it is responsible for adding
a chunk to a collection of cloned chunks.

An explanation of the instantiation of an AbsChunk follows. If the chunk
to be instantiated is an updated version of a previous chunk, it is associated
with an ezisting ChunkClones object — the ChunkClones object maintains
version tree relationships between chunks.

To clarify, each chunk is a distinct object. A set of chunks may be related

through a version hierarchy. This relationship is stored in the form of a list

174

of chunkID’s. These chunklD’s are stored in a ChunkClones object.

Each ClonedChunks object holds an array of chunkIDs that each chunk
references. This means that each AbsChunk object can query the ClonedChunks
object that it references in order to determine fellow chunk versions.

Upon instantiation, if a chunk is a version of an existing chunk, it receives
an incremented version number based upon the chunk it is based upon. This

version numbering system is discussed in Section [05 on page [198]

6.5 Summary

Theme based literate programming is a document development framework
that employs a pipeline based architecture. We initially discussed repository
and theme composition as XML-based entities — the foundation of which
is based on the findings of Chapter [l This involved the development of
respective DTDs, whose rules are reflected in the context based development
environment (CBDE).

The prototypical CBDE implements and facilitates the authoring stage of
the document development process. The CBDE provides a good platform for
support tool development. Such tools are crucial to the success of TBLP
because they enable the interaction between repository and theme content.
The CBDE illustrates that it is possible to effect a contextualised TBLP envi-
ronment, whereby chunk development is universal and affects all referencing
themes.

The CBDE functionality reflects its architecture, which is based on the
model view controller pattern.

In this chapter, we have introduced, as part of that architecture, the
CBDE, an archetypical implementation of a TBLP authoring tool — a proof

of concept.

175

Chapter VII

Document Output, Version Management, and Storage

Concerns

In Chapter [0, we presented the theme-based literate programming doc-
ument development framework. Authoring forms the initial stage of this
framework and is implemented in the form of the Context-Based Develop-
ment Environment (CBDE). The CBDE manages the development of multiple
theme documents. The CBDE was demonstrated, and we also presented an
architectural overview of its implementation. The CUBDE generates literate
theme documents ready for the transformation and formatting phases of the
TBLP document development process . This chapter focuses on these later
stages of the TBLP document development process.

XML theme documents, the product of the CBDE, are introduced in Sec-
tion[.Il XSLT Stylesheets transform a theme document into multiple theme-
specific literate documents (Section [[.2.2]).

In Section we describe external and internal storage considerations of
the CBDE’s implementation. Finally, chunk versioning and chunk identifica-

tion are discussed in Sections [7.4] and [7.5] respectively.

7.1 XML Theme Document

The XML theme document bears similarities to a traditional literate source
document. It is the transformation of the repository and theme source doc-
uments — the chunk references from the theme source are resolved against
the repository to produce the theme document. This transformation is per-
formed by the CBDE authoring tool, and the resulting document is, accord-

ing to our processing framework (see Figure on page [I18)), processed and

176

transformed by any number of XSLT stylesheets.

Processing the theme document bears similarities to the tangle process of
traditional LP, formatting instructions excluded. Its purpose is to represent,
to the processing stylesheet, the display instructions and the content of each
chunk. The content and display instructions are determined by the show, xref
and content attributes that each chunk reference possesses (see Section [63]).

An XML theme document representation of the source code theme ex-
ample progressed in Chapter [0l is illustrated in Figure [.11

Points to note about the XML theme document are:

e The content of each chunk (free text and chunk references) is included
(contrasting with the XML source document, which contains only chunk

references).

e The nested hierarchy of chunks, as represented in the XML theme

source document, is maintained.

e We have decided to use the chunk’s type as the element name. This

decision is made to ease post-processing by an XSLT stylesheet.

e The static chunk reference attribute, which is present in each chunk
reference in the XML theme source document, bears no relevance to
the presentation and formatting of the theme document. It is thus not
included in the XML theme document.

In addition each chunk element can contain several xref elements (dis-
cussed further in Section on page [I81]), which contain cross-referencing
information about each occurrence of the chunk in every theme document.
The method of automatically generating these details by the CBDE largely
eases process of otherwise reading multiple XML theme documents to deter-

mine chunk use.

7.1.1 An Condensed Processing Model

One may reason that less development overhead is required by a stylesheet

that processes the chunk repository and theme source document to produce

177

<c-code chunkName="define printIterator" version="1" chunkID="chl"
show="no" xref="no" content="yes" variant="">

void printIterator (int max, char * str) {
<c-code chunkName="define and initialise variables" version="1"
chunkID="ch2" show="no" xref="no" content="yes" variant=""
anchor=".1">
int i = 0;
</c-code>
<c-code chunkName="loop and print" version="1"
chunkID="ch3" show="no" xref="no" content="yes" variant=""
anchor=".1.2">
for (1 = 0; 1 < max; i++) {
<c-code chunkName="output string" version="1"
chunkID="ch4" show="no" xref="no" content="yes" variant=""
anchor=".1.3">

printf ("%s\n", str);

</c-code>

</c-code>

</c-code>

Figure 7.1: An XML theme document. Elements receive the name of the
chunk type they represent; their attributes reflect the state of the matching
chunkref element’s attributes in the XML theme source document (Figure

on page [129)).

178

the final theme document, thereby bypassing this stage in the development
process. Adopting this approach, however, combines the processes of (1) con-
tent transformation and (2) theme document formatting. These are two dis-
tinct processes that are rightly separated. Our approach of separating these
two processes not only treats content generation and content formatting dis-
tinctly, but also benefits the author by enabling the (development and) in-
clusion of intermediary processes throughout the TBLP pipeline processing

model.

7.1.2 Theme Document Validity

The theme document’s validity must be dynamically determined based upon
a DTD derived from the repository. It is otherwise impossible to determine
the set of chunk types that will compose the XML theme document’s element

names before the repository exists.

7.2 Theme Document Output: Formatting

Formatting is, ostensibly, the end of the TBLP processing model (as illus-
trated in Figure on page [[18). XML theme documents are processed by
XSLT stylesheets to produce the final literate document. Before discussing
stylesheet development, we consider why XSLT was chosen as a stylesheet

language and what other possible technologies may be used.

7.2.1 Is XSLT the Only Option? Other Technologies

XSLT is XML’s transformation stylesheet languagel. Although we utilise
XSLT predominantly as a formatting translator, it may also be used through-
out the TBLP processing model to transform one XML document, or chunk,
into another. For example, chunks conforming to one DTD can be trans-
formed to chunks that conform to another DTD.

Although we use XSLT to implement to the formatting stage of TBLP’s

processing model, it is not the only option available. Other viable options

LTt essentially forms the translation part of the XSL standard — its intended utilisation
is for translation from one XML document to another.

179

are:

Cascading Style Sheets (CSS): Allow the formatting of documents (com-
monly used for HTML pages). They do not allow computing, such as
element reordering (e.g., sorting), content-based computations (e.g., ag-
gregation), addition of content to the document, or multiple document
processing. CSS do, however, allow hierarchical and positionally-based

contextual formatting.

Extensible Style Sheet Formatting Objects (XSLFO): A more sophis-
ticated form of CSS (that uses XML syntax). XSLT and XSLFO form
the two parts of the XSL whole. Whereas XSLT is predominantly
used to transform, compute, sort, order, and add elements and con-
tent, XSLFO is designed to provide formatting instructions (often two-

dimensional) to the resulting document.

Simple API for XML (SAX) event handlers: An event-based API. Pro-
grammers are able to add customised handlers to events that occur on
a single pass through the XML document. Different handlers can be
utilised when the opening of an element and the closing of an element

are encountered, for example.

The TBLP processing model can incorporate any combination of these
technologies. It is common practice to use CSS with XSLT, for example.
Indeed, this practice provides a cleaner distinction between content manage-
ment and formatting. For example, XSLT can be used to process the XML
theme document and generate the required content (cross-reference details,
chunk names, and chunk content), while CSS is used to format this content.

In light of these choices, we chose to use solely XSLT. Because of its
rich language structure, it is possible to easily and quickly produce literate
documents that accurately reflect intended representation. Moreover, XSLT
documents can be used in a template/formatting? combination in the pipeline

process.

2 Ihttp:/ /www.xml.com/pub/a/2002/03/27 /templatexslt.html! presents a good example
of XSLT templates

180

SAX can also be incorporated as a processing option; however, we do
not believe it is well suited to our needs of document transformation and
formatting. SAX can be utilised appropriately, however, as an interface to
CBDE’s storage mechanism for the chunk repository, such that event handlers

store and retrieve data from a database management system (DBMS).

7.2.2 Stylesheet Development

The XML theme document is processed by an appropriate XSLT stylesheet.
The chunk-display options selected in the CBDE environment are ultimately
reflected in the chunk’s representation in the final theme document. The
chunk-display options are show, xref, and content (described in Section

on page [I38]).

In order to develop the following literate document:

void printIterator (int max, char * str) {

int i = 0;

for (i = 0; i < max; i++) {

printf ("%s\n", str);

the XSLT stylesheet must process c-code elements in Figure[Z.Tlon page[178,

and output their content.

<xsl:template match="c-code">
<xsl:apply-templates/>
</xsl:template>

In order to include other chunk types, such as documentation-style chunks

(cons-doc chunks in this example) in the output source codé?, a template can

3In traditional LP, this is equivalent to tangling documentation chunks — impossible
with existing LP tools.

181

be developed to mark the chunk content up with language-specific comment

syntax — in this case C’s ‘/*” and "*/’ comment delimiters.

<xsl:template match="cons-doc">
/%
<xsl:apply-templates/>
*/
</xsl:template>

Norman Ramsey’s wc.nw provides the basis for the illustration of how
chunk display instructions can be managed by XSLT formatting instructions.

We take wc.nw and import it into the CBDE. Two themes are developed:

1. wec.nw: the traditional literate document — traditional documentation

chunks describe code chunks.

2. wc source code: the source (tangled) document, which consists only of

code chunks.

We process both themes with a stylesheet that generates HTML output.

The following operations are, specifically, important:

display a chunk’s name: When a chunk’s show attribute set to ‘yes’, the
chunk’s name is displayed by invoking the “show-title” template with
the chunk’s name as an argument.
<xsl:if test="@show=’yes’">
<xsl:call-template name="show-title">
<xsl:with-param name="title" select="@chunkName"/>
</xsl:call-template>
</xsl:if>

The show-title template italicises the chunk name, and sets the font
style as appropriate with the “chunkName-font-format” attribute set.
Figure[l.2 on page[I84lillustrates a formated excerpt of the wec.nw XML

182

theme document. Note the formatting of the <<The main program>>
chunk’s name in the HTML equivalent.
<xsl:template name="show-title">
<xsl:param name="title"/>

<xsl:element name="i">
&1t;<xsl:value-of select="$title"/>>
</xsl:element>

</xsl:template>

4

If a chunk’s show attribute is not set to “yes”, this operation is by-

passed.

display chunk cross-referencing: Theme documents can be inter-linked
by cross-referencing chunk occurrences in each theme. Figure illus-
trates the resulting cross-references of a the <<The main program>>
chunk. <<The main program>> is cross-linked to its other occurrences
in the theme document set: it appears twice in the wc.nw theme doc-
ument and once in the wc source code theme document. Clicking on
these hyperlinks will transport the reader to the chunk’s occurrence in
the respective theme document. The following XSLT template illus-
trates the production of HTML cross-references from an XML theme

document.

<xsl:template match="xref" mode="cross-reference">

[<xsl:value-of
select="position()"/>]

</xsl:template>

It is important to note that the target value is the chunk reference’s
path in the XML theme document, as generated by the CBDE. This

provides a unique chunk value that no other chunk reference possesses

183

<doc variant="" chunkID="ch26" anchor=".17"
content="yes" xref="yes" version="1"
chunkName="The main program" static="no"
show="yes">

<xref target=".17" theme="wc.nw" name="The main program" 2} we.nw - Microsoft Internet Explorer
chunkID="ch26" href="/chunk[@chunkID=’ch26°]"/> File Edit ‘iew Favortes Tools Help
1L sratus = LR,
Now we come to the general layout of the [[main]] function. i exit status of command, initially OF */

char *prog_name;,
P owho we are *f

</doc> .
<code variant="" chunkID="ch4" anchor=".18" “Global variables= [we source code] [eronw] [wo.sw)
content="yes" xref="yes" version="1"
chunkName="The main program" static="no" show="yes"> <The main program= [wo.nw

<xref target=".1.6" theme="wc source code"

name="The main program" chunkID="ch4" Mow we come to the general layout of the [[main]] o

function.
href="/chunk [@chunkID="ch0’] /chunk [@chunkID=>ch4’]"/> FHe -
<xref target=".18" theme="wc.nw" 9
name="The main program" chunkID="ch4" = The main program= [wo source code] (o] [we.inw) q
href="/chunk [@chunkID=’ch4’]"/> Hwﬂwwmp gy
<xref target=".2.7" theme="wc.nw" P* sumber of arguments on THI command line */
name="The main program" chunkID="ch4" char **argv;
href="/chunk [@chunkID="ch0’]/chunk [@chunkID=’ch4’]"/> /* the arguments, an atray of strings */

i
main(‘argc, ‘argv)

int argc;

/* number of arguments on UNIX command line */
char **argv;

/* the arguments, an array of strings */

{

oﬁ Fariables local fo [fmain] 1= [we source code] [we.tnw] [we.w

prog_natne = argv(0];

Figure 7.2: The XML theme document (left) is processed by an XSLT stylesheet to produce HTML (right). Note the
markup of each chunk’s (1) name, (2) cross-references, (3) content, and (4) nested chunks.

in a theme document. It is extracted from each xref element’s target
attribute in the XML theme document. The target value is output, and
cross-references a chunk’s anchor value. Each chunk receives an anchor

element:

Section on page [164] illustrates how it is possible to alter the pre-
sentation of a cross-reference. It is quite possible that icons or symbols
may be used instead. Future research will investigate more dynamic
functionality by determining the worthiness of combining the advance
of XML compliant browsers with this cross-referencing ability — fold-
ing theme documents utilising a holophrasting technique, for exam-
ple. This research would also evaluate the use of XML technologies
to dynamically reflect the status of the repository, thus avoiding static

documents.

determine the chunk’s type and nested position: A chunk can receive
formatting depending on its parent’s type. In the traditional literate
model, this enables the formatting of construction documentation
chunks up with programming language specific comment syntax should

they occur as children of code-type chunks, for example.

The following stylesheet excerpt recursively processes chunks as they
occur in the XML theme document. It produces a hierarchically for-
matted HTML source code document. It treats top-level code chunks
differently to nested code chunks. The result of this is illustrated in
Figure on page [I87l Note that nested code chunks appear as in-
dented code fragments and are marked up with a different background
colour to top-level chunks. This gives the reader visually suggestive

information about a theme’s composition and chunk hierarchy.

Figure[7.3lalso illustrates audience-specific theme document formatting; audience-specific
the wc source code theme is formatted as an HTML document. We can formatting for
make good use of XML’s extensibility by processing this same XML theme documents

185

theme document with a different (and simpler) stylesheet to output the
program source code ready for compilation. This powerful technique

facilitates the reuse and multiple presentations that are obtainable from
TBLP.

XML theme documents are unstructured — it is not possible to pre-
determine in what order, and the nesting structure, elements will ap-
pear — and therefore suits a data driven transformation process.
<xsl:when test="name()=’code’">
<xsl:choose>
<!--test for code/code-->
<xsl:when test="parent::code">
<td xsl:use-attribute-sets="nested-code-cell">
<blockquote>
<pre>

<xsl:apply-templates/>

</pre>
</blockquote>
</td>
</xsl:when>
<xsl:otherwise>
<td xsl:use-attribute-sets="code-cell">
<blockquote>
<pre>
<xsl:apply-templates/>
</pre>
</blockquote>
</td>
</xsl:otherwise>
</xsl:choose>

</xsl:when>

186

"SpUNoISYOR(q JUNYD POINOJ0d

SULIOPIP SuIsn A PosI[RNSIA ST SUIISOU JuNy) ‘Poonpold ST oW} Sp0d 324N0S OM 91} JO UOISIOA TN H UV €'/ 9InsSIq

(3 P12, Hed (whunoo jumd suapy

i ROTRTITS 0] UAsOYD ZIZANT W OIS 4
ZISANE 78 g sugapy

14 ado Walshs 107 2p00 853008 pRAT
OATHO JWE sugepg

J4 OIS SSA00% AT FOJ SRO0D SNIRLS

7 ATy wado JOTRIRD STRIap Y

Fy ¥epais radozdum rog spoo stgege 0

T foma aSmsh atnjeap g

Jq BROLT TEIS 200118 0T 8002 SNIRYS |,

0310 atrpap

< TS s APy

P02 32.1N0S IM

def soo] sawoaEy meR wpT ad

1210]dx] j2uIa)u| oS0 - apod aunos Jm G

/% IOIIS® SSOOOB ST JIO0J OPOD SNIelS %/
Z oTTtI uado~j0uued SUT JODH#
/% xequks zodoxdwt I0J opod snieas x/

T IoIxo~o8esn ouTIop#
/% UNI TNISSOOONS JOJ 9pPOD SNIe1s x/
0 M0 outTIep#

<,0U,=Moys
,0U,=0T3e1S ,SUOTRTIUTFO(,=0WeN unyd ,J,=UOTSISA ,0U,=JOIX
.80 ,=qu9quod , g1 ,=I0YdUe ,ZUd,=qIyunyd ,,=1URTIRA ©POD>

<9pod />
<Y OTIP3S:i3IR OPNIOUTH
<,0u,=Moys ,o0u,=0T3e1s
,OPNTOUT 03 SOTTF JI8pesy,=_weNjyunyd ,},=U0TSISA ,0U,=F0IX
.Sof,=qusquod ,z°' 1’ ,=I0UYdoUR ,TYD,=CIYUnyd ,,=1URTIRA OPOD>

<,0U,=MOYS ,0U,=0T3e1S ,*,=0WeNunyd ,T,=UOTSISA ,0U,=JOIX
.S0L,=quequod , 1’ ,=I0YdUe ,QUd,=qIYUnyd ,,=1UBRTIRA OPOI>

187

content: An iterative, or template-driven driven approach, is useful for
chunks that contain common structures. For example, to generate an
HTML theme document, the text nodes of each chunk need to be pro-
cessed in an iterative manner in order to replace line breaks that occur
in the CBDE environment with the HTML
 (line break) element.
This facilitates the display each chunk’s content as it appears in the
CBDE. If this method is not employed, chunk content appears as a sin-
gular paragraph with no line breaks. This is visually unnappealing and
an incorrect representation of the two-dimensional layout of a chunk’s
content. The following template illustrates a search and replace mech-
anism (borrowed from http://mailman.real-time.com/pipermail/
cocoon-users/2001-April/013695.html)

188

<!-- template that does a search & replace -->
<xsl:template name='"replace-text">

<xsl:param name="text"/>

<xsl:param name="replace" />

<xsl:param name="by" />

<xsl:choose>
<xsl:when test="contains($text, $replace)">
<xsl:value-of select="substring-before($text, $replace)"/>
<xsl:value-of select="$by" disable-output-escaping="yes"/>
<xsl:call-template name="replace-text'">
<xsl:with-param name="text"
select="substring-after($text, $replace)"/>
<xsl:with-param name="replace" select="$replace" />
<xsl:with-param name="by" select="$by" />
</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$text"/>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

7.3 Chunk and Theme Storage

The CBDE relies upon an underlying data structure to support the chunk
repository and supported themes. These data structures form the model part
of the model view controller pattern adopted by the CBDE (see Section
on page [[68)). They must be stored both persistently — external to the
application — and internally as stateful, immediately accessable structures.

We investigate the storage options available for implementation.

189

7.3.1 Storage Options

With respect to the prototypical status of the CBDE, the Document Object
Model (DOM) has been selected as a memory-resident storage medium. XML
documents are selected as persistent storage for themes and repositories.
The DOM, via its API, creates a memory-resident tree representation of the
XML data — in the CBDE’s case, a repository and its linked themes. The
API provides navigation and manipulation, programming language-neutral
functions. DOM storage, however, is cumbersome and inefficient. Access and
insertion times of the DOM data structure are relatively slow and memory

requirements are greater than other storage methods. &.

Internal DOM storage

Existing XML technologies, such as XPath[40], are executable on a DOM’s
tree structure. DOM navigation and querying is greatly simplified, therefore.

The immediate functionality of the API makes DOM’s selection one of
convenience; it enables the progression of thought and immediacy of imple-
mentation. This suits the CBDE’s current experimental status.

Summarising, DOM is the data structure of choice because:

e Functionality is already provided for tree building and manipulation.

A tree representation maps well to theme data structures.

e There is a lower overhead in code development for model support, which

allows a more explorative design approach.

e Applicability to other XML technologies, e.g., XPath.

The use of DOM, however, can be considered excessive for the needs of

TBLP because:

4Innovations in DOM technology, however, have produced the Persistent

DOM (PDOM) (see http://www.darmstadt.gmd.de/oasys/projects/pdom/ and
http://www.infonyte.com/prod_pdom.html). The PDOM stores XML in persistent
binary, or textual format that can be read transparently by the applicaton layer (the
DOM API). These advances favor the choice for DOM as a storage option for our sys-
tem. Although the DOM low-level behaviour might change, the code developed for this
application can largely be re-used.

190

1. A chunk repository will never possess a nesting level greater than two
— a chunk references another chunk. Thus, the repository DOM can

be searched without intricate tree traversals.

2. Themes are essentially a list of lists (as described in Section on
page [[09) and may be stored as such — rendering the bulky overhead

accompanying DOM storage rather innefficient.

External XML Document Storage

Themes and their supporting repository are stored persistently as XML doc-
uments. XML documents have been chosen because they enhance the speed

of development:

e The DOM API provides methods to easily read and write XML files,
to and from the DOM tree, respectively.

e XML documents are human-legible. This facilitates debugging and

random inspection.

Themes and repositories are not static objects, however, and are therefore
not well suited to being persistently stored as XML documents, especially
with respect to the future development of distributed, multi-repository sys-
tems. It is also unlikely that memory-resident structures such as DOMs will
be useful unless state can be maintained between persistent and temporary

storage. Other options of data storage that were considered are:

A flat file system: Themes and repositories are mapped to separate direc-
tories; chunks are stored in individual files. Although fast access times
benefit this option, issues such as file-locking (to avoid dirty-reads, for
example), file security (corruption/loss/accidental deletion/illegal ac-
cess), and the upward scalability to distributed systems, all must be
implemented and catered to, and thus, create a large overhead on de-

sign and development.

191

Database management systems (DBMS): Object oriented databases are
likely candidates for future TBLP storage requirements (both persis-
tent and dynamic) because they support possible future enhancements

to the chunk model (such as explicit chunk relationship types).

In a multi-user TBLP environment, issues of data integrity will arise
due to simultaneous read/write transactions — database management

systems (both OO and relational) provide robust and tested solutions.

The size of repositories and themes is likely to be very large; containing
these entire structures in working memory (as the DOM does) is not
a realistic solution, therefore. Accessing these TBLP artefacts directly
from a DBMS could be a more viable method. Indeed, integrated devel-
opment environments, such as Jaddd, provide an excellent opportunity

for CBDE implementation.

XML enabled databases exist that are inherently able to read and store
XML.This eases the mapping that would be required from XML to

relational tables (and vice verca) at run time, for example.

Custom built data structures: Memory-resident structures can be either
partially or fully serialised to alleviate working memory storage needs.
They can also be used in combination with the external database or
flat-file storage options. This technique is potentially the fastest of
the options, however, can suffer from poor, and therefore, innefficient

implementation.

Compatability between current and future TBLP authoring implemen-
tations can also become an issue if data structures are tightly coupled

to a fixed chunk model.

Efficiently implemented, custom data structures can support the de-
velopment of TBLP tools that are custom-built for specific user types
such as “thin client” use. Thin clients may be required to run on
under-resourced systems or hosts with slow network connectivity, for

example.

Shttp://www.jade.co.nz/

192

SAX: In combination with the database and customised data structure solu-
tions, SAX can be used to parse singular XML-based, database-resident

chunks, to create a customised data structure.

SAX is commonly contrasted against the tree-based, memory-resident
DOM alternative. SAX is an event based parser that invokes event-
handlers upon XML-generated events; start_element, end_element,

start_cdata are examples.

7.4 The ID attribute

Existing literate tools use a chunk’s name as its unique identifier. Our chunk
model differs by associating a unique chunkID (chunk identification) attribute
to each chunk. The chunkID is essentially a chunk’s primary key (in data mod-
elling terminology). This overcomes several of the shortcomings of existing

LP tools covered in Chapter 4l including:

Additive Chunks: Additive chunks are an ordered concatenation of chunks
that possess the same name (see Section [[L4.1] on page [[H)). In existing
LP tools, this ordering is derived by the chunk’s lexical ordering in the

source file (the web).

In TBLP, however, it is likely that chunks will possess the same name,
but be different types. A requirements analysis chunk can be attributed
the same name as the requirements specification chunk that it influences
(Section B3.11] on page 214 makes recommendations on chunk naming
strategies). These two chunks are not additive, however. A chunk’s
name is no longer an adequate unique identifier. Additionally, using a
chunk’s name as its key contravenes the DTD ID attribute type (the
chunkName would be attributed an ID attribute) and therefore invali-
dates the XML document (see Figure [6.3)).

Moreover, as discussed in Section B.2.T], the chunk repository does not
order chunks in any specific manner, thus rendering additive chunk

composition by repository-based lexical ordering inappropriate.

193

Object Orientation: OO overloading and overriding, in TBLP, is cap-
tured using two or more construction code chunks possessing the same
name. Existing LP tools do not facilitate such representation (see Sec-
tion[4.2]). The TBLP chunklID scheme disassociates chunk identification
from chunk naming thereby allowing same-named chunks to represent

different programming abstractions.

Scalability: The larger literate programs become, and the more reuse that is
made of them (such that the author is able to include chunks from mul-
tiple repositories) and the more likelihood there is for a conflict between
same-valued chunk attributes. It is quite possible that two chunks ex-
ist, each in a different repository, each with the same chunkName and
type (take chunk <<main>> of type code, for example), however possess

completely different implementations.

It may also be likely that two chunks from two different repositories
contain the same chunkID value. Thus, the chunkID is not universally
unique. Namespaces (an XML standard: (http://www.w3.org/TR/
1999/REC-xml-names-19990114/)) can be used to realise such multiple

repository implementations. This remains the work of future research.
The rules governing the repositories use of a chunkID are:
e Each and every chunk receives a chunklD.
e No two chunks may share the same chunkID.

e The generation of a chunkID is likely to be an automated process (as it

is in the CBDE).

e A chunklD bears no semantic information. For example, a chunkID
value less than another chunklID value is not an outright indicator that
one chunk was developed before another. This encourages safer theme

development practices.

194

7.4.1 Multi-Valued Chunk Identifiers

The utilisation of a distinct chunk identifier facilitates easier mapping to
XML schemas® and DTDs. The alternative option of using a chunk’s com-
bined attribute values as a multiple key does not map so cleanly. XML
commonly utilises singleton attributes as element keys. Technologies such
as XSLT, for example, allow the storage of single value keys in hash tables
(via the key () function and key element) for efficient lookup and reference.
Multiple keys would introduce unnecessary complexity to this approach. A

multiple key representation such as:
<chunkref type="chunktype" name="chunkname"/>

is feasible, but inefficient. The matching of these attributes at run-time
could place high processing demands on TBLP tools (such as the CBDE). It
is likely, therefore, that a tool’s implementation would generate unique keys
associated with chunk objects regardless of the existence of multi-valued keys.

One possibility for further research is to investigate user-specified at-
tributes — perhaps insisting on the chunklD and version attributes as a
chunk’s minimal attribute set. This approach would render a multi-valued

chunk key impossible.

7.5 Version Control — Evolution and Utilisation

It is possible to develop a chunk model without chunk-level version control.
If this is the case, a chunk is implemented, and all themes referencing a chunk
will necessarily reflect the status of the chunk as it exists in the repository.

This scenario is inadequate, however, because of three key points:

Inadvertant theme corruption: Discussed in Section[6.3.4] de-contextualised

edits may inadvertantly render a theme invalid, and therefore incorrect.

