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ABSTRACT

Aim of the present chapter is to provide an in-depth presentation and survey of mesh-free particle
methods. Several particle approximation are reviewed; the SPH method, corrected gradient methods
and the Moving least squares (MLS) approximation. The discrete equations are derived from a
collocation scheme or as Galerkin method. Special attention is paid to the treatment of essential
boundary conditions. A brief review over radial basis functions is given because they play a significant
role in mesh-free methods. Finally, different approaches for modelling discontinuities in mesh-free
methods are described.
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1. INTRODUCTION

As the range of phenomena that need to be simulated in engineering practice broadens, the
limitations of conventional computational methods, such as finite elements, finite volumes or
finite difference methods, have become apparent. There are many problems of industrial and
academic interest which cannot be easily treated with these classical mesh-based methods: for
example, the simulation of manufacturing processes such as extrusion and molding, where it
is necessary to deal with extremely large deformations of the mesh, or simulations of failure,
where the simulation of the propagation of cracks with arbitrary and complex paths is needed.

The underlying structure of the classical mesh-based methods is not well suited to the
treatment of discontinuities that do not coincide with the original mesh edges. With a mesh-
based method, the most viable strategy for dealing with moving discontinuities is to remesh
whenever it is necessary. The remeshing process is costly and not trivial in 3D (if reasonable
meshes are desired), and projection of quantities of interest between successive meshes usually
leads to degradation of accuracy and often results in an excessive computational cost. Although
some recent developments (Moes et al., 1999, Wells et al., 2002) partially overcome these
difficulties, it is difficult to eliminate sensitivity to the choice of mesh.

The objective of mesh-free methods is to eliminate at least part of this mesh dependence
by constructing the approximation entirely in terms of nodes (usually called particles in the
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2 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

context of mesh-free methods). Moving discontinuities or interfaces can usually be treated
without remeshing with minor costs and accuracy degradation (see, for instance, Belytschko
and Organ, 1997). Thus the range of problems that can be addressed by mesh-free methods
is much wider than mesh-based methods. Moreover, large deformations can be handled more
robustly with mesh-free methods because the approximation is not based on elements whose
distortion may degrade the accuracy. This is useful in both fluid and solid computations.

Another major drawback of mesh-based methods is the difficulty in ensuring for any real
geometry a smooth, painless and seamless integration with Computer Aided Engineering
(CAE), industrial Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM)
tools. Mesh-free methods have the potential to circumvent these difficulties. The elimination
of mesh generation is the key issue. The advantages of mesh-free methods for 3D computations
become particularly apparent.

Mesh-free methods also present obvious advantages in adaptive processes. There are a priori
error estimates for most of the mesh-free methods. This allows the definition of adaptive
refinement processes as in finite element computations: an a posteriori error estimate is
computed and the solution is improved by adding nodes/particles where needed or increasing
the order of the approximation until the error becomes acceptable, see e.g. Babuška and
Melenk, 1995; Melenk and Babuška, 1996; Duarte and Oden, 1996b.

Mesh-free methods were originated over twenty-five years ago but it is in recent years that
they have received substantial attention.

The approach that seems to have the longest continuous history is the smooth particle
hydrodynamic (SPH) method by Lucy (1977) and Gingold and Monaghan (1977), see Section
2.1. It was first developed for modelling astrophysical phenomena without boundaries, such as
exploding stars and dust clouds. Compared to other numerical methods, the rate of publications
in this field was very modest for many years; progress is reflected in the review papers by
Monaghan (1982; 1988).

Recently, there has been substantial improvement in these methods. For instance, Dyka
(1994) and Sweegle et al. (1995) study its instabilities; Johnson and Beissel (1996) proposed a
method for improving strain calculations; and Liu et al. (1995a) present a correction function
for kernels in both the discrete and continuous case.

In fact, this approach can be seen as a variant of moving least-squares (MLS) approximations
(see Section 2.2). A detailed description of MLS approximants can be found in Lancaster
(1981). Nayroles et al. (1992) were evidently the first to use moving least square approximations
in a Galerkin weak form and called it the diffuse element method (DEM). Belytschko et al.
(1994) refined the method and extended it to discontinuous approximations and called it
element-free Galerkin (EFG). Duarte and Oden (1996a) and Babuška and Melenk (1995)
recognize that the methods are specific instances of partitions of unity (PU). These authors
and Liu et al. (1997a) were also among the first to prove convergence of this class of methods.

This class of methods (EFG, DEM, PU, among others) is consistent and, in the forms
proposed stable, although substantially more expensive than SPH, because of the need of a
very accurate integration. Zhu and Atluri (1998) propose a Petrov-Galerkin weak form in order
to facilitate the computation of the integrals, but usually leading to non symmetric systems of
equations. De and Bathe (2000) use this approach for a particular choice of the approximation
space and the Petrov-Galerkin weak form and call it the method of finite spheres.

On a parallel path, Vila (1999) has introduced a different mesh-free approximation specially
suited for conservation laws: the renormalized meshless derivative (RMD) with turns out to
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give accurate approximation of derivatives in the framework of collocation approaches. Two
other paths in the evolution of mesh-free methods have been the development of generalized
finite difference methods, which can deal with arbitrary arrangements of nodes, and particle-
in-cell methods. One of the early contributors to the former was Perrone and Kao (1975), but
Liszka and Orkisz (1980) proposed a more robust method. Recently these methods have taken
a character which closely resembles the moving least squares methods and partitions of unity.

In recent papers the possibilities of mesh-free methods have become apparent. The special
issue (Liu et al., 1996a) shows the ability of mesh-free methods to handle complex simulations,
such as impact, cracking or fluid dynamics. Bouillard and Suleau (1998) apply a mesh-free
formulation to acoustic problems with good results. Bonet and Lok (1999) introduce a gradient
correction in order to preserve the linear and angular momentum with applications to fluid
dynamics. Bonet and Kulasegaram (2000) proposes the introduction of integration correction
that improves accuracy with applications to metal forming simulation. Oñate and Idelsohn
(1998) propose a mesh-free method, the finite point method, based on a weighted least-squares
approximation with point collocation with applications to convective transport and fluid flow.
Recently several authors have proposed mixed approximations combining finite elements and
mesh-free methods, in order to exploit of the advantages of each method (see Belytschko et
al., 1995; Hegen, 1996; Liu et al., 1997b; Huerta and Fernández-Méndez, 2000).

Several review papers and books have been published on mesh-free methods; Belytschko et
al. (1996a), Li and Liu (2002) and Liu et al. (1995b). This chapter will build on Belytschko et
al. (1996a) and give a different perspective from the others.

2. APPROXIMATION IN MESH-FREE METHODS

This section describes the most common approximants in mesh-free methods. We will employ
the name “approximants” rather than interpolants that is often mistakenly used in the mesh-
free literature because as shown later, these approximants usually do not pass through the
data, so they are not interpolants. Meshfree approximants can be classified in two families:
those based on smooth particle hydrodynamics (SPH) and those based on moving least-squares
(MLS). As will be noted in Section 3 the SPH approximants are usually combined with
collocation or point integration techniques, while the MLS approximants are customarily
applied with Galerkin formulations, though collocation techniques are growing in popularity.

2.1. Smooth particle hydrodynamic

2.1.1. The early SPH The earliest mesh-free method is the SPH method, Lucy (1977). The
basic idea is to approximate a function u(x) by a convolution

u(x) ' ũρ(x) :=

∫
Cρ φ

(y − x

ρ

)
u(y) dy, (1)

where φ is a compactly supported function, usually called a window function or weight function,
and ρ is the so-called dilation parameter. The support of the function is sometimes called the
domain of influence. The dilation parameter characterizes the size of the support of φ(x/ρ),
usually by its radius. Cρ is a normalization constant such that

∫
Cρ φ

(y

ρ

)
dy = 1. (2)
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4 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

One way to develop a discrete approximation from (1) is to use numerical quadrature

u(x) ' ũρ(x) ' uρ(x) :=
∑

I

Cρ φ
(xI − x

ρ

)
u(xI)ωI

where xI and ωI are the points and weights of the numerical quadrature. The quadrature
points are usually called particles. The previous equation can also be written as

u(x) ' ũρ(x) ' uρ(x) :=
∑

I

ω(xI ,x)u(xI), (3)

where the discrete window function is defined as

ω(xI ,x) = Cρ φ
(xI − x

ρ

)
.

Thus, the SPH mesh-free approximation can be defined as

u(x) ' uρ(x) =
∑

I

NI(x)u(xI),

with the approximation basis NI(x) = ω(xI ,x).

Remark 1. Note that, in general, uρ(xI) 6= u(xI). That is, the shape functions are not
interpolants, i.e. they do not verify the Kronecker delta property:

NJ (xI) 6= δIJ .

This is common for all particle methods (see Figure 5 for the MLS approximant) and thus
special techniques are needed to impose essential boundary conditions (see Section 3).

Remark 2. The dilation parameter ρ characterizes the support of the approximants NI(x).

Remark 3. In contrast to finite elements, the neighbor particles (particles belonging to a given
support) have to be identified during the course of the computation. This is of special importance
if the domain of support changes in time and requires fast neighbor search algorithms, a crucial
feature for the effectiveness of a mesh-free method, see e.g. Schweitzer (2003).

Remark 4. There is an optimal value for the ratio between the dilation parameter ρ and
the distance between particles h. Figure 1 shows that for a fixed distribution of particles, h
constant, the dilation parameter must be large enough to avoid aliasing (spurious short waves
in the approximated solution). It also shows that an excessively large value for ρ will lead
to excessive smoothing. For this reason, it is usual to maintain a constant ratio between the
dilation parameter ρ and the distance between particles h.

2.1.2. Window functions The window function plays an important role in mesh-free methods.
Other names for the window function are kernel and weight function. The window function
may be defined in various manners. For 1D the most common choices are
Cubic spline:

φ1D(x) = 2





4(|x| − 1)x2 + 2/3 |x| ≤ 0.5

4(1 − |x|)3/3 0.5 ≤|x| ≤ 1

0 1 ≤|x|,
(4)
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Figure 1. SPH approximation functions and approximation of u(x) = 1−x2 with cubic spline window
function, distance between particles h = 0.5 and quadrature weights ωi = h, for ρ/h = 1, 2, 4.

Gaussian:

φ1D(x) =

{ (
exp(−9x2) − exp(−9)

)
/
(
1 − exp(−9)

)
|x| ≤ 1

0 1 ≤ |x|. (5)

The above window function can easily be extended to higher dimensions. For example, in 2D
the most common extensions are

Radial basis function:
φ(x) = φ1D(‖x‖),
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Figure 2. Cubic spline and corrected window function for polynomials of degree 2.

Rectangular supported window function:

φ(x) = φ1D(|x1|)φ1D(|x2|)

where, as usual, x = (x1, x2) and ‖x‖ =
√
x2

1 + x2
2.

