
Type Debugging in Functional Languages

5th November 1999

Bruce McKenzie1 Brendon J Wyber

1Supervisor

Abstract

One of the features of functional languages, such as Haskell and SML, is
that the data types of the variables and functions can be inferred from their
usage. Unfortunately when an error occurs from this type inference, it may be
difficult for a novice programmer to trace the error's source. We introduce two
categories of type errors. Explicit type errors are caused by the user attempting
to use incompatible types together. Attributed type errors are the result of edit­
ing or syntactical mistakes that are not detected until type checking occurs. The
programmer requires differing forms of error messages to debug each category
of type error more effectively. We present these display systems and determine
that to implement them, the type of each sub-expression in the code must be
inferred. This can be implemented using an algorithm given by Beaven and
Stansifer.

Contents

1 Introduction

2 The Milner Type Inference Algorithm
2.1 Robinson's Unification Algorithm
2.2 Cardelli Type Inference System
2.3 Milner's W Algorithm

3 Previous Work
3.1 McAdam's Unification of Substitutions
3.2 Beaven and Stansifer's Type Explainer .
3.3 Duggan and Bent's Type Explainer .

4 The User's Perspective
4.1 Attributed and Explicit Type Errors .
4.2 Explaining Each Category

5 Displaying the Error
5.1 Attributed Type Errors

5.1.1 Source Highlighting
5.1.2 A Context-Sensitive Pointer .

5.2 Explicit Type Errors
5.3 Required Type Information

6 Implementation
6.1 Overview of the System
6.2 Extracting Information for HUGS

7 Conclusions

A Lambda Calculus
A.1 Lambda Expressions
A.2 Beta Reduction . . .

B The Internals of the HUGS Interpreter
B.1 Overview
B.2 Basic Data Storage
B.3 Type Representation
B.4 Resolving Types of Expression
B.5 Type Checking A Simple Application

1

3
3
6
7

11
11
13
14

17
17
18

20
20
20
23
24
25

28
28
31

34

35
35
36

37
37
37
39
40
41

B.6 Another Example . 42

ii

Chapter 1

Introduction

One of the special features of certain functional languages, including Standard
ML, Haskell, and HUGS, is that the user does not need to specify the data type
of variables and functions; the compiler is able to infer the types of data and
functions through their usage in the program. A second feature is that a func­
tion or data type may be polymorphic, having more than one valid type. A type
checker is the part of the compiler that resolves the types, and it will fail when
the user has inconsistently typed an expression. Unfortunately for users of the
language, the source of the error can be difficult to locate and identify.

Consider the following item of code which should calculate a value of to­
tal which is $100 plus an additional tax of 15%:

total = inclGST 100 15
where onlyGST base rate = (base * rate) div 100

inclGST base rate = base + (onlyGST base rate)

When given to the HUGS interpreter the following error message is generated:

ERROR "error3.hs" (line 2):
(a -> a -> a) -> b -> c is not an instant of class "Num"

While the compiler has correctly identified the location of the error (line 2),
it is not entirely obvious from the message that the error is because the user
has incorrectly used the di v operator as an infix operator, when it is a prefix
operator, such that the operator must appear before its two arguments, not
between them.

It is the aim of this project to find ways in which to present these error
messages in a clearer manner, particularly for the novice user. Many first time
users of a functional language will come from a procedural programming back­
ground, and will have difficulty with the different paradigms and will be unfa­
miliar the complexities of functional languages' advanced typing capabilities.
The project will have an immediate practical benefit of allowing novices to
more easily debug their programs.

In order to do this, we have split the type errors into two general categories
introduced in this paper, explicit and attributed. Explicit type errors are the
errors which occur when the user has attempted to use incompatibly-typed
expressions together. Attributed type errors are caused, not by a misunder­
standing of the types, but instead by editing mistakes and syntactical errors

1

which are not detected until the type-checking phase of the compiler. Both of
these kinds of errors, as far as the compiler is concerned, are type errors, but to
the user they are distinctly different and require different information to debug
them. For explicit type errors, a detailed explanation of how the types are in­
ferred is required, while for attributed type errors a syntactical analysis would
be more helpful. We discuss the design of how the two differing type explain
systems could be able to integrated with an existing system, HUGS.

The emphasis in this work is how the error is presented to the user, as no
algorithm to find the cause of an error seems available. Duggan and Bent [5]
have said of such an algorithm "we do not believe there is a general solution
to this [problem] which scales up".

Chapter 2 describes the fundamental algorithms of modern type-checkers.
Chapter 3 discusses previously published work related to this problem. Chap­
ter 4 examines the two different categories and how they emerge from the
user's perspective and not the compiler's. Chapter 5 describes the design prin­
ciples for the presentation of both kinds of errors. The implementation for the
language HUGS is discussed in Chapter 6 and conclusions are presented in
Chapter7.

2

Chapter 2

The Milner Type Inference
Algorithm

In order to demonstrate how a compiler determines the type of a polymorphic
expression, we present an inference algorithm based on Milner's type checking
system[14]. This algorithm is noted by Cardelli[2] as having the feature of
being able to infer types without the necessity of having a type declaration.
This is an important feature for an interpreter based program such as HUGS.

