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Foreward

Type 1 diabetes mellitus is an autoimmune disorder in which a lack of

insulin is detrimental to the regulation of blood glucose. People with the

disease must take doses of insulin to compensate. However, many

endogenous and environmental stimuli alter glucose metabolism and

sensitivity to insulin in the day to day life of the individual. The ability to

understand, quantify and model such factors has great potential to improve

glycaemic control.

The individualised nature of both the presence of and response to everyday

stimuli inclines the research needs towards models that can be used in the

outpatient environment. The unique challenges around the quantity and

quality of outpatient data necessitates consideration to the practical

identifiability of behaviours and parameters in the model. Hence, this work

works towards modelling everyday life effects in a manner that is robust to

poorer data. In particular:

Chapter 1 introduces the clinical concepts around type 1 diabetes

along with some of the underlying physiological concepts of glucose

homoeostasis.

Chapter 2 briefly reviews the history of mathematical modelling of

glycaemia.

Chapter 3 introduces concepts around model fitting, identifying model

parameters, and especially the need for considering practical identifiability.

Chapter 4 reviews the literature for justification and explanation of

the effects of nutritional variation, psychological state, physical activity and

metabolic rhythms on glycaemia. The review also covers current methods
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and technologies for quantifying the presence or effect of these factors and

mathematical models developed to date.

Chapter 5 introduces the high quality clinical data that has been

obtained for model building and evaluation.

Chapter 6 details a range of models developed for the appearance of

plasma insulin from subcutaneous insulin infusion, and an extensive

analysis to compare the performance of the models.

Chapter 7 presents a data-driven modelling technique used to

ascertain the nature of the effect of mild to moderate exercise on plasma

insulin and glucose concentration.

Chapter 8 builds on the data-driven information with simplistic

differential models for insulin and glucose using basis functions to model

the effects of exercise.

Chapter 9 explores in silico the potential for everyday life effects to be

identified in diary-style outpatient data.

Chapter 10 presents a method for further in silico analysis of the

identifiability during model recovery.

Chapter 11 details a preliminary exploration of a potential method for

evaluating a priori practical identifiability.

Chapter 12 analyses the effect of pre-analytical glucose decay on

diagnosis rates of gestational diabetes.

Chapter 13 summarises the findings of the research.

Chapter 14 suggests opportunities for future work.
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Abstract

Insulin therapy for type 1 diabetes mellitus is used to manage and

maintain near normal blood glucose. However, this therapy balances

treating hyperglycaemia and avoiding hypoglycaemia, both of which have

negative health consequences. Optimal insulin doses are often uncertain in

everyday life. Factors that are often overlooked can noticeably alter the

metabolism of glucose and insulin, which can confound glycaemic control.

Four major categories of everyday life factors have been reviewed in depth

in the literature: nutritional variability, psychological effects, physical

activity and metabolic rhythms.

Physiological mathematical models have long been used to study, observe

and control glycaemia. However, relatively little physiological modelling of

everyday outpatient factors has been carried out. Clinical data of subjects

with type 1 diabetes experiencing everyday life events such as exercise,

meals, snacks and insulin boluses was used as the basis for model

development. In particular, the inclusion of the appearance of insulin from

subcutaneous infusion, and the effect of exercise on plasma insulin and

glucose concentration have been modelled. The insulin system was

modelled with multiple physiological compartments while the effect of

exercise was initially modelled with a data-driven autoregressive technique

before basis models were developed.

Practical identifiability was considered to be a mathematically limiting

factor for model complexity and specificity given that high quality data is

generally not available in the outpatient environment. Hence, model

development strongly considered practical identifiability. For example, a

number of analyses were employed to determine which of multiple options

for the insulin model had the optimal complexity. The result was that one

of the simpler models had the best compromise between fit, parameter

vii



robustness and prediction ability. Furthermore, since practical

identifiability is a relatively new field with no formal analyses, two possible

evaluation techniques were explored. One technique with an analytical a

priori nature and the other using retroactive computational methods.

An in silico Monte Carlo analysis was carried out to test the potential

model recovery of exercise, stress fatigue and insulin sensitivity in

outpatient glycaemia. It was found that sparse, irregular and noisy data

could be overcome as the data accumulated to provide a clearer picture of

patient status. Variation in parameters decreased with increasing data

according to the 1/
√
n rule, indicating that measurement error and other

sources of noise introduced did not obscure parameter estimation. This

proof of concept represents a pathway toward personalisable glycaemic

models that can be fitted to the individual’s responses, and be used to

predict their response to treatment. Ultimately, sound modelling of

everyday life factors would improve the quality of life for sufferers of

diabetes by improving control and decreasing the burden of disease

management.
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Chapter I

Type 1 diabetes

1.1 Introduction

Type 1 diabetes mellitus (T1DM) is a metabolic disorder resulting from the

autoimmune destruction of pancreatic β-cells and subsequent lack of insulin

secretion (Atkinson and Eisenbarth, 2001). Insulin is necessary to regulate

blood glucose, without which high glucose levels result. Untreated, T1DM

is fatal. Hence, exogenous forms of insulin are usually injected or infused

subcutaneously. The disease often onsets in childhood, although it can

develop at any age, and is estimated to account for 5-10% of all cases of

diabetes (American Diabetes Association, 2006).

Prior to the 1850s diabetes was diagnosed by tasting urine, since the large

quantities of glucose cleared by the kidneys was easily detectable. The

1920s saw both commercially available urinary glucose tests and the

emergence of laboratory-based blood glucose measurement (Gale, 2002).

More recently, testing the presence of particular antibodies has proved to

be a good predictor of T1DM onset prior to the presentation of other

clinical symptoms (Sosenko et al., 2013; Atkinson and Eisenbarth, 2001).

Both reported and apparent incidence of T1DM has significantly increased

over the last couple of centuries (Gale, 2002) and even in the last couple of

decades (The DIAMOND Project Group, 2006). The pathology of T1DM is

considered to arise from a complex interaction between both risk-increasing

and protective genetic factors and a variety of environmental influences,

ultimately resulting in the production of auto-antibodies that target and

destroy β-cells (Atkinson and Eisenbarth, 2001). The environmental factors
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in particular are not well understood but the primary areas investigated are

viral infections, infant diet and toxins. The fast increasing disease incidence

draws much research interest to uncovering and therefore responding with

preventative measures for environmental risk factors (The DIAMOND

Project Group, 2006).

A related and much more common disorder is type 2 diabetes mellitus

(T2DM) which is likewise characterised by high blood glucose and accounts

for 90-95% of diabetes cases (American Diabetes Association, 2006). Unlike

T1DM, this form of diabetes is usually due to a combination of insulin

resistance and defective insulin secretion. Recent research indicates onset of

T2DM to be caused by over-production of insulin (Pories and Dohm, 2012).

Basal glucose production is subsequently higher to compensate for chronic

hyperinsulinaemia. Combined with other environmental and genetic risk

factors affecting insulin secretion and sensitivity, the postprandial insulin

response becomes blunted, resulting in hyperglycaemia. As the disease

progresses, β-cell production deteriorates and insulin secretion reduces.

Hence, late-stage T2DM presents similarly to T1DM.

1.2 Glucose homoeostasis

Glucose is a simple monosaccharide sugar with the molecular formula

C6H12O6. Glucose is an essential nutrient for humans and absorbed as a

major component of most dietary sources of carbohydrates. Glucose is also

synthesised in the liver from other non-carbohydrate substrates. The

circulatory system delivers glucose to all other organs in the body where it

is metabolised to release usable energy. The central nervous system,

smooth muscle and red blood cells are able to absorb glucose directly, but

most other tissues such as skeletal muscle and fat rely on insulin to

facilitate glucose transport into the cell (Cherrington, 1999). Since glucose

is primarily transported throughout the body via the bloodstream, it is

critical that glucose is present in the blood in appropriate concentrations.

The normal (euglycaemic) range for glucose is pictured in Figure 1.1.
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Figure 1.1: A diagram representing the full range of blood glucose,
showing euglycaemia, hypoglycaemia and hyperglycaemia. Note that the
euglycaemic range is relatively small and off-centred compared to the full
range (Kovatchev et al., 1997).

Glucose < 3.9 mmol/L is hypoglycaemia (Kovatchev et al., 1997) which can

be caused by excess exogenous insulin, and is generally accompanied by

unpleasant symptoms such as anxiety, cognitive dysfunction and seizures

(Cryer et al., 2003). Hypoglycaemia can be fatal or cause permanent brain

damage due to energy starvation of the central nervous system. Frequent

exposure to these blood glucose levels reduces an individual’s

hypoglycaemic awareness and therefore reduces their ability to take

corrective action (Cryer et al., 2003). Glucose > 10 mmol/L is considered

hyperglycaemia (Kovatchev et al., 1997). Chronic but mild hyperglycaemia

tends to result in complications such as neuropathy, kidney disease,

hypertension and heart disease (De Boer et al., 2008; Shankar et al., 2007;

Retnakaran and Zinman, 2008; Rubin and Peyrot, 1999). Extreme

hyperglycaemia associated with ketoacidosis and cerebral edema can be

fatal (Atkinson and Eisenbarth, 2001).

Glucose concentration requires constant bodily regulation to remain at

euglycaemic levels. The large quantity of incoming glucose from ingested

meals is typically the most major disturbance. In healthy individuals,

fasting glucose levels are around 4-5 mmol/L. Following a meal, blood

glucose concentration may reach 7-10 mmol/L or higher for some

individuals consuming meals with a large glycaemic load. Within 1-2 hours

the concentration will be under 7 mmol/L again, progressing to fasted
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levels. This glycaemic regulation is achieved through multiple concurrent

mechanisms (Figure 1.2).

1.2.1 Insulin and peripheral uptake

Insulin is a peptide hormone secreted from the β cells of the pancreas. The

primary function of insulin is to facilitate glucose transport into muscle and

fat tissue to be stored and metabolised for energy. Insulin therefore has the

dual primary purpose of reducing blood glucose concentration and thus

mitigating postprandial hyperglycaemia. Secretion of insulin typically

increases in response to sensory information from the gut (Cernea, 2011)

and rising glucose levels (Cherrington, 1999). Likewise, low blood glucose

and also high insulin concentrations reduce insulin secretion.

From the plasma, insulin diffuses into the extracellular interstitial space in

peripheral muscle and fat tissues. There it docks to insulin receptors on the

surface of a cell. Through a complex process, the insulin acts on the

receptor to stimulate a new glucose transporter to be expressed in the cell

membrane. The new transporter increases the rate of glucose transport into

the cell, also promoting glycogen formation. After the insulin molecule has

fulfilled its purpose it may be degraded by the cell or released. The liver

and kidneys clear most of the insulin in circulation.

The efficacy of insulin in increasing glucose transport into insulin sensitive

tissues at a given time is dependent on a large number of factors, generally

lumped together as a single whole-scale notion termed insulin sensitivity.

The equivalent but inverse property termed insulin resistance was more

commonly referred to in historical literature. In the short term, insulin

sensitivity is influenced by the likes of daily metabolic rhythms (Hinshaw

et al., 2013), stress (Rizza et al., 1982), physical activity (Borghouts and

Keizer, 2000), and menstrual cycles (Lunt and Brown, 1996). Longer term

insulin sensitivity changes are correlated to factors such as age, obesity

(Montastier et al., 2014), puberty (Hannon et al., 2006), and pregnancy

(Cousins, 1991).
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As previously stated, individuals with T1DM lack insulin. Autoimmune

destruction of the insulin-creating β cells in the pathogenesis of T1DM may

occur over a short or long period of time (American Diabetes Association,

2006). Shorter onset is more typical of children and adolescents while

longer onset is more typical in adults. Those with established T1DM have

negligible insulin secretion. Without insulin, hyperglycaemia persists and

insufficient glucose reaches insulin-sensitive tissues.

1.2.2 Hepatic and renal balance

At the basal state, the liver and the kidney produce and release glucose into

the plasma from stored sources (Cherrington, 1999). The liver performs

this endogenous glucose production (EGP) though two metabolic processes:

glycogenolysis and gluconeogenesis. Glycogenolysis cleaves glucose

monomers from glycogen, a glucose polysaccharide. Gluconeogenesis

metabolises non-carbohydrates such as pyruvate, lipids and lactate into

glucose. The kidney only produces glucose through gluconeogenesis but

also reabsorbs glucose back into the bloodstream that would otherwise be

destined for the urine (Gerich, 2010).

Following a meal containing carbohydrates, a third of incoming glucose is

taken up as it passes through the liver, both stored as glycogen and utilised

for energy (Cherrington, 1999). The high gradient of glucose in the portal

vein (from the intestine to the liver) compared to arterial concentration, as

well as the increased presence of plasma insulin and glucose all promote

hepatic glucose uptake. Insulin also reduces EGP in the liver by decreasing

glycogenolysis directly and gluconeogenesis indirectly. Therefore net

hepatic glucose output remains negative until plasma glucose, plasma

insulin and the portal vein glucose gradient have lowered.

Several other hormones regulate the action of the liver, post-prandially and

otherwise. Glucagon is a hormone secreted in α cells of the pancreas that

promotes hepatic EGP (Cherrington, 1999; Gerich, 2010). Glucagon serves
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to protect against hypoglycaemia, for example being secreted more when

insulin is released due to fat intake rather than glucose absorption (Carr

et al., 2008). Thus insulin and glucagon together mediate much of the

liver’s glucoregulatory response. The catecholamines, secreted from the

adrenal glands in a state of stress, also have a range of effects on both the

liver and kidney such as promoting renal glucose release, insulin

suppression, and glucagon secretion (Gerich, 2010). Additionally, in

Cherrington (1999)’s animal model, epinephrine and norepinephrine

independently promoted glycogenolysis, and epinephrine also promoted

gluconeogenesis.

As previously stated, people with T1DM must rely entirely on exogenously

administered insulin. As a result, EGP is less tightly controlled, though

still regulated by the remaining mechanisms. Furthermore, people with

diabetes of both types tend to have hyperinsulinaemia. The effect of this is

perhaps most notable during moderate aerobic exercise. High insulin

concentrations that are not down-regulated for exercise tend to cause a

shortfall in EGP that eventually results in hypoglycaemia (Yardley et al.,

2013; Sonnenberg et al., 1990). On the other hand, in the absence of

sufficient insulin, glucose uptake in the liver and kidney are vital for

ameliorating the extent of postprandial hyperglycaemia.

1.2.3 The incretin effect

Incretins are glucoregulatory hormones secreted from the enterocyte cells

lining the small intestine in response to the presence of nutrients (Hayes

et al., 2014; Ahrén, 2013; Cernea, 2011). The two main incretins are

glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic

peptide (GIP). The primary effect of both incretins is to stimulate

glucose-dependent insulin secretion (Cernea, 2011; Karstoft et al., 2015).

The ’incretin effect’ is defined as fraction of insulin secretion after an oral

dose of glucose that does not appear for an equivalent intravenous infusion

(Ahrén, 2013; Hayes et al., 2014). The magnitude of the response is

dependent on calorific intake (Alsalim et al., 2015) since fat, protein and
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Figure 1.2: A schematic of healthy glucose homeostasis showing the
movement of glucose into and out of various tissues through the plasma,
as well as hormonal signalling between organs.

carbohydrate all stimulate the secretion of both incretins (Rijkelijkhuizen

et al., 2010; Carr et al., 2008; Kameyama et al., 2014).

The effects of both GIP and GLP-1 are complex and multifaceted. Both

stimulate glucose dependent insulin secretion (in those with functioning β

cells) and likewise decrease glucose-dependent glucagon secretion (Cernea,

2011; Hayes et al., 2014). Although in some conditions GIP can instead

increase glucagon secretion (Carr et al., 2008; Hayes et al., 2014). Beyond

pancreatic effects, GLP-1 decreases the gastric emptying rate and increases

satiety (Hayes et al., 2014; Cernea, 2011). GLP-1 also appears to increase

insulin-independent muscular glucose uptake (Hayes et al., 2014; Karstoft

et al., 2015; Abdulla et al., 2014; Johnson et al., 2007; Meneilly et al., 2001)

and may suppress EGP (Hayes et al., 2014; Prigeon et al., 2003; Karstoft

et al., 2015). GIP also potentially increases blood flow (Karstoft et al.,

2015). There are mixed opinions in the literature as to whether individuals
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with T1DM have normal or impaired incretin secretion (Vilsbøll et al.,

2003; Kamoi et al., 2011; Lugari et al., 2000; Zibar et al., 2015).

1.3 Diabetes therapy

The discovery of insulin in 1921 heralded the treatment of T1DM (Atkinson

and Eisenbarth, 2001). Initially, insulin was thought to be a cure, however

the complexity of treatment soon became clear. Prior to this point the

disease was considered to have 100% mortality for children in particular.

Younger children typically survived for less than 2 years after onset, and

older children sometimes survived 3-6 years (American Diabetes

Association, 2006). T1DM is still fatal in some developing countries such as

in Sub-Saharan Africa where treatment is not readily available or

affordable. Even in developed countries fatalities still occur, especially in

cases of delayed diagnosis in young children (Atkinson and Eisenbarth,

2001).

Initially, people were treated with porcine insulin which is very similar in

structure to human insulin. In the years following, a number of

manufactured human insulins were developed. Manufactured insulins vary

in structure to achieve different purposes. Human insulin is typically stored

in the pancreas as a hexameric group (Kang et al., 1991). However, the

monomer is the active form used elsewhere in the body. While the hexamer

is the most stable form of insulin, it takes some time to break into dimers

then monomers. Hence, some manufactured insulins have certain sequences

in the protein structure altered to discourage hexamer formation and

therefore act more rapidly (Home et al., 1999). This is particularly useful

to administer in conjunction with a meal. Other insulins are further bound

in crystalline structures to slow breakdown into monomers (Roach and

Woodworth, 2002). These longer-acting insulins are useful for mimicking

the basal rate of insulin release throughout the day observed in healthy

individuals.

The most common therapy involves multiple daily subcutaneous (SC)
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injections of these different types of insulin (Atkinson and Eisenbarth,

2001). Outpatients consult with clinicians regularly to monitor and

optimise their treatment regimes. The goal with longer-acting insulins is to

create a smooth basal profile to minimise differences throughout the day.

Depending on the half life of the insulin, this may require more than one

injection per day. Outpatients will also inject quantity of rapid-acting

insulin with meals based on the estimated quantity of carbohydrates in the

meal. At any other time, rapid-acting insulin may also be injected to lower

blood glucose according to a ratio of glucose levels to insulin units.

More recently, insulin pumps have become a mainstream form of treatment

(Stephens, 2015). These pumps are installed with a needle into the

subcutaneous tissue that is replaced every few days. Pumps tend to contain

only a rapid-acting form of insulin but have the ability to titrate the

contents at a slow rate throughout the day for a basal profile, as well as

being able to deliver large boluses for meals or correction. The pumps can

be programmed to supply a variable basis profile throughout the day in

accordance with a person’s circadian rhythm of glucose tolerance. The

pumps also store the owner’s insulin ratios and are able to make basic

recommendations based on input information.

A significant amount of research has been carried out in the field of decision

support based on mathematical modelling, both for self managed blood

glucose monitoring with multiple daily injections (Wong et al., 2008c,

2009), clinically monitored care for the critically ill (Chase et al., 2011;

Pappada et al., 2013; Lin et al., 2011; Pielmeier et al., 2010), and for a

closed loop system utilising insulin pumps and continuous glucose monitors

(Bequette, 2012; Cobelli et al., 2011; Hovorka et al., 2011, 2013; Kovatchev

et al., 2009). Mathematical modelling will be covered more extensively in

Chapter 2. The goal of decision support in T1DM is to reduce the burden

of disease management and improve patient safety. The burden of disease

management is associated with decreased perceived quality of life (Rubin

and Peyrot, 1999, 2001). Additionally, fear of hypoglycaemia tends to

result in those with T1DM tending toward hyperglycaemia and missing out
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on the benefits of euglycaemia (Atkinson and Eisenbarth, 2001).

Despite the amount of research carried out to date, many challenges remain

for delivering effective and personalised care to those with diabetes. In

particular, there are a vast number of variable stimuli that an individual

encounters throughout the day in an outpatient environment. Examples

include differing levels of glucose demand depending on physical activity,

changes in insulin sensitivity based on mood, and different patterns of

incoming glucose from ingested food. Research around these factors is

reviewed in Chapter 4. The manner in which many environmental stimuli

affect glycaemia is complex and often not well understood. The

uncertainties created by such factors continue to confound treatment at

times for most individuals. Some people, termed by clinicians as being

”brittle”, are particularly susceptible to poor glycaemic control due to daily

variabilities. These individuals would benefit most from advances in

understanding and modelling around the effects of various environmental

stimuli on glycaemia.
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Chapter II

Physiological modelling

Mathematical modelling of physiological processes has become a standard

method for studying these processes and developing new integrated

technologies. This is particularly true in the field of diabetes research and

glycaemic control. This chapter overviews some of the historical

development of glycaemic models. By no means is the content covered

exhaustive, due to the sheer quantity of research carried out in the field.

Additionally, the overview will focus mostly on insulin kinetics and

glucose-insulin dynamics rather than insulin secretion models.

2.1 Early models (1960s-1970s)

There have been a lot of glycaemic models developed over the years and it

can be difficult to trace them all through the literature. Some of the earliest

research was carried out in the 1960s by the Ackerman group (Ackerman

et al., 1964; Gatewood et al., 1968). This group fit linear differential models

to oral glucose tolerance tests with the purpose of distinguishing between

healthy and mildly diabetic responses. Ackerman et al. (1964) defined their

system as:

Ḣ = −l1H + l2 + l3G (2.1)

Ġ = −l4G+ l5 − l6H − I (2.2)

where H is plasma insulin concentration, G is plasma glucose

concentration, l1 is the insulin clearance rate, l2 is basal insulin secretion, l3

is the glucose-dependent insulin secretion rate, l4 is the insulin-independent

glucose disposal rate, l5 is glucose production, l6 is the insulin-dependent

glucose disposal rate and I is the appearance of glucose from oral loads. An

estimate was used for the plasma glucose profile from oral loads, despite a
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relative lack of data to validate the model (Gatewood et al., 1968).

Much of the subsequent research into modelling insulin and glucose utilised

multiple tracer technologies to measure the contributions of different organs

in the production and disposal of insulin and glucose and under certain

conditions. These types of experiments significantly increased the inherent

complexity involved. By 1974, three compartment models had been

proposed for each of insulin and glucose by the group of Sherwin et al.

(1974) and Insel et al. (1974). The insulin model compartments described

hepatic, plasma and extra-vascular concentrations. Sherwin et al. proposed

three different model arrangements for the interactions between and

clearances from each of the compartments. Insel et al. fit tracer data to the

three compartment model that included insulin dependent and independent

glucose disposal. Some other early contributors to insulin models were

Frost et al. (1973) and Tranberg and Dencker (1978). The model of Frost et

al. was non-linear having both linear and saturable clearance from the

plasma compartment. In contrast, Tranberg and Dencker used only linear

clearance from the plasma. Another contributor to glucose models in this

period was Radziuk et al. (1978) who simplified prior 3-compartment

glucose tracer models to a 2-compartment model.

2.2 The Bergman Minimal Model (1979)

In contrast to many of the complex models prior, perhaps the most notable

glycaemic model developed is the Bergman et al. (1979) Minimal Model. The

model is described:

dG

dt
= −(p1 +X(t))G(t) + p1Gb (2.3)

dX

dt
= −p2X(t) + p3(I(t)− Ib) (2.4)

dI

dt
= −n(I(t)− Ib) + γt|G(t)− h| (2.5)

where G is the plasma glucose concentration, X is the insulin action, and I

is the plasma insulin. The b subscript indicates a basal level parameter,
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while the p and n terms are rate constants, and h is the target glycaemia

relating to a critical glucose level for insulin secretion. The associated

insulin sensitivity (SI) can be calculated as p3/p2.

The Minimal Model has formed the basis for a large amount of glycaemic

modelling research and application. The model and variations of it are in

use (Campioni et al., 2009; Cobelli et al., 2014; Breton, 2008; Roy and

Parker, 2007; Erichsen et al., 2004). However, the Minimal Model has

drawn much criticism. This criticism is partially directed at just how

minimal the model is in terms of some of the physiological assumptions and

simplifications made (Chase et al., 2006; Palumbo et al., 2013) but also in

terms of the lack of robust parameter solutions obtained when fitting the

model to experimental data (Palumbo et al., 2013; Docherty et al., 2011;

Cobelli et al., 1998; Quon et al., 1994). More recent legacies of the Minimal

Model have addressed concerns around parameter robustness by using

Bayesian estimation methods which penalise parameters for taking on

values outside an expected range (Cobelli et al., 1999; Pillonetto et al.,

2002, 2003).

2.3 The Sorensen physiologic model (1985)

Sorensen (1985) developed an incredibly extensive whole-body glucose

metabolism model using a large number of simultaneous differential

equations, based on the earlier work of Guyton et al. (1978). The model

includes mass balances of glucose throughout several compartments: brain,

heart and lungs, gut, liver, kidney, and periphery. Sources and sinks for

glucose mass are considered in each compartment. An example of this

glucose balance for the liver is:

V G
L

dGL

dt
= QG

AGH +QG
GGG −QG

LGL + rHGP − rHGU (2.6)

where V G
L is the glucose distribution volume of the liver, GL is the glucose

concentration in the liver, QG
A is the blood flow rate in the hepatic artery,

GH is the glucose concentration in the heart and lungs, GG is the glucose
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concentration in the gut and QG the blood flow rate in the gut, QL is the

blood flow rate in the liver, rHGP is the hepatic EGP while rHGU is the

hepatic glucose uptake.

This equation alone hints at the complexity of the entire model with the

interactions between the various organs. In particular, Sorensen (1985)

modelled glucose in the brain, heart and lungs, gut, liver, kidney, and

periphery. In addition to glucose balance equations, there are insulin

balance equations for all of the same areas, as well as a mass balance for

plasma glucagon. Altogether there are sixteen differential equations.

Sorensen calibrated the model to a 70 kg male and populated the vast

number of variables with information from the literature. This is an

example of a bottom-up modelling approach that focuses on including all

contributing physiological processes, big or small, to achieve the observed

outcomes. This is in contrast to more minimal approaches that aim to

include the major contributing factors and achieve concordance with

outcomes through model fitting to account for patient variability. The

bottom-up approach tends to be less conducive to dealing with patient

variability. The inherent complexity in the Sorensen model has resulted in

comparatively sparse use in research (Kovacs et al., 2008). However, some

independent research utilised a modified version of the model (Parker et al.,

2000; Kovacs et al., 2008) or used it for simulation (Markakis et al., 2008).

2.4 Intensive care (2000s)

Much of the more recent research dedicated to glycaemic model

development has been motivated by the need for safe and effective

glycaemic control in intensive care units. The bodies of the critically ill are

under sufficient medical stress to cause substantial insulin resistance and

associated hyperglycaemia. Hyperglycaemia in this cohort significantly

impacts on mortality and recovery times (Chase et al., 2006). Thus,

mathematical modelling has been used to optimise insulin therapy for

patient health and safety, recovery time, and nurse workload.
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Three notable models were developed for use in critical care in the 2000s

(Chase et al., 2006). The first by Chee et al. (2003) is not a physiological

model as such but a proportional-integral-derivative control model. The

model prescribes different doses based on the patient’s blood glucose. The

dose characteristics are subject to change according to integral and

derivative control tactics.

The second model was physiological model developed for T1DM control

model by (Hovorka et al., 2004), and later modified for critical care (Plank

et al., 2006). The model seeks a comprehensive description of the

physiology:

Q̇1(t) = −
(

F c
01

VGG(t)
+ x1(t)

)
Q1(t) + k12Q2(t)− FR + UG(t) + EGP0(1− x3(t))

(2.7)

Q̇2(t) = x1(t)Q1(t)− (k12 + x2(t))Q2(t)y(t)G(t) =
Q1(t)

VG
(2.8)

F c
01 =

F01 if G ≥ 4.5 mmol/L

F01G
4.5

otherwise
(2.9)

FR =

0.003(G− 9)VG if G ≥ 9 mmol/L

0 otherwise
(2.10)

UG(t) =
DGAGte

−t/tmax,G

t2
(2.11)

Ṡ1(t) = u(t)− S1(t)

tmax,I

(2.12)

Ṡ2(t) =
S1(t)

tmax,I

− S2(t)

tmax,I

(2.13)

İ(t) =
S2(t)

V1tmax,I

− keI(t) (2.14)

ẋ1(t) = −ka1x1(t) + kb1I(t) (2.15)

ẋ2(t) = −ka2x2(t) + kb2I(t) (2.16)

ẋ3(t) = −ka3x3(t) + kb3I(t) (2.17)
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where Q1 and Q2 are accessible and inaccessible glucose compartments, k12

is the transfer rate between these compartments, VG is the distribution

volume of Q1, y and G are the measurable glucose concentration and EGP0

is the equivalent EGP with no insulin present. F c
01 is total

non-insulin-dependent glucose flux for ambient glucose concentration while

FR is renal clearance above 9 mmol/L. UG is the incoming glucose from the

gut based on digested carbohydrates (DG), carbohydrate bioavailability

(AG) and the time period until maximum appearance in Q1 (tmax,G).

Insulin is modelled with two compartments (S1 and S2) to describe the

absorption of subcutaneous short-acting insulin, where u(t) the insulin

infusion, tmax,I is the time period until maximum appearance in the plasma

(I), ke is the elimination rate and VI the plasma insulin distribution

volume. The remaining compartments on which insulin acts are the EGP

(x1), distribution (x2) and disposal (x3), according to the activation and

deactivation rates given by the ka and kb terms.

The final of the three models is that of Chase et al. (2006) which is based

on the Minimal Model. The model is described:

Ġ = −pGG− SI(G+GE)
Q

1 + αGQ
+ P (t) (2.18)

Q̇ = −kQ+ kI (2.19)

İ = − nI

1 + αII
+ uex(t)/V (2.20)

P (ti < t < ti+1) = P̄i+1 + (P (ti)− P̄i+1)e
−kpd(t−ti) where P̄i+1 < P (ti)

(2.21)

P (ti < t < ti+1) = P̄i+1 + (P (ti)− P̄i+1)e
−kpr(t−ti) where P̄i+1 > P (ti)

(2.22)

where G is plasma glucose above equilibrium glucose (GE), Q is the

interstitial insulin, cleared at a rate k, I(t) is the plasma insulin with

exogenous input (uex(t)), distribution volume (V ) and clearance rate n.

The action of insulin and insulin clearance are both saturated effects

modelled using Michaelis-Menten functions with saturation parameters αG

and αI . The endogenous glucose clearance is denoted pG and the insulin
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sensitivity is SI . Total plasma glucose is P (t), dependent on enteral feeding

where kpr and kpd are increasing and decreasing feed rates, and P̄i and ¯Pi+1

are steps in the enteral feed rates. The model has since been updated to

include more complex nutritional mechanics (Lin et al., 2011).

2.5 Summary and present

Glycaemic modelling has been carried out extensively over the last 50

years. The earliest models were descriptive but relatively simple compared

to some of the models that followed. As the models became more

sophisticated, different groups have decided on approaches that varied on

the scale of simple to complex. The Bergman et al. (1979) Minimal Model

is considerably simpler than the Sorensen (1985) physiologic model, which

has at least 22 differential equations. Glycaemic modelling was initially

motivated by studying and controlling diabetes but also gained a focus in

intensive care in the 2000s.

At present, work continues in earnest to develop a safe and effective

closed-loop control strategy for people with diabetes. A keyword search of

”artificial pancreas” in the abstract and citation database Scopus results in

over 800 hits for content published in the 2010-2016 period alone. Models

continue to be researched, developed and implemented in this field. Despite

the research efforts and promising clinical trials, adequate closed-loop

control for outpatients with diabetes has not yet been achieved, mainly

attributed to limitations in continuous glucose monitoring systems

(Hanazaki et al., 2016). Variabilities in glucose metabolism arising from the

outpatient lifestyle such as stress and physical activity are also considered

major challenges to control, closed-closed loop or otherwise (Ward et al.,

2011; Breton, 2008). Hence, models are beginning to incorporate more of

these types of features as research progresses.

The goal of the present work is not to focus on the fundamental modelling

of glucose dynamics, but rather on incorporating everyday life effects into

an existing model, and to address these particular challenges in glycaemic
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control for the individual with T1DM. By nature, less fundamental aspects

of glucose metabolism encountered in the outpatient environment are

subject to large inter-patient variability. Hence, modelling strategies for

this purpose require a high level of personalisability to be effective. This

requires that such models be able to handle the kinds of behaviour and

variability anticipated, and on top of that work effectively with outpatient

data. Both criteria contribute their own sets of challenges. However, this

work represents a natural progression of the long and wide legacy of

glycaemic modelling to date.
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Chapter III

Parameter identification and identifiability

This chapter introduces the ideas and methodologies around identification

of model parameters and the identifiability of those parameters. Both

concepts are used extensively throughout this thesis.

3.1 The inverse problem

The ’inverse problem’ in science and engineering is the use of observational

data to calculate an underlying causative factor in a representative model.

In the context of physiological modelling, inverse problem methodologies

optimise variables in the model to some criteria based on the data of

measurable species. These optimised variables are the identified parameters

which govern underlying physiological behaviour in a manner specific to

that dataset. The value of identified parameters is dependent on the model,

data and application.

A model, especially in physiology, can only ever be an approximation of the

real processes occurring, due to the numerous inconsistent and variable

factors that can affect biological systems. When considering models

representing different approximations of the same system, it is perhaps

intuitive to assume that parameters identified from complex

approximations are more valuable and useful than those obtained from

simpler, more errant approximations.

However, it is important to note that the usefulness of model complexity is

entirely limited by the unique observability of modelled behaviours, with

respect to the quality and quantity of data available. There is no use trying

to quantify the underlying behaviour of effects that are too small compared
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to measurement noise, or too poorly timed relative to when data is

sampled. This is the essence of identifiability.

With regard to application, some parameters tend to be of high clinical

relevance (such as insulin sensitivity in glycaemia), while other parameters

tend to be less clinically relevant but support the optimisation process by

accounting for other inter- or intra- personal variabilities. On occasion, a

parameter will fall into neither category, especially in overly complex

models.

3.2 Parameter identification

3.2.1 Optimisation

Optimisation of a parameter set, represented by the vector x, is often carried

out by minimising the 2-norm of an objective or cost function (Ψ). This

optimisation is described mathematically as:

xopt = argminx(||Ψ||2) (3.1)

In the context of fitting a model to a measured behaviour, for example blood

glucose concentration (G), the objective function is the residual modelling

error . Hence, the minimised function is the least squares sum of the residual,

described:

||Ψ||2 =

√√√√ n∑
S=1

(GS −G(tS )) (3.2)

where GS are the measured samples for S = 1 . . . n, where n is the total

number of samples. Likewise, G(tS) is the modelled blood glucose at the

sample times.

A successfully obtained least squares solution will have minimal positive or

negative bias in the residual error. For ideally formulated models, the

residual error corresponds exactly to the measurement noise. Hence, least
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squares optimisation is effective when noise in the measured behaviour is

zero-mean with no significant outliers, and when all observable behaviours

that do not correspond to noise are otherwise modelled.