2.1.3. Design of window functions In the continuous SPH approximation (1), a window
function φ can easily be modified to exactly reproduce a polynomial space Pm in R of degree
≤ m, i.e.

p(x) =

∫
Cρ φ

(y − x

ρ

)
p(y) dy, ∀ p ∈ Pm. (6)

If the following conditions are satisfied
∫
Cρ φ

(y
ρ

)
dy = 1,

∫
Cρ φ

(y
ρ

)
yj dy = 0 for 0 < j ≤ m

the window function is able to reproduce the polynomial space Pm. Note that the first condition
coincides with (2) and defines the normalization constant, i.e. it imposes the reproducibility
of constant functions. These equations are often referred as consistency conditions although,
a more appropriate term would be completeness conditions.

For example, the window function

φ̃(x) =

(
27

17
− 120

17
x2

)
φ(x), (7)

where φ(x) is the cubic spline, reproduces the second degree polynomial basis {1, x, x2}. Figure
2 shows the cubic spline defined in (4) and the corrected window function (7), see Liu et al.
(1996b) for details.
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Figure 3. Modified cubic splines and particles, h = 0.5, and SPH discrete approximation for u(x) = x
with ρ/h = 2 in an “unbounded domain”.
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Figure 4. Modified cubic splines and particles, h = 0.5, and SPH discrete approximation for u(x) = x
with ρ/h = 2 in a bounded domain.

However, the design of the window function is not trivial in the presence of boundaries
or with nonuniform distributions of particles (see Section 2.2). Figure 3 shows the corrected
cubic spline window functions associated with a uniform distribution of particles, with distance
h = 0.5 between particles and ρ = 2h, and the discrete SPH approximation described by (3) for
u(x) = x with uniform weights ωI = h. The particles outside the interval [−1, 1] are considered
in the approximation, as in an unbounded domain (the corresponding translated window
functions are depicted with green). The linear monomial u(x) = x is exactly reproduced.
However, in a bounded domain, the approximation is not exact near the boundaries when only
the particles in the domain, [−1, 1] are considered in this example, see Figure 4.

Remark 5 (Consistency) If the approximation reproduces exactly a basis of the polynomials
of degree less or equal to m then the approximation is said to have m-order consistency.

2.1.4. Correcting the SPH method The SPH approximation is used in the solution of PDEs,
usually through a collocation technique or point integration approaches, see Monaghan (1982),
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Vila (1999), Bonet and Lok (1999) and Section 3.1. Thus, it is necessary to compute accurate
approximations of the derivatives of the dependent variables. The derivatives provided by
original SPH method can be quite inaccurate, and thus, it is necessary to improve the
approximation, or its derivatives, in some manner.

Randles and Libersky (1996), Krongauz and Belytschko (1998a) and Vila (1999) proposed a
correction of the gradient: the renormalized meshless derivative (RMD). It is an extension of
the partial correction proposed by Johnson and Beissel (1996). Let the derivatives of a function
u be approximated as the derivatives of the SPH approximation defined in (3),

∇u(x) ' ∇uρ(x) =
∑

I

∇ω(xI ,x)u(xI).

The basic idea of the RMD approximation is to define a corrected derivative

Dρu(x) :=
∑

J

B(x)∇ω(xJ ,x)u(xJ ), (8)

where the correction matrix B(x) is chosen such that ∇u(x) = Dρu(x) for all linear
polynomials. In Vila (1999), a symmetrized approximation for the derivatives is defined

Dρ
Su(x) := Dρu(x) −Dρ1(x) u(x), (9)

where, by definition (8),

Dρ1(x) =
∑

J

B(x)∇ω(xJ ,x),

Note that (9) interpolates exactly the derivatives when u(x) is constant. The consistency
condition ∇u(x) = Dρ

Su(x) must be imposed only for linear monomials

B(x) =

[∑

J

∇ω(xJ ,x) (xJ − x)T
]−1

.

If the ratio between the dilation parameter ρ and the distance between particles remains
constant, there are a priori error bounds for the RMD, Dρ

Su, similar to the linear finite
element ones, where ρ plays the role of the element size in finite elements, Vila (1999).

In SPH, the interparticle forces coincide with the vector joining them, so conservation of
linear and angular momentum are met for each point pair. In other words, linear and angular
momentum are conserved locally, see Dilts (1999).

When the kernels are corrected to reproduce linear polynomials or the derivatives of
linear polynomials, these local conservation properties are lost. However, global linear and
translational momentum are conserved if the approximation reproduces linear functions, see
Krongauz and Belytschko (1998a) and Bonet and Lok (1999).

Although the capability to reproduce a polynomial of a certain order is an ingredient in many
convergence proofs of solutions for PDEs, it does not suffice to pass the patch test. Krongauz
and Belytschko (1998b) found that corrected gradient methods do not satisfy the patch test
and exhibit poor convergence when the corrected gradient is used for the test function. They
showed that a Petrov-Galerkin method with Shepard test functions satisfies the patch test.

There are other ways of correcting the SPH method. For example, Bonet and Lok (1999)
combine a correction of the window function, as in the RKPM method (see Section 2.2),

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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and a correction of the gradient to preserve angular momentum. In fact, there are a lot of
similarities between the corrected SPH and the renormalized meshless derivative. The most
important difference between the RMD approach where the 0-order consistency is obtained by
the definition of the symmetrized gradient (8), and the corrected gradient ∇̃uρ is that in this
case 0-order consistency is obtained with the Shepard function.

With a similar rationale, Bonet and Kulasegaram (2000) present a correction of the window
function and an integration corrected vector for the gradients (in the context of metal forming
simulations). The corrected approximation is used in a weak form with numerical integration
at the particles (see Section 3.2). Thus, the gradient must be evaluated only at the particles.
However, usually the particle integration is not accurate enough and the approximation fails
to pass the patch test. In order to obtain a consistent approximation a corrected gradient is
defined. At every particle xI the corrected gradient is computed as

∇̃uρ(xI) = ∇uρ(xI) + γIJuKI

where γI is the correction vector (one component for each spatial dimension) at particle xI and
where the bracket JuKI is defined as JuKI = u(xI) − uρ(xI). These extra parameters, γI , are
determined requiring that the patch test be passed. A global linear system of equations must
be solved to compute the correction vector and to define the derivatives of the approximation;
then, the approximation of u and its derivatives are used to solve the boundary value problem.

2.2. Moving least-squares interpolants

2.2.1. Continuous moving least-squares The objective of the MLS approach is to obtain an
approximation similar to the SPH one (1), with high accuracy even in a bounded domain.
Let us consider a bounded, or unbounded, domain Ω. The basic idea of the MLS approach
is to approximate u(x), at a given point x, through a polynomial least-squares fit of u in
a neighborhood of x. That is, for fixed x ∈ Ω, and z near x, u(z) is approximated with a
polynomial expression

u(z) ' ũρ(z,x) = PT(z) c(x) (10)

where the coefficients c(x) = {c0(x), c1(x), . . . , cl(x)}T are not constant, they depend on
point x, and P(z) = {p0(z), p1(z), . . . , pl(z)}T includes a complete basis of the subspace
of polynomials of degree m. It can also include exact features of a solution, such as cracktip
fields, as described in Ventura et al. (2002). The vector c(x) is obtained by a least-squares fit,
with the scalar product

〈f, g〉x =

∫

Ω

φ
(y − x

ρ

)
f(y) g(y) dy. (11)

That is, the coefficients c are obtained by minimization of the functional J̃x(c) centered in x

and defined by

J̃x(c) =

∫

Ω

φ
(y − x

ρ

)[
u(y) − P(y) c(x)

]2
dy, (12)

where φ
(
(y−x)/ρ

)
is the compact supported weighting function. The same weighting/window

functions as for SPH, given in Section 2.1.2, are used.

Remark 6. Thus, the scalar product is centered at the point x and scaled with the dilation
parameter ρ. In fact, the integration is constructed in a neighborhood of radius ρ centered at
x, that is, in the support of φ

(
(· − x)/ρ

)
.
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Remark 7 (Polynomial space) In one dimension, we can let pi(x) be the monomials xi,
and, in this particular case, l = m. For larger spatial dimensions two types of polynomial
spaces are usually chosen: the set of polynomials, Pm, of total degree ≤ m, and the set of
polynomials, Qm, of degree ≤ m in each variable. Both include a complete basis of the subspace
of polynomials of degree m. This, in fact, characterizes the a priori convergence rate, see Liu
et al. (1997a) or Fernández-Méndez et al. (2003).

The vector c(x) is the solution of the normal equations, that is, the linear system of equations

M(x) c(x) = 〈P, u〉x (13)

where M(x) is the Gram matrix (sometimes called a moment matrix) ,

M(x) =

∫

Ω

φ
(y − x

ρ

)
P(y)PT(y) dy. (14)

From (14) and (10), the least-squares approximation of u in a neighborhood of x is:

u(z) ' ũρ(z,x) = PT(z) M−1(x)〈P, u〉x. (15)

Since the weighting function φ usually favors the central point x, it seems reasonable to assume
that such an approximation is more accurate precisely at z = x and thus the approximation
(15) is particularized at x, that is,

u(x) ' ũρ(x) := ũρ(x,x) =

∫

Ω

φ
(y − x

ρ

)
PT(x) M−1(x) P(y) u(y) dy, (16)

where the definition of the scalar product, equation (11), has been explicitly used. Equation
(16) can be rewritten as

u(x) ' ũρ(x) =

∫

Ω

Cρ(y,x)φ
(y − x

ρ

)
u(y) dy,

which is similar to the SPH approximation, see equation (1), and with the scalar correction
term Cρ(y,x) defined as

Cρ(y,x) := PT(x) M−1(x) P(y).

The function defined by the product of the correction and the window function φ,

Φ(y,x) := Cρ(y,x)φ
(y − x

ρ

)
,

is usually called kernel function. The new correction term depends on the point x and
the integration variable y; it provides an accurate approximation even in the presence of
boundaries, see Liu et al. (1996b) for more details. In fact, the approximation verifies the
following consistency property, see also Wendland (2001).

Proposition 1 (Consistency/reproduciblility property) The MLS approximation ex-
actly reproduces all the polynomials in P.

Proof. The MLS approximation of the polynomials pi(x) is

p̃ρ
i (x) = PT(x) M−1(x) 〈P, pi〉x for i = 0, . . . , l,
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or, equivalently, in vector form

[
P̃ρ

]T

(x) = PT(x) M−1(x)

∫

Ω

φ
(y − x

ρ

)
P(y)PT(y) dy

︸ ︷︷ ︸
M(x)

.