The algorithm, named W, was the first of its kind to be implemented, be­
ing used by Milner for the language ML. Although it was developed inde­
pendently, it shared a lot in common with work by Hindley, who developed
a method for deriving the "principle type scheme" for terms in combinatory
logic[7]. This is effectively the same kind of problem to type checking, and it
was Hindley who first used the Unification Algorithm of Robinson [16] for this
purpose.

In this chapter we discuss Robinson's Unification Algorithm and Milner's
W algorithm as they provide a theoretical background for type checking. We
also present a type inference system by Cardelli, which detailed the inference
rules used.

2.1 Robinson's Unification Algorithm

The Unification Algorithm first presented by Robinson[16] is widely used in
various forms in differing fields of Computer Science. The algorithm is dis­
cussed in many texts, both formally [9] and in terms of application [15]. A
pseudo-code version is provided by Field and Harrison [6, p155], and a CAML
version by Cousineau and Mauny [3, p147-8]. An extremely thorough discus­
sion is given by Manna and Waldinger [10].

Unification attempts to find a set of substitutions of formulae to variables
in order to make the two formulas identical. Consider the two expressions

6xu, ax(x+4). (2.1)

If we substitute x + 4 for u and 6 for a then the formulas become identical:

6x(x+4).

3

Therefore we can say that the substitution { u +- x + 4, a +- 6} is a unifier for
2.1. The following definitions will be used throughout the rest of this paper.

We will use the ~ symbol to represent the application of a substitution.
For e ~ e, where e = { Xl +- el, X2 +- e2, ... Xn +- en} f we simultaneously
substitute every occurrence of Xi with ei. This application occurs in one step
and is not recursive; therefore

u + y ~ {u +- y, y +-a}= y +a

and
u + y ~ { u +- y, y +- a} :f. a + a.

The empty substitution {} has no effect when applied to an expression.
The composition D of two substitutions has the effect of applying the first

substitution and then applying the second to the result; therefore

e ~ (BD>.) = (e ~B) ~ >..

If we have three substitutions e, >.,and¢ and

eo>.=¢,

then it can be said that e is n1ore general than ¢. Generally, the more general a
substitution is, the fewer the changes that will be made to an expression. For
example, { x +- y} is more general than { x +- a, y +- a} because

{x +- y}D{y +-a}= {x +-a, y +-a}.

By this definition, any substitution e is more general than itself (2.2) and the
empty substitution {} is more general than any substitution(2.3).

eo{}= e
{}DB= B

(2.2)

(2.3)

Robinson's algorithm attempts to find the most-general unifier for two or
more sets of substitutions . A unifier is said to be most-general if it is more gen­
eral then any other modifier. Expression pairs can have multiple most-general
unifiers. For example, for the expressions a and b, both {a +- b} and { b +- a}
are most-general unifiers, but {a +- x, b +- x} is not a most-general unifier
(although it is a unifier). The most-general unifier will match two expressions
doing the least amount of substitutions.

The Disagreement set is the set of the first terms to be encountered where a
set of expressions begin to differ. Traverse each expression in the set from left
to right and record the first terms which differ. Therefore the disagreement of
{a+ f (b), g + f (b)} is {a, g} as they differ in the first term of each formula. The
disagreement set of {f(a) + b, d + c} is {f(a), d} and the disagreement set of
{a+d(e), a+d(f)}is{e,f}.

Robinson's Unification Algorithm is stated below. Note that A is a set of
expressions for which we want to find the unifier.

Step 1 Set k = 0 and CTk = {}.
Step 2 If (A ~ crk) is a singleton, then terminate. crk is the most-general unifier.

4

Step 3 Find the Disagreement set Bk of (A <1111 ak)· Let u and v be the first two
terms in Bk, if they exist. If u is a variable and does not occur in v then
ak+l = ak + { u ~ v}, increment k and go to Step 2. If v is a variable and
does not occur in u then ak+l = ak + { v ~ u}, increment k and go to step
2. Otherwise terminate. A is not unifiable.

In summary, the Unification Algorithm traverses each expression in A, left
to right, searching for where they differ. Then, when they find the difference,
the algorithm adds a substitution if one of the differences is a variable. The
program is guaranteed to terminate (an important property), as it will even­
tually run out of differing sub-terms or find a difference where neither of the
terms is a variable (where it cannot unify), or the first term contains the second
variable (which is an infinite unification error.

ExampleU1

Unify A= {a+ b + c, a+ f(c) + f(c)}:

1. ao = {}

2. Bo = {b, f(c)}, a1 = {b ~ f(c)} and A <1111 a1 ={a+ f(c) + c, a+ f(c) +
f(c)}

3. B1 = { c, f(c)}. As f(c) contains c, A is not unifiable.

ExampleU2

Unify A= {a+ b + c, z + f(g) + c}:

1. ao = {}

2. Bo = {a, z}, a1 = {a ~ z} and A <1111 a1 = {z + b + c, z + f(g) + c}

3. B1 = {b, f(g)}, az ={a~ z, b ~ f(g)} and A <1111 az = {z + f(g) + c}

4. A is unifiable and a2 is a most-general unifier.

ExampleU3

Type variables are represented by T. Unify A= { (T -+Char), (Bool -+ Num)}

1. ao = {}

2. Bo = {T, Bool}, a1 = {T ~ Bool}
and A <1111 a1 = {(Bool-+ Char), (Bool-+ Num)}

3. B1 = {Bool, Num}. Neither term is a variable so A is not unifiable.

5

2.2 Cardelli Type Inference System

Before we present Milner's algorithm we will discuss an inference system by
Cardelli[2] which shows how type checking is done. The system is more pow­
erful than Milner's algorithm, allowing for non-shallow types. A type is consid­
ered shallow if it is defined at the top level and there are no quantifiers in the
type expression. The type expression a -+ (3 is really Va.V(J.a -+ (3, which is a
shallow type.