Swe have concentrated on representing document structure using DTDs,

however, it is likely that future work will introduce schema support
(http://www.w3.org/XML/Schema).

195

Lack of scalability: Future TBLP environments will support theme and
chunk composition from multiple distributed repositories. It is un-
likely that chunk edits from distributed applications are relevant to
all other themes referencing the same chunk. This issue emphasises

de-contextualised edits; on a larger scale, however.

Disregard for the nature of chunk development: All previous states of
a chunk, as it is edited throughout its life-span, are disregarded. This
important information can be vital to a software system’s development
— entire themes can be devoted to represent such information (as ex-
plained in Section [[.5.1l A CVS, RCS, or similar file-based version
control system, not only does not support such historical theme devel-

opment, but also do not solve the de-contextualised edit problem.

7.5.1 Themes of Versions

A set of chunk versions can be referenced and ordered to compose a theme.
By doing so, a theme illustrates a historical perspective of a chunk’s edits,
and provides the ability to document the reasons behind the alterations. Fig-
ure [.4] on the next page, for example, expresses a version history of a set of
chunks. This is a theme developed from Ramsey’s setspace.stywec.nw. The
revision documentation chunks in this literate program are of type revision-
history. Note that the version number of the chunk is output alongside the
code chunk’s name; this is achieved by adding a template to the stylesheet.
Note also that cross-reference information is diplayed alongside version 1.1
and not version 1. This is because all themes have been automatically up-
dated to reference the latest version (1.1).

File-based version control systems cannot achieve such granular version
control. Moreover, our TBLP model allows higher-order chunks — effectively
documentation of the documentation — such that it is possible to include
these chunks in a requirements analysis theme, for example, which discusses
the need to add this extra functionality as presented in the theme document
in Figure [[4] on the facing page.

Interestingly, one could imagine maintaining a chunk versioning system

196

"a Functions revizion history - Microzoft Internet Explorer

File Edit “iew Favortez Toolz Help

Functions revision history

The original "Edit Functions" chunk does not print all counts:

= Funcfions version 1=

we_printiwhich, char_count, word count, line count)
char *which; /% which counts to print %/

if ((status & usage_error) == 0] {
fprintf (stderr,
"nllsage: %3 [-lwc] [filename ...]1\n",
prog_hamej;
Ftatus |= usage_error;
}

We add an extra caze it the switch statement to print all counts.

=Funcfions version 1.1= [we source] [wo.nw] [wo.tw)

we_printiwhich, char_count, word count, line count)
char *which; /% which counts to print %/
long char count, word_count, line count;
/A% given totals */
{
while [*which)
switch (*which++) |
case 'l': print _countiline count);

break;

case 'w': print _countiword_count);
break;

case 'c': print countichar count);
break;

case 'a': print _countiline count);
print_count(word count):
print_count(char count):

hreak

Figure 7.4: The version history of a chunk can be documented and expressed
as a theme.

197

that stores all theme source in one chunk, effectively reimplementing a file-

based version control system — this is not recommended practice.

7.5.2 Branched Hierarchies of Chunks — Chunk Version Control

Effectively, chunk version control is implemented by copying the new chunk’s
parent’s attributes, i.e., chunkName, version, type, and variant and deriving a
new version number and chunkID.

Given the new chunk’s parent and the sibling order it finds itself, it is

attributed an appropriate version numberZ.,

Version Numbering

The chunk version numbering system utilised by the CBDE is illustrated in
Figure[.5lon the next page. It shows a hierarchy of chunk versions extracted

from a chunk repository:
e The initial chunk is numbered version 1. This chunk is then cloned.

e The cloned chunk receives its parent’s version number plus the number

of the sibling order it represents i.e., 1.1.

e The programmer wishes to revert back to version 1 of the chunk. An
edit is committed and the newly created chunk is numbered version
1.2 — its parent’s version number is 1, and the new chunk’s sibling

order is 2.
e Editing and then committing version 1.2 generates version 1.2.1.

e The author then makes three edits on version 1.2.1 that are com-
mitted to the repository. Each one of these sibling chunks receives an
incremented sibling number; 1.2.1.1,1.2.1.2 and 1.2.1.3.

7 An appropriate version number is one which is able to be generated in a systematic
and automatic manner.

198

1.2.1.1 1.2.1.2 1.2.1.3

Figure 7.5: An example of a version hierarchy for a given chunk.

child-——-———===—————— -
parent-—-—-----———----———- \
grandparent------------ \ O\
greatgrandparent---—--- A\ O\
AUANANAN
1.2.1.2

Figure 7.6: The hierarchical makeup of chunk version ‘1.2.1.2".

Essentially, the version of a chunk is a concatenation of the chunk’s par-
ent’s version number, and its sibling order.

Dissecting a given version number of a chunk reveals something about
the chunk’s past. For example, version 1.2.1.2 tells us that this chunk has
three levels of ancestor — a parent (1.2.1), a grandparent (1.2), and a
greatgrandparent (1). It also tells us that it is the second child of its parent.
Figure shows the breakdown of the hierarchical numbers.

7.5.3 Theme-Based Version Control

Theme-based version control in not enabled in the CBDE. Thus, it is currently
impossible to commit document rollbacks. Appendix[E] on page [B53] discusses
how this can be implemented as a simple extension to the CBDE and the

theme model.

199

7.6 Summary

In this chapter, we discussed and illustrated example implementations of
the transformation and formatting stages of the TBLP document process-
ing model. Specifically, we showed how an XML theme document, as pro-
duced by the CBDE authoring tool, can be transformed by multiple XSLT
stylesheets to produce, likewise, multiple formatted literate documents.

The second part of this chapter focused on TBLP data storage. We
concluded that DOM facilitates exploration and speed of development. This
suits the prototypical status of the CBDE. Future developments of TBLP
tools are likely to utilise other technologies, however, such as a combination
of DBMS, SAX processing, and customised data structures. These provide
advantages of processing speed and efficient use of persistent and immediate
memory.

We then discussed the benefits of using the chunkID attribute as a chunk’s
unique identifier. Important benefits are that it provides a solution to ob-
ject orientated language representation (a limitation of existing LP tools),
and provides a scalable solution to future TBLP developments, by allowing
multiple chunks to possess the same attribute values, yet possess a mutu-
ally exclusive relationship. Finally, chunk versioning and version control was
discussed. This is a powerful technique unique to TBLP, which enables the
construction of historically-based theme documents that are comprised of
chunk version hierarchies.

The next chapter examines the future considerations of TBLP.

200

Chapter VIII

An Approach to the Practice of Theme-Based Literate

Programming

But I know what English words mean. I speak English. You must
be a bit of a thicko. — BlackAdder, Ink and Incapability.

In this chapter, we present some basic guidelines that we believe will lead
to the design of good literate programs. The ability to use TBLP effectively
corresponds to good quality software. It is not our intent, however, to defini-
tively develop a set of rules that must be strictly adhered to. The guidelines
we propose are not set in stone and are presented as a tentative set of recom-
mendations for the standardisation of a theme-based literate programming
approach to software development. It is imperative that further research is
conducted on the TBLP development — with this in mind, we set the ‘ball
rolling’.

It is our intent to release these guidelines on a discussion forum to elicit
and learn from the responses of the intending TBLP user-public. Note that
many of the principles in this chapter can also be utilised for the development
of traditional literate programs. Also, many of the examples used throughout
this chapter are focused on source code representation; however, the concepts
should be extrapolated over all chunk types.

A priority in TBLP, in addition to our recommended guidelines, is to

maintain, Kernighan and Pikes [42] principles:

Consistency: follow a similar pattern throughout the literate program. Use
similar documentation techniques for common items and common themes.

Use similar chunking techniques for common abstractions.

201

Simplicity: Break complex ideas into simpler ones. Pity the audience of

your efforts — after all, it may be yourself some time in the future.

Clarity: Simplicity promotes clarity. TBLP offers the opportunity to doc-
ument and represent ideas to different audiences; use this opportunity

to promote comprehension.

As implementation languages, C will be used for imperative languages,
and Java for OO languages. Other languages are used for examples befitting
their use. Noweb is utilised as the literate programming tool unless otherwise
stated. Noweb has been chosen due to its clean and easy-to-read literate

program presentation.

8.1 Underlying Aims

TBLP development encompasses three major processes:

1. The definition of chunks. Determining the scope of a chunk, and when

to convert a piece of code into a chunk.

2. The procedural layout of these chunks in a logical order which aids

program comprehensibility.

3. Documenting these chunks to provide meaning to intending readers.

8.2 TBLP in Software Engineering

TBLP is not a replacement for the SE principles of analysis and design. It is,
however, an effective tool to be used to augment these principles. Moreover,
we claim that TBLP is methodology-unspecific and can thus be utilised to
meld methodologies together.

For example, a company situation may see two teams working on a large
project. One team uses XP principles and the other uses a more formalised
process, adhering more strictly to the phases of the SDLC. TBLP can be
used to represent both results of development, and furthermore, can be used

to combine aspects of both methodologies.

202

TBLP can be used to add structure when there seemingly doesn’t exist
any. Kernighan and Pike [42] mention that although formal engineering
methods are suggested, and maintained, in many instances they are only
partially used, or not used at all. While UML, as an example, provides
an excellent foundation for formalised system modelling, there exist systems
that evolve over time; whose future content or exact functionality is unknown
at the beginning of the development process. Or perhaps, whose problem set
is known, but whose exact implementation cannot yet be derived due to
issues such as performance. Or perhaps, the project team simply does not
use, or deem it necessary to use such formal methods. The points raised are
all arguable points — to religious heights: TBLP provides an escape route
by facilitating iterative, or evolutionary development, yet also provides the
ability to represent these systems using multiple perspectives (themes) and

thus, add structure.

8.3 Guidelines for the Good

Following, are a list of guidelines for TBLP development.

8.8.1 Target the Intended Audience

Code chunks can be construed as easiest to write because the audience is
oné! — the computer; other chunk types, however, have multiple audiences.
Other chunks, however, may have multiple audiences.

We recommend, therefore, that the audience of the chunk is targetted by
the content of the chunk. General purpose chunks may not suffice, however,
can be augmented by adding audience specific chunk implementations, and
are a good strategy to promote the reuse of chunks. Thus, building a chunk to
represent a central aspect, and further developing (nested) audience-specific
chunks for audience-specific illustration can be an effective method.

The author must ask the question “Who is my reader? What are his

technical abilities?”, and develop chunks to suit.

Lof course, source code must comprehensible by other programmers also

203

8.83.2 Atomic Chunk Mapping Must be Strong

When two chunk types represent the same unit of abstraction, both chunks
should maintain a strong mapping such that the cohesive nature of one chunk
is reflected by the other. The scope of all chunks in an atomic set, therefore
should be the same — both chunks should effectively restate each others
implementation. The only difference should be in the audience, and therefore,

nature, of expression.

8.8.3 Consider Physical Chunk Scope as a Cohesive Measure

A chunk’s physical scope should not cross the boundaries of the abstraction
that it represents?. It is outrightly bad style to use a chunk to transgress
the scope of a the abstraction it is meant to represent. A simple (program

source code) example illustrates how this may occur:

Q

<<define function count>>=

int count(int counter) {
<<increment counter>>

Q

<<increment counter>>=

return ++counter;

Note the incorrectly scoped <<increment counter>> chunk. It contains
the closing parenthesis which is logically part of the <<define function
count>> chunk’s scope.

Whilst sytactically correct, a transgression of scope has occured. Such
use of literate programming can add great complexity to program compre-
hensibility. Literate programming, in this case, undermines the strength of
the programming language. Parallels can be drawn between all other possi-

ble chunk types — the interruption of prose that is illogically contained in

2 A chunk can draw from the concept of module cohesion [60] — the functional relatedness
of the chunk’s content must be strong.

204

separate chunks, for example.

A correction of the previous example would resemble:

@

<<define function count>>=

int count(int counter) {
<<increment counter>>

}

@

<<increment counter>>=

return ++counter,;

8.3.4 Use the Consequence of Cohesion To Determine a Chunk’s Size

The size of a chunk should be a consequence of a chunk’s cohesion. Length
should not be an issue in the scoping of chunks. Questions such as “Is this
chunk too short?”, or “Is this chunk too long?” should not drive the content

of a chunk (unless the underling methodology requires it).

8.3.5 Distinguish Comments from the Source Code

Source code comments should be contained in separate chunks to the source
code they represent, and aptly typed; code comment, or more specifically,
Java code comment for example.

In traditional LP, it is possible, and sometimes warranted, to find source
code comments alongside the source code. Literate programming did not
(intend to) rid source code completely of comments. TBLP facilitates the
distinction of source code to comments, and thus, allows the conditional
inclusion of comments given theme processing. ‘Clean’ source can therefore
be easily generated (an XSLT stylesheet instruction can be included to ignore

comment chunks, for example), as the commented version.

205

8.3.6 One chunk — one idea.

Using a chunk to contain only one idea will not only aid the understanding
of the implemented code chunk, but also the implementation, and there-
after maintenance, of it. The following excerpt from [54] (adapted to Noweb
source) shows the combination of two separate abstractions using the one
chunk. It illustrates also a the utilisation of a chunk name as (a missing)

documentation chunk. This is also not recommended.

<<Seed the random number generator using
command line argument 1>>=
if (argc == 2)
srand48(atoi(argv[1]));
else {
srand48(7);
cerr << "sxx*xx¥x*Rerun with one command line argument, an
integer,"
<< "to get a different scrambling of the output." << endl;

Two possible source description chunks have been concatenated into one
chunk. The <<Seed the random number generator using command line
argument 1>> chunk would be better separated into: <<extract seed>>
and <<seed the random number generator>>, and thus present the fol-

lowing literate equivalent:

206

<<seed the random number generator>>=
<<declare seed variable>>

<<Kextract seed>>

srand48(seed) ;

<<extract seed>>=
if (argc == 2)
seed = (atoi(argv[1]));
else {
seed = 7;
cerr << '"sxxxx*xRerun with one command line argument, an
integer,"

<< "to get a different scrambling of the output." << endl;

<<declare seed variable>>=

int seed = 0;

Our solution creates more cohesive chunks. Note the extraction of the
seed for the random number generator is now delegated to a separate chunk.
This chunk can further be sub-divided, if necessary, depending upon the
complexity of the operation. This allows future alterations to the generation
of seeds more easily manageable. It dissassociates the seed generation from
the generation of the random number itself.

Our solution is not perfect. We have not added supporting documenta-
tion. We also have not further chunked the <<extract seed>> chunk into
its possible cohesive units. The error message should be handled separately
to the extract seed chunk. Reporting and detecting this error is functionally
separate from determining the seed value. The point that we make, however,

is that chunk declarations should contain one idea only.

207

8.3.7 Chunk first, code later

One of the difficulties of literate programming is that it is easy for the pro-
reverse literate grammer to slip into a mode of reverse literate programming.
programming Reverse literate programming is a method employed to translate existing
source code into literate code (and is discussed in depth in Appendix [F on
page B50). It is the opposite, in terms of process, of developing chunks,
documenting them and their intent, and then populating their body with
the appropriate content source code. Knuth’s idea of psychological order is
hence, applied in a post-hoc manner.
Developing chunks in a post-hoc manner, forgoing preemptive chunk de-
composition in favour of adding unrelated content to an existing chunk, is
bad practice and reduces the cohesion of a chunk.

We quote Parnas [62]:

Documentation that has been created after the design is done, and
the product is shipped, is usually not very accurate. Further, such
documentation was not available when (and if) the design was reviewed
before coding. As a result, even if the documentation is as good as it

would have been, it has cost more and been worth less.

8.3.8 Dissassociate intent from implementation

Chunk implementation and chunk intent should be expressed separately. Sep-
arating these two factors can aid in the development of higher quality pro-
grams. A chunk should aim to describe either (i) the implementation, or (ii)
the intent; not both.

Implementation explanations typically utilise source description and group-
ing chunks. Source description chunks are used to describe low level program-
ming implementations. They employ a low level of abstraction. Similarly,
grouping chunks — chunks that are utilised to collate other chunks (as atomic
units), rather than being used to represent the immediate chunk content —
can employ a low level of abstraction to represent data. Chunk names such

as:

e included header files
208

definition for findmember

exported functions

variable definitions

insert node in linked list

e linear search for element in array

are indicative of implementation oriented chunks. They are not neces-
sarily concerned with describing a concept, but rather, with collating like
program instructions. They tend to answer the question “How is this imple-
mented?”.

“What is the program attempting to do?” is asked by intent oriented lit-
erate chunks. They concentrate on explaining the intention of what function
the program is to perform. The difference between intent and implementation
literate code may seem subtle, but both are conceptually estranged.

It has to do with the level of abstraction that the programmer is at-
tempting to embody in the literate program. The higher the abstraction,
the closer to an intent oriented chunk. The lower the level of abstraction;
that is, the more pragmatic the chunk, the more the programmer will tend
to re-represent the source code.

The following example illustrates a situation in which the programmer

has mixed intent with implementation into one ill-fashioned chunk.

209

@ A search for a member entails a traversal of the sorted
binary tree, which, in this case is implemented as a

two-dimensional array of values.

<<binary search for member>>=

int memberFind (char *name) {

int 1i;
for O {
i *= 2;
i+=1;
}

The following solution is conceptually clearer, however. It shows that
<<search for member>> is an abstract concept represented by an intent
oriented chunk. It is implemented using source description chunks, namely

<<variables for member search>> and <<traverse binary tree>>.

210

@ Given a member’s name, we return a member ID after

searching the [[member_t]] data structure.

<<search for member>>=
int memberFind (char *name) {
<<declare variables for member search>>

<<traverse binary tree>>

}

<<traverse binary tree>>=

for O {
i %= 2;
i+=1;

<<determine if member is found>>

It clearly separates intent from implementation®, thereby allowing room
for greater emphasis of both of these factors. This means that although
the implementation may change, the intent is able to remain the same. It
allows the flexibility to alter the implementation details if so needed. It also
allows the distinct elaboration of which particular searching method is used,
and reasons thereof, in the documentation accompanying the intent oriented
chunk.

The first example combined the intent with the implementation. Al-
though this is often possible with functions, literate programming operates
with a finer granularity, thereby allowing us to separate the two to greater
effect.

Notice how the improved example’s <<search for member>> documen-
tation does not specifically associate itself with actual implementation issues.
This is left to its lower level content. If the data structure changes, the con-

ceptual structure of <<search for member>> may remain intact, or is easily

3 a comparison can be drawn between the OO concept of encapsulation

211

I bubble algorithm |
| counk | Show | %ref| Content| Static |-I
=.
Ié—"d fine sub bubblesort |
Pnitjalise variables |
E“lLFrate backwards over array |
E“lltrate forwards up to current backwards position |
swap adjacent members in array if current is greater than previous index |

Figure 8.1: Hierarchical view of the bubblesort algorithm utilising the CBDE’s
tree view.

altered.

8.3.9 Create Self-Documenting Hierarchies

A self-documenting hierarchy is created by a set of chunks that are (1) aptly
named and (2) aptly nested to represent the structure of a software system.
The theme-tree view of the CBDE facilitates the exploitation of such a view®.

An good chunk hierarchy is able to show, without requiring the querying

chunk content, the structure of a theme. In particular, it can help the reader:
e determine parts of immediate interest,
e determine the overall structure and method of design of the entity,
e orient his, or her, method of thinking to that of the writers’, and
e allow an abstract understanding of the document.

For example, the set of code chunks illustrated in Figure B} if nested and
labelled properly, a pseudo-code, or APL (abstract programming language),

is generated:

4tools like Leo and Jaba also promote such views

212

8.83.10 Use Smooth Transition Between Levels of Abstraction

Quantum leaps from abstract chunks to low-level chunks make for quirky
reading and are not reflective of the programmer’s true thought process of
program development. We highlight the need for the middle ground in liter-
ate programming.

Consider this excerpt [38]:

<<service routines>>+=
insert_parent(ART *current, ART *newart)

{
ART *temp;

#ifdef DEBUG
printf ("Q0QEQGQ insert %s as parent of %s/%s\n",
newart->message_file, newart->message_id,
current->message_file, current->message_id);
#endif
temp = malloc(sizeof (ART));
<<Lcopy current to temp>>;
<<copy newart into current>>;
<<1link temp as current’s child>>;

<<clean up after parent insert>>;

<<service routines>> is an additive code chunk. It is a grouping chunk
with an extremely wide scope; its name indicates that its content is a number
of miscellaneous functions that allow common, low-level functionality of the
program to occur. The generic nature of the <<service routines>> chunk
contrasts greatly with the low-level nature of its nested chunks, however. The
next four chunks, from <<copy current to temp>> to <<clean up after
parent insert>> represent low-level operations that insert a node into a
linked list.

Note that <<service routines>> utilises the insert parent() func-

213

= [[cnunic | Shov | ref]| Content| static | Chunk | Shows| %ref| Content| Static |
8. 2.

g 's?rvil:e routines

'
i E"s?rvil:e routines

E-dpfine insert_parent
Ecopy current to temp

copy current to temp
copy newart into current

ink temp as current's child copy newart into current

clean up after parent insert ink temp as current's child

(a) (b)

Figure 8.2: The level of abstraction in a chunk hierarchy should reflect the
software’s structure.

tion in place of a chunk. We consider this bad practice (see Section
on page 219)). Extracting a sub-hierarchy of these nodes, we arrive at the
following:

A chunk hierarchy of this LP excerpt is displayed in Figure . Note
the distinct gap of abstraction between <<service routines>> and its chil-
dren — one may incorrectly assume that <<copy current to temp>>, for
example, is a function.

The hierarchy in Figure is more reflective of the LP’s actual hier-
archical structure. We have simply added the <<define insert_parent>>
chunk. This hierarchy reads more intuitively than the original. Effects of in-
serting this one chunk would also break up the accompanying documentation
to associate more closely with each chunk. In other words, documentation
would not be associated, in a monolithic manner, with one chunk only.

Note that the above example is one theme view of the literate program.

Any number of others could be developed.

8.8.11 Be lazy — write self-documenting chunk names

Choosing a good chunk name is imperative to maintaining comprehensible
literate programs. An appropriately named chunk can divulge a lot of infor-
mation about the chunk’s content, without the need for further elaboration
by supporting documentation chunks. One should not fall into the trap of
replacing a chunk’s name with documentation, however (as illustrated in the
example in Section R.3.4] on page 205)).

214

The following equation is a useful method of viewing the balance be-
tween descriptive chunk documentation and the chunk name. (We assume
two chunks exist in an atomic relationship. For example a requirements
specification chunk and its supporting documentation chunk — requirements
specification-doc.) It is important that the documentation and title of an

atomic chunk match the chunk’s implementation.

documentation + title = implementation

An atomic chunk that conforms to this equation is considered well-balanced. well-balanced

Choosing a good chunk name means choosing what the nature of the chunk
chunk being developed is and determing a representative name. This is not
a straightforward issue. Representing the chunk’s content and describing the
intent of the chunk will commonly result in two different names. For ex-
ample, the chunk <<iterate over array>> could also be represented more
abstractly as <<sift through member 1list>>. The more abstract name
has the advantage of decoupling the name of the chunk from its implemen-
tation, however, if the chunk names in context are sufficiently descriptive, it
may be pertinent to use a low-level descriptor. Therefore, a chunk’s name
should be appropriately descriptive, and also appropriately usable in the con-
text in which it is declared. We recommend that chunk names are developed
in a contextually unaware manner; however, we recognise that this is not
always feasible.

As a rule-of-thumb, a code chunk with a ‘low-level” label is likely to require
more abstract documentation. A code chunk with an abstract label is likely
to require more low-level documentation. Moreover shorter chunk names
tend to be more abstract, whereas longer names, tend to be less so.

A documentation chunk in traditional LP does not receive a name label.
We recommend, as a standard for the naming of source code documentation
chunks in TBLP, that they adopt the name of the source code chunk they
represent. Consideration of an appropriate name must be given where the
mapping is not one-to-one; a high-level source code documentation chunk is

used to represent two or more source code chunks; or one or more source

215

code documentation chunks are used to describe one source code chunk.

If a documentation chunk’s name eludes the author, this may be an indi-
cator that the documentation chunk content is not cohesive, or even entirely
unnecessary.

An example of source code documentation that adopts the naming of the
source code chunk is illustrated in Figure on page [[18 Note that <<The
main program>> chunk exists twice in the theme hierarchical tree-view. One

is a source code documentation chunk and one is a source code chunk.

8.8.12 Awoid Temporal Commentary — Reduce Chunk Cross-Coupling

This should apply to procedural and temporal — laterally themed chunks.

Temporal chunks are psychological ordered such that only when presented
in a sequential manner, within context of surrounding chunks, is their full
meaning divulged. Given a worst case scenario, a literate program developed
in such a fashion would only be comprehensible only if it was read from
beginning to end. This would render literate documents unusable as works
of reference.

This approach should be avoided when possible. There must be a com-
promise between a psychological flow and the comprehension of a chunk as
a standalone unit. Neither should dominate outright, however.

A chunk can be perfect (a standalone all-comprehensible entity) without
including all data and documentation in that chunk. We address this extreme
solely to prove our point.

The programmer should keep in mind that chunks are predominantly used

by an audience:

as a reference source: Enabling the reader to skip to a particular section
and, by and large, understand the nature of the section without needing

to start reading from the beginning of the document.

as a theme composition source: Each chunk should form part of the greater
whole (the software system) such that together, all chunks are able to

convey the intended message to the audience.

216

As a reference source, a chunk is considered as a self-contextual entity.
Surrounding chunks, and links to other themes, which that chunk is included
will help divulge more information about the chunk.

As a theme composition source, enough detail should be present to gen-
erate a psychological flow amongst a set of other chunks.

Careful consideration of these factors can help create better literate pro-

grams.

8.3.183 Chunkify Programming Language Abstractions

Programming language abstractions should explicitly address the inherent
cohesiveness of a programming language’s abstractions by using a chunk to
represent it. This method combines well with the hierarchical approach sug-
gested in Section on page and is discussed in detail in Appendix [F]
on page 356l

There exist three compelling reasons that suggest this practice should

occur:

1. achunk is a cohesive entity and at some point this cohesive scope should

match the cohesion of a routine.

2. psychological scope recognises that chunks and programming language
abstractions may differ in scope, however, programming language ab-

stractions should be explicitly recognised.

3. semi-automated generation of API-based theme literate documents is
thereafter a simple process and can be generated at the chunk level (as

opposed to the programming language level).

A good exampleis presented:

217

<<TreeMapApp>>=
<<TreeMapAppImports>>
public class TreeMapApp extends JFrame {
<<TreeMapAppProperties>>
<<Constructors>>
<<buildGUI>>
<<treeBuilding>>
<<JTreeMaintenance>>
<<TreeMappAppMain>>
+
¢
The XML descriptions of treemaps need to be read
from both files and strings. Fortunately, Java’s streams

are very flexible.

<<treeBuilding>>=

<<buildTreeFromFile>>

<<buildTreeFromString>>
©
Given an XML file name, and access to an appropriate
DTD, a SAX parser (a [[TMSaxHandler]] from the
treemap package) can generate the treemap from the

XML description.

<<buildTreeFromFile>>=
public void buildTreeFromXMLFile(String fName) {

Note that each major programming abstraction is chunked.

218

8.3.14 Don’t Use Implementation-Level Commands as Chunk Substitutes

Neither program source code, such as function definitions, nor text format-
ting language commands (such as the WTEX \section command) should be
utilised as chunk substitutes. Just as a chunk is not a substitute for a rou-
tine, nor is a routine a substitute for a chunk. Section on page
presents an example of bad use of implementation language abstractions as

chunk substitutes.

219

Chapter IX

Future Work

Our concept of theme-based literate programming facilitates the develop-
ment and view of software systems using multiple perspectives. In Chapter [,
we introduced the TBLP model, which is comprised of the generic chunk
model, the theme model, and the processing model, and an XML-based de-
velopment framework. We illustrated in Chapters [6] an authoring tool (the
CBDE) to facilitate the authoring stage of the theme document development
process.

We wish to progress the paradigm of TBLP. The CBDE is an experimen-
tal authoring tool demonstrating the manner in which we intend TBLP to
progress. Using the CBDE, we have demonstrated that multiple themes and
multiple formats of these themes can be developed. Although it has facil-
itated the experimental approach to TBLP that we have required for this
thesis, further research is needed to progressively develop such supportive
tools that withstand rigorous uséX.