3.2.2 Algorithms

Due to the typical non-linearity of inverse problems in physiological

modelling, least squares optimisation cannot be carried out through simple

linear regression. An iterative approach is required since the optimised

parameters depend on the model forward simulation (Equation (3.2)) which

in turn depends on the parameters in a way that cannot be simplified and

resolved. For the blood glucose example, xopt = f (G(tS) = f(x)).

The present work has extensively utilised gradient descent algorithms to

identify optimised parameters. Essentially, gradient descent operates on an

objective surface of ||Ψ||2 = f (x) (Figure 3.1). At each iteration (i), ||Ψ||2
is evaluated a step in the direction of each parameter from the current set

(xi). This information is used to decide which direction on the objective

surface is downhill, and how far to step in that direction for the next set

(xi+1). As with all numerical methods, the perturbation must be suitably

small to attain acceptable accuracy in xopt. However, it must also be large

enough relative to the quality of the forward simulation to avoid

convergence to a local minima in a noisy objective surface that does not

represent the least squares solution at the global minima.

The simplest gradient descent method is known as steepest descent, and

takes a step downhill in proportion to the steepness. The method is

relatively slow to converge but also very stable. Gauss-Newton is a second

order gradient descent algorithm that converges must faster but is

sometimes less stable. Levenberg-Marquardt is a further development on

Gauss-Newton that improves stability by tending toward steepest descent

when more stability is required, but maintaining the faster Gauss-Newton

descent otherwise.
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Figure 3.1: A contour plot (left) and surface plot (right) of an example
objective surface for two parameters. Higher dimension objective surfaces
(with three or more parameters) are harder to conceptualise visually but
follow the same mathematical principles.

3.2.2.1 Gauss-Newton

Gauss-Newton iterations are carried out as follows:

xi+1 = xi + (JT
i Ji)

−1(JT
i Ψi(xi)) (3.3)

where J is the Jacobian, and is described:

Ji =

[
∂ΨS

∂xj

]
i

=


∂Ψ1

∂x1

∂Ψ1

∂x2
· · · ∂Ψ1

∂xp

∂Ψ2

∂x1

∂Ψ2

∂x2
· · · ∂Ψ2

∂xp
...

...
. . .

...

∂Ψn
∂x1

∂Ψn
∂x2

· · · ∂Ψn
∂xp

 (3.4)

where j is the parameter index (j = 1, 2, . . . , p) for p total parameters.

It is most simple to use a first order numerical approximation for the

derivatives in the Jacobian:

∂ΨS

∂xj
=
G(xj + δxj, tS)−G(xj, tS)

δxj
(3.5)
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3.2.2.2 Levenberg-Marquardt

The Levenberg-Marquardt algorithm iterates to xopt using Equation (3.6)

and 3.7.

xi+1 = xi + A−1(JT
i Ψi(xi)) (3.6)

A = JT
i Ji + λidiag(JT

i Ji) (3.7)

where λ is the damping parameter. Depending on the desired properties

of the algorithm, λ is assigned different values as identification progresses.

The larger it is, the closer to first order descent. The smaller it is, the

closer to Gauss-Newton. Generally it is recommended to have some initial

value, λ0 with subsequent assignment of λi = λi−1/v (where v > 1) if it

achieved a greater decrease in ||Ψ||2 than λi−1. If either option increased

||Ψ||2 , λi = λi−1v
k would be assigned, increasing k until ||Ψ||2 could be

decreased. The revised parameter set xi would therefore only be accepted

once ||Ψi ||2 < ||Ψi−1 ||2 .

3.2.3 Convergence

Since nonlinear inverse problems are solved iteratively, there is typically

some criteria which define how many iterations are carried out. If there is a

real solution and the system is stable, the parameter estimates will

converge towards this real solution. A maximum number of iterations can

be prescribed indiscriminately but it is usually more beneficial to include a

tolerance-based convergence criterion as well. If satisfactory convergence

occurs sooner than the maximum number of iterations, no unnecessary

computational time is spent, and the maximum iterations can be assigned a

conservatively large number.

Convergence is best measured in the object of interest, the parameter set

itself, rather than a secondary feature like the modelled behaviour, which

would be less sensitive to parameter convergence. Though there are many
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variations, a sensible tolerance criterion might be:∣∣∣∣∣∣∣∣xi−1 − xi
xi−1

∣∣∣∣∣∣∣∣
2

< 10−4 (3.8)

When the criterion is true, the appropriate tolerance is reached and

iterations cease. This criterion normalises convergence by the scale of each

parameter. Thus, it ensures approximately 4 significant figures are reached

in each parameter.

3.3 Identifiability

Identifiability is concerned with successfully modelling and identifying

uniquely observable behaviours. The field of identifiability can be broadly

split into two categories: structural and practical.

3.3.1 Structural identifiability

Structural or a priori identifiability is a well established field (Audoly

et al., 1998, 2001; Bellman and Åström, 1970; Bellu et al., 2007;

Pohjanpalo, 1978). This kind of identifiability is concerned with the model

formulation and whether there is a unique solution of optimised

parameters. Structurally identifiable models have a single global minima on

the objective surface. Structural identifiability analysis methods assume

perfect data, with at least as many observations as there are parameters.

Insufficient observations for the number of parameters results in an

under-defined solution.

A simple mathematical example of structural non-identifiability would be

to use the model Ẋ = −(x1 + x2)X and attempt to identify both x1 and x2

as separate parameters. Least squares estimation of these parameters would

result in a non-unique solution since there is no ability to distinguish the

individual effects of the parameters. Whatever value x1 was, x2 could take

on a value such that the desired net effect, as seen in the output behaviour,

was modelled to the best fit. On the objective surface, this would be seen as

a valley with an infinite line of solutions reaching minimum residual error.
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Structural identifiability is reasonably intuitive, especially in such a simple

example. Indeed, the formulation of the example model appears very

redundant. However, in large models, non-identifiability can be subtle and

hidden amongst the model complexity. Hence, several methods of detecting

and confirming a priori identifiability have been developed (Audoly et al.,

1998, 2001; Bellman and Åström, 1970; Bellu et al., 2007; Pohjanpalo,

1978). Model simplification can be used to remove a non-identifiable

feature if necessary. In some scientific fields it is practical to combine

several parameters into one non-dimensionalised parameter that can be

identified, such as the Reynolds number in fluid mechanics. However, this

approach may not be helpful when seeking to identify a specific

physiological parameter.

3.3.2 Practical identifiability

Practical identifiability is an emerging field (Raue et al., 2009, 2012, 2014;

Docherty et al., 2011; Saccomani, 2013). Though not as prevalent in the

research community, it is arguably more important than structural

identifiability, especially because of its less obvious and therefore more

subversive nature. The concept of practical identifiability takes into

consideration the role of data quality in the unique observability of

behaviours (Raue et al., 2009; Docherty et al., 2011). While structural

identifiability is discrete with either an affirmative or negative outcome,

practical identifiability can be viewed somewhat more continuously.

Parameters that are practically non-identifiable can be unique in terms of

model formulation, and thus pass as structurally identifiable. Therefore, for

perfect data, there is a global minima on the objective surface. However,

parameters prone to practical non-identifiability will tend to have large

regions of shallow gradients surrounding the minima, spanning a large

range in parameter values. The implication is that the noise in (inevitably)

imperfect data obscures the true location of the global minima in the

shallow region, and a wide range of parameter outcomes could result,
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depending on the exact properties of the dataset.

To illustrate this concept, consider the model y = x1 sin(t) + x2 sin(t + φ)

where x1 = 0.3 and x2 = 0.7. If the phase (φ) is π
2

then the contributions of

the curves to y would be most apparent since one is at a maximum while

the other is at zero and vice versa. If φ is either 0 or π then the model could

be simplified to y = (x1 ± x2) sin(t). The contributions of x1 and x2 would

then be indistinguishable and thus structural non-identifiability is present.

However, as the phase approaches but does not equal 0 or pi, practical

non-identifiability increases and parameter estimates would become poorer.

Figure 3.2 shows a selection of parameter outcomes identified from data at

three different phases. For each dataset, seven datapoints between 0 and 2π

were taken with 20% noise applied. At φ = 0.5π there is maximum

practical identifiability since this represents the greatest possible phase

difference. Hence, the objective surface is conical and a relatively tight,

circular grouping of identified parameters results. As the phase approaches

π, the objective surface becomes progressively more elliptical. At φ = 0.95π

the objective surface is an extremely long ellipse, though appears as a

continuous valley within the reasonable range of parameter estimates. The

identified parameters now cover a large range of possibilities and thus are

no longer accurate or particularly useful.

In the example, when the phase was actually assigned to π, the parameter

identification algorithm failed to identify either parameter, producing NaN

results instead. This demonstrates how the effect of a structural

non-identifiability tends to be obvious to a person using the model. In

contrast, the φ = 0.95π model, with very low practical identifiability, still

produced parameter estimates, many of which could appear reasonable to

the model user in the context of use. However, the values obtained in

practice could be very different from the underlying behaviours, negatively

affecting treatment outcomes. Furthermore, the parameter identification

also resulted in good adherence of the model to the data (not shown).

Hence, the researcher could be deceived into believing that the model is
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Figure 3.2: Decreasing practical identifiability from left to right as the phase
approaches π. Top row: the simulated model (black) from the summed
components (grey). Bottom row: The no-noise objective surface (—) with
parameter estimates for 50 noisy datasets sampled from the model (+).

suitable for the given data, and that results are valid and useful when this

is far from true.

Early research describing practical identifiability was presented by Raue

et al. (2009). They presented a method for analysing both practical and

structural identifiability for all parameters in an arbitrary model based on

the flatness of likelihood profiles. Likelihood profiles are used in an

alternative parameter identification process known as Maximum Likelihood

Estimation. The likelihood profiles are similar to an objective surface in

that the minimal value indicates the optimum parameter value. However,

likelihood profiles are a more holistic representation of an individual

parameter’s objective function based on all the other factors involved.
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Figure 3.3: A demonstration of the method of Raue et al. (2009) to
determine identifiability of a parameter using the maximum likelihood profile.
An identifiable parameter (left) has a likelihood profile that exceeds the
reference value (Ψ∗) outside the confidence interval. A practically non-
identifiable parameter (middle) has a distinct optimum but does not reach
the reference value outside the confidence interval. A structurally non-
identifiable parameter (right) has a flat maximum likelihood profile as there
are infinite optimum values.

Therefore, a totally flat likelihood profile indicates a structural

non-identifiability the same way that an infinite trench does on a

two-parameter objective surface. Likewise, if the likelihood function spans

indefinitely from either end of the minima without exceeding a certain

tolerance criterion, the parameter can be considered practically

non-identifiable. Raue et al. uses a threshold corresponding to a

likelihood-based 68% confidence interval, i.e. a parameter is considered

practically non-identifiable if the 68% confidence interval is infinite.

Figure 3.3 shows how the thresholds are used to determine identifiability.

Docherty et al. (2011) presented a graphical method for understanding and

evaluating identifiability in mathematically separable behaviours scaled by

the identified parameters. These behaviours are normalised by their

respective means and compared graphically. The closer the normalised

behaviours are, in particular at the sample times of the output data, the

poorer the practical identifiability. This method has more limitations than

that of Raue et al. but the advantage is that it can provide a clear picture

(literally) of why some datasets are more suitable than others and which

parameters might be better off as a single identified parameter. Docherty et
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al. also demonstrates that the method lends itself toward tailoring clinical

tests to optimise sampling times for accuracy and cost.

3.4 Implications

Solving the inverse problem is not always a simple matter of having a

model and using it to quantify the desired properties. Obviously, some

models are better approximations of real behaviours than others but the

story is far from ending there. Appropriate and robust parameter

identification methods are required to achieve good estimation.

Additionally, the implications of practical identifiability are far reaching for

the inverse problem. Some groups in the scientific community appear to

prefer complex models, since they have the best chance to describe the

system accurately. While it is generally true that model adherence to data

is improved with complexity and parameterisation, parameter robustness

suffers. Thus the sought after accuracy is not always upheld in the key

parameter outcomes. In some cases, it is not the degree of complexity but

an aspect of the model formulation that produces practical

non-identifiability, such as with the Minimal Model of glucose dynamics. In

either case, a good understanding of practical identifiability can prevent a

model being used inappropriately, which is especially important where

physiological modelling informs clinical decision making.

In the context of developing glycaemic models for outpatient use, practical

identifiability is a hugely important consideration. The type of data that

can be collected in the outpatient environment is incongruous with clinical

or research-grade data. Hence, models developed using research-grade data

cannot be translated directly to the outpatient and expected to perform in

the same manner. Hence, the present work retains an awareness of the

unique challenges of outpatients with regard to the development and use of

glycaemic models.
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Part II

Model building and evaluation
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Chapter IV

Grey noise effects

This chapter reviews so-called ”grey-noise” effects that, when

unaccounted for, can introduce non-random systemic errors into glycaemic

modelling outcomes. This review was published in the journal of

Biomedical Signal and Processing (Mansell et al., 2017b) and presents

physiological evidence to justify the presence of these grey-noise effects,

technologies and methods that exist to quantify their presence or effect in

some way, and previous efforts to model them by others in the field.

4.1 Motivation

Injecting exogenous insulin to restore normoglycaemia after a postprandial

excursion is a necessary therapy for those with T1DM and is often

beneficial for those with T2DM (Rubin and Peyrot, 2001). However,

estimating optimal insulin doses can be difficult. The traditional factors

determining a postprandial dose are meal carbohydrate content and

nominal SI. However, a host of small confounding influences accompany

these factors (Lovell-Smith et al., 2010; Lloyd et al., 1999; Nathan et al.,

1981; Sonnenberg et al., 1990; Lunt and Brown, 1996; Van Cauter et al.,

1997; Yardley et al., 2013; González-Ortiz et al., 2000). Uncertainty

introduced by confounding factors can cause individuals to take

conservative doses for fear of hypoglycaemia (Rubin and Peyrot, 2001),

reinforcing mild hyperglycaemia and increased incidence of diabetic

complications (Rubin and Peyrot, 2001; De Boer et al., 2008; Retnakaran

and Zinman, 2008; Shankar et al., 2007).

Physiological modelling tends to involve identification of patient-specific

physiological parameters from available data, either for a population or

specific to the patient at that time. For glycaemic control applications,
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these parameters are used in conjunction with measured data and

prediction algorithms to determine an appropriate insulin dose to remediate

glycaemic excursions to pre-defined targets. Thus, unmodelled, non-random

factors that affect this identification impact control safety and quality, and

thus compliance.

Comparatively simple models that contain few variables have proven to be

effective for glycaemic prediction and control in critical care (Chase et al.,

2008; Evans et al., 2011). These simple models work primarily because they

can be robustly identified (Docherty et al., 2011; Saccomani, 2013).

However, in outpatient diabetes there are significantly more environmental

stimuli present. These stimuli have the potential to contribute confounding

behaviours and variability to the glycaemic signal that are not measured or

included in the model.

For example, psychological factors, such as stress and depression, have been

shown to influence glycaemic outcomes, tending patients toward

hyperglycaemia (Rubin and Peyrot, 2001; Surwit et al., 1992; Räikkönen

et al., 1996; Lustman et al., 2000), and exercise is a major source of

glycaemic disturbance and can potentially cause hypoglycaemia (Breton,

2008; Dalla Man et al., 2009; Roy and Parker, 2007). When factors such as

exercise and stress are not modelled, they contribute to non-random grey

noise’ in the data and confound attempts to capture the patient’s true

glycaemic metabolism. Hence, capturing grey noise would ultimately lead

to more precise prediction in glycaemic levels and thus, improved glycaemic

control.

To fully and effectively model the glycaemic excursions of diabetes

outpatients, the models employed should attempt to minimise (by design)

the grey noise by including additional behaviours in conjunction with

patient-specific parameters. However increasing the size and complexity of

the models also increases risk of model structural (Audoly et al., 2001,

1998; Bellman and Åström, 1970; Bellu et al., 2007) and practical

(Docherty et al., 2011; Saccomani, 2013; Raue et al., 2009, 2014)
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non-identifiability. Parameters must be robustly identified for sensible

estimation, and effective model-based treatment.

Glucose-insulin dynamic models are the core element of any glycaemic

control algorithm and have already been extensively reviewed in the field

(Carson and Cobelli, 2001; Chase et al., 2006, 2010; Palumbo et al., 2013).

This chapter seeks to draw attention to important grey-noise effects in

diabetes that can significantly affect management and interpretation of

data, and to provide a qualitative assessment and comparison of the

representative modelling efforts to date and their applicability to the

outpatient environment. The background of literature evidence for each of

these effects and any methods of measuring their presence are also

explored, given that these aspects are critical for mathematical modelling

and control strategies. The specific grey-noise effects considered are:

variability in nutritional intake, psychological effects, physical activity and

metabolic rhythms.

A literature review was carried out through extensive searches on the

academic database Scopus, which includes access to PubMed and a range of

other citation sources. Due to the wide range of topics within the scope of

the research, no single or few search criteria were strictly applied. A more

thorough and expedient approach was required where the focus of criteria

shifted between the different grey-noise factors, and also between the fields

of clinical research, development and use of measurement technologies, and

mathematical model development and validation. The goal was to locate

the foundational models for all general strategies used to model a specific

grey-noise effect, as well as supporting measurement and evaluation

technologies and science. This chapter therefore compiles and reviews the

detectability, measurability and practical identifiability of certain grey-noise

factors, relevant to modelling, understanding and predicting the glycaemic

excursions of outpatients with diabetes.
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4.2 Nutrition

4.2.1 Physiological sources of variability

The gastro-intestinal tract is a complex system for extracting nutritional

components from ingested food. Meals typically contain differing quantities

of water, carbohydrate, fat, protein, essential vitamins and minerals. After

mastication, ingested food is ground into smaller particles in the stomach

by gastric acid, digestive enzymes and mechanical contractions (Reinus and

Simon, 2014). Gastric emptying (GE) then delivers the food to the

intestine where it is combined with bile and pancreatic enzymes. Muscular

contractions in the intestine mix, propel and further break-down the food

(Reinus and Simon, 2014). Absorption of glucose and two other notable

monosaccharide sugars, fructose and galactose, occurs through the intestine

walls to the bloodstream via transporter proteins in the cell walls (Reinus

and Simon, 2014; Bornhorst and Singh, 2014).

Many factors affect GE. Food composition and quantity has a large effect

due to feedback signals for optimising intestinal nutrient absorption (Reinus

and Simon, 2014; Goldenberg and Cummins, 1971; Macdonald, 1996). In

particular, higher quantities of fat, glucose, energy, and acids in the food

reduce GE rate (Reinus and Simon, 2014; Bornhorst and Singh, 2014;

Goldenberg and Cummins, 1971; Macdonald, 1996; Velchik et al., 1989;

Schvarcz et al., 1997). Studies appear to generally support these same

observations in T1DM and T2DM (Schvarcz et al., 1997; Lodefalk et al.,

2008; Gentilcore et al., 2006; Fraser et al., 1990; Samsom et al., 1997;

Folwaczny et al., 2003; Kong et al., 1996). Food structure also has a large

impact on GE. Starches with expanded or disperse matrices like bread and

potato have been shown to empty faster than rice or pasta whose matrices

are denser (Mourot et al., 1988; Mishra and Monro, 2012; Torsdottir et al.,

1986).

GE rates also exhibit significant variability across and within individuals for

equivalent meals (Lartigue et al., 1994). Those with diabetes are especially

prone to variability, with 20-50% experiencing abnormally slow GE (Clark

35



and Nowak, 1994; Horowitz et al., 2002). This condition is known as

gastroparesis and is perhaps due to chronic hyperglycaemia more than

neuropathy (Folwaczny et al., 2003; Liu et al., 2007). However, its impact is

variable across individuals and over time creating a grey-noise bias.

Most carbohydrates are not ingested as monosaccharides. Disaccharides,

such as sucrose and lactose, must be cleaved by enzymes anchored to the

cells lining the intestine before absorption can occur (Reinus and Simon,

2014; Mourad and Saadé, 2011). Starches are long, branching chains of

covalently bonded glucose. These polysaccharides must be digested into

oligosaccharides by pancreatic amylases before being processed further into

singular glucose molecules at the intestinal wall (Reinus and Simon, 2014).

Amylase access to the starch substrate is a primary determinant of starch

digestive rate and thus plasma glucose appearance (Mishra and Monro,

2012; Englyst et al., 2003; Englyst and Englyst, 2005). High levels of

processing, weak and porous starch structures and low levels of dietary fibre

typically contribute to rapid availability of glucose (Mishra and Monro,

2012; Englyst et al., 2003; Englyst and Englyst, 2005; Monro, 2013).

Resistant starch and non-starch polysaccharides (e.g. cellulose) cannot be

digested and absorbed as glucose, and are instead fermented by gut

bacteria in the large intestine and absorbed as short-chain fatty acids, thus

their effect is non-glycaemic (Reinus and Simon, 2014; Englyst and Englyst,

2005).

Absorption of monosaccharides is moderated by the expression of

transporter proteins in the cells of the intestinal wall (Reinus and Simon,

2014; Mourad and Saadé, 2011). Transporter expression increases in

response to intestinal glucose presence and insulin secretion (Mourad and

Saadé, 2011). Studies have found diurnal rhythms of transporter expression

in rats (Mourad and Saadé, 2011; Douard and Ferraris, 2008; Ferraris,

2001) and similar expression is hypothesised in humans. Increased

transporter expression has been observed in diabetes Dyer et al. (2002) and

obesity (Nguyen et al., 2015). Consequently, a common treatment for
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T2DM involves partial transporter repression (Tahrani et al., 2013).

Finally, once absorbed, galactose and fructose provide limited contributions

to glycaemia. The liver converts approximately 10-20% of galactose into

free glucose (Gannon et al., 2001; Sunehag and Haymond, 2002; Ercan

et al., 1993) and 29-54% of fructose into free glucose. However, reported

rates vary widely, potentially depending on gender, exercise condition and

health status (Sun and Empie, 2012), again contributing grey-noise and

uncertainty.

4.2.2 Measurement of glucose appearance

Scintigraphy (gamma imaging of radio-labelled food) is considered the gold

standard method to measure GE (Kar et al., 2014; Szarka and Camilleri,

2009). Studies show that GE of liquids typically follows exponential decay

functions and is thus often described by half-emptying times (Reinus and

Simon, 2014; Bornhorst and Singh, 2014; Lartigue et al., 1994; Siegel et al.,

1988). Solids tend to exhibit a lag’ period of slow emptying before

exponential emptying takes over (Collins, 1991; Siegel et al., 1988;

Bornhorst and Singh, 2014).

Glucose appearance trajectories from the intestine are difficult to measure

or infer via plasma or capillary glucose concentration measurement, due in

part to the obscuring effects of the hepatic regulatory response to meal

ingestion. In particular, the hepatic glucose balance shifts from a steady

output of glucose in the basal state to a net uptake during post-prandial

periods (Cherrington, 1999). Insulin dynamics also obscure glucose

appearance modelling when plasma glucose measurements are interpreted

without consideration of specific insulin measurements. Thus, plasma

glucose data provides only a net effect across these variable endogenous

responses.

Glucose appearance can be modelled using data from double-tracer

methods (Mari et al., 1994), which typically involve infusing one type of
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labelled glucose ([3H]glucose) intravenously while giving an oral dose that

contains a different tracer element ([14C]glucose) Mari et al. (1994).

Together, the tracers allow the glucose appearance rate (Ra) to be

distinguished from glucose clearance and EGP. This type of Ra data is

considered to be gold-standard in the measurement of glucose appearance

and has been used by multiple groups to validate candidate models (Wong

et al., 2008c; Dalla Man et al., 2006). Ra can be expressed in units of

mmol/min or mg/min, but in clinical trials is most often normalised by

subject weight with units of mol/kg/min or mg/kg/min (Mari et al., 1994;

Dalla Man et al., 2006; Elleri et al., 2013). Ra trajectory (Ra(t)) calculation

requires glucose kinetic models, such as Steele’s one-compartment model

(Steele, 1959) or Mari’s two-compartment model (Mari et al., 1994).

Evaluating the effect of food type on variability in glycaemic effect can be

carried out through multiple methods. Glycaemic index (GI) is a

long-standing and simple method that gives the relative area of a glycaemic

excursion caused by a food normalised by that of a reference food of

equivalent carbohydrate content, either glucose or white bread

(Foster-Powell et al., 2002). Each food type must be tested across multiple

subjects to mitigate the effect of inter-patient variability. In such studies, a

cohort of subjects with diabetes are also often tested to account for

physiological differences (Foster-Powell et al., 2002).

Glycaemic load is a later extension of GI that takes into account the

carbohydrate density of a food for a more practical evaluation of glycaemic

effect for regular portion sizes (Foster-Powell et al., 2002). Carbohydrate

bioavailability’ is another, more extensive, classification that divides

carbohydrates into portions of rapidly available glucose, slowly available

glucose and resistant starch (Mishra and Monro, 2012; Englyst et al., 2003;

Englyst and Englyst, 2005; Monro, 2013). These quantities were

determined via in vitro digestion rate measurements. Ultimately, solely

carbohydrate focused evaluations have limited usefulness for mixed meals.

In particular, a clinical study found no correlation between estimation GI

and measured GI of common breakfasts due to the influence of fat and
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protein content (Flint et al., 2004).

Elleri et al. (2013) calculated Ra(t) for complex sugars and carbohydrates

with high and low GI foods using a double tracer method with an enriched

oral meal load. In a follow-up protocol, a controller was used to titrate

intravenous glucose at a rate that would match the oral glucose excursions.

The study itself did not propose novel model formulations for these food

types, but noted the potential to do so. It appears to be the first study to

quantify multiple modes of glucose absorption from different carbohydrates

in vivo. The results are reproduced in Figure 4.1 to show the effect of

slower available glucose compared to rapidly available glucose on Ra

trajectories.

4.2.3 Models for glucose appearance

A summary of the nutritional models can be found in Table 4.1.

4.2.3.1 The minimal model

The minimal model of food absorption was developed by Worthington in

1997 (Worthington, 1997). Validation of Worthington’s model was carried

out using measured plasma glucose excursions in a subject with T1DM.

Hence, insulin-mediated glucose clearance was assumed negligible.

Worthington fitted models of varying complexity to glycaemic data for high

and low GI meals, and proposed the one-compartment model with a delay

(D) due to its minimal parameterisation and general adherence to data.

This model is defined:

dC1(t)

dt
= PX(t−D)

GV

VG
− kaC1(t) (4.1)

where C1 is a combined stomach and intestinal compartment, PX is the

mass of the ingested meal, GV corresponds to the fraction of available

glucose, VG is the glucose distribution volume and ka is the turnover rate.

Ra is thus calculated as kaC1, normalised by subject mass if preferred.
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The model is relatively minimal and does not aim to directly model

observed physiological compartments, such as the stomach and intestine.

Furthermore, the model was not validated on gold-standard Ra data as it

was developed using glycaemic excursion data. The goal of the model was

to develop measures for the specific glycaemic impact of different foods by

characterising D, ka and GV , as opposed to GI, which is impacted by

glucose-insulin dynamics. A representative simulation of this model is

pictured in Figure 4.1.

4.2.3.2 Piecewise emptying model

The Lehmann and Deutsch (1992) model features a piecewise stomach

emptying function (Gempt) based on a linear increase to a maximum

emptying rate (Vmax), followed by constant rate and then linear decrease

back to zero. Ascending and descending times (Tasc and Tdec) are usually 30

minutes each. Thus time spend at the maximum rate (Tmax) based on the

carbohydrate load (Ch) is defined as:

Tmax =
Ch

Vmax
− (Tasc + Tdec) (4.2)

and the piecewise emptying rate is therefore given by:

Gempt(t) =


Vmax
Tasc

t; t < Tasc

Vmax; Tasc < t ≤ Tasc + Tmax

Vmax − Vmax
Tdec

(t− Tasc − Tmax); Tasc + Tmax < t ≤ Tasc + Tmax + Tdec

(4.3)

The model is adjusted for small carbohydrate loads (approximately <10

grams) as there is too little food to allow time for the emptying rate to

plateau. Thus there is no Tmax and instead Tasc and Tdec are both defined

as 2Ch/Vmax, rather than 30 minutes. The resulting function is triangular

rather than trapezoidal.

Glucose in the gut was modelled with a linear differential compartment
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defined as:

dGgut(t)

dt
= Gempt(t)− kabsGgut(t) (4.4)

where kabs is a constant emptying rate and thus the appearance rate would

be kabsGgut(t). An example of Ra from this model is included in Figure 4.1.

The model was developed to simulate a virtual patient for education in

diabetes management as well as computational testing and analysis of

treatment regiments (Lehmann and Deutsch, 1992). Thus all model

parameters are defined at fixed values except for the input quantity of

carbohydrate. The model accounts for some food-related variability by

adjusting the model form with meals of low carbohydrate content, though

an adjustment was mathematically necessary anyway. Further variability

could be captured by altering the maximum emptying rate and intestinal

absorption parameters. Moreover, using a fixed Vmax would not account for

strong GE dependence on factors such as quantity of carbohydrate, fat and

protein and energy, demonstrated in the literature (Bornhorst and Singh,

2014; Reinus and Simon, 2014; Velchik et al., 1989; Goldenberg and

Cummins, 1971; Schvarcz et al., 1997; Macdonald, 1996).

4.2.3.3 2-compartment model

Wong et al.’s model for clinical use in T1DM is a 2-compartment model

that is based partially on the minimal model of Worthington (1997) and

was validated on mixed-meal tracer glucose appearance data (Wong et al.,

2008c). The first compartment (STO) represents the stomach, while the

second (GUT ) represents the gut with each emptying in an exponential decay.

The model also includes a rate limitation in glucose/carbohydrate intake in

the gut (GABSmax) based on experimental results. The model is defined as:

dSTO(t)

dt
= −k6STO(t) + uCHO(t) (4.5)

dGUT (t)

dt
= GABS (t) + k6STO(t) (4.6)
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GABS (t) = −min(k7GUT (t),GABSmax) (4.7)

where uCHO is an impulse containing the carbohydrate mass in the meal, k6

is the GE rate, and k7 is the gut absorption rate. Ra can therefore be

calculated as GABS (t)/0.18, and potentially further divided by subject

mass.

This glucose appearance model aims to use a priori estimated values for all

constants to inform therapeutic doses of insulin in conjunction with a wider

model that includes glucose-insulin dynamics. The chapter discusses; but

ultimately did not model, the effect of slowly digested carbohydrates due to

the difficulty in predicting the various glycaemic indices of mixed meals.

Figure 4.1 includes a representative simulation of this model.

4.2.3.4 3-compartment model

Dalla Man et al. (2006) developed a model to capture more complex digestive

behaviours. Two compartments are used for solid (qsto1) and liquid (qsto2)

phases in the stomach. The solids undergo grinding and enter the liquid

phase and the liquid empties into the intestine. A third compartment (qgut)

is used for the small intestine. The model is defined:

q̇sto1(t) = −k21qsto1(t) +Dδ(t) (4.8)

q̇sto2(t) = −kempt(qsto)qsto2(t) + k21qsto1(t) (4.9)

q̇gut(t) = −kabsqgut(t) + kempt(qsto)qsto2(t) (4.10)

Ra(t) = fkabsqgut(t) (4.11)

where k21 is the grinding rate, D is the glucose content, δ(t) is an impulse

function, kabs is the absorption rate in the intestine and f is the fraction

of glucose that appears from absorption. The kempt parameter is a complex

function of the stomach contents defined:

kempt(qsto) = kmin +
kmax − kmin

2
(tanh(α(qsto − bD))− tanh(β(qsto − cD)) + 2)

(4.12)
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α =
2

2D(1− b)
(4.13)

β =
5

2Dc
(4.14)

qsto = qsto1 + qsto2 (4.15)

where kmin and kmax are the minimum and maximum values of kempt, c and

b are shape parameters that specify when changes in kempt occur relative to

the fraction of the meal remaining in the stomach.

The complex changing emptying rate produces a secondary hump on Ra(t)

(seen in Figure 4.1) that is often observed experimentally. Initially, kempt is

large, but is quickly reduced, presumably imitating the feedback control

from the small intestine as the first amount of glucose is absorbed. As the

stomach empties, kempt returns to its maximal value.

Dalla Man et al. (2006) optimised values for kmax, kmin, c, b and kabs to fit

the model to Ra data. The assumptions k21 = kempt and kempt > kabs were

made for structural identifiability. Still, it is worth noting that the authors

found that for a quarter of the subjects, the c parameter was near zero,

indicating that kempt was initially at its minimal value. Assuming that

c = 0 allowed the model to be simplified in these particular cases.

Dalla Man et al. noted that the second stomach compartment alone did not

adequately fit the model to Ra data. Thus, the non-linear emptying rate

function, rather than the additional compartment, is the defining feature of

the model. Given a constant kempt value, the two stomach compartments do

not appear to produce significantly different Ra(t) curves to a single

compartment (seen in Figure 4.1).

4.2.3.5 Gastro-intestinal transit model

Salinari et al. (2011) presents a very thorough gastro-intestinal transit

model for modelling Ra in Oral Glucose Tolerance Tests (OGTTs) that

considers motility of carbohydrates along the small intestine. Glucose is
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delivered to the intestine according to a GE function and then absorbed to

the blood stream as it moves along the intestine. The authors present a

simple form of the model, as well as a more extensive one that considers

regional differences in transporter protein expression along the intestine

(both seen in Figure 4.1). Like the 3-compartment model, the latter case

accounts for the hump frequently observed on the descending path of Ra

trajectories experimentally. Overall, it appears to be the first model that

aims to capture the contributions of more complex behaviours in the

intestine. The uniform absorption case with exponential GE can be

simulated directly with:

Ra(t) =

fD
kγ
k−γ (e−γt − e−kt); 0 ≤ t ≤ L/u

fD kγ
k−γ (e−γL/u−k(t−L/u) − e−kt); t > L/u

(4.16)

where D is the glucose bolus ingested, f is the loss coefficient, k is the GE

rate constant, and γ is the intestinal glucose absorption rate. L is the

length of the small intestine and u is the velocity of the glucose along the

length. Thus, if the time exceeds L/u, some glucose will enter the large

intestine and will not be absorbed.

Salinari et al.’s more complex model includes a power term in the gastric

emptying function and two glucose transporters with different regional

expression functions, and is defined:

Ra = f

∫ L

0

γ(z)q(z, t)dz (4.17)

where the absorption rates (γ(z)) are a function of a space co-ordinate (z)

and q(z, t) is the quantity of glucose in the intestine as a function of space

and time and is given by the equation:

q(z, t) =

q0
(
t− z

u

)
e−

1
u

∫ z
0 γ(z

′)dz′ ; 0 ≤ t− z
u

0; elsewhere
(4.18)
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where u is the velocity of the glucose as with the uniform case and q0 is

the intestinal content at the entrance of the intestine, which is a function of

gastric emptying, defined:

q(z = 0, t) = q0(t) =
1

u
η(t) (4.19)

where η is the delivery of glucose to the intestine due to power-exponential

emptying and is given by:

η(t) = Dβkβtβ−1e−(kt)
β

(4.20)

where β is the power constant. For the non-uniform case, the absorption

rate is considered to be the sum of absorption rates for two separate

transporters: γ(z) = γ1(z) + γ2(z). Gaussian functions can be used to

approximate γ1−2 in the absence of data.