Below is a list of the set of inference rules. [VAR] is the basic axiom, while
the others are proper inferences. The horizontal bar

A
B

means that "from A we can infer B". We read A 1- e : T as "from the set of
assumptions A we can deduce that the expression e has type r". Also A.x :
T denotes the result from adding the assumption that x has type T to set of
assumptions A.

Variables

Conditionals

Abstractions

Applications

Let expressions

Fixed point

Generalizations

Specializations

A.x: T 1- x: T

Are:Bool Are' :r Are" :r
Af-(if e then e' else e11):r

A.x:are:r
Af-(.>.x.e):a-tr

Are:a-tr Are' :a
Ar(e e'):r

Are' :a A.x:are:r
Ar(let x-e'in e):r

A.x:rre:r
Af-(flx x.e):r

Are:r (f . A) are:'v'a.r a not ree m

Are:'v'a.r
Are:r<!ll{at-a}

[VAR]

[COND]

[ABS]

[APP]

[LET]

[FIX]

[GEN]

[SPEC]

These inference rules can be used to infer the types. For example, we type
the identity function (>.x .x) to its most general type.

x:al-x:a
1- (>.x.x) :a-+ a

1- (>.x.x) : Va.a-+ a

This can be specialized for each specific case:

1- (>.x.x) : Va.a-+ a

[VAR]
[ABS]
[GEN]

1- (>.x.x) : Num-+ Num [SPEC]

Therefore we can infer that the type of (>.x.x)3 is Num:

3: Num, x: Num 1- x: Num [VAR]
3: Num 1- (>.x.x) : Num-+ Num [ABS]

3 : Num 1- 3 : Num

3: Num 1- ((>.x.x)3) : Num [APP]

6

[VAR]

2.3 Milner's W Algorithm

Unlike Cardelli's inference rules, theW algorithm is designed to be automated.
The W algorithm presented here is a slight variant introduced by Field and
Harrison [1989] so that it matches the inference rules in Section 2.2.

When given a set of assumptions A and an expression e, if W succeeds
then it will return (T, r), where r is the most general type of e and Tis the
substitution necessary to unify A and e. The algorithm is as follows:

W(A, e) = (T, r), where

(a) If e is the identifier x, then T = {}and
if X : Va1 ... an.a E A,
then T = a ~ { a1 +- /31, ... , an +- f3n},
where {(3 I 1 ~ i ~ n} are new type variables.

(b) If e = fg,let
(R,p) = W(A,f)
(S,a) = W(A ~ R,g)
U = U(p ~ S,a-+ (3)

where f3 is a new type variable. Then T = UDSDR and r = f3 ~ U.

(c) If e = if p then f else f', let

(R,p) = W(A,p)
U = U(p, Bool)
(S,a) = W(UDRDA,f)
(S', a') = W(UDRDA, f')
U' = U(a ~ S', a')

Then T = U'DS'DSDUDR and r = a' ~ U'.

(d) If e = >..xf, let
(R, p) = W(A.x: (3, f)

where f3 is a new type variable. Then T = R and r = ((3 ~ R) -+ p.

(e) If e =fix x.f, let
(R,p) = W(A.x: (3,!)

where f3 is a new type variable, U = U(/3 ~ R, p). Then T = UDR and
T = f3 ~ (UDR).

(f) If e =let x = fin g, let

(R, p) = W(A, f)
(S,a) = W((A ~ R).x: p',g)

where p' = Va1 ... an·P and a 1, ... , an are the free variables in p which
do not appear in (A~ R). Then T = SDR and r =a.

7

The algorithm is slightly complicated due to the concepts of generic and
non-generic variables. Consider the following functions, g and g', defined as:

g = >..j.h(f 3)(! True)

g1 = let f' = >-.x.x in h(f'3)(f' True)

(2.4)

(2.5)

In Equation 2.4, g would fail to be typed. This is because f is a non-generic vari­
able; its instantiated type is shared for all occurrences in the body of g and the
two occurrences off differ (Int-+ a and Bool-+ a respectively). In Equation
2.5, which shows a similar equation, f' is a generic variable. Its substantiated
type is separate for each occurrence. To quote Field and Harrison:

To summarize, a type variable occurring in the type of an expres­
sion E is generic iff it does not occur in the type of the bound vari­
able identifier of any >-.-abstraction of which E is a sub-expression.

The W algorithm is inefficient to implement as it applies more substitu­
tions than necessary. Milner[14] presented a second algorithm :J, which used
a global environment E, which holds the assumptions of type substantiations,
and a variant of the unification algorithm that modifies E as a side effect. It is
this algorithm that is implemented in ML.