Specifically, we see future work falling into the following categories.

Extending the TBLP model: Enhancing the relationships between chunks,

and therefore enhancing their development.

Tool support: Developing tools to support the TBLP stages of develop-

ment.

Human Computer Interaction: support and development: Facilitating

effective and efficient theme authoring and viewing.

L as opposed to academic exercise

220

9.1 Extending the Model

Theme-versions: As discussed in Appendix [E.I] on page B33, the theme
model will be extended to include a version attribute, thus facilitating

the maintenance of theme version hierarchies.

Sub-themes: Sub-themes are themes that comprise another theme. The
theme-model will be extended to allow sub-theme composition. Simi-
larities between chunk nesting and theme nesting can be drawn. A key
consideration is whether themes are to be composed of a combination
of theme references and chunk references, or solely of one type of chunk

(either chunk references or theme references).

Issues of correctness of themes arise, and requires further work to de-
termine when themes should be used instead of chunks. The results of

this investigation will go toward forming a styleguide for TBLP.

Dynamic chunk attributes: Our generic chunk model, as proposed in
Section [5.2.2] on page O8], possesses a name, type, chunklD, version, and
variant attribute. This fixed set of attributes may prove limiting to

authors of literate themes.

We believe that dynamically assigned chunk attributes will allow en-
hanced chunk definition. For example, a “language” attribute would
allow language-specific formatting, or a chunk’s conditional processing
in a theme document. For example, the c-code chunks, in the example
in Chapter [fl may be more generally typed as “code”, but receive a lan-
guage attribute of “C”, denoting that the chunk contains C source code.

Effectively, this would enable a formal method of sub-categorisation.

If dynamic attributes are introduced to TBLP, future work must also
determine the minimum set of chunk attributes a chunk must possess.
We suspect that the version and chunklID attributes will form this min-

imum set.

Enhanced tool support is necessary to accommodate this functionality.

221

Enhanced model support: Future work will determine the worthiness of
introducing an extended chunk model that allows authors to define
multiple chunk relationships. This enhanced model would support the

definition of parent-child and sibling-sibling chunk relationships.

Nesting relationships are necessary to represent step-wise refinement.
Chunk version hierarchies can also be represented as a series of nested
relationships. Nesting can also be useful to facilitate a sibling rela-
tionship rather than a hierarchical one. For example, a class descrip-
tion documentation chunk that is associated with a relevant java-code
chunk represents a sibling relationship between the two chunks; the
parent chunk merely maintains sibling order. Essentially, these two
chunks form an atomic relationship. The enhanced model would allow

the author to explicitly stipulate atomic relationships.

Allowing the definition of such multiple relationships enables the TBLP
author to stipulate how the chunks involved in a relationship should ap-
pear in the theme document. And given appropriate tool functionality,
how they should be treated by the tool.

Abstract chunks that are used for the purpose of collating and order-
ing chunks also warrant further investigation. These chunks resemble
themes, however, would not contain content themselves. To reference
the set of chunks contained by an abstract chunk, the reference to the

abstract chunk is made.

Facilitating the definition of such relationships will allow full extensi-
bility of TBLP development. The visualisation and representation of
these relationships would aid in determining and understanding soft-

ware structure.

Note that these types of chunk representations are possible using the
current model, however, the current model does not elegantly distin-
guish between chunk relationship types. Should the current model be
kept in favour of these suggested enhancements, it is left to support-

ing TBLP tools to accommodate this functionality?. The shortcoming

2 Whether the enhanced model is supported by the tool or not, tool-based support is

222

of not offering such enhanced model representation is that distributed
users of the repositories’ chunks are unable to exploit the author’s in-

tended chunk relationships.

Another avenue of further work is to investigate model support for mul-
tiple chunk names. This will enable specialised names to be attributed
to chunk given their surrounding context, whilst representing the same

chunk content.

9.2 Tool Support

Multi-media chunks: Although our focus of TBLP is predominantly software-
oriented, TBLP can be applied equally well to other domains of doc-
ument preparation and, with further research, even adapted to suit
working with multiple media such as video, audio, two and three-
dimensional diagrams and notations. Tool support for such develop-

ment must be investigated.

Repository management: Repositories store each and every version of
each chunk. It is likely that not every chunk will be referenced, or
indeed, desired to be referenced. Facilitating a repository purge will
positively affect the repository’s size, and thus, the efficiency of sup-
porting tools. Supportive functionality that indicates the existence of
unreferenced chunks, and that provide an indication of a chunk’s life-
span versus the number of times and when it was referenced will aid

the author to commit ‘safe’ purges.

Research into chunk storage and compression methods can alleviate the
replication of data that is likely to occur in a repository (and theme
source documents). Chunk versions, especially at the end of their ver-
sioning life, are likely to receive incremental alterations. Much of their
content is therefore replicated. Good compression techniques with fast
access times must be investigated. Our thoughts are oriented towards

an approach similar to the MPEG compression system whereby chunks

required regardless

223

are differentially compressed and every n’th chunk (in a chunk ver-
sion hierarchy) serves as a reference of differentiation, thus facilitating
speed of access and good compression (depending on the compression

algorithm used).

As discussed in Section [7.3.1] on page 190 investigation into the best
means of chunk storage must be conducted. Whichever method is used,
the repository storage and authoring tool functionality must be kept

separate.

IDE support: Crucial to TBLP’s success is its availability of use. We do
not intend TBLP to replace existing editors and tools — ideally the
TBLP model would be supported by existing tools. Whether a pur-
pose built IDE(s) support is developed, or use can be made by adapting
existing IDEs (such as Microsoft’s .NET, Rational’s DevelopmentStu-
dio, and TogetherSoft’s TogertherJ, for example), through their pro-

grammable API’s; needs to be investigated.

Research into TBLP software development may reveal the need for spe-
cific niche-supportive tools such as web-authoring, test-programming,
maintenance development tools. Niche-level support could be offered
via extending (or even restricting) general purpose tool support through

the use of programmable IDEs.

Content-based support: Content aware tool support can indicate arti-
fact relationships between chunks in order to facilitate automatic and
manual chunk manipulation. Facilities such as programming language
support that recognise artifacts such as class, method, and variable

identifiers can indicate the use of these identifiers in related chunks.

Content aware tools can be used to highlight chunks that may be af-
fected by edits made to a given chunk. For instance, two chunks share
the same identifier. The identifier is renamed in one of the chunks. The
tool highlights the second chunk notifying the author that his changes

affect another chunk.

224

Moreover, tools that recognise chunk relationships (atomic relation-
ships, for example) can remind the author that potentially unattended

updates exist from prior edits to a related chunk.

Functionality such as content search for chunk location should be pro-

vided by supporting TBLP tools.

Inter-process development: The TBLP framework supports the utilisa-
tion of sub-processes throughout its three stages of document devel-
opment (see Section on page [[17). Future work will involve the
development of these sub-processes to provide TBLP support. For in-
stance, source code parsers that return the XML equivalent can be
developed to facilitate automatic markup of code type chunks. These
code chunks could then be further transformed into UML notation, for
example, and important relationships drawn between the corresponding
artifacts through the use of themes. Another example of sub-process
development is to develop utilities to transform legacy software repos-

itories to TBLP usable source.

Template development of XSLT and XSLFO stylesheets to support

theme document formatting is another example.

Chunk-based document rollback: An elegant method of committing en-
tire document rollbacks based on the version of a given chunk must be
explored. There are several possible methods (ranging in degrees of
elegance) to achieve this, however, the overhead in their execution may

prove a shortcoming.

One method is to commit a full hierarchical version update for each
chunk that references an edited chunk. The theme version will also be
uprated to a new version (assuming theme versions are implemented).
Effectively this means that a chunk’s edit would cause all chunks that
reference it to also be updated with a new version number. This would
need to occur for each chunk edit to provide granular rollbacks; how-

ever, the recursive and continual increment of chunk versions combined

225

with the incremental theme version data places great overhead on the

processing and storage media required.

Auto-Theme Development: Themes can be automatically generated by
tools that retain information such as common chunk navigation ten-
dencies of users. Thus, a scheme to automatically generate the most
well-travelled path, for example, can be automatically generated. Vari-

ations of this idea abound.

Legacy repositories: Research into the (automatic) conversion of existing
code and documentation bases to TBLP chunks must be performed to
explore the most suitable method to make reuse of legacy repositories

of software.

For example, the documentation of software bugs and their fixes are of-
ten stored separately to the affected source code. Utilising these legacy
storage methods to maintain their structure, or outrightly converting
these legacy repositories to a TBLP repository are two options. We
stress that regardless of the repository-based approach, tool support
must afford an interface to a repository(s), and are therefore indepen-
dent repository solutions. Thus, the TBLP repository should not be
coupled to the repository. The TBLP development framework treats

the repository as a distinct object, as should supporting tools.

Developing utilities to interface and parse with legacy systems will be
investigated and is likely to be the work of commercial entities who
(perhaps) wish not to reveal their proprietary storage formats, whilst

providing good customer service, of course.

A (tentative) recommended conversion, or reverse engineering, prac-
tice from OO and imperative languages is presented in Appendix [F] on
page 326l

Multi-repository, distributed TBLP Future TBLP tools must be devel-
oped that facilitate theme development using multiple repositories.

Issues that must be investigated are:

226

e The use of namespace support for multi-repository theme devel-

opment. XML provides a namespace standard.

e Will repositories be considered ‘local’ or ‘external’ (geographi-
cally distributed)? Should the concept of local repository exist,

or should each repository be considered external.

e Chunk ownership. If a chunk exists in repository A, however is
referenced in repository B, and then updated, which repository
stores the new chunk version? We tentatively consider the use of
‘creative’ ownership, whereby the repository in which a chunk is
first created stores also the version hierarchy regardless of where
the edit emanated from. This suits the external repository model,
whereby all repositories are considered external. However, slow

network connections can delay response times of chunk updates.

e Should chunk updates in external repositories be effected in all
referencing themes? Perhaps there is a need for more elaborate
tool functionality, which allows differentiated control of chunks
that are referenced from alternative repositories (with the external
repository scheme, however, there is no concept of a ‘local’ edit).
Should it be to the user’s discretion as to which repository is
updated?

9.3 Human Computer Interaction

The presentation of the TBLP development process and its supporting tools,
such as the CBDE, is paramount to TBLP’s success or failure. Representation
of the enhancements suggested in this chapter must be in a manner that

facilitates transparent and intuitive use.

e TBLP causes a proliferation of chunks, and these must be represented
in an intuitive and functional manner by interfaces that facilitate chunk

selection and retrieval.

e Hierarchical, tree-based and textual views, as displayed by the theme

tree view and theme text view widgets of the CBDE, respectively, are an

227

effective representation of programming structure. Chunks, as discrete
units of abstraction are amenable to other methods of visualisation also.
Investigation of three-dimensional visualisation techniques, for exam-
ple, as a method of both visualisation and development of themes and
repositories, and also theme analysis, will greatly enhance theme-based
literate programming. Techniques such as holophrasting, DOI, fan-in
fan-out, and fisheye views are also useful considerations in combination

with the existing and future visualisations of themes.

e The CBDE employs repository-based editing because we believe it more
transparently reflects the chunk and theme models. Importantly, this
technique also facilitates contextualised editing. Empirical evaluations
must be conducted, however, to determine whether in-theme editing or
repository-based editing is indeed more effectivé, and in which cases
either is better, or indeed, best. It may eventuate that the author is

able to choose which editing environment he uses.

e XML provides an excellent medium for theme and chunk representa-
tion, however, is not well suited for use in programming environments.
It is our expectation that future TBLP authoring environments will not

represent themes as XML documents, but in a more ‘readable’ format.

e Most existing tools, including the CBDE, produce static documents,
thus documents are easily rendered obsolete. The dynamic display of
themes, using XML technologies such as XSLT and XSLFO transfor-
mations, is an important area of future research. Browsers utilised for
both editing and browsing must be investigated to avoid the limitations

of static documentation.

Further work into the development of a set of standards or guidelines that
can be employed by TBLP authors and incorporated in tool-based support
to facilitate the development of themes must be performed. TBLP provides

an extremely flexible environment that can easily and unintentionally, be

3 and not just theoretically superior

228

misused. The development of guidelines to this effect will greatly benefit
authors. Chunk naming standards are an important step in this direction.
And finally, not to be understated, we are yet to derive a term that befits
the composition of and processing of chunks. Knuth introduced weave and
tangle; we look forward to much further deliberation as to the choice, or

creation, of a similarly descriptive verb.,

[43

4Dr. Neville Churcher has expressed a preference to “wangling”.

229

Chapter X

Conclusion

In this thesis, we have introduced the paradigm of theme-based literate
programming (TBLP). TBLP is driven by the need to modernise literate
programming (LP), as invented by Donald Knuth in the early 1980s, to cope
with present-day software engineering requirements.

The inability of existing LP tools (both traditional and XMIL-based) to
elegantly meet the requirements of current and future software engineering is
a result of the fixed-model approach they adopt. Specifically, the traditional

LP model suffers from the following limitations:

Fixed chunk model: Only two chunk types exist: documentation and code.
This distinction becomes blurred when producing artifacts such as de-
sign documentation, design specifications, UML notation, and working
with the likes of database query languages, XML, HTML, client-side
and server-side programming languages, for example. One is no longer
able to accurately categorise each of these as either documentation or

code.

Asymmetric processing model: Documentation and code chunks are treated
differently; only code chunks can be nested. LP is therefore constrained
largely to the construction phase of the software development life cy-
cle (SDLC). This is because it is impossible to introduce documentation
(requirements analysis, for example) that documents the construction
documentation. Documentation chunks cannot be included in the tan-

gled source as a consequence of the differentiated treatment.

The processing model and chunk model are combined: The ordering

of chunks in the literate document is derived from their lexical ordering

230

in the source file (web). There is consequentially a limitation of one
psychological ordering;; it is impossible to reorder chunks such that they

appeal to more than one audience.

Another limitation is LP’s inability to adequately cope with the object-
oriented concepts of overloading and overriding. Not only does OO tax the
indexing features of LP tools, but also the chunk identification system com-
monly disallows an overloaded chunk naming scheme.

Our contribution, in this thesis, stems from the introduction of a generic

chunk model. This model differs from the traditional chunk model because:

Content is separated from ordering: Chunk content is stored separately
from chunk ordering, thus allowing multiple chunk orderings; and there-

fore the development of multiple psychological orders (or themes).

Multiple chunk types may be defined: A chunk may receive any author-
attributed type, and

All chunk types may be nested: The nesting functionality of the tradi-
tional code chunk is supported by all chunk types.

The separation of content and ordering allows software systems to be
developed and presented using multiple perspectives — we call each of these
perspectives a theme — making TBLP amenable to current technologies such
as AOP and Hyperslices. Indeed, TBLP is language and methodology un-
specific. Furthermore, TBLP facilitates “equality of concerns” and, thus,
does not impose a ‘literate’ style of programming upon the author; source
code is ‘just another theme’.

Multiple chunk types allow chunks to receive independent processing and
formatting. Furthermore, because all chunk types can be nested, chunks
can be processed and formatted depending on their relative position (hier-
archical and sibling order) and the type of their neighbouring chunks in a
theme. Chunk nesting also allows the development of higher-order docu-
ments whereby chunks of various types may be nested. This enables the

elegant elaboration (and distinction) of all phases in the SDLC, for example.
231

We also introduced a pipeline theme document processing framework.
This framework consists of three main stages; (1) authoring, (2) transfor-
mation, and (3) formatting, where input for each stage is the output of the
previous stage.

We chose XML as a medium of representation, which eventuated as a
wise decision because it fits in well with the pipelined processing develop-
ment. Using XML as the interfacing medium of each process, the pipeline
framework supports process inclusion and/or substitution. We have shown
that it also provides a flexible presentation system, whereby theme docu-
ments are transformed into multiple document formats, such as HTML or
source code.

The Context-Based Development Environment (CBDE) facilitates the au-
thoring stage of the document development framework. We developed this
tool as a proof of concept and to influence the further development of TBLP
tools.

A chunk versioning system was discussed and employed using the CBDE.
Chunk versioning allows the development of chunk version hierarchies. Pro-
grammers can rollback to previous chunk versions and design historically-
oriented themes, as we showed, to elaborate on a chunk’s evolution.

We believe that our research will have a significant impact on software
development and software comprehension. This approach of TBLP can be
applied equally well to other domains of document preparation and even
adapted to suit working with multiple media such as video, audio, two and
three-dimensional diagrams and notations. Before that happens, however,
its success lies in the hands of future research and efforts to provide suitably

supportive environments and effective standards.

232

Appendix A

Thoughts on Literate Programming

Literate programming has well-inspired ideals. It orders programs psy-
chologically. It is thus a seemingly natural solution to the problem of program
comprehension and development.

Although LP is conceptually sound, it is often met with resistance by
programming practitioners. We attempt, in this appendix to present some

of the arguments behind their resistance, and how LP solves them.

A.1 Documentation — How Should It Function?

Even when a program is designed and developed with comprehensibility as
a key consideration, years of alterations will slowly see it lose this compre-
hensibility. Parnas [62] terms this phenomenon as software ageing.

LP couples documentation tightly with program source code to produce
an atomic unit. Although other documentation tools attempt to enforce the
same coupling, the physically separate nature of the documentation to the
source code inhibits this. Figure [A1l illustrates the connectivity between
documentation and code sections in a LP source file and in a traditional doc-
umentation tool. The distant nature of non-embedded documentation makes
it difficult, and often a laborious exercise, to update simultaneously with the
program source code. While Parnas’ software ageing may be inevitable, LP
helps extend the time of this inevitability™.

! rather analogous to an anti-ageing moisturising-cream to keep those wrinkles at bay

Figure A.1: atomic chunks in a file. two files, doc/code interconnection

233

LP documentation provides a method to include program design as an
integrated part of the code development process. Source code becomes a
natural extension to the design documentation rather than a separate docu-
ment.

LP documentation also helps to reduce design entropy:

Ryman [75] defines design entropy as a conceptual measure of the
discrepancy between the design specification of a system and its imple-
mentation. In a traditional setting, where an implementation contin-
ually diverges from its design, the amount of design entropy increases
to the point where the design specification is of no value for reference
or maintenance purposes. Ryman proposes that the amount of design
entropy can be reduced only if the design is considered as an artifact
(rather than a process) and is maintained in step with the software

implementation, through the entire life-cycle of the system. — [31]

In the following sections, we consider LP’s ability to provide abstrac-
tion beneficial to human understanding, documentation’s ability to aid the
the comprehension of the “big picture” of a program, and finally consider
documentation’s benefits as compared with code commentary.

It is interesting to deliberate whether literate programming is at all use-
ful. Is documentation merely complimentary to source code? Or does the act
of documentation positively affect the process of source code development?
Does literate programming improve on traditional documentation methods?
Does literate programming simply add another layer onto the existing pro-

gramming infrastructure, thereby adding complexity and aiding confusion?

A.1.1 LP Documentation versus Source Code — Audience Specific

“Due to the inadequacy of documentation, reading the source code is the most
trusted and widespread means to acquire knowledge about a program. Unfor-
tunately, code is not written to be read by humans: it contains a large amount
of details that make it difficult to extract the needed information.” [I5]
The ability to present the problem in an efficiently comprehensible man-

ner to the intended audience is the goal of the tangle and weave processes.

234

While source code can be considered as the definitive documentation source,
it is audience-specific. While it may be definitive, it is not readily compre-
hended by humans — even trained humans in the art of computer program-
ming.

Consider the following statement: “source code is its best documentation”.
This statement implies that if a program is developed well; if its code is
presented in an uncomplicated manner; if variables are descriptive of the
data they contain, functions and methods are descriptive of the operation
they perform; if consistent layout and coding practices are employed, the
source code will be easily understood. This is the approach taken by the
Extreme Programming (XP) methodology. This is true. The source code
will be understood; but what about the program? What about the “bigger
picture”?

It is possible to understand the source code, but not to understand the
intention of the program. “I understand what this is doing, but not what it’s
trying to do.”

Even in the case of well-written source code:
it is difficult understand the program for the sourcé2.

Different types of documentation exist. LP does not suggest documen-
tation for documentation’s sake. The right amount of documentation is the
right amount of documentation. If the source code is clear and understand-
able and doesn’t need documenting, then it shouldn’t be documented. There

is more to software development than coding, however.

Outside your extreme programming project, you will probably need
documentation: by all means, write it. Inside your project, there is so
much verbal communication that you may need very little else. Trust

yourselves to know the difference. — Ron Jeffries?

Program source code cannot tell its reader explicitly which design pat-

tern was used in its development. Program source code does not describe

2to quote the oft used metaphor (and manipulate it slightly)
3 (http://www.xprogramming . com/xpmag/expDocumentationInXp.htm)

235

user requirements in the context of program development. It does not tell
the reader why a piece of functionality was developed in the method that it
was; there may have been a range of options from which to choose. Source
code does not promote important sections of code fundamental to the pro-
grams design and operation, while relegating other sections of code to the
background. The list goes on.

And what of the case of poorly developed source code: should the op-
portunity not exist for the programmer to at least desribe the program’s
intentions? The programmer may not be technically sound, however, LP
gives him the opportunity to, at least, inform others of his attempts.

Program source code tells the reader what has been done. Documentation
can tell the reader what the source code is supposed to do — if there is a
discrepancy, it should be documented. Documentation provides emphasis by
highlighting important areas. This is not possible with source code alone.

Many programs do not follow an easy-to-read program structure. It is
not readily apparent from perusing the contents of the main() function of
a large C program, what the procedural nature of the program is; where
the important areas of the program source code lie, how the data structures
look and work. Even a well documented program will not reveal this infor-
mation readily if documented in a purely linear (program language order)
fashion. Literate programming allows the placement of important ideas fore-
most in the sequence of the program’s documentation. It allows emphasis; it
promotes the concept of psychological order.

We have covered some important reasons to document software. It is quite
possible that more than one documentation type is written for one (or more)
code chunks. Melding these documentation types together in one document,
in one psychological order can misplace the emphasis desired by the author.
Themes enable the development of software among multiple paths; allowing
therefore an author to develop a set of user story themes (for XP), a theme

discussing design decisions, a theme discussing “dirty” code, for example.

236

A.1.2 Perspective Simplifies Complezity

We relate Batory’s [4] analogy of geocentric versus heliocentric views to this
argument. He argues that we, as software developers, commonly take a
geocentric view, thus providing complicated solutions: early astronomy con-
sidered the earth and not the sun as the centre of this solar system. Thus, it
was with some overly complex mathematical transformations that a correct
model of planetary motion was developed — until it was determined that
the sun was the centre of the universe. The mathematics of heliocentric the-
ory then proving elegant and simple. The change in perspective is able to
simplify core problems. Batory argues that this change in perspective can
greatly affect software development. We believe that LP offers the possibility
to generate these different views: these views then drive the development of
program source code.

Facilitating different perspectives for problem solving enhances the ability
to draw from one’s domain knowledge and apply it to the task at hand.
Currently, no tools exist to combine this domain knowledge with the general
semantic knowledge in the confines of one system’s solution and definition.

Facilitating perspective expression allows the author to elaborate on the
‘derivation of process’. Code refinements, for example, may be driven by
customer requirements. Altering the code only, and not the documenta-
tion of the requirements is therefore incomplete. By coupling requirements
documentation with code, LP provides a solution. The view of develop-
ment is shifted from writing code to program design. This is why literate
programs can generate more elegant solutions than their non-literate coun-
terparts. Although traditional LP is not suited to multiple views required
by this perspective-based approachTBLP is an elegant solution.

Even object oriented languages such as Java, which don’t follow a flow-
based order of execution, benefit from an author-imposed order, such that
direction and emphasis is placed on critical areas of the program source
code. The distributed nature of classes creates a web-like structure of method
invocation. This web is not necessarily similar to the one that would be
created using a literate programming style.

Object orientation’s concepts are structured around encapsulation, which

237

derivation of

process

involves data hiding. This is different to the literate programming concepts
of emphasis and presentational order® Object orientation develops programs
that are essentially composed of classes, which themselves contain methods
and data which these methods make use of. A class is commonly a self
contained entity. There exists no start point and no exit point. Adding
direction to these classes can help greatly in the understanding of a program.

Even though object orientation provides abstraction through encapsu-
lation and inheritance, an ordering of the program’s design is usually not
evident. Whereas main() is not necessarily the best starting point to un-
derstand the design of a C program, the initial class in an object oriented
program may not necessarily be the best starting point to understanding
the overall program’s design, either. Literate programming helps define the
starting point and a comprehensible flow that ensues.

OO programming is centred heavily on the development of API’s. API’s
generally have multiple interfaces to the world. They do not necessarily have
a beginning procedural point. In this case, it is difficult to present to the user
(programmer) how to interact effectively with the API in order to develop a
program. LP can help in this respect by expressing the interface classes and
their methods initially in the document, perhaps giving examples of their
usage, etc.

Javadoc is an API documentation tool for the Java programming lan-
guage (refer to Section 2.9.1] on page for specific details). It helps the
programmer determine how to best interface with the modules that compose
a program. It does not document how the interaction of two objects will
affect the program. It is unable to capture the concept that the ‘sum of two
parts being greater than the whole’. Javadoc is unable to present “the bigger
picture” to the reader. It is also unable to present the flow, or the order of

execution undertaken by a program.

4 one concept is not better than the other. Both should be used in their rightful ways.

238

A.1.8 LP Versus Plain Old Documentation/Comments

We have mentioned that documentation should be amalgamated with the
program source codé®. Building upon this, we understand that documen-
tation’s purpose is to enhance program comprehensibility — whether this
comprehension pertains to maintenance, design, development, or the use of
the program itself.

A common question is asked by (unwilling) programmers to whom LP is
introduced: “The code I write is commented very well, and laid out in an
attractive fashion. Why then, should I program literately?”

Documentation and comments differ. Comments tend to be written in
a post-hoc manner. Comments tend to be terse and discuss the program
source code — the domain knowledge of the problem is rarely mentioned.
Thus, what is commend is simply an elaboration of the general semantic
knowledge of the language.

Literate documentation often occurs in a pre-emptive manner; before the
source code is written. It explains the intent of the ensuing code chunk. It
therefore aids in the development of the source by way of explaining to the
intended audience what the source is about to do. Documentation chunks
offer to the author the ability to elaborate, even about the smallest piece of
code, if deemed relevant. Comments on the other hand tend to be proportion-
ally smaller than the code they represent. Comments are also sparser than
documentation tends to be. Documentation is likely to read easier because
authors are encouraged to use grammatically correct sentences.

Documentation should not encourage verbosity. Verbosity of expression
should be discouraged, in fact. Likewise, concise, terse documentation can

be equally difficult to read. Burdett makes the point:

This does not mean that all computer documentation must or can
read like a Nobel Prize novel, but neither does it have to read like a

military cryptogram. [14]

5 note that the view from literate programming’s perspective is that program source code
is contained within documentation or in the case of web pages, for example, just another
kind of documentation

239

A.2 An Abstract Process

You see, wire telegraph is a kind of a very, very long cat. You pull
his tail in New York and his head is meowing in Los Angeles. Do you
understand this? And radio operates exactly the same way: you send
signals here, they receive them there. The only difference is that there
is no cat. — Albert Einstein (1879 - 1955), when asked to describe

radio

An introductory chapter in operating systems [83] will mention a layer
based approach that computers maintain to represent a working architectural
paradigm. Layer 0, from the computer scientists’ (as opposed to engineers’)
perspective, deals with circuit level instructions. Every layer on top of this is
a more abstract layer towards the final user’s expressive language capabilities.
[include diagram here showing different layers of general computing layout.]
The more abstract the level — the further away from level 0 — the easier
it is for humans to understand. Consider writing a quick-sorting algorithm
in assembler. Not a particularly entertaining exerciséd. Expressing this in
the C programming language however, would be much more tolerable (if not
mundane and mostly pointless — there exist libraries that alleviate such
tasks away from us). The greater the abstraction, the easier that tasks
become — at least in the limited domain of basic computer architecture.
There exists difficulty for humans to instruct computers; the natural method
of representation is different to both entities — if both can compromise on a
sufficient level of abstract communication, the possibilities for the conveying
of complex commands increase.