Therefore, using the definition of M, see (14), it is trivial to verify that P̃ρ(x) ≡ P(x). �

2.2.2. Reproducing kernel particle method approximation Application of a numerical
quadrature in (16) leads to the reproducing kernel particle method (RKPM) approximation

u(x) ' ũρ(x) ' uρ(x) :=
∑

I∈Sρ
x

ω(xI ,x)PT(x) M−1(x) P(xI) u(xI),

where ω(xI ,x) = ωI φ
(
(xI − x)/ρ

)
and xI and ωI are integration points (particles) and

weights, respectively. The particles cover the computational domain Ω, Ω ⊂ Rnsd . Let Sρ
x be

the index set of particles whose support include the point x, see Remark 9. This approximation
can be written as

u(x) ' uρ(x) =
∑

I∈Sx

NI(x)u(xI) (17)

where the approximation functions are defined by

NI(x) = ω(xI ,x)PT(x) M−1(x) P(xI). (18)

Remark 8. In order to preserve the consistency/reproducibility property, the matrix M,
defined in (14), must be evaluated with the same quadrature used in the discretization of (16),
see Chen et al. (1996) for details. That is, matrix M(x) must be computed as

M(x) =
∑

I∈Sρ
x

ω(xI ,x)P(xI)P
T(xI). (19)

Remark 9. The sums in (17) and (19) only involve the indices I such that φ(xI ,x) 6= 0, that
is, particles xI in a neighborhood of x. Thus, the set of neighboring particles is defined by the
set of indices

Sρ
x

:= {J such that ‖xJ − x‖ ≤ ρ}.
Remark 10 (Conditions on particle distribution) The matrix M(x) in (19) must be
regular at every point x in the domain. Liu et al. (1997a) discuss the necessary conditions.
In fact, this matrix can be viewed, see Huerta and Fernández-Méndez (2000) or Fernández-
Méndez and Huerta (2002), as a Gram matrix defined with a discrete scalar product

〈f, g〉x =
∑

I∈Sρ
x

ω(xI ,x) f(xI) g(xI). (20)

If this scalar product is degenerated, M(x) is singular. Regularity of M(x) is ensured by having
enough particles in the neighborhood of every point x and avoiding degenerate patterns, that is

(i) card Sρ
x ≥ l + 1.

(ii) @F ∈ span{p0, p1, . . . , pl} \ {0} such that F (xI) = 0 ∀ I ∈ Sρ
x.
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12 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

Condition (ii) is easily verified. For instance, for m = 1 (linear interpolation) the particles
cannot lie in the same straight line or plane for, respectively, 2D and 3D. In 1D, for any value
of m, it suffices that different particles do not have the same position. Under these conditions
one can compute the vector PT(x)M−1(x) at each point and thus determine, from (18), the
shape functions, NI(x).

2.2.3. Discrete MLS: element-free Galerkin approximation The MLS development, already
presented in Section 2.2.1 for the continuous case (i.e. using integrals), can be developed
directly from a discrete formulation. As in the continuous case, the idea is to approximate
u(x), at a given point x, by a polynomial least-squares fit of u in a neighborhood of x. That
is, the same expression presented in (10) can be used, namely for fixed x ∈ Ω, and z near x,
u(z) is approximated with the polynomial expression

u(z) ' uρ(z,x) = PT(z) c(x). (21)

In the framework of the element-free Galerkin (EFG) method, the vector c(x) is also obtained
by a least-squares fit, with the discrete scalar product defined in (20), where ω(xI ,x) is the
discrete weighting function, which is equivalent to the window function

ω(xI ,x) = φ
(xI − x

ρ

)
, (22)

and Sρ
x

is the set of indices of neighboring particles defined in Remark 9. That is, the coefficients
c are obtained by minimization of the discrete functional Jx(c) centered in x and defined by

Jx(c) =
∑

I∈Sρ
x

ω(xI ,x)
[
u(xI) − P(xI) c(x)

]2
. (23)

The normal equations are defined in a similar manner,

M(x) c(x) = 〈P, u〉x, (24)

and the Gram matrix is directly obtained from the discrete scalar product, see equation (19).
After substitution of the solution of (24) in (21), the least-squares approximation of u in a
neighborhood of x is obtained

u(z) ' uρ(z,x) = PT(z)M−1(x)
∑

I∈Sρ
x

ω(xI ,x)P(xI)u(xI). (25)

Particularization of (25) at z = x leads to the discrete MLS approximation of u(x)

u(x) ' uρ(x) := uρ(x,x) =
∑

I∈Sρ
x

ω(xI ,x)PT(x) M−1(x) P(xI)u(xI). (26)

This EFG approximation coincides with the RKPM one described in equations (18) and (19).

Remark 11 (Convergence) Liu et al. (1997a) showed convergence of the RKPM and EFG.
The a priori error bound is very similar to the bound in finite elements. The parameter ρ plays
the role of h, and m (the order of consistency) plays the role of the degree of the approximation
polynomials in the finite element mesh. Convergence properties depend on m and ρ. They do
not depend on the distance between particles because usually this distance is proportional to ρ,
i.e. the ratio between the particle distance over the dilation parameter is of order one, see Liu
et al. (1997a).
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Figure 5. Interpolation functions with ρ/h ' 1 (similar to finite elements) and ρ/h = 2.6, with cubic
spline and linear consistency.

NI (NI)x (NI)xx

Linear FE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−10

−5

0

5

10

Dirac delta
functions

EFG, ρ/h = 3.2

P(x) = {1, x}T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−50

−40

−30

−20

−10

0

10

20

30

EFG, ρ/h = 3.2

P(x) ={1, x, x2}T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−150

−100

−50

0

50

100

Figure 6. Shape function and derivatives for linear finite elements and the EFG approximation.

Remark 12. The approximation is characterized by the order of consistency required, i.e. the
complete basis of polynomials employed in P, and by the ratio between the dilation parameter
and the particle distance, ρ/h. In fact, the bandwidth of the stiffness matrix increases with
the ratio ρ/h (more particles lie inside the circle of radius ρ), see for instance Figure 5. Note
that, for linear consistency, when ρ/h goes to 1, the linear finite element shape functions are
recovered.

Remark 13 (Continuity) If the weight function φ is Ck then the EFG/MLS shape functions,
and the RKPM shape functions, are Ck, see Liu et al. (1997a). Thus, if the window function
is a cubic spline, as shown in Figures 6 and 7, the first and second derivatives of the shape
functions are well defined throughout the domain, even with linear consistency.
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Figure 7. Distribution of particles, EFG approximation function and derivatives, with ρ/h ' 2.2 with
circular supported cubic spline and linear consistency.

2.2.4. Reproducibility of the MLS approximation The MLS shape functions can be also
obtained by imposing a priori the reproducibility properties of the approximation. Consider a
set of particles xI and a complete polynomial base P(x). Let us assume an approximation of
the form

u(x) '
∑

I∈Sρ
x

NI(x)u(xI), (27)

with approximation functions defined as

NI(x) = ω(xI ,x)PT(xI) α(x). (28)

The unknown vector α(x) in Rl+1 is determined imposing the reproducibility condition, which
imposes that the approximation proposed in (27) is exact for all the polynomials in P, namely

P(x) =
∑

J∈Sρ
x

NJ(x)P(xJ). (29)

After substitution of (28) in (29), the linear system of equations that determines α(x) is
obtained

M(x) α(x) = P(x). (30)

That is,
α(x) = M−1(x)P(x), (31)
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where M(x) is the same matrix defined in (19). Finally, the approximation functions NI(x)
are defined by substituting in (28) the vector α, see (31). Note that with this substitution the
expression (18) for the MLS approximation functions is recovered, and consistency is ensured
by construction.

Section 2.2.7 is devoted to some implementation details of the EFG method. In particular,
it is shown that the derivatives of NI(x) can be computed without excessive overhead.

2.2.5. MLS centered and scaled approach For computational purposes, it is usual and
preferable to center in xJ and scale with ρ also the polynomials involved in the definition
of the mesh-free approximation functions, see Liu et al. (1997a) or Huerta and Fernández-
Méndez (2000). Thus, another expression for the EFG shape functions is employed:

NI(x) = ω(xI ,x) PT

(xI − x

ρ

)
α(x), (32)

which is similar to (28). Recall also that typical expressions for the window function are of the
following type: φ(y,x) = φ

(
(y − x)/ρ

)
. The consistency condition becomes in this case:

P(0) =
∑

I∈Sρ
x

NI(x)P
(xI − x

ρ

)
, (33)

which is equivalent to condition (29) when ρ is constant everywhere (see Remark 14 for non
constant ρ). After substitution of (32) in (33) the linear system of equations that determines
α(x) is obtained:

M(x) α(x) = P(0), (34)

where

M(x) =
∑

J∈Sρ
x

ω(xJ ,x) P
(xJ − x

ρ

)
PT

(xJ − x

ρ

)
. (35)

Remark 14. The consistency conditions (29) and (33) are equivalent if the dilation parameter
ρ is constant. When the dilation parameter varies at each particle the same expression for
NI(x) is used, namely equation (28), but the varying dilation parameter, ρI associated to
particle xI , is imbedded in the definition of the weighting function; that is, equation (22) is
modified as follows

ω(xI ,x) = φ
(xI − x

ρI

)
.

Note that a constant ρ is employed in the scaling of the polynomials P. The constant value ρ
is typically chosen as the mean value of all the ρJ . The consistency condition in this case is
also (33). It also imposes the reproducibility of the polynomials in P.

This centered expression for the EFG shape functions can also be obtained with a discrete
MLS development with the discrete centered scalar product

〈f, g〉x =
∑

J∈Sρ
x

ω(xJ ,x) f
(xJ − x

ρ

)
g
(xJ − x

ρ

)
. (36)

The MLS development in this case is as follows: fixed x, for z near x, u is approximated as

u(z) ' uρ(z,x) = PT

(z − x

ρ

)
c(x) (37)

where c is obtained, as usual, through a least-squares fitting with the discrete centered scalar
product (36).
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2.2.6. The diffuse derivative The centered MLS allows, with a proper definition of the
polynomial basis P, the reinterpretation of the coefficients in c(x) as approximations of u
and its derivatives at the fixed point x.

The approximation of the derivative of u in each spatial direction is the corresponding
derivative of uρ. This requires to derive (21), that is

∂u

∂x
' ∂uρ

∂x
=
∂PT

∂x
c + PT

∂c

∂x
. (38)

On one hand, the second term on the r.h.s. is not trivial. Derivatives of the coefficients
c require the resolution of a linear system of equations with the same matrix M. As noted
by Belytschko et al. (1996b) this is not an expensive task, see also Section 2.2.7. However, it
requires the knowledge of the cloud of particles surrounding each point x, and, thus, it depends
on the point where derivatives are evaluated.

On the other hand, the first term is easily evaluated. The derivative of the polynomials in P
is trivial and can be evaluated a priori, without knowledge of the cloud of particles surrounding
each point x.

Villon (1991) and Nayroles et al. (1992) propose the concept of diffuse derivative, which
consists in approximating the derivative only with the first term on the r.h.s. of (38), namely

δuρ

δx
=
∂uρ

∂z

∣∣∣∣
z=x

=
∂PT

∂z

∣∣∣∣
z=x

c(x) =
∂PT

∂x
c(x).

From a computational cost point of view, this is an interesting alternative to (38). Moreover,
the following proposition ensures convergence at optimal rate of the diffuse derivative.

Proposition 2. If uρ is an approximation to u with an order of consistency m (i.e., P includes
a complete basis of the subspace of polynomials of degree m) and ρ/h is constant, then

∥∥∥∥
∂|k|u

∂xk
− δ|k|uρ

δxk

∥∥∥∥
∞

≤ C(x)
ρm+1−|k|

(m+ 1)!
∀|k| = 0, . . . ,m. (39)

where k is a multi-index, k = (k1, k2, . . . , knsd) and |k| = k1 + k2 + · · · + knsd.