ExampleWl

Trace the operation of Won >-.x.x. From (d) we get:

W(A, >-.x.x) = (R, ([3 <111 R) -+ p),

where
(R, p) = W(A.x: [3, x).

From (a):
W(A.x: [J,x) = ({},[3).

Therefore substitution results in:

ExampleW2

W(A, >-.x.x) = (R, ([3 <111 R) -+ p)

({}' ([3 <Ill {}) -+ [3)

({}, f3-+ [3).

Show the operation of Won d = (e 3). The initial assumption set A would be:

From (b) we get:

where

A= {3 : Int, e : E-+ 8}.

W(A, d) = (UDSDR, [3 <111 B),

(R,p) = W(A,e)

(S, cr) = W(A <111 R, 3)

8

U = U(p ~ S, (J --+ (3).

From (a) we get both:
W (A, e) = ({}, E --+ J)

W(A ~ R,3) = W(A ~ {},3)

W(A,3)

({}, Int).

The unification results in:

U = U(p ~ S,CJ--+ (3)
U((E--+ J) ~ {}, Int--+ (3)

= U((E--+ J), Int--+ (3)

{ E +-- Int, J +-- (3}.

Merging the results we get:

W(A, d) = (UOSOR, U (3)

ExampleW3

({E f- Int, J +'- (3}0{}0{},(3 ~ {E f- Int, J +-- (3})
({ E +-- Int, J +-- (3}, (3).

To present the operation of W when type checking

g = let f = .>..x.x in h(j 3)(! True)

in the level of detail as in Examples Wl and W2 would be tedious; aside from
the let component, the lambda abstraction and function applications have al­
ready been shown. We will concentrate on how generic type variables are han­
dled by W. The assumption set would initially be

A={3:Int, True:Bool, h:E--+ll--+1}·

By applying (f) we get:

where
(R1,pl) = W(A,.>..x.x).

From Example Wl we get:

W(A,.>..x.x)

({}, !31 ---7 (31).

Also from (f) we get:

(S1, CJI) = W((A ~ Rl).f: p~, h(j 3)(! True).

9

As R1 = {} and P1 = (31 -+ (31 then (31 is the only free variable that is in P1 and
is not in (R1 DA). Hence, we can substitute a for (31 to make a new assumption
set Aa, where

Au = A.f : Va.a -+ a.

Therefore
(S1, o-1) = W(Aa, h(f 3)(! True).

This means that when (f 3) and (f True) are type checked by rule (a) there will
be a substitution with a separate f3n type variable for each instantiation, thus
preserving the polymorphic property of generic type variables.

10

Chapter 3

Previous Work

This chapter will review previously published work. Bruce McAdam's [11]
modifications to the W algorithm is an attempt to make type debugging easier
by changing the type checking algorithms. The work of Beaven and Stansifer
[1] and Duggan and Bent[5] developed type explainer systems which attempt
to analyse the type error and present it to the user in a clearer way. All three
systems will be discussed in the following chapter.

3.1 McAdam's Unification of Substitutions

McAdam identified a left-to-right bias in the W algorithm. If we reconsider
Equation 2.4 from Chapter 2,

g = >..j.h(f 3, f True),

when the expression is type checked f is instantiated to (Int -+ (3) and then
fails to unify when later f is substantiated to (Bool -+ (3). At this point it then
reports the error, on the 'right-hand side' of the expression. This is misleading,
as the error lies not with the instantiation of (Bool -+ (3), which is where it is
detected, but instead at the level above, in h, where f has failed to unify.

The reason for this bias lies with application rule (b) in theW algorithm
(page 7). The second step is the following:

In this step, the substitution R is applied to the assumption set A before the
type of g is substantiated. This is the cause the left-to-right bias, as the result of
evaluating (R, p) = W(A, R) is used before it is known to be consistent with g.

The solution to this is to evaluate W(A, f) and W(A, g) independently and
then merge the results. This will effectively generate two pairs (81, p1) and
(82 , p2). It is then necessary to check that the two substitutions are consistent
with each other and "create a substitution which contains the effect of both"
[11, p.145]. To do this we must unify the substitutions.

McAdam's formal definition for a substitution unifier follows:

11

A substitution, S', unifies substitutions, So and S1, if So <Ill S' =
S1 <Ill S'. In particular the most general unifier of a pair of substitu­
tions is S' such that:

(So <111 S' = S1 <111 S')A

((VS" :So <111 S" = S1 <111 S") => (3R: S" = S' <111 R))

We define the algorithm Us(S0 , S1) to return the substitution unifier. Examples
of Us include:

{a+-- Boo!}

{1'1 +-- 'Y}
{a+-- Boo!, !'1 +-- 1},

where So and S1 are completely independent. When they contain a common
element we have to unify as in the example:

So

S!
Us(So, Sl)

{a+-- !'1 +--Boo!}

{a+-- Int +-- 'Y}
{Boo!+--/, Int +-- /'1}.

The unification can still fail as seen in the following equation, which has an
occurs-within error similar to Robinson's Unification Algorithm.

So = {a +-- Int +-- 1'1}
S1 = {/'1 +-- Int +--a}.