Salinari et al. intended for the model to be used for identification of

physiological parameters from OGTT data. A priori values had to be

assumed for most constants in the nutritional model, except the GE rate

(k), which was identified, and a scaling factor (c) for the Gaussian

transport rate functions (γ1−2). The scale of γ2 was identified (c2 = c) and

the scale of γ2 was assumed to be half that value (c1 = 0.5c2).

4.2.4 Implications for modelling nutritional intake

Appearance of glucose from nutrition is subject to a wide range of

grey-noise variability and uncertainty due to the complexity of

gastro-intestinal processes, inter- and intra- subject variation, and effects

from the food structure and composition. These factors, when unmodelled,

increase grey noise in model-based identification and prediction. Models of

varying complexity were presented. Overall, each candidate nutritional

models exhibits similar behaviour (in Figure 4.1). Since control of

glycaemic excursions is of primary interest to researchers, the integrated

form of Ra(t), is particularly relevant, and more effectively demonstrates

the similarity of the models.
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The general glucose appearance trajectory can be captured even with the

comparative simplicity of the minimal model of Equation (4.1). Modelling

complex behaviours can give insight into the rates of particular and

important physiological processes, especially in the presence of high quality
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Figure 4.1: A summary comparison of six model types for 75g carbohydrate
inputs and an 80kg subject: the minimal model (Worthington, 1997); the
piecewise emptying model Lehmann and Deutsch (1992) both as in the
literature and with a modified emptying rate; the 2 compartment model
(Wong et al., 2008c); the 3 compartment model with complex GE rate
(Dalla Man et al., 2006); the 3 compartment model with constant GE rate
(Dalla Man et al., 2006) with parameters modified for comparison to the
Wong et al. (2008c) model; the uniform and non-uniform absorption transit
models (Salinari et al., 2011). Also included is the tracer data for high and
low glycaemic meals (Elleri et al., 2013), scaled to achieve a similar overall
glucose appearance per subject mass to the simulated models.
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clinical data. Furthermore, complex modelling approaches can yield insight

into particular dysfunctions or etiologies. However, predictive capabilities of

a model for post-prandial glycaemic outcomes will likely be limited by

intra-individual and food variability, rather than the complexity of the

model, as these uncertainties significantly outweigh the added precision.

This concept is demonstrated in Figure 4.1, which also includes scaled

versions of Elleri et al.’s tracer data for high and low GI meals. Most model

simulations are similar to each other and the high GI data. The exception

to this is the piecewise emptying model, which is largely due to the author’s

choice of fixed emptying rate coupled with a simulated carbohydrate load

larger than generally prescribed for that model. Using a modified emptying

rate brings the simulated model trajectory closer to those of the other

models (Figure 4.1). In contrast to the majority of the models, the low GI

data stands out with a significantly different trajectory. Hence, food

structure and composition contributes to potentially recoverable grey noise

in the measured data. If the influence of GI and other such factors is not

modelled, this variance in glycaemic excursions will be incorrectly captured

in other overall metabolic model parameters, and prediction precision will

be harmed.

The many physiological and environmental sources of nutritional variability

could perhaps be lumped into variables that capture the general behaviour.

In this case, it appears that nominal appearance rate and glucose quantity

are dominant features that could be parameterised to capture the general

trend in glucose excursion caused by nutritional and subject variability,

utilising a priori information, where possible, for prediction applications.

At present, tools such as GI and carbohydrate availability are used to study

and predict the glycaemic effect of a given meal (Englyst et al., 2003;

Englyst and Englyst, 2005; Flint et al., 2004; Mishra and Monro, 2012;

Monro, 2013). The fat and protein content of nutrition has shown a

confounding effect on GI (Flint et al., 2004). Hence, the nature of the

confounding effects needs to be quantified to provide the necessary a priori

information to fully capture the glucose appearance of typical meals.
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4.3 Psychological effects

4.3.1 Stress and similar factors

It is well recognised that medical and emotional stress affects glucose

regulation (Klonoff, 2007; Lloyd et al., 1999; Räikkönen et al., 1996; Surwit

et al., 1992; Xiu et al., 2014; Ramkissoon and Veh́ı, 2015). These effects are

attributed to the release of a number of hormones, particularly cortisol (Xiu

et al., 2014). More than three decades ago, Rizza et al. (1982) observed

glycaemic responses alongside a cortisol infusion, which reduced hepatic

and peripheral insulin sensitivity. A number of other experiments have also

been carried out to determine the relationship between stress stimuli and

glycaemia in T1DM subjects (Lloyd et al., 1999; Surwit et al., 1992; Ward

et al., 2011; Rizza et al., 1982). While clear correlation was found between

medical stress and hyperglycaemia, mixed results exist for the effect of

psychological stress. Surwit et al. (1992) found some studies showed that

psychological stress correlated with both hyperglycaemia and

hypoglycaemia, while other studies exhibited no effect. This discrepancy

could potentially be due to differing or ambiguous definitions of stress

across studies and the possible presence of autonomic neuropathy in some

individuals, which can reduce sympathetic responses to stress (Surwit et al.,

1992).

In general, stress appears to be consistently associated with poor glycaemic

control (Lloyd et al., 1999). Studies using exogenous cortisol as a stimulus

found reduced insulin sensitivity signals (Surwit et al., 1992; Ward et al.,

2011; Rizza et al., 1982). Depression is also associated with poor glycaemic

control and a high incidence of hyperglycaemia (Nathan et al., 1981;

Lustman et al., 2000). Since cortisol levels are elevated in depression and

linked to insulin resistance (Nathan et al., 1981), it follows that depression

would be linked to insulin resistance, although the strength of this link is

unconfirmed.
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4.3.2 Measurement of stress

The effect of stress has been measured by calculating SI values changing in

response to a cortisol stimulus (Ward et al., 2011). Ward et al. tested a

stress-compensating closed-loop glycaemic control algorithm in subjects

taking oral hydrocortisone doses that were equivalent to moderate stress

(Ward et al., 2011). Their results showed that model-identified SI was

reduced by around 40-50% several hours after hydrocortisone doses leading

to significant changes in insulin requirements for glycaemic control.

Stress levels can be measured using a number of methods other than

subjective surveys. Recent technological advances have seen a rise in in the

ability to measure indicators of stress in an outpatient environment.

Several groups have performed research into measuring galvanic skin

responses, which are altered in response to psychological stress as a

sympathetic nervous response (De Santos Sierra et al., 2011; Saha et al.,

2014; Luharuka et al., 2003). Their devices are able to provide continuous,

digital data and can also be combined with heart rate monitors for very

successful stress detection (De Santos Sierra et al., 2011). This technology

would be less effective in diabetes due to reduced sympathetic nerve

response and reduced skin moisture (Surwit et al., 1992; Goetsch et al.,

1993). However, it could be useful in younger individuals and those that

have little neuropathy. Another technology has emerged that can take

quick and easy salivary cortisol measurements with a small device

connected to a smartphone (Zangheri et al., 2015; Choi et al., 2014). The

simplicity and cost effectiveness of the technology both add to outpatient

usability. Therefore, there is great potential to measure stress and similar

psychological disturbances on a day to day or more frequent basis, if

necessary, in the near future.

4.3.3 Implications for modelling psychological effects

Stress and depression have significant impact effect on glycaemic regulation.

Some studies have shown that stress is often concurrent with reduced SI

(Surwit et al., 1992; Lloyd et al., 1999; Rizza et al., 1982). However, there
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appears to be a lack of glycaemic models that incorporate stress, and thus

this important contribution to grey-noise is typically overlooked.

Mansell et al. (2015d) modelled stress as a constant multiplicative

reduction in SI appearing on certain days (Chapter 9). Considering more

short-term effects, Ward et al. (2011) shows a delay between the

administration of oral hydrocortisone and changes in SI. It is apparent

that the specific bioavailability of the hydrocortisone compared to

endogenous forms of cortisol has a significant but not yet quantified effect

on glycaemic control. Given the mixed results of clinical studies of the

effect of psychological stress and the emergence of sensors to measure its

indicators, this research area may soon attract more interest and see the

development of data-driven models. Accounting for psychological effects

could reduce a large source of grey noise and enable tangible improvements

in model-based glycaemic control in diabetes.

4.4 Physical activity

4.4.1 Physiological effects of physical activity

The acute effect of exercise is a major metabolic disturbance and thus can

contribute grey noise in diabetes modelling. Moderate or aerobic exercise

typically burns muscle glycogen stores in the first 5-10 minutes before

relying on glucose released from the liver and fatty acids from fatty tissue

(Yardley et al., 2013). In healthy individuals, insulin levels decrease and

glucagon levels increase to stimulate the additional hepatic EGP required

to maintain normoglycaemia (Yardley et al., 2013; Sonnenberg et al., 1990).

During and after prolonged exercise, glycogen stores become depleted and

hypoglycaemia can occur.

However, individuals with diabetes are typically in a state of

hyperinsulinemia that prevents adequate hepatic response resulting in more

readily occurring exercise induced hypoglycaemia (Yardley et al., 2013;

Sonnenberg et al., 1990). Even post-exercise, elevated muscle clearance of

glucose can persist for 2 hours and increased SI has been observed for

50



upwards of 16 hours due to increased peripheral sensitivity and increased

non-insulin mediated uptake (Borghouts and Keizer, 2000; Magkos et al.,

2008). These factors can lead to hypoglycaemic events hours after exercise

has ended. High intensity anaerobic or resistance forms of exercise are less

dependent on insulin and glucagon reactions, since the release of

catecholamines stimulates a 5-10-fold increase in hepatic EGP (Yardley

et al., 2013). Therefore, anaerobic and resistance forms of exercise, even

included in routines with aerobic exercise, can reduce the likelihood of

acute or late hypoglycaemia (Yardley et al., 2013).

4.4.2 Measurement of physical activity

Measurement of exercise is generally thought of in terms of energy

expenditure (EE) and intensity. EE for aerobic respiration can be evaluated

by measuring the gas exchange occurring within an individual. The rates at

which oxygen is inspired and carbon dioxide is expired are highly correlated

with energy consumption (Schrack et al., 2010). However, anaerobic

respiration does not rely on O2 and does not produce CO2, so other

methods must be used to estimate anaerobic EE (Scott, 2006).

Traditionally, the Douglas Bag method has been used as the gold-standard

test for aerobic EE over a range of intensities. This method involves

collecting exhaled gas via a face mask and analysing the oxygen and carbon

dioxide content. However it is limited to a clinical environment due to the

necessity of physical or chemical analysis of exhaled gas (Wenzel et al.,

1990). Recent advances in technology have enabled portable, real-time

analysis of gas exchange with a device known as the K4b2 (Schrack et al.,

2010). The device is considered effective and reliable for measurement in an

outpatient environment (Veluswamy et al., 2015). However, the K4b2

requires that exercise is undertaken while wearing a face mask and is thus

not feasible for daily outpatient use.

Other less direct measures of physical activity can estimate EE. Heart rate

is considered to have reasonable correlation with EE (Strath et al., 2000)
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and can be supplemented with motion sensors for improved precision

(Strath et al., 2002). Accelerometers have reasonable overall correlation

with EE, but lack accuracy across different activities (Bassett D.R et al.,

2000; Yumiko et al., 2002). Furthermore, measurements are dependent on

the sensor location on the body relative to the activity (Kim et al., 2014).

Regardless, accelerometers may be accurate enough to evaluate a level of

EE in the average non-athlete individual depending on the application

(Yumiko et al., 2002).

Self-recorded physical activity questionnaires have also been shown to

correlate reasonably well to EE for moderate and vigorous exercise (Kurtze

et al., 2007) and thus may be suitable for capturing the effect of exercise on

glycaemia. Pedometers can give a good indication presence of physical

activity, but cannot effectively delineate intense exercise from low-intensity

walking (Dai et al., 2008). The ActiReg system combines body position

sensing with motion sensing to estimate EE during low intensity activities

and can also be supplemented with heart rate measurement for better

estimation during higher intensity activities (Hustvedt et al., 2004). The

advantage of movement monitors is the relative ease of data collection in an

outpatient environment. In particular, the recent prevalence of

smart-phones containing accelerometers vastly improves this data collection

ability. However, the disadvantages of movement monitors are the low

accuracy and precision. Those involving additional heart rate measurement

appear to be the most accurate (Hustvedt et al., 2004; Strath et al., 2002).

The relative intensity of aerobic exercise is usually evaluated as a

percentage of either peak oxygen uptake (VO2max) or the oxygen uptake

reserve (VO2R = VO2max − VO2rest) (Mann et al., 2013). Direct

measurement of V O2max is time-consuming, difficult and not done daily

(Beutner et al., 2015; Kumar et al., 2012). Thus, several other methods of

indirect measurement have been developed (Beutner et al., 2015; Sykes and

Roberts, 2004; Uth et al., 2004). Notably, the heart rate reserve can be

used to estimate VO2max (Uth et al., 2004) and heart rate relative to the

heart rate reserve can be used as a measure of exercise intensity on its own
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(Mann et al., 2013).

4.4.3 Models of exercise

A summary of exercise models can be found in Table 4.1.

4.4.3.1 Heart rate model

Breton (2008) developed a functional exercise model as an extension to the

minimal model of glycaemic dynamics . The model was tested on a patient

with T1DM and utilised a heart rate monitor as a measured input for exercise.

Based on heart rate (HR), energy consumption (Y ) is modelled:

Ẏ = − 1

τHR

Y +
1

τHR

(HR − HRb) (4.21)

where the subscript b indicates a basal heart rate and the rate parameter

τHR was set as 5 minutes for a delay.

Insulin action (Z, synonymous with SI) can be modelled to mimic

activation of glucose transporters, which increases with exercise, increasing

apparent SI (Dalla Man et al., 2009):

Ż = −
(
f(Y ) +

1

τ

)
Z + f(Y ) (4.22)

f(Y ) =

(
Y

αHRb

)n
1 +

(
Y

αHRb

)n (4.23)

Both n and τ are used to filter out random non-exercise induced changes in

heart rate (Breton, 2008). These effects of energy consumption and

modified insulin action appear in the plasma glucose (G) compartment that

also includes insulin action (X) and glucose appearance from food (D):

Ġ = −p1(G−Gb)− (1 + αZ)XG− βY G+
D

Vg
(4.24)

where α and β modify the size of the effects and were intended to be

identified along with other glycaemic parameters, such as p1, Vg, and Gb,
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using a combination of least-squares and Bayesian influence (Breton, 2008).

The use of Bayesian adaptation of parameter values implies that this

model, as defined by Breton (2008), can yield impractical results due to low

practical identifiability (Docherty et al., 2011; Cobelli et al., 1998; Erichsen

et al., 2004; Cobelli et al., 1999; Pillonetto et al., 2002).

Figure 4.2 shows an example simulation of the effects of this exercise model.

Breton notes that their experimental data did not cover enough time to

explore the dynamics of post-exercise recovery in insulin sensitivity.

Dalla Man et al. (2009) augmented it with increased peripheral tissue

glucose utilisation post-exercise and a dependency of insulin action on the

EE during exercise, with a concomitant increase in the number of identified

parameters.
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Figure 4.2: An example simulation of the Breton et al. model for 30 minutes
of exercise with the SI multiplication factor (1 + αZ) pictured left, the rate
of perturbation in plasma glucose (βY G) pictured middle and the resulting
plasma glucose trajectory from a non-basal starting value pictured right.

4.4.3.2 PVOmax
2 model

Roy and Parker developed an exercise model as an extension of the minimal

model Roy and Parker (2007). The power at maximum oxygen consumption

(PVOmax
2 ) was used to modulate the insulin signal. Additionally, rather than
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use PVOmax
2 as a measured quantity, it was modelled:

dPVOmax
2

dt
= −0.8PVOmax

2 (t) + 0.8u3(t) (4.25)

where u3(t) is ultimate exercise intensity (ranging from 0-92%) above basal

(8%). Equation (4.25) effectively models a small delay between the targeted

exercise intensity and the actual PVOmax
2 . The plasma insulin compartment

of the minimal model (I) is augmented by a variable (Ie), which is a function

of PVOmax
2 :

dI

dt
= −nI(t) + p4u1(t)− I − e(t) (4.26)

dIe
dt

= a5PVOmax
2 (t)− a6Ie(t) (4.27)

where u1 is the exogenous insulin input. Population values were used by

Roy and Parker for parameters n and p4, while a5 and a6 were identified

from plasma insulin assays in healthy individuals undergoing exercise in a

clinical trial.

Roy and Parker also modelled hepatic EGP (Gprod) and peripheral glucose

uptake (Gup) as a function of PVOmax
2 :

dGprod

dt
= a1PVOmax

2 (t)− a2Gprod(t) (4.28)

dGup

dt
= a3PVOmax

2 (t)− a4Gup(t) (4.29)

where a1−4 were identified from multiple tracer data of EGP and glucose

disappearance in healthy subjects undergoing exercise in a clinical trial.

Model simulations were then compared to subjects with T1DM in a similar

trial. Roy and Parker also modelled the decrease in EGP as a result of

glycogen depletion (Ggly) as a function that was zero until a critical

threshold was reached and also returned to zero in the post-exercise period.
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The modified plasma glucose compartment was then defined:

dG

dt
= −p1(G(t)−Gb)−X(t)G(t) +

D

Vg
+
W

Vg
(Gprod(t)−Ggly(t)−Gip(t))

(4.30)

where W is weight of subject.

Figure 4.3 shows an example simulation of the model. It is evident from the

figure and Equations (4.28) and (4.29) that Gprod and Gup cannot be easily

delineated using data of their net effect on glycaemia if multiple tracer data

were not available. Hence, for outpatient application, only one, rather than

two, compartments could be used to model this net behaviour to maintain

structural identifiability.
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Figure 4.3: An example simulation of the Roy and Parker model for 30
minutes of exercise with the plasma insulin pictured left, glucose perturbation
rates (note that Ggly is neglected) pictured middle and the resulting plasma
glucose trajectory pictured right.

The reduction in plasma insulin with exercise is debated. Some literature

indicates this behaviour occurs as a glucoregulatory response in healthy

individuals to stimulate additional hepatic production, but cannot be

regulated in individuals with T1DM (Sonnenberg et al., 1990; Yardley

et al., 2013). Furthermore, increased plasma insulin has been observed
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during exercise in T1DM suggesting increased mobilisation from

subcutaneous depots of slow acting exogenous insulin (Mallad et al., 2015).

Thus, the validation of the plasma insulin model against healthy

individuals is not necessarily directly transferable across into diabetes.

4.4.3.3 Curviliniear insulin resistance model

Magkos et al. (2008) measured insulin resistance (IR, inverse to SI) the day

after intense exercise in a clinical study. Reduced IR the morning after

evening exercise was proposed to be related to EE as a curvilinear function

shown in Figure 4.4. There was also a tendency for higher initial IR values

to reduce to a greater extent (Magkos et al., 2008). It should be noted that

there was a substantial amount of inter-subject variability.

While the model indicates that exercise reduces IR, a large portion of the

subjects experienced an increase. The authors also noted that a large EE

was required for appreciable changes. In the context of the study, this

information led to the conclusion that relying on acute effects of exercise

was not a practical means of improving insulin sensitivity. Overall, the

study was underpowered to yield a statistically significant means of

predicting changes in IR the day after exercise. However, the data shows a

probable effect of exercise, and may be useful in further development of

exercise models for glycaemic control, especially if more rigorous validation

can be carried out.

4.4.4 Implications for modelling physical activity

The effect of exercise on glycaemia has been well recorded (Sonnenberg

et al., 1990; Yardley et al., 2013; Mallad et al., 2015; Mayer-Davis et al.,

1998; Borghouts and Keizer, 2000). Exercise is a particularly important

factor due to its tendency to cause hypoglycaemia even well after exercise

has ended (Sonnenberg et al., 1990; Yardley et al., 2013; Borghouts and

Keizer, 2000). Clinical experiments have shown that compensating for

exercise with planned reductions in insulin dose is an effective means of

reducing hypoglycaemic risk (Sonnenberg et al., 1990). Such trials
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Figure 4.4: Data (+) and model (—) for changes in next-day insulin
resistance as a function of EE in exercise in healthy subjects. Figure
reproduced from Magkos et al. (2008)

demonstrate the benefit of a reduction in exercise-induced grey noise. Thus,

including exercise in model-based prediction has great potential for

safe-guarding patients with diabetes against hypoglycaemia and giving

greater confidence in engaging in physical activity.

Some of the exercise models considered here use data that is unlikely to be

available in an outpatient setting, such as PVOmax
2 (Roy and Parker, 2007)

or insulin resistance (Magkos et al., 2008). Given the sparse sampling

regimen that could be expected in outpatient diabetes glucose control,

models that capture the effects of exercise on glycaemia must be sparsely

parameterised. However, the exercise model of Breton (2008) utilises the

heart rate input data and thus could potentially be incorporated into an

algorithm for the control of glycaemia. The model is also relatively simple

and does not require a great deal of parameterisation and thus would not

require prohibitively large data sets to confidently identify. Hence, the

model is likely to be practically identifiable.

Some aspects of the effect of exercise have been explored in the models

reviewed. Both Breton’s heart rate-based model and Roy and Parker’s

PVOmax
2 -based model are validated in high resolution, short term data that

does not extend particularly far beyond the exercise period. The need for
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models that capture post-exercise glucose excursions is highlighted by

Magkos et al.’s clinical data and model for next-day IR. However, next day

IR does not provide a precise picture of the whole post-exercise effect

either. To capture exercise-induced grey noise in outpatient diabetes,

further understanding of the immediate and delayed effects of exercise on

glycaemia is needed.

Anaerobic exercise has a confounding influence and has not been modelled

as often as aerobic exercise. In particular, anaerobic exercise does not

correlate well with traditional means of measuring EE (Scott, 2006).

Furthermore, anaerobic exercise seems to have a contrary glycaemic effect

to aerobic exercise as it has been shown to reduce the risk of hypoglycaemia

(Yardley et al., 2013). Thus, anaerobic exercise still presents a significant

source of grey-noise that should be accounted for to improve glycaemic

control.

4.5 Metabolic rhythm

Glucose regulation is also subject to circadian and other metabolic rhythms

(Van Cauter et al., 1997). This section focuses on circadian rhythms in SI

as a dominant, and thus measurable effect.

4.5.1 Circadian rhythms in glycaemic indicators

Section 4.2.1 described the presence of circadian rhythms in glucose

transporters in the intestine. Overall glucose tolerance also tends to be

lower in the afternoon and evening than in the morning in healthy

individuals. Thus the term ’afternoon diabetes’ emerged to describe the

increased possibility of a false-positive diagnosis of glucose intolerance in

the afternoon (Van Cauter et al., 1997). There are mixed results regarding

the role of insulin sensitivity in this phenomenon (Sensi and Capani, 1976;

Carroll and Nestel, 1973), but the evidence generally supports a reduced SI

in the afternoon, along with reduced glucose utilisation and insulin

secretion (Van Cauter et al., 1997). Oddly, this pattern appears to be

reversed in diabetes with glucose tolerance and insulin sensitivity improving
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from morning to evening for both T1DM and T2DM (Van Cauter et al.,

1997; Visentin et al., 2015). This observation is part of the so-called ’dawn

phenomenon’.

4.5.2 Measurement of circadian rhythms

Circadian metabolic rhythms tend not to be directly measurable. Early

observations arose from differing glucose tolerance results to the same oral

glucose challenge at different times of day (Van Cauter et al., 1997). More

recently, mathematical models and multiple tracer methods have been used

to study changes in SI and EGP and uptake at different times of the day

(Van Cauter et al., 1997; Sensi and Capani, 1976; Carroll and Nestel, 1973;

Visentin et al., 2015).

Hinshaw et al. (2013) recently calculated distinct SI values for breakfast,

lunch and dinner in subjects with T1DM compared to healthy subjects.

The mean result for the cohort with diabetes showed a large increase in SI

from breakfast to lunch and a slight decrease by dinner, an opposite pattern

to the healthy cohort. Hinshaw et al. noted that the unexpectedly large

inter-subject variability in SI patterns reduced the power of the study to

make conclusions for the whole T1DM population. However, this variability

also perhaps suggests a greater need for personalisation in control

algorithms using identifiable models and easily obtained data to minimise

the impact of this effect.

4.5.3 Models of circadian SI rhythms

Several circadian SI models have been utilised (Toffanin et al., 2013; Fabietti

et al., 2006; Mansell et al., 2015d). A summary of these models can be found

in Table 4.1.

4.5.3.1 Piecewise model

Toffanin et al. (2013) used many literature references to determine several

fixed points for their multiplication factor (y) . The y(t) function was created

by interpolating t and y with a cyclic piecewise cubic Hermite interpolating
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polynomial based on:

t = [0, 2, 3, 8, 11.5, 15, 22, 24] (4.31)

y = [1.4, 0.8, 0.6, 0.4, 0.8, 1, 1, 1.4] (4.32)

where t is the time in hours.

The model was not used in any identification scheme, but as part of a

virtual patient and control algorithm for in silico trials. Toffanin et al.

parameterised the model via reference to various published reports. They

noted the proposed model was for cases when patient-specific information

was not available, but would become redundant with patient-specific

clinical testing.

4.5.3.2 Sinusoidal model

Fabietti et al. (2006) used a simple sinusoid to model circadian SI. SI is

multiplied by a function:

Pcirc = 1 + Acsin

(
πt

12
+ Pc

)
(4.33)

where Ac is the amplitude and Pc is the phase and t is the time in hours.

Ac, Pc and the nominal SI parameters were all identified from available

data. Fabietti et al. noted problems with identifying Ac since the

experiments were only 4-6 hours and the parameter would sometimes

exceed 1, indicating a negative SI at some times. This result strongly

suggests practical non-identifiability occurred in this study due to a lack of

information in the data set. In particular, with only a small portion of the

SI path recorded, there would be a greater trade-off between all of the

parameters due to the nature of the function and not being able to observe

the entire function. A longer experiment, in particular one lasting several

days, would be required to remediate this issue (Mansell et al., 2015d).

Importantly, the resultant time of lowest identified sensitivity averaged

around 6am, which is consistent with literature (Fabietti et al., 2006),
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providing some confidence.

4.5.3.3 Variable basis model

Mansell et al. (2015d) used a series of linear basis functions to model a

circadian rhythm in SI:

SI(t) = SI1g1(t) + SI2g2(t) + SI3g3(t) (4.34)

where g1−3 are overlapping triangular basis functions, pictured Figure 4.5,

and SI1−3 are parameters that can be identified from sparse diary data

stretching over weeks or months.

The model prioritises flexibility for identifying patient-specific rhythms.

More basis functions could be added to create a more detailed model, but

at the expense of identifiability. Since there are typically 3 meals during the

day, there are 3 unique glycaemic disturbances with which to perform

parameter identification, particularly for sparse data. Hence, the model was

designed to maximise practical identifiability of its parameters, while

maintaining flexibility to capture various SI profiles.
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Figure 4.5: Basis functions for Mansell et al.’s variable-basis circadian SI
model
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4.5.4 Implications for modelling circadian rhythms in SI

Some models for circadian rhythms in metabolic function, particularly its

effect on insulin sensitivity, have been developed. Figure 4.6 shows a

comparison of the Fabietti et al. and Mansell et al. models fit to the

Toffannin et al. piecewise model. The Toffanin et al. (2013) model uses

information from the literature to populate all hours of the day with

specific values for SI. This approach could be effective if the information

proves to be applicable to a wide range of individuals, or if reliable clinical

measurements of individual circadian rhythms could be taken and then

used in diabetes outpatients. However, despite the specificity of Toffanin et

al.’s piecewise model, the literature suggests a great deal of uncertainty in

the shape of individual circadian SI rhythms (Van Cauter et al., 1997).

Due to the range of effects that could influence SI over the course of any

single day, data would ideally be captured over multiple days to achieve

sensible estimation of the rhythm. Both Fabietti et al.’s sinusoidal model

and Mansell et al.’s variable basis model could be used effectively with

long-term data. Since patient data and the majority of glycaemic

excursions occur during waking hours, the data is not necessarily

distributed in such a way that would benefit identification of Toffanin et
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al.s’ sinusoidal approximation (Toffanin et al., 2013; Docherty et al., 2011).

Thus, model features occurring during the night would suffer from practical

non-identifiability. The Mansell et al. model overcomes this issue by design,

by placing identified features during the daylight hours.

4.6 Discussion

This chapter yielded information on several distinct, highly variable,

grey-noise factors in outpatient diabetes, and their implications for

modelling and control. In particular, a representative selection of

foundational models for postprandial appearance of glucose in the

bloodstream were identified and discussed, along with similar foundation

models for the effects of exercise, stress, and circadian metabolic rhythms.

A summary of these models is found in Table 4.1. While the models vary

significantly in complexity, each are well suited for a particular purpose,

though not all would be useful in the context of outpatient diabetes

management.

This chapter has also examined the critical and relevant methods of

quantifying and measuring these variables or their effect in terms of which

are well suited for outpatients, which is relevant to the kinds of models that

could be used in practice. Thus, models that rely on clinically available

methods and data would be limited to use in clinical environments.

Equally, very complex models with respect to the quality or quantity of

data available tend to be vulnerable to mathematical non-identifiability,

thus leading to clinical misinterpretation and prediction error, and are thus

not easily suited for use in regular glycaemic management for inpatients or

outpatients.

There is potential to capture contributions to grey-noise in glucose

appearance from nutrition. Food structure affects the digestibility of

carbohydrates and their resulting bioavailability. In general, more processed

foods result in smaller particle size and thus, more rapidly available glucose

(Mourot et al., 1988; Mishra and Monro, 2012; Torsdottir et al., 1986;
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Englyst et al., 2003; Englyst and Englyst, 2005). Composition of a meal,

particularly the fat and protein content, affects the rate of gastric emptying

due to physiological feedback control from the small intestine (Bornhorst

and Singh, 2014)(Reinus and Simon, 2014; Velchik et al., 1989; Goldenberg

and Cummins, 1971; Schvarcz et al., 1997; Macdonald, 1996; Lodefalk

et al., 2008; Gentilcore et al., 2006; Fraser et al., 1990; Samsom et al., 1997;

Folwaczny et al., 2003; Schvarcz et al., 1997; Kong et al., 1996). Intra- and

inter- subject variability is large, especially in diabetes where gastroparesis

occurs (Clark and Nowak, 1994; Fraser et al., 1990; Horowitz et al., 2002;

Kong et al., 1996; Lartigue et al., 1994). The nutritional models of glucose

appearance considered here vary in complexity (Worthington, 1997; Wong

et al., 2008c; Dalla Man et al., 2006; Lehmann and Deutsch, 1992). When

considering the sparse nature of data expected in outpatient diabetes, only

models that require few patient-specific parameters may be of use when

attempting to capture the patient state. While each of these models has

been developed using differing data resolution and quality, all analyses used

data that was of a higher quality and resolution than may be expected in

clinical practice. Hence, further research must be undertaken to establish

the optimal model and a priori parameter combination that could capture

patient state under the limited measurements available in an outpatient

setting.

Psychological states, such as stress and depression, are a source of grey

noise as they are known to affect glycaemia but are infrequently modelled

in control applications (Klonoff, 2007; Lloyd et al., 1999; Räikkönen et al.,

1996; Surwit et al., 1992; Xiu et al., 2014; Ramkissoon and Veh́ı, 2015). It

is suspected that stress and depression cause elevated levels of cortisol and

other hormones which reduce SI (Rizza et al., 1982). However, there are

conflicting results in clinical trials as to the glycaemic effect of stress and

depression (Surwit et al., 1992). Recent advances in measuring the presence

of stress by simple, non-invasive means (Zangheri et al., 2015; Choi et al.,

2014; De Santos Sierra et al., 2011; Saha et al., 2014; Luharuka et al., 2003)

may allow further adaptations to model based capture of glycaemia.
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Physical activity frequently results in hypoglycaemia in diabetes (Yardley

et al., 2013; Sonnenberg et al., 1990; Borghouts and Keizer, 2000). This

hypoglycaemia is thought to be the result of insufficient compensation by

EGP to meet increased demands during exercise due to general

hyperinsulinaemia (Yardley et al., 2013; Sonnenberg et al., 1990), as well as

increased peripheral insulin sensitivity and glucose uptake lasting many

hours after exercise (Borghouts and Keizer, 2000; Magkos et al., 2008). To

maximise the applicability of exercise models in outpatient settings, they

should utilise physical activity metrics such as heart rate or motion sensing

(Strath et al., 2000, 2002; Bassett D.R et al., 2000; Yumiko et al., 2002;

Kim et al., 2014). Additionally, the models should be extended over a

post-exercise period of at least 16 hours, and must be robustly identifiable.

None of the models reviewed completely fulfil these criteria. In particular,

both the Breton and the Roy and Parker models were not validated beyond

an hour post-exercise. Additionally, the Roy and Parker model required

gold standard multiple tracer data to identify certain parameters, and

would thus be too detailed and over-parameterised for outpatient data.

Magkos et al.’s model had some clinical relevance but lacked validation

power and seemed too sparsely parameterised.

Studies suggest that in diabetes, the insulin sensitivity is often lower in the

morning than the evening (Van Cauter et al., 1997)Visentin et al. (2015).

Clinical trials show substantial inter-subject variability in patterns of

model-identified SI between breakfast, lunch and dinner (Visentin et al.,

2015; Hinshaw et al., 2013). Several models that aim to capture or simulate

circadian rhythms in SI are considered (Fabietti et al., 2006; Toffanin

et al., 2013; Mansell et al., 2015d). The Toffanin et al. model was

constructed with fixed points based on clinical studies while the Mansell et

al. and Fabietti et al. models were created for data-driven identification.

Given the large amount of inter-subject variation, useful models should be

flexible and able to be identified over a number of days to increase the

certainty of results and minimise grey noise. Furthermore, practical

identifiability could be optimised by identifying parameters describing

day-time behaviours, as the glycaemic perturbations which allow SI to be
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identified are largely driven by meal times.

To maximise prediction capability, it is critical to ensure that model

parameters are identified with confidence. Hence, candidate models must

be as practically identifiable as possible, while maintaining the ability to

capture the important characteristics of glycaemic excursions. In general,

identifiability is maximised when there are a minimum of parameters in the

candidate model (Raue et al., 2009, 2012, 2014). However, the necessity of

modelling factors to reduce grey noise is apparent in this chapter. The

challenge is to balance minimal parameterisation with capturing as many

observable factors as possible. Ultimately, this modelling strategy should

reduce uncertainties allowing for lower and more precise control targets.

Increased confidence in glycaemic control protocols and a corresponding

reduction in chronic hyperglycaemia should improve the quality of life for

individuals living with diabetes.

4.7 Summary

This chapter examines several important and often overlooked grey-noise

factors that affect glycaemia and glycaemic management in outpatient

diabetes. Clinical literature has clearly shown that sources of variability

around nutritional intake, physical activity, emotional stress and circadian

metabolic rhythms are physiologically relevant factors affecting individual

glycaemic excursions in diabetes. Hence, ignoring the presence of these

factors could contribute significant and systemic grey noise to analytical or

predictive modelling outcomes, as well as to management in general.