The proof can be found in Villon (1991) for 1D or Huerta et al. (2004a) for higher spatial
dimensions. To clearly identify the coefficients of c with the approximations of u and its
derivatives the basis in P should be written appropriately. That is, each component of P is
Pα(ξ) = ξα/α! for |α| = 0, . . . ,m, where a standard a multi-index notation is employed,

hα := hα1

1 hα2

2 · · ·hαnsd

nsd
; α! := α1!α2! · · ·αnsd

!; |α| = α1 + α2 + · · · + αnsd
.

Finally, it is important to emphasize the requirements that M is regular and bounded (see
Huerta et al., 2002; Fernández-Méndez and Huerta, 2002; Fernández-Méndez et al., 2003).

Remark 15. For example, in 1D with consistency of order two, i.e. P(x) = {1, ρx, (ρx)2/2},
the expression (37) can be written as

u(z) ' uρ(z, x) = c0(x) + c1(x)(z − x) + c2(x)(z − x)2/2. (40)

Thus, deriving with respect to z and imposing z = x,

u(x) ' c0(x), u′(x) ' c1(x) and u′′(x) ' c2(x).
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In fact, this strategy is at the basis of the diffuse element method : the diffuse derivative is used
in the weak form of the problem (see Nayroles et al., 1992; Breitkopf et al., 2001). Moreover,
the generalized finite difference interpolation or meshless finite difference method, see Orkisz
(1998), coincides also with this MLS development. The only difference between the generalized
finite difference interpolation and the EFG centered interpolation is the definition of the set
of neighboring particles Sρ

x
.

2.2.7. Direct evaluation of the derivatives Another alternative to compute the derivatives is
to fully derive the expression for the shape function (28), see (38), taking into account the
dependencies given by equations (30) and (19). The details can found in the references by
Belytschko et al. (1996a,1996b).

For clarity the 1D case is developed, x ∈ R, for higher dimensions the process is repeated
for each component of x. The derivative of the shape function (28) can be written as

dNI

dx
(x) = ω(xI , x)P

T(xI)
dα

dx
(x) +

dω(xI , x)

dx
PT(xI) α(x). (41)

The derivative of the weighting function is easily obtained because ω(xI , x) has usually known
analytical expressions, see (22) and Section 2.1.2. The a priori not trivial part is the evaluation
of dα/dx, but an expression for this vector can be obtained by implicit derivation of (30),

Mx(x)α(x) + M(x)
dα

dx
(x) =

dP

dx
(x),

where matrix Mx is the derivative of matrix M,

Mx(x) =
∑

J

dω(xJ , x)

dx
P(xJ)PT(xJ ),

which is trivial to compute. Thus, dα/dx is the solution of the linear system of equations

M(x)
dα

dx
(x) =

dP

dx
(x) − Mx(x)α(x),

which represents another linear system of equations with the same matrix that in (30) (the
factorization of M can be reused) and a new independent term. Moreover, the product
Mx(x)α(x) can be computed in an efficient way as

Mx(x)α(x) =
∑

J

dω(xJ , x)

dx
P(xJ )

[
PT(xJ )α(x)

]
,

involving only vector operations.
In summary, the evaluation of the derivatives of the shape functions, see (41), requires little

extra computer cost and, moreover, higher order derivatives can also be computed repeating the
same process, it only depends on the regularity of ω(xI , x). Obviously, the same development
can be done for the centered and scaled approach defined in Section 2.2.5.

2.2.8. Partition of the unity methods The set of MLS approximation functions can be viewed
as a partition of unity: the approximation verifies, at least, the 0-order consistency condition
(reproducibility of the constant polynomial p(x) = 1)

∑

I

NI · 1 = 1.
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This viewpoint leads to new approximations for mesh-free methods. Based on the partition of
the unity finite element method (PUFEM) proposed by Babuška and Melenk (1995), Duarte
and Oden (1996a) use the concept of partition of unity to construct approximations with
consistency of order k ≥ 1. They called their method h-p clouds. The approximation is

u(x) ' uρ(x) =
∑

I

NI(x)uI +
∑

I

nI∑

i=1

bIi

[
NI(x) qIi(x)

]
,

where NI(x) are the MLS approximation functions, qIi are nI polynomials of degree greater
than k associated to each particle xI , and uI , bIi are coefficients to determine. Note that the
polynomials qIi(x) increase the order of the approximation space. These polynomials can be
different from particle to particle, thus facilitating the hp-adaptivity.

Remark 16. As commented in Belytschko et al. (1996a), the concept of an extrinsic basis,
qIi(x), is essential for obtaining p-adaptivity. In MLS approximations, the intrinsic basis P
cannot vary form particle to particle without introducing a discontinuity.

3. DISCRETIZATION OF PARTIAL DIFFERENTIAL EQUATIONS

All the approximation functions described in the previous section can be used in the solution
of a PDE boundary value problem. Usually SPH methods are combined with collocation or
point integration technique, while the approximations based on MLS are usually combined
with a Galerkin discretization.

A large number of published methods with minor differences exist. Probably, the best known,
among those using MLS approximation, are: the meshless (generalized) finite difference method
(MFDM) developed by Liszka and Orkisz (1980), the diffuse element method (DEM) by
Nayroles et al. (1992), the element-free Galerkin (EFG) method by Belytschko et al. (1994), the
reproducing kernel particle method (RKPM) by Liu et al. (1995a), the meshless local Petrov-
Galerkin (MLPG) by Zhu and Atluri (1998), the corrected smooth particle hydrodynamics
(CSPH) by Bonet and Lok (1999) and the finite point method (FPM) by Oñate and Idelsohn
(1998). Table I classifies these methods depending on the evaluation of the derivatives (see
Sections 2.2.6 and 2.2.7) and how the PDE is solved (Galerkin, Petrov-Galerkin, point
collocation).

Partition of unity methods can be implemented with Galerkin, Petrov-Galerkin, etc. For
instance, the h−p clouds by Duarte and Oden (1996a) use a Galerkin weak form with accurate
integration, while the finite spheres by De and Bathe (2000) uses Shepard functions (with
circular/spherical support) enriched with polynomials and a Galerkin weak form with specific
quadratures for spherical domains (and particular/adapted quadratures near the boundary);
almost identical to h-p clouds Duarte and Oden (1996a).

In order to discuss some of these methods in more detail, the model boundary value problem

∆u− u = −f in Ω (42a)

u = uD on ΓD (42b)

∂u

∂n
= gN on ΓN (42c)
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Table I. Classification of MLS based mesh-free methods for PDE’s

Evaluation of derivatives

Consistent Diffuse

Gauss EFG MFDM
quadrature RKPM DEM

Galerkin

particle CSHP∗

quadrature

Petrov-Galerkin MLPG

Point Collocation FPM

∗ Consistent and global evaluation of derivatives.

is considered, where ∆ is the Laplace operator in 2D, ∆· = ∂2·/∂x2 +∂2·/∂y2, n is the unitary
outward normal vector on ∂Ω, ∂/∂n is the normal derivative, ∂·/∂n = n1 ∂·/∂x + n2 ∂·/∂y,
Γ̄D

⋃
Γ̄N = ∂Ω, and f , uD and gN are known.

Remark 17. A major issue in the implementation of mesh-free methods is the identification
(localization) of the neighboring particles. That is, given a point x in the domain, identify
which particles have a non-zero shape function at this point, i.e. determine the xI such that
φ
(
(xI − x)/ρ

)
6= 0 to define Sρ

x.

There are several options. The usual ones consist in determining the closest particles to the
point of interest (see Randles and Libersky, 2000) or to use a non conforming regular mesh of
squares or cubes (cells) parallel to the cartesian axes. For every cell, the indices of the particles
inside the cell are stored. The regular structure of the cell mesh allows to find, given a point
x, the cell where x is located and thus, determine the neighboring particles just looking in the
neighboring cells. Fast algorithms for finding neighboring particles can be found in the book by
Schweitzer (2003).

3.1. Collocation methods

Consider an approximation, based on a set of particles {xI}, of the form

u(x) ' uρ(x) =
∑

I

uI NI(x).

The shape functionsNI(x) can be SPH shape functions (Section 2.1.1), or MLS shape functions
(Section 2.2), and uI are coefficients to be determined.

In collocation methods, see Oñate and Idelsohn (1998) or Aluru (2000), the PDE (42a) is
imposed at each particle in the interior of the domain Ω, the boundary conditions (42b) and
(42c) are imposed at each particle of the corresponding boundary. In the case of the model
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problem, this leads to the linear system of equations for the coefficients uI :




∑

I

uI

[
∆NI(xJ) −NI(xJ )

]
= −f(xJ ) ∀xJ ∈ Ω,

∑

I

uI NI(xJ) = uD(xJ) ∀xJ ∈ ΓD,

∑

I

uI
∂NI

∂n
(xJ) = gN (xJ) ∀xJ ∈ ΓN .

Note that, the shape functions must be C2, and thus, a C2 window function must be used. In
this case the solution at particle xJ is approximated by

u(xJ) ' uρ(xJ) =
∑

I

uINI(xJ),

which in general differs from the coefficient uJ (see Remark 1).
In the context of the renormalized meshless derivative (see Vila, 1999) the coefficient uJ is

considered as the approximation at the particle xJ and only the derivative of the solution is
approximated through the RMD, see (9). Thus, the linear system to be solved becomes





∑

I

uI ∆NI(xJ) − uJ = −f(xJ) ∀xJ ∈ Ω,

uJ = uD(xJ) ∀xJ ∈ ΓD,
∑

I

uI
∂NI

∂n
(xJ) = gN (xJ) ∀xJ ∈ ΓN .

Both possibilities are slightly different from the SPH method by Monaghan (1988) or from
SPH methods based on particle integration techniques Bonet and Kulasegaram (2000).

3.2. Methods based on a Galerkin weak form

The mesh-free shape functions can also be used in the discretization of the weak integral form
of the boundary value problem. For the model problem (42), the Bubnov-Galerkin weak form
(also used in the finite element method) is

∫

Ω

∇v∇u dΩ +

∫

Ω

v u dΩ =

∫

Ω

v f dv +

∫

ΓN

v gN dΓ ∀v,

where v vanishes at ΓD and u = uD at ΓD. However, this weak form can not be directly
discretized with a standard mesh-free approximation. The shape functions do not verify the
Kronecker delta property (see Remark 1) and thus, it is difficult to select v such that v = 0
at ΓD and to impose that uρ = uD at ΓD. Specific techniques are needed in order to impose
Dirichlet boundary conditions. Section 3.3 describes to the treatment of essential boundary
conditions in mesh-free methods.

An important issue in the implementation of a mesh-free method with a weak form is the
evaluation of integrals in the weak form (the concept of finite element, with a numerical
quadrature in each element can not be adopted directly).