We will omit McAdam's definition of Us as it is available with proofs in
his extended paper[12]. The new version of W, W', differs only in the case of
applications:

(b) If e = jg, let
(R1,p1) = W(A,f)
(Rz, pz) = W(A, g)
W = Us(Rl, Rz)
u1 = P1 <Ill W
uz = pz <Ill W
V = U(uo, u1-+ 1'1)

where !'1 is a new type variable. Then T = VDWDR1 and r = !'1 <Ill V.

The advantage of W' is that if the types off and g -+ !'1 fail to unify it is caught
after the evaluations. The left-to-right bias is no longer present, therefore the
error message will be generated in the position where the error belongs.

12

Figure 3.1: A Syntax Tree for if true then (f 5) else 3

<expr> <identifier>
<integer>
<boolean value>
(<expr>, <expr>)
<expr> <expr>
fn <identifier> : = <expr>
if <expr> then<expr> else <expr>
let <identifier> =<expr> in <expr> end

integer constants
boolean constants
a pair
functional application
function definition
conditional expression
let expression

Figure 3.2: Syntax of a Simple Functional Language

3.2 Beaven and Stansifer's Type Explainer

Beaven and Stansifer[1], presented a method where the unification algorithm
remembers and stores the substitutions performed during the type checking
stage. It uses this stored information when tracing through a syntax tree of
an expression to display a step by step explanation of the type inferences. A
syntax tree is a directed graph where each vertex represents an expression and
with edges pointing to each of its sub-expressions, as shown in Figure 3.1.

In their implementation, Beaven and Stansifer represent substitutions as a
list of pairs. For reasons of efficiency they store the substitution terms in a
continuously specialising series, such that:

which represents the substitution:

where ei is the substitution:

{ V1 +- t1, Vz +- (tz <ill 81), ... , Vn +- (ti <ill Bi-1)}.

This system has the advantage that by simply adding and subtracting further
atomic bindings (vi, ti) the entire substitution is specialised and generalised,
similar to pushing to and popping from a stack.

They implemented the type explanation system for the simple functional
language as described in Figure 3.2. The system consisted of the following
elements:

• a representation of the generated parse tree,

• details of the substitutions at each node,

13

111 details of type assignments,

111 and functions, why and how, that traverse the above information and
present the information to the user.

As their system performs the type checking, it traverses the syntax tree and
stores, at each node, the unification results and the type values assigned. The
exact information stored is dependent on the expression type.

Constants do not store any additional information.

Pairs store the types of its sub-expressions.

Function definitions store the type of the body and the initial type variable
that is created for the identifier. This identifier is used as the base for
which bindings will apply to form the domain type.

Function applications store the two types which are formed by unification of
the application.

Identifiers must store the original type variable created for them. They also
record a list of all the type bindings that occur. This is to allow the let
statements to have polymorphic types, as discussed in Chapter 2.

Conditionals stores the type of their sub-expressions.

The details of the explanation algorithms, why and how, are not described
in the paper, but example outputs are shown [1, p.23, 27, 29]. The explanations
are extremely verbose; the type trace for

let f=(fn x => x) in (f 3,£ true) end

is over 50 lines long. In practise this would require a user interface designed
to allow the user to browse the given information. Requirements for such user
interfaces are presented in Chapter 5.

3.3 Duggan and Bent's Type Explainer

A different approach was developed by Duggan and Bent[S]. For each program
a type variable is found. Each substitution that occurs for the variable is then
stored with the snippet of program code responsible for the substitution. If
the substitutions are unified successfully, then the code snippets are used to
provide the explanation. For example, in the Standard ML program fragment:

fn X => X + 1

xis initially assigned a type of 7 1 , which is a type variable. The function body
contains the application (converted from infix to prefix notation) + (x, 1) which
has the type (71 * in t) and the + function has the type (in t * in t) .
Unification produces the substitution { 7 1 +- int} and the program fragment
+(x, 1) is given as the explanation.

This approach is not sufficient to explain more complex expressions. For
example, given the following section of code:

14

Assume F:'t1 y:'tz x: 't3 z: 't4

y = (3,x)

l F (z, 4. 5)

I 't4 X ~-- 't61

Figure 3.3: Type Tree for F function

F y
y (3,x)

F (z, 4. 5)

if the simple system were used, it would give the explanation for the type of
x being real as (F (z, 4 1 5)) . This is insufficient information to clearly
explain the type. Consequently the typing information is built into a directed
graph. Each vertex stores the assigned types and the directed edges are stored
with the code fragments that created them. A modified unification algorithm
traverses this graph collecting the code fragments and the list is presented as an
explanation. The type graph of the previous section of code is shown in Figure
3.3. Sub-expressions are graphically represented by nesting the vertices. Using
this method the explanation for the type of x becomes:

x: real
F y
y = (3 1 x)

F (z 1 4. 5)

gives F: T1 = T2 -+ T5

gives y: T2 = int x T3

gives x: T3 = real

The system developed by Duggan and Bent, called SML/E, explains type
assumptions for the Standard ML of New Jersey (SML/NJ). It consists of a com­
mand line shell which loads source files and provides the describe and explain
commands each of which take a single variable identifier as an argument. Vari­
ables in let expressions are referred to using a <junction identifier> . <variable
identifier> format. The describe command describes when the given variable
is defined. The explain command provides an explanation of why a variable
has a certain type. An example of the running program is given in Figure 3.4.
The system uses 1 AO, 1 Al, ... to refer to the type variables. The input from the
user is bold-faced and <exp> is used to display shortened sub-expressions.