Therefore, there is significant potential benefit to be gained from including

these factors in models when it is possible to measure the relevant stimuli.

Methods to detect or measure the presence of these factors have been

reviewed and discussed with respect to their applicability in aiding

modelling and their potential clinical use in care. Previous efforts modelling

these grey-noise factors are presented, compared and discussed with regard

to applicability in outpatient diabetes. Practical identifiability is considered
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to be a mathematically limiting factor for model complexity and specificity

given that high quality data is generally not available in the outpatient

environment. Hence, not all models would perform well in an outpatient

context. However, each model considered may be effective when used for

the purpose it was developed, whether that be for clinical diagnosis, disease

pathology, or inpatient care.
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Table 4.1: A summary of grey-noise effect models and their defining features
Section Model Year Features

4.2.3

Worthington’s
minimal model

1997 • single linear compartment with delay

Lehmann and
Deutsch’s piecewise
emptying model

1992 • trapezoidal piecewise GE function
• single linear gut compartment

Wong et al.’s 2
compartment model

2008 • linear stomach and gut compartments

Dalla Man et al.’s 3
compartment model

2006 • two stomach compartments for solid to
liquid phases
• non-linear GE rate function depending on
total stomach content
• one linear gut compartment

Salinari et al.’s
gastrointestinal
transit model

2011 • stomach compartment with power-
exponential GE function
• partial differential equation for gut with
movement/absorption along one spatial
direction
• regional expression of two gut glucose
transporters approximated with Gaussian
functions

4.3.3 Mansell et al.’s stress
model

2015 • simple step function for multiplicative
reduction of SI during stress

4.4.3

Breton’s heart rate
model

2008 • energy consumption modelled from heart
rate
• insulin action increased with exercise
• energy consumption increases glucose
disposal

Roy and Parker’s
exercise model

2007 • PVOmax
2 modelled from prescribed exercise

intensity
• glucose production and uptake
compartments based on PVOmax

2 affecting
plasma glucose
• glycogen depletion function for prolonged
exercise affecting plasma glucose

Magkos et al.’s
curvilinear IR model

2008 • next day change in IR correlated to EE
during exercise by a curvilinear function

4.5.3

Toffanin et al.’s
piecewise SI model

2013 • piecewise interpolation of values interpreted
from literature over 24hr period
• lowest in early morning, middle in afternoon
and evening, peak at midnight

Fabietti et al.’s
sinusoidal SI model

2006 • simple sinusoid with 24hr period

Mansell et al’s variable
basis model

2015 • sum of three overlapping triangular basis
functions over 24hr period
• each basis function scaled by different value
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Chapter V

Everyday life events data

This chapter describes the data used for the remaining chapters in Part II.

The data was collected as part of a study designed by a group of clinicians

and modellers in Denmark, and was kindly provided to us in the spirit of

collaboration. Hence, this chapter is essentially the content of their work

published in Schmidt et al. (2012) and Duun-Henriksen et al. (2013).

As Schmidt et al. (2012) describes in their paper, mathematical modelling

is invaluable to the diabetes research field, and is used for developing

control algorithms, performing research simulations, and predicting glucose

for decision support. However, much of the data used historically for

developing models has not reflected the everyday life of a heterogeneous

cohort of individuals with T1DM, and the inherent variabilities therein.

Hence, Schmidt et al. (2012) aimed to collect data for model-building that

observed subjects with T1DM on subcutaneous infusion of insulin

undergoing a series of everyday life events in a controlled clinical research

environment.

5.1 Study Design

5.1.1 Participants

Twelve subjects were recruited from an outpatient diabetes clinic (subject

characteristics given in Table 5.1). All patients had been treated with a

SC infusion of insulin aspart (IAsp, Novo Nordisk, Bagsværd, Denmark) via

pump for at least six months.
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Table 5.1: Relevant characteristics for the recruited subjects.

Subject Sex
Age

(years)

Diabetes
duration
(years)

BMI
(kg/m2)

HbA1c
(mmol/mol)

Total daily
insulin

(U/kg/day)

Resting
HR

(BPM)

1 F 51 43 23.1 46 0.45 58

2 M 41 8 22.2 52 0.61 62

3 F 35 26 26.9 52 0.50 68

4 F 26 13 21.4 50 0.72 49

5 M 31 23 23.5 40 0.73 64

6 M 49 7 25.1 43 0.47 69

7 F 25 8 23.8 52 0.76 63

8 F 29 19 32.6 53 0.67 52

9 F 38 13 20.3 51 0.57 73

10 F 34 12 34.7 54 0.78 60

11 F 29 14 24.4 49 0.66 53

12 F 23 12 23.3 54 0.62 47

5.1.2 Protocol

Each subject attended two study days, providing a total of 24 separate sets

of data. On each of these study days, subjects participated in a unique

schedule of three main events at 0, 150 and 300 minutes. These events

varied in type (meal with or without insulin, insulin bolus, exercise or

snack) and some events varied in magnitude (large or small insulin bolus,

mild or moderate exercise). The possible schedules can be traced through

the three tiers pictured in 5.1.

Out of the 24 study days, twenty included an exercise event, half at mild

and half at moderate intensity. Thirteen of the exercise events occurred at

Event 2 and the remaining seven at Event 3. Eight schedules contained a

snack at Event 3. The remaining 2nd and 3rd events were insulin boluses,

half of which were small and half large.

Subjects arrived two hours before the first event for a stabilisation period

(-120 to 0 minutes). During this time glucose levels were brought to stable

euglycaemic levels if necessary using small insulin boluses or intravenously

administered glucose. The time period after the third event until discharge
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Figure 5.1: The trial structure indicating the possible combinations of first,
second and third tier events

was also used to stabilise subjects (300 to 420 minutes). The total

observation time was nine hours, from 8am to 4pm.

The meal provided at Event 1 contained one gram of carbohydrate per

kilogram of the subject’s body weight, and had an energy composition of

52% carbohydrates, 18% protein and 30% fat. The snack scheduled for

some subjects at Event 3 contained 0.4 grams of carbohydrate per kilogram

of body weight, and an energy composition of 89% carbohydrates and 11%

protein. The carbohydrates in both the meal and snack have a high

glycaemic index.

Exercise was carried out by treadmill running, where the speed of the

treadmill was adjusted to achieve a prescribed HR. Prescribed HR for each

of mild and moderate exercise intensity was chosen as a fraction of the HR

reserve, i.e. HR = HRrest + %intensity(HRmax − HRrest) where HRrest is the

resting heart rate and HRmax is the maximum heart rate, and the intensity

for mild and moderate exercise is 50% and 75%, respectively.

At Event 1, insulin boluses with meals were either absent or given at half

the required amount based on the subjects normal insulin to carbohydrate

ratio. Boluses separate to meals (Event 2 or 3) were either small or large,

defined as that estimated to cause a 3 or 6 mmol/L drop in blood glucose,

respectively.
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5.1.3 Measurements

A large range of variables were measured over the course of the study days.

Subjects wore a continuous glucose monitor (Paradigm Real-Time,

Medtronic) which gave a glucose reading every five minutes. Subjects also

wore an ActiHeart R© (CamNtech Ltd., Cambridge, UK) heart rate

measurement device with readings every minute.

Blood samples were drawn at regular intervals to measure other relevant

species. Blood glucose was analysed every ten minutes using the YSI2300

STAT Plus (Yellow Springs Instruments, Yellow Springs, OH). Three

ten-minute insulin measurements were analysed after an event, otherwise

every 30 minutes, using LOCI-technology (Novo Nordisk A/S, Måløv,

Denmark). At the same time as insulin, the concentrations of glucagon,

cortisol, growth hormone, epinephrine and norepinephrine were analysed.

Other relevant information was recorded for anything taken by the subjects

during the study day. These inputs were food intake, intravenous glucose,

subcutaneous insulin infusion, along with prescribed exercise. All

measurements and inputs were recorded with respect to the relevant time.

5.2 Data and discussion

Figure 5.2 and Figure 5.3 are examples of the kind of input and output

data obtained from two separate test days for the same subject. The type

of data is ideal for the development of mathematical models. The data is of

clinical-grade quality, considering the range of measured species, the

equipment used, and relatively high sampling frequencies, but aims to

capture much of the everyday variabilities expected in an outpatient

environment. The large range of measured species, especially the various

hormones analysed, provides numerous avenues for research for the effect of

various environmental stimuli on these hormones, and the subsequent effect

of the hormones on blood glucose and insulin dynamics.

From a dynamic modelling perspective, the variety in order of events is
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useful for distinguishing different effects. For example, having some meals

without boluses, some with, and some boluses alone allows for good

observability of the independent effects of the meal and insulin boluses on

blood glucose. For an event like exercise, it occurs at a variety of glucose

and insulin concentrations across and within subjects, again providing a

range of contexts to distinguish the effect of exercise specifically.

A disadvantage is the long postprandial period from the Event 1 meal.

Rate of appearance studies have shown that the tail end of glucose from a

meal with highly glycaemic carbohydrates can still be entering the

bloodstream 300-400 minutes after initial ingestion (Elleri et al., 2013;

Dalla Man et al., 2006). Since this event is present in all datasets, it could

be more difficult to distinguish the effects of some other events occurring

during this post-prandial period. However, this reflects everyday outpatient

reality that, aside from first thing in the morning before breakfast, most

hours of the day are spent well within 300-400 minutes of some form of food

ingestion.

The sampling frequency of all the measured species appears to be

appropriate for capturing most important glycaemic and insulinaemic

dynamics reasonably well. While more data is generally better, the burden

of cost for an increased sampling rate is a limiting factor. Additionally,

since the primary dynamics appear to be reasonably observable as is,

additional data may contribute mostly to further observation of

measurement noise more than anything else.

Overall, the high quality data from Schmidt et al. (2012) and

Duun-Henriksen et al. (2013) provides a unique opportunity for model

development in T1DM. The subjects had T1DM and experienced a range of

stimuli approximating their normal environment.
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Figure 5.2: A visual representation of results from trial 2a (subject 2,
study day 1) reproduced from Duun-Henriksen et al. (2013). Note that the
subcutaneous insulin infusion is above zero as per the patient’s normal pump
settings.
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Figure 5.3: A visual representation of results from trial 2b (subject 2,
study day 2) reproduced from Duun-Henriksen et al. (2013). Note that the
subcutaneous insulin infusion is above zero as per the patient’s normal pump
settings.
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Chapter VI

Subcutaneous insulin modelling

This chapter presents the model-building and evaluation process for a

continuously infused subcutaneous insulin aspart model. While the

underlying pharmacokinetics are inevitably complex, it is recognised that

model complexity does not always contribute positively to model

performance. Hence, a range of models of increasing complexity are

compared and evaluated for performance with the available data. The

content of this chapter is in review at the Journal of Pharmacokinetics and

Pharmacodynamics.

6.1 Motivation

Subcutaneous administration is the typical route of insulin therapy for

outpatients with T1DM and is sometimes used in T2DM. Appearance of

insulin in plasma and the active interstitial regions is slower than

intravenous (IV) administration of insulin, which peaks briefly before

dissipating. Use of IV bolus administration for outpatients is unfeasible due

to health risks and practical difficulties. Modelling IV insulin appearance is

trivial. In contrast, modelling the appearance of insulin in plasma after SC

insulin administration is difficult. In particular, SC insulin exhibits kinetic

delays that are difficult to predict and quantify.

An injected insulin bolus disperses rapidly into the small fluid volume

between fat cells (Rasmussen et al., 2014). The insulin is then subject to

self-association reactions in addition to absorption kinetics (Lindholm and

Jacobsen, 2001; Home et al., 1999). Pharmaceutical human insulin is

typically stored as a six unit hexamer (Kang et al., 1991). Hexamers are

thought to be either absorbed directly to the plasma at a slow rate (Kang

et al., 1991) or drained lymphatically (Rasmussen et al., 2014). More
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significantly, SC dilution cleaves hexamers to dimers, and single unit

monomers. Both dimers and monomers appear to be readily absorbed

(Kang et al., 1991; Rasmussen et al., 2014; Lindholm and Jacobsen, 2001;

Home et al., 1999). However, absorption rates are strongly dependent on

factors that affect blood flow. For example, temperature, injection depth

and physical activity have been known to affect the absorption rates (Kang

et al., 1991; Rasmussen et al., 2014).

The insulin analogue IAsp has been engineered with a molecular

substitution that discourages self-association into hexamers and therefore

exhibits a faster glycaemic response than soluble human insulin (Lindholm

and Jacobsen, 2001; Home et al., 1999). Thus, while hexamers are the

predominant insulin form in a vial of IAsp, these hexamers disassociate

rapidly post-injection (Rasmussen et al., 2014; Lindholm and Jacobsen,

2001). Kang et al. (1991) suggest that SC hexamers are negligible in IAsp,

that dimers become the predominant insulin form immediately and that the

latter phase of IAsp is likely entirely monomeric due to lower

concentrations. Furthermore, the monomer to dimer equilibrium constant

in IAsp has been found to be 200-300 times smaller than in human insulin

(Brems et al., 1992).

There have been multiple efforts to model the pharmacokinetics of various

insulin types and insulin delivery strategies (Wilinska et al., 2005; Wong

et al., 2008a,b; Li and Johnson, 2009; Lehmann et al., 2009; Nilam et al.,

2007; Song et al., 2014; Li and Kuang, 2009). A range of candidate models

have been developed for continuous SC IAsp infusion. These were

compared and validated on a heterogeneous dataset that was collected in a

clinical-grade environment that mimicked outpatient conditions

(Chapter 5). Effective models must be robust to the typical variation

expected within and between patients. Furthermore, models must be

well-suited to the quality of data they would be coupled with to ensure

successful parameter identification (Docherty et al., 2011; Raue et al., 2009;

Saccomani, 2013).
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6.2 Methods

6.2.1 Data selection and processing

Datasets that contained exercise in the second event tier were omitted from

the analysis. Only 11 data sets remained, and within these, datasets with

exercise in the third tier were truncated. These datasets covered 9 subjects

(2/7 M/F, 33±8 years).

6.2.2 Models

Literature suggests that a multi-compartmental, potentially non-linear

approach may be appropriate to represent the association and absorption

kinetics of insulin (Eaton et al., 1980; Kang et al., 1991; Home et al., 1999;

Lindholm and Jacobsen, 2001; Li and Johnson, 2009; Wilinska et al., 2005;

Li and Kuang, 2009). However, the intentional reduction in dissociation

half-life for IAsp could allow a much simpler model than required for other

insulin types. The models developed are permutations of a large, generic

model. This general model has three SC compartments (US1−3, [mU]),

modelled by:

U̇S1(t) = UX(t)− (k1 + k13)US1(t)−
k2US1(t)

1 + αUUS1(t)
(6.1)

U̇S2(t) =
k2US1(t)

1 + αUUS1(t)
− (k2 + k23)US2(t) (6.2)

U̇S3(t) = k13US1(t) + k23US2(t)− k3US3(t) (6.3)

UST (t) = k1US1(t) + k2US2(t) + k3US3(t) (6.4)

where k terms are transfer rates [min−1]; αU saturates the transfer rate

between US1 and US2 [mU−1]; and UST is the transfer rate of all insulin

states from the subcutis to plasma [mU ·min−1].

Plasma and interstitial dynamics are modelled by the 3-compartment

model of Fisk et al. (2016) that was based on the 2-compartment ICING

model (Lin et al., 2011). Insulin diffusion occurs between plasma (I), active

interstitial (Q) and passive interstitial (QP ) compartments. Clearance
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occurs from the plasma and active interstitial compartments. The Fisk et

al. model is described:

İ(t) =
UST (t)

VI
− nKI(t)− nLI(t)

1 + αII(t)
− nI(I(t)−Q(t))− nIp(I(t)−QP (t))

(6.5)

Q̇ = nI
VI
VQ

(I(t)−Q(t))− nCQ(t) (6.6)

Q̇P (t) = nIp
VI
VP

(I(t)−QP (t)) (6.7)

where nK is the renal clearance coefficient [min−1]; nL is the hepatic

clearance coefficient [min−1] that is saturated by αI [L · mU−1]; nC is the

interstitial clearance rate [min−1]; plasma-interstitium transport rates are

labelled nQ and nP for active and passive, respectively [min−1]; VI , VQ and

VP describe plasma, active interstitium and passive interstitium volumes of

distribution, respectively [L].

The following candidate models were developed to represent specific

simplifications of the large and highly detailed model Figure 6.1.

US1
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US3
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clearance

subcutaneum
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pump plasma interstitium
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k1US1
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Figure 6.1: Pathway diagram for the full model showing rates of mass transfer
between compartments
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Model 1 (M1) is the simplest of all the models, including only a single

linear compartment for SC insulin, and a single plasma compartment with

linear clearance. Transport rate from the subcutis and hepatic clearance

rate from the plasma are identified: x = [k1, nL]T

Model 2 (M2) retains the simplicity of the M1 plasma compartment but

insulin passes a second SC compartment before transportation to the

plasma. Transport rates for both SC compartments are equal and identified

as one parameter along with the clearance rate from plasma:

x = [k12, nL]T, k2 = k12

Model 3 (M3) has the same SC structure as M2 but introduces an

interstitial insulin compartment paired with the plasma compartment.

Insulin is cleared hepatically and renally from the plasma and also in the

interstitium. Several functions interrelate interstitial-plasma transport and

clearance rates and only interstitial clearance is identified along with the

SC rate parameters: x = [k12, nC ]T, k2 = k12

Model 4 (M4) introduces nonlinear transport across SC compartments and

identifies a transition from SC to the plasma. The saturation term creating

this nonlinearity is a priori but the SC transport rates are no longer

treated as equal and are identified separately: x = [k12, k2, nC ]T

Model 5 (M5) introduces a priori nonlinear hepatic clearance from the

plasma but is otherwise the same as M4: x = [k12, k2, nC ]T

Model 6 (M6) adds a passive interstitial compartment that contains, but

does not clear insulin. All passive compartment parameters are a priori.

Active interstitial clearance is still identified along with the SC transport

rates as before. Furthermore, the SC nonlinear saturation term is also

identified: x = [k12, k2, αU , nC ]T

Model 7 (M7) returns to the plasma-interstitial system of M5, neglecting
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the passive interstitial compartment, but adds a third SC compartment.

The first two compartments feed into the third compartment identified at a

fixed ratio. The transport rate to the plasma, now from the third

compartment, is also identified: x = [k12, k13, k3, nC ]T, k23 = 0.66k13

Model 8 (M8) contains the SC system of M7 but again includes the

passive interstitium of M6. M8 is the most complex model and contains

three SC compartments from which three parameters are identified, a

plasma compartment, a passive interstitial compartment, and an active

interstitial compartment from which clearance is identified:

x = [k12, k13, k3, nC ]T, k23 = 0.66k13

Specifications for which parameters were identified and any a priori

assigned values for each model are given in Table 6.1. In all cases plasma

volume was assumed to be 3L, while interstitial volumes were predefined

fractions of the subject weight (Fisk et al., 2016; Lin et al., 2011).

Particular ratios (fnK , fnL and fnQ) defined relationships between clearance

and transport rates for the plasma-interstitial system for some model

permutations (Fisk et al., 2016; Lin et al., 2011). These ratios are defined:

fnK =
4nCVQ

2VI
(6.8)

fnL =
7.5nCVQ

2VI
(6.9)

fnQ =
VQ
VInC

(6.10)

Linear, un-paired differential equations were simulated via analytical

solutions with trapezoidal integration for computational simplicity. For

nonlinear differential equations, left-hand numerical integration was used

for nonlinear terms, while remaining terms were integrated trapezoidally.

This ensured rapid integration while retaining precision. For

interdependent compartments, i.e. plasma and interstitium, iterations were

carried out between the species until satisfactory convergence in plasma
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insulin was detected as:

||Ii − Ii−1||2
||Ii||2

< 10−6 (6.11)

SC species were simulated for an additional few hours before the

experimental start time to utilise information recorded about boluses used

in the night or early morning. Starting point values for all species were

simulated as steady state values given the parameters and initial

concentrations in parent species.

6.2.3 Analysis methodology

6.2.3.1 Parameter estimation

Parameters were estimated for individual datasets using a

Levenberg-Marquardt gradient descent algorithm (Chapter 3).

Table 6.1: Specifications for parameters in each model permutation
Model 1 2 3 4 5 6 7 8

P
ar

am
et

er

k1 ID 0 0 0 0 0 0 0

k12 0 ID ID ID ID ID ID ID

k13 0 0 0 0 0 0 ID ID

k2 0 k12 k12 ID ID ID 0 0

k23 0 0 0 0 0 0 0.66k13 0.66k13

k3 0 0 0 0 0 0 ID ID

αU 0 0 0 0.002 0.002 ID 0.002 0.002

nK 0 0 fnK
fnK

fnK
fnK

fnK
fnK

nL ID ID fnL
fnL

fnL
fnL

fnL
fnL

αI 0 0 0 0 0.0017 0.0017 0.0017 0.0017

nI 0 0 fnI
fnI

fnI
fnI

fnI
fnI

nC 0 0 ID ID ID ID ID ID

nIp 0 0 0 0 0 nI 0 nI

VQ 0 0 0.1w 0.1w 0.1w 0.058w 0.1w 0.058w

VP 0 0 0 0 0 0.09w 0 0.09w

VI 3 3 3 3 3 3 3 3
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Optimisation minimised the least squares of the insulin residuals:

||Ψ||2 =

√∑
s

(Is − I(x, ts))
2 (6.12)

where xopt is the optimal parameter values, Is is the sth insulin data

measurement and I(ts) is the modelled plasma insulin at the time of the sth

sample.

Starting parameter values for the algorithm were

x0 = [0.01, 0.05, 0.05, 0.05, 0.5, 0.05]T and perturbations were

∆x = [10−5, 10−5, 10−5, 10−5, 10−6]T. A maximum of 250 iterations were

allowed to reach the convergence criterion:

||xi − xi−1||
||xi||

< 10−5 (6.13)

6.2.3.2 Goodness of fit

The candidate models’ ability to capture the observed behaviour was

assessed. Overall goodness of fit was evaluated with the coefficient of

determination (R2) across all datasets and compared across models.

Additionally, residual error patterns in the post-bolus period were collated

from all datasets to investigate the presence of any consistent bias

indicating mismodelled behaviour.

6.2.3.3 Parameterisation

The degree of parameterisation was evaluated to ensure that the model did

not attempt to fit kinetics that were more likely to be measurement noise.

The Akaike Information Criterion (AIC) is based on information theory, and

evaluates the trade-off between fitting capability and complexity. Typically,

a model with the lowest AIC score is considered optimal. The AIC value for

84



small sample sizes is given by:

AIC = 2k − 2 ln(L) +
2k(k + 1 )

n − k − 1
(6.14)

ln(L) = −n ln(σ)− n

2
ln(2π)− 1

2σ2

n∑
s=1

Ψ2
s (6.15)

where k is the number of parameters, n is the sample size, σ is the reported

standard deviation of the measurement noise, derived from Petersen et al.

(2010).

AIC was calculated for individual datasets to compare medians and

interquartile ranges between models. In a related analysis, cumulative

distribution functions (CDFs) of residual error collated from all datasets

were created for each model and compared to the distribution expected

from assay error alone. In theory, a perfectly parameterised model would

yield a residual distribution that was just outside that of the reported

measurement error. Such an outcome would imply that real behaviours are

captured, and that the model was not adhering to measurement noise.

Knowledge of measurement noise was required for both parameterisation

analyses. Published information for assay variance at different serum

insulin concentrations (Petersen et al., 2010) was interpolated to simulate

error at the concentration of each measured data point. For AIC, variance

of this simulated error was calculated and averaged over 1000 simulations.

The mean CDF of 1000 error simulations was used in the CDF analysis.

6.2.3.4 Practical identifiability

Robust parameter estimation is essential for utilisation of models in

prescriptive clinical applications. Lack of robustness can be attributed to

practical non-identifiability. Identified model parameter values describing

similar but distinct behaviours can trade off if measurement noise in the

data is sufficient (Raue et al., 2009; Docherty et al., 2011). Few formal

methods of measuring practical non-identifiability have been developed. For
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this application a boot-strapping methodology was employed. Robust

parameters should be insensitive to small changes in the content of a

dataset. Thus, for a data set with n datapoints, n parameter identification

runs were undertaken with each run having one data point removed (i.e.

with n − 1 data). The coefficient of variation (CV) in x due to the

down-sampled datasets was calculated (CVi =
σxj
xj
× 100%). Median and

interquartile values of CV were calculated across the eleven datasets for

each parameter in each model.

6.2.3.5 Predictability

An analysis was carried out to test the predictive capabilities of each

model. M1-8 were fit to each dataset excluding the last two hours of output

data. Identified parameters were then used to predict the last two hours of

plasma insulin. Residual error between the predictions and a linear

interpolation of the data for all datasets was plotted for visual

interpretation. For quantitative evaluation, mean absolute residual error

over all datasets was calculated for each model.

6.3 Results

All models were successfully fit to the experimental data. Figure 6.2 shows

a typical result. M1 had the lowest R2 (Table 6.2), while the remaining

models achieved similar goodness of fit (Figure 6.3a). Goodness of fit

generally increased with complexity and M8 performed the best (R2 =

0.92). Post-bolus residual patterns exhibited insignificant bias for models

M2-M8 (Figure 6.4). However, M1 exhibited some consistent bias,

indicating failure to capture some dynamics.

M8 achieved the lowest median AIC score Table 6.2. However, M4 achieved

the lowest mean AIC score (Figure 6.3b). M2-8 have very similar AIC

scores. No model residual CDFs were within the reported measurement

noise (Figure 6.3c). Degree of conformity to the assay CDF increased

roughly in the order of model complexity with M1 being the most distant

from the assay error and M7 and M8 being very similar and the closest.
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Figure 6.2: A typical result for model fitting plasma insulin for a dataset.
Note log-scale in UX(t) and that the subject took a bolus not long before the
experiment began

The CV of parameter estimates across bootstrap permutations were lowest

for M2-3 (Table 6.3). M4-5 had similar results to M3 for the nC parameter

but higher CV in subsequent parameters. M6-8 had median CVs exceeding

20% in many parameters with large interquartile ranges.

On occasion, the convergence criteria was not reached before 250 iterations

had elapsed. This convergence failure occurred for M7 in one of the 11

datasets in the original parameter estimation exercise. During the

bootstrap analysis with 212 dataset permutations, convergence failure

occurred six times for M6 and 19 times for M7.

The predictability analysis yielded similar minimal prediction errors for

M2-8 while the errors for M1 were larger (Table 6.4, Figure 6.5). M3

predicted best with lowest mean error and tightest visible distribution of
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Figure 6.3: Analysis results: a) all (grey) and mean(black) R2 values for
datasets at each model; b) all (grey) and mean (black) AIC values for datasets
at each model; c) collated residual CDFs for each model against simulated
noise

residual trajectories. Convergence failure occurred once with each of M6-8

during this analysis.

6.4 Discussion

All models were generally capable of fitting the data. M8, the most

complex model, achieved highest goodness of fit (R2 = 0.92, Table 6.2).

M1, the least complex model, was worst fitting model (R2 = 0.53). This

finding follows the expected trend of fitting capability improving with

parameterisation and model detail. Post-bolus residuals (Figure 6.4)

provide information on the suitability of the model forms for the capturing

insulin responses and the efficacy of the identification process. As expected,

post-bolus patterns did not differ significantly across models with the same

underlying SC model. M1 yielded a repeated bias immediately after the

bolus, indicating it was incapable of capturing the kinetics of post-bolus

plasma insulin.

The net-zero bias of residuals shown in Figure 6.4 imply that the parameter
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Table 6.2: Median, lower (Q1) and upper (Q3) quartiles for R2 and AIC
values for each model across the datasets

Model R2 (Q1,Q3) AIC (Q1,Q3)

M1 0.53 (0.32,0.61) 122 (89.7,159)

M2 0.85 (0.82,0.89) 101 (81.0,105)

M3 0.85 (0.82,0.89) 101 (81.1,105)

M4 0.87 (0.85,0.93) 99.1 (79.2,108)

M5 0.87 (0.85,0.93) 99.2 (79.1,108)

M6 0.89 (0.87,0.92) 102 (81.9,109)

M7 0.91 (0.88,0.94) 91.8 (82.4,109)

M8 0.92 (0.88,0.94) 92.1 (82.4,109)

identification process was generally robust and led to model simulations

that adhered to the measured data. However, the non-zero incidence of

failed convergence after 250 iterations for M6-8 during the bootstrapping

and prediction exercises implies isolated cases of unstable parameter

identification or that the particular parameter sets yielded practically

non-identifiable model parameters. Practical non-identifiability can occur if

the data contains insufficient information to quantify a particular model

parameter’s behaviour, or to delineate the behaviour of two or more model

parameters. Practical non-identifiability results in very high CV values for

some parameters. Models that produced a non-zero incidence of failed

converge (M6-8) yielded the highest parameter CV values (Table 6.3).

Thus, the parameter trade-off in M6-8 appears to have limited the ability of

the parameter identification methodology to determine accurate Jacobian

gradient directions, preventing descent on the objective surface with respect

to certain parameters. This means that M6-8 have insufficient practical

model identifiability to provide robust and reliable parameters.

The CDF comparison allowed a similar parameterisation analysis to AIC.

The Akaike criteria implies that ideal model parameterisation leads to

model fit residual CDFs as close as possible to the measurement error CDF.

Model fit residual CDF within the measurement error envelope implies that

the data has been over-fitted’ and thus that the model is over

parameterised. Over-parameterised models ultimately lead to poor
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Figure 6.4: Post bolus residual trajectories of collated post-bolus residual
behaviour across all datasets and for each model

prediction, classification and diagnosis of parameter values. The CDFs in

Figure 6.3 indicated that none of the candidate models were over-fitted.

Despite the potential for further parameterisation, the AIC analysis

indicated that when trading off fit and model complexity M4 was the best

choice based on lowest mean result (Figure 6.3b) or M7 based on the lowest

median result (Table 6.2). This dichotomous outcome across summary

statistics for the AIC metrics demonstrates that the optimal model was

difficult to determine. A much larger sample size would be needed to

confidently rank the top models according to the AIC criterion. The close

AIC medians and ranges across the models, particularly M2-8, implied

similar performance. The CDFs and R2 results of M2-8 are also reasonably

close.

The bootstrap analysis revealed that M2 and M3 were the most robust

models (Table 6.3), with median parameter CVs not exceeding 2%. In

contrast, M6-8 yielded multiple median parameter CVs in excess of 20%
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Table 6.3: Median, lower (Q1) and upper (Q3) quartiles for CV [%] for
parameter estimates across all permutations of datasets for each model in
the bootstrap analysis

Model M1 M2 M3 M4 M5 M6 M7 M8

x1 nL nL nC nC nC nC nC nC

CVx1
1.2 0.6 0.6 0.7 0.6 1.6 23 12

Q1,Q3 0.7,1.7 0.5,0.9 0.5,0.9 0.5,1.0 0.4,1.2 0.8,14 20,28 3.1,27

x2 k1 k12 k12 k12 k12 k12 k12 k12

CVx2
8.0 1.7 1.7 5.1 5.8 40 16 11

Q1,Q3 6.4,13 1.5,2.1 1.5,2.2 2.6,10 2.7,12 27,157 11,28 4.3,18

x3 k2 k2 k2 k13 k13

CVx3
4.8 5.1 23 27 23

Q1,Q3 2.5,39 3.0,23 6.6,57 21,108 12,87

x4 αU k3 k3

CVx4
64 25 4.4

Q1,Q3 39,150 3.1,32 2.7,24

Table 6.4: Mean absolute residuals with each model for predicted outcome
of the last 2 hours of the experiment based on identification of prior data

Model M1 M2 M3 M4 M5 M6 M7 M8

|Ψ∗| [mU/L] 5.01 2.23 2.07 2.33 2.39 2.95 2.45 2.82

and large interquartile ranges. This indicates that these models are too

sensitive to small variations in data to yield unique parameter estimates

that are indicative of the underlying pharmacokinetic behaviour of the

participants. Hence, the M6-8 formulations lead to parameter estimates

that have ambiguous utility in prediction or diagnosis. Furthermore, these

models sometimes did not converge to the data within 250 iterations of the

Levenberg-Marquardt scheme used during the bootstrap-like and prediction

analyses. Levenberg-Marquardt is generally considered a robust parameter

identification system due to its ability to transition between quick second

order and robust first order convergence based on the behaviour of previous

iterations.

The data used in this analysis followed a cohort of individuals with
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Figure 6.5: Residual error between 2 hour predictions and the actual data
(at datapoints, black, at linear data interpolation, grey)

established T1DM. Thus, zero endogenous insulin secretion was assumed.

This allowed analyses that did not require determination of the endogenous

insulin signal. Even if undertaken with C-peptide data and an assumption

of equimolar secretion, determining endogenous secretion would ultimately

incorporate another contribution of measurement error into the analysis,

reducing clarity in the appearance of insulin in plasma. There is some

ambiguity whether the pharmacokinetics of SC insulin in T1DM is relevant

in T2DM. Individuals with T2DM often experience a period of insulin

hypersecretion prior to hyposecretion that occurs when the disease is

established (Pories and Dohm, 2012). Thus, determining appearance of SC

insulin in those with T2DM may require deconvolution of the appearance

profile from hypersecretion of endogenous insulin. It is possible that such a

deconvolution would introduce uncertainty greater than that caused by

assuming equivalent SC kinetics across individuals with T1DM and T2DM.

Insulin measurements were taken at 10 minute intervals immediately after
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the bolus administration. Higher data resolution would yield more robust

estimates of non-linear appearance effects. However, Figure 6.4 shows that

the general form of the plasma insulin excursions could be well quantified

by the sampling rate. The non-linear effects of appearance may be of

primary interest to pharmacokinetic studies of drug composition. However,

the general form of the plasma insulin excursion captured by M2-M8 is of

primary importance for projects aiming to control glycaemia. Changes in

glucose are approximately proportional to area under the insulin curve.

Hence, for glycaemic regulation, the most critical factors to determine are

appropriate insulin rise time, peak levels, and decay rate.

Eight models of differing nature and complexity have been analysed.

Models M1 to M7 are simplifications of M8 which contains terms for all

reported significant mechanisms of SC appearance in plasma. The

simplifications are achieved by fixing parameters a priori, defining

relationships between parameters and effectively removing compartments.

The models provided unique compromises of parameter robustness and

fitting accuracy. Table 6.5 summarises the outcomes for all of the models

highlights the value of M3 as the most robust model that also provides

acceptable R2 values. These outcomes imply that the best prediction and

control could be achieved with M3. Table 6.5 also shows that M8 adheres

to the measured data better than all other candidate models. However, M8

also exhibited relatively high parameter variance implying that it would

have limited use in determining robust parameter estimates.

6.5 Summary

This modelling exercise considered eight permutations of an insulin

pharmacokinetic model. The models had different levels of

parameterisation, and different compartmental approaches. Increased

parameterisation and complexity generally led to lower parameter

estimation precision but better adherence to measured data. In contrast,

models with fewer identified parameters had poorer model fitting, but led

to improved identified parameter precision, and associated improvements in
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plasma insulin prediction. The optimal model for parameter robustness and

prediction incorporated a two compartment SC depot and a two

compartment plasma-interstitial system.