Several possibilities can be considered to evaluate integrals in the weak form: (1) the particles
can be the quadrature points (particle integration), (2) a regular cell structure (for instance,
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the same used for the localization of particles) can be used with numerical quadrature in each
cell (cell integration) or (3) a, not necessary regular, background mesh can be used to compute
integrals. The first possibility (particle integration) is the fastest, but as in collocation methods
it can result in rank deficiency. Bonet and Kulasegaram (2000) propose a global correction to
obtain accurate and stable results with particle integration. The other two possibilities present
the disadvantage that, since shape functions and their derivatives, are not polynomials, the
number of integration points leads to high computational costs. Nevertheless, the cell structure
or the coarse background mesh, which do not need to be conforming, are easily generated and
these techniques ensure an accurate approximation of the integrals.

3.3. Essential boundary conditions

Many specific techniques have been developed in the recent years in order to impose essential
boundary conditions in mesh-free methods. Some possibilities are: (1) Lagrange multipliers
(Belytschko et al., 1994), (2) modified variational principles (Belytschko et al., 1994), (3)
penalty methods (Zhu and Atluri, 1998; Bonet and Kulasegaram, 2000), (4) perturbed
Lagrangian (Chu and Moran, 1995), (5) coupling to finite elements (Belytschko et al., 1995;
Huerta and Fernández-Méndez, 2000; Wagner and Liu, 2001), or (6) modified shape functions
(Gosz and Liu, 1996; Günter and Liu, 1998; Wagner and Liu, 2000) among others.

The first attempts to define shape functions with the “delta property” along the boundary
(see Gosz and Liu, 1996), namely NI(xJ) = δIJ for all xJ in ΓD, have serious difficulties for
complex domains and for the integration of the weak forms.

In the recent years, mixed interpolations that combine finite elements with mesh-free
methods have been developed. Mixed interpolations can be quite effective for imposing essential
boundary conditions. The idea is to use one or two layers of finite elements next to the Dirichlet
boundary and use a mesh-free approximation in the rest of the domain. Thus, the essential
boundary conditions can be imposed as in standard finite elements. In Belytschko et al. (1995)
a mixed interpolation is defined in the transition area (from the finite elements region to the
particles region). This mixed interpolation requires the substitution of finite element nodes by
particles and the definition of ramp functions. Thus, the transition is of the size of one element
and the interpolation is linear. Following this idea, Huerta and Fernández-Méndez (2000)
propose a more general mixed interpolation, with any order of interpolation, with no need for
ramp functions and no substitution of nodes by particles. This is done preserving consistency
and continuity of the solution. Figure 8 shows an example of this mixed interpolation in 1D: two
finite element nodes are considered at the boundary of the domain, with their corresponding
shape functions in blue, and the mesh-free shape functions are modified in order to preserve
consistency, in black. The details of this method are presented in Section 6.

3.3.1. Methods based on a modification of the weak form For the sake of clarity, the following
model problem is considered 




−∆u = f in Ω

u = uD on ΓD

∇u · n = gN on ΓN

(43)

where Γ̄D∪Γ̄N = ∂Ω, Γ̄D∩Γ̄N = ∅ and n is the outward unit normal on ∂Ω. The generalization
of the following developments to other PDEs is straightforward.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Figure 8. Mixed interpolation with linear finite element nodes near the boundary and particles in the
interior of the domain, with ρ/h = 3.2, cubic spline and linear consistency in all the domain.

The weak problem form of (43) is “find u ∈ H1(Ω) such that u = uD on ΓD and
∫

Ω

∇v · ∇u dΩ −
∫

ΓD

v∇u · n dΓ =

∫

Ω

vf dΩ +

∫

ΓN

vgN dΓ, (44)

for all v ∈ H1(Ω)”. In the finite element method, the interpolation of u can easily be forced
to verify the essential boundary condition, and the test functions v can be chosen such that
v = 0 on ΓD (see Remark 18), leading to the following weak form: “find u ∈ H1(Ω) such that
u = uD on ΓD and ∫

Ω

∇v · ∇u dΩ =

∫

Ω

vf dΩ +

∫

ΓN

vgN dΓ, (45)

for all v ∈ H1
0(Ω)”, where H1

0(Ω) = {v ∈ H1(Ω) | v = 0 on ΓD}.
Remark 18. In the finite element method, or in the context of the continuous blending method
discussed in Section 6, the approximation can be written as

u(x) '
∑

j /∈B

ujNj(x) + ψ(x) (46)

where Nj(x) denote the shape functions, ψ(x) =
∑

j∈B uD(xj)Nj(x), and B is the set of indexes
of all nodes on the essential boundary. Note that, due to the Kronecker delta property of the
shape functions for i ∈ B, and the fact that Ni ∈ H1

0(Ω) for i /∈ B, the approximation defined
by (46) verifies u = uD at the nodes on the essential boundary. Therefore, approximation (46)
and v = Ni, for i /∈ B, can be considered for the discretization of the weak form (45). Under
these circumstances, the system of equations becomes

Ku = f , (47)

where

Kij =

∫

Ω

∇Ni · ∇Nj dΩ,

fi =

∫

Ω

Nif dΩ +

∫

Ω

Niψ dΩ +

∫

ΓN

NigN dΓ,

(48)

and u is the vector of coefficients ui.
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However, for standard mesh-free approximation, the shape functions do not verify the
Kronecker delta property and Ni /∈ H1

0(Ω) for i /∈ B. Therefore, imposing u = uD and v = 0
on ΓD is not as straightforward as in finite elements or as in the blending method (Belytschko
et al., 1995), and the weak form defined by (45) cannot be used. The most popular methods
that modify the weak form to overcome this problem are: the Lagrange multiplier method, the
penalty method and Nitsche’s method.

3.3.2. Lagrange multiplier method The solution of problem (43) can also be obtained as the
solution of a minimization problem with constraints: “u minimizes the energy functional

Π(v) =
1

2

∫

Ω

∇v · ∇v dΩ −
∫

Ω

vf dΩ −
∫

ΓN

vgN dΓ, (49)

and verifies the essential boundary conditions.” That is,

u = arg min
v∈H1(Ω)

v=uD on ΓD

Π(v). (50)

With the use of a Lagrange multiplier, λ(x) , this minimization problem can also be written
as

(u, λ) = arg min
v∈H1(Ω)

max
γ∈H−1/2(ΓD)

Π(v) +

∫

ΓD

γ(v − uD) dΓ.

This min-max problem leads to the following weak form with Lagrange multiplier, “find
u ∈ H1(Ω) and λ ∈ H−1/2(ΓD) such that

∫

Ω

∇v · ∇u dΩ +

∫

ΓD

vλ dΓ =

∫

Ω

vf dΩ +

∫

ΓN

vgN dΓ, ∀ v ∈ H1(Ω) (51a)

∫

ΓD

γ(u− uD) dΓ = 0, ∀ γ ∈ H− 1
2 (ΓD).” (51b)

Remark 19. Equation (51b) imposes the essential boundary condition, u = uD on ΓD, in
weak form.

Remark 20. The physical interpretation of the Lagrange multiplier can be seen by simple
comparison of equations (51a) and (44): the Lagrange multiplier corresponds to the flux
(traction in a mechanical problem) along the essential boundary, λ = −∇u · n.

Considering now the approximation u(x) ' ∑
iNi(x)ui, with mesh-free shape functions Ni,

and an interpolation for λ with a set of boundary functions {NL
i (x)}`

i=1,

λ(x) '
∑̀

i=1

λiN
L
i (x) for x ∈ ΓD, (52)

the discretization of (51) leads to the system of equations
(
K AT

A 0

) (
u
λ

)
=

(
f
b

)
, (53)

where K and f are already defined in (48) (use ψ = 0), λ is the vector of coefficients λi, and

Aij =

∫

ΓD

NL
i Nj dΓ, bi =

∫

ΓD

NL
i uD dΓ.
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There are several possibilities for the choice of the interpolation space for the Lagrange
multiplier λ. Some of them are (1) a finite element interpolation on the essential boundary,
(2) a mesh-free approximation on the essential boundary or (3) the same shape functions
used in the interpolation of u restricted along ΓD, i.e. NL

i = Ni for i such that Ni|ΓD
6= 0.

However, the most popular choice is the point collocation method. This method corresponds
to NL

i (x) = δ(x − xL
i ), where {xL

i }`
i=1 is a set of points along ΓD and δ is the Dirac delta

function. In that case, by substitution of γ(x) = δ(x− xL
i ), equation (51b) corresponds to

u(xL
i ) = uD(xL

i ), for i = 1 . . . `.

That is, Aij = Nj(x
L
i ), bi = uD(xL

i ), and each equation of Au = b in (53) corresponds to the
enforcement of the prescribed value at one collocation point, namely xL

i .

Remark 21. The system of equations (53) can also be derived from the minimization in Rndof

of the discrete version of the energy functional (49) subject to the constraints corresponding
to the essential boundary conditions, Au = b. In fact, there is no need to know the weak
form with Lagrange multiplier, it is sufficient to define the discrete energy functional and the
restrictions due to the boundary conditions in order to determine the system of equations.

Therefore, the Lagrange multiplier method is, in principle, general and easily applicable to
all kind of problems. However, the main disadvantages of the Lagrange multiplier method are:

1. The dimension of the resulting system of equations is increased.
2. Even for K symmetric and semi-positive definite, the global matrix in (53) is symmetric

but it is no longer positive definite. Therefore, standard linear solvers for symmetric and
positive definite matrices can not be used.

3. More crucial is the fact that the system (53) and the weak problem (51) induce a saddle
point problem which precludes an arbitrary choice of the interpolation space for u and
λ. The resolution of the multiplier λ field must be fine enough in order to obtain an
acceptable solution, but the system of equations will be singular if the resolution of
Lagrange multipliers λ field is too fine. In fact, the interpolation spaces for the Lagrange
multiplier λ and for the principal unknown u must verify an inf-sup condition, known
as the Babuska-Brezzi stability condition, in order to ensure the convergence of the
approximation (see Babuska, 1973a or Brezzi, 1974 for details).

The first two disadvantages can be neglected in view of the versatility and simplicity of the
method. However, while in the finite element method it is trivial to chose the approximation for
the Lagrange multiplier in order to verify the Babuska-Brezzi stability condition and to impose
accurate essential boundary conditions, this choice is not trivial for mesh-free methods. In fact,
in mesh-free methods the choice of an appropriate interpolation for the Lagrange multiplier
can be a serious problem in particular situations.

These properties are observed in the resolution of the 2D linear elasticity problem represented
in Figure 9. Where the solution obtained with a regular mesh of 30 × 30 biquadratic finite
elements is also shown. The distance between particles is h = 1/6 and a finer mesh is used for
the representation of the solution.