Does LP act as a mediator between human and computer? Does it repre-
sent a layer of abstraction on top of current programming languages, therefore
bringing programming one step closer to the programming human’s conceptu-
alisations? While we would love to answer “Most certainly yes!”, the answer
is not so clear cut. The news is good, however!

Although LP itself is a supporting harness for an abstract layer of repre-

sentation, above the restraints of the programming language, it is not com-

6 for those that value their sanity

240

plete in its abstraction. It still requires program source code to be developed.

If LP is an entirely abstract layer, the programmer would simply commu-
nicate to the computer in written (or other) word. It would not be necessary
to generate source code.

Instead, it promotes abstraction of thought — LP is a facilitator of ab-
straction. It is abstract enough to allow an alternative thought processes to
be physically elaborated; a given programming methodology to be utilised —
it is impartial whether object orientation or structured programming meth-
ods are used: bottom-up, top-down, or nucleus centred. LP allows a user to
attack a problem using a ‘psychological order’” — something not altogether
present in programming languages. Note, however, that there still exists the
restraint that the program will have to be built of segments aimed at the

computer.

A.3 The Affect of Programming Languages on LP Abstraction

In this section, we introduce the new term of “psychological scope”, “trans-
parency of literate programming”, and “loss of power”. We explain how LP,
when used with certain programming methodologies, can be restricted in its
ability to represent reader-oriented abstractions.

Is LP affected by programming methodologies such as object orientation?
OOQ’s (object orientation) data encapsulation techniques do not necessarily
lend themselves well to the literate programming’s expression of ‘psycholog-
ical order’. Why? Although LP allows for an abstraction away from the
programming language itself, in an attempt to allow the programmer to fo-
cus on the problem domain — it allows the author to express and define
code chunks in the sequence he sees fit, and in the scope he sees fit, rather
than that dictated by the programming language — there exists a medium
where literate programming abstractions and programmaing language abstrac-
tions naturally coincide; chunk definitions and the programming language
constructs map closely. There is a common restrictive ground whereby both
literate chunk definitions and programming language abstractions are similar,
both in scope, and naming convention.

This concept is touched upon by Ngrmark [56] and Cockburn [19]. To

241

impartial to

methodologies

quote Cockburn:

Object encapsulation makes the notion of a ‘psychologically correct

order’ a weak one in object-oriented programming.

We term this as loss of power of abstraction.

A.3.1 The Power Paradigm of Literate Programming

The usefulness of literate programming, the power it contains to free the
masses from the confines of the imposed structures of the oppressant program-
ming language(s) is diminished by the very programming language itself?.
When defining a new class, it is usually necessary to begin a new code
chunk; just as a new function in an imperative programming language would
usually require a new chunk. The closer the programming language method-
ology constructs are to demanding a new programming abstraction, the more
redundant a literate chunk is. This is what we determine as a ‘loss of power’.

For example, the following program source code:

public class automobile {

private int speed;
public accelerate() {

}
public brake() {

}
public turn() {

would likely form the following literate program source code:

7 A little melodramatic, but hopefully, the point is taken.

242

<automobile class>=
<define and initialise automobile variables>
<automobile accelerate method>
<automobile brake method>

<automobile turn method>

Another way to view this concept is to consider the transparency of liter-
ate programming. The more the literate programming code chunks conform
to the programming source constructs, the more transparent the literate pro-
gram source becomes.

To further explain loss of power, let’s attempt to envisage a situation that
renders LP useless: if it were possible to create a program which consisted
only of class constructs, then for each class construct, we would use one lit-
erate code chunk. Assuming the class constructs could be ordered in any
manner, there would be no advantage to using a literate programming ap-
proach. We would merely use (hopefully) well named class constructs which
would contain effective comments throughout.

The conformance to these programming language abstractions can be
swayed somewhat by the author, however, an issue of style arises when doing
so. Chapter [8 considers the use of style in literate programs by presenting a
set of guidelines. Further research in the area of LP development is needed,

however.

A.83.2 Psychological Scope

It is interesting to view the concept of literate ‘power’, introduced in Sec-
tion [A.3.1] on the facing page, in light of Knuth’s own idea of ‘psychological
order’. To do so, we introduce a new term — ‘psychological scope’. It con-
cerns itself with, and gives further definition to the limitations imposed by
programming languages on literate programming.

While psychological order pertains to the natural dominant sequence of
code chunks that lead to a program’s explanation, psychological scope deals

with the size of a chunk’s definition space; the size of the human-oriented

243

transparency of
literate

programming

psychological

scope

abstraction that it encapsulates. We argue that human-based abstractions
and programming language based abstractions do not always map cleanly.
The distortion imposed by programming languages on the psychological scope
can cause the programmer to restrain, or expand the size of the idea, or
abstraction, represented by a given chunk. If the psychological scope of a
chunk is affected by the programming language, it must then be true that
psychological scope affects the psychological order of chunks.

Psychological scope gives definition to the development of chunks whose
scope is purposely altered to conform to programming language abstractions.

An example helps to illustrate our concept of psychological scope. The
literate programs in Figures[A.2] [A.3] and [A.4] are excerpts of OO programs,
written in Noweb source, that generate statistical data of a given set of num-
bers. Consider the initial flow in Figure [A.2l The data set is stored in an
array which is then processed to determine the average or mean of the con-
tained data. To implement this program, and in the interest of reuse of code,
a Statistics class is written along with the Query class, which queries the
Statistics class.

The chunks: <<access file>>, <<populate statistical tables>>,
and <<compute average of data>> are psychologically ordered. The Stat-
istics and Query classes must be ‘chunked’ and also included in the liter-
ate program. Although important to the development of the program, the
inclusion of these two classes necessitates their chunking; chunks must be de-
veloped to encapsulate these programming artefacts. Namely, we create two
new chunks to contain the classes: <<Statistics class>>, and <<Query
class>>. The programming methodology and language have enforced an ex-
plicit consideration to the development of new chunks in order to encapsulate
the programming abstractions.

Note the difference in approach of chunking the scoped code segment in
Figures [A.3] and [A4l Figure [A.2] uses the <<compute average of data>>
code chunk within the scope of the average method. Figure [A.3] includes
the entire method in the code chunk. Figure[A.4luses finely granular scoping
to achieve what both Figures[A.2 and [A.3 have: the Statistics::average

method includes the method declaration and references the <<compute average

244

of data>> chunk. <<compute average of data>> implements the body of
the average method. This method essentially uses psychological scope to
override programming abstractions.

Chunks that would normally not have been considered if dealing only
with the LP language, must now be developed. This is a consequence of the
programming language and methodology chosen.

This section has shown that LP is not a programming methodology out-
right. It is affected by the programming language used. Particularly, it is

affected by the programming abstractions of a given language.

Psychological Scope Should Not Override Programming Abstractions

The following presents a poor solution to countering program language ab-
stractions in favour of psychologically scoped chunks: although psychological
scope does exist, it may be countered by obscuring the natural abstraction of
the programming language with what the programmer considers the correct
abstraction. The literate programming system (which allows chunk nest-
ing) allows the programmer to embed the (abnormally scoped) chunk, say
a code chunk definition equivalent to a class defintion, within a chunk that
represents the programmer’s psychological scope. Using this technique, the
programmer is able to hide the abnormally scoped chunk by using obscurity.
The real chunk is encapsulated in another chunk which helps to obscure what
has really happened — this is conceptually similar to using OO languages to
develop in a procedural fashion.

While this is a possible solution to the problem, it is an ugly remedy that
distorts the output of a literate program itself. Not only are there unnessecar-
ily nested chunks, but the programming language constructs themselves are
de-powered. LP is not an outright methodology in itself. It forms but part
of the whole. It is to be used together with existing methodologies, rather
than replace them. Hiding code chunks that are forcably insisted upon by
the programming language, is akin to hiding the programming language’s
methodology and constructs as well — it is best to use another methodology

and/or language (there are many).

245

<<Kaccess file>>=
<<populate statistical tables>>=

<<compute average of data>>=

<<Statistics class>>=
public class Statistics {
public int average(int[] data) {
<<compute average of data>>

}
public int median(int[] data) {

}
}

<<Query class>>=
public class Query {
pubic void main() {
Statistics stats = new Statistics;
average = stats.average(array);

}

public int[] readFile(String file) {
<<access file>>
<<populate statistical tables>>

}

Figure A.2: Psychological scoping is altered to suit the object oriented pro-
gramming language.

246

<<access file>>=
<<populate statistical tables>>=

<<compute average of data>>=
public int average(int[] data) {

}
<<Statistics class>>=

public class Statistics {
<<compute average of data>>

}

Figure A.3: Psychological scoping: a second attempt.

<<access file>>=

<<populate statistical tables>>=
<<compute average of data>>=
<<Statistics class>>=

public class Statistics {

<<Statistics::average method>>
<<Statistics::median method>>

<<Statistics::average method>>=
public int average(int[] data) {
<<compute average of data>>

}

Figure A.4: Psychological scoping: a third attempt.

247

Chunks are aimed
at exposition,
routines are aimed

at encapsulation

Gain of Power

The explicit chunking of programming language abstractions can be ex-
tremely beneficial to the literate programmer and his intended audience. The
chunks that would otherwise not have been developed (the class definition
chunks in Figure on page 246, for example) may be grouped together
under their common encapsulating entity. That is, class definitions may be
grouped together in a section of the literate document, for example, to add
emphasis to the class structure of a given program. These class chunks may
then be ordered and documented in a manner to illustrate the interactions
between them.

A parallel can be drawn between this ability to extract programming
language abstractions via the literate program chunks and the Javadoc tool
for example. Javadoc, described in Section 2.9.1] on page is a popular
documentation tool that generates HTML based API reference for the Java
programming language. Our method expresses such detail, however, in an
ordered manner which would reveal and emphasise important relations be-

tween classes, for example.

A.3.3 Medium of Focus

Because it is possible for a chunk and a programming language artefact to
represent same abstraction, we argue that this one-to-one mapping causes a
transparency of the chunk (in Section on page 241l we term this “loss of
power”). The target audience of a chunk and programming language artefact
are aimed towards a different audience, however.

A chunk is an expository medium. Its purpose is to illustrate and com-
municate; to add direction, emphasis, and/or elaboration. Its goal is to
aid comprehension. Conversely, a programming artefact, such as a method,
class, or package, is founded upon encapsulation; and therefore adopt a mod-
ular ‘black box’ approach. Parnas’ modular approach to programming [63]
suggested that modules communicate via interfaces; one does not need to un-
derstand how a module works in order to use it. Thus programming artefacts

are fundamentally oriented toward encapsulating functionality.

248

A.3.4 A Super-Language

LP tools such as WEB, FunnelWeb, and nutweb (discussed in Chapter [2]) facil-
itate parameterised macros (explained Section [[.L4.1] on page [IT]). Effectively
used, these macros can enhance the implementation programming language.
The best example of this rests with Knuth’s own WEB LP tool, which was
designed to be used with the Pascal programming language. Pascal has some
deficiencies as a programming language. Kernighan [41] mentions many rea-

sons; the following is pertinent to our discussion:

e Pascal insists on the pre-declaration of labels, variables, constants,
types, and routines (due to its one-pass compiler). This means that
routines become the first readable components of the program source.
While this may be advantageous in some circumstances, it can become
a convoluting restriction. LP can overcome this by allowing the disper-

sion of these subroutines throughout the literate source, as seen fit.

Another example of enhancing the implementation language is the use
of parameterised macros with paramterless languages such as HTML and
XML. Using tools (such as FunnelWeb) which have multiple argument macro
support allows the programmer to create templates of recurring output, such
as headers, tables, forms, etc. The LPMLtool (Section [34]) uses this to good

effect in its demonstration literate code.

A.3.5 LP as Program Description Language

Brown and Cordes [13] and Shum [79] use literate programming as a program
description language (PDL). Although it exhibits these characteristics, we
will show that as literate programming cannot be used as a complete APL
for cross-interpretation to other languages.

If the programming language chosen is irrelevant and does not affect a
literate program’s structure, then LP could be treated as a true abstract pro-
gramming layer. The programmer could design and implement the program’s
structure in a fully literate manner, with the programming language a purely
arbitrary choice. No matter which language is then chosen, the programmer

merely “fills in the gaps”. This is not the case, however.

249

Changing the programming language will affect the resulting literate pro-
gram®. Tt is not only a difference of implmentation methodologies (imperative
or OO, for example), but also one of abstraction. Programming languages
afford different levels of abstraction. For example, C is commonly considered
a low-level imperative language. Perl is considered more abstract than C.
Choosing between C and Perl can have a very large effect on the code im-
plementation, thence the literate program. An example of the difference be-
tween the two languages is demonstrated by Kernighan and Pike [42] whereby
a Markov chain is implemented in four different programming languages —
two of these Perl and C. Whereas in C, the program may have to iterate
through a linked list data structure comparing a string for equivalence, Perl
offers associative arrays which allow the indexing of values with strings as
their key. This not only hid the level of detail, that is, abstraction, but also
changed the method of program construction.

The less abstract a programming language may be, the less abstract the
low-level chunks that will contain the implementation source code. For ex-
ample, a low-level programming language such as C would require chunks
that deal with lower abstraction than a programming language such as Perl,
which is more abstract. It would likely be the case that extra chunks would
be needed to contain this lower level of abstraction. At some point however,
a layer of chunks should exist which provide a basis for the pseudo-code of a
program: in order to perform the Markov chain transformation, a given trans-
formation method must be followed: an algorithm is progressively followed.
However, the data units used to store the elements in the Markov chain may
be language dependant. The chunks that are used to contain these abstrac-
tions are likely to be different depending on the programming language used.
Therefore, although the Markov chain algorithm can be followed, the im-
plementation will differ depending on the language. The algorithm however
should be deemed largely as program language independant and therefore
implementable with any programming language. This algorithm should be

represented by a set of chunks.

8 It may even have repercussions on the implementation method, however this is outside
the interests of this argument.

250

We have shown that LP is a tool to be used along-side programming
languages, not a replacement. LP is not an abstract layer outright that can

be used to substitute code chunks from one language to another.

We suggest, however, that at a particular level of abstraction, chunks
will be similar amongst most languages, amongst most implementa-
tions. If one were to highlight these chunks in some manner, this would
provide an interesting opportunity to provide a skeletal structure, thus
generating a theme of skeletal chunks. These chunks could be imple-

mented in the variant programming languages.

A.4 Unordered Programming Languages vs. Psychological Or-

dering

It is argued that literate programming is just a type of unordered codé?, and
that programming languages such as C++, allow the declaration of variables,
methods, and classes wherever in the source code the programmer desires.
While this is true, the code must follow a linear order for it to be compre-
hensible by the computer. For example, methods may not be declared and
implemented outside the scope of the containing class. Literate program-
ming allows this to occur, however. Psychological order and grammatical

(un)ordering are not the same thing.

A.4.1 Are Programming Languages Literately Enabled?

Is LP an imposed phenomenon? Are programmming languages able to as-
sume the capabilities of LP tools, therefore rendering LP largely ornamental.
Section [L.2.3 on page [lists several factors that defines literate enabled tools.
One of these defining factors is the ability to create nested hierarchies of code
chunks. It could be argued that programming languages provide this feature:
a function can invoke another function. Can programming languages there-

fore be considered literately enabled?

Yhttp://www.cs.wisc.edu/ glew/programming-languages.html

251

It is possible to develop functions which are roughly™® able to assume
the scope of a code chunk. Although certain languages such as Pascal insist
on the predeclaration and definition of subroutines, and are thus unsuitable
contenders for literate languages, other languages, such as Perl, do not. It
could be possible to substitute code chunks for functions and then order these
functions about the source code such that they read in a similar fashion to
a literate program.

There are several shortcomings to this approach:

e Development of such functions contravenes what is considered to be

the practice of good cohesion [60].

e Many variables will be scoped globally detrimentally affecting devel-
opment, maintenance, and reuse. The proliferation of functions will
involve the passing of an increased number of variables between func-
tions; one way to overcome this is to make variables global. A dilema
ensues: do we develop tightly coupled functions, or tightly globally

coupled functions. Which one of the two evils does one choose?

e There is no support for the use of multiple languages as is provided by

implementation language-unspecific LP tools.

Programming languages; in particular, functions, methods, and sub-routines,

are poor substitutes for the code chunk. Although LP utilises the granularity
of chunks to expose semantically (and perhaps syntactically) important areas
of source code, this does not stand for programming languages.

This section has shown that programming languages, even though coarsely
able to emulate the literate code chunk, should not be used to do so because
of the negative impact on the tangled source. We can further imply from this
and add to the definition of a literate tool in Chapter [l a literate tool should
not negatively distort the computer oriented source codéX. Both audiences,

the computer and the human should be mutually satisfied.

10 they do not possess infinite granularity

M there is an important distinction to be made here. It is possible to develop distorted
source code through the misuse of the literate tool’s functionality. Our concern here,
however, is that the literate tool does not detract from the comprehensibility of one

252

A.5 Mis-direction of Focus?

Directing our programming to another human rather than at the computer
directly affects the program’s makeup and content. Is this a good thing? It
can be argued that since the program source code is affected by programming
literately, it is directed more towards the human reader, rather than the
compiler. This could mean that the program source code is less efficient
than is could possibly be — thereby creating an innefficient program. Is this
trully the case, however?

Does the fact that the intended human audience to which the final pro-
gram source code is not going to be sent to, generate an inferior program?

We could argue, rather convincingly, no. Exposition — elaboration and
explanation — of a task at hand clarifies programmer intentions. Not only to
the final reader, but importantly, in this case, to the compiler (or interpretor,
as the case may be). It promotes full understanding of the task at hand; and
elaborating on what is to be done, and then how the task will be implemented
can only mean that the programmer fully understands the task at hand —
and has provided a working solution to it.

The fact that literate programs are written with the human reader in mind
means that the programmer elaborates on his own thoughts and, assumming
that he is a good literate programmer, explains decisions, reasoning and
methods encountered throughout the program. The act of thinking one’s
way through the meticulous details of what needs to be done before diving
straight in and doing them aids not only in the clarity of code understanding,

but also code efficiency and conciseness.

document for the comprehensibility of the other. It may be argued that Knuth’s WEB
did negatively distort the tangled code — we treat this as an exception as this was
Knuth’s explicit intent.

253

software system

holistic

development

Appendix B

TBLP Methods in Software Engineering

In this Appendix, we provide some background reasoning of the need for
a theme-based approach. We also consider the nature of themes when used
to represent stages of the software development life cycle.

The theme-based approach asks the question: “Which part, or aspect, of
the story would you like to know about?” And the child (obviously a boy)
answers: “Just tell me about the exciting parts with the flying carpet. I don’t
like all that silly boy-girl kissy stuff!”. The Arts student wishes however to
analyse the story: “I’'m sure the flying carpet has something to do with the
author’s parental upbringing.”

It is apparent that multiple themes may emanate from one focal repre-
sentation. In a software system, program source code is one of the many
documents that may be composed by the author. User documentation may
be another document. API documentation, management progress reports,
and three-dimensional data visualisation perhaps another.

The executable program is considered as part of the entire software sys-
tem; program source, testing source, install scripts, interface story-boards,
APIs, various user and program documentation, requirements analysis, re-
quirements specifications, may compose the rest of the system. We describe
the process of developing a software system with an all-encompassing per-
spective, such as this, as holistic development. Effectively, we draw the soft-
ware system boundary to capture more than just the immediate and map-

pable by-products of software development.

254

Non-Automated Themes

Interestingly, the need for multiple themes can be managed by explicit, in-
structional methods, as often adopted by pedagogical books. We take an
example from Abrahams, Berry, and Hargreaves [91], presented in Figure [B.]
on the following page. In the “Read This First” section of their book, “TEX
for the Impatient”, two sets of instructions exist, each aimed towards a reader
audience of differing knowledge and ability. One group is directed to initially
read the introductory sections of the book and then use the rest of the book
as a reference source. The other group is instructed to use the book as a
reference source. The recommended approach to either group of using the
book as a reference is slightly different. Instead of writing two or more books
oriented towards readers of differing ability, instructions are offered as to how
the book is best read depending on the reader’s experience.

Our needs as software developers and users are somewhat more elaborate
than the mere reordering of information as presented in this previous exam-
plél. Literate programming offers only two possible orderings of chunks; the
computer order and the psychological order. The reader audience however,
may be vast and varied, possess different skills and abilities, different interests

and queries, and possess different layout and formatting requirements.

B.0.1 A Layered Approach to Themes

Figure [B.0.1l on the following page illustrates processes, in the form of layers,
that may be involved in the Software Development Life Cycle (SDLC) of a
software project. Each of these layers can be considered an abstraction of
the one beneath it. Each layer is a possible theme candidate. Themes A, B,
and C of Figure[B.0.2lon page 258 are example themes that may be composed.
Themes A and B are reminiscent of the traditional LP model’s ability to

generate documents:

1. The tangling process of the traditional literate processing model gen-

erates the equivalent of the source code layer of the SDLC. This is

L This reordering, or displacement, approach is implemented as the second model in
Section [D.3] on page 299

255

If you're new to TEX:
e Read Sections 1-2 first.

e Look at the examples in Section 3 for things that resemble what
you want to do. Look up any related commands in “Capsule
summary of commands”, Section 13. Use the page references
there to find the more complete descriptions of those commands
and others that are similar.

e Look up unfamiliar words in “Concepts”, Section 4, using the list
on the back cover of the book to find the explanation quickly.*

e Experiment and explore.

If you're already familiar with TgX, or if you're editing or otherwise
modifying a TEX document that someone else has created:

e For a quick reminder of what a command does, look in Section 13,
“Capsule summary of commands”. It’s alphabetised and has page
references for more complete descriptions of the commands.

e Use the functional groupings of command descriptions to find
those related to a particular command that you already know, or
to find a command that serves a particular purpose.

e Use Section 4, “Concepts”, to get an explanation of any concept
that you don’t understand, or need to understand more precisely,
or have forgotten. Use the list on the back cover of the book to
find a concept quickly.

Figure B.1: Depending on their ability and experience, readers are advised
how the book should be read.

requirements analysis

specification

design

construction

code

Figure B.2: The layers, or phases, of the SDLC.

256

expressed as theme A in Figure [B.0.2l

2. The weaving process often combines the ‘code’ and ‘construction’ layers

to form one theme. This is represented as theme B.

To bring literate programming into the mainstream as a plausible devel-
opment choice of software engineers, an LP tool must recognise the existence
of, and enable the development and representation of, all layers. In addition
to themes A and B, therefore, theme C should be composable from the same

web.

B.0.2 Cross-Sections of Layers

Most software development methodologies respect that user requirements
may change throughout the development of a program’s life. Extreme Pro-
gramming (XP) is one such methodology, and may be considered as one of the
more flexible approaches to software development. The methodology accom-
modates new requirements being added mid-way through a system’s develop-
ment, for example. This contrasts with the largely static development asso-
ciated with methodologies such as the waterfall [64] process.methodologies,
such as XP, is not possible using traditional LP. The concept of user-stories
driving source code development effectively requires cross-sections from mul-
tiple layers of the SDLC, and not an entire layer outright. Theme D illustrates
such a cross-section. This theme is equivalent to an iteration in XP that ul-
timately results in the production of release code. Of course, there will be
multiple iterations, and therefore cross-sections, therein.

Maintenance is another process that can affect many layers of the SDLC.
Although in some circles, maintenance is conisdered another phase of the
SDLC, it is better expressed as a pervasive process. Expressing a mainte-
nance operation as a theme will see many chunks from many layers included.

Figure [B.4] on the following page abstractly illustrates that the various
layers of the SDLC can be individually chunked and relations amongst these

chunks exploited to compose a theme.

257

requirements anSISHEH |

speC'if'icat'it-

constructign

theme E
theme A code |

Figure B.3: Themes that can be exposed of a software system.

requirements

Az specification
y / _/ 4
y / / 4

A S A design
y __/ /4
y/ /4

.-,._ Zm code

Figure B.4: Chunks from various layers are related to an abstraction that
drives theme’s composition..

Process Versus Result

We take care not to confuse the development process of each layer in the
SDLC with the documentation requirements of that layer. The requirements
documentation may not necessarily resemble the requirements elicitation pro-
cess itself. This could be expressed as a separate document containing per-

haps a video or audio recording of interviewed clients (should multi-media

258

chunks be supported).

Mapping of Layered Abstractions

Mens [51] asserts that there does not always exist a direct mapping of ele-
ments from the architectural to the code level. He highlights the need for
media that allow the development of software from these immediately un-
mappable abstractions.

For example, it is not always possible to distinctly map a non-functional
requirement to a distinct unit of code. FEach is considered an abstraction,
however, cannot be explicitly related in an objective manner. Requirements
such as efficiency are sometimes generic enough to affect the whole system
construction rahter than a single module. Response requirements of a soft-
ware system may be pervasive throughout all areas of code development.
Effectively, in LP terms, we are unable to create a cohesive atomic chunk.

Tools such as HyperJ, an implementation language for Hyperslices, and
AspectJ, a Java-based aspect oriented programming (AOP) tool (see Sec-
tion B.I. Tl on page BH), assume that there is always a direct mapping between
archictectural components and source code.

Theme-based literate programming should facilitate both these mappable
and non-mappable abstractions to be developed. We have illustrated this in
Section [A.3.2 on page 243], which discussed the phenomenon of psychological

scope.

B.0.3 Flexibility of Approach

Key to theme-based literate programming is that it should not impose re-
strictions on software development methodologies. The author should be free
to choose whichever programming and design methodologies he cares to use.
TBLP must allow the representation of the abstractions related with any
methodology utilised in the holistic development process.

The TBLP tool must support any process the author wishes to develop
software and facilitate the author to reflect his thought process: one recom-

mendation for good literate programming practice, presented in Section[8.3.8]

259

is to ‘program with intent’. This recommendation is based upon the reason-
ing that program source code is an extension of thought. People do not
initially think about problem domains in terms of compiler oriented source
code. The thought process that helped derive the source code can usually be
more naturally expressed in a written language — English for our purposes2.
The decreasing layers of abstraction effectively iterate in expressiveness and

abstraction from thought to the final compiler oriented source code.

B.1 A Set of Example Themes

Let us consider a simple example that incrementally captures the concept
of mutliple themes. Our approach is an abbreviated and informal form of
software developmentd. Let us say that this is a stage of a refactoring exercise
in XP.

There exist (arguably) five different chunk types in these examples. Each
chunk is marked up in the traditional Noweb manner, however, unlike Noweb,
we have marked up all chunks, including documentation chunks. The dia-
grams reflect chunk association throughout the example. For clarity, we do
not use XML markup, and refrain from using a chunk’s ID as its reference.
Instead, we resort to the traditional means of utilising a chunk’s name as its
reference. A chunk’s type is displayed as part of its implementation.

Effectively, we use this example as a proof for our proposed generic chunk
model in Chapter [

Our first theme is similar to traditional literate programs. A documenta-
tion chunk (of type java code) is associated with a java code chunk, <<define
class Expression>> (forming an atomic chunk). This code chunk is com-
posed of three other code chunks; <<define Expression::display>>, <<define
Expression: :eval>>, and <<define Expression::check>>. Figure[II7on
page depicts this scenario. The code chunks lie on the first level, whilst

2 Even if it isn’t, it is usually the most widely and immediately humanly comprehensable
method (which avoids the noise of human interaction — stuttering, undue pauses, in-
ability to immediately express ideas. ..), due mostly to its abstract nature. This is not
to say that it is the more definitive, or precise, of the two however it provides a more
immediately understandable and communicative set of requirements

3 commonly referred to as a hack

260

the documentation chunk rests on a plane situated physically above them.
Note the interconnecting arrows amongst the chunks: the fine dotted arrow

shows implied association while the solid directed arrows illustrate nesting.

<<define class Expression type=’java source doc’>>=
The [[Expression]] class deals with evaluating, checking and

displaying a mathematical expression.

<<define class Expression type=’java code’>>=
<<define Expression::display>>
<<define Expression::eval>>

<<define Expression::check>>

<<define Expression::display type=’java code’>>=

public display() {

¥

<<define Expression::eval type=’java code’>>=
public eval() {

}

<<define Expression::check type=’java code’>>=
public check() {

Next, modules are developed to test the developed source code.