Table 6.5: Summary of model performance across key metrics; underlined
text indicates particularly poor outcomes

Model R2 AIC
Prediction
|Ψ∗|

CV of model
parameters Residuals

Potential value based on
analysis

M1 0.53 122 5.01 1.2,8.0 systemic
bias

Too simplistic

M2 0.85 101 2.23 0.6,1.7 unbiased No benefits over M3

M3 0.85 101 2,07 0.6,1.7 unbiased Best prediction
and parameter
robustness

M4 0.87 99.1 2.33 0.7,5.1,4.8 unbiased Acceptable compromise
of robustness and model
fitting

M5 0.87 99.2 2.39 0.6,5.8,5.1 unbiased Reasonable compromise
of robustness and model
fitting

M6 0.89 103 2.95 1.6,40,23,64 unbiased Poor practical
identifiability

M7 0.91 91.7 2.45 23,16,27,25 unbiased Poor practical
identifiability

M8 0.92 92.1 2.82 12,11,23 ,4.4 unbiased Best fit but
poor parameter
robustness
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Chapter VII

Autoregressive modelling of exercise

This chapter presents a data-driven autoregressive modelling approach to

reveal the effect of mild to moderate exercise on insulin and glucose

independently. This work was presented as a conference abstract and poster

at the New Zealand Society for the Society for the Study of Diabetes

Annual Scientific Meeting (Mansell et al., 2016)

7.1 Motivation

Exercise causes a disturbance to glycaemic control in T1DM and can result

in hypoglycaemia without compensatory treatment (Sonnenberg et al.,

1990; Brazeau et al., 2008). In healthy individuals, decreases in insulin

secretion during exercise signal the liver to increase EGP for additional

peripheral glucose demand (Sonnenberg et al., 1990). Since those with

established T1DM lack endogenous insulin, this pathway for modulating

hepatic EGP during exercise is impaired, though catecholamine hormones

are still active (Yardley et al., 2013). Furthermore, some literature suggests

that the plasma concentration of exogenous insulin increases during

exercise in T1DM Koivisto and Felig (1978); Sonnenberg et al. (1990),

further reducing glucose concentration. Hence, the insulin-glucose dynamics

during exercise have implications for glycaemic management in T1DM.

In this chapter, Nonlinear AutoRegressive eXogenous (NARX) modelling

has been used to delineate the effect of exercise on both insulin and glucose

concentrations in T1DM. NARX is a non-parametric form of modelling

that allows a model to be trained to imitate the relationship between model

input and output data without specific knowledge of the physiological

processes that link the stimuli and behaviour.
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7.2 Methods

7.2.1 Data processing

Of the 24 trials from 12 subjects (3/9 M/F, 34±9 yrs), only 20 contained

the necessary exercise periods for this study. During these trials, patients

ran on a treadmill for approximately 20 minutes at either a mild or

moderate level. These levels corresponded to target heart rates 50% and

75% of the interval between resting and maximum heart rate, respectively.

The glucose data was truncated to exclude three hours following the

morning meal and four datasets were excluded altogether due to a

scheduled afternoon snack. Thus, meal glucose appearance could be

neglected.

NARX is typically applied where input and output data sampling rates are

equal and consistent. This is mathematically appropriate since NARX

formulations are independent of time. The insulin and glucose

measurements (Idata and Gdata) were taken at sampling rates that were

much lower than the one-minute resolution of insulin pump data, meal

intake and prescribed exercise. Hence, the insulin and glucose data were

interpolated with a Hermite cubic polynomial to increase the resolution of

output data to equate the sampling rates.

Prescribed exercise was given in terms of a target heart-rate (HR(t)),

elevated during the exercise period and at resting (HRrest) otherwise.

Subject information for maximum heart rate (HRmax) was used to

normalise the exercise data array into a unit of intensity (e(t)) based on the

formula:

e(t) =
HR(t)− HRrest

HRmax − HRrest

(7.1)
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Exercise data was then converted into an impulse located at the start of the

exercise period (te0) based on the formula:

E(t) =


∫ tn−1

t0
e(t)dt, at t = te0

zero, otherwise
(7.2)

where n − 1 is the total number of minutes in the experiment. Integrating

e(t) means that the impulse is essentially a measure of energy expenditure.

7.2.2 Model formulation

NARX modelling correlates output behaviour to input stimuli. Interpolated

insulin (I(t)) and glucose (G(t)) concentration were treated as the output

behaviours for the two respective models. Continuous SC infusion (U(t))

and the exercise function (E(t)) were treated as input stimuli for the

insulin model, as well as past insulin. The product of insulin and glucose

(I(t)G(t)), intravenous glucose (V (t)), E(t) and past glucose were input

stimuli for the glucose model.

The insulin model is described:

It = aIIt−1 +
100∑
k=1

bUI,kUt+1−k

+
60∑
j=1

bEI,jEt+1−j + cI

(7.3)

where aI is the insulin auto-correlative (AC) term, bUI,1→100 are

cross-correlative (CC) terms for SC insulin over 100 minutes, bEI,1→60 are

the CC terms for exercise over 60 minutes, and cI is the steady state offset.

The glucose model is described:

Gt = aGGt−1 + bIGIGt−1 + cG

+
25∑
k=1

bV G,kVt+1−k +
60∑
j=1

bEG,jEt+1−j
(7.4)
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where aG is the glucose AC term, bIG is the CC term for the glucose-insulin

product, bV G,1→25 are the CC terms for intravenous glucose over 20

minutes, bEG,1→60 are the CC terms for exercise over 60 minutes, and cG is

the steady-state offset.

Multiple parameters were used to correlate present I and G to the input

stimuli legacy, since their effects were not expected to be instantaneous. In

particular, SC insulin has significant kinetic delays before plasma

appearance. The spike in glucose introduced by intravenous administration

was not adequately represented by interpolation of the 10 minute resolution

glucose samples. Hence, the interpolated behaviour needed to be modelled.

Exercise input was modelled as an impulse so that the response, both

during and after exercise, could be observed as one time-dependent effect.

In all these cases, a continuous set of correlation parameters accounts for

the appearance rate of these inputs in the output behaviours over a given

period of time.

7.2.3 Parameter identification

Multiple linear regression was used to solve the parameters in each model.

The Ax = b matrix equation for insulin model is described:

[It−1,Ut ,Ut−1, · · · ,Ut−99,Et ,Et−1, · · · ,Et−59,1]

∗ [aI ,bUI ,bEI , cI ]T = It

(7.5)

where all I, U and E terms are n − 1 × 1 arrays of data, bUI is a 1 × 100

array of parameters, bEI is a 1 × 60 array of parameters, and 1 is a

n− 1× 1 array of ones.

Likewise, the matrix equation for the glucose model is described:

[Gt−1, It−1Gt−1,Vt ,Vt−1, · · · ,Vt−24,Et ,Et−1,

· · · , Et−59,1] ∗ [aG, bIG,bVG ,bEG , cG ]T = Gt

(7.6)

where all G, I, V and E terms are n − 1 × 1 arrays of data, n is the

duration of the experimental data used, bVG is a 1× 25 array of parameters
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and bEG is a 1× 60 array of parameters.

Values for U−99 → U−1 were populated from pump settings and recorded

boluses that may have been administered before the experiment. Values for

E−59 → E−1 and V−24 → V−1 were zero. When no IV glucose was given, V

arrays and bVG were excluded from the glucose equation. In two cases, IV

glucose was administered within the 60 minute exercise observation

window, and at no other time. To avoid structural non-identifiability, these

datasets were truncated at the point of IV introduction. Identified CC

coefficients for exercise (bEI and bEG) for each dataset were compared

across datasets. Cumulative integrals of these coefficients were compared.

7.3 Results

The exercise-insulin CC terms are shown in Figure 7.1. During exercise,

bEI was generally positive, greater at first, and generally negative

post-exercise, tending toward zeros at the end. Distinct nodes are visible in

bEI at 10, 20, 30 minutes. The integrated bEI profiles show an approximate

net zero effect of exercise on insulin in most datasets.

The exercise-glucose CC terms are shown in Figure 7.2. The rate of glucose

deficit in bEG increases with exercise duration and returns to zero over the

post-exercise period. Nodes in bEG occur every 10 minutes. The integrated

bEG profiles show a net-negative effect of exercise on glucose.

Along with the sought after exercise CC coefficients, those for SC insulin

infusion and intravenous glucose boluses are shown in Figure 7.3 and

Figure 7.4, respectively. With the exception of one stray trajectory, most

datasets produced a SC profile with a positive rate in the first half an hour,

tapering to zero between 30 and 100 minutes. Therefore the integrated

effect of SC input was net-positive by 100 minutes for these datasets. For

the few datasets with IV glucose, the CC coefficients followed a somewhat

sinusoidal trajectory with a period of 10 minutes. The remaining AC and

CC terms for both the insulin and glucose models are presented in
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integrated (bottom)
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Table 7.1: Median (Q2), lower (Q1) and upper (Q3) quartiles for remaining
parameters in both insulin and glucose models

parameter description Q2 (Q1,Q3)

aI AC insulin term 0.994 (0.990,0.997)

cI insulin offset term -0.0137 (-0.0997,0.0534)

aG AC glucose term 1.008 (0.995,1.013)

bIG insulin-glucose CC glucose term −3.99× 10−4 (−4.51, 0.60)× 10−4

cG glucose offset term -0.0611 (-0.0775,-0.0284)

Table 7.1.

7.4 Discussion

The present work applied NARX to a biological application with unequal

input and output sampling rates. Interpolation of data allowed the NARX

model to function on an appropriate time-scale. Exercise CC coefficients

across the subjects showed consistent patterns. This consistency in

outcomes across the heterogeneous cohort indicates the NARX approach

was valid and valuable. The variability in magnitude of the CC profiles

indicates the level of intra-subject variability.

The CC coefficients represent the instantaneous impact of exercise on

insulin or glucose over time. Thus, the integrated bEI profile is the

exercise-mediated excursion of pump-delivered IAsp, as it appeared in the

plasma. Insulin concentration generally increased during exercise, returning

to normal afterwards. Thus the net effect of exercise on insulin appearance

generally tends towards zero. This is expected due to the unchanged rate of

insulin delivery to the subcutis. Increased blood flow is likely to raise the

rate of SC absorption during exercise Kang et al. (1991). Temporarily

lowered SC insulin levels would then potentially decrease the post-exercise

appearance rate. If plasma or interstitial clearance rates were raised due to

exercise, a net negative effect would be expected. This factor may have

contributed to the few datasets tending toward net negative values.

Integrated bEG shows an exercise-mediated deficit in glucose. The
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Figure 7.4: Intravenous-glucose cross-correlative coefficients for the few
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magnitude of glucose deficit generally increased with exercise duration.

However, this effect would likely plateau for some time during extended

exercise periods, but would be dependent on factors such as the availability

of muscular and hepatic glycogen stores (Yardley et al., 2013). Glucose

deficit continued into the post-exercise period, which may be partly due to

refuelling of depleted muscle glycogen.

NARX modelling was an effective approach for this type of data. In

particular, the T1DM cohort lacks of endogenous insulin, thus negating the

need for more complex deconvolution. The CC terms used to investigate

the influence of exercise on plasma insulin yielded particular shapes that

were not necessarily intuitive. Since NARX is largely data-driven, it is an

operator independent approach that allowed these trajectories to be

discovered. This method is in contrast to typical approaches which often

compare and fit a hypothesised model. Therefore, such an approach may

have not as effectively found or utilised the remarkably consistent shapes

discovered by NARX.

The other parameters in the NARX models were not particularly useful and

did not take on expected values. For example, the aI term is related to the

combined hepatic and renal insulin clearance (nT ) in a form that could be
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approximately modelled by nT = 1 − aI . This relationship would provide a

median nT of 0.006 min−1 based on the results as opposed to the expected

value on the order of 0.1 min−1. Furthermore, many of the aG parameter

outcomes exceed the value of 1, identifying a self-dependent growth in

glucose concentration rather than the decay seen physiologically. Likewise,

results for the bIG term which could be related to insulin sensitivity by

SI = −bIG was identified in the right order of magnitude but sometimes

positive, indicating insulin acting to increase rather than decrease glucose

concentration in those cases.

These inconsistencies and discrepancies in the other NARX parameters is

the result of trade-off between parameters and is due to practical

non-identifiability. In data not shown plasma insulin simulated using

Equations (9.2) and (9.3) also failed to get expected parameters from the

NARX algorithm, and aI was particularly sensitive to the rate of SC

delivery. However, a priori knowledge of physiology implies that insulin

clearance should be quite independent of SC delivery. In a typical

physiological model, trade-off would be minimised by assigning a priori

values to many parameters based on population averages from other clinical

or modelling studies. In this case, the clear consistency and observability of

the effect of exercise is not discounted by these other parameter outcomes.

However, the limitation highlights NARX efficacy as an interim modelling

method rather than a final representation of physiology.

A notable limitation to the method was the need for output interpolation.

Figure 7.1 and Figure 7.2 (also 7.3 and 7.4) indicate nodes in the CC

parameter trajectories at the sample times for insulin and glucose

measurements. These nodes are an artefact of the interpolation, due to the

presence of noise in the data and how that influenced the estimation of

values by the Hermite cubic polynomials. The broad trends in the profiles

are valid but the applicability of the higher resolution dynamics of the

trajectory are reduced due to these artefacts.

Another limitation to the method was the use of an impulse function in
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place of the step function that describes the period of exercise. This was a

necessary manipulation of the data to observe the effect of exercise.

Otherwise, the difference between the effects of starting, continuing,

finishing and being finished with exercise would have confounded the

NARX parameters. Impulse-based results are very useful anecdotally, but

require validation in different exercise durations to establish robustness.

This analysis was intended to act as a basis for further work. The use of

uniquely data-driven shape information and interpretation of physiological

processes involved should aid development of robust, differential models.

Any advances in modelling everyday events such as exercise will enhance

analysis and control of glycaemia in T1DM, improving the quality of life of

these individuals.

7.5 Summary

In subjects with T1DM, plasma appearance from SC IAsp increased during

exercise. This observation was likely due to heightened blood flow

quickening absorption from the subcutis. Following exercise, the plasma

appearance temporarily decreased, generally resulting in a near net-zero

effect overall. Lowered SC concentrations from exercise would slow

absorption afterwards once blood flow was normalised, explaining the

decreased appearance rate.

The subjects experienced a net-negative effect on plasma glucose due to

exercise, consistent with the observed tendency for exercising outpatients

with diabetes to become hypoglycaemic. The greatest rate of glucose deficit

was generally near the end of exercise, tending back toward zero in the

post-exercise period.

NARX modelling promotes data-driven outcomes, meaning that it allows

the data to drive the behaviours defined by the model. In contrast,

traditional modelling fits a completely a priori model to the data. In this

case, interpolated input data had to be used with the NARX model. This
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step resulted in some bumpy regions appearing in the results that are not

expected to be real phenomena. This outcome limits the applicability of

exact shapes discovered. However, the general form of the shapes are

valuable, especially for further research and model development.

107



Chapter VIII

Basis modelling of exercise

This chapter details a differential model developed for the effect of

exercise on plasma insulin and glucose concentrations, respectively. The

models build on the work of the previous chapter that used data-driven

techniques to observe the effect exercise. These differential models are

evaluated for performance on the available data.

8.1 Motivation

In the previous chapter, an autoregressive modelling approach was used to

observe the effect that exercise had on the plasma concentration of

exogenous insulin administered in the subcutaneous tissue of the subjects

with T1DM. It was found that exercise was associated with an increase in

plasma insulin concentration that decreased again after exercise for a

net-zero effect overall. The observed behaviour was thought to be a result

of increased mobilisation from the subcutis due to increased blood flow and

agitation, followed by a relative deficit in SC concentration that slows

plasma uptake in the post-exercise period. This observation is in contrast

to the behaviour of endogenous insulin in healthy individuals that is

down-regulated during exercise to promote additional EGP (Yardley et al.,

2013; Sonnenberg et al., 1990).

The effect of exercise on glucose concentration was also observed with

NARX. It was found that exercise increased the rate of glucose disposal

during exercise. The disposal rate returned to zero after exercise but not

immediately. This increased glucose disposal caused a net reduction in

glucose due to exercise, as is expected with the increased peripheral glucose

demand for energy.
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The NARX model outcomes were useful for deconvoluting and therefore

observing the consistent patterns across the whole cohort. While the

outcomes of the NARX provided these indicative patterns they fail to

provide a model with meaningful parameters. Furthermore, the data

required interpolation to be compatible with NARX, introducing artefacts

not present in the data itself. Additionally, conversion of exercise input

information from step to impulse function was required for observing the

effect but would not therefore be robust to differing exercise durations.

Differential models are much more robust to these concerns. The current

chapter presents the next stage of exercise-insulin and exercise-glucose

modelling using differential equations with basis functions.

It can be anticipated that in an outpatient environment, plasma insulin will

not be measured at all. Therefore, it is important when developing a model

for this context to avoid unnecessary complexity. Parameters governing this

indirectly observed compartment will not be very practically identifiable

during optimisation. Hence a simplistic insulin model is used in this work.

There is no modelling of an interstitial compartment or nonlinear saturable

hepatic insulin clearance. The exercise itself is modelled using basis

functions for both glucose and insulin, that can be summed together in

their effect for simplicity and robustness.

8.2 Methods

8.2.1 Data

Nineteen out of 24 datasets described in Chapter 5 were used for the present

work. Four datasets were excluded due to the absence of exercise in the trial

schedule. One further dataset was excluded from insulin modelling due to

the absence of insulin boluses. In the remaining trials, all subjects ran on

a treadmill for approximately 20 minutes while aiming to maintain a heart

rate (HR∗) prescribed for either a mild or moderate exercise. Basal insulin

was administered by pump as per each subject’s normal daily pump settings,

and small or large boluses were administered with and/or without food as
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per the specific trial schedule.

8.2.2 Model and simulation

The insulin system was modelled with a single plasma compartment (I)

with linear clearance. Inputs to the insulin model include the appearance of

insulin from SC delivery (US) and the influence of exercise (EI). This

plasma compartment is modelled as a function of time (t, minute

resolution) with the ordinary differential equation described:

İ(t) =
US(t)

VI
+ εIEI(t)− nT I(t) (8.1)

where VI is the plasma insulin distribution volume, nT is the total linear

insulin clearance rate, and εI is the magnitude of exercise effect on insulin.

I(t) was calculated with the analytical solution of Equation (8.1) using

cumulative trapezoidal integration.

Each measure of insulin administered subcutaneously by the pump appears

as an equimolar curve in US over the following minutes. The curve shape is

described by the basis function array (fU), based on SC insulin appearance

models by Wong et al. (2008a).

fU = tku
2 e−kut (8.2)

t = [0, 1, 2, · · · , 600] minutes (8.3)

where ku is the SC rate parameter. To simulate the accumulative effect

of continuous SC infusion, each time point for SC insulin appearance was

therefore calculated with the dot product:

US(t) = fU · [UX(t), UX(t− 1), UX(t− 2), · · · , UX(t− 600)] (8.4)

where UX terms indicate the pump input. For indices less than zero (i.e.

before the experiment time began), information was used from pump

settings and experimental notes of early morning boluses.
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Like SC insulin, a sum of basis functions was used for the effect of exercise.

The functional array for exercise (fEI) is an impulse followed by an equal

area subtraction curve (Figure 8.1a), based on the results of Chapter 7.

fEI = [1,−tkeI
2e−keIt] = [1, 0,−(keI

2e−keI ), · · · ,−(600keI
2e−600keI )] (8.5)

where keI is the exercise rate parameter in the insulin model. Thus individual

time points in the insulin exercise effect array (EI) are therefore calculated:

EI(t) = fEI · [HR∗(t),HR∗(t− 1),HR∗(t− 2), · · · ,HR∗(t− 601)] (8.6)

where HR∗ is target heart rate. An example of the exercise function and its

integrated form, to represent actual plasma insulin deviation, are seen in

Figure 8.1b-c.

The glucose system , based on Mansell et al. (2015d) was modelled with a
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Figure 8.1: An indicative demonstration of the modelled effect of exercise
on insulin, showing (a) the basis function, (b) the exercise effect function for
20 minutes of exercise (arbitrarily at HR∗ = HRmax), and (c) the integrated
exercise effect function.

single glucose compartment (G) with both insulin-dependent and

insulin-independent glucose disposal. Inputs include glucose appearance

from ingested food (PS) and intravenous bolus (V ). The exercise function
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(EG) also impacts directly on the glucose compartment.

Ġ(t) = −pG(G−G0)− SI(GI −G0I0) +
PS(t) + V (t)

VG
+ εGEG(t) (8.7)

where SI is the insulin sensitivity, pG is the hepatic glucose balance, G0 is

basal plasma glucose, I0 is basal plasma insulin, VG is the volume of glucose

distribution and εG is the magnitude of the exercise effect on glucose.

Each measure of carbohydrate ingested appears as an equimolar curve in

the PS(t) function, based on the Mansell et al. model. This curve contains

some fast appearing glucose at a fixed ratio to the rest of the glucose. This

was achieved through the following basis function array:

fP,m = 0.9tkp,m
2e−kp,mt + 0.1t(0.072)e−0.07t (8.8)

where kp,m is the glucose appearance rate parameter, m = 1, 2 denoting

separate parameters and therefore basis functions for the meal (1) and the

snack (2). This difference in parameter accounts for the differing glycaemic

loads. The basis function is pictured in Figure 8.2a. This basis function is

used to calculate the glucose appearance function at each time point,

according to:

PS(t) =
2∑

m=1

fP,m · [PX,m(t), PX,m(t− 1), PX,m(t− 2), · · · , PX,m(t− 600)]

(8.9)

where PX,1 is the carbohydrate input function for the meal and PX,2 for the

snack.

As with the insulin model, the effect of exercise on glucose was modelled by

using a basis function fEG based on the results in Chapter 7. This
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functional array is modelled:

fEG = −tkeG
2 e−keGt (8.10)

(8.11)

where keG is the exercise rate parameter in the glucose model. Thus

individual time points in the glucose exercise effect array (EG) are therefore

calculated:

EG(t) = fEG · [HR∗(t),HR∗(t− 1),HR∗(t− 2), · · · ,HR∗(t− 600)] (8.12)

An example of the exercise function and its integrated form, to represent

actual plasma glucose deviation due to the muscular demand for glucose, are

seen in Figure 8.2b-c.
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Figure 8.2: A demonstration of the modelled effect of exercise on glucose,
showing (a) the basis function, (b) the exercise effect function for 20 minutes
of exercise (arbitrarily at HR∗ = HRmax), and (c) the integrated exercise
effect function.

8.2.3 Parameter identification

The insulin model was fitted to individual datasets by identifying variables

in the parameter set xI = [nT , ku, VI , keI , εI ]
T. An alternative insulin model
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was also fit to the datasets that excluded the effect of exercise, i.e.

εI = keI = 0, (xI = [nT , ku, VI ]
T). These two modelling cases are henceforth

referred to as the exercise insulin model and no-exercise insulin model,

respectively.

The glucose model was also fitted to datasets and the identified variables

were those in the parameter set xG = [SI, kp,1, kp,2, εG]T. If no snack was

consumed, kp,2 was set to zeros and omitted from the parameter set. Like

insulin, a no-exercise glucose model was also fit to the datasets, i.e.

εE = keE = 0, (xG = [SI, kp,1, kp,2]
T). In the no-exercise and exercise

glucose models, the following a priori assumptions were made for other

parameters: pG = 0.004, VG = 16.7L, keG = 0.15min−1, G0 = 4.5mmol/L,

I0 = min([10,min(I (t))])mU/L (Mansell et al., 2015d; Lin et al., 2011).

The I(t) function for the glucose model was a Hermite cubic polynomial

interpolation of the data, and V (t) was simply taken as the data input for

IV glucose.

Optimally fitted model parameters (xopt) were estimated by solving the

least squares solution to the residual error in plasma insulin and plasma

glucose for the respective models. The optimisation was undertaken with

variants of the Levenberg-Marquardt-like gradient descent algorithm

(Section 3.2.2.2). For the insulin model, the damping factor (λ) was

initially, λ0 = 10−4 but λi = 10λi−1 if ||Ψi || > ||Ψi−1||, otherwise

λi = max[0.9λi−1, 10−4]. If the parameter set yielded any NaN results,

initial x was reinstated with λi = 10λi−1. For glucose, λ was simply kept at

0.1.

Starting parameter values were xI0 = [0.01, 0.05, 0.05, 0.05, 0.5, 0.05]T and

xG0 = [0.0003, 0.02, 0.05, 0.1]T, and perturbations were

∆xI = [10−5, 10−5, 10−5, 10−5, 10−6]T and xG0 × 10−4. A maximum of 250

iterations were allowed to reach the convergence criterion:

||xi − xi−1||
||xi||

< 10−5 (8.13)
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Due to the poor practical identifiability of the keI parameter, it was identified

in the exercise model using a hierarchical identification method (Schranz

et al., 2011). In particular, keI was excluded from initial identification, fixed

at 0.05, until the convergence criterion was first reached with the remaining

parameter set (Schranz et al., 2011). Convergence of the full parameter set

was continued. In this second stage, keI was bounded 0.01 ≤ keI ≤ 0.1 and

if instability repeatedly occurred in the parameter set (i.e. NaN results more

than three times) keI was once again fixed to 0.05. This allowed most datasets

to benefit from an optimised keI parameter but recognised the limitations

inherent for some datasets.

8.2.4 Model performance analysis

R2 was the primary goodness of fit measurement for each dataset. For both

exercise and no-exercise models. R2 was evaluated over entire experimental

time, and separately for the two hour peri-exercise period (t− te0 ≤ 2 hours

where te0 indicates time of exercise commencement). Median, upper and

lower quartiles for these results across the datasets are presented.

Additionally, a collation of peri-exercise residual error profiles (Ψ(t − te0))

for all datasets are presented for each of the exercise and no-exercise

models.

A parameterisation analysis was also carried out. The CDF of peri-exercise

residual errors in all datasets was computed for both the exercise and

no-exercise models. These residual CDFs were compared against a CDF of

expected measurement noise. Published intra-assay variance data at

different insulin concentrations Petersen et al. (2010) was used to simulate

expected measurement error. An over-parameterised model would have a

residual CDF steeper than measurement noise, indicating that features

caused by noise are modelled as if they were real phenomena. Thus,

residual CDFs of an ideally parameterised model would be slightly

shallower than that of measurement noise, and with an unbiased halfway

crossover at Ψ = 0.
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8.2.5 Model result interpretation

Mean and lower, median and upper quartile statistical outcomes for the

identified exercise-related (keI , εI and εG) parameters were calculated.

Additionally, correlations between the magnitude of exercise-mediated

insulin excursion (εI) and other known variables across the cohort were

determined. As part of this investigation, the relationship between εI and

plasma insulin at the start of exercise Ie0 was studied by calculating the

correlation coefficient (R) and using variance analysis (ANOVA).

Since outcomes from two datasets were excluded as outliers when

correlating εI and Ie0, a separate analysis was carried out to justify this

decision. This analysis was similar to the concepts presented in the

so-called bootlier (bootstrap-based outlier detection) plots of Singh and Xie

(2003) which show that sampling from distributions containing outliers

produces multimodal histograms. Ten thousand bootstrap iterations were

carried out in which a randomly selected n∗ = 14 subset from the original

n = 19 datasets was chosen, and R between εI and Ie0 calculated. This

process was repeated three more times, still with n∗ = 14 but out of a

dataset pool excluding the two designated outliers, then with a pool

excluding two other points that could otherwise be considered outlying if

the designated outliers were not, then excluding all four of these points.

This particular bootlier analysis variation was developed to determine

whether the two designated outliers contributed disproportionately to the

correlation outcomes compared to other datasets, and were therefore

justifiably outlying.

8.3 Results

8.3.1 Insulin model

Figure 8.3 shows typical insulin model fitting results for two datasets. The

exercise and no-exercise insulin models generally exhibited similar

performance for SC insulin appearance. The exercise-model captured the

increase in insulin during exercise and subsequent decrease after exercise
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observed in the data. Conversely, the no-exercise model was not capable of

capturing this excursion.
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Figure 8.3: A typical fitted result for two separate datasets showing the data
(×), modelled without exercise (grey) and modelled with exercise (black).

Goodness of fit, as evaluated by R2, was reasonably good for both insulin

models when evaluated over the full experimental period (Table 8.1).

However, a noticeable improvement (12%) in median fit was achieved using

the exercise model compared to the no-exercise model. By comparison,

peri-exercise fit was very poor for the no exercise model (R2 = 0.31) with a

lower quartile R2 less than zero. In this two hour period, modelling exercise

substantially improved the fit.

The no-exercise insulin model shows a distinct pattern in the peri-exercise

residual trajectories for the cohort (Figure 8.4a) with large positive residual
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Table 8.1: Median, lower (Q1) and upper (Q3) quartiles of R2 values in the
insulin model variations, considering both the full experimental period and
just the 2 hours after exercise commenced.

full experiment peri-exercise

R2 (Q1,Q3) R2 (Q1,Q3)

modelled 0.91 (0.88,0.95) 0.86 (0.80,0.94)

unmodelled 0.81 (0.72,0.89) 0.41 (-0.13,0.57)

error in the first hour and smaller but negative residual error in the second

hour. The exercise model was generally successful in attenuating both

positive and negative residual error biases (Figure 8.4b), maintaining an

approximately zero median residual error. Figure 8.4c shows that the

no-exercise model has the shallowest rise in CDF and is biased toward

positive residual errors. The exercise model CDF is much closer to the

estimated measurement noise CDF but still shallower in rise. Unlike the

no-exercise model CDF, the exercise model CDF has no apparent bias.
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Figure 8.4: Analysis of peri-exercise residuals: (a) residual profiles for all
datasets using the no-exercise insulin model; (b) residual profiles using the
insulin exercise model; (c) CDFs for all-dataset collations of peri-exercise
residuals, compared to distribution for expected measurement error.

Mean identified εI was 1.04 and the quartiles were 0.35, 0.78 and 1.36. The

parameter keI was fixed to 0.05 for 9 out of 19 datasets based on the
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Figure 8.5: Plasma insulin at exercise commencement compared to exercise-
induced excursion magnitude with linear trend. Each different marker style
denotes a different patient. Marker colour denotes mild (grey) and moderate
(black) levels of exercise.

algorithm in the methodology. Mean keI was 0.0496 for all datasets, and

0.0492 for datasets excluding those with fixed keI . Quartiles for keI were

0.041, 0.050 and 0.052 for all datasets, and 0.016, 0.045, 0.070 excluding the

fixed case.

No significant relationships were found between εI and a range of

population variables, with one exception: plasma insulin concentration

immediately prior to exercise (Ie0). An appreciable correlation between the

two variables was found (with outliers removed), giving an R value of 0.66

and corrected R2 of 0.40. ANOVA calculated a p-value of 0.004 for the

relationship compared to a constant εI . Figure 8.5 shows that all

intra-patient pairs of datasets exhibited exclusively positive correlation

between Ie0 and εI .

The bootlier plots (Figure 8.6) show that when using the full dataset pool

for sampling bootstrap populations (left) most R values fall into one of two

bands. Both bands have poor correlation, one centred around a mean value

of R̄ = 0.25 and the other R̄ = 0.03. A small band of well correlated

outcomes is also present around R̄ = 0.68. Removing the two outliers at

Ie0 = 43 and Ie0 = 52 mU/L from the available pool of datasets yields a
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Figure 8.6: Distributions of correlation outcomes between Ie0 and εI for same-
sized subsets of the datasets. The left two cases exhibit the effect of removing
the designated right-hand outliers from the available pool of datasets. The
right two cases again exhibit this effect but with another two possible datasets
removed that could be considered outlying if the righthand outliers were not.
R at the first 1000 bootstrap iterations are plotted (top) and histograms for
outcomes of all iterations (bottom).

single well-correlated band, R̄ = 0.67. Further removing the two other

possible outlying points at Ie0 = 29 and Ie0 = 33 mU/L yields similar

results to the initial analysis but with slightly tighter distributions. The

correlation bands were located at R̄ = 0.66, R̄ = 0.25 and R̄ = 0.06 for a

pool just excluding these two possible outliers. Excluding all four potential

outliers, both designated and possible, yields a single band of

well-correlated outcomes at R̄ = 0.66. Since the analysis wherein the two

high Ie0 outliers are removed was the only trial to achieve a consistent

correlation band, the theory of Singh and Xie (2003) recommends that

these points should be declared outliers.

8.3.2 Glucose model

Figure 8.7 gives two examples of the glucose model performing well with

the inclusion of the exercise basis. One of the examples shows quite a large
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Table 8.2: Median, lower (Q1) and upper (Q3) quartiles of R2 values in the
glucose model variations, considering both the full experimental period and
just the 2 hours after exercise commenced.

full experiment peri-exercise

R2 (Q1,Q3) R2 (Q1,Q3)

modelled 0.97 (0.93,0.99) 0.50 (0.17,0.90)

unmodelled 0.93 (0.83,0.98) -0.12 (-1.11,0.66)

exercise-mediated excursion while the other has only a small change. In the

rest of the cohort, some datasets showed small or even negligible changes

due to exercise while other patients were highly effected. Median εG was

0.33 with lower and upper quartiles of 0.12 and 0.63 respectively. Figure 8.8

gives two examples of the glucose model performing less well. One example

demonstrates an overly magnified exercise excursion immediately next to an

ill-fitted intravenous glucose bolus. The other shows some unmodelled

effects from the ingested meal.

The no-exercise glucose model has a median R2 of 0.93 over the entire

experimental period (Table 8.2) and the exercise glucose model improves

this to 0.97. These goodness of fit measurements are higher and less

variable than for the insulin model but the R2 values have not been

adjusted for the relatively higher sampling frequency. The improvement in

the peri-exercise period from modelling exercise was comparable to insulin

but the fit achieved was not as good overall, with a median R2 of 0.50.

There were some particular outlying residuals that remained even after

exercise was modelled (Figure 8.9a-b,d-e). It should be noted that unlike

most datasets, these sets contained IV boluses during the experimental

time. Several datasets experienced a large improvement in model residual

with exercise modelled but many which had smaller residuals to begin with

did not experience much improvement. Over the dataset collation, the

peri-exercise residual distribution was significantly positively biased when

exercise was not modelled (Figure 8.9c). When exercise was modelled this
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Figure 8.7: Typical good fitting results for two separate glucose datasets
showing the data (+), modelled without exercise (grey) and modelled with
exercise (black).
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Figure 8.8: Typical poor fitting results for two separate glucose datasets
showing the data (+), modelled without exercise (grey) and modelled with
exercise (black).
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distribution was very close to the expected measurement noise distribution.

Over the whole experimental time, modelling exercise brought the

distribution of residuals closer to that of the measurement noise, but still

shallower (Figure 8.9f).
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Figure 8.9: Analysis of peri-exercise residuals: (a) residual profiles for all
datasets using the no-exercise glucose model; (b) residual profiles using the
glucose exercise model; (c) CDFs for all-dataset collations of peri-exercise
residuals, compared to distribution for expected measurement error. Plots
(d-f) are equivalent to (a-c) but for the full experimental time.