Figure 10 shows the solution obtained for the Lagrange multiplier method. The prescribed
displacement is imposed at some collocation points at the essential boundary (marked with
black squares). Three possible distributions for the collocation points are considered. In the
first one the collocation points correspond to the particles located at the essential boundary.
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Figure 9. Problem statement and solution with 30 × 30 biquadratic finite elements (61 × 61 nodes)
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Figure 10. Solution with Lagrange multipliers for three possible distributions of collocation points
(black squares) and 7 × 7 particles

The prescribed displacement is exactly imposed at the collocation points, but not along the
rest of the essential boundary. Note that the displacement field is not accurate because of the
smoothness of the mesh-free approximation. But if the number of collocation points is too
large the inf-sup condition is no longer verified and the stiffness system matrix is singular.
This is the case of discretization (c) which corresponds to double the density of collocation
points along the essential boundary. In this example, the choice of a proper interpolation for
the Lagrange multiplier is not trivial. Option (b) represents a distribution of collocation points
that imposes the prescribed displacements in a correct manner and, at the same time, leads to
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a regular matrix. Similar results are obtained if the Lagrange multiplier is interpolated with
boundary linear finite elements (see Fernández-Méndez and Huerta, 2004).

Therefore, although imposing boundary constraints is straightforward with the Lagrange
multiplier method, the applicability of this method in particular cases is impaired due to the
difficulty in the selection of a proper interpolation space for the Lagrange multiplier. It is
important to note that the choice of the interpolation space can be even more complicated for
an irregular distribution of particles.

3.3.3. Penalty method The minimization problem with constraints defined by (50) can also
be solved with the use of a penalty parameter. That is,

u = arg min
v∈H1(Ω)

Π(v) +
1

2
β

∫

ΓD

(v − uD)2 dΓ. (54)

The penalty parameter β is a positive scalar constant that must be large enough to accurately
impose the essential boundary condition. The minimization problem (54) leads to the following
weak form: “find u ∈ H1(Ω) such that

∫

Ω

∇v · ∇u dΩ + β

∫

ΓD

vu dΓ =

∫

Ω

vf dΩ +

∫

ΓN

vgN dΓ + β

∫

ΓD

vuD dΓ, (55)

for all v ∈ H1(Ω)”. The discretization of this weak form leads to the system of equations

(K + βMp)u = f + βfp, (56)

where K and f are defined in (48) (use ψ = 0) and

Mp
ij =

∫

ΓD

NiNj dΓ, fp
i =

∫

ΓD

NiuD dΓ.

Remark 22. The penalty method can also be obtained from the minimization of the discrete
version of the energy functional in Rndof , subjected to the constraints corresponding to the
essential boundary condition, Au = b.

Like the Lagrange multiplier method, the penalty method is easily applicable to a wide range of
problems. The penalty method presents two clear advantages: (i) the dimension of the system
is not increased and (ii) the matrix in the resulting system, see equation (56), is symmetric
and positive definite, provided that K is symmetric and β is large enough.

However, the penalty method also has two important drawbacks: the Dirichlet boundary
condition is weakly imposed (the parameter β controls how well the essential boundary
condition is met) and the matrix in (56) is often poorly conditioned (the condition number
increases with β)

A general theorem on the convergence of the penalty method and the choice of the penalty
parameter β can be found in Babuska (1973b) and Babuska et al. (2002). For an interpolation
with consistency of order p and discretization measure h (i.e. the characteristic element size in
finite elements or the characteristic distance between particles in a mesh-free method) the best

error estimate obtained by Babuska (1973b) gives a rate of convergence of order h
2p+1

3 in the

energy norm, provided that the penalty β is taken to be of order h− 2p+1

3 . In the linear case, it
corresponds to the optimal rate of convergence in the energy norm. For order p ≥ 2, the lack
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Figure 11. Penalty method solution (top) and error (bottom) for β = 10 (left), β = 100 (center) and
β = 103 (right)

of optimality in the rate of convergence is a direct consequence of the lack of consistency of
the weak formulation (see Arnold et al., 2001/02 and Remark 23).

These properties can be observed in the following Laplace 2D problem



∆u = 0 (x, y) ∈ ]0, 1[×]0, 1[

u(x, 0) = sin(πx)

u(x, 1) = u(0, y) = u(1, y) = 0

with analytical solution (see Wagner and Liu, 2000),

u(x, y) = [cosh(πy) − coth(πy) sinh(πy)] sin(πx).

A distribution of 7 × 7 particles is considered, i.e. the distance between particles is h = 1/6.
Figure 11 shows the solution for increasing values of the penalty parameter β. The penalty

parameter must be large enough, β ≥ 103, in order to impose the boundary condition in
an accurate manner. Figure 12 shows convergence curves for different choices of the penalty
parameter. The penalty method converges with a rate close to 2 in the L2 norm if the penalty
parameter β is proportional to h−2. If the penalty parameter is constant, or proportional to
h−1, the boundary error dominates and the optimal convergence rate is lost as h goes to zero.

Figure 12 also shows the matrix condition number for increasing values of the penalty
parameter, for a distribution of 11 × 11 and 21 × 21 particles. The condition number grows
linearly with the penalty parameter. Note that, for instance, for a discretization with 21 × 21
a reasonable value for the penalty parameter is β = 106 which corresponds to a condition
number near 1012. Obviously, the situation gets worse for denser discretizations, which need
larger penalty parameters. The ill-conditioning of the matrix reduces the applicability of the
penalty method.
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Figure 12. Evolution of the L
2(Ω) error norm for the penalty method and matrix condition number

3.3.4. Nitsche’s method Nitsche’s weak form for problem (43) is
∫

Ω

∇v · ∇u dΩ −
∫

ΓD

v∇u · n dΓ −
∫

ΓD

∇v · nu dΓ + β

∫

ΓD

vu dΓ

=

∫

Ω

vf dΩ +

∫

ΓN

vgN dΓ −
∫

ΓD

∇v · nuD dΓ + β

∫

ΓD

v uD dΓ,

(57)

where β is a positive constant scalar parameter (see Arnold et al., 2001/02; Nitsche, 1970).
Comparing with the weak form defined by (44), the new terms in the l.h.s. of (57) are∫

ΓD
u∇v · n dΓ, which recovers the symmetry of the bilinear form, and β

∫
ΓD

vu dΓ, that

ensures the coercivity of the bilinear form (i.e. the matrix corresponding to its discretization
is positive definite) provided that β is large enough. The new terms in the r.h.s. are added to
ensure consistency of the weak form.

The discretization of the Nitsche’s weak form leads to a system of equations with the same
size as K and whose matrix is symmetric and positive definite, provided that K is symmetric
and β is large enough. Although, as in the penalty method, the condition number of this
matrix increases with parameter β, in practice not very large values are needed in order to
ensure convergence and a proper implementation of the boundary condition.

Remark 23. Nitsche’s method can be interpreted as a consistent improvement of the penalty
method. The penalty weak form (55) is not consistent, in the sense that the solution of (43)
does not verify the penalty weak form for trial test functions that do not vanish at ΓD (see
Arnold et al., 2001/02). Nitsche’s weak form keeps the term

∫
ΓD

v∇u·n dΓ from the consistent

weak form (44), and includes new terms maintaining the consistency.

The only problem of Nitsche’s method is the deduction of the weak form. The generalization
of the implementation for other problems is not as straightforward as for the method of
Lagrange multipliers or for the penalty method. The weak form and the choice of parameter
β depends not only on the partial differential equation, but also on the essential boundary
condition to be prescribed. Nitsche’s method applied to other problems is discussed by Nitsche
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Figure 13. Nitsche’s solution, 7 × 7 distribution of particles, for β = 100 (left) and β = 104 (right)

(1970), by Becker (2002) for the Navier-Stokes problem, by Freud and Stenberg (1995) for the
Stokes problem, by Hansbo and Larson (2002) for elasticity problems.

Regarding the choice of the parameter, Nitsche proved that if β is taken as β = α/h,
where α is a large enough constant and h denotes the characteristic discretization measure,
then the discrete solution converges to the exact solution with optimal order in H1 and L2

norms. Moreover, for model problem (43) with Dirichlet boundary conditions, ΓD = ∂Ω, a
value for constant α can be determined taking into account that convergence is ensured if
β > 2C2, where C is a positive constant such that ‖∇v · n‖L2(∂Ω) ≤ C‖∇v‖L2(Ω) for all v in
the chosen interpolation space. This condition ensures the coercivity of the bilinear form in
the interpolation space. Griebel and Schweitzer (2002) propose the estimation of the constant
C as the maximum eigenvalue of the generalized eigenvalue problem,

Av = λBv, (58)

where

Aij =

∫

∂Ω

(∇Ni · n)(∇Nj · n) dΓ, Bij =

∫

Ω

∇Ni · ∇Nj dΩ.

The problem described in Figure 9 can be solved by Nitsche’s method for different values
of β, see Figure 13. Note that the modification of the weak form is not trivial in this case,
see Fernández-Méndez and Huerta (2004). The major advantage of Nitsche’s method is that
scalar parameter β need not be as large as in the penalty method, and avoids to meet the LBB
condition for the interpolation space for the Lagrange multiplier.

3.4. Incompressibility and volumetric locking in mesh-free methods

Locking in finite elements has been a major concern since its early developments. It appears
because poor numerical interpolation leads to an over-constrained system. Locking of standard
finite elements has been extensively studied. It is well known that bilinear finite elements
lock in some problems and that biquadratic elements have a better behavior (Hughes, 2000).
Moreover, locking has also been studied for increasing polynomial degrees in the context of an
hp adaptive strategy, see Suri (1996).

In fact, locking is used in the context of solid mechanics. It is a concern for nearly
incompressible materials. Recall that in plasticity the material is incompressible (Belytschko
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et al., 2000). For instance, let’s consider a linear elastic isotropic material under plane strain
conditions and small deformations, namely ∇

su, where u is the displacement and ∇
s the

symmetric gradient, i.e. ∇
s = 1

2

(
∇

T +∇
)
. Dirichlet boundary conditions are imposed on ΓD,

a traction h is prescribed along the Neumann boundary ΓN and there is a body force f . Thus,
the problem that needs to be solved may be stated as: solve for u ∈ [H1

ΓD
]2 such that

E

1 + ν

∫

Ω

∇
sv : ∇

su dΩ +
Eν

(1 + ν)(1 − 2ν)

∫

Ω

(∇ · v) (∇ · u) dΩ

=

∫

Ω

f · v dΩ +

∫

ΓN

h · v dΓ ∀v ∈ [H1
0,ΓD

]2. (59)

In this equation, the standard vector subspaces of H1 are employed for the solution u,
[H1

ΓD
]2 :=

{
u ∈ [H1]2 | u = uD on ΓD

}
(Dirichlet conditions, uD, are automatically satisfied)

and for the test functions v, [H1
0,ΓD

]2 :=
{
v ∈ [H1]2 | v = 0 on ΓD

}
, (zero values are imposed

along ΓD).
This equation, as discussed by Suri (1996), shows the inherent difficulties of the

incompressible limit. The standard a priori error estimate emanating from (59) and based
on the energy norm may become unbounded for values of ν close to 0.5. In fact, in order
to have finite values of the energy norm the divergence-free condition must be enforced in
the continuum case, i.e. ∇ · u = 0 for u ∈ [H1

ΓD
]2, and also in the finite approximation

dimensional space. In fact, locking will occur when the approximation space is not rich enough
for the approximation to verify the divergence-free condition.