Module testing presents another dimension of code chunks, and thus aptly
receive their own chunk type; “test source”. The documentation and code
chunks of the module testing theme are presented, in Figure [I17 on the
following page on a different dimension to that of the the code chunks of the
deliverable source code. Note that the documentation chunk (chunk number

10) references the code chunk (chunk number 1) from the deliverable source

261

Figure B.5: Theme 1

105

w

Figure B.6: Theme 2

code, and is associated with the first code chunk of the testing module (chunk
number 6).

<<test display methods type=’test source doc’>>=
Test the [[Expression::display]] method.

<<test display methods type=’test source’>>=
<<test no input>>

<<test maximal characters>>

<<test nonsense characters>>

Once tested and passed, this software is deposited into the baseline source.
The baseline source is another theme.

The baseline (a repository of functional, tested, quality code), to which
each code unit must pass a series of tests to be accepted, is deposited to

the baseline. This forms another orthogonal view of the literate source. The

262

&’
"4

12

11

Figure B.7: Theme 3

“passed” chunks are integrated with the <<baseline update 2002 06 09
01:09:41>> (chunk number 12 in Figure [[17)) theme, which itself, exists as

part of the overall <<baseline>> theme.

<<baseline type=’baseline’>>=

<<baseline update 2002 06 09 01:09:41>>

<<baseline update 2002 06 09 01:09:41 type=’baseline’>>=

<<define class Expression>>

API documentation is also be developed for the tested module; documen-
tation equivalent with the expository power of Javadoc for example.

The API chunks (<<class Expression>>, <<Expression::display>>,
<<Expression::eval>> <<Expression::check>> and chunk numbers 13,
14, 15, 16 respectively) are situated on a different level, or dimension, to other
chunks. Each API chunk references a code chunk which contains a method
definiton, upon which it expounds as to its possible use. This is abstractly
illustrated in Figure [[17 on the following page by directed arrow from chunk

number 14 to chunk number 2, for example. This example illustrates the

263

12

11

Figure B.8: Theme 4

concept of the API theme as a meta-theme.
Note that the API code chunks share the same name as their source code

counterparts. They are differentiated by an implied chunklID, however.

<<class Expression type=’java API doc’>>=
API for Expression class
contains the methods: that return: that accept arguments:
<<Expression::display>>
<<Expression::eval>>

<<Expression::check>>

<<Expression: :display type=’java API doc’>>=

<<define Expression::display>>

<<Expression::eval API type=’java API doc’>>=

<<define Expression::eval>>

<<Expression::check API type=’java API doc’>>=

<<define Expression::check>>

264

12

11

Figure B.9: Theme 5

The API documentation may not satisfy all programmers inquisitions.
Some may need more didactic instructions; a set of examples which extend
from the API and illustrate how it is practically used would be useful.

This is presented as another meta-theme, as depicted in Figure I17. A
separate didactic chunk is developed to elaborate on how the class and meth-

ods may be utilised.

<<instantiate a new Expression object type=’java tut’>>=

To instantiate an Expression object...

<<class Expression API>>

<<output result to interface type=’java tut’>>=
To display results, use the

<<Expression::display API>>

It is wished to show from which part of the requirements specification
document the display method of the Expression class eminated.
Figure[[T7on the following page shows chunk number 22 as the chunk that

influenced the implementation of the display method. <<results must

265

12

11

Figure B.10: Theme 6

be displayed immediately>> has been extracted from the requirements

specification document (which would exist in an orthogonal theme).

<<results must be displayed immediately type=’req spec’>>=
It is a requirement that...

<<define Expression::display>>

It is necessary for the clients, to whom the software is to be delivered,
view how their requirements have been implemented. In an XP scenario, a
user story has been developed, and the user is shown excerpts of the working
and tested source code.

As part of the requirements specification document, chunk <<results
must be displayed immediately>>’s development has been influenced by
the <<immediate feedback given to user>> user story. This user story
forms the (dark grey) user story theme — one of many. Note how the user
story theme is composed of chunks from multiple themes The extraction of
chunk numbers 22 and 2 specifically illustrates the development of a cross-

sectional theme.

<<immediate feedback given to user type=’user story’>>=

user story: results must be displayed immediately

266

12

Figure B.11:

specific requirements

<<results must be displayed immediately>>
implemented by

<<define Expression::display>>
tested with

<<test display methods>>

User documentation for the program is to show how to display an expres-

sion in the graphical interface.
need user doc here that links to one of the layers

We have illustrated the use and development of multi-dimensional themes.
Even with such a relatively simple, contrived, and deliberately shortened
example, it is possible to see that multiple themes may eminate from this
type of holistic software development process. We have shown that there
may exist many different orders of orthogonality and that there is no one

dominant theme — this may not always be the case.

267

Each theme is aimed towards a specific reader audience. And each of

these themes are natural views which emanate from the software system.

268

Appendix C

Example Literate Programs

269

C.0.1 FEzxzample NowebProgram

C.1 An example of noweb

The following short program illustrates the use of noweb, a low-tech tool for
literate programming. The purpose of the program is to provide a basis for

comparing WEB and noweb.The notable differences are:

e When displaying source code, noweb uses different typography. In par-
ticular, WEB makes good use of multiple fonts and the ablity to typeset
mathematics, and it may use mathematical symbols in place of C sym-

bols (e.g. “A” for “&&”). noweb uses a single fixed-width font for code.
e noweb can work with BTEX, and I have used KTEX in this example.

e noweb has no numbered “sections.” When numbers are needed for
cross-referencing, noweb uses page numbers. If two or more chunks
appear on a page, for example, page 24, they are distinguished by

appending a letter to the page number, for example, 24a or 24b.

e noweb has no special support for macros. In the sample program, I
have used the chunk “(Definitions 272a)” to hold macro definitions.

e noweb does not recognize C identifier definitions automatically, so I had
to add a list of defined identifiers to each code chunk. Because noweb is
language-independent, it must use a heuristic to find uses of identifiers.
This heuristic can be fooled into finding false “uses” in comments or
string literals, such as the use of status in chunk 272al

e The CWEB version of this program has semicolons following most uses
of (---). WEB needs the semicolon or its equivalent to make its pret-
typrinting come out right. Because it does not attempt prettyprinting,

noweb needs no semicolons.

e Both WEB and noweb write chunk cross-reference information in footnote

font below each code chunk, for example, “” Unlike WEB, noweb also

270

27 1al

includes cross-reference information for identifiers, for example, “Defines
file_count, never used.” This information is generated using the @ %def

markings in the noweb source.

C.1.1 Counting Words

This example, based on a program bySilvio Levy and D. E. Knuth [48§],
presents the “word count” program from UNIX, rewritten in noweb to demon-
strate literate programming using noweb. The level of detail in this document
is intentionally high, for didactic purposes; many of the things spelled out
here don’t need to be explained in other programs.

The purpose of wc is to count lines, words, and/or characters in a list
of files. The number of lines in a file is the number of newline characters
it contains. The number of characters is the file length in bytes. A “word”
is a maximal sequence of consecutive characters other than newline, space,
or tab, containing at least one visible ASCII code. (We assume that the
standard ASCII code is in use.)

Most literate C programs share a common structure. It’s probably a good
idea to state the overall structure explicitly at the outset, even though the
various parts could all be introduced in chunks named (*) if we wanted to
add them piecemeal.

Here, then, is an overview of the file wc.c that is defined by the noweb
program wc.nw:

(*erm)=
(Header files to include 2TID)
(Definitions 212al)
(Global variables 2T2H)
(Functions 2T80)

(

The main program E72d)

We must include the standard 1/O definitions, since we want to send

formatted output to stdout and stderr.

(Header files to include RTID)= [@71a)
#include <stdio.h>

271

The status variable will tell the operating system if the run was successful
or not, and prog_name is used in case there’s an error message to be printed.
p72a (Definitions 2T2a) = ([@7Ta) 274d>
#define OK 0
/* status code for successful run */
#define usage_error 1
/* status code for improper syntax */
#define cannot_open_file 2

/* status code for file access error */

E2H (Global variables RT2B)= @7Ta) R76hl>

int status = 0K;
/* exit status of command, initially OK */
char *prog_name;

/* who we are */

Now we come to the general layout of the main function.
p72d (The main program BT2d)= (Pra)
main(‘argc, ‘argv)
int argc;
/* number of arguments on UNIX command line */
char **xargv;

/* the arguments, an array of strings */

(Variables local to main 273a)

prog_name = argv[0];

(Set up option selection 2T3h)

(Process all the files 2T4a))

(Print the grand totals if there were multiple files BT7d)

exit(status);

272

If the first argument begins with a ‘~’; the user is choosing the desired
counts and specifying the order in which they should be displayed. Each
selection is given by the initial character (lines, words, or characters). For
example, ‘=c1’ would cause just the number of characters and the number of
lines to be printed, in that order.

We do not process this string now; we simply remember where it is. It

will be used to control the formatting at output time.

D734 (Variables local to main B73a)= @72d) 274D
int file_count;
/* how many files there are */
char *which;

/* which counts to print */

R730 (Set up option selection RT3D)= @72
which = "lwc";
/* if no option is given, print 3 values */
if (argc > 1 && *argv([1l] == ’-’) {
which = argv[1] + 1;
argc——;
argv++;
}

file_count = argc - 1;

273

Now we scan the remaining arguments and try to open a file, if possible.
The file is processed and its statistics are given. We use a do ... while

loop because we should read from the standard input if no file name is given.

(Process all the files 2T4a)= 2729
argc—-;
do {

If a file is given, try to open * (++argv); continue if unsuccessful 2T5a)
Initialize pointers and counters 2T6a)

Scan file 2T6d)

Write statistics for file RTTH)

Close file E750)

Update grand totals BTId)

/* even if there is only one file */

{
{
{
{
{
{

} while (--argc > 0);

Here’s the code to open the file. A special trick allows us to handle input
from stdin when no name is given. Recall that the file descriptor to stdin
is 0; that’s what we use as the default initial value.

274N (Variables local to main RT3a)+= @72d) «<273a RT5d>
int ‘fd = 0;

/* file descriptor, initialized to stdin */

(Definitions 212al)+= @Ta) <272a 275d>
#define READ_ONLY O

/* read access code for system open */

274

275al

275¢]

(If a file is given, try to open *(++argv); continue if unsuccessful BT5a)=
if (file_count > O
&& (fd = open(*(++argv), READ_ONLY)) < 0) {
fprintf (stderr,
"%s: cannot open file %s\n",
prog_name, *argv);
status |= cannot_open_file;
file_count--;

continue;

(Close file RToH)= ([74a)
close(fd);

We will do some homemade buffering in order to speed things up: Char-
acters will be read into the buffer array before we process them. To do this

we set up appropriate pointers and counters.

(Definitions BT2a)+= [@271a) <274d 27Ral>
#define buf_size BUFSIZ
/* stdio.h BUFSIZ chosen for efficiency */

(Variables local to main BT3a)+= @720 <R74n

char buffer[buf_size];

/* we read the input into this array */
register char x*ptr;

/* first unprocessed character in buffer */
register char *buf_end;

/* the first unused position in buffer */
register int c;

/* current char, or # of chars just read */
int in_word;

/* are we within a word? */
long word_count, line_count, char_count;

/* # of words, lines, and chars so far */

275

(RT4a)

27(6al

2(6c

(Initialize pointers and counters 2T6a)= ([274al)
ptr = buf_end = buffer;
line_count = word_count = char_count = O;

in_word = 0;

The grand totals must be initialized to zero at the beginning of the pro-
gram. If we made these variables local to main, we would have to do this
initialization explicitly; however, C’s globals are automatically zeroed. (Or
rather, “statically zeroed.”) (Get it?)

(Global variables RT2B)+= [@1a) <2720
long tot_word_count, tot_line_count,
tot_char_count;

/* total number of words, lines, chars */

The present chunk, which does the counting that is wc’s raison d’étre,
was actually one of the simplest to write. We look at each character and

change state if it begins or ends a word.

(Scan file 2T6d)= ([274a)
while (1) {

(Fill buffer if it is empty; break at end of file 2TTal)
c = *ptr++;
if (¢ > 7 && ¢ < 0177) {
/* visible ASCII codes */
if ('in_word) {
word_count++;

in_word = 1;

}
continue;
}
if (¢ == ’\n’) line_count++;
else if (c != 7 > && c !'= ’\t’) continue;

in_word = O;

/* ¢ is newline, space, or tab */

276

Buffered I/O allows us to count the number of characters almost for free.

P77 (Full buffer if it is empty; break at end of file BTTa)= @769
if (ptr >= buf_end) {
ptr = buffer;
¢ = read(fd, ptr, buf_size);
if (c <= 0) break;
char_count += c;
buf_end = buffer + c;

b

It’s convenient to output the statistics by defining a new function wc_print;
then the same function can be used for the totals. Additionally we must de-

cide here if we know the name of the file we have processed or if it was just
stdin.

RTTH (Write statistics for file RTTH)= (i)
wc_print(which, char_count, word_count,
line_count);
if (file_count)
printf (" %s\n", *argv); /* not stdin */

else
printf ("\n"); /* stdin *x/
(Update grand totals BTTd)= [@74a)

tot_line_count += line_count;
tot_word_count += word_count;

tot_char_count += char_count;

We might as well improve a bit on UNIX’s wc by displaying the number
of files too.

RT7dl (Print the grand totals if there were multiple files BTTd)= 272d)
if (file_count > 1) {
wc_print (which, tot_char_count,
tot_word_count, tot_line_count);

printf (" total in %d files\n", file_count);

277

Here now is the function that prints the values according to the spec-
ified options. The calling routine is supposed to supply a newline. If an
invalid option character is found we inform the user about proper usage of

the command. Counts are printed in 8-digit fields so that they will line up

in columns.
(Definitions B2l += @TTa) <275d
#define print_count(n) printf("%81ld", n)
B78H (Functions RT8B)= (27Ta)

wc_print(which, char_count, word_count, line_count)
char *which; /* which counts to print */
long char_count, word_count, line_count;

/* given totals */

while (*which)
switch (*which++) {

case ’1’: print_count(line_count);

break;

case ’w’: print_count (word_count);
break;

case ’c’: print_count(char_count);
break;

default:
if ((status & usage_error) == 0) {

fprintf (stderr,

"\nUsage: %s [-lwc] [filename ...]J\n",
prog_name) ;

status |= usage_error,

278

Incidentally, a test of this program against the system wc command on
a SPARCstation showed that the “official” wc was slightly slower. Further-
more, although that wc gave an appropriate error message for the options
‘-abc’, it made no complaints about the options ‘-labc’! Dare we suggest
that the system routine might have been better if its programmer had used

a more literate approach?

279

List of code chunks

This list is generated automatically. The numeral is that of the first definition
of the chunk.

(*erm)

(Close file 2T5R)
(Definitions 212al)

(Fill buffer if it is empty; break at end of file ETTa)
(Functions 2730)

(Global variables 272h)
(Header files to include 2TID)
(If a file is given, try to open *(++argv); continue if unsuccessful 2T5a)
(Initialize pointers and counters 276a)
(Print the grand totals if there were multiple files BTZd)
(Process all the files 2T7a)
(Scan file 2T6d)

(Set up option selection 2730
(The main program ET2d)
(Update grand totals 2TTd)
(Variables local to main 273a)

(Write statistics for file 2TTH)

(* 235a)

(define class C’arm)

(define class Driver 236a)

(define method beginExcursion 2S6H)
(define method startEngine R85d)

(define method startEngme overload B85
(define variables for Car 285d)

(define variables for Driver [(never defined))
(*B1)

(define sub bubblesort BIH)

(define sub bubbletest BII)

(gather comparisons data B20D)

280

gather swap data B20al)
initialise variables BIS)

{

{

(iterate backwards over array BITH)
(iterate forwards over array up to current backwards position BITd)
(output results BIGH)

(populate partially sorted array B20f)
{populate randomly sorted array B20d)
(populate reverse sorted array B20d)
(populate sorted array B20d)
(swap adjacent members in array if necessary BITa)
(test bubblesort BI6a)

(use packages [320g)

(*B28)

(define subroutines B330d)

(define variables B33h)

(discard cross references B29a)
(find code section beginning B29d)
(find doc section beginning B290)
(include code section B32H])
(include doc section [B32d)

(keep track of previous line B300)
(output first line of input B34
(process initial input 3326)

(read themes from file 333d)

(scan line for theme attributes B30a)
(set up operating environment B32d)
{
{
{
{
{
{
{

sub println B31H)

sub process_code B3Ta))

sub process_doc [330d)
sub readln B31d)

sub read_themes_file B32al)
transfer STDIN to STDIN B33a)
use packages B37al)

281

Index

Here is a list of the identifiers used, and where they appear. Underlined
entries indicate the place of definition. This index is generated
automatically.

startEngine: [285d] 285d

bubblesort: [315] 316D

$i: BITDl BITd,

$j: BlTal BI7d

$ncomp: BI6DH, BIR

$nswap: BI6D, BIY

282

C.2 Personal Greeter

This program prompts for the user’s name, then prints a personalised
greeting. The process of greeting a user by name has several steps.
The variable buffer, defined in [[<<greet declarations>>]], is used by
the process.

<<greet process>>=

<<ask what the user’s name is>>

<<read name from input>>

<<Lprint greeting>>

@

The \texttt{buffer} variable is declared as a character array. The
size of the buffer is taken from the \texttt{BUFFER_SIZE} macro so
that it can be changed easily.

<<Lgreet declarations>>=

#define BUFFER_SIZE 128

char buffer [BUFFER_SIZE];

@ %def buffer BUFFER_SIZE

@ The printf function is used to print a prompt for the user’s name.
In order for this prompt to appear, the \texttt{stdout} stream must be
flushed after printing. This could also have been achieved by
printing a newline character (in which case the output will flush
automatically). I believe it is better that the user’s input appear

on the same line as the prompt.

<<ask what the user’s name is>>=

printf ("Please enter your name: "); fflush(stdout);

@ The \texttt{fgets} function is used to read the user’s name.
\texttt{fgets} was chosen because \texttt{gets} does not check for
buffer overflows.

<<read name from input>>=

283

fgets(buffer, BUFFER_SIZE, stdin);

@ The greeting is printed using the printf function again, this time
with a \texttt{\%s} format to insert the name.

<<print greeting>>=

printf("Hello %s", buffer);

@

The root chunk wraps the greeting routine in the C \texttt{main}

function so that it will run when the program is executed.

<<LK%>>=

#include <stdio.h>

int main(void) {
<<greet declarations>>
<<greet process>>

return O;

284

C.3 Scoping (In)capabilities

(* PR5a) =

B850 (define class Car285h)=
public class Car {
(define variables for Car285d)
(define method startEngine B85d)
(define method startEngine overload 285)

P85d (define variables for Car 285d)=

int i = O;

(define method startEngine R85d)=
int public (Jump jump) {

}

Defines:
startEngine, used in chunk 286H

(define method startEngine overload E85d)=
int public (Ignite ignite) {

}

Defines:
startEngine, used in chunk 28GH

285

O86al (define class Driver BSGa)=

public class Driver {

{(define variables for Driver [(never defined))
(define method beginExcursion 2S6H)

PSGH (define method beginExcursion R36H) =
int public beginExcursion () {

car = new Car;

if (car.isBatteryFlat) {

car [FEartEnging(jump);
} else {

car [FEATEERETIE(ignite);

if (| car [startEngine(ignite)) {
car [FEartEnginel(jump);

}
Uses startEngine RREdI285¢

286

C.4 Identifier Cross-Referencing (nuweb)

"test.pl" la =

Macro referenced in 1la.

(scnd 1c) =

print $var++;

<

Macro referenced in 1la.

Notice that in this chunk, var is not found by the identifier cross-referencing

heuristic. The index at the bottom of this page does not contain chunk 1d.

(third 1d) =

++$var;

<&

Macro referenced in 1la.

"test.pl" Defined by la.

(first 1b) Referenced in 1la.
(scnd 1c) Referenced in la.
(third 1d) Referenced in la.

$var: 1b, lc.

287

Appendix D

Theme Enabling Literate Tools

In this appendix, we illustrate that it is impossible to make existing liter-
ate tools literate-aware. This appendix represents some of our initial research
that lead to the development of the generic chunk model (as described in
Chapter [).

Although the Leo literate programming tool supports much of this func-
tionality, it was our intent to discover LP’s model shortcomings through ex-
perimentation. Doing so has enabled us to highlight some of the important
limitations, and improvements thereof, of the traditional literate model.

The following sections illustrate the new literate model’s development
process. Throughout the new LP model’s process of discovery, the solution
was vividly represented as a theme-enabling technology. And although we
knew what we wanted to do, we weren’t certain of how elegantly achieve it.
It should be noted that others have tried (see Section [(.1.1]), and although
the results are good, these attempts are still apply a limiting model to their
solution.

In Sections [D.2.1] and [D.3] ,we describe the physical implementation of

the ‘switching” and ‘displacement’ models, respectively.

D.1 Supporting Multi-Themed Requirements with a Traditional
Literate Tool

D.1.1 The Journey to Enlightenment

The goals behind the development of an adequate theme-based model were

as follows:

Language neutral: the literate tool should be language-unspecific, for both

288

the documentation and code chunks. Any markup language may be
used to markup documentation type chunks (XML is recommended).

Any programming language may be used in code type chunks.

Other solutions to enhancing literate programming, or presenting mul-
tiple concerns of programs largely finalise their solution with a language
specific tool; the Hyper/J and AspectJ tools are an example. Although
language neutral, a physical form of our model would provide a frame-

work to allow development using any (or, indeed, many) of these tools.

Methodology neutral: we maintain the benefit of literate programming
and do not impose a particular methodology of development upon the
author. In fact, any number of methodologies can be used throughout

the process of development.

Lossless improvement: we wish to, at the very least, provide a solution

that is no worsél (but hopefully better) than the current one.

Unobtrusive and unimposing: the model and its implementation does
not alter any of the tangled, or woven, documents’ chunk content.
Knuth’s WEBalters the tangled source. The AOP tool Aspect] is an-
other example where the source code is often altered through the pro-
cess of converting aspect files to source. Our solution should not alter

the chunk content in any way, unless directed by the author.

D.1.2 Noweb as a Development Platform

Noweb provides a good platform for model enhancement:

e Noweb has a simple syntax and grammar.
e importantly, it is able to be altered via its pipe-lined, filtering architec-
ture.

By developing filters, we are able to implement, and alter, Noweb’s

weaving and tangling of literate programs.

I not that traditional LP is bad, of course

289

There is a reasonable limit to the amount of model enhancement that can
be performed through Noweb’s filtering mechanism. We endeavour to find
this limit and then explore the usefulness and the implications of implement-

ing a more enhanced model.

D.1.3 The Bubblesort Theme-Set

Our goal is to implement a system based on thematic views. We begin with a
simple enhancement to the Noweb tool which is derived from the requirements
of exposition of the three bubblesort examples contained in Appendices
to [D.7 These examples implement and also test the efficiency of the bub-
blesort algorithm. Bubblesort is the algorithm of choice due to its simplistic,
and rather short, implementation.

Specifically, the bubblesort themes are:
1. The bubblesort algorithm.

2. An evaluation of the bubblesort algorithm: this includes the implemen-
tation of the algorithm and the testing of the algorithm; the code to

implement the test, and the results.
3. Only an evaluation of bubblesort.

The first theme is a complete implementation of the bubblesort literate
program. The next two themes represent excerpts of this program. Themes
two and three are effectively subsets of theme [Il

Appendix[D.5 contains the complete bubblesort literate program (theme[2]).
Appendices [D.6 and represent the algorithm (theme [I]) and evaluation
(theme [3]) bubblesort themes, respectively.

It is important to note is that the woven document is the only medium
that has changed. All documents eminate from the same web. The tangled
document (source code) is not altered. The weaving of themes 2] and B is
performed on the same web as theme [II

Figure [D.1l on page illustrates an abstract view of the three themes.

It shows documentation and code sections of three themes, 1, 2 and 3. All

290

code section names have been omitted and replaced by consecutively num-
bered “code” strings e.g., codel, code2, and so on. They are physically
represented as ellipses. Document sections are also consecutively numbered
and represented as rectangles.

All three diagrams show all chunks contained in the literate program.
A shaded node denotes that the code or document section is presented for
weaving in the woven document. A non-shaded node denotes that it is not
present in the woven document.

Theme Pl is representative of a traditional literate program. It shows that
all document and code sections are required to be output. Theme [I] repre-
sents the algorithm theme — theme [Il It shows that only a select number of
chunks are desired to be output in the weaved document, namely document
sections 2, 3, 6, 7, and 8, and code sections and 2, 5, 6, and 7. Theme [3] rep-
resents the evaluation theme and requires code sections and their associated
documentation to be output, namely document sections 1, 2, 4, 10, 13, 14,
15, and 16, and code sections 1, 2, 3, 9, 12, 13, 14, and 15.

The reader should note that all three themes contain the same base set of
chunks in the same linear order. Our concern in this experiment is to enable
the literate tool to elide a chunk, or conversely include a chunk in the woven
document.

Note that there are two document sections (doc2 and doc3) associated
with code section code2. code2 represents in our literate program example,
chunk <<define sub bubblesort>>. Theme [I]includes both document sec-
tions in its woven output, whereas theme [3] includes document section doc2
only. Enabling this functionality in a literate programming environment is
a basic requirement of theme based weaving; multiple documentation chunks

may be associated with a code chunk.

D.2 Requirements for an Alteration to Noweb

In order to generate a number of differently themed documents, each de-

rived from a single web, or master document?, we must enforce the following

2The master document is the literate program which serves to contain all code and
documentation sections; in essence a repository of chunks. From this master document

291

rules via a Noweb filter. Specifically, derived from the themed examples, as

depicted in Figure [D.l for each theme:

e associate a given documentation chunk with the immediately following

code chunk,

e do not associate a given documentation chunk with the following code

chunk, and

e do not output a code chunk unless its related documentation chunk is

output.

These rules assume that:

Documentation and code chunks are one atomic unit: a chunk is made

up of a document section and a code section.

Multiple documentation/code chunk association: More than one doc-
umentation chunk may be associated with one code chunk allows a code
chunk to be represented by any number of documentation chunks. Each
of these documentation chunks may be employed by different themes.
For example, consider the excerpt from the Noweb source of the bub-
blesort (Appdendix [D.0)) literate program which appears in Program
Listing [Ml on the facing page.

This excerpt shows two document sections associated with the code
chunk <<define sub bubblesort>>. The first line of each document
section contains the names of the themes that the section should be
included in. The first chunk is to be included in the algorithm and
evaluation themes, while the second document section is only to be

included in the algorithm theme.

The choice of syntax used to markup themes is explained in Sec-
tion [D.2.7 on page 294

are the relevant documentation and code sections extracted to form the literate themed
document

292

@ evaluation algorithm

Bubblesort makes multiple scans through the array to be sorted,
swapping adjacent pairs of elements if they re in the wrong order,
until no more swaps are necessary. The bubble is the element
propagating through the array.

@ algorithm

This bubblesort routine requires, as an argument, a reference to an
array of unsorted numbers. The array after being sorted, is then
available outside the function.

e.g.,

\begin{verbatim}
@array = (1, 5, 9, 7);
bubblesort (\@array) ;
print "Q@array";

\end{verbatim}

<<define sub bubblesort>>=

@ %def bubblesort

Program Listing 1:

293

Documentation is a pre-emptive process: documentation precedes the
code chunk that it is related to. This is a rule that is commonly as-
sumed, but not enforced, nor necessarily always adhered to. The in-
ability, therefore, to link documentation chunks with preceding code

chunks, is an implication of this rule.

Essentially, we wish to implement a mechanism with which to switch
chunks’ inclusion into the woven document either ‘on’ or ‘off’. It is a matter
of choosing which chunks in particular are to be presented in a literate themed
document. In order to create a logically flowing literate document, clearly,
not all chunks should be woven. This is because not all chunks are logically

linked to the theme being developed.

D.2.1 Model Enhancement of Noweb — The Initial Attempt

From these specifications, we are able to form a representational model.

Noweb’s filtering mechanism provides the ability to implement these re-
quirement specifications. A Noweb filter is often written as a script that re-
ceives as piped input, the Noweb source emitted by the noweave tool before
this code is finally transformed into the representative mark up language.

The filter that implements this enhanced model must determine which
documentation and code chunks should be woven given a specified theme.
Essentially, a filter must be developed that implements a switching mecha-
nism; a documentation chunk may be included or not; if it is, the associated
code chunk is also included.