8.4 Discussion

The mathematical model for the effect of exercise on plasma insulin

concentration was effective in the cohort of subjects with T1DM treated by

SC pump. Table 8.1 demonstrates that the exercise-model improved the

goodness of fit in insulin from R2 = 0.81 to 0.91 over the full experimental

time in the median case. Focusing on the peri-exercise period specifically,

two hours from the start of exercise, goodness of fit improved substantially
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by modelling exercise, from R2 = 0.41 to 0.86. Modelling the effect of

exercise on plasma glucose concentration also improved fit with

peri-exercise R2 increasing from -0.02 to 0.50. Full dataset R2 increased

from 0.93 to 0.97 when the exercise terms were used.

In addition to the R2 metric, the residual collation in Figure 8.4a-b shows

that residuals for the no-exercise insulin model have a distinct positive then

negative trajectory. In contrast, the exercise model shows little positive or

negative bias, as confirmed by the peri-exercise residual CDF of

Figure 8.4c. Furthermore, this CDF is slightly shallower than that expected

from noise, indicating that the model is not over-parameterised.

Over-parameterised models can adhere to the data closer than the

measured accuracy should allow. In these cases, the model is capturing

effects that are dependent on measurement noise and have no relevance to

the underlying behaviour. These outcomes of good fit, no bias and

appropriate parameterisation demonstrate the efficacy of the exercise basis

function model as an addition to the basic insulin model.

The glucose model was not as effective as the insulin model with some large

excursions in the model residual, despite the improvements. This appeared

to be largely due to limitations in the general form of the glucose model

other than with the specific exercise basis. In particular, the observed effect

of the IV glucose was inconsistent with the modelled effect, causing

trade-off with exercise magnitude in some datasets. This physiological

observation is likely due to an acceleration of glucose disposal from plasma

in response to IV glucose bolus, unaccounted for by the model.

Additionally, the glucose appearance basis from the ingested meal was not

effective for some datasets. In the peri-exercise period, the residual

distribution analysis indicates that the model may be close to

over-parameterisation, which may be consistent with some observations of

trade-off between behaviours.

The structure of the basis models was simple and easy to apply to existing

models. The equitable plus and minus portions of the insulin basis function
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reflect well the fact that there is no expected change in the insulin entering

the system via the SC pump or leaving the system (assuming that clearance

rates are unchanged). For glucose, an increasing but saturated rate of

glucose disposal in response to exercise seemed a reasonable approximation

of physiological processes. In the post-exercise period, this rate took time

to return to zero, consistent with observation of continued muscular uptake

to refuel glycogen stores. The ability to sum the basis functions together

makes it robust to variable exercise duration. However, the models should

be validated on longer exercise periods to check that no additional

physiological effects are influenced by exercise duration.

The intra-subject magnitude of the exercise effect on insulin was not always

consistent. This motivated further investigation into what influenced the

magnitude (εI). Figure 8.4 shows positive correlation between the plasma

insulin concentration immediately prior to exercise (Ie0) and εI when

excluding two particular outliers (R = 0.66, p = 0.004). A suggested reason

for the correlation is that high plasma insulin indicates a high SC

concentration that is more responsive to exercise-induced agitation and

high blood flow. It should be noted that a dataset excluded for the absence

of SC boluses also showed negligible changes in the peri-exercise period.

This observation further supports the notion that SC concentration, and

the effect of boluses in particular, affects exercise-induced plasma insulin

excursions.

The outlier exclusion in the Ie0 to εI correlation is supported by the

evidence in the bootlier analysis of Figure 8.6. The literature notes that

outlying data tends to create multi-modal distributions when performing

bootstrapping analyses (Singh and Xie, 2003), which is observed in the

lefthand plots of the figure. Removing the two outliers removes the

multi-modal distributions, leaving only the higher correlation outcomes. To

further the validity of this bootlier analysis, the same procedure was carried

out with two other potential outlier data points. Removing these datasets

did not alter the outcomes sufficiently to define these points as outliers.

While this validates the R̄ = 0.66 correlation, the consistency of results
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shows that the core datasets do produce a strong correlation. It should be

noted that even in the outliers, all intra-subject dataset pairs had positive

Ie0 to εI correlations.

The Levenberg-Marquardt variant was generally successful in optimising

parameters in the insulin and glucose models, evidenced by the achieved

goodness of fit (Table 8.1 and 8.2). The particular method of fixing and

then allowing ke to be optimised under certain conditions allowed the best

compromise between identification stability and fit for insulin. The ke

exhibited behaviours often associated with lower practical identifiability,

especially in some datasets. When identified, ke had a median value of

0.045 with lower and upper quartiles of 0.016 and 0.070. These outcomes

support the a priori value of 0.050 that was used for the remaining

datasets.

The combination of R2, residual trajectory bias analysis and residual CDF

analysis provide a clearer overall picture of model performance than just R2

alone. Models must have a good compromise between fitting ability and

practical identifiability. If effects are modelled beyond their ability to be

observed in the available data (i.e. the signal-to-noise-ratio is too low) then

the model outcomes are useless, or worse, misleading. This is especially

true if there is no recognition of the limitations in the unique observability

of features, since the realistic expectations of the model and data can be

lost amongst the mathematics (Docherty et al., 2011; Raue et al., 2009;

Saccomani, 2013).

If the present insulin model were to be used in an outpatient setting, all

parameters relating to exercise would have to be a priori since the plasma

insulin compartment is not observed directly. Hence, the importance of

uncovering causative mechanisms that could inform a priori parameter

estimates. Though the glucose model could be made significantly more

complex to achieve an improved fit, such a directive would need to be

balanced by recognition of the limitations of outpatient data.
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The correlation of plasma insulin concentration and exercise excursion

magnitude relied on the exclusion of two outliers, which were from the same

subject. The bootlier analysis justified this exclusion, but at the risk of

seeming like a manufactured outcome, appropriate caution should

accompany the R̄ = 0.66 correlation. The correlation should be seen as

suggestive rather than definite, and certainly not causative. However, the

correlation does prompt interest for further investigation. In particular, if a

correlation were established, a single plasma insulin measure could be used

to provide a patient-specific a priori estimate of εI .

In future, the insulin model would benefit from well-informed parameter

estimates for ε in particular. Hence, further work could be carried out to

link SC properties to the exercise effect. Additionally, successfully

modelling the effect of exercise on insulin is only a precursor to successfully

modelling the overall effect of exercise on glucose, which is significantly

more complex. This was shown in the increased number of behaviours,

species and parameters used in the glucose model, yet still inviting room for

an improvement in fitting accuracy. Whether the glucose model were

improved or not, both models should be tested with longer durations of

exercise to see if the physiological principles determined in this analysis can

be extrapolated beyond 20 minutes of exercise.

8.5 Summary

This chapter introduces an effective basis model for the effect of exercise on

subcutaneously administered IAsp in individuals with T1DM. The exercise

model fits well with the data, with R2 = 0.86 around the exercise period

compared to R2 = 0.41 when exercise is not modelled. Analysis of the

model residuals around this period collated across all datasets indicate that

the exercise model is not biased and is appropriately parameterised.

Additionally, another basis model was developed for the effect of exercise

on glucose. This model performed adequately, improving fit proximal to the

exercise period from R2 = −0.02 to R2 = 0.50 but other aspects of the

glucose model limited the overall performance.
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The identified magnitude of exercise-mediated excursion in plasma insulin

appeared to be correlated to the concentration of plasma insulin

immediately prior to exercise. This was suspected to be due to higher SC

concentrations resulting in both higher plasma insulin and higher

responsiveness to exercise-induced agitation and high blood flow. These

correlations are strong for most datasets (R = 0.66) but tentative due to

the need for excluding two datasets from the correlation.
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Chapter IX

Identifying secondary effects in increasing data

This chapter details an in silico analysis proving the potential for identifying

everyday life (or secondary) effects on glycaemia in sparse, outpatient diary

data. Monte Carlo analyses are used to compare identified model parameters

to those in the underlying virtual patient for increasingly large datasets.

The content of this chapter was published as an article in the Journal of

Mathematical Biosciences (Mansell et al., 2015d), and a simplified version

of the research presented at the 15th Annual Diabetes Technology Meeting

(Mansell et al., 2015a). Note that this work preceded the model-building of

previous chapters. Hence, the model used in this and the subsequent chapter

does not include the updated features.

9.1 Motivation

There is significant potential benefit in developing effective glycaemic

control mechanisms for individuals with T1DM similar to those used for the

critically ill (Chase et al., 2011; Plank et al., 2006). However, there are

many social and psychological factors that confound the type of regimented

glycaemic control used successfully in the critically ill who are typically

sedated. In particular, some social situations induce over consumption.

Furthermore, stress, anxiety and frustration can affect glycaemic behaviour

and occur intermittently. Stress and related factors can be caused by

self-monitored blood glucose, regimented lifestyles, and unpredictable

glycaemic variability (Rubin and Peyrot, 2001). Thus, a further, necessary

goal of glycaemic control algorithms for outpatients should be mitigating

the psychological impact of the control algorithm itself by allowing greater

flexibility in daily activities.

There are many secondary effects that influence glycaemic control. It is
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well established that emotional (as well as medical) stress results in

hyperglycaemia in individuals with T1DM (Surwit et al., 1992; Lloyd et al.,

1999). This hyperglycaemia is due to insulin resistance caused by the

endogenous release of corticosteroids and catecholamines (Ward et al.,

2011). Sleep deprivation is also responsible for changes in insulin sensitivity

without significant changes in cortisol levels (González-Ortiz et al., 2000).

In contrast, moderate-intensity (aerobic) exercise can lower blood glucose

significantly, and eventually causes hypoglycaemia if care is not altered

(Sonnenberg et al., 1990; Yardley et al., 2013). These factors provide

challenges for self-managed glycaemic regulation. Furthermore, they are

capable of confounding model-based control algorithms due to the lack of

quantitative evidence or direct identification of their effect on glycaemia.

The use of physiological modelling has emerged in the field of glycaemic

control for the critically ill (Pappada et al., 2013; Pielmeier et al., 2010;

Chase et al., 2011). Inter- and intra- patient variability provides challenges

to maintaining glycaemic control for individual patients. Thus, these

modelling methods identify a number of patient-specific parameters as well

as using a priori population-average parameters (Chase et al., 2011).

Recent developments have also been made in the field of automated

treatments for outpatients with T1DM that are using CGMs (Hovorka

et al., 2013; Bequette, 2012; Cobelli et al., 2011). Some of these

developments also include compensation for stress hyperglycaemia (Ward

et al., 2011). However, this type of treatment is still experimental and has

high cost and complexity (Khovanova et al., 2013; Bequette, 2012). Hence,

it may be more practical to improve upon conventional approaches such as

self-monitored glucose with multiple daily insulin injections (Wong et al.,

2008c, 2009). Knowledge of relevant patient-specific parameters would

benefit model-based therapy support for insulin dosing information.

Sparse, irregular data provides challenges in uncovering clear trends. Thus

the purpose of this research was to test parameter estimation in such data,

identifying some of the key patient-specific secondary effects on glycaemic

dynamics: stress, fatigue and exercise. The data was generated in silico
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with efforts to mimic self-reported, diary-style data with simulated

self-monitored glucose measurement and omission errors. The results

obtained from parameter identification were assessed in accumulating

data-sets over a Monte Carlo (MC) population. Finally, the methods were

tested for their ability to handle long-term changes in insulin sensitivity

(SI) that occur due to changes in a patient’s metabolism (Mayer-Davis

et al., 1998; Abate et al., 1995; Wu, 2005).

9.2 Methods

9.2.1 The virtual patient

To test the estimation of factors affecting glycaemic dynamics, a virtual

patient with T1DM was simulated in silico. The patient ingested regular

meals and the occasional snack. They took insulin boluses with meals as

well as a constant insulin infusion to mimic slow acting insulin. The virtual

patient also participated in moderate exercise several times a week and

experienced days of stress or fatigue several times per month.

The model used to simulate the glycaemic dynamics of the in silico patient

is a variation of the clinically validated DISST model (Lotz et al., 2010).

The adaptations include a nutrition model (Wong et al., 2008c, 2009; Lin

et al., 2011) and effects of exercise, stress, fatigue and SI drift. The model

consists of a priori parameters (definitions in Table 9.1), time-dependent

inputs (definitions in Table 9.2) and identified variables (Table 9.1). A

flowchart showing the order of dependent species in the model can be seen

in Figure 9.2.

First, subcutaneous insulin concentration (US) was modelled as a kinetic

delay from regular bolus doses and a basal infusion (UX):

U̇S(t) = UX(t)− kXUS(t) (9.1)
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Interstitial insulin concentration (Q) was modelled as being co-dependent

with plasma insulin (I) which is a function of US:

İ(t) = −(nT + nI)I(t) + nIQ(t) +
kXUS(t)

Vp
(9.2)

Q̇(t) = −(nI + nC)Q(t) + nII(t) (9.3)

A linear model was used to predict gut glucose (PS). The gut glucose model

included regular meals of varying glucose content (PX) and randomly timed

snacks (PC)(Wong et al., 2008c, 2009; Lin et al., 2011):

ṖS(t) =
PX(t) + PC(t)

VG
− k1PS(t) (9.4)

Circadian rhythms are known to influence insulin sensitivity but there are

conflicting reports on the nature and shape (Van Cauter et al., 1997;

Carroll and Nestel, 1973; Sensi and Capani, 1976). In absence of consensus

in reported profile, SI was modelled in Equation (9.5) with overlapping

triangular basis functions (g1−3). These functions produce daily rhythms

with morning, midday and afternoon peaks, SI1−3. The bases and resulting

SI profile are pictured in Figure 9.1. Additionally, SI is influenced by the

presence of stress (σ), fatigue (ϕ) and long-term drift:

SI(t) = (SI1g1(t) + SI2g2(t) + SI3g3(t)) (1− σ(t)− ϕ(t))

(
1 +

D(%)t

100(%)ty

)
(9.5)

where D(%) is the yearly percentage increase in insulin sensitivity (defined

in the analysis methodology, Section 2.5) and ty is 525600 minutes per year.

The modelled species Q, PS and SI were introduced into the blood glucose

model (G), along with the effect of exercise (ε) (Yardley et al., 2013):

Ġ(t) = −pG (G(t)−G0 + ε(t))− SI(t) (G(t)Q(t)−G0Q0) + k2PS(t) (9.6)
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Figure 9.1: The shape of the daily basis functions g1−3 (a) and resulting
SI profile determined by Equation (9.5) (b) with time measured from 12am
midnight

Stress, fatigue and exercise contributions were the product of a peak value

and a time-dependent function:

ε(t) = εmaxfε(t) (9.7)

σ(t) = σmaxfσ(t) (9.8)

ϕ(t) = ϕmaxfϕ(t) (9.9)

where the functions fi define when each of the effects occurs and the intensity,

fi ∈ {0, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Thus, the max values indicate the maximal

contributions possible from each of the effects.

9.2.2 Simulation

The model was simulated for either one or two years with time-varying species

using one minute resolution. Analytical solutions to the model equations were

used for the simulation. MATLAB’s symbolic differential equation solver
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Table 9.1: Parameter constants used to simulate the virtual patient glycaemic
profiles in the model. The * indicates parameters which were identified as
variables from virtual data

Parameter Description Value Unit

nI Plasma to interstitium transport rate 0.02 min−1

nT Plasma insulin clearance rate 0.1 min−1

nC Cell metabolism of insulin 0.02 min−1

Vp Volume of distribution of plasma insulin 4.3 L

pG Glucose dependent balance 0.004 min−1

VG Glucose distribution volume 12.4 L

k1 Stomach to gut glucose transfer rate 0.05 min−1

k2 Rate of glucose absorption from gut 0.008 min−1

kX Rate of insulin injection site dispersal 0.01 min−1

G0
∗ Basal glucose concentration 4.5 mmol · L−1

Q0 Basal interstitial insulin concentration 4.23 mU · L−1

εmax
∗ Exercise coefficient 6.5 mmol · L−1

σmax
∗ Stress coefficient 0.3

ϕmax
∗ Fatigue coefficient 0.1

SI1
∗ Morning (8.30am) SI peak 0.8× 10−3 L ·mU−1 ·min−1

SI2
∗ Midday (12pm) SI peak 1.0× 10−3 L ·mU−1 ·min−1

SI1
∗ Afternoon (3.30pm) SI peak 0.6× 10−3 L ·mU−1 ·min−1

was used to find the analytical solution to the more complex interdependent

species of Equations (9.2) and (9.3). The full set of analytical solutions for

the virtual patient follow. Glucose absorbed from the stomach was simulated

with:

PS(t) = e−k1t
(
PS,0 +

∫ t

0

ek1t (PX(t) + PC(t)) dt

)
(9.10)

The SC insulin solution is described:

US(t) = e−kX t
(
UX,0
kX

+

∫ t

0

ekX tUX(t)dt

)
(9.11)

(9.12)
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The interstitial insulin solution is described:

Q(t) = e−0.5(ρ1+ρ2)te−0.5(ρ1−ρ2)t(q1 + q2) (9.13)

q1 = e0.5(ρ1+ρ2)t
(

5.896 +

∫ t

0

nIe
0.5(ρ1−ρ2)tkXUS(t)

VPρ2
dt

)
(9.14)

q2 = e0.5(ρ1−ρ2)t
(
−1.668 +

∫ t

0

−nIe
0.5(ρ1+ρ2)tkXUS(t)

VPρ2
dt

)
(9.15)

ρ1 = nC + 2nI + nT (9.16)

ρ2 =
√
n2
C − 2nCnT + 4n2

I + n2
T (9.17)

The solution to the blood glucose model is given as:

G(t) = e−γ
(
G0 +

∫ t

0

eγ (pG(G0 − ε(t)) + SI(t)G0Q0 + k2PS(t)) dt

)
(9.18)

γ =

∫ t

0

pG + SI(t)Q(t)dt (9.19)

All integrals were calculated with trapezoidal numerical integration.

Numerical instabilities meant that simulations had to be undertaken in

sections of seven days at a time and concatenated.

Each run within the MC analyses generated a patient using the same

Table 9.1 parameter values, but with variation in certain input vectors (PX,

PC, fε, fσ, fϕ). PX took on random values between 72-90 grams of

carbohydrate at mealtimes, which corresponds to 400-500 mmol of glucose.

PC was 30 grams carbohydrate (160 mmol glucose) at 52 random times

throughout a year. The fσ vector contained three random full-day

occurrences per 28 days while fϕ was given five days. Occurrences in fε were

two hours in the morning for three randomly chosen days a week. For each

occurrence of these secondary effects, an intensity of 50-100% was assigned.
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Table 9.2: Time-dependent vector inputs for used to simulate the virtual
patient, noting that the simulation uses 1 minute resolution

Vector Description Value Unit

PX meals

{
[400, 500] at 0800, 1200 and 1900 hrs daily

0 otherwise
mmol

PC snacks

{
160 at 52 random t per year

0 otherwise
mmol

UX
insulin
doses

{
1000 with meals

4 otherwise
mU

fε exercise

{
∈ [0.5, 0.6, ..., 1.0] at 1830 to 1030 hrs, 3 days/week

0 otherwise

fσ stress

{
∈ [0.5, 0.6, ..., 1.0] 3 days per 4 weeks

0 otherwise

fϕ fatigue

{
∈ [0.5, 0.6, ..., 1.0] 5 days per 4 weeks

0 otherwise

g1
morning
SI basis


0 1200 to 1530 hours

1 0830 hours

0 < g1 < 1 otherwise∗

g2
midday
SI basis


0 1530 to 0830 hours

1 1200 hours

0 < g2 < 1 otherwise∗

g3
afternoon
SI basis


0 0830 to 1200 hours

1 1530 hours

0 < g3 < 1 otherwise∗

∗triangular basis function forms are pictured in Figure 9.1
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9.2.3 Data acquisition

Diary-like data was sampled’ from the glucose simulation to mimic daily

finger-prick measurements. Meal carbohydrate estimates, insulin doses, as

well as instances and intensity of exercises, stress and fatigue were also

recorded.

Blood glucose measurements were sampled randomly from G at 6

non-adjacent times per day between the hours of 6am and 12 midnight.

This random distribution yields a more conservative approach than if

sampling was limited to around mealtimes. In particular, mealtime

sampling would capture dynamic responses to meal perturbations and thus

would maximise practical identifiability of metabolic parameters (Docherty

et al., 2011). The sampling frequency could also be considered a

conservative estimate for fastidious individuals with poor blood glucose

control.

There is significant measurement error and variation associated with blood

glucose measurements (Freckmann et al., 2013). To mimic this error, 10%

normally distributed noise was applied to the blood glucose data.

Misrepresentation and error are also common in a patient’s carbohydrate

estimates (Wong et al., 2009). Thus, the acquired data neglected the snacks

(PC) and 10% uniformly distributed noise was applied to PX . Hence, PS

calculated during parameter identification was different from that of the

true simulated patient. The Q, fε, fσ and fϕ vector profiles used in

parameter identification were equal to those used to simulate the virtual

patient.

9.3 Parameter identification

The identification set included circadian SI parameters, basal blood glucose

and parameters for exercise, stress and fatigue:

x = [SI1, SI2, SI3, G0, εmax, σmax, ϕmax]
T. The Gauss-Newton method for

gradient descent was used to minimise the least-squares residual between

the data and a forward simulation of G using the current parameter
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estimates, xi. This residual is given by:

Ψi = Gi(tS)−GS (9.20)

where GS is the sampled data and Gi(tS) is the modelled blood glucose at

the sample times (tS) for the present iteration (i). S denotes the samples

1 . . . n, where n is the number of samples.

The first iteration parameter set was defined as

x0 = [10−3, 10−3, 10−3, G(t0), 10, 0.1, 0.1]. Iterations continued until the

tolerance criteria were satisfied: ||xi+1 − xi||2 < 10−8 and i > 10.

9.4 Analysis methodology

A two-part Monte Carlo approach was used to evaluate the estimation of

the behaviours present in the simulation. To investigate the convergence of

parameter values in increasing data, identification was conducted in data

subsets of one week up to one year. To capture long-term drift in SI, Part

II identifies parameters in 90 day data subsets whose start dates shift by

ten days at a time, for a total of two years. Figure 9.3 shows a flowchart of

the Monte Carlo analytical process for both parts.

All analyses were undertaken on a 64-bit Intel R© CoreTM i7-2600 (3.4 GHz)

CPU personal computer with 32GB of RAM using MATLAB (2013b

Version 8.2.0.701).

9.4.1 Part I

Data was sampled from a one year simulation of glucose that contained no

long-term drift in SI (D(%) = 0). The parameter set x was identified for

increasing subsets of this data (GS) for 7, 14, 21, 35, 56, 91, 147, 238 and

365 days.

When a data subset did not contain any randomly generated days of stress

or fatigue, σmax and ϕmax were set to zero and excluded from identification.
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When both stress and fatigue effects occurred concurrently and thus yielded

a structurally non-identifiable system, both parameters were excluded from

identification, as their effects can only be quantified when there are

separate instances recorded (Docherty et al., 2011; Bellu et al., 2007).

The parameter set x was identified in 2000 simulations of the patient for

each data set length (n). The CV, mean, and 95% confidence interval (CI)

were calculated for each data size (n) for each parameter. The CV values

for each parameter (CVx) were related to the length of the data subset set

via the function:

CVx(n) =
y1√
n
6

+ y2
(9.21)

where y1 denotes the magnitude of the CV and y2 allows an offset to account

for when effects are not present in early data.

9.4.2 Part II

Part II measured the ability of the identification method to accurately

capture all parameters in data that contained insulin sensitivity drift over a

2 year data collection period. In this analysis, SI was set to increase

linearly by 10% during the first year (D(%) = 10), then decline by 20% in

the second year (D(%) = −20). Neither the magnitude nor shape of SI

drift were treated as a priori. Thus, the drift could not be identified

directly. Instead, the analysis used subsets of data that shifted through

time to capture all identified parameters in a moving average.

A 90 day data subset was taken starting each successive 10 days until the

full 730 days was used. This process was repeated for 2000 virtual patient

simulations, with mean and 95% CI calculated for each data subset across

the simulations.

To attenuate apparent periodicity in the drift patterns, the parameter

identification method was adjusted to penalise SI1 − SI3 values that
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strayed too far from values obtained in the previous data subset. This

attenuation was achieved by modifying Equation (9.20) to include

additional penalty function terms in the objective function:

Ψw,i =



Gi(t1)−G1

Gi(t2)−G2

...

Gi(tn)−Gn

α(SI1,i − SI1,w−1)

α(SI2,i − SI2,w−1)

α(SI3,i − SI3,w−1)


(9.22)

where i is the present iteration of identification in a 90 day data subset (w)

and G1...n is the data contained within that subset. α is a factor that

determines the magnitude of penalisation of changes in insulin sensitivity

across subsets. The ability to capture long-term drift in SI was compared

with α = 0, 2 × 104 and 4 × 104; where the 104 converts SI to values to

between 1 and 10, thus, comparable in scale to the G(t) values.

Singular values of εmax, σmax and ϕmax for the full two year period were

found using an average over every 90 day data subset. This was carried out

for α = 2 × 104 only. These values were analysed across the population for

mean, 95% CI and CV.

9.5 Results

9.5.1 Part I

Figure 9.4 shows that the CV in each parameter converged with increasing

days of data. The function of Equation (9.21) was fitted to the parameter

CV values, and values for y1,2 and R2 are presented in Table 9.3. G0 had

the lowest variation coefficients of all the identified parameters while εmax

had the greatest, followed by ϕmax and σmax. R2 was over 99.9% for all

parameters thus indicating strong adherence to the 1/
√
n rule (Whitley and
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interchanged between the two parts, since Part II contains long-term drift in
SI while Part I does not
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Table 9.3: Trend-line parameters for CVx(n) and the R2 value
Parameter y1 y2 R2

SI1 0.531 -1.537 1.000

SI2 0.677 -1.029 1.000

SI3 0.498 -0.814 1.000

G0 0.116 -0.317 0.999

εmax 0.921 -6.906 1.000

σmax 1.854 -9.730 1.000

ϕmax 4.746 -7.998 1.000

Ball, 2002). The higher y2 values for the secondary effects implied greater

offsets with respect to days. Figure 9.5 shows that the precision of each

parameter improved with increasing days of data although some small biases

were observed. The biases were relatively small by day 385 (SI1, 0.9%; SI2,

0.9%; SI3, 0.6%; G0, 0.9%; εmax, 0.04%; , σmax, 0.2%; ϕmax, 0.2%). To

evaluate convergence, CV was evaluated for repeat sets of size 1950, 1951,

1952, . . ., 2000 repeats. These values were within 0.5% of the 2000 repeat

CV for every parameter, indicating that the Monte Carlo simulation cohort

had converged suitably.

9.5.2 Part II

Figure 9.6 shows that the long-term drift in insulin sensitivity was readily

captured over the data sets tested, but lagged the true drift. Furthermore,

the drift in insulin sensitivity caused some drift to occur in the secondary

effect parameters (εmax, ϕmax and σmax) that was not present in the

underlying behaviour of the virtual patient. Figure 9.7 shows that

increasing the α value smoothed out the oscillating patterns in insulin

sensitivity, but Figure 9.6 shows that higher α values caused greater

variation in other parameters and increased the lag in the mean identified

SI profile.

Values for εmax, ϕmax and σmax obtained with α = 2 × 104, yielded

relatively small 95% confidence intervals and all biases were below 1%

(Table 9.4). Figure 9.7 shows a typical example of the effect of α on drift
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Table 9.4: Average of secondary effects over every 90 day data subset for
α = 2× 104 with 2000 repeats

Parameter True value Mean 95%CI Relative bias CV

εmax 6.5 6.44 (6.43,6.45) -0.9% 3.7%

σmax 0.3 0.299 (0.298,0.300) -0.2% 7.6%

ϕmax 0.1 0.0995 (0.0986,0.1004) -0.5% 19.6%

patterns in daily SI mean for an individual simulation and identification

process. Greater values of α attenuated the random drift in SI, allowing

the method to better emulate the original drift pattern.

Using Equation (9.21) and the parameters in Table 9.3, the variation

coefficient in the secondary effects for Part II was compared with Part I for

α = 2 × 104. To achieve the same variation coefficient as that of 100 days

with no drift effects, it would require 118, 120 and 123 days of data with

drift present for the εmax, σmax and ϕmax parameters, respectively.

A single 91 day period required an average of 3.4 seconds of computational

time and one 730-day, 65-data subset repeat of the drift analysis required

an average of 578 seconds.

9.6 Discussion

The accuracy of the model parameters for the individual virtual patients

and the precision of model parameters of the in silico cohort increased in

accuracy as more data accumulated. Some small bias (< 1%) occurred in

each parameter across the virtual cohort by day 385 (Figure 9.5). These

small biases were due to the log-normal parameter distributions that result

from identifying the effects from 1st order models in data that have

normally distributed measurement error. In accordance with expectations,

the CVX values reduced in proportion to 1/
√
n (9.4) (Whitley and Ball,

2002) with R2 values all exceeding 99.9%. As sparse measurement data

accumulates, failure to adhere to 1/sqrtn would imply instability during

parameter identification or significant parameter trade-off. The strong
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correlation to the trend in the results validates the identification method as

well as the robustness of the parameters.

Identifying y2 in Equation (9.21) was necessary as the randomised

occurrences of some parameters meant that some identification sets did not

have any stress or fatigue in the early stages. Both σmax and ϕmax are on

28 day alternations and therefore appeared anywhere between 0 and 3

times in the first 7, 14 and 21 days. These three data subset lengths were

therefore excluded from trend-fitting for σmax and ϕmax because these data

subsets are shorter than might be used in practice and it was more useful to

capture the long-term trends than initial transience. Overall, the results

indicate that noise in blood glucose and food intake, in addition to

instances of unreported food intake, can be overcome by an accumulation of

data and robust parameter identification, even in the presence of sparse,

irregular data.

It is well established that insulin sensitivity undergoes long-term drift due

to changes in a patient’s metabolism (Abate et al., 1995; Mayer-Davis

et al., 1998; Wu, 2005). For that reason, it would be misguided to identify

single values of SI1−3 for periods that are longer than a few months. Insulin
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sensitivity can increase or decrease at any time and while it is likely to drift

in a steady manner, it was important that the identification method did not

make any assumptions of the drift profile. Using consecutive data subsets

to observe the drift pattern fulfilled this requirement, but caused some lag

in identification. While the modelling approach used in Part II of this

analysis yielded transient parameter values, it was effectively a traditional

constant parameter approach. In particular, constant values for each of the

SI and secondary effect parameters were determined for a particular 90 day

window. The outcomes of Part I implied reasonably robust parameter

values could be obtained in 90 days of data. Part II showed that it is

possible to identify parameters that influence glycaemia in the presence of

SI drift that would inevitably occur in free-living individuals.

The Monte Carlo simulation implied that drift in insulin sensitivity was

easily inferred, but that this identification also lagged the underlying true

behaviour. This lag should be expected due to the need to accumulate

enough sparse, irregular data to identify the trend. While Figure 9.6

appears to show no advantage and increased lag due to the penalisation of

changes in SI, Figure 9.7 shows the need for this parameter to limit the

systematic oscillation in measured insulin sensitivity and allowing for more

practical inference of the underlying trends. The optimal α out of the few

examined was 2 × 104 because it attenuated much of the noise, but did not

flatten the SI trends excessively. Further refinement of the α value is

necessary prior to further implementation of the method.

The secondary effects (εmax, σmax and ϕmax) remained identifiable in the

presence of SI drift. Table 9.4 shows high precision (CV< 20%) and small

biases (< 1%). Note that the secondary parameters were effectively

identified over the whole period and thus built up precision due to the

number of data points available. The validity of this assumption relies on

the consistency of secondary effects on glycaemia, which has not been

investigated.

To assess the robustness of the secondary parameters to drift, an analysis
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was undertaken to estimate how many days of data with SI drift would be

needed to match 100 days of data without drift. The PART I CVX values

for the secondary parameters were similar to the PART II CVX values for

the equivalent number of days. In particular, the CV values after 100 days

without drift was equivalent to the CV of 118-123 days with drift. This

outcome indicates a high level of robustness that allows the methods to

capitalise on the majority of the information collected over 2 years, despite

the presence of drift.

While using virtual patients limits the explicit clinical relevance of the

outcomes of this study in real patients, it was sensible to carry out this

stage of the investigation in silico. The advantages of an initial in silico

study are the ability to control exactly what the model entails and compare

the identified parameters to true values. This method also facilitated

effective statistical analysis through repeated generation of the model.

Hence, any outcomes were a factor of the input data that were controllable

and thus it was possible to determine the robustness of the mathematics in

the presence of noise and a known level of confounding behaviour. In vivo,

the level of confounding behaviour would not be known, and thus the origin

of parameter variance would remain ambiguous.

In the simulated model, basis function shapes perfectly matched the input

model shapes. However, in real data, basis functions will give the

identification scheme some freedom to emulate the circadian rhythm, but

cannot be any more than an approximation to the true shape that is

currently unknown. Likewise in the model, perfect interstitial insulin

profiles were used during identification, but diary data will not contain

measurements of insulin but will have dose descriptions instead. Hence,

insulin pharmacokinetics will need to be estimated using currently available

models. While there is general knowledge available of the pharmacokinetics

of different insulin products, the patient- and dose- specific behaviour is

much more variable and unknown (Wong et al., 2008a,b). Regardless, this

computational study proves the concepts to justify focused clinical trials

where these profiles can be optimised.
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There are likely to be many confounding effects for a real system that

cannot be directly accounted for, such as low patient compliance, errors in

insulin dosing or dose recording, and errors in meal records. Thus, the in

silico analysis mimicked this type of behaviour by including an unrecorded

snack intake, the effect of which was still favourably offset by the 1/
√
n

convergence rate of the parameter values. However, if similar un-modelled

effects are substantial and frequent, the quality of results would deteriorate.

In reality, the group that may gain advantage from this type of model

based glycaemic regulation is a subgroup of people with T1DM who are

willing to undergo relatively stricter control regimens and are more

meticulous at diary recording. In particular, the diary data taken by such

individuals must include information on exercise, stress and fatigue.

However, new software and technology can ease and improve this process

by augmenting and even replacing traditional diary-taking methods.

The glycaemic model used was relatively simple but allowed the key

governing dynamics to be captured. There are a few quantitative models of

the impact of exercise on metabolism in diabetes (Dalla Man et al., 2009;

Roy and Parker, 2007; Breton, 2008), but none that examine a wider range

of secondary influences on glycaemic behaviour. The evidence suggests that

moderate-intensity exercise causes non-insulin mediated glucose uptake

(Yardley et al., 2013) and thus the linear glucose depletion model used in

this analysis represents a valid estimate for the true dynamics. Likewise,

with stress and sleep-deprivation, both are known to reduce insulin

sensitivity (Rizza et al., 1982; Räikkönen et al., 1996; González-Ortiz et al.,

2000), but the specific dynamics are unknown. In particular, it is unknown

whether the conditions interact additively or multiplicatively and how the

physiological strength of the conditions increases with perceived intensity.

The chosen model used additive stress and fatigue effects that increased in

strength linearly with perceived intensity. All approximations served to

validate the identification methods used and were thus acceptable at this

stage in the research process. Due to the large number of assumptions

made in silico, observational tests must be undertaken in vivo to validate
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and improve this model.