In fluids, the incompressibility is directly the concern. Accurate and efficient modelling of
incompressible flows is an important issue in finite elements. The continuity equation for an
incompressible fluid takes a peculiar form. It consists of a constraint on the velocity field which
must be divergence free. Then, the pressure has to be considered as a variable not related to any
constitutive equation. Its presence in the momentum equation has the purpose of introducing
an additional degree of freedom needed to satisfy the incompressibility constraint. The role of
the pressure variable is thus to adjust itself instantaneously in order to satisfy the condition
of divergence-free velocity. That is, the pressure is acting as a Lagrange multiplier of the
incompressibility constraint and thus there is a coupling between the velocity and the pressure
unknowns.

Various formulations have been proposed for incompressible flow (Girault and Raviart, 1986;
Gresho and Sani, 2000; Gunzburger, 1989; Pironneau, 1989; Quartapelle, 1993; Quarteroni and
Valli, 1994; Temam, 2001; Donea and Huerta, 2003). Mixed finite elements present numerical
difficulties caused by the saddle-point nature of the resulting variational problem. Solvability
of the problem depends on a proper choice of finite element spaces for velocity and pressure.
They must satisfy a compatibility condition, the so-called LBB (or inf-sup) condition. If this
is not the case, alternative formulations (usually depending on a numerical parameter) are
devised to circumvent the LBB condition and enable the use of velocity–pressure pairs that
are unstable in the standard Galerkin formulation.

Incompressibility in mesh-free methods is still an open topic. Even recently, it was claimed
(Zhu and Atluri, 1998) that meshless methods do not exhibit volumetric locking. Now it is
clear that this is not true, as shown in a study of the element free Galerkin (EFG) method by
Dolbow and Belytschko (1999). Moreover, several authors claim that increasing the dilation
parameter locking phenomena in mesh-free methods can be suppressed, or at least attenuated
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(Askes et al., 1999; Dolbow and Belytschko, 1999; Chen et al., 2000). Huerta and Fernández-
Méndez (2001) clarify this issue and determine the influence of the dilation parameter on
the locking behavior of EFG near the incompressible limit by a modal analysis. The major
conclusions are:
1.- The number of non-physical locking modes is independent of the ratio ρ/h.
2.- An increase of the dilation parameter decreases the eigenvalue (amount of energy) in

the locking mode and attenuates, but does not suppress volumetric locking (in the
incompressible limit the energy will remain unbounded).

3.- An increase in the order of consistency decreases the number of non-physical locking modes.
4.- The decrease in the number of non-physical locking modes is slower than in finite elements.

Thus EFG will not improve the properties of the FEM (from a volumetric locking
viewpoint) for p or h-p refinement. However, for practical purposes and as in finite
elements, in EFG an h-p strategy will also suppress locking.

The remedies proposed in the literature are, in general, extensions of the methods developed
for finite elements. For instance, Dolbow and Belytschko (1999) propose an EFG formulation
using selective reduced integration. Chen et al. (2000) suggest an improved RKPM based on a
pressure projection method. These alternatives have the same advantages and inconveniences
as in standard finite element methods. Perhaps it is worth noting that in mesh-free methods
it is non trivial to verify analytically the LBB condition for a given interpolation of velocity
and pressure.

One alternative that uses the inherent properties of mesh-free methods and does not have
a parallel in finite elements is the pseudo-divergence-free approach (Vidal et al., 2002; Huerta
et al., 2004a). This method is based on diffuse derivatives (see Section 2.2.6) which converge
to the derivatives of the exact solution when the radius of the support, ρ, goes to zero (for a
fixed ratio ρ/h). One of the key advantages of this approach is that the expressions of pseudo-
divergence-free interpolation functions are computed a priori. That is, prior to determining
the specific particle distribution. Thus, there is no extra computational cost because only the
interpolating polynomials are modified compared with standard EFG.

4. RADIAL BASIS FUNCTIONS

Radial basis functions (RBF) have been studied in mathematics for the past 30 years and are
closely related to mesh-free approximations. There are two major differences in between the
current practice approaches in radial basis functions and those described in previous Sections:

1. Most radial basis functions have non compact support.
2. Completeness is provided by adding a global polynomial to the basis.

For these two reasons, the solution procedures usually have to be tailored for this class of
global interpolants. Two techniques that avoid the drawbacks of global approximations are

1. Multipolar methods
2. Domain decomposition techniques

The most commonly used radial basis functions (with their names) are
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c© 2004 John Wiley & Sons, Ltd.



32 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

ΦI(x) =





‖x − xI‖ ≡ r linear

r2 log r thin plate spline

e−r2/c2

Gaussian
(
r2 +R2

)q
multipolar

where c, R and q are shape parameters. The choice of these shape parameters has been studied
by Kansa and Carlsson (1992), Carlsson and Foley (1991) and Rippa (1999).

Completeness of the radial basis function approximations is usually provided by adding
a global polynomial to the approximation. For example, an approximation with quadratic
completeness, is

u(x) = c0 +

nsd∑

i=1

cj xj +

nsd∑

i=1

nsd∑

j=1

dij xi xj +
∑

I

aI Φ(xI)

where c0, cj , dij and aI are the unknown parameters.
One of the major applications of Radial basis functions has been in data fitting. The reference

by Carr et al. (1997), where millions of data points are fit, is illustrative of the power of this
method. One of the first applications to the solution of PDEs is given by Kansa (1990), who
used multiquadrics for smooth problems in fluid dynamics. In Sharan et al. (1997), the method
was applied to elliptic PDE’s. In both cases, collocation was employed for the discretization.
Exceptional accuracy was reported. Although a global understanding of this behavior is not
yet available, evidently very smooth global approximants have intrinsic advantages over rough
approximants for elliptic PDEs and other smooth problems (any locally supported approximant
will have some roughness at the edge of its support). The low cost of RBF evaluation is another
advantage. Wendland (1999) has studied Galerkin discretization of PDEs with radial basis
functions. Compactly supported RBFs are also under development. Local error estimates for
radial basis approximations of scattered data are given by Wu and Schaback (1993).

5. DISCONTINUITIES

One of the most attractive attributes of mesh-free methods is their effectiveness in the
treatment of discontinuities. This feature is particularly useful in solid mechanics in modelling
cracks and shear bands.

The earliest methods for constructing discontinuous mesh-free approximations were based on
the visibility criterion Organ et al. (1996). In this method, in constructing the approximation
at x, the nodes on the opposite side of the discontinuity are excluded from the index set Sρ

x,
i.e. nodes on the opposite side of the discontinuity do not effect the approximation at x. To
be more precise, if the discontinuity is described implicitly (i.e. by a level set) by f(x) = 0,
with f(x) > 0 on one side, f(x) < 0 on the other, then

{
f(xI) f(x) > 0 ⇒ I ∈ Sρ

x,

f(xI) f(x) < 0 ⇒ I 6∈ Sρ
x.

The name “visibility” criterion originates from the notion of considering a discontinuity as
an opaque surface while choosing the nodes that influence the approximation at a point x,
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r θ

crack

a) b)

Figure 14. a) level set describing discontinuity, b) nomenclature for cracktip branch functions

namely Sρ
x. If a node xI is invisible from x, then node I is not included in the index set Sρ

x

even when it falls within the domain of influence.
When a discontinuity ends within a domain, such as at a cracktip, the visibility criterion

does not provide an adequate tool for constructing the discontinuity in the approximation.
Around the cracktip the approximation must be constructed so that it is continuous in front
of the cracktip, but discontinuous behind it. One way to accomplish this is to include in the
basis branch functions of the form

BiI = [r2 sin
θ

2
, r2 sin

θ

2
] (60)

where θ is the angle between the line to the cracktip and the tangent to the crack and r is the
distance to the cracktip, see Fig. 14b.

For cracks in elastic materials, the basis can be enriched by branch functions that span the
asymptotic neartip field of the Westergard solution, see Fleming et al. (1997). The basis is
then the polynomial basis plus the functions

BiI = [
√
r sin

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
,
√
r cos

θ

2
cos θ] (61)

Since this basis includes the first order terms in the neartip field solution, very accurate
solutions can be obtained with coarse discretizations. Xiao and Karihaloo (2003) have shown
that even better accuracy can be attained by adding higher order terms in the asymptotic
field. The idea of incorporating special functions can also be found, among others, in Oden
and Duarte (1997).

Regardless of whether a branch function is used near the cracktip, if the visibility criterion
is used for constructing the approximation near the end of the discontinuity, additional
discontinuities may occur around the tip. Two such discontinuities are shown in Fig. 15. They
can be avoided if the visibility criterion is not used near the tip. Krysl and Belytschko (1997)
have shown that these discontinuities do not impair the convergence of the solution since their
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c© 2004 John Wiley & Sons, Ltd.



34 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

crack

inter
discontinuities

Figure 15. Inter discontinuity in visibility criterion method

I

crack

Figure 16. Domain of influence of node I by the transparency method near the crack tip

length, and hence the energy of the discontinuity, decreases with h. However, these extraneous
discontinuities complicate the integration of the weak form, so several techniques have been
developed to smooth the approximation around the tip of a discontinuity; the diffraction and
the transparency method.

In the transparency method, the crack near the crack tip is made transparent. The degree
of transparency is related to the distance from the crack tip to the point of intersection. The
shape functions are smoothed around the crack tip as shown in Fig. 16. The diffraction method
is similar to the transparency method. The shape function is smoothed similar to the way light
diffracts around a corner.

The recommended technique for including discontinuities is based on the partition of unity
property of the approximants. It was first developed in the context of the extended finite
element method, Moes et al. (1999), Belytschko and Black (1999) and Dolbow et al. (2000).
It was applied in EFG by Ventura et al. (2002). Let the set of particles whose support is
intersected by the discontinuity be denoted by SD, and the set of particles whose support
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II
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f1(x) = 0 f1(x) = 0

f2(x) = 0 f2(x) = 0

Figure 17. a) Support of node I with a) intersecting discontinuities and b) branching discontinuities

includes the tip of the discontinuity be ST . The approximation is then given by

uh(x) =
∑

I∈Sρ
x

NI(x) uI +
∑

I∈SD∩Sρ
x

NI(x) H
(
f(x)

)
q

(1)
I +

∑

I∈ST ∩Sρ
x

NI(x)
∑

J

(
BJ · q(2)

J

)
,

where H(·) is the step function (Heaviside function). It is easy to show that the weak form
(see Belytschko and Black, 1999) then yields the requisite strong form for elastic problems;
this is probably also true for partial differential equations describing other physical problems.

The technique can also be used for intersecting and branching discontinuities, see Daux et
al. (2000) and Belytschko et al. (2001). For example, consider the geometry shown in Fig. 17.
Let J1 be the set of nodes whose domains of influence include the discontinuity f1(x) = 0, J2

the corresponding set for f2(x) = 0. Let J3 = J1 ∩ J2. Then the approximation is

uh(x) =
∑

I∈Sρ
x

NI(x) uI +
∑

I∈J1∩Sρ
x

NI(x) H
(
f1(x)

)
q

(1)
I

+
∑

I∈J2∩Sρ
x

NI(x) H
(
f2(x)

)
q

(2)
I +

∑

I∈J3∩Sρ
x

NI(x) H
(
f1(x)

)
H

(
f2(x)

)
q

(3)
I .