Noweb, like most other literate tools, doesn’t provide a method with which
to differentiate among documentation chunks. This is because the documen-
tation chunk, traditionally, is associated to one global output theme i.e.,
the single-themed weave. We must therefore develop a mechanism to allow
a documentation chunk, and its associated code chunk, to be woven in a
given theme, yet prevent documentation chunks not intended for the current
theme from being woven. We adopt the approach in Program Listing [Il on

the preceding page.

e documentation sections in Noweb start with the two characters, ‘@’ .

294

The documentation section is delimited by the beginning of a new code

chunk e.g, <<x>>=.

e the themes that a documentation chunk is to be included in are placed

on the same line as the ‘@, code chunk terminator.

A more robust attempt at developing such a theme based tool would
require some markup to assign a documentation chunk with a code chunk.
For example ‘@_%themes’, followed by a list of pertinent themes, could be
used in a similar manner as ‘@ %def’ is used to list identifiers. For clarity
of presentation and simplicity of implementation, we have opted to exclude
such a feature. This would avoid the theme markup appearing on the first
line of each documentation chunk.

We look to XML as a markup language for such purposes in the develop-
ment of our theme-based literate tool in Chapter [0l We also make mention
here that a GUI based approach to assigning chunks to themes would greatly
alleviate the laborious efforts associated with manual markup.

Following is a theme-based excerpt from the Noweb source developed to
implement the requirements? from Section [D.2 on page 29Il It is derived
from the requirement list presented in Figure [D.2 on page B50:

3 a full version of the themenoweb filter can be found in Appendix [D.§

295

To develop a filter for noweb that implements this ruleset is not a particularly
formidable task. In fact, given the right language for the task, it is a rather
simple process.

Using Perl as the programming language, and possessing knowledge of the
noweb filtering source code file, we can implement an algorithm to process
the noweb input:

We loop and process input from STDIN; line by line. We then scan each
line to find documentation sections with the relevant theme attributes. If
these theme attributes are present we carry on and include the documentation
section, and its associated code section in the output. Otherwise, if the

attributes are not present, we simply exclude the source from output to
STDOUT.

()=
(set up operating environment)

(process initial input)

while ($line = &readln) A
if ((find doc section beginning)) {
(keep track of previous line)
for my $theme (@themes) {
if ((scan line for theme attributes)) {

&println($prev_line);

(include doc section)

$INCLUDE = 1;

last; # include doc chunk once only

if ((find code section beginning) && $INCLUDE == 1) {
&println($line);

(include code section)

296

$INCLUDE = 0;

(define subroutines)

One disadvantageous repercussion from performing noweb theme based
literate programming. All indexing and cross-referencing capabilities are lost.

We purposely exclude all cross references to chunks and definitions be-
cause, unfortunately, it is cumbersome to determine which chunks will be in-
cluded in the BTEX output. Cross-references are excluded via the process_doc
and process_code functions.

To do this would require processing the entire input and keeping state
which chunks have been included. We would then be required to reprocess
the input and include cross-references to the chunks to that are included in
the output document. This process can most definetly be done, however, it

is rather ugly.

(discard cross references)=
next if $line =" /$xref/;

297

D.2.2 A Summary of the Initial Implementation

We have successfully implemented a theme-based “switching” LP model.
This model allows chunks to either be included or excluded from woven docu-
ment. It has been implemented using Noweb’s pipe-lined filtering mechanism.

Utilising this filter, a programmer may perform the following operations:
e include a documentation chunk in the woven output.

e include a code chunk associated with the documentation chunk in the

woven output.
e associate multiple documentation chunks with a code chunk.
e exclude a documentation chunk from the weaved output.

e exclude a code chunk from the weaved output (if all associated docu-

ment sections are excluded).

We recognise the cross-referencing of chunks as an important feature of
literate programming. Given the prototypical nature of the implementation
of this initial model, we have not included the ability to create indices and
cross-references. Submitting this filter to the public domain would necessitate
such functionality.

A side-effect of requiring documentation chunks to have pre-declared
themes they are to be presented in, is that a documentation chunk which
does not appear in any themes may therefore be used as a comment chunk
— something not elegantly possible with all literate tools. Perhaps using
“comment” as a theme type may clarify the documentation chunk’s use and
avoid confusion.

Effectively, we have implemented a mechanism with which to switch
chunks’ inclusion in the woven document either ‘on’ or ‘off’. The controlling
node in this case is the documentation section. By including this section in
a theme, we tell the Noweb filter to include its accompanying code section as
well.

Criticisms of the switching model’s implementation are:

298

e The theme markup is coupled with the chunk.

e A code chunk’s inclusion in the document is dependant on a documen-

tation chunk.

D.3 Initial Model++: The Displacement Model

The Noweb filter that implements the initial model does not facilitate chunk
displacement — chunks may not be reordered depending on theme require-
ments. It is confined to extract chunks only in their lexical ordering in the
master document.

Both sub-figures (a and b) in Figure [D.3] represent the same, singular,
theme. Sub-Figure b represents the final woven and reordered theme which
is contained in Sub-Figure a. It illustrates the sequence in which the chunks
will be woven. Theme a illustrates the master document view of the theme
document. The black edges between code chunks show their natural order
as expressed in the master document. The dim-grey edges between code
chunks show the order that the chunks take in the new evaluation theme.
Code chunk codel is the beginning chunk in both cases. Specifically, code
chunks 10 and 11 have been displaced to be presented after code chunk 15.

D.3.1 Implementation of an Enhanced Model

Following is a theme-extracted version of the theme based implementation
of the model described:

299

Approximately, the noweb filter input assumes the following format:

@begin docs 3

O@text Documentation chunks start with ‘@begin docs’’. We use regular
Onl

Otext expression parsing to check for the occurance of this string.
Onl

@end docs 3

Obegin code 4

Oxref label NWKuRup-4U7dz4-1

Oxref ref NWKuRup-4U7dz4-1

@defn scan line for doc section beginning

Oxref beginuses

Oxref useitem NWKuRup-1pOYO9w-1

Oxref enduses

Onl

Q@text $line =" /$begin_docs/
Onl

Q@end code 4

Notice that the “docs” and “code” sections are incrementally numbered.
We can make good use of this in order to help us store the documentation
and code sections we see. We also make use of this in the output, and
rearrangement, of the chunks.

Initially, we parse and store all the noweb filter input, and then rear-
range this input according to a set of rules (attained from the programmer s

reordering requirements).

(sub Displacement::displace)=

The sections stored in the $Data object are rearranged according to the
order denoted in the lists read in from (retrieve displacement lists); that is,

the user-defined order.

(rearrange chunks)=

300

One list is a line of comma delimited integers, or chunk names. Each list

is seperated by a new line. Leading each list is the theme name.

(retrieve displacement lists)=

Note that the perspective we take is one that suggests a documentation
section references (or is associated with) a code section. The reverse is not
true however. This is the reason why we give as theme lists in (retrieve
displacement lists) only the code sections. We then rely on the doc section

containing an argument relating to the theme it should be included in.

(search backwards and find decrementing chunks)=

The line given as an argument to this method contains information about
the number of the section. We extract this firstly, and then access the next

line which will contain any possible themes a doc section is associated with.

(prepare theme info from input)=

We also collate information about the theme that a particular documen-
tation section is associated with. This information is contained in the first
line of a documentation section. This is the second line of the doc section in
the form of: @text <data>....

This means we must strip out this information from the first line of the of
the documentation section. We extract the space delimited themes and store
the theme name along with the doc section number in a “THEME” hash of
the Nowebchunk class.

After reading this line from the input, we can effectively discard it as we

dont want to process it further and include it in the weaved document.

(sub Displacement::process_doc)=

301

One of the consequences of using filters to instill a theme based approach
to noweb is that we require some external processing to take place in order
to write the respective documents for each theme.
This cannot be done running noweave once. Although all the necessary
filtering is performed during the first execution of noweave, in order to out-
put an individual document for each theme, we need to cheat noweave into
thinking it is weaving a literate program. In reality, we simply output fil-
tered content that was stored in several theme related files during the first
execution. This output is then converted into a documentation format; TEX
in this case.
(manage Makefile)=
all: displacement.nw
notangle -R"initiate application" displacement.nw > displace.pl
notangle -R'"package IOops" displacement.nw > IOops.pm
notangle -R'"package Nowebchunk" displacement.nw > Nowebchunk.pm
notangle -R"package Displacement" displacement.nw > Displacement.pm

notangle -R"manage Makefile" displacement.nw > Makefile

weave:
noweave -filter ../print.pl -filter ./displace.pl displacement.nw
noweave -filter "cat themeOne" b> themelne.tex
noweave -filter "cat themeTwo" b> themeTwo.tex
noweave —-filter "cat themeThree" b> themeThree.tex

traditional:

noweave -index displacement.nw > displacement.tex

302

D.3.2 A Summary of the Second Implementation

We have developed a filter that enables Noweb to conform to the displacement
model shown in Section [D.3l This model provides for a powerfully enabling
tool. It substantially deviates from the traditional model offered by common

literate programming tools. Essentially, it offers the ability to:
e store many documentation chunks for one code chunk in a central web,

e given a particular theme, output the relevant chunk with a code chunk.
This is the same functionality offered by our initial implementation of
the ‘switch’ based model.

e present code chunks along with theme related documentation chunks in
any order. We have allowed the generation of multiple theme weavings;

reader specific psychological ordering.

This model is similar to that offered by tools such as Leo. Leo facilitates
multiple outlines, and hence, multiple psychological orders to be developed

from the one web.

Separation of Content and Ordering

The expected input to the Noweb displacement filter is a file containing a
number of lists, each of which represents a theme and the order of woven
chunks. The format of the (CSV) input is:

theme name, code chunk names

An example of this input is:

thesisdoc,sub Displacement::displace,rearrange chunks,retrieve
displacement lists,search backwards and find decrementing
chunks,prepare theme info from input,sub

Displacement: :process_doc,manage Makefile,

303

This example (used to generate a theme document used in Section [D.3) is
one line of input. It illustrates that the code chunks <<sub Displacement::displace>>,
<<rearrange chunks>> <<retrieve displacement lists>>, <<search backwards
and find decrementing chunks>> <<prepare theme info from input>>,
<<sub Displacement: :process_doc>>, and <<manage Makefile>> are all
to be presented, in the order implied by the list, in the thesisdoc theme weave.
Alternatively, as in the example in Section[D.4.1lon page [306], chunk numbers
may be used as the comma separated values (CSV) list.

Effectively, a separation exists between the content (the web document)
and the ordering of the display of chunks in the themed literate document.

A GUI-based approach will greatly enhance the benefits of the displace-

ment filter.

Cross-Referencing and Indexing

Again, as with the initial model, the implementation of the second model
does not offer the cross-referencing and indexing capability offered by Noweb.
This functionality can be maintained by keeping track of @xref declarations
in the Noweb source and only outputting the line of source if the referenced
section is to be output in the theme document. For the sake of simplicity,

the functionality has not been implemented.

Limitations of the Displacement Model Implementation

Inelegant theme markup: The markup that indicates inclusion of a doc-
umentation or code chunk is not elegant. We have reserved the first line
of a documentation chunk as a declaration space for themes that the
documentation and associated code chunk is to be included in. Thus,
it is impossible utilise the noweave tool in its traditional non-themed
manner. Amongst the documentation of the woven document will also

exist the words used to describe a chunk’s theme orientation.

Ugly weave commands: The bounds of Noweb’s capabilities are being

pushed. So much so that we finally resort to use of a Makefile to

304

produce multiple documents?. This is because Noweb does not support
the output of multiple documents. Indeed, the model and capabilities
of Noweb do not support multiple input documents, and relies upon
the functionality of the document formatter to offer this capability.
We resort to cheating the Noweb parser into believing it has gener-
ated some Noweb low-level source code by echoing previously created
source code files into the filter. Noweb was never intended for this type

of manipulation; hence its ugliness.

Backwards compatibility: Such literate documents become largely incom-
patable with the traditional Noweb model. Not only will the traditional
Noweb model not understand the newly developed markup, but, it will
also be unable to weave the document and code chunks in a logical
psychological order apart from the linear order in which they appear in
the master document. To use the displacement model and filter means
that reuse of literate code amongst those who do not possess the same

filter is unfeasible.

D.4 Does Chunk Displacement Suffice?

The displacement model, presented in Section [D.3 allows the multiple or-
dering of code chunks along with theme specific documentation chunks. It
also enables the exclusion and inclusion of code chunks to a woven docu-
ment. Does this functionality satisfy the needs of a theme-based approach
to literate programming.

We present an example, through which we are able to lay strong founda-
tions for enhanced model. Let’s imagine that we wish to combine two themes
together. Both of these themes will be extracted from the literate program
which implements the displacement model filter. The theme is presented in
Figure [D.4] on page B52l The two sub-themes exist as separate theme doc-
uments in Appendices [D.10] (theme-weaving: how eliding is performed), and

Appendix [D.11] (theme-weaving: how displacement is performed).

4 equally, a shell script of some description would suffice

305

Note that some of the chunks in the two sub-themes appear twice. The
eliding theme contains code chunks 4, 26, 79, 8, and 28. The displacement
theme contains code chunks 4, 23, and 8. Both requirements make use of
code chunks 4 and 8. However, both of these code chunks have a different
set of associated document chunks.

This literate program contains three chunk types: (1) requirements, (2) code
construction, and (3) code chunk types. Note that the two requirements
chunks are orthogonal to the construction documentation and code chunks
belonging to either theme.

The presentation implications of requring such capabilities are that the

literate tool support:

display of duplicate chunks: a chunk must be able to be output more
than once in the woven document. This is to allow the display of code

chunks 4 and 8, and construction documentation chunks 2 and 5.

differentiated document chunks: it must be possible to indicate which
documentation chunk is presented with its neighboring code chunk in
the woven document. This functionality is available in the initial switch
filter.

multiple chunk types: it must be possible to differentiate amongst the
code construction, requirement, and code chunks both in the web source
and the woven document. The traditional, switch, and displacement

model are all unable to do this.

D.4.1 Duplicate Chunks

The traditional model is not able to reuse a chunk such that it is presented
more than once in the woven document®?.

Contrastingly, the tangle process allows code chunk reuse by allowing a
chunk to be referenced more than one time. In this case, it is possible to

develop a literate program like the following:

5 some tools provide parameterised macros which do enable this, however, turning each

and every chunk into a parameterised macro is an ugly solution

306

<Lz>>=
1
<KLKa>>=
<Kz>>, 2, 3
<>=
3, 2, <Kz>>
<<LH>>=
<<a>><>

likely to produce the tangled source:
1, 2, 3, 3, 2, 1

Notice that the body of chunks <<a>> and <> are composed of chunk <<z>>.
Thus, chunk <<z>> has been reused.

The displacement model also able to include a code chunk more than once
in the woven document. This is facilitated by the data file containing the
code chunk in the relevant place in the comma separated list. The example

in Figure [D.4 would require the following to be written to the data file.
elide_and_displace,4,26,79,8,28,4,23,8

The file is then parsed by the Noweb filter which implements the dis-
placement model. However, even the displacement model’s implementation
of code chunk replication is not very elegant. This is because the replicated
chunk appears as an additive chunk in the literate document.

The current literate model uses the chunk name as a unique identifier for
each code chunk. Including a chunk with the same name twice in the woven
document will therefore indicate the existence of an additive code chunk.

The displacement filter is unable to present two identical code chunks
with differing document sections. Although it is able to weave a code chunk
multiple times, allbeit as an additive code chunk, differentiation amongst
the duplicated code chunks is not possible. It is impossible, therefore, to
determine which code chunks the document section is associated with: it
is not possible to associate different documentation chunks with duplicated

code chunks.

307

Although it is possible to implement a filter which assumes the function-
ality required to conform to the duplicate chunk requirement, it stretches
the boundaries of Noweb’s capabilities. Noweb becomes becoming unrecog-
nisable, and the predominant processing begins to take place using filters.
The implied reasoning behind the use of a filter is to enhance Noweb’s func-
tionality — not to disproportionately affect Noweb’s ‘normal’ functionality.
Surely not an intention of Norman Ramsey’s, however, a testament to the

extensibility of his tool.

Implications of Chunk Reuse In order to allow the display of a chunk’s
content to occur in more than one area, the chunk’s implementation and its
ordered display in a theme literate document must be stored separately.
Separating a chunk’s storage from its placement in a theme allows us to
associate particular attributes as to a chunk’s treatment in that theme. These

attributes are discussed further in Chapter [Gl

D.4.2 Non-fized Chunk Types — Higher Order Documentation

The tradtional, switching, and displacement models maintain a fixed set
of chunk types; namely the code chunk and the associated documentation
chunk. These models suffer from the phenomenon of convergence of layers.

Figure [D.4] on page B52] however, presents the need for three chunk types:

1. code chunk
2. construction documentation chunk

3. requirements documentation chunk

It must be possible to differentiate amongst these chunk types. Currently,
however, both the construction and requirement documentation chunks are
treated as a singular chunk type by the displacement model — both chunk
types fall under the general umbrella term of documentation chunk. The

weaving process is not able to differentiate between the two.

6there are other approaches to this problem, however this is the most elegant and
unrestrictive

308

The inability for the author to specify chunk types, and therefore alter
his perspective as necessary, has negative reppercussions on literate program
development. A fixed weaving, or formatting of each chunk type means that
dynamic differentiation of chunks is not possible.

Differentiation of chunk types is necessary because:

1. either chunk type — code, construction, or requirement — may possess
special formatting requirements (as do document and code chunks) de-
pending on the nature of the literate document being woven: a chunk’s

formatting is theme-dependant.

2. literate program development of multi-layered documents is not obvi-
ous, and furthermore, not encouraged. This non-orthogonal approach
means that the current models restrict LP to the software construction
phase of software engineering. What would naturally occur as layered
abstractions are forced to be represented by one chunk type. Explicit
differentiation and consideration of chunk types helps develop more log-
ically sound literate documents? because the author is able to separate

between orthogonal concerns.

In order to treat each chunk type distinctly, a solution could be to mark
each chunk’s content up with a particular set of formatting instructions. For
example, a specific set of custom built IXTEX environments and macros could
be developed for each chunk type. These environments and macros could be
altered depending on the formatting necessities of each woven document.

Such a solution has a number of drawbacks however:

e it is limited to the formatting capabilities of the formatting language
chosen, however. Also, it limits LP authors to use EIEX only as their
formatting language. This provides a sound basis to consider XML as

a solution as a semantic markup tool.

e the capabilities that are endowed upon the formatting language to dif-

ferentiate between each chunk type aid to exacerbate the three-syntax

7 we believe

309

problem. This is because the formatting language is used as well as the

literate tool to differentiate between chunk types.

e the literate tool is unaware of the various chunk types that may be
developed through the IXTEX macros. While the author may be able to
differentiate in the woven document between chunk types, these chunk

types may not be displaced and presented anywhere in the document.

The inability to differentiate amongst different chunk types, we term as
obscurity of an obscurity of hierarchical association. This exists because the existing
hierarchical models are not able to differentiate between different documentation types;
assoctation they have a fized hierarchical representation. That is, a section can either be

a document section or a code section — nothing else.

To add further concern to the capabilities of the current models, it is not
necessarily the case where the developer would always treat source code as
the first (and lowest) layer. What if source code documentation is desired to
be treated as the primary layer? The source code layer would then become a
higher level medium. This is not possible to represent using existing models.

The obscurity of hierarchical association is caused by what we term as
the convergence of layers. Treating the third-layer document chunk as a sec-
ond layer document chunk melds all layers above layer one into a singular,
all-containing, layer. The transformation of converging what is a logically
a three-layer literate program into a two layer literate document representa-
tion essentially causes is a loss of information due to this singular, flattened
second layer.

Some issues arise from this convergence of layers:

Logical association of sections is depreciated: Representing the third
layer chunk in a second layer chunk, it is forced to be associated with a
first-layer section. It is this first-layer section that the third-layer sec-
tion now describes; not what was initially intended. The intention was

to associate third-layer sections with second-layer (document) sections.

A third-layer requirements section, for example, is unable to be cor-

rectly associated with the necessary second layer document sections.

310

Loss

The association is therefore expressed in the traditional model’s capa-
bilities by associating it with a code chunk (first-layer section). The
code chunk in this case would possess a null body, and is simply used to
denote the requirement section’s hierarchical status. This process de-
values the document and code section’s ability to represent each other

in a consistent fashion.

of section semantic information: The third layer requirement sec-
tion now becomes a hierarchically supererior second layer document
section. There is no clear indication that the third layer chunk is indeed
a requirement, or just another second layer document section. There
now exists a reliance on the chunk developer to explicitly mention that

the content of the section is a requirement.

This means that the extraction of a requirement section, and the docu-
ment sections it is associated with is impossible — unless the displace-
ment model is distorted somewhat: the requirement section labelled
with a theme name, and the associated document sections labelled
with a sub-theme. The theme and sub-theme are then displaced and
a literate document woven. This is not a full-proof solution however,
especially if multilple third-layer sections are associated with the same

document sections.

Overhead on document development: Traditional literate programming

places undue overhead on document development. The literate docu-
ment in the traditional sense is all-encompassing. It presents all the
information available in the literate program to the reader. It is im-
possible to exclude, or re-order particular document sections. This
means that the literate document must embody all information about
the program. In our example, this means that the literate document
must contain all the specifications, and blend these in a logically flow-
ing manner, whereby part of the specification documentation, and the
implementation of this specification is spread across the document sec-

tions that are associated with their code sections.

311

obsured points of

interest
convergence of

documentation

The problem with this approach is that it is difficult to follow a par-
ticular path throughout the literate document’s development, and pre-

sentation of information, using the conventional model.

disproportionate literate programming: The emphasis begins to
bear ever more towards the development of a comprehensible doc-

ument, rather than application development.

Given multiple requirements, more effort will go into document
presentation, and logical layout, editing, etc, rather than program

development.

Including the (third layer) requirements in the literate program in
this flat structure using the traditional model means that a much
greater emphasis (arguably over-bearing and unnecessary) will be

placed upon the logical flow of the document.

Using the enhanced model to omit unrelated (to the requirement)
documentation sections from the literate document solves this

problem, we are still faced with the other problems...

directly relevant information is obscured: Important items may
become obscured by the surrounding context. This is due to the
convergence of documentation. Convergence of documentation is
directly related to lateral (on the same hierarchical layer) unco-
hesive documentation practices, whereby a given code chunk is
documented with one document section which covers many points
of interest. In our case, this may be the manner in which two
(or more) requirements affect the construction of the application.
Unless the displacement model is used to exclude uneeded doc-
ument sections from the woven literate document, all document
sections must be included, and therefore multiple themes will be
incorporated in the document section.
Converging layers does not necessarily mean that documentation
chunks themselves are converged. Converging documentation can
be avoided by using the displacement literate model, however is

unavoidable when using the traditional model.

312

Does the programmer write new chunks to explicitly mark a point
of particular interest? Using the displacement approach, this is
possible. Without it, the conventional model can only serve to
represent all information, thereby obscuring points of interest of

a particular theme.

false hierarchies: Due to the uni-typed documentation chunk, more use
must be made of the code chunk delimiter as an abstraction tool. This
has the effect of creating a hierarchy of chunks where there perhaps
would not have been — false hierarchies — the requirements section,
now treated as a second level section, imposes itself as a hierarchically

superior document section.

1. a document section is not able to be excluded from the “all”, or global,

weaving of a document.

2. the content, or implementation of a code chunk is not able to be ex-

cluded from the output of a chunk.

3. a documentation chunk is unable formed from other documentation

chunks.

These items are explained further.

313

RYE!

D.5 Theme 1 Example: Bubblesort

evaluationWhile bubblesort may have a cute name, its performance may
leave a lot to be desired. Bubblesort has a notorious reputation for being
inefficient. While this may be true for randomly sorted lists of numbers,
bubblesort is one of the better performing sorting methods on near-sorted
lists.

This program implements and evaluates the bubblesort algorithm. Pri-
marily, we generate the number of comparisons and swaps performed given

a set of arrays to be sorted. Specifically, four arrays are sorted:

a randomly sorted array.

a partially sorted array.

e a reverse sorted array.

a sorted array.

(*E)=
(use packages [320g)
(test bubblesort BI6al)
(define sub bubblesort BIH)
(define sub bubbletest BI9)

314

evaluation algorithm

Bubblesort makes multiple scans through the array to be sorted, swapping
adjacent pairs of elements if they re in the wrong order, until no more swaps
are necessary. The bubble is the element propogating through the array.
algorithm

This bubblesort routine requires, as an argument, a reference to an array
of unsorted numbers. The array after being sorted, is then available outside

the function.

e.g.,

@array = (1, 5, 9, 7);
bubblesort (\Qarray) ;

print "Q@array";

{define sub bubblesort BIE)= @)
sub [bubblesortl {
(initialise variables BIS)
(iterate backwards over array [BITH)

{
(iterate forwards over array up to current backwards position BITd)
{
(gather comparisons data B20D)
(swap adjacent members in array if necessary BITa)
}
}

(output results BIGH)

Defines:
bubblesort, used in chunks [316b] and 319

315

evaluation

Running the bubbletest function 10 times gives the following results:

©@a: 1000 elements, 499500 comparisons, O swaps

@b: 1000 elements, 499500 comparisons, 246925 swaps
@c: 1000 elements, 499500 comparisons, 499500 swaps
@d: 1010 elements, 509545 comparisons, 9945 swaps

The results show us that the bubblesort algorithm is, in the worst case
(@Qc), ON2. There are as many swaps as there are comparisons. The algo-
rithm is ON2, derived from the equation N(N-1)/2.

For a random set of data, there are approximately half the swaps that
there are comparisons.

A near-sorted array, with only a few elements out of order, yields a far
more tolerable result. In fact, bubblesort is one of the fastest algorithms of
all in such situations.

Given its poor worst and average case results, bubblesort is a poor choice
as a general sorting algorithm.

For all intensive purposes, bubblesort is an Order N2 algorithm.

(test bubblesort BI6a)= (33
&bubbletest;
(output results BIGH)= BI5)

print "bubblesort: ", int @$array,
" elements, [fncomp| comparisons, [fnswap| swaps\n";

Uses bubblesort BIH $ncomp BIF and $nswap BI8

316

algorithm
A swap is performed if the current member in the array is greater than
the member before it. In this fashion, we sift the bubble upwards through

the array.
(swap adjacent members in array if necessary BITa)= (R385
if ($array->[[§j] - 1 1 > $array—>[[§j]]) {
@$arrayl [$j], [§j| - 1 1 = @$arrayl [$j] - 1, [$j] 1;

(gather swap data B20a)
}
Uses $j BI8l

algorithm

The first loop iterates over the array backwards, starting at the last el-
ement of the array in the first iteration. The next iteration starts at the
element before the last element at the end of the array. In other words, we

iterate backwards over the array storing the value in

(iterate backwards over array BITH)= (B13)

for = $#$array; [$il; $iF-)
Uses $i BIR

algorithm

(iterate forwards over array up to current backwards position BITd)= GI5)

for ($j] = 1; [§j <= Bil; §if++

Uses $1 BI8 and $j

317

$ncomp : counts the number of comparisons.
$nswap : counts the number of swaps.
$array : a reference to an array of numbers to be sorted.

(initialise variables BIS)=
shift;

my $array

my [$il;
my [§]];
my 03
my = 0;
Defines:
$i, used in chunk BI7
$j, used in chunk BT7

$ncomp, used in chunks BI6H| and [3200]
$nswap, used in chunks BI6D and

318

19

evaluation We generate a random array of numbers to pass to the bubblesortl
function.

bubbletest builds the a, textttb, textttc, and textttd, arrays, and then
proceeds to sort them using the bubblesortl algorithm.

(define sub bubbletest BII)= B1)
sub bubbletest {

my Qa;
my G@b;
my Qc;
my @d;
for (1..1000) {
(populate sorted array B20d)
(populate randomly sorted array B20d)

(populate reverse sorted array B20d)
(populate partially sorted array B20f)

4bubblesorti(\ea) ;
&bubblesorti(\@b) ;
¢bubblesorti(\ec) ;
4bubblesorti(\ed) ;

Uses bubblesort [319]

319

v20a

220¢]

20€)

3201

The maximum number of swaps that can occur is the same as the number
of comparisons. This would occur if the array was presented in reverse sorted
order to the bubblesort algorithm.