One drawback of the system is that it only explains the types of identifiers
and not sub-expressions. A prototype of the system is publicly available[4].

15

esh<4> describe f
f was introduced in the following declaration:
(* f: 'AO *)

fun f ((x:'Al,y:'A2,z:'A3)).=(if x then (Int.+(<exp>,<exp>)) else z)

esh<5> describe f.x
f was introduced in the following declaration:
(* f: 'AO *)

fun f ((x:'Al,y:'A2,z:'A3))=(if x then (Int.+(<exp>,<exp>)) else z)

esh<6> explain f.x
The explanation for the type of f.x is as follows:
[OJ f.x : 'Al by Assumption
[1] f.x: bool because ...
'Al (the type variable for f.x) was instantiated to bool as a
result of requiring the conditional test to have type bool in
this expression:
(if x then (Int.+ (y,l)) else z)

Figure 3.4: Transcript of SML/E

16

Chapter 4

The User's Perspective

4.1 Attributed and Explicit Type Errors

The term 'type error' can often be misleading to the novice user; they could
have made another form of error which is only detected by the type checker.
For example, consider the following incorrect statement in HUGS:

onlyGST : : Int -> Int -> Int
onlyGST base rate = base * (rate div 100)

The error occurs because di v, the integer division operator, is a prefix opera­
tor and the user has used it as an infix operator. The correction would be to
use di v correctly (di v rate 10 0), or to promote it to infix using the quotes
(rate 'di v' 100). From the user's perspective this is a syntactical error, but
it parses correctly because the 'div' operator is allowed to be used as an argu­
ment to a function. When the interpreter compiles the statement it generates
the following error:

ERROR"/ ... /example1.hs"
(line 2): Type error in function binding
*** term onlyGST
***type Int -> ((a->a->a)->b->Int) -> Int
*** does not match Int -> Int -> Int

This error message highlights several differences between the user's view
of the error and the compiler's view of the error:

• As already discussed, it is caught as a type error by the compiler when
the user would consider it to be a syntax error.

e The error is caught at a place that differs from where the user would ex­
pect the error to be. This is because the user defined the type of onlyGST.
If they had omitted the declaration of onlyGST then the error would not
have been caught until onlyGST was used.

• The compiler indicates that the error lies at the second argument of on­
lyGST, or the rate argument. This gives the user a general location of
the error, but does not specifically pinpoint the error. Examples can be
contrived where the error is more obscured.

17

• The typing is obscuring the problem. The di v operator is typed as (a­
>a->a) and the 100 is typed as b, but a novice would have difficulty in
interpreting it. Once the user is aware of what the problem is, it is easier
to understand what the error message means and how it came about, but
working backwards in an attempt to derive the error from the message is
much less intuitive.

The error message should have been more explicitly localised. Due to the
declaration of onlyGST, the compiler knew its type and what the type and
name of its second argument should have been. The error message:

ERROR"/ ... /examplel.hs"
(line 2): Type error in argument for function onlyGST

term
type
does not match

rate
(a -> a -> a) -> b -> Int
Int

would have been more helpful.
The fundamental problem is that there is no intuitive way for the compiler

to determine that the error is not related to rate but to di v instead.
Consequently from the user's perspective we introduce two categories of

type errors. The attributed type errors are similar to those discussed above; er­
rors that are not caught until checked by the type checker, whose mismatches
are symptoms of another fault. The explicit type errors, are errors where the
user has genuinely mismatched types. The compiler cannot make any distinc­
tion between the two categories.

4.2 Explaining Each Category

Our distinction between attributed and explicit type errors in not made for
arbitrary reasons, as the user requires different information in order to resolve
the error.

Attributed type errors are caused by the following:

• incorrect usage of infix and prefix operators,

• similarly incorrect usage of the unary minus or subtraction symbol

• accidently inserted characters that happen to match an identifier

e transposed characters,

e incorrect use of parentheses,

• duplicated sections of code caused from a cut and paste editing mistake1.

The location of the error can be more helpful to the user than the reason
why the error occurred or what the specifics of the error is. For trivial errors,
the mere knowledge of the existence of the error and general location is enough
for an experienced user to find it. For novice users, attributed type errors will

1 As more and more powerful drag-and-drop editors become more available, these kinds of
errors become more frequent.

18

be very common and may only require simple changes to fix, however finding
them could be far from trivial.

For explicit type errors, where the error is the result of an incorrect type
matching by the user, different information is required to locate the source. It
is this type of error that has been the focus of Duggan et al. as discussed in
Chapter 3. Here the user may need to trace through the derivation of each type
inference to see how the error occurred.

Because of this distinction of errors, and the differing information needed
to correct the errors, a single method to present the error to the user can not
easily deal with both categories of type errors. A full explanation system would
produce unnecessary and possibly misleading information for attributed type
errors and a more higher-level location-based type-error explainer would be
no help for a user attempting to trace an explicit type error.

Since a compiler cannot determine which category of type error an error is,
both mechanisms should be available at all times and should not interfere with
each other. The next chapter discusses the design aspects and requirements for
each of these type error presenters.