A single 91 day data subset required 3.4 seconds to identify all parameters

using the Gauss-Newton approach, and thus could be used in real time

control. The full 730 day analysis required 578 seconds and would be

cumbersome in real-time control. Ideally, secondary effects would only need

to be identified once and could be used in concert with recent insulin

sensitivity values, thus speeding up the process. Equally, a faster code than

MATLAB could speed up this computation by 10-100×.

Inference of long-term drift in SI was enhanced by the penalisation of

changes in SI across data subsets. In some cases, the random oscillations in

SI drift patterns created some difficulty in establishing the underlying

trends for individual runs. The penalisation process succeeded in reducing

the oscillations. However it is also anticipated that changes in SI could be

steeper than in this simulation. Studies have reported an average drop in

insulin sensitivity of 50% for pubescent individuals (Hannon et al., 2006),

and a 34% average drop over 3.3 years in pre-diabetics (Aizawa et al.,

2014). Another study reports a 50% drop in insulin resistance (inversely

related to SI) after 6 months dieting in obese individuals (Montastier

et al., 2014). There are also significant changes in SI during pregnancy

(Cousins, 1991) and even changes correlated to intake of certain spices

(Kouzi et al., 2015). With larger changes compared to the impact of noise,

the SI drift would be easier to discern.

Identification restrictions sometimes applied when fatigue and stress

occurred concurrently such to create a non-identifiable problem in time

periods of less than 4 weeks. Non-identifiability existed when σmax and

ϕmax occurred concurrently. However, cases of non-identifiability ceased to

occur for larger time periods due to the difference in timing of stressful and

fatigued days. However, in an organic system there is very likely to be

crossover between fatigue and stress, thus generating the need for a robust

algorithm in real world application. While computational parameter

identification will remain stable so long as there is at least some distinction
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between periods of stress and fatigue, the validity of the results will be

inclined to decrease with greater degrees of crossover.

While it is common knowledge that emotional stress causes hyperglycaemia

(Surwit et al., 1992; Lloyd et al., 1999), parameter identification and

control in this area has not effectively been attempted in outpatients and

not in a self-reported data style presented in this research (Ward et al.,

2011). Some people living with T1DM find continuous control of blood

glucose arduous. This research is less aimed at meticulous persons who test

often and maintain good control, either reactionary or proactive, but at

those who consistently struggle to avoid hypo- and hyper- glycaemia and

who are willing to adhere to dietary regimes and control protocols. For

these people, secondary effects such as stress and exercise may play a huge

role and to be able to quantify the strength of each secondary effect to even

some degree of accuracy has real potential to improve their quality and

length of life for this subgroup.

This analysis only considered a few of the many factors that are known to

affect glycaemia. However, the methods developed in this chapter could be

used to incorporate a larger number of additional secondary effects. For

example, menstrual cycles affect blood glucose levels in women with

diabetes (Lunt and Brown, 1996; Ramalho et al., 2009), and depression has

an equivalent effect to that of stress (Nathan et al., 1981; Lustman et al.,

2000) and other not yet investigated effects could also be tested.

9.7 Summary

This study presented and tested the robustness of a method to identify

parameters for insulin sensitivity, exercise, stress and fatigue in the

presence of sparse, irregular data that is noisy and includes errors of

omission and accuracy typical of self-managed blood glucose diary data. It

showed that sparse, irregular and noisy data could be overcome as such

data accumulated to provide a clearer picture of patient status. Part I of

this analysis showed that the reduction in CV for parameters in increasing
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data was in accordance with the rule 1/
√
n and thus provided evidence that

measurement error and other sources of noise cannot obscure the estimation

of key glycaemic factors. Part II allowed for identification of secondary

effects over longer time periods by capturing an anticipated long term drift

in SI. Based on the results presented, the methods developed appear

capable of measuring secondary effects in glycaemic control in patients

living with T1DM. However, an in vivo observational trial should be

undertaken to validate these findings with the ultimate purpose of

providing tools to improve glycaemic control and quality of life of

individuals that have T1DM.
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Chapter X

Low road: a-posteriori identifiability

This chapter presents an evaluation of the practical identifiability of patient-

specific parameters identified in sparse diary data from the virtual patient

in the previous chapter. This work was published as a conference paper

and presented at the 2015 World Congress for the International Federation

of Automatic Control (Mansell et al., 2015b). The ’Low road’ refers to the

method being numerical rather than purely analytical, which by comparison

would be substantially more difficult to derive.

10.1 Motivation

In the previous chapter seven glycaemic parameters were identified in

sparse blood glucose data from a virtual patient. The results of the Monte

Carlo analyses proved the parameters were all observable, and that

measurement noise and un-modelled effects could be overcome as data size

increased, with CV across the population reducing in proportion to 1/
√

(n)

and only small (< 1%) biases resulting after one year. To observe long-term

drift in SI, a 90 day data window was progressed along a 2 year period to

identify parameters in a moving average. Information for stress, fatigue and

exercise parameters were still able to be captured with biases remaining less

than 1% and CV being approximately equivalent to drift-free outcomes.

Practical non-identifiability occurs when experimental data is of insufficient

quality or quantity compared to the size of a model Raue et al. (2009);

Docherty et al. (2011) as explained in Section 3.3.2. This chapter

investigates identifiability in the six most variable parameters from the

original seven-parameter model. Specifically, the aim is to determine the

data quantity required to support all six parameters without encountering

such parameter interference.
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10.2 Methods

All computation was carried out in MATLAB R2014a. The virtual patient

in this chapter was modelled and simulated the same as that of Section 9.2.1.

10.2.1 Parameter identification

Like the previous chapter, the Gauss-Newton method of gradient descent was

used to identify the least squares solution of variable set x by minimising

the residual error between the sampled and forward-simulated blood glucose

(Equation (9.20)) over several iterations. This time, however, parameters of

interest were subsets of those in the set:

x = [SI1, SI2, SI3, εmax, σmax, ϕmax]
T (10.1)

where between 2 and all 6 of these parameters were identified as variables

when required. Variables were initially set to relevant subsets of

x0 = [10−3, 10−3, 10−3, 1, 0.1, 0.1]T and Gauss-Newton iterations were

continued until the tolerance criteria
∣∣∣∣∣∣xi−1−xi

x0

∣∣∣∣∣∣
2

< 10−4 yielded

approximately 4 significant figures of convergence precision on parameter

estimates.

10.2.2 Structural identifiability and stability checks

When instances of exercise, stress or fatigue were not present in an

identified period of time, εmax, σmax and ϕmax were set to zero and

excluded from identification. When both stress and fatigue effects occurred

concurrently yielding a structurally non-identifiable system, both

parameters were excluded, as their effects can only be quantified when there

are distinguishable instances (Docherty et al., 2011; Bellu et al., 2007).

For occasional instances in small sets of data where noise and un-modelled

effects rendered Gauss-Newton identification unstable (when singular

matrix occurred or i > 30), latter variables were removed from the process

every 20 iterations until successful identification occurred.
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10.2.3 Error analysis proof of concept

The broad concept behind this method of evaluating practical identifiability

begins by considering the error between simulated and identified values in

parameters for an increasing dataset size, similar to the previous chapter

(Mansell et al., 2015d). However, to evaluate whether or not to identify a

new, previously a priori parameter without reducing practical

identifiability, the error in the original identified variables is considered

both with and without the new parameter identified in increasing dataset

size. A new specification, the norm error, was created to singularly quantify

the effect of the introduced parameter on the full set of previously identified

variables.

Forty days of data was simulated, and this data was broken up into subsets

of 0-1, 0-2, 0-3, to 0-40 days. Initially only SI1−2 was identified with

incorrect ’a priori ’ values set for the remaining parameters:

SI3 = 0.4 × 10−3, εmax = σmax = ϕmax = 0. Then SI3 was also included as

an identified variable. Figure 10.1 shows the SI parameter estimates when

identifying two versus three variables for a particular virtual patient, to

demonstrate the error analysis concept. Note that the 3-variable set yielded

larger error in SI2 for days 1-10 compared to the 2-variable set. This shows

the trade-off that SI3 causes in SI2 for small datasets.

The combined specification of norm error for the 2-variable subset

x = [SI1, SI2] was calculated as:

e =

∣∣∣∣∣∣∣∣x− xtrue
xtrue

∣∣∣∣∣∣∣∣
2

(10.2)

where xtrue is the original model input. Norm error was calculated for these

two variables both for 2-variable and 3-variable identification. Figure 10.2

shows how e changes for the increasing dataset sizes. After approximately

23 days of data, the combined norm-error for SI1−2 is reduced with the

introduction of SI3 into the variable set.
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Figure 10.1: Identification for a data set with 2 variables plus one a priori
parameter (a) and all 3 as variables (b).
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Figure 10.2: Norm-error of SI1−2 for 2 and 3 variable identification sets. Prior
to 23 days the least error is achieved by treating SI3 as a priori, afterwards
it is better identified as a variable.
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10.2.4 Monte Carlo analysis

A more thorough error analysis was carried in a Monte Carlo population of

virtual patients, investigating the effect of each new parameter addition:

SI3, εmax, σmax, and ϕmax.

This time, 89 days of data was simulated for 1000 patients. These datasets

were broken into subsets from zero to [2, 3, 5, 8, 13, 21, 34, 55, 89] days.

SI1−2 were identified for all data subsets for all patients. SI3, εmax, σmax,

and ϕmax were all added to the variable set one at a time, with new

identification occurring at each addition. Norm-error was calculated for

variable subsets x1−2 for all results, x1−3 when 3 or more variables were

identified, and so on up to norm-error of x1−5 for 5 and 6 variable cases.

The specific day when an increase in the number of variables yielded

improved precision in each previous variable subset were located for the

population mean.

To quantify the effects of variability on the population outcomes, the 89

day subset was used to calculate mean reduction in norm-error for each

variable subset from x1−2 to x1−5 for each variable introduction. This

reduction in norm-error was defined as:

1− ēnew
ēold

(10.3)

The fraction of non-improved cases was also calculated.

10.3 Results

Figure 10.3 is the population equivalent of Figure 10.2, extended to show

the effect of further parameter introductions on SI1−2. For the Monte Carlo

population mean, the point at which a 3-variable set favoured the precision

of SI1−2 was at four days. Introducing εmax, σmax, and ϕmax as variables

reduced the SI1−2 norm-error at three, nine and 34 days, respectively.

Further consideration was taken into to the norm-error of variable sets
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Figure 10.3: Norm error of SI1−2 as 2-6 variables are identified over a
population. Reduced error for variable introductions 3-6 occurs at 4, 3, 9
and 34 days.

greater than just SI1−2. Table 10.1 shows that for the population mean,

crossover days for beneficially introducing certain parameters into the

variable set were comparable across all norm-error sets (e.g. εmax improves

norm-error of both SI1−2 and SI1−3 after 3 days). Additionally, the

crossover days generally increased for subsequent variable additions (e.g.

the 5th parameter, σmax, can be introduced as a variable on average 3 days

after the 4th parameter, εmax).

Table 10.1: Mean day for an introduced parameter to improve precision in
other variable sets.

parameter variable subset evaluated

introduced x1−2 x1−3 x1−4 x1−5 average

x3 = SI3 4 4

x4 = εmax 3 3 3

x5 = σmax 9 5 5 6

x6 = ϕmax 34 27 27 26 29

Table 10.2 gives statistics for the degree of norm-error improvement after

89 days for each increase in variable number. Identifying SI3 reduced
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norm-error in SI1−2 by 29% on average, only failing to improve the error in

1% of cases. Introducing the exercise parameter, εmax, produced greater

mean error reductions (28 and 41% for SI1−2 and SI1−3), but also had a

greater no-benefit rate of 6-18%. Introducing stress, σmax, and fatigue,

ϕmax, as variables had less benefit in error reduction, especially for ϕmax,

where mean reductions ranged from an increase in error of 6% to a

reduction of 6% and no-benefit rates were 28-40%.

Table 10.2: Population variability statistics for 89 days of data with mean
reduction in norm-error for parameter sets as subsequent parameters were
introduced and the no-benefit rate where precision was not improved.

parameter
statistic

variable subset evaluated

introduced x1−2 x1−3 x1−4 x1−5

x3 = SI3
reduction 29%

no-benefit 1.3%

x4 = εmax
reduction 28% 41%

no-benefit 18% 6.2%

x5 = σmax
reduction 9.0% 23% 16%

no-benefit 20% 8.6% 16%

x6 = ϕmax
reduction -6.2% 6.2% 3.7% 2.6%

no-benefit 40% 28% 34% 36%

10.4 Discussion

Introducing a new parameter into the identified set of variables can reduce

the error of the original variables due to the ability of the introduced

parameter to assume a value that has less associated error than an a priori

estimate. In the example virtual patient, a comparison of Figure 10.1a and

10.1b shows that by the end of 40 days, the error in SI1−3 was less when

SI3 was identified as a variable, rather than taken as an incorrect a priori

parameter. However, too little data results negates this beneficial effect.

Figure 10.1b shows that identifying SI3 introduced large error in SI2 for

small n. This outcome demonstrates that, at first, the data was not

sufficient to support all the variables with any degree of accuracy, and

reduced practical identifiability resulted in variable interference (Raue
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et al., 2009; Docherty et al., 2011).

SI1−3 are equivalent parameters that peak at different times of the day.

Hence the times at which data points were taken would influence accuracy

in SI1−3 estimates. For example, if data points have largely been sampled

in the morning, then the effect of the afternoon SI is not easily

distinguishable, and the resulting error may propagate particularly strongly

into the midday SI, as was the likely case in Figure 10.1b. As more data

accumulated, with more random additions inevitably occurring in the

afternoon, the afternoon SI began to achieve accuracy and all variables

were benefited. This illustrates the concept of the contribution of data to

practical identifiability.

While mean population results appear to clearly indicate when parameters

should be introduced as variables (Figure 10.3), the trends fail to capture

variability effects and thus represent an ideal case rather than average. In

particular the population value averages out y-dimensional error in

Figure 10.3 but thus misrepresents the x-dimensional location of mean

crossover day, the sought after property. In fact, for individual sets of data

there were frequently multiple crossovers points or none at all in the first 89

days. This reality cannot be captured by the mean, thus the statistical data

of Table 10.2 was calculated.

Based on results for variability effects, SI3 appears beneficial to introduce

by day 89 since it reduced norm-error of SI1−2 in 99% of cases. Since the

appearance of SI3 was daily, its accuracy weighed heavily on the outcomes

of other variables. Comparatively, stress occurred much less frequently and

had lower gains for greater risk (no-benefit rate 9-20%). Exercise, εmax, also

appears to introduce large benefits (28-41%) but also represents a moderate

no-benefit rate (6-18%). Since the model includes frequent exercise at the

same time of day, not identifying εmax is likely to skew at least one SI peak

value, thus the risk from including the parameter in the model could be

deemed acceptable.

Like stress, fatigue was relatively infrequent. Thus, many more days of data
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were required to achieve accuracy and minimise interference with other

variables. This can be seen in the higher no-benefit rates (28-40%) and

lower gains (-6% to 6% error reduction). This indicates that both the σmax

and ϕmax parameters should not be identified due to their tendency for

error propagation in other parameters.

Of course, while introducing some parameters is likely to increase error in

other parameters, this detriment must be weighed against the benefit

identifying the new parameter itself. A small error increase could be an

acceptable price for the advantageous information. However, a best case for

all parameters could be achieved by identifying a base parameter set of

regular and highly identifiable parameters, then fixing some or all of these

parameters while performing a second identification round to ascertain the

less frequent parameters.

An in silico analysis was the best platform for investigating the research

presented in this paper since true parameter values are non-existent in real

data. Therapeutic glycaemic modelling can be difficult due to the presence

of measurement noise, un-modelled effects and sometimes practical

non-identifiability. It has been shown that much of these effects can be

accounted for in a stable manner through the timely addition of new

parameters into the identified set of variables. It remains unknown how real

data would respond to equivalent parameter introductions. However, the

concepts explored in this chapter are foundational to development and and

testing the efficacy of other analysis methods independent of error and

perhaps instead evaluating properties such as variability in specific datasets.

There are many factors that can significantly affect the glycaemic dynamics

of people with diabetes, not limited to those modelled in this report. The

ability to identify a large number of such parameters in one set of data

would be valuable. However, if certain parameters are introduced too soon

during data accumulation, they can seriously reduce the precision of the

other parameter estimates. If introduced too late, then un-modelled

behaviour, or grey’ noise, is the limiting factor on the precision of identified
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variables. Hence the importance of this type of identifiability analysis.

10.5 Summary

Identification of increasing numbers of parameters generally improves error

in the parameter group by capturing otherwise un-modelled effects.

However insufficient data can reduce practical identifiability, increasing

parameter interference and error. The point at which data does become

sufficient was diagnosed through analysis of error in equivalent variable sets

before and after parameter introduction.

Specific to this model and analysis, the two parameters SI3 and εmax

appear reasonably beneficial to introduce after 89 days, while σmax and

ϕmax may be better excluded until the other parameters can be well

established and fixed.

Error-based analysis was ideal for exploring the effect of practical

identifiability on the model, but will ultimately be ineffective for in vivo

data, requiring improved methods. Identifying large numbers of parameters

with known confidence would be useful in diabetes. Greater knowledge of

secondary glycaemic factors, could achieve improved glycaemic control with

greater lifestyle flexibility.
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Chapter XI

High road: a priori identifiability

The content of this chapter is a more theoretical vein of research,

developing an a priori practical identifiability evaluation method. This

work was published as a conference paper and presented at the 2015 World

Congress for the International Federation of Automatic Control (Mansell

et al., 2015c) with a small investigation on additive noise included as

further work. The ’High road’ refers to the development of a more pure

analytical method. Analytical methods are often more complicated to

ascertain than their numerical counterparts.

11.1 Motivation

Physiological modelling is becoming a standard approach to investigating

complex biological systems to recover parameter values that cannot be

directly measured (Saccomani, 2013). Nonetheless, outcomes of such

parameter identification should not necessarily be accepted without

evaluation of the credibility of the results and models. Structural

identifiability is a discernible binary model property that states that under

ideal data conditions the unknown parameters can be uniquely and exactly

recovered from input-output relationships (Bellu et al., 2007). However,

affirmation of structural identifiability is not in itself sufficient to ensure

precision in identifying true parameter values.

In recent years, analysis methods have emerged to detect and evaluate

practical rather than structural non-identifiability. These methods

determine when the data quantity and quality is insufficient for the size of a

model, resulting in mutual interference of two or more parameters

(Docherty et al., 2011; Raue et al., 2009; Saccomani, 2013). The result of

such interference is increased parameter variability and bias with no clear
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cause. Thus, practical identifiability analyses are greatly beneficial when

designing and utilising models identified from noisy data, since they can

diagnose problems that structural identifiability analyses cannot (Docherty

et al., 2011).

This chapter presents preliminary research into a new method of practical

identifiability analysis that aims to link properties of a model, data size and

measurement error to variance in results expected from a population of

data. Information about population variance can be captured by a

Principal Component Analysis (PCA), which is a multivariate analysis that

reduces data variability to a new set of variables calculated from an

eigen-decomposition problem (Jolliffe, 1986). Thus, MC simulations were

carried out in silico to find the connections from a priori model and data

information to PCA outcomes.

11.2 Methods

11.2.1 The model

To prevent complex effects from obscuring underlying behaviours, a simple

model was used as a precursor to larger physiological models. The output,

b(t), for discrete time steps, t = (1, tn), was produced from the superposition

of step and ramp functions (pictured Figure 11.1):

b(t) = αH(t− tn/2) +
βt

n
(11.1)

where n is the number of discrete time steps, H is the Heavyside function

that forms a binary step, tn/2 is rounded up to the nearest integer, and α

and β are constant parameters equal to 1 unless stated otherwise.
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Figure 11.1: A graphical representation of the model

11.2.2 Parameter identification

Linear regression of the model for discrete output data gives:

Ax = b (11.2)

A =
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(11.3)

(11.4)

Random multiplicative white noise was introduced to b to create an imperfect

data set (b̂):

b̂ = b� (1 + e) for e ⊂ N(0, σ2) (11.5)

where the � symbol indicates element-wise vector multiplication.

The least-squares solution (x̂) of the variables for α and β to the noisy data
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Table 11.1: Variable definitions for Monte Carlo simulation schemes, where
n = data size, x is the true solution to the parameters, σ = output error
standard deviation, and γ is an arbitrary variable.

scheme constants variables

1a n = 10,x = [1, 1]T,σ = 0.1 none

1a n = 10,x = [1, 1]T,σ = 0.2 none

1a n = 50,x = [1, 1]T,σ = 0.1 none

2 n = 10,x = [1, 1]T σ = 0, 0.1, 0.2, . . . , 1

3a n = 10,σ = 0.1 x = [1, γ]T, γ = 4, 8, . . . , 100

3b n = 10,σ = 0.1 x = [γ, γ]T, γ = 4, 8, . . . , 100

3c n = 10,σ = 0.1 x = [1, γ1.5]T, γ = 4, 8, . . . , 100

4 σ = 0.1,x = [1, 1]T n = 4, 8, . . . , 100

set was calculated as:

x̂ = (ATA)−1 ATb̂ (11.6)

11.2.3 Monte Carlo simulation and variables

Parameter outcomes from multiple data sets 1 through r, each with random

multiplicative white noise of variance σ2, were stored in a matrix:

X = [x̂1 x̂2 · · · x̂r]T (11.7)

This process was carried out using 106 repeats for each combination of noise

variance (σ2), true parameter values (x), and data length (n). Several testing

schemes, described in Table 11.1, were investigated. Schemes 1a-c used single

combinations of these properties while schemes 2-4 used variable inputs over

a range in order to capture trends.

11.2.4 Analysis

For schemes 1a-c, two dimensional objective surfaces were created over a

range of α and β of -0.5 to 2.5 by taking the norm of residual error between

the output created by these combinations of x and that of true output (b):

ψ(x1, x2) = ||Ax− b||2 (11.8)
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Correlation between the matrix equation and resulting MC scatter was sought

by carrying out eigen-decomposition on the 2×2 ATA matrix, and comparing

it to outcomes of the PCA on the X matrix. PCA first involves calculation of

a mean-centred matrix (X̄) that contains both columns of X in Equation 5

with their mean value subtracted. This is followed by an eigen-decomposition

of the covariance matrix (C), defined:

C =
1

r − 1
X̄TX̄ (11.9)

Both PCA and ATA eigenvectors were compared and eigenvalue trends

correlated to other independent variables.

11.2.5 Additive noise model validation

The majority of modelling and analysis for this investigation utilises

multiplicative white noise. Multiplying the noise significantly complicates

the relationship between a priori information and PCA outcomes compared

to adding white noise. For additive noise, the relationship can be modelled:

λPCA =
σ2

λATA

(11.10)

To validate this eigenvalue relationship on the step-ramp model, PCA

outcomes were compared to the a priori modelled PCA eigenvalues from

Equation (11.10) for a 106 Monte Carlo population with additive noise. For

this population, α = β = 1 was assigned, although another arbitrary

parameter combination was also tested. A range of n from 2 to 100 was

used.

11.3 Results

All analysis were carried out using MATLAB R2014a. Eigen-decomposition

analysis showed that the ATA eigenvectors were parallel with the principal

components of the parameter distribution from the MC analysis of scheme

1a, Figure 11.2. PCA produced the greatest eigenvalue in the direction of

greatest spread, while the smallest eigenvalue of ATA was in this direction.
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Figure 11.2: A comparison of ATA eigenvectors and principal components
of parameter identification scatter, pictured on an error objective surface.
σ = 0.1, n = 10.

Doubling the standard deviation of noise in the output data (scheme 1b)

did not affect the eigenvector direction but created a larger distribution of

parameters, as seen in Figure 11.3. The change in output noise did not

affect the ATA eigenvalues but PCA eigenvalues were both quadrupled in

value.

Increasing the data quantity by 5 times (scheme 1c) reduced the parameter

spread to a comparable width of scheme 1a although the output noise was

still that of scheme 1b. In this case, increased steepness in the objective

surface was accompanied by greater ATA eigenvalues, 533% and 435% of

their scheme 1a-b values, and decreased PCA eigenvalues, at 13% and 23%

of their scheme 1b values, respectively. There was also a reduced

eccentricity of the elliptical contours in the objective surface and an

alteration in both the eigenvalue ratios (λ1/λ2), increasing for ATA and

decreasing for PCA, which in both cases corresponded to a reduced

difference between λ1 and λ2.
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Figure 11.3: A comparison of ATA and PCA eigenvectors with double the
noise from Figure 11.2. σ = 0.2, n = 10.
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times the data points compared to Figure 11.3. σ = 0.2, n = 50.
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Scheme 2 investigated the effects of changing the relative contribution of

model parameters (x) when A and therefore the ATA eigenvalues were

unaffected. The results gave a strong linear correlation between PCA

eigenvalues and noise variance (R2 = 1.0000 for λ1−2), with the full

relationships listed in Table 11.3. The eigenvalues had zero-value for zero

noise and the ratio between eigenvalues, λ1/λ2, was consistent at

approximately 11.8 through all noise values.

Like the effect of noise, changes to the parameter values in x influenced

PCA and also had no effect on the properties of ATA. Scheme 3a and 3b

both resulted in strong linear correlation between the eigenvalues of the

PCA and the square of the variable γ (relationships listed in Table 11.3, R2

= 1.0000). However, eigenvalues λ1−2 for scheme 3b were approximately 4-5

times greater than those of 3a. In scheme 3c, where one parameter was

equal to γ1.5, the PCA eigenvalues were now proportional to γ3 (Table 11.3,

R2 = 1.000). The ratio PCA eigenvalues fitted well with a two-term power

model: λ1/λ2 = aγb + c for both schemes 3a and 3c while 3b showed no

changes in the ratio, seen in C11.5. Table 11.2 gives the value of these

power model parameters and the R2 values.

The results of scheme 4 showed that the ATA eigenvalues were linearly

proportional to data size while the PCA eigenvalues were inversely so

(Table 11.3, R2 = 1.000). Ratios of λ1/λ2 were affected by data size in both

cases. A two-term power model was fitted to this trend, Figures 11.6-11.7

(PCA R2 = 1.0000, ATA R2 = 0.997). However, the residual error (not

shown), particularly for ATA data, reveals behaviour uncaptured by these

models.

Figure 11.8 shows the performance of this model for a range of n in 106

repeats of a Monte Carlo simulation. The a priori model appears to fit well

with the PCA outcomes and the residual shows no systemic bias.

Equivalent outcomes occurred with arbitrary choices of x (data not shown).
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Table 11.2: Model fits for eigenvalue ratio compared to the variable γ for two
schemes where x = f(γ).

model scheme a b c R2

λ1

λ2
= aγb + c

3a -4.74 -0.674 14.7 0.993

3b 0 - 11.8 -

3c -5.46 -0.124 16.8 0.994
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Table 11.3: Relationships found between model and data variables against
the eigenvalues of PCA and ATA eigenvalues against variables for schemes
2-4.

scheme PCA relations ATA relations

2
λ1 = 3.88σ2 λ1 = 0.30

λ2 = 0.33σ2 λ2 = 9.6

3a
λ1 = 0.0090γ2 + 0.35 λ1 = 0.30

λ2 = 0.00062γ2 + 0.035 λ2 = 9.6

3b
λ1 = 0.039γ2 − 0.041 λ1 = 0.30

λ2 = 0.0033γ2 + 0.0017 λ2 = 9.6

3c
λ1 = 0.011γ3 + 65 λ1 = 0.30

λ2 = 0.00079γ3 + 6.0 λ2 = 9.6

4
λ1 = (4.4n− 19)−1 λ1 = 0.032n− 0.027

λ2 = (26n− 41)−1 λ2 = 0.80n+ 1.5
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11.4 Discussion

The relationships between eigenvectors of the model equation matrix

(ATA) and Monte Carlo parameter spread shown in Figures 11.2-11.4,

show deterministic behaviour that could contribute to advances in a priori

model identifiability analyses. Should all the factors determining PCA

eigenvalues be ascertained in a usable and broadly applicable manner, then

there is potential to estimate wider outcomes of a population of data when

only a single set is processed, as in some cases with real data. Several

linearised relationships have been discerned for a simple model (R2 = 1).

Principal component information could be further processed into useful

statistical measures such as variance or confidence limits on identified

parameters a priori. For physiological models and analysis, these, in turn,

could be used to evaluate the certainty of outcomes for diagnosis or control,

or the degree of practical identifiability of model parameters with assumed

data. Infinite confidence intervals indicate practical non-identifiability

(Raue et al., 2009) and since identifiability is a continuous artefact

(Docherty et al., 2011), smaller finite intervals could be useful in evaluating

whether the degree of identifiability is acceptable, subject to the needs of

the research or application. Where multiple models of a system are

available, the practical identifiability of each could be compared to

determine the best model for the data.

It is a useful outcome that the effect of noise in the output data on the

resulting data spread was linearly correlated with noise variance by the

relationship: λPCA ∝ σ2 with no changes to the ratio between eigenvalues.

This result makes intuitive sense since noise drives the spread of identified

parameters. With no noise, the true parameters would be identified and the

spread would be zero in all directions, even for a practically

non-identifiable, but structurally identifiable model. This relationship is

likely applicable over a range of models where noise is confined to output

data and is zero-mean.
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The results clearly indicate a relationship between the PCA eigenvalues and

the value of x. This outcome was expected since the identified parameter

set, x̂, is dependent on the noisy b̂ vector, defined Equation 3, which can

also be defined as a function of the original parameter set:

b̂ = Eb = EAx (11.11)

where E is a diagonal matrix of (1 + e). Thus substitution into Equation 4

yields an identified parameter definition of:

x̂ = (ATA)−1 ATEAx (11.12)

The parameters x are further propagated into the data storage matrix, X,

and into the covariance matrix, C, before eigen-decomposition where the

eigenvalues for a 2× 2 matrix can be calculated with:

λ =
Tr
2
±
√
Tr

2

4
−D (11.13)

where Tr and D are the trace and determinant of the matrix respectively.

The calculation of these eigenvalues therefore appears to be deterministic,

especially since it has already been shown that the effect of the noise can be

described purely by the variance. Given the convolution involved in the

substitution of full definitions of x̂ into the PCA eigenvalue equation,

results drawn instead from MC simulations were highly valuable.

The evidence in Table 11.3 suggests that the eigenvalues are scaled by the

dot product of x with itself, which is the sum of squared parameters:

λPCA ∝ x · x =
∑

xi
2 (11.14)

Both eigenvalues in each case are affected in the same manner

proportionally and the order of that proportionality is the square of the

highest order by which an x parameter changes. When one or both

parameters was equal to γ then λPCA were strongly proportional to γ2,

though with greater magnitude for scheme 3b than 3a which shows an
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accumulative effect of changes in the two parameters. Further, when one

parameter was equal to γ1.5 then λPCA were strongly proportionality to γ3.

In addition to this relationship, changing x-parameters altered eigenvalue

ratios but only when parameters were affected to different orders than each

other, otherwise the ratio was constant, as with scheme 3b when

x = [γ, γ]T. For cases 3a and 3c, the eigenvalue ratio changes fitted well

with two-term power models where the exponent term on γ was between -1

and 0 in both cases. This outcome indicates that the eigenvalue ratio is

related to the relative difference in appearance or in this case magnitude of

the two species in the model: the step and ramp.

The relationships of ATA and PCA eigenvalues to n and n− 1 respectively

for the step-ramp model (Table 11.3) highlights the inverse nature of the

two. The PCA eigenvalues describe the level of spread in the direction of

the principal components while the ATA eigenvalues could be described as

evaluating the steepness of the objective surface in the principal directions

of the surface geometry. As the quantity of data increases, the steepness of

the objective surface increases, confining the MC spread to a smaller area.

There was also an n-dependence for both ATA and PCA eigenvalue ratios,

λ1/λ2, the latter of which fitted well to a two-term power model

(Figure 11.6) where the exponent of n was -1.32. Similar to the case with

the changing parameter values, the ratio change may be related to the

relative changes in magnitude of the step and ramp as they appear in the

matrix. For this model, as n increases, the norm of each column in A

increases but at different rates due to the different forms of the species.

There are several limitations to this first analysis based on our findings.

The foremost limitation is its restriction to systems with separable

parameters where a matrix equation Ax = b can be defined. There may

also be issues with parameter models that yield non-elliptical objective

surfaces, as they are poorly described by PCA. This issue could, in some

cases, be remedied by identifying related parameters and inferring the

desired parameter, for example identifying and evaluating 1/xi instead of

xi. Another small limitation is that true noise variance may not be be
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known in real data, though an estimate would likely be sufficient in most

cases. Since PCA eigenvalues are dependent on x, systems with low levels

of practical identifiability and subsequent reduced accuracy in x̂ will likely

influence how the identifiability of the system is perceived by the analysis.

Model systems with A = f(x) have been shown in unpublished results to

introduce much larger error than could be accounted for by this analysis.

Using a simple model was extremely useful for discerning some of the

relationships between ATA and PCA, all of which could contribute in some

way to fundamental relations for more complex biological models.

Ultimately, PCA eigenvalues could be robustly calculated with ATA,

circumventing the need for population-wide data. There is still a missing

link between changes in the properties of the A matrix and the resultant

scaling of the eigenvalues and the altered eigenvalue ratio. All relationships

must be found for the simple case prior to a deterministic approach for all

models can be developed. Furthermore, direct links between PCA and

parameter confidence estimates require research, though there appears to

be deterministic relationships between the two.

Though the deterministic relationship is not yet fully defined for

multiplicative white noise, additive white noise yields a much simpler

relationship, described in Equation (11.10) where the variance in the

scatter is inverse to the model eigenvalues, further scaled by the noise

variance. It is clear that this eigenvalue model is valid for the step-ramp

model (Figure 11.8) and is valid for arbitrary n and x. The relationship

may indeed be more widely applicable to other similarly simple models and

perhaps even more complex models with linearly separable variables. The

implication is that for such models, assuming additive white noise, it is easy

to estimate the variation in population outcomes based on only the model,

some data, and an estimate of the noise variance.

The simplicity of the additive model, while encouraging, is not directly

applicable in the context of physiological modelling. In particular, blood

glucose measurements generally have multiplicative error as opposed to
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additive or mixed (Werner et al., 1978). In some situations, the magnitude

of a measured species compared to its variation might allow for an additive

noise approximation to be valid. However, this is not the case for blood

glucose, especially in individuals with diabetes, since glucose can easily vary

between 4 and 20 mmol/L. Nevertheless, the additive noise model will be

useful as a reference for further work in defining the eigenvalue relationship

with multiplicative noise.

Models can be used to measure, diagnose and predict the behaviour of

many phenomenon. However, even well justified model formulations can

cause failure of model-based analyses. Structural non-identifiability occurs

when multiple model parameters trade off to describe the same behaviour.

While some methods for determining model structural identifiability have

been in existence for many decades (Pohjanpalo, 1978; Bellman and

Åström, 1970; Ritt, 1950), there remains a consistent stream of research in

this field (Audoly et al., 1998, 2001; Bellu et al., 2007).