Otherwise, a swap only happens when an element is greater than its

right-neighboring element.

(gather swap data B20a)= (BI7a)
Sswan+

Uses $nswap BI8

(gather comparisons data B20D)= @BIH)
Bcompl+

Uses $ncomp [31§)

evaluation

(populate sorted array B20d)= BI9)
push @a, $_;

evaluation

(populate randomly sorted array B20d)= @19
push @b, sprintf("%d",rand() * 100);

evaluation

Make use of perl’s reverse function to reverse the Qa array.

(populate reverse sorted array B20d)= @19)

Q@c = reverse Qa;

evaluation

Append ten numbers to the end of a sorted set of data.

(populate partially sorted array B20f)= B19)
ed = (@a, 1..10);

(use packages B20g) = (B3

use strict ’vars’;

320

D.6 Theme 2 Example: Bubblesort Evaluation

While bubblesort may have a cute name, its performance may leave a lot
to be desired. Bubblesort has a notorious reputation for being innefficient.
While this may be true for randomly sorted lists of numbers, bubblesort is
one of the better performing sorting methods on near-sorted lists.

This program implements and evaluates the bubblesort algorithm. Pri-
marily, we generate the number of comparisons and swaps performed given

a set of arrays to be sorted. Specifically, four arrays are sorted:
e a randomly sorted array.
e a partially sorted array.
e a reverse sorted array.

e a sorted array.

)
(use packages)
(test bubblesort)
(define sub bubblesort)
(define sub bubbletest)

321

Bubblesort makes multiple scans through the array to be sorted, swapping
adjacent pairs of elements if they re in the wrong order, until no more swaps

are necessary. The bubble is the element propogating through the array.

(define sub bubblesort)=
sub bubblesort {
(initialise variables)

(iterate backwards over array)

{
(iterate forwards over array up to current backwards position)
{
(gather comparisons data)
(swap adjacent members in array if necessary)
}
}

(output results)

322

Running the bubbletest function 10 times gives the following results:

©@a: 1000 elements, 499500 comparisons, O swaps

@b: 1000 elements, 499500 comparisons, 246925 swaps
O@c: 1000 elements, 499500 comparisons, 499500 swaps
@d: 1010 elements, 509545 comparisons, 9945 swaps

The results show us that the bubblesort algorithm is, in the worst case
(@c), ON2. There are as many swaps as there are comparisons. The algo-
rithm is ON2, derived from the equation N(N-1)/2.

For a random set of data, there are approximately half the swaps that
there are comparisons.

A near-sorted array, with only a few elements out of order, yields a far
more tolerable result. In fact, bubblesort is one of the fastest algorithms of
all in such situations.

Given its poor worst and average case results, bubblesort is a poor choice
as a general sorting algorithm.

For all intensive purposes, bubblesort is an Order N2 algorithm.

(test bubblesort)=
&bubbletest;

323

D.6.1 Test Environment

We generate a random array of numbers to pass to the bubblesort function.
bubbletest builds the a, textttb, textttc, and textttd, arrays, and then

proceeds to sort them using the bubblesort algorithm.

(define sub bubbletest)=
sub bubbletest {

my Qa;

my @b;

my Qc;

my @d;

for (1..1000) {
(populate sorted array)

(populate randomly sorted array)

(populate reverse sorted array)

(populate partially sorted array)

&bubblesort (\Q@a) ;
&bubblesort (\@b) ;
&bubblesort (\Qc) ;
&bubblesort (\@d) ;

(populate sorted array)=

push Qa, $_;

(populate randomly sorted array)=
push @b, sprintf("%d",rand() * 100);

324

Make use of perl’s reverse function to reverse the @a array.

(populate reverse sorted array)=

@c = reverse Qa;
Append ten numbers to the end of a sorted set of data.

(populate partially sorted array)=
@ = (@a, 1..10);

325

D.7 Theme 3 Example: Bubblesort Algorithm

Bubblesort makes multiple scans through the array to be sorted, swapping
adjacent pairs of elements if they re in the wrong order, until no more swaps
are necessary. The bubble is the element propogating through the array.

This bubblesort routine requires, as an argument, a reference to an array
of unsorted numbers. The array after being sorted, is then available outside

the function.

e.g.,

@array = (1, 5, 9, 7);
bubblesort (\Q@array) ;

print "Qarray";

(define sub bubblesort)=
sub bubblesort {
(initialise variables)

(iterate backwards over array)

{
(iterate forwards over array up to current backwards position)
{
(gather comparisons data)
(swap adjacent members in array if necessary)
}
}

(output results)

326

A swap is performed if the current member in the array is greater than
the member before it. In this fashion, we sift the bubble upwards through

the array.

(swap adjacent members in array if necessary)=
if ($array->[$j - 1 1 > $array—>[$j 1) {
@farray[$j, $j - 1 1 = @$array[$j - 1, $j 1;
(gather swap data)
}

The first loop iterates over the array backwards, starting at the last el-
ement of the array in the first iteration. The next iteration starts at the
element before the last element at the end of the array. In other words, we

iterate backwards over the array storing the value in $i.

(iterate backwards over array)=

for ($i = $#%array; $i; $i--)

(iterate forwards over array up to current backwards position)=
for ($j = 1; $j <= $i; $j++)

327

0 23)

D.8 NowebTheme Converter

To develop a filter for Noweb that implements this ruleset is not a particularly
formidable task. In fact, given the right language for the task, it is a rather
simple process.

Using Perl as the programming language, and possessing knowledge of the
Noweb filtering source code file, we can implement an algorithm to process
the Noweb input:

We loop and process input from STDIN; line by line. We then scan each
line to find documentation sections with the relevant theme attributes. If
these theme attributes are present we carry on and include the documentation
section, and its associated code section in the output. Otherwise, if the

attributes are not present, we simply exclude the source from output to
STDOUT.

("BR)=
(set up operating environment B32d)
(process initial input B32d)

while ($line = &readln) {
if ((find doc section beginning B290)) {
(keep track of previous line B300)
for my $theme (@themes) {
if ((scan line for theme attributes B30a)) {
&println($prev_line);
(include doc section B32d)
$INCLUDE = 1;

last; # include doc chunk once only

if ((find code section beginning B29d) && $INCLUDE == 1) {
&println($line);

328

292l

1929¢]

(include code section B32h)
$INCLUDE = O;

(define subroutines B30d)

thesisdoc One disadvantageous repercussion from performing noweb theme
based literate programming. All indexing and cross-referencing capabilities
are lost.

We purposely exclude all cross references to chunks and definitions be-
cause, unfortunately, it is cumbersome to determine which chunks will be in-
cluded in the ITEX output. Cross-references are excluded via the process_doc
and process_code functions.

To do this would require processing the entire input and keeping state
which chunks have been included. We would then be required to reprocess
the input and include cross-references to the chunks to that are included in
the output document. This process can most definetly be done, however, it

is rather ugly.
(discard cross references B29al)= (330dI33Tal)

next if $line =" /$xref/;

Documentation chunks start with “@begin docs”. We use regular expres-
sion parsing to check for the occurance of this string.
(find doc section beginning B29B)= B2R)
$line =~ /$begin_docs/

(find code section beginning B29d)= B2)
$line =~ /$begin_code/

329

ala

330Dl

030c)

Using regular expression matching, we scan the first line of the documen-

tation section for the existence of the current theme.

(scan line for theme attributes B30a)= BR)
$line =" /$theme/

(keep track of previous line B30H)= B23)
$prev_line = $line;

$line = &readln;

process_doc and process_code are used to print to STDOUT untill the
end of the respective documentation or code section is encountered.

println and readln are used to commit the writing to STDOUT and
reading from STDIN to one area. This can aid in testing (as it did for the

author ;).

(define subroutines B30d)= B28)

(sub process_doc B30d)
sub process_code B3Tal)
sub printin B31L)

sub readln B3Id)

{
{
{
(sub read_themes_file 332a)

(sub process_doc B30d)= 3309

sub process_doc {
my $line;
while (($line = &readln) && ($line !~ /$end_docs/)) {
(discard cross references [329a)
&println($line) ;
}

print $line;

330

B3l (sub process_code B31a)= @300)
sub process_code {
my $line;
while (($line = &readln) && ($line !~ /$end_code/)) {
(discard cross references B29a)
&println($line);
}

print $line;

shift the element off the array of arguments passed to this function and
print it.
B3N (sub printin B3ID)= B30d)
sub println {
my $line = shift;
print $line;
print FILE $line;

B3Id (sub readln B3Id)= (@300)

sub readln {
my $line = <>;

return $line;

331

B32a (sub read_themes_file B3Za)=

sub read_themes_file {
open THEMES, "<themes";

my Qthemes;
for (<THEMES>) {
chomp;

push @themes, $_;

}
close THEMES;

return Qthemes;

B320 (include code section B32B)=

&process_code() ;

B32d (include doc section B32d)=

&process_doc();

B32d (set up operating environment B32d)=
#! c:/perl/bin/perl.exe
(use packages 334al)
(define variables B33h)

B32¢ (process initial input B32d)=
if ($themes[0] eq "all") {
(transfer STDIN to STDIN B33a)
}
(output first line of input B34D)

332

In order to save on unrequired processing, we check to whether the key-
word “all” exists. If it does, simply print STDIN to STDOUT and exit
ruthlessly from the program.

Not so elegant, but efficiently practical.

(transfer STDIN to STDIN B33a)= @329
print <>;
exit;
(define variables B33D)= @32d)
my $begin_docs = "~\@begin docs";

my $end_docs = ""\@end docs";

my $begin_code = ""\@begin code";

my $end_code = "~\@end code";

my $xref = "~\@xref";

my Q@themes = (read themes from file B33d);
print STDERR "themes = ’Qthemes’\n";
my $INCLUDE = 0;

my $line = "";

my $prev_line;

open FILE, ">file.out2";

Note that a file named themes must exist with all themes to be output

line delimited.

(read themes from file B33d)= (3330)
&read_themes_file();

We firstly need to look out for a “@begin docs” line. Take note that
each code chunk, given our previously stated rules, must have a documen-
tation chunk. This means that every @begin code has one or more set of
@begin docs and Qend docs associated with it. This is because a code

chunk is able to have multiple themes associated with it.

333

The package strict restricts us from using previously undeclared vari-
ables.

(use packages B3Za)= 332d)

use strict ’vars’;

The first line from STDIN is the name of the noweb file being processed,
e.g., @file themenowebl.nw. We print this to STDOUT.

(output first line of input B3AD)= ([332€)
$line = &readln;

&println($line);

334

D.9 NowebDisplacement Theme Converter Overview

Approximately, the noweb filter input assumes the following format:

@begin docs 3

Q@text Documentation chunks start with ‘‘@begin docs’’. We use regular
Onl

Otext expression parsing to check for the occurance of this string.
Onl

@end docs 3

@begin code 4

Oxref label NWKuRup-4U7dz4-1

Oxref ref NWKuRup-4U7dz4-1

@defn scan line for doc section beginning

Oxref beginuses

Oxref useitem NWKuRup-1pOY9w-1

Oxref enduses

Onl

Qtext $line =" /$begin_docs/
Onl

Q@end code 4

Notice that the “docs” and “code” sections are incrementally numbered.
We can make good use of this in order to help us store the documentation
and code sections we see. We also make use of this in the output, and
rearrangement, of the chunks.

Initially, we parse and store all the noweb filter input, and then rear-
range this input according to a set of rules (attained from the programmer s

reordering requirements).

(sub Displacement::displace)=

The sections stored in the $Data object are rearranged according to the
order denoted in the lists read in from (retrieve displacement lists); that is,

the user-defined order.

(rearrange chunks)=

335

One list is a line of comma delimited integers, or chunk names. Each list

is separated by a new line. Leading each list is the theme name.

(retrieve displacement lists)=

Note that the perspective we take is one that suggests a documentation
section references (or is associated with) a code section. The reverse is not
true however. This is the reason why we give as theme lists in (retrieve
displacement lists) only the code sections. We then rely on the doc section

containing an argument relating to the theme it should be included in.

(search backwards and find decrementing chunks)=

The line given as an argument to this method contains information about
the number of the section. We extract this firstly, and then access the next

line which will contain any possible themes a doc section is associated with.

(prepare theme info from input)=

We also collate information about the theme that a particular documen-
tation section is associated with. This information is contained in the first
line of a documentation section. This is the second line of the doc section in
the form of: @text <data>....

This means we must strip out this information from the first line of the of
the documentation section. We extract the space delimited themes and store
the theme name along with the doc section number in a “THEME” hash of
the Nowebchunk class.

After reading this line from the input, we can effectively discard it as we

dont want to process it further and include it in the weaved document.

(sub Displacement::process_doc)=

336

One of the consequences of using filters to instill a theme based approach
to noweb is that we require some external processing to take place in order
to write the respective documents for each theme.
This cannot be done running noweave once. Although all the necessary
filtering is performed during the first execution of noweave, in order to out-
put an individual document for each theme, we need to cheat noweave into
thinking it is weaving a literate program. In reality, we simply output fil-
tered content that was stored in several theme related files during the first
execution. This output is then converted into a documentation format; TEX
in this case.
{(manage Makefile)=
all: displacement.nw
notangle -R"initiate application" displacement.nw > displace.pl
notangle -R'"package IOops" displacement.nw > IOops.pm
notangle -R'"package Nowebchunk" displacement.nw > Nowebchunk.pm
notangle -R"package Displacement" displacement.nw > Displacement.pm

notangle -R"manage Makefile" displacement.nw > Makefile

weave:
noweave -filter ../print.pl -filter ./displace.pl displacement.nw
noweave —-filter "cat themeOne" b> themelne.tex
noweave —-filter "cat themeTwo" b> themeTwo.tex
noweave —-filter "cat themeThree" b> themeThree.tex
traditional:

noweave —-index displacement.nw > displacement.tex

337

D.10 NowebDisplacement Theme Converter Elide

Approximately, the noweb filter input assumes the following format:

@begin docs 3

O@text Documentation chunks start with ‘@begin docs’’. We use regular
Onl

Otext expression parsing to check for the occurance of this string.
Onl

@end docs 3

Obegin code 4

Oxref label NWKuRup-4U7dz4-1

Oxref ref NWKuRup-4U7dz4-1

@defn scan line for doc section beginning

Oxref beginuses

Oxref useitem NWKuRup-1pOYO9w-1

Oxref enduses

Onl

Q@text $line =" /$begin_docs/
Onl

Q@end code 4

Notice that the “docs” and “code” sections are incrementally numbered.
We can make good use of this in order to help us store the documentation
and code sections we see. We also make use of this in the output, and

rearrangement, of the chunks.

338

Initially, we parse and store all the noweb filter input, and then rear-
range this input according to a set of rules (attained from the programmer s
reordering requirements).

(sub Displacement::displace)=
sub displace {
use Data: :Dumper;

(Displacement::displace variables)

$line = $I0->readln();
$I0->println($line);

(populate data structures)

(retrieve displacement lists)
(retrieve elision lists)
{

rearrange chunks)

return $Data;

339

This function is similar to the (retrieve displacement lists) chunk. Perhaps

it suggests that we need a read_file method.

(retrieve elision lists)=

my %elidedisplists;
open ELIDELISTS, "<displistselide" or die "Can’t open file: $!\n";

for my $line (<ELIDELISTS>) {
(omit comment and non content lines)
@listarray = split (/,/,$line);

$name = shift @listarray;

for my $item (@listarray) {
if ($item =" /"\d+$/) {
push @{$elidedisplists{"$name"}}, $item;
} else {

push @{$elidedisplists{"$name"}}, $Data->{CODEREF}{"$item"};

}
close ELIDELISTS;

340

(sub Displacement::elide_chunk)=
sub elide_chunk {
my $num = shift;
my $array = shift;

print STDERR "matching: ’$num’ with ’@$array’\n";

for my $match (@{$arrayl}) {

print STDERR "matching: ’$match’ with ’>$num’\n";
return 1 if $match == $num;
}
return O;
}

341

The sections stored in the $Data object are rearranged according to the
order denoted in the lists read in from (retrieve displacement lists); that is,

the user-defined order.

(rearrange chunks)=

my $dochashref = $Data->get_doc();

$Data->get_code() ;

my $codhashref

my $array;

my @docnumbers = sort {$a <=> $b} keys %$dochashref;

sort {$a <=> $b} keys J$codhashref;

my Qcodnumbers

my $num;

#print STDERR "docnums @docnumbers\n";
for my $theme (keys %displists) {
$list = $displists{"$theme"};
#print STDERR "opening ’$theme’ @$list\n" if $DEBUG;
open LS, ">$theme" or die "Couldn’t open ’$theme’. $!.\n";
print LS "\@file $theme\n";

for $num (@$list) {

#print STDERR "Found doc for code ’$num’ docsections ’";

(find document section)

$array = $$codhashref{$num};

if (&elide_chunk($num, $elidedisplists{"$theme"}) == 1) {
(do not output code chunk)

} else {
(output code chunk)

}

#print STDERR "’\n";

$count ++;

342

close LS;

An elision lists file may contain empty lines. Comments may also take
the form of # text. The ‘#’ character must appear at the very beginning of

the line to be commented.

(omit comment and non content lines)=
next if $line =" /"\s*$/;
next if $line =" /"\#/;

343

D.11 NowebDisplacement Theme Converter Displace

Initially, we parse and store all the noweb filter input, and then rear-
range this input according to a set of rules (attained from the programmer s
reordering requirements).

(sub Displacement::displace)=
sub displace {
use Data: :Dumper;

(Displacement::displace variables)

$line = $I0->readln();
$I0->println($line);

populate data structures)
retrieve displacement lists)

retrieve elision lists)

o~ o~~~

rearrange chunks)

return $Data;

344

The %displists hash is used to store the array of lists indexed by the name
of the theme.

If integer values are offered in the list, we store this number along with
the theme name. If a chunk name is given instead, we resolve the chunk name
to the chunk’s position in the document, thereby returning a number. We

assume here that there can be no chunk names that consist solely of numbers.

(retrieve displacement lists)=
my %displists;
my Q@listarray;

my $name;
open LISTS, "<displists" or die "Can’t open file: $!\n";

for my $line (<LISTS>) {
next if $line =" /~\s*$/;
@listarray = split (/,/,$line);

$name = shift @listarray;

for my $item (@listarray) {
if ($item =" /"\d+$/) {
push @{$displists{"$name"}}, $item;
} else {
push @{$displists{"$name"}}, $Data->{CODEREF}{"$item"};

+
close LISTS;
print out the diplacement list chunk numbers.
for (keys %displists) {
print STDERR "$_: ", (join ", ", @{$displists{$_}}), "\n";

345

The sections stored in the $Data object are rearranged according to the
order denoted in the lists read in from (retrieve displacement lists); that is,

the user-defined order.

346

The displaced code chunks order is stored in the $1ist array reference.

This is the order traversed in the inner ‘for’ loop.

(rearrange chunks)=

$Data->get_doc();
$Data->get_code();

my $dochashref

my $codhashref

nmy $array;

my @docnumbers = sort {$a <=> $b} keys %$dochashref;

sort {$a <=> $b} keys %$codhashref;

my Ocodnumbers

my $num;

#print STDERR "docnums @docnumbers\n";
for my $theme (keys ’displists) {
$list = $displists{"$theme"};
#print STDERR "opening ’$theme’ @3list\n" if $DEBUG;
open LS, ">$theme" or die "Couldn’t open ’$theme’. $!.\n";
print LS "\@file $theme\n";

for $num (@$list) {

#print STDERR "Found doc for code ’$num’ docsections ’";

(find document section)

$array = $$codhashref{$num};

if (&elide_chunk($num, $elidedisplists{"$theme"}) == 1) {
(do not output code chunk)

} else {
(output code chunk)

}

#print STDERR "’\n";

$count ++;

347

close LS;

348

docl docl docl

V i v
doc2 doc2 doc2
W v v

doc3 codel doc3 doc3 codel

doc4

o
&l &l 81
"

o
]
~J

doc8 code6 code6 cade6

o
&) =) 81
]

doclO code8 docl0 code8 doclO code8

code9 docll caode® docl1 code9

docl2 codel0 docl2 codel0 docl2 codelO

) I‘ I‘

docl3 docl3 docl3
W v
docl4 docl44 docl4
i v
docls docl5 docl5
W v
docle docl6 doclo6

docl7 docl7

o =% =% o =%
=) = = =) =) = =) &l = 8 = 8 &) 8 =) 8 = 8 =)
o ~ (=)} " +
o
-

I‘

W

codel6 codel 6 codel6

a
0
0
-
-

global (a) algorithm (b) evaluation (c)

Figure D.1: Themes that a bubblesort literate program is required to pre-
sented in.

349

e a documentation chunk begins with an ‘@’ character followed by a space
character ‘.

e the first line of a documentation chunk is reserved for the theme at-
tributes that the documentation chunk should be included in. If the
chunk does not belong to any specific theme, then this line must be
kept empty.

e themes are space delimited, and hence, should be one word.
e single or double quotes are used for multi-word themes.

e the theme keyword ‘all’ denotes that a documentation chunk should
occur in all woven documents.

e more than one documentation chunk may be associated with a code
section.

e the inclusion of a documentation chunk in the woven output will include
the accompanying code chunk also. If more than one documentation
chunk exists for a code chunk, then the code chunk will be included in
the output even if only one accompanying document chunk is included
in a theme.

e a code chunk with zero accompanying documentation chunks will not
be woven.

e a code chunk may be included in a theme output without any docu-

mentation. This is performed by writing a documentation chunk with
the necessary theme information, and no lines of documentation. e.g.,

@ tutorialtheme <<look out for nasty characters>>=

Figure D.2: A list of requirement specifications for the new literate model.

350

=
S, | dacl.
-
,
R i \ .
e | | o el |
- % T LT
< \
ey
. 0 - -
“mtd | dock o
- d-. g
o, \.
=) = |:n-u: py
PN —_
|
\I‘-_:l A \.L_
=] fms |:n-|.|. \uh#
|) 0 \.1
1 |nn-|.z codaln
e) T
ey Z \t
_ == |nn-|: (el
\1. \ -
= 5 g -t
5 \\1! |nn-|.+ [eodnl
din i e
N
e \ t
=t - . A
T |:n-u endals
\n" L
——
2 ir 2 -
rarry R |:n-|.a | coels
" a il
= St
e cods Ly
prrar— wialmikn ik

Figure D.3: A displaced version of the evaluation theme. a shows the literate
program’s complete set of originally ordered sections. b shows the included
set of sections in their displaced order.

351

Literate Document

elide

displace

Figure D.4: Abstract diagram of included document and code sections in the
eliding and displacing themes extracted from the web in Appendix [D.9

352

Appendix E

Theme-Based Version Control

E.1 Multi-chunk version control

Complete document rollbacks are not enabled in the CBDE. This is because
a version relationship is not supported by the current chunk model, and
therefore, does not exist between chunks.

Document rollbacks can implemented by enhancing the theme modellsee
Section on page [I07 for a description of the theme model) (instead of
the chunk model): we extend the theme model such that a theme is given
a version attribute. This attribute is numbered according to the version
numbering scheme presented in Section 07 on page [98 The XML theme
source document (see Section on page [I25) is attributed this version
number and stored as a snapshot of a theme in a point in time.

Storing theme documents as versions enables the author to rollback to a
particular branch in the theme versioning tree and continue development —
all chunk-references are resolved and authoring continues. In effect this is
the same as saving multiple copies of a theme document and loading them
as necessary.

We illustrate document rollback and show how isolated chunk version-
ing lends itself naturally to a more globally oriented document versioning.
Figure [EIl on the next page presents an abstract versioned view of a TBLP
theme set. In this literate program, three chunks exist; <<a>> <>, and
<<c>>. Each chunk has an established version tree. Each chunk’s version tree
is shown in the lower half of the figure. Two themes exist that represent com-

plete theme versions. Theme version 1 contains version 1.3 of chunk <<a>>,

H

353

chunk a chunk b chunk c

1 1 1
1.1 1.1 1.1
1.2 1.2 1.1.1
Then'_leA .3 - ————1.21
version 1
1.1.1 1.2.1.1
1.3.1
Theme A
version 1.1 1.3.11
chunk a chunk b chunk c
1 1 1
1.1 1.2 1.3 1.1 1.2 1.1
1.1.1 1.3.1 1.1.1 1.2.1 1.1.1
1.3.1.1 1.2.1.1

Figure E.1: An example of theme-based chunk version control. Three chunk
version hierarchies are utilised to compose a two theme versions.

354

version 1.2.1 of chunk <>, and version 1.1 of chunk <<c>>. Theme
version 1.1 contains version 1.3.1.1 of chunk <<a>> version 1.2.1.1 of
chunk <>, and version 1.1.1 of chunk <<c>>. The programmer is cur-
rently working on the chunks contained in theme version 1.1, but wishes to
revert back to the theme’s version 1 state. The chunk references made in
theme version 1 are resolved from the repository, and the new theme at-
tributed a version number of 1.2.

Note that this rollback is not universal. All other themes are not affected.
Research should be conducted to determine the worthiness and appropriate
methods with which to offer such functionality.

Investigation into chunk-based document rollbacks, whereby a theme, or
set of themes, are rolled back according to a given chunk’s version number
is an area of further research. This is powerful functionality, however, it is
likely to incur processing penalties and necessitate a more elaborate chunk
and theme model. It is also uncertain whether such functionality is useful,

or potentially catastrophicZ.

2 far be it from us to judge

355

skeletal structure

Appendix F

Reverse Engineering

In this chapter, we present a method to perform automated conversions
from legacy source code to the literate equivalent. We are effectively con-
cerned with identifying a consistent and automated manner of TBLP pro-
gram construction.

We stress that this is a tentative proposal and requires further research
to develop effective and useful conversion methods.

We firstly use the concept of psychological scope to motivate our methods
of legacy source code conversion. We then propose a set of guidelines to

convert specific programming language constructs to their literate equivalent.

F.1 Psychological Scope — Its Affect on LP

Psychological scope was introduced in Chapter [A] Section[A.3.2] In essence,
it is about explicitly acknowledging the existence of the underlying pro-
gramming languages’ constructs and modular division of code into packages,
classes, methods, functions, sub-routines, for example. These natural chunk-
ing tendencies are able to be exploited by mapping these over to a skeletal
structure for literate representation. These types of chunks are largely related
to the programming language itself, and are governed by the programming
methodology employed by the programming language.

Just as auto-documenters create skeletal documentation sections for a
language construct, so is it useful to apply a similar process when converting
and developing source code. Indeed, when the following three factors are
known the process of automatic translation between source code to a literate

skeletal equivalent is possible, and relatively straight-forward:

356

1. the syntax of a particular programming language,

2. the semantic construct representation via the combination of key words,

and

3. which constructs are of relevance.

It is important to bear in mind that this is concerned with providing
consistent and workable themes based upon a pre-determined template. The
generated literate code from this operation will provide a workable and mal-
leable set of literate programming chunks. The chunks created are not, by
any means, the final chunked representation of the literate program. Nor is
their initial order of representation. More chunks will be included with fur-
ther development: chunks may be ‘chunked’ further and may be combined
in an atomic relationship, or reordered to present a particular perspective.
This phase adds a firm foundation from which further implementation can
be performed.

By purposely chunking source code, the programmer’s ability to consider:

e the combination of chunks into multiple themes to represent ‘psycho-

logical ordering’ of chunks, or perspectives,

e the importance of the chunked unit, its relevance to the rest of the

program, therefore facilitating ‘chunk-based perspective’, and

e the chunked unit as a separately documentable object

is enhanced.

Furthermore, although LP does increase abstraction towards the reader,
the automatically chunked programming constructs of particular languages
warrant particular attention. They are purposeful logical units that can be
interfaced, implemented, or referenced. We must therefore explicitly recog-

nise psychological scope. A theme should not detract from this fact.

357

F.2 Object Orientation

We use the Java programming language as a basis for the illustration of
automated chunking. Note also that we will use the Noweb notation for the
following examples because of its readable syntax. Each chunk created is
assumed to contain a unique chunklD. Each chunk will also receive an initial
version value of 1. Furthermore, a chunk’s type is assumed to be of type
code, however, the author can be more specific by using Java-test-code, for
example. Each chunk’s name is presented, and utilised as a chunk’s reference,
in the following literate examples.