19

Chapter 5

Displaying the Error

While identifying the source of a type error and locating the section of the
code is important, it is wasted if the result is not displayed to the user in an
understandable fashion. In this chapter we discuss the design of an interface
used to display type errors.

5.1 Attributed Type Errors

For displaying attributed type errors, the location of the error is the most im­
portant property to display to the user. While this is typically detailed by a
line number, sometimes with reference to a specific location within a line, this
information can be incorrect. The error may have occurred elsewhere in the
source file and the indicated location is just where the type checker first detects
the symptoms. Therefore, a global view of the type information is desirable for
the complete file.

This task is made easier if the user's development environment included a
file viewer. A modem Graphical User Interface (GUI) is ideal for this, having
many advantages over the standard text-style terminal, including easy avail­
ability and use of colour, and a built-in type of pointing device, typically a
mouse.

5.1.1 Source Highlighting

The source highlighted editor is a common development tool that is used for
many languages. This tool is a standard CUI-based editor that colours the text
being edited according to rules based on the grammar of the target language.
This is typically used with a type of automatic indenting (where new lines are
automatically indented based on code layout) as well as parentheses matching,
(as one parenthesis is typed in its opposing member of the pair is highlighted
in some way).

While source highlighting rules can be easily defined for several classes
of imperative languages, it is a much more difficult for a functional language
such as HUGS. For example, in C, the highlighting is typically used to display
syntactical structures, such as while and for loops, and code blocks. Function

20

File EcJit Aj1ps Options Buffers Tools C

*I

void KLibProgUsaqe (FILE *file)
(

int a;

I I* output prograJ> name and toggl e options *I
int len = strlen(na>>e) + 13 ;
fprintf (file , "Usage: %• (- vh", _nallte) ;
· , (a = 0; a < _arg_nUJA; a++)

f (_arg_vect(a] . type == ' t')
{

)

fputc(_arg_vect (a] . short_nane, file) ;
l en++;

fputc(') ', file) ;

I* output s tring options *I
•- (a = 0; a < _arg_nUil ; a++)

" (_arg_vect(a) .type == ' s ')
{

1f (len > 70)
{

fprintf (file, "\n ");
l en = 6;

)
fprintf(file , " (-:tc b) ", _arg_vect(a] . short_name, _arg_vect (a) . arg_name);
l en += strlen(_arg_vect(a] . arg_mme) + 6;

I* output long name s *I
(a = 0 ; a < _arg_nlllll; a++)

· (l en > 70)
{

fprintf (fi l e, " \n ");
l en = 6;

1 h (ara vectl
-----XEmaoo: klproq. c
Print buffer

Figure 5.1: Example of syntax highlighting for C in xemacs

Help

calls are clearly distinguishable, and the expressions in statements are typically
shown as the same highlighted level, an example shown in Figure 5.1.

For source highlighting in functional languages it is not immediately clear
what would be beneficial to show to the user. It is also unclear how to compose
rules for an editor without the editor essentially parsing the entire file to build
the syntax tree. This is simpler for interpreted systems, such as HUGS as the
parser is always available. For compiled systems, such as Standard ML of New
Jersey (SML/NJ), this would involve re-running the compiler.

As the type checking algorithm is closely related to the syntax tree it would
make sense to highlight according to this. Consider the following equation:

a= c b (d + e)

which has the syntax tree shown in Figure 5.2(a). An expression consisting
of composite functions, such as (x + y) which is really ((+x) y), these are ex­
pressed with the deepest function first (+) and the children of the node are the
arguments (x andy). If each level was assigned a colour (as in Figure 5.2(b)),
the resulting syntax highlighting would be as shown in Figure 5.2(c).

Consider the two following HUGS statements:

onlyGST:: Int -> Int -> Int

21

(a) Basic Tree (b) Coloured Tree (c) Highlighted Syntax

Figure 5.2: Syntax for a= c b (d +e)

100 100

(a) Correct Tree (b) Incorrect Tree

~~mJo~a!§s·e rate rate div j 00 j

(c) Correct Highlighting (d) Incorrect Highlighting

Figure 5.3: Highlighting by Syntax

onlyGST base rate = bae * (rate div 100)

onlyGST:: Int -> Int -> Int
onlyGST base rate = bae * (rate 'div' 100)

both define onlyGST, but the second definition contains a type error. When we
use the highlighting-by-syntax method on the source we get the syntax trees in
Figures 5.3(a) and 5.3(b) with the corresponding highlighted syntax in Figures
5.3(c) and 5.3(d). From the coloured text it is easier to spot the attributed type
error discussed in Chapter 4.

A criticism of the colouring-by-syntax method is that it will lead to a very
colourful display in the editing environment. The constant change of colour
may lead to an error being skipped, unless the highlighted area is restricted.
Also, if the location of the error is incorrect it may not help tracing the error.