This research is driven, in part, by the ambiguous identifiability of a

particular model of glycaemic dynamics (Bergman et al., 1979; Cobelli

et al., 1998; Pillonetto et al., 2002, 2003). More recently it has been

discovered that the cause of this failure was practical rather than structural

identifiability (Docherty et al., 2011). The Docherty et al. approach to

practical identifiability analysis was descriptive rather than predictive but

the relationships found, and deterministic nature of the MC analyses

implies that the concept could become a predictive a priori practical

non-identifiability analysis.

11.5 Summary

There are deterministic links between properties of the step-ramp model

equation, data size and measurement noise to the resulting principal

component analysis of a Monte Carlo simulation. Eigenvectors for ATA

and PCA line up directly and the eigenvalues are inversely related. ATA

eigenvalues describe magnitude of steepness in the objective error surface,
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increasing linearly with data size for the model, and PCA eigenvalues

describe the magnitude of spread from a population of data, with an inverse

relationship to data size. Noise in output data increased PCA eigenvalues

in proportion to noise variance. Principal component eigenvalues also

appear to be a scaled dot product of the parameter set, x · x, and differing

orders of change between parameters alters eigenvalue ratio, likely due to

different comparative magnitudes of the step and ramp in the model. Data

size also produced eigenvalue ratio changes, but in both PCA and ATA,

likely also related to comparative step-ramp magnitude.

Most but not all factors for direct PCA eigenvalue calculation have been

ascertained for the simple step-ramp model. However, using additive rather

than multiplicative noise yields a simple and deterministic relationship,

though this has limited usefulness compared to multiplicative noise. Future

research will include aims to find the missing links to multiplicative noise,

as well as to research more complex biological models, and interval

estimation on the basis of PCA. Confidence intervals estimated for a single

parameter identification outcome, as opposed to a whole population, would

be useful where little information is available. The level of confidence in

parameters for diagnosis and control would be useful, along with the ability

to evaluate the practical identifiability of a model and, where applicable,

choose the best model for a set of data.
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Chapter XII

Noise and gestational diabetes diagnosis

This chapter presents an in silico analysis exploring the extent that

pre-analytical glucose decay in clinical OGTTs results in underdiagnosis of

gestational diabetes. This work was done in collaboration with the

Canterbury District Health Board who kindly provided de-identified OGTT

data for a local population of pregnant women. The content of this chapter

has been published in the Journal of Clinical Biochemistry (Mansell et al.,

2017a)

12.1 Motivation

The two-hour OGTT is a standard method for clinical diagnosis of

gestational diabetes (GDM). During the procedure, the fasted patient

ingests a 75g oral glucose load. Venous blood samples are taken

immediately before ingestion, at one hour after ingestion and two hours

afterwards. These samples are assayed for blood glucose concentration and

the values are then compared to diagnostic criteria for GDM. While many

diagnostic levels exist, a commonly used criteria for GDM was defined by

the International Association of Diabetes and Pregnancy Study Group

(IADPSG). The IADPSG recommends diagnoses of GDM when any one of

the thresholds are exceeded: fasting glucose ≥ 5.1 mmol/L; one-hour

glucose ≥ 10.0 mmol/L; or two-hour glucose ≥ 8.5 mmol/L (Duran et al.,

2014).

In typical clinical practice, tubes containing blood samples are treated with

sodium-fluoride in order to preserve glucose concentration until laboratory

analysis can take place. However, research has suggested that GDM is

systematically underdiagnosed as the use of fluoride tubes to store blood

prior to assays leads to significantly lower readings than gold standard
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methods (Daly et al., 2016; Carey et al., 2016; Uchida et al., 1988). In

particular, Uchida et al. (1988) found that fluoride tubes attenuate glucose

decay but a minor reduction in serum glucose still occurs. This decay was

on the order of 8% glucose and plateaued after approximately two hours at

room temperature. Hence, the measurable glucose levels from samples

stored in fluoride tubes reduces over the time between the sampling time

and the laboratory process time. Since fasting, one-hour and two-hour

samples tend to be batched and processed together, there is differing

measured glucose bias in the three samples (Carey et al., 2016; Daly et al.,

2016).

This investigation determines the likelihood of misdiagnosis of GDM in the

presence of fluoride-induced bias in glucose measurement. Understanding

the limitations of a diagnostic test is critical to applying it effectively and

thus providing the best possible healthcare.

12.2 Methods

12.2.1 Cohort simulation

12.2.1.1 Virtual cohort

A cohort of 1 million virtual test subjects was simulated using glucose

distributions that were summarised in a prior study by Hypoglycaemia and

Adverse Pregnancy Outcomes (HAPO) (The HAPO Study Cooperative

Research Group, 2008). Fasting (G0), one hour (G1) and two hour (G2)

glucose values were drawn from the distributions described by the following

equations and pictured in Figure 1:

G0 = 3.9 + eN(−0.8,0.6) (12.1)

G1 = 2.1G0 + N(−1.9, 1.5) (12.2)

G2 = 0.2G0 + 0.52G1 − 2.3 + eN(1.3,0.24) (12.3)

where N(µ, σ) is a normal distribution with a mean of µ and a standard

deviation of σ.
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Figure 12.1: The probability distributions for fasting, 1 and 2 hour glucose in
the simulated cohort. Solid lines indicate gold standard; dashed lines indicate
fluoride tubes; dotted lines show the diagnostic thresholds.

These distributions were designed to create plausible OGTT results within

±2% of reported target values for mean (G0 = 4.5 mmol/L, G1 = 7.4

mmol/L, G2 = 6.2 mmol/L), inter-sample correlation (R0−1 = 0.38,

R0−2 = 0.30, R1−2 = 0.68) and standard deviations (0.4, 1.7, 1.3 mmol/L)

based on the large (n > 23, 000) HAPO study (The HAPO Study

Cooperative Research Group, 2008).

Published intra-individual CV on glucose measurement reported by the

HAPO study was 4.4% (Nesbitt et al., 2006). Hence, to mimic results from

the gold standard (GS) glucose analysis methods used by HAPO, the

simulated glucose values were multiplied by a normal distribution of values,

Gh,GS = GhN(1, 0.044) for h = 0, 1 and 2 hours.

Both Daly et al. (2016) and Carey et al. (2016) demonstrated differences in

glucose results associated with using test tube preservatives with typical

batching processes compared to research-grade methods equivalent to the

gold standard methods utilised in HAPO. In the larger of the two studies

by Daly et al., the mean error between fluoride tubes and the gold standard
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method were -0.5, -0.4, and -0.2 mmol/L for G0, G1 and G2 respectively. In

the Carey et al. data, the standard deviations in the errors between fluoride

and gold standard were approximately 4% of the mean measured

fluoride-tube value. Hence, fluoride-tube glucose outcomes (G0−2,F ) were

created with the following equations:

G0,F = (G0,GS − 0.5)N(1, 0.04) (12.4)

G1,F = (G1,GS − 0.4)N(1, 0.04) (12.5)

G2,F = (G2,GS − 0.2)N(1, 0.04) (12.6)

12.2.1.2 Real-virtual hybrid cohort

A hybrid cohort was created with real fluoride-tube glucose assays from

pregnant women in New Zealand (n = 1305) that were used to simulate

corresponding gold-standard data. The HAPO population on which the

fully virtual cohort are based were randomly selected and thus

representative of a typical population of pregnant women. In contrast, this

cohort represents a population more typically administered this OGTT in a

clinical context, who have first screened positive in the one-hour 50g

OGTT. The typical New Zealand diagnostic criteria requires one glucose

threshold to be exceeded out of G0 ≥ 5.5 and G2 ≥ 9.0 mmol/L.

The gold standard simulated values were created with the following

equations, and both the real and simulated cohorts are pictured in

Figure 12.2.

G0,GS = G0,FN(1, 0.04
√

2) + 0.5 (12.7)

G2,GS = G2,FN(1, 0.04
√

2) + 0.2 (12.8)

12.2.2 Analysis

The fluoride and true simulated OGTT results were evaluated against the

IGADSG diagnosis criteria (Duran et al., 2014). By this criteria, patients
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Figure 12.2: The n = 1305 cohort for fasting and two hour glucose. Dashed
lines are real fluoride-preserved data; solid lines are the simulated gold
standard cohort; dotted lines show the diagnostic threshold.

must exceed just one of the three glucose thresholds for a positive

diagnosis. The thresholds are G0 ≥ 5.1,G1 ≥ 10.0,G2 ≥ 8.5 mmol/L. A

confusion matrix was created to calculate the rate of true positive (TP),

true negative (TN), false positive (FP) and false negative (FN) diagnostic

outcomes using the fluoride tubes compared to gold standard methods.

These rates were used to calculate the sensitivity ( TP
TP+FN

) and specificity

( TN
TN+FP

) of glucose measurements that were stored in fluoride tubes with

respect to findings of the gold standard tubes.

Fluoride and gold standard outcomes were compared for each of fasting,

one-hour and two-hour glucose with respect to the IGADSG thresholds on

scatter plots. Receiver operating characteristic (ROC) curves were also

created for fluoride against gold standard. To determine the glucose

thresholds from fluoride tubes that match gold standard diagnostics, the

optimal sensitivity and specificity obtainable from the fluoride tubes was

determined. This optimal point was defined as the point closest to 100%

sensitivity and specificity (the point closest to the top-left of the ROC

curves), i.e. when min (||[1− sensitivity, 1− specificity]||2) is true.
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All computational analysis were carried out in MATLAB R2015a on a

64-bit Intel R© CoreTM i7-4770 CPU @ 3.40GHz with 16.0 GB of RAM.

12.3 Results

Based on the OGTT results with the gold standard methods, 14% of the

cohort met the requirements for a diagnosis of GDM (Table 12.1). Under

two thirds of these individuals were also identified by the fluoride-tube

OGTT. Hence the sensitivity was calculated as 57.5%. There were very few

individuals (0.3%) diagnosed with GDM based on fluoride tubes who were

not diagnosed with gold standard methods. Hence, the specificity was near

100%.

Figure 12.3 shows that fasting glucose has the lowest sensitivity with many

FN outcomes (pink quadrant). One and two hour glucose have similar ROC

curves, with reasonably high sensitivity. In contrast, the fasting glucose

stored in the fluoride tube yielded poor sensitivity. table 12.2 shows that

the fluoride-tube glucose thresholds with the optimum combination of

sensitivity and specificity are 4.4, 9.2 and 7.9 mmol/L for G0−2 respectively.

The results for the hybrid cohort with NZ diagnostic criteria are very

similar to those of the large in silico population with the IADPSG

diagnostic criteria. The sensitivity of the test was 48.4% (Table 12.3),

indicating approximately half of diagnosable patients were overlooked.

Fasting glucose had very low sensitivity with many false negative outcomes,

more so than two-hour glucose. Optimum glucose thresholds to achieve

diagnostic equivalence were 4.8 and 8.5 mmol/L for and respectively

(Table 12.4).

12.4 Discussion

The use of in silico modelling was effective in estimating and visualising the

effect of glucose decay in fluoride tubes on clinical diagnosis outcomes on a

large population of individuals. The results demonstrated that the typical
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Table 12.1: The confusion matrix for the overall diagnostic outcomes, and
each sample time, of fluoride-tube OGTT compared to OGTT with gold
standard tube treatment in the virtual cohort. Note: contrary to typical
confusion matrices, the orientation of the different boxes to gain consistency
with Figure 12.3.

OVERALL G0

Gold Gold Gold Gold

-ve +ve -ve +ve

Fluoride FP TP FP TP

+ve 0.3% 7.8% 0.0% 1.8%

Fluoride TN FN TN FN

-ve 86.2% 5.8% 93.9% 4.3%

Specificity Sensitivity Specificity Sensitivity

99.6% 57.5% 100% 29.4%

G1 G2

Gold Gold Gold Gold

-ve +ve -ve +ve

Fluoride FP TP FP TP

+ve 0.2% 4.5% 0.2% 3.5%

Fluoride TN FN TN FN

-ve 93.0% 2.3% 94.7% 1.6%

Specificity Sensitivity Specificity Sensitivity

99.8% 66.3% 99.8% 68.6%

Table 12.2: Diagnostic characteristics at the point on the ROC curve closest
to the top left corner for each sample time in the virtual cohort.

sample original original
c-ROC

new threshold optimal optimal
time sensitivity specificity (mmol/L) sensitivity specificity

0 hour 29.4% 100% 0.990 4.4 95.5% 94.5%

1 hour 66.3% 99.8% 0.994 9.2 96.5% 96.3%

2 hour 68.6% 99.8% 0.995 7.9 97.0% 96.8%
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Figure 12.3: ROC curves for fluoride tubes vs gold standard in the virtual
cohort, with the point of diagnostic threshold marked •, and optimal
threshold marked ◦ (top row). Scatter plots of fluoride tubes vs gold standard
glucose for a representative cohort of 1000, with the optimal threshold shown
by the dotted line (bottom row).

Table 12.3: The confusion matrix for the diagnostic outcomes of fluoride-
tube OGTT compared to OGTT with gold standard tube treatment for the
hybrid n = 1305 cohort. Note: contrary to typical confusion matrices, the
orientation of the different boxes to gain consistency with Figure 12.4.

OVERALL G0 G2

Gold Gold Gold Gold Gold Gold

-ve +ve -ve +ve -ve +ve

Fluoride FP TP FP TP FP TP

+ve 7 171 2 78 9 113

Fluoride TN FN TN FN TN FN

-ve 945 182 1033 192 1152 31

Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

99.3% 48.4% 99.8% 28.9% 99.2% 78.5%
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Figure 12.4: ROC curves for fluoride tubes vs gold standard in the hybrid n =
1305 cohort, with the point of diagnostic threshold marked •, and optimal
threshold marked ◦ (top row). Scatter plots of fluoride tubes vs gold standard
glucose for a representative cohort of 1000, with the optimal threshold shown
by the dotted line (bottom row).

Table 12.4: Diagnostic characteristics at the point on the ROC curve closest
to the top left corner for each sample time in the hybrid cohort.

sample original original
c-ROC

new threshold optimal optimal
time sensitivity specificity mmol/L sensitivity specificity

0 hour 28.9% 99.8% 0.954 4.8 91.1% 85.6%

2 hour 78.5% 99.2% 0.992 8.5 95.1% 96.9%
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clinical procedure of batching blood samples in fluoride-preserved tubes had

a noticeable effect on diagnosis outcomes in silico. Table 12.1shows that in

the virtual cohort over a third of samples that led to a positive diagnosis

with the gold standard methods were not diagnosed when fluoride tubes

were used. This false negative rate was even greater (over half) in the

hybrid cohort of local pregnant women. Low sensitivity is a clinically

relevant outcome as false negatives will lead to a lack of medical

intervention for at-risk individuals.

Figure 12.3 shows that fasting glucose had a particularly low sensitivity. In

batched samples, fasting glucose has the longest wait before processing and

thus the greatest extent of glucose decay. One-hour glucose was less

susceptible to glucose decay than two-hour glucose due to the overall higher

glucose values and the absolute, rather than proportional decay, caused by

the fluoride tubes. However, the selection of an absolute decay of glucose in

this simulation is justified by the fact that the decay in both Daly et al.

(2016) and Carey et al. (2016) populations appeared to depend only on

time in the sense of strictly increasing population error for earlier samples,

i.e. 0.5, 0.4 and 0.2 mmol/L for (Daly et al., 2016). This does not rule out a

dependency of glucose decay on nominal glucose concentration, but the

assumption is valid in the absence of more direct evidence.

Table 12.2 suggests that optimal diagnosis rates in the virtual cohort with

fluoride tubes are achieved with glucose thresholds at 4.4, 9.2 and 7.9

mmol/L rather than 5.1, 10 and 8.5 mmol/L. The difference in threshold

values is remarkable, especially for fasting glucose since 4.4 mmol/L is

considered a healthy fasting concentration. However, a batched

fluoride-tube fasting glucose of 4.4 mmol/L implies much higher actual

fasting glucose. Additionally, it must be accepted that a shift in diagnostic

threshold towards markedly improved sensitivity trades off with a small

increase in specificity. Table 12.2 shows that rates of specificity remain

above 94% when the optimal threshold increases sensitivity to > 95%. An

equivalent outcome was found in the hybrid cohort with the optimal fasting

threshold at 4.8 from 5.5 mmol/L and two hour at 8.5 from 9.0 mmol/L.
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The simulated populations were successfully created with similar

characteristics to those published for the large HAPO cohort. Laboratory

process effects were implemented in the data. Reported intra-individual

variation on glucose assay by the gold standard method was applied

(Nesbitt et al., 2006). The effect of glucose decay in fluoride tubes when the

three blood samples are batched together and processed at once was also

easily applied (Carey et al., 2016). Using a large virtual population of 1

million mitigated the influence of discrete patient numbers influencing the

false-positive and false-negative rates at the diagnosis thresholds.

The disadvantage of using the published summary of the HAPO cohort

characteristics is that mean, standard deviation and correlation does not

fully describe the shape of non-normal distributions. This means that there

is a great range of possible variations, especially in the shape and size of

the tails. In particular, many different distribution shapes meet the listed

criteria. Since the nature of the tail distributions is most critical in

diagnostic outcomes, the exact applicability of these in silico analyses is

limited by the uncertainty of the true shapes (Figure 12.3). However, the

use of log-normal distributions for these distributions has been found in a

number of studies (Peplies et al., 2014; Kirchsteiger et al., 2015; Kovatchev

et al., 1997).

The hybrid cohort demonstrated similar outcomes to the fully virtual

cohort. This equivalence in outcomes is largely due to the replication of

simulation strategy, despite the underlying real cohort. However, since the

literature provides good evidence for the effect of batched fluoride samples

(Carey et al., 2016; Daly et al., 2016), this analysis is equally valid.

Moreover, the hybrid cohort overcomes some of the limitations of unknown

distribution shapes in the HAPO populations. Additionally, the extension

to a more realistic clinical cohort is useful, compared to HAPO which was

intentionally more inclusive in its selection criteria for other research

purposes.
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The present analysis builds on the work of the small in vivo study by Carey

et al. (2016) which directly compared glucose assay outcomes with

fluoride-tube batching to the gold standard methods used in HAPO. This

in silico study demonstrates on a larger scale the potential for this current

common practice to have a clinically relevant diagnostic impact on the

OGTTs of pregnant women. While the findings of this study strongly imply

that there is a lack of sensitivity when fluoride tubes are used for diagnosis

of GDM, further research in a prospective human study must be

undertaken to confirm the findings and determine the relevant equivalent

diagnostic thresholds.

12.5 Summary

Both the in silico and hybrid populations analysed in this chapter suggest

that the typical practice of assaying batches of fluoride-preserved OGTT

samples results in a markedly low diagnostic sensitivity compared to gold

standard practices. In particular, fluoride-tube sensitivity with the 75g

OGTT using the IADPSG criteria was 57.5% in the simulated cohort,

indicating over a third of diagnosable patients would be overlooked.

Similarly, the hybrid cohort had an overall diagnostic sensitivity of 48.4%

with more than half of diagnosable patients overlooked.

The duration of glucose decay was most significant for a fasting samples,

and thus noticeably reduced the apparent glucose concentration. Hence,

optimum diagnosis rates would require lower glucose thresholds when using

fluoride as a preservative compared to thresholds based on gold standard

glucose assays. Likewise, but to a progressively lesser extent the one and

two hour sample thresholds should be lower to gain diagnostic equivalence

to gold standard samples.
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Part IV

Conclusions and future work
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Chapter XIII

Summary and concluding remarks

13.1 Summary

Type 1 diabetes is an autoimmune disease affecting an increasing number

and proportion of people worldwide. The primary clinical characteristic of

the disease is hyperglycaemia due to a lack of endogenously produced

insulin. Autoimmune destruction of the insulin-producing β cells in the

pancreas tends to be absolute, especially in younger individuals.

Fortunately, the widespread availability of manufactured insulin provides

viable treatment. However, insulin administration only mitigates some

symptoms of diabetes and is not a cure for the disease. Presently T1DM is

managed, not cured. Insulin treatment is daily and ongoing, and therefore

burdensome for the individual. This is particularly due to the delicate

balance required to treat hyperglycaemia but avoid hypoglycaemia.

The appropriate doses of insulin required to achieve euglycaemia are

uncertain during the everyday life of some outpatients with diabetes.

Hence, individuals are often not able to engage in the fullness of activities

enjoyed by the healthy. For example, a strict routine for mealtimes can

substantially improve glycaemic control, improving quality of life. However,

the routine is kept at the expense of flexibility, which can negatively impact

on social and psychological freedoms, thereby reducing the quality of life.

This example demonstrates both the inherent difficulties of accounting for

all influences on glucose metabolism in the everyday, as well as the need for

treatment to be a good compromise between improving glycaemic control

and decreasing the burden of the disease. Each of these factors contributes

positively to the perceived quality of life.

197



Much of the current research in diabetes management is focused on

achieving a successfully automated closed-loop control solution to diabetes,

termed the artificial pancreas. This would be the most ideal treatment

solution for individuals with T1DM since it could potentially achieve near

normal glycaemia with minimal human input. An effective closed-loop

controls system would negate some or much of the need for anticipating the

effect of certain everyday factors, by observing and directly influencing the

target species, blood glucose concentration, at a higher sampling frequency

than for self-managed methods.

However, the yet unresolved problem for the artificial pancreas is the

inability to obtain high enough quality glucose measurements at a high

sampling frequency. Meters that use finger-pricking are reasonably reliable

but require effort, pain and long term scarring. Hence, the maximum

frequency of use is only a few times daily in self-managed individuals.

Continuous glucose monitoring (CGM) systems are able to achieve high

frequency data (typically every 5 minutes) but do not measure blood

glucose directly, resulting in both delay and damping of observed dynamics.

Additionally, CGMs are prone to unpredictable spikes and jumps in error,

along with a steady error drift. These problems are ameliorated with

frequent recalibration to finger-prick measurement (e.g. once daily) and

recommendations to confirm some measurements (particularly

hypoglycaemic) before adjusting treatment. Nevertheless, the performance

of CGMs are at present insufficient to ensure safe and effective closed-loop

control.

In contrast to a closed-loop control focus, the present work falls into the

vein of research that aims to inform and improve self-managed blood

glucose control. Glucose metabolism is complex, multifaceted, and subject

to a wide range of influences arising in everyday life. Some factors have

very minor and clinically insignificant effects while others can severely

impact on glycaemic control, but these differentiations vary widely across

individuals. Some patients are termed ”brittle” by clinicians due to their
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sensitivity to external factors and inability to achieve good glycaemic

control despite rigorous effort. These individuals in particular would benefit

from model-based decision support that is personalised and includes as

many factors as are both relevant and observable. Even without

model-based decision support, greater personalised knowledge of these

factors would be beneficial.

Four major categories of everyday life factors have been studied in depth in

the literature, presented in Chapter 4: nutrition, psychological effects,

physical activity and metabolic rhythms. These areas were considered to

encompass many factors that have recognised effects on glycaemia but lack

consensus around modelling. This chapter collated and compared various

models of these effects in outpatients to reduce undesirable systemic and

non-random grey noise affecting model outcomes. The analysis considered

how the measurement of such factors affect the model. However, with the

right tools, data and models, it can be expected that observable signals

from a variety of factors are separable and quantifiable.

Developing and selecting the right model is a major theme of the present

work. Ultimately, personalisable models would need to be used with data

from the outpatient environment to capture that glimpse of the everyday.

However, the data used in the present work, described in Chapter 5, is an

effective stepping stone toward such a goal. The data is of very high

research quality but introduces some of the variability of the everyday in a

prescribed manner, and in a heterogeneous cohort. The resulting richly

descriptive and dynamic data has been ideal for developing an

understanding of the physiological aspects of some of the effects being

considered. The subsequent model development has thus been informed by

the breadth and depth of the behaviour and the variability that can also be

expected outpatients.

Models fully informed by the breadth and depth of information in the

research data are also an intermediary stage. Indeed, the development of a

subcutaneous model in Chapter 6 highlighted that even best choice of
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model with respect to the research data was not that which contained the

most detail that the data could afford. This work was valuable in part

because of the lack of subcutaneous models specific to a continuous infusion

of insulin aspart. Therefore, the model(s) developed fulfil a particular

demand. But perhaps more valuable still was a demonstration of the

rigorous analysis process for assessing relative model performance.

While some models appear to be designed with a poor understanding of

some of the mathematical limitations in physiological modelling around the

issue of robustness and practical non-identifiability, the subcutaneous

model analyses of Chapter 6 made every effort to consider more than just

model fitting ability. A model in itself may be pioneering in its

physiological descriptiveness and accuracy. But if it cannot be used

effectively in the context of its intended purpose due to insufficient data

quality and quantity, then the descriptiveness and accuracy are wasted.

Hence, it is not surprising that one of the much simpler subcutaneous

insulin models was found to be best when considering these clinically

relevant metrics. When poor understanding of this problem prevails, the

confidence placed in the descriptiveness and accuracy (or a long legacy of

use) can lead to poor or dangerous model interpretation for a clinical

context. Hence, the methodology and outcomes of Chapter 6 are an

important addition to the research field.

Development of a model for the effect of moderate aerobic exercise on

insulin and glucose did not include the same level of rigorous analysis as the

subcutaneous model. Nonetheless, a unique and perhaps novel approach

was taken in this model development process. The use of autoregressive

modelling to retrieve information on underlying behaviours (Chapter 7) is

uncommon in itself. Usually, NARX models are used as a black box, where

the correlative information is not sought after so much as the model’s

ability to make output predictions based on the same type of inputs as are

encountered in the training stage. By uncovering the correlative

information for exercise, the present method can instead be considered

grey-box modelling, not being as physiologically rigorous in definition as
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most differential glycaemic models, but not just about the inputs to

outputs performance either. This method was an effective step in the

development process as it allowed the data to inform the model more

directly than if guess and check iterations were carried out.

Additionally, the exercise-effect behaviour uncovered was remarkably

consistent across the heterogeneous cohort. Therefore, despite the

limitations of NARX modelling, the results were interesting and persuasive

at a descriptive level at least. To illustrate this, there was found to be

contention in the literature over whether exercise influenced the

concentration of exogenous insulin in the plasma positively, negatively, or

not at all. The NARX analysis demonstrates that there was a positive

effect during exercise and negative afterwards, for the type of exercise

carried out and in the experimental conditions prescribed. Indeed, the

further work in Chapter 8 showed that the magnitude of this excursion

appears correlated to subcutaneous concentration, especially relating to

insulin boluses. This observation would further explain the contention in

the literature, since some experiments would inevitably aim to increase

repeatability by removing insulin boluses. Evidently, such an experimental

design would likely not see the same effect as observed amongst an everyday

routine that contains boluses. This notion further highlights the value of

NARX in being able to deconvolute the exercise effect from other dynamics.

Beyond the NARX and in anticipation of an outpatient context, the basis

models presented in Chapter 8 were designed as a simplistic

implementation of a model containing the effect of exercise. The underlying

plasma insulin model neglects some known physiological features such as

saturated clearance and interaction with interstitium. These simplifications

were intentional since the sophisticated insulin pharmacokinetics are not

likely to be observable in outpatients. Still, the model performed well as

the exercise basis is an effective addition to the model. The basis function

used in the model is easier to apply than attempting to alter subcutaneous

uptake rates, which is the likely physiological mechanism. Correlation of

the magnitude of the exercise-induced insulin excursion to prior insulin

201



concentration appears significant, though cautionary, but represents work

towards a more extensively a priori insulin model, which would be most

appropriate for outpatients given the limitations in observability.

A basis model was also created for the effect of exercise on glucose. The

glucose model was also relatively simple, which noticeably limited its fitting

performance, particularly due to unmodelled effects in the appearance of

food and in the physiological responses to intravenous glucose bolus.

However, the exercise basis itself performed well and improved the model

fit. The model featured an increasing but saturated rate of glucose disposal

as exercise was carried out in response to an increase in peripheral glucose

demand. This exercise-induced glucose disposal remained post-exercise,

possibly representing a refuelling of peripheral glycogen stores, but

eventually returned to zero.

Chapter 9 demonstrates in silico that though the data quality expected

from outpatients is poor, this limitation is overcome with time. As data

accumulates, parameter estimates for everyday effects tend towards the true

underlying value with minimal bias. This result emerged despite the various

sources of error that were introduced, such as glucose measurement noise,

unrecorded food intake and carbohydrate misestimation. Additionally, it

was found that longer-term changes in insulin sensitivity could be

accounted and compensated for, further increasing the viability of this type

of data collection. This finding represents a pathway toward personalisable

glycaemic models that can be fit to the individual, for the individual.

Further work was carried out in consideration of practical identifiability for

model recovery in outpatient data. Chapter 10 presented an analysis for

evaluating the value of identifying increasing parameter sets. The caution is

that identifying too many parameters in insufficient data can result in

substantial parameter trade-off, unknowingly introducing large errors.

While the analysis in its current form only works in silico where the true

parameter values are known, the results provide insight into the likely

capabilities of the model and data. On the other hand, an analysis

202



developed from the initial work of Chapter 11 would be able to evaluate the

likely confidence intervals of parameters with only the information expected

from real data. However carried out, an analysis around the practical

identifiability of the parameter estimates is crucial if the identified

parameters are to be fed back into control strategies and systems.

Chapter 12 provides an interesting case-study of the influence of a

particular form of grey-noise on clinical interpretation of diagnostic

outcomes in gestational diabetes. This work is somewhat tangential to the

main focus of the present work in T1DM. However, it is valuable to

clinicians in highlighting the limitations of the typical laboratory processing

techniques used, and the implication for getting appropriate treatment to

those in need. Though some assumptions have been made in the simulation

of test cohorts, the evidence of poor test sensitivity in typical practice is

unambiguous. This outcome also generally highlights the possible effect of

measurement noise on the observability of behaviours, particularly systemic

grey-noise in small data quantities.

Overall, the present work takes great strides towards an improvement in

glycaemic control for individuals with diabetes by modelling the effects of

everyday life factors. There is a distinct value in modelling such factors, so

long as the models are effective and robust. The ability to use models in an

outpatient context would be beneficial for a large number of individuals,

since there the unique effects of a unique set of everyday life factors would

be observed. Hence, the models have been developed with consideration to

the practical identifiability constraints of outpatient data. Furthermore, an

in silico investigation of the efficacy of model recovery in outpatients shows

positive preliminary results, and further work was carried out addressing

identifiability analyses specifically. Ultimately, sound modelling of everyday

life factors would improve the quality of life for sufferers of diabetes by

improving control and decreasing the burden of disease management.
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13.2 Concluding remarks

Three broad conclusions can be drawn from this work. The first is that the

literature demonstrates numerous factors present in the outpatient

environment that can noticeably affect glucose metabolism and thus

glycaemic control. These factors include physical activity, psychological

stress and depression, daily metabolic rhythms, menstrual cycles, food

variability and so on. Furthermore, technologies are increasingly being

developed to measure the presence or effect of some of these factors.

Without accounting for these everyday life factors, model-based control

techniques are limited in their effectiveness, reliability and safety. Hence

there is a need to model such factors, specific to individual patients.

The second broad conclusion is the need to consider practical identifiability.

This type of identifiability is as valid to ensure as the traditional structural

identifiability, perhaps even more so given its subtler presentation. In

practice this means that although everyday life effects for outpatients

should be modelled, they can only be modelled to the degree of complexity

allowed by the quality of information present. Patient-specific variables

should be identified with sufficient confidence to ensure safety and

effectiveness.

The final broad conclusion is that despite the challenges of outpatient data

quality, it appears entirely possible to identify the patient-specific

parameters sought, if enough data can be collected over a longer period of

time. Preliminary computational simulations suggest that it is possible to

identify everyday life factors and other metabolic variables modelled in a

virtual patient, even with sparse data, noise and unmodelled effects. Since

everyday life effects cannot all be controlled and simulated in the inpatient

environment, it is hugely important that they can be measured in the

outpatient environment.
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Chapter XIV

Future work

The present work demonstrates the scientific foundation for advances in

interventional treatment. However, further advances are necessary before

such an intervention. With the current data, there is yet more model

development and evaluation that could be carried out. A highly functional

glucose model is the main goal as blood glucose is the target species for

control and is readily measured in outpatients.

Glucose dynamics are considerably more complex than insulin due to the

large variety of regulatory influences. Since several hormones other than

insulin affect glycaemia, there is potential to improve understanding and

physiological modelling of the dynamic effects of these hormones, and to

generally improve the physiological accuracy of the glucose model as

necessary. However, keeping in mind the substantial practical identifiability

constraints of outpatient data, advancing the glucose model would likely

need to be followed by wise simplifications. This may seem redundant,

however not all simplifications or complications of modelled behaviour are

beneficial. Like the process carried out with the subcutaneous insulin

model, it would be beneficial to be able to model all reasonable behaviours

and evaluate which simplifications of these behaviours will be the best

compromise of fit, prediction ability and parameter robustness.

Some aspects of the glucose model will need improving, beyond what the

current data can inform. This is particularly true for forms of exercise other

than moderate aerobic exercise, or at greater durations (given the influence

of glycogen depletion). Moreover, the medium term influence of physical

activity on insulin sensitivity spanning multiple days needs some viable

model pathways. Other everyday life effects such as stress will require some
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model development as well. These model developments could be built on

information from the literature and tested on outpatient data directly.

Additional in silico analysis of model recovery could be carried out. These

would include updated versions of the models since the model recovery

work pre-dated the model-building. On the other hand, the model recovery

analysis was always intended as a proof of concept for the overall research

goals. The concept appears to be proved well by the results. Additionally,

preliminary in vivo testing of the models would be low cost and low risk.

The data would be collected using a diary template distributed and

recollected by a primary healthcare provider. No intervention would be

carried out during this observations stage of the research. Only small

numbers of patients would need to be recruited due to the individualised

application of the work.

A rigorous testing of models in the outpatient data would then need to be

carried out. This process would include evaluation of the robustness and

reliability of all identified parameters. This stage of the research would be

pivotal. Though all prior research has and would be valuable in some

capacity, these tests would confirm whether the everyday effects considered

are actually observable in the type of data collected. If not, then steps

could be taken to improve the quality of the data for another next attempt.

This could include an increase in the number of easily wearable sensors for

heart rate, temperature, sympathetic nerve activity and so on. These would

provide clearer input parameters for certain everyday effects and would

improve model outcomes compared to subjective diary recordings.

Pending successful identification of everyday life effects, considerable in

silico analysis would need to be carried out to evaluate whether

interventional treatment could be safely and effectively implemented.

Multiple control strategies would be tested with the information provided,

and a suitable user interface would be required for the model-based insulin

recommendations. These analyses would inform ethical applications for

recruitment of patients to test interventions. Experimental design would
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need to be rigorous to evaluate whether the intervention is successful.

Crossover would be necessary to compare intervention periods versus

non-intervention periods. A combination of metrics would be used for the

evaluation including HbA1c measurement, number of hypoglycaemic events,

percentage of blood glucose in the target band, and patient interviews. The

patients would need to be well instructed, especially to check that

intervention-recommended insulin doses are reasonable compared with their

intuition and past experience.

The present scope of the future work ends at determining if patient trials

were successful. If interventional treatment performs well enough, then the

research could increase the scope to larger trials and ultimately

implementation to unstudied individuals.
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