To transform source code to the literate equivalent, we consider the fol-

lowing Java constructs warrant automatic chunking:
e package
e class

method

abstract

interface

try/catch
For example, the following Java code:

class Alpha {
private int i;
private void privateMethod() {
System.out.println("publicMethod");

can be converted to its literate equivalent by ‘chunking’ the class definition

and class method:

358

<<class Alpha>>=

class Alpha {
private int i;
<<publicMethod>>

<<publicMethod>>=
public void publicMethod() {
System.out.println("publicMethod");

F.2.1 Class-Level Chunking

The Alpha class definition has been chunked because it is an expression of
a well formed and contained idea with a logical scope, very well suited to a

literate code chunk, aptly enough.

F.2.2 Method-Level Chunking

The publicMethod () method has also been chunked because it represents a
programmatically natural closure of thought. Rather than contain all meth-
ods in the confines of one chunk, we believe that the phenomenon of psycho-
logical scope dictates the need to distinctly ‘chunkify’ methods.

For example, several minor methods, most likely private to a particular
class can be contained into one chunk (the naming of the chunk then becomes

an issue):

359

class Alpha {

private int i;

<<publicMethod>>

<<general purpose mathematic functions>>
X
<<publicMethod>>=

<<general purpose mathematic functions>>=

private void add (int j) {

i+=j;

private void subtract (int j) {

i-=73;

However, this approach is not consistent. A reader wanting to know
more of the methods contained in class Alpha may assume that all methods
have been chunked. It may not be obvious, by perusing the content of the
repository, which methods <<general purpose mathematic functions>>
contains. The reader, knowing that the method add() exists may be lulled
into wrongly looking for an <<add>> chunk.

Consistently recognising method-level scope also facilitates a granular
theme composition, such that the inclusion and ordering of chunks is possible.

Combining multiple methods under the umbrella of one chunk prevents this.

F.2.3 Abstract Class Chunking

Abstract classes in Java allow the development of template-like structures

that are extendible by a given class. They are not directly instantiatable.

360

Methods implemented in an abstract class are inherited by the extending
class. An abstract class’” method, however, must be defined by the extending

class. The outline of an abstract class follows:

abstract class GraphicObject {

int x, y;

void moveTo(int newX, int newY) {

¥

abstract void draw();

The makeup of of an abstract class is directly similar to a ‘normal’ class
and should therefore be chunked.

Similarly, abstract methods should be chunked. They differ from normal
methods because they do not receive direct implementation. An abstract

method should still be singly chunked because:

e cxplanation via documentation is required. It is designed with a mind-
ful intent of future implementation by each inheriting class. This intent

should be documented.

e it promotes the composition of themes such that specifically group an
abstract method and its implementations from inheriting classes, for

example.

F.2.4 Interface Chunking

Interfaces define, but do not implement methods. They are not extendable
by other classes, however may be implemented, in which case the implement-
ing class must implement each method of an interface. A given class may

implement more than one interface.

361

public interface Beta {
final String word = "hello";
void firstMethod(String partialWord);
void secondMethod(String partialWord);

An interface is a device that unrelated objects use to interact with each
other. It is a way of capturing similarities among unrelated classes without
artificially forcing a class relationship.

Although not a class, an interface is an entity that has been similarly
designed; a set of methods and data. And, for the same reasons as an abstract

method construct’s chunking, interface constructs are also chunked.

<<interface Beta>>=

public interface Beta {
final String word = "hello";
<<Kinterface method firstMethod>>

<<interface method secondMethod>>

<<interface method firstMethod>>=
void firstMethod(String partialWord) ;

<<interface method secondMethod>>=

void secondMethod(String partialWord);

F.2.5 Try/Catch Chunking

Error handling also deserves discrete chunking. Exceptions are specifically
used to manage errors. They separate error handling content from ‘regular’
code and possess a strong similarity to chunk-based modularisation (effec-

tively forcing chunk transparency — Appendix[A.3 on page discusses the

362

concept of literate programming transparency). Effectively, we treat try and
catch statements as method level constructs.
The following example illustrates the result of chunking try/catch state-

ments:

<<readFile>>=
public void parseFile() {
by
<<try to parse file>>=
try {
<<open the file>>
<<determine number of lines>>
<<allocate that much memory>>
<<read the file into memory>>
<<close the file>>
3
<<catch memoryAllocationFailed>>=
catch (memoryAllocationFailed) {

}
<<catch readFailed>>=
catch (readFailed) {

}
<<catch writeFailed>>=
catch (fileCloseFailed) {

}
<<finally>>=
finally {

It is, thus, immediately obvious which errors are handled without obscur-

363

ing the central purpose of the method. Specific themes can thereafter be
created to include these catch chunks in order to completely separate error

handling from the method’s core.

F.2.6 Sub-Method Level Chunking

We leave the discretion of sub-method level chunking to the discretion of
TBLP authors because the chunking of artifacts such as looping constructs,
for example, is a subjective process.

Further work must be performed to develop guidelines as to the chunking
of class and method-level variable declarations, for example. It is likely that

these declarations will require explicit chunking.

F.3 Imperative Languages

Imperative, or procedural languages, will, by their very nature, promote
different thought processes by the programmer[73]. The structuring of in-
formation differs, and the semantic expressiveness of imperative languages
compared to OO languages, for example, is different. In consideration of

this, the following constructs are deemed as individually chunkable items:
e function definitions/declarations,
e F#define macro definitions, and
e data structure constructs.

Functions are cohesive units, however differ from classes and methods in
OO because there exists a less cohesive modularity between data and func-
tions. Data may not be tightly associated within functions as it is with a
class, for example. The concepts of data hiding are not prevalent in proce-
dural languages.

Data structures central to a program’s functionality are commonly defined
as separate entities global to all functions, or functions within a particular

file. If not global, pointers to these data structures are declared and passed

364

by reference to functions that need to make use of the data. These functions
will commonly make use of, or transform, data available in these structures.
This contrasts against the object oriented model whereby data and methods
exist together as part of a particular entity — an encapsulated object: if a
method has a direct influence on a set of data, that method will usually be
contained within a class, along with the affected data.

In recognising the differences and similarities between the two paradigms,
it is possible to translate these into rules to be applied to an automated
literate chunking engine of an imperative language.

Whereas in OO, a hierarchical approach is taken in the chunking of pro-
gram constructs i.e., package - class - method, imperative languages, like C,
are more lateral in nature; they have data structure and function constructs.
These two entities should be chunked.

More specifically, data structures in C are commonly created using three

constructs:
structs: user-definable types.

unions: user-definable type whose members occupy the same space in mem-

ory.

enums: user-definable type whose members assume consecutive, unless oth-

erwise stipulated, integer values.

Data structures are central to a good program’s design. So much so
that in imperative languages, the alteration of a data structure can render
functions that are in some way linked, inoperable. The thought behind data
structures can be expounded by promoting their careful documentation.

As an example of data structure chunking:

365

<<enum days>>
<<union earnings>>

<<employess struct>>

<<enum days>>=

enum {sun,mon,tues,wed,thur,fri,sat,sun} days;

<<union earnings>>=

union earnings{int wageperhour, double int weeklysalaryl};

<<employess struct>>=

struct employee {
char name[20];
enum days offdays[2];

union earnings income;

};

Functions in C, as recommended by the ANSI standard, should be de-
clared as prototypes, and then defined separately. This ensures type-checking
for return and parameter values. It also promotes forward thinking and de-
sign. It is common practice that external function prototypes are placed in a
header file. Utilising TBLP’s documentation reuse, the author is able to as-
sociate the documentation for the function with both the function prototype
and the function definition.

Examples of function-level chunking are reflected in Section [F.2.2] on
page [3591

366

1]

References

Cpan (comprehensive perl archive network). http://www.cpan.org/,

2002. Common repository for perl modules and documentation.

Lyx. http://www.lyx.org/, August 23 2002. A visual document pro-
cessor that uses IXTREX.

Perlpod, perl plain old documentation. http://www.perldoc.com/
perl5.6.1/pod/perlpod.html, 2002. Description of Perlpod utilisa-

tion.

BATORY, D. Refinements and seperation of concerns. Tech. rep., Uni-
versity of Texas at Austin, Department of Computer Sciences, 2000.
Workshop on Multi-Dimensional Separation of Concerns in Software En-

gineering (ICSE 2000).

BEeck, K. Eztreme Programming Explained : embrace change. Addison-
Wesley, 2000.

BENTLEY, J. Programming pearls — literate programming. CACM 29,
5 (May 1986), 364-3609.

Bo Leur, W. C. The Wiki Way: Collaboration and Sharing on the
Internet, 1st ed. Addison-Wesley Pub Co, April 3 2001.

BoDANIS, D. E=mc?, 1st ed. Berkley Pub Group, October 9 2001.

Bricas, P. Nuweb Version 0.92 A Simple Literate Programming Tool.
http://sourceforge.net/projects/nuweb/, Feb 1 2001.

Brooks, R. E. Towards a theory of the comprehension of computer
programs. International Journal of Man-Machine Studies 18, 6 (1983),
543-554.

367

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

BrowN, M. E., AND CHILDS, B. An interactive environment for
literate programming. Journal of Structured Programming 11, 1 (1990),
11-25.

BrowN, M. E., AND CORDES, D. Literate programming applied to

conventional software design. Structured Programming 3, 11 (1990), 85—
98.

BrownN, M. E.; AND CORDES, D. A literate programming design lan-
guage. In COMPEURQO’90: Proceedings of the 1990 IEEE International
Conference on Computer Systems and Software Engineering, May 8—10,
1990, Tel-Aviv, Israel (Los Alamitos, CA, USA, 1990), IEEE CS Press,
pp. 548-549.

BURDETT, P. S. Documentation: Effective and literate. In Proceed-
ings of the Fourth International Conference on Systems documentation
(Cornell University, Ithaca, New York, United States, 1986), SIGDOC
: ACM Special Interest Group on Systems Documentation, ACM Press
New York, NY, USA, pp. 110 — 113.

CANFORA, G., AND CIMITILLI, A. Program comprehension. 1998.

CAREY, V. J. litxml.shar. Internet document: http://biosunl.
harvard.edu/~carey/litxml.shar, March 6 2001.

CHILDS, B. Literate programming, a practioner’s view. In TUGboat
(2001), vol. 13 of Proceedings of the 2001 Annual Meeting, Department
of Computer Science, Texas A&M University, pp. 1001 — 1008.

CoATES, A. xmlp - literate programming in xml. Internet document:
http:/http://xmlp.sourceforge.net//, August 11 2000.

COCKBURN, A. Supporting tailorable program visualisation through lit-
erate programming and fisheye views. http://www.cosc.canterbury.

ac.nz/"andy/papers/brow.pdf, April 6 2000.

368

[20]

[21]

[22]

[25]

[26]

[27]

28]

COCKBURN, A., AND CHURCHER, N. Towards literate tools for novice
programmers. Tech. rep., Department of Computer Science, Univer-
sity of Canterbury, Christchurch, New Zealand, http://www.cosc.
canterbury.ac.nz/research/reports/TechReps/tr_9705.pdf, May
1997.

CorDES, D., AND BROWN, M. The literate-programming paradigm.
Computer 24, 6 (June 1991), 52-61.

DiDIER MARTIN, MARK BIRBECK, M. K. B. L. J. P. S. L. P. S.
K. W. R. A. S. M. D. B. B. P., AND Ozu., N. Professional XML.,
1st ed. Wrox Press, 2000.

Drakos, N. ETEX2HTML. http://cbl.leeds.ac.uk/nikos/
tex2html/doc/latex2html/latex2html . html

Evans, T. A meta-model for literate programming. Tech. rep., Univer-
sity of Canterbury, New Zealand, http://www.cosc.canterbury.ac.
nz/research/reports/HonsReps/hons99_02.pdf, November 10 1999.

FounbpaTion, T. A. S. Xalan-c++ version 1.1. Internet document:
http://xml.apache.org/xalan-c/index.html, 2000.

Fox, J. Webless literate programming. TUGBOAT journal 11, 4 (Nov.
1990), 511-513.

FrIENDLY, L. The design of distributed hyperlinked programming doc-
umenation. In Proceedings of the International Workshop on Hyperme-
dia Design (Montpellier, France, June 1-2 1995), Springer, pp. 151 —
173.

FurNas, G. W. Generalized fisheye views. In Proc. of CHI-86 (Boston,
MA, 1986), pp. 16-23.

369

[29]

[32]

GammA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design
Patterns: FElements od Reusable Object-Oriented Software. Addison-
Wesley Professional Computing Series. Addison-Wesley Publishing
Company, New York, NY, 1995.

GARTNER, F. The PretzelBook, 2nd ed. Internet document:
http://www.informatik.tu-darmstadt.de/BS/Gaertner/pretzel/
distribution/doc/pretzelbook/pretzelbook.dvi, June 11 1998.

GERMAN, D. M., AND COWAN, D. Sgml-lite-an sgml-based program-
ming environment for literate programming. In Fourth International
Symposium on Applied Corporate Computing (Monterrey, Mexico, Oc-
tober - November 1996), pp. 175-184.

GURARI, E., AND WU, J. A WYSIWYG literate programming system:
a preliminary report. Technical research report OSU-CISRC-7/90-TR17,
Ohio State University, Computer and Information Science Research Cen-
ter, Columbus, OH, USA, 1990.

HENRIK M MORGENSEN, K. R. T., AND VESTDAM, T. Object ori-
ented documentation — construction and presentation usign the doc-
sewer tool. Master’s thesis, Aalborg University, Department of Com-

puter Science, 1999.

HENRY, S., AND KAFURA, D. Software structure metrics based on

information flow. IEEE Transactions on Software Engineering (1981).

HursT, J. nutweb-1.12. Internet document: http://www.csse.
monash.edu.au/\%7Eajh/research/literate/nutweb-1.12.tar.gz

HursT, J. Document technology interests - axe. Internet doc-
ument: http://www.csse.monash.edu.au/"ajh/research/doctech/
index.htm, April 12 2000.

370

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Hurst, J. John hurst’s literate programming. Internet
document: http://www.csse.monash.edu.au/\%7Eajh/research/
literate/, August 11 2000.

JEFFREYS, C., AND HAEMER. Virtual threaded news reader.
SunExpert, url: http://www.alumni.caltech.edu/” copeland/work/
thread2.html date: and http://www.literateprogramming.com/
seaug98.pdf date:, August 1998. news reader literate program.

KACOFEGITIS, A., AND CHURCHER, N. Theme-based literate pro-
gramming. APSEC 2002, 9th Asia-Pacific Software Engineering Con-
ference (November 4 2002). (accepted).

KAy, M. XSLT Programmer’s Reference, 2nd ed. Wrox Press, 2001.

KERNIGHAN, B. W. Why pascal is not my favorite programming lan-
guage, April 2 1981.

KERNIGHAN, B. W., AND PIKE, R. The Practice of Programming.

Addison-Wesley, 1999. effective programming.

KiczaLges, G., LAMPING, J., MENHDHEKAR, A., MAEDA, C.,
Lopres, C., LOINGTIER, J.-M., AND IRWIN, J. Aspect-oriented pro-
gramming. In Proceedings European Conference on Object-Oriented Pro-
gramming, M. Aksit and S. Matsuoka, Eds., vol. 1241. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997, pp. 220-242.

KnuTH, D. E. The web system of structured documentation. Tech.
rep., Stanford Computer Science Report CS980, Stanford University,
Stanford, CA, September 1983.

KnuTH, D. E. Literate programming. The Computer Journal 27, 2
(1984), 97-111.

371

[46]

[47]

[48]

[50]

[51]

[52]

[53]

[54]

[55]

KNuTH, D. E. TgX : The Program (Computers & Typesetting ; B.
Addison-Wesley Publishing Company, Stanford Univ., Stanford, CA,
1986.

KnuTH, D. E. The METAFONT book. Addison-Wesley Publishing
Company, Stanford University., Stanford, CA, 1989.

KnutH, D. E. Literate Programming. CSLI Lecture Notes Number 27.

Stanford University Center for the Study of Language and Information,
Stanford, CA, USA, 1992.

comp.programming.literate faq. news:comp.programming.literate
http://www.fags.org/faqs/literate-programming-faq/, March 15

2000. literate programming mailing list.

McDoucGALL, S. Program pods. http://world.std.com/”swmcd/
steven/perl/program_pod.html, June 2 1997. perlpod, styleguide,
perl.

MEeNs, K. Multiple cross-cutting architectural views. Tech. rep., Pro-
gramming Technology Lab, Vrije Universiteit Brussel, Pleinlaan 2, B-
1050 Brussel, Belgium, February 21 2000.

MICROSYSTEMS, S. Doclet overview. http://java.sun.com/j2se/1.
3/docs/tooldocs/javadoc/overview.html, 1998.

MICROSYSTEMS, S. How to write doc comments for the javadoc tool.
http://java.sun.com/j2se/javadoc/writingdoccomments/, 2000.

Mvusser, D. R. Text-line random shuffling program. url: http://
www.literateprogramming.com/rand.pdf date: , September 28 2000.

literate program using Nuweb.

NorRMAN WALSH, L. M. DocBook: The Definitive Guide. O’Reilly,
October 1999.

372

[56]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

N, K. Requirements for an elucidative programming environment, June
2000.

OSSHER, H., AND TARR, P. Multi-dimensional separation of concerns
and the hyperspace approach, 2000.

, K. Literate smalltalk programming using hypertext. IEEE Transac-
tions on Software Engineering 21, 2 (1995), 138 — 145.

P. TArRR, H. OssHErR, W. H., AND S.M. SuTTON, J. N degrees of
separation: Multi-dimensional separation of concerns. In Proceedings of

the International Conference on Software Engineering (May 1999).
PAGE-JONES, M. The practical guide to structured systems design.

PARIKH, G., AND ZVEGINTZOV, N. Tutorial on software main-tenance.
Silver Springs, MD: IEEE Computer Society, 1983.

PARNAS, D. Software aging. Proceedings of the 16th International
Conference on Software Engineering, IEEE Press (May 1994), 279-287.

PARNAS, D. L. On the criteria to be used in decomposing systems into
modules. Communications of the ACM 15, 12 (1972), 1053-1058.

PrESSMAN, R. S. Software Engineering: A Practitioner’s Approach,
fifth ed. McGraw-Hill, New York, 2000.

RaMmsey, N. A Spider User’s Guide. Department of Com-
puter Science, Princeton University, Internet document: http://www.

literateprogramming.com/spider.pdf, July 1989.

RAaMSEY, N. The noweb hacker’s guide. Tech. rep., Department of

Computer Science, Princeton University, September 1992.

RAMSEY, N. Literate-programming can be simple and extensible. http:
//tex.loria.fr/litte/ieee.pdf, October 1993.

373

[70]

[71]

[77]

(78]

[79]

[80]

RAMSEY, N. Literate programming simplified. IEEE Software Engi-
neering 11, 5 (sep 1994), 97-105.

RAMSEY, N. Weaving a language indepedent web. Communications of
the ACM 32, 9 (September 1989 1995), 1051—1055.

RAMSEY, N. Noweb. http://www.eecs.harvard.edu/ nr/noweb/,
July 2001. Noweb’s home page and latest news.

RAMSEY, N., AND MARCEAU, C. Literate programming on a team
project. Software, Practice and Experience 21,7 (1991), 677-684.

REAM, E. K. Leo’s home page, August 4 2001. Home page and down-

load site.

RECHENBERG, P. Programming languages as thought models. Struc-
tured Programming 3, 11 (1990), 105-115.

REENSKAUG, T., AND SKAAR, A. L. An environment for literate
Smalltalk programming. SIGPLAN 24, 10 (Oct. 1989), 337-345.

RyMmaN, A. Foundations of 4thought. Proceedings of the 1992 CAS
Conference, Toronto, Ontario (November 1992), 133-155.

SEVILLA, R. xml-lit. http://xml-1lit.sourceforge.net/, August
2001. XML-based literate programming tool.

SEWELL, E. W. Weaving a Program: Literate Programming in WEB.
Van Nostrand Reinhold, New York, NY, 1989.

SHNEIDERMAN, B. Direct manipulation, 1992.

SHUM, S., AND Cook, C. Using literate programming to teach good

programming practices.

SMITH, M. Modernising literate programming. Tech. rep., University
of Canterbury, 2001.

374

[81]

[82]

[36]

[87]

[33]

[89]

[90]

[91]

SMITH, S., BARNARD, D., AND MAcCLEOD, I. Holophrasted displays

in an interactive environment. International Journal of Man Machine
Studies 20, 4 (Apr. 1984), 343-355.

SUSANTI. Documentation definition in xml. Internet document:
http://www.csse.monash.edu.au/hons/projects/2000/Susanti/
THESIS.doc, November 2000.

TANENBAUM, A. S. Modern Operating Systems, 2nd ed. Prentice-Hall
Inc, February 28 2001.

Ticay, W. F. RCS - a system for version control. Software - Practice
and Ezperience 15, 7 (1985), 637-654.

TiLLEY, S. R. Documenting-in-the-large vs. documenting-in-the-small.
In the Proceedings of CASCON 793, (Toronto, Ontario) (October 1993),
pp- 1083-1090.

VAN AMMERS, E. W. Clip, a universal literate programming tool. In-
ternet document: http://www.literateprogramming.com/clip_ann.
pdf, Feb 24 1993.

VAN AMMERS, E. W., AND KRAMER, M. R. The clip style of literate
programming, Feb 26 1993.

VESTDAM, T. Pulling threads through documentation. Tech. rep.,

Aalborg University, Department of Computer Science, Fredrik Bajers
Vej 7TE, DK-9220 Aalborg, Denmark.

VIVTEK. xml-lit. http://www.vivtek.com/lpml/, July 2000. XML-

based literate programming tool.
WiLLiAMS, R. FunnelWeb. http://www.ross.net/funnelweb/, 1992.

WITH KARL BERRY, P. W. A., AND HARGREAVES, K. A. TgX for
the Impatient. Addison-Wesley, Reading, MA, USA, 1990. TEX.

375

[92]

WROTH, M. An experiment in literate programming using sgml
and dsssl. Internet Document: http://ourworld.compuserve.com/
homepages/markwroth/LitProg/SGMLWEB/experiment . pdf, December
31 1999.

WroTH, M. Dblp: Docbook-based literate programming. In-
ternet Document: http://www.west-point.org/users/usmal978/
36200/LitProg/SGMLWEB/dblp.htm or http://www.west-point.org/
users/usma1978/36200/LitProg/SGMLWEB/DBLP.pdf, April 12 2001.

376

	Literate Programming
	The Comprehension Problem --- What?
	A Brief Overview of Program Literacy
	A Birds' Eye View of LP
	The Chunk
	Ground-level

	Human(e) Order vs. Computer Order --- Psychological Ordering
	Common Literate Programming Features
	Chunks versus Macros
	Pretty-printing
	Cross-Referencing and Indexing

	When is One Considered Literate?
	The Propaganda on Programming Literately
	Summary

	A Review of Literate Programming Applications
	WEB
	Noweb
	Nuweb
	Funnelweb
	CLiP
	LP Integrated Development Environments
	Leo
	Spider
	Documentation Tools
	Javadoc
	Elucidative Programming
	perlpod

	Summary and Comparison

	A Review of XML-Based Literate Programming Applications
	xmltangle
	xml-lit
	xLP
	LPML
	litXML
	xmLP
	DBLP
	Summary

	Literate Programming's Limitations
	Application Specific Shortcomings
	Debugging
	The Three-Syntax Problem
	Monolithic Files
	Tangling Creates Tangled Code
	Scoping
	Object-Oriented Limitations
	Primitive Cross-Referencing
	Limited Output Formats
	Static Documentation
	Disparity between Document Editing and the Formatted Document

	Model-Centred Shortcomings
	One Psychological Flow --- Limited Readership
	Asymmetric Processing Model
	Fixed Chunk Typing Mechanism --- Real World Overloading
	Refactoring --- Chunk Version Control

	Literature versus Documentation
	Summary

	Theme-Based Literate Programming
	Theme Weaving
	The Need for a Tool of Abstraction
	Theme or Psychological Order?

	Multiple Themes: Theme-Paths and Chunk-Nesting
	Processing Model: Separation of Content and Ordering
	Enhancing Chunk Composition
	Chunk Representation
	The Repository of Chunks
	Theme Model
	Processing Model: Blending Weave and Tangle

	TBLP Development Emphasises Expression over Development
	Equality of Concerns
	Multiple Distributed Webs
	Summary

	Implementation of the Theme-Based Literate Programming Model
	Why XML?
	The Literate Document Development Process
	The Repository --- Chunk Composition
	XML Theme Source Document

	The Context-Based Development Environment
	The Repository Widget
	The Theme Tree Widget
	The Theme-View Text Widget
	Editing
	The ``Chunk Development'' Panel
	The Variant Attribute
	Theme Functionality
	Loading and Saving --- Repositories, Themes, and Projects

	Internal Architecture
	Summary

	Document Output, Version Management, and Storage Concerns
	XML Theme Document
	An Condensed Processing Model
	Theme Document Validity

	Theme Document Output: Formatting
	Is XSLT the Only Option? Other Technologies
	Stylesheet Development

	Chunk and Theme Storage
	Storage Options

	The ID attribute
	Multi-Valued Chunk Identifiers

	Version Control --- Evolution and Utilisation
	Themes of Versions
	Branched Hierarchies of Chunks --- Chunk Version Control
	Theme-Based Version Control

	Summary

	An Approach to the Practice of Theme-Based Literate Programming
	Underlying Aims
	TBLP in Software Engineering
	Guidelines for the Good
	Target the Intended Audience
	Atomic Chunk Mapping Must be Strong
	Consider Physical Chunk Scope as a Cohesive Measure
	Use the Consequence of Cohesion To Determine a Chunk's Size
	Distinguish Comments from the Source Code
	One chunk --- one idea.
	Chunk first, code later
	Dissassociate intent from implementation
	Create Self-Documenting Hierarchies
	Use Smooth Transition Between Levels of Abstraction
	Be lazy --- write self-documenting chunk names
	Avoid Temporal Commentary --- Reduce Chunk Cross-Coupling
	Chunkify Programming Language Abstractions
	Don't Use Implementation-Level Commands as Chunk Substitutes

	Future Work
	Extending the Model
	Tool Support
	Human Computer Interaction

	Conclusion
	Thoughts on Literate Programming
	Documentation --- How Should It Function?
	LP Documentation versus Source Code --- Audience Specific
	Perspective Simplifies Complexity
	LP Versus Plain Old Documentation/Comments

	An Abstract Process
	The Affect of Programming Languages on LP Abstraction
	The Power Paradigm of Literate Programming
	Psychological Scope
	Medium of Focus
	A Super-Language
	LP as Program Description Language

	Unordered Programming Languages vs. Psychological Ordering
	Are Programming Languages Literately Enabled?

	Mis-direction of Focus?

	TBLP Methods in Software Engineering
	A Layered Approach to Themes
	Cross-Sections of Layers
	Flexibility of Approach

	A Set of Example Themes

	Example Literate Programs
	Example NowebProgram
	An example of noweb
	Counting Words

	Personal Greeter
	Scoping (In)capabilities
	Identifier Cross-Referencing (nuweb)

	Theme Enabling Literate Tools
	Supporting Multi-Themed Requirements with a Traditional Literate Tool
	The Journey to Enlightenment
	Noweb as a Development Platform
	The Bubblesort Theme-Set

	Requirements for an Alteration to Noweb
	Model Enhancement of Noweb --- The Initial Attempt
	A Summary of the Initial Implementation

	Initial Model++: The Displacement Model
	Implementation of an Enhanced Model
	A Summary of the Second Implementation

	Does Chunk Displacement Suffice?
	Duplicate Chunks
	Non-fixed Chunk Types --- Higher Order Documentation

	Theme 1 Example: Bubblesort
	Theme 2 Example: Bubblesort Evaluation
	Test Environment

	Theme 3 Example: Bubblesort Algorithm
	NowebTheme Converter
	NowebDisplacement Theme Converter Overview
	NowebDisplacement Theme Converter Elide
	NowebDisplacement Theme Converter Displace

	Theme-Based Version Control
	Multi-chunk version control

	Reverse Engineering
	Psychological Scope --- Its Affect on LP
	Object Orientation
	Class-Level Chunking
	Method-Level Chunking
	Abstract Class Chunking
	Interface Chunking
	Try/Catch Chunking
	Sub-Method Level Chunking

	Imperative Languages

	References