5.1. Discontinuities in gradients

The continuously differentiable character of mesh-free approximation functions is sometimes
a disadvantage. At material interfaces in continua, or more generally, at discontinuities of the
coefficients of a PDE, solutions of elliptic and parabolic systems have discontinuous gradients.
These discontinuities in the gradient need to be explicitly incorporated in mesh-free methods.

One of the first treatments of discontinuous gradients was by Cordes and Moran (1996).
They treated the construction of the approximation separately; that is, they subdivided the
domain into two subdomains. Let the subdomains Ω1 and Ω2 be with interface Γint. They
enforced continuity of the function along Γint by Lagrange multipliers. Since the approximation
u(Ω1) was constructed without considering any nodes in Ω2, and vice versa, the gradient of
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the approximation will be discontinuous across Γint after the continuity of the approximation
is enforced by Lagrange multipliers. As in the case of essential boundary conditions, this
continuity of the function can also be enforced by penalty methods, augmented Lagrangian
methods or Nitsche’s method.

An alternative technique was proposed by Krongauz and Belytschko (1998a), who added a
function with a discontinuous gradient. In the original paper, the approximation is enriched
with the absolute values of a signed distance function.

This enrichment function can also be employed with a local or global partition of unity

uh = Ni ui +Ni |f(x)| qi
This was first studied in a finite element context by Sukumar et al. (2001) and Belytschko et
al. (2001). In a finite element, the local partition of unity has some difficulties because the
enrichment function does not decay, so it is difficult to fade it out gracefully. A global partition
of unity is also undesirable. This behavior of this enrichment in mesh-free methods has not
been studied.

The local partition of unity method can also be used for intersecting gradient discontinuities,
branching gradient discontinuities and unclosed gradient discontinuities. The techniques are
identical to those for discontinuities in functions, except that the step function is replaced
by the absolute values of the signed distance function. For example, the approximation for a
function with the intersecting discontinuities shown in Fig. 17a is given by

uh(x) =
∑

I∈Sρ
x

NI(x) uI +
∑

I∈J1∩Sρ
x

NI(x) |f1(x)| q
(1)
I

+
∑

I∈J2∩Sρ
x

NI(x) |f2(x)| q
(2)
I +

∑

I∈J3∩Sρ
x

NI(x) |f1(x)| |f2(x)| q
(3)
I .

The enrichment procedures are substantially simpler to implement than the domain
subdivision/constraint technique of Cordes and Moran (1996), particularly for complex
patterns such as intersecting and branching gradient discontinuities.

6. BLENDING MESH-FREE METHODS AND FINITE ELEMENTS

Several authors have proposed different alternatives to blend finite elements and mesh-free
methods. These approximations are combined for two purposes: either i) to couple both
interpolations, or ii) to enrich the finite element interpolation using particles.

In the first scenario, the objective is to benefit from the advantages of each interpolation
in different regions of the computational domain, which is usually divided in three regions,
see Figure 18. In one region only finite elements are present, another with only mesh-free
approximation functions, and a transition region.

In the second case, the enrichment improves the approximation without remeshing. A finite
element interpolation is considered in the whole domain and particles can be added in order
to improve the interpolation in a selected region.

Coupled finite elements/mesh-free methods are proposed by Belytschko et al. (1995). They
show how to couple finite elements near the Dirichlet boundaries and EFG in the interior of
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Figure 18. Discretization for the coupling of finite elements and a mesh-free method: finite element
nodes (•), particles (x) and transition region (in gray).

the computational domain. This simplifies considerably the prescription of essential boundary
conditions. The mixed interpolation in the transition region requires the substitution of finite
element nodes by particles and the definition of ramp functions. Thus the region for transition
is of the size of one finite element (as in Figure 18) and the interpolation in linear. With the
same objectives Hegen (1996) couples the finite element domain and the mesh-free region with
Lagrange multipliers.

Liu et al. (1997b) independently suggest to enrich the finite element approximation with
particle methods. In fact, the following adaptive process seems attractive: (1) compute an
approximation with a coarse finite element mesh, (2) do an a posteriori error estimation and
(3) improve the solution with particles without any remeshing process.

Following these ideas, Huerta and Fernández-Méndez (2000) propose a unified and general
formulation: the continuous blending method. This formulation allows both coupling and
enrichment of finite elements with mesh-free methods. The continuous blending method
generalizes the previous ideas for any order of approximation, suppresses the ramp functions,
and it does not require the substitution of nodes by particles. That is, as many particles as
needed can be added where they are needed, independently of the adjacent finite element
mesh. This is done in a hierarchical manner. This approach has been generalized in Chen et
al. (2003) to get a nodal interpolation property.

Other alternatives are also possible; for instance, the bridging scale method proposed by
Wagner and Liu (2000) is a general technique to mix a mesh-free approximation with any
other interpolation space, in particular with finite elements. Huerta et al. (2004b) compare the
continuous blending method and the bridging scale method, for the implementation of essential
boundary conditions. The bridging scale method does not vanish between the nodes along the
essential boundary. As noted by Wagner and Liu (2000) a modified weak form must be used
to impose the essential boundary condition and avoid a decrease in the rate of convergence.

Next section is devoted to the continuous blending method proposed by Huerta and
Fernández-Méndez (2000). This method allows to recall the basic concepts on both enrichment
and coupling. Although all the developments are done for the EFG method, the continuous
blending method is easily generalizable to other mesh-free methods based on an MLS
approximation.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Figure 19. Possible discretizations for the continuous blending method

6.1. Continuous blending method

Huerta and coworkers (Huerta and Fernández-Méndez, 2000; Fernández-Méndez and Huerta,
2002; Fernández-Méndez et al., 2003) propose a continuous blending of EFG and finite element
methods,

u(x) ' ũ(x) =
∑

j∈J

Nh
j (x)uj +

∑

i∈I

Ñρ
i (x)ui = π

hu+
∑

i∈I

Ñρ
i (x)ui (62)

where the finite element shape functions {Nh
j }j∈J are as usual, and the mesh-free shape

functions {Ñρ
i }i∈I take care of the required consistency of the approximation, i.e. consistency

of orderm.πh denotes the projection operator onto the finite element space. Figure 19 presents
two examples for the discretization. Particles are marked with × and active nodes, {xj}j∈J

for the functional interpolation, are marked with •. Other non-active nodes are considered to
define the support of the finite element shape functions (thus only associated to the geometrical
interpolation). The first discretization (left) can be used for the coupling situation. Note that
with the continuous blending method the particles can be located where they are needed
independently of the adjacent finite element mesh. In the second one (right) a finite element
mesh is considered in the whole domain and particles are added to enrich the interpolation,
and increase the order of consistency, in the gray region.

The mesh-free shape functions required in (62) are defined as in standard EFG, see equation
(28),

Ñρ
i (x) = ω(xi,x)PT(xi)α̃(x), (63)

but now the unknown vector α̃ is determined by imposing the reproducibility condition
associated to the combined EFG and finite element approximation, that is

P(x) = π
hP(x) +

∑

i∈I

Ñρ
i (x)P(xi). (64)

Substitution of (63) in (64) leads to a small system of equations for α̃ ∈ Rl+1, see Huerta and
Fernández-Méndez (2000) for details,

M(x) α̃(x) = P(x) −π
hP(x). (65)

The only difference with standard EFG is the modification of the r.h.s. of the previous
system, in order to take into account the contribution of the finite element base in the
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approximation. Moreover, note that the expression for the modified EFG shape functions is
independent of the situation, i.e the same implementation is valid for enrichment and coupling,
increasing the versatility of this approach.

Figure 20. Shape functions of the coupled finite element (solid line) and mesh-free (dashed line)
interpolation.

Figure 20 shows a 1D example coupling finite elements and EFG. The mesh-free shape
functions adapt their shape to recover the linear interpolation. In the coupling situation the
continuity of the interpolation is ensured under some conditions, even in multiple dimensions,
by the following result, see Fernández-Méndez and Huerta (2002; 2004) for the proof.

Proposition 3. The approximation ũ(x), defined in (62), is continuous in Ω if: (1.-) the
same order of consistency, m, is imposed all over Ω (i.e. m coincides with the degree of the
FE base), and (2.-) the domain of influence of particles coincides exactly with the region where
finite elements do not have a complete basis.

Remark 24 (Imposing Dirichlet boundary conditions) Under the assumptions (1.-)
and (2.-) in Proposition 3, the contribution of the particles is zero in the regions where

the finite element base is complete. In particular, this means that Ñρ
i = 0 in the finite element

edges (or faces in 3D) whose nodes are all in J (active nodes). This is an important property
for the implementation of essential boundary conditions. If a finite element mesh with active
nodes at the essential boundary is used, the mesh-free shape functions take care of reproducing
polynomials up to degree m in Ω and, at the same time, vanish at the essential boundary. For
instance, Figure 21 shows the particle shape functions, Ñρ

i = 0, associated to particles at the
boundary and in the first interior layer. Note that they vanish along the boundary because the
finite element base is complete on ∂Ω. Therefore, the prescribed values can be directly imposed
as usual in the framework of finite elements, by setting the values of the corresponding nodal
coefficients. Moreover, it is also easy to impose that the test functions (for the weak forms)
vanish along the Dirichlet boundary, see Fernández-Méndez and Huerta (2004) for further
details.

The problem described in Figure 9 can be solved using the continuous blending method,
Figure 22 shows the solution. As observed in Remark 24, the prescribed displacements are
directly imposed. Two different finite element discretizations are considered. In both cases,
the linear finite element approximation at the boundary, allows the exact enforcement of
the prescribed displacement. Note that if the prescribed displacement is piecewise linear or
piecewise constant, as it is in this example, then it is imposed exactly when a bilinear finite
element approximation is used.

Finally, an example reproduces the finite element enrichment with EFG in a nonlinear
computational problem. A rectangular specimen with an imperfection is loaded (see Dı́ez et
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Figure 21. Discretization with active finite element nodes at the boundary (o) and particles (x), and
mesh-free shape function associated to the particle located at the gray circle (A) and (B) respectively.

0.8

1

0
10

0.8

1

0
10

Figure 22. Continuous blending for two different distributions of finite elements near the essential
boundary and the same distribution of particles, h = 1/6

al., 2000; Huerta and Dı́ez, 2000). Figure 23 presents the problem statement with the material
properties.

This problem has been solved with the element free Galerkin method. A coarse mesh solution
of quadrilateral bilinear finite elements (308 dof) is shown in Figure 25 (left). When particles
are added (308+906=1214 dof) and the order of consistency is increased (m = 2), an accurate
distribution of inelastic strains is recovered, see Figure 25.

In this example, Figure 25, the original mesh is maintained and particles are added where
they are needed.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Figure 23. Problem statement: rectangular specimen with one centered imperfection.
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Figure 24. Final mesh with its corresponding equivalent inelastic strain for a standard finite element (8
noded elements) computation (left) and distribution of particles with its inelastic strain distribution

for EFG (right).
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