Another method of highlighting is to choose a colour based on type. Each
basic type in an expression could be assigned a colour. More complex data
types would have to be 'simplified'. Lists could be assigned the colour of their

22

onlyGST: : Jnt->lm->lnt
base:: lnt
rate:: lnt
•::lnt->lnt->1111
100::/nt
div:: lnt->1111->fnt

onlyGST base rate = base • (rate 'div' 1 00

(a) Correct Highlighted Type

oulyGST:: lm->1111->lllf
base:: Jut
rate:: lllf
• :: lnt->IJJI- >lllf
JOO::Nuudt ,)
di\•::N11nd't1):::;> 't1·>'tz ->'tz

onlyGST base rate = base * (rate 100 1

(b) incorrect Highlighted Type

Figure 5.4: Highlighting by Type, With Declaration

•:: Num(t) :::; > t ->t->t
lmse:: t

di\•:: t-> 't->t
100::<
rate::t
onlyGST:: t -> t ->t

onlyGST base rate= base • (rate 'div' 100)

(a) Correct Highlighted Type

*::Num ('t ,):::;>t, ->t1->t1
base:: t,
dil•:: Num(tz):::;> 't l ->'tz ->'t1
JOO::Num(<,)
rate::(t z ->t1 -> t z)-> 't, -> 't1
on/yGST::((t z ->tz->tlJ-> 't) -> 't ,)-> 't, -> 1'1

(b) incorrect Highlighted Type

Figure 5.5: Highlighting by Type, Omitting Declaration

member types; tuples, the type of the first element; functions, the type of their
range; and polymorphic types, their instantiated type. The result of this colour­
ing system can be seen in Figures 5.4(a) and 5.4(b), as well as the instantiated
types for each lexical element. For the given example the attributed type error
stands out very clearly.

The highlight-by-type method requires more work than the highlight-by­
syntax method. The type for each lexical token must be instantiated. In the
above example, the types of OnlyGST, base, and rate are known from the
declaration. This information is used to unify the * operator to I nt->Int­
> Int. However, because of the error, the type of the di v operator differs be­
tween the correct and incorrect version. Even if the type declaration of on­
lyGST was omitted, the highlighting would be the same, even if the calculated
types were different (as shown in Figures 5.5(a) and 5.5(b)).

While the highlight by type method can show more errors, for expressions
with many differing types in them it can still generate overly colourful source
displays.

5.1.2 A Context-Sensitive Pointer

A pointing device can be used to retrieve information from an editing envi­
ronment; when the user desires to view type information about a particular
lexical token the user could just point at it and the information could then be
calculated and displayed. Figure 5.6 shows how it could be typically used in
a functional language environment. The pointer is over the di v token, which
becomes fully highlighted. The type of di v is displayed in a status area under

23

xxhugs l!!llil t3
Eile .Edit .S.earch Compile Display

HUGS J Files and Names] examl.hs

onlyGST : : Int -> Int -> Int
onlyGST base rate = base * (

inclGST : : Int -> Int -> Int
inclGST base rate = base + (onlyGST base rate)

17
\=,=;'~J:::::::::::::::::::::::::::::::::::::_,'FI,.....,:=~ ·

I div:: Integral a => a -> a -> a

Figure 5.6: Context Sensitive Pointing Device

the main file display and the arguments to div (because its type is a function)
are underlined.

The advantage of a pointer-style display is that only the lexical elements
under the pointer have to be checked, not the entire file, removing the neces­
sity of having to remember the type information for every part of the current
source. Another advantage of this method is that when a file is being changed,
the type information does not have to be continuously recalculated for the cur­
rently edited section of code. A disadvantage is that the information received
is very localized, and information about the overall structure of the code is not
displayed.

5.2 Explicit Type Errors

The display requirement for explicit type errors is a lot more detailed. A dis­
play should have the following requirements:

• the exact type of each expression and sub-expression should be shown,

• superfluous details should be able to be hidden,

• the system should be able to scale up, so that large and complex expres­
sions can be handled,

• the results of type unification should be available,

• and it should be easy to navigate through the display to get to the rele­
vant expression as necessary.

24

A commonly-used structure which has many of the required qualities is the
tree. A type explainer based around a tree has several advantages:

oil the type explainer can closely follow the syntax level of the expressions,
which is important as the type algorithm also follows it,

oil entire branches can be collapsed/ignored if they are correct or displayed
to the required level of detail,

• trees can scale well by breaking down large collections of information
into a more manageable hierarchy,

• and due to the common usage of trees, there are several available widget
sets that can handle them, hence they are easier to prototype.

For a more detailed type checking, every type application would have to be
traced through. No 'simplification', as for highlighting, would be done. The
tracing of expressions likes = (a+ b + c)/2 would have to be presented at its
more functional level, s = (/ (+ (+ a b) c) 2). The resulting binary tree for the
following Hues statement:

areaOfTrangle abc= s9rt(s*(s-a)*(s-b)*(s-c))
where s = (a+ b + c)/2

is shown in Figure 5.7. Each expansion of s has been shaded for clarity. This
syntax tree can be displayed as a browsable tree similar to the file and directory
browsers available in modern graphical shells.

Since it is not feasible to have the tree displayed in the source, the display
would occur in a separate window. This also allows room for additional infor­
mation to be displayed. An example of the type of display is shown in Figure
5.8, which has a window divided into three areas; a button bar, the browsable
tree, and an area for explanation. Figure 5.9 shows how someone would step
through the tree.

5.3 Required Type Information

To implement the type explainers discussed in this chapter, the type of each
sub-expression in an expression syntax tree needs to be inferred. Therefore the
type explainer of Beaven and Stansifer is more suited to this task than the type
explainer of Duggan and Bent.

25

Figure 5.7: Type Tree for areaOfTriangle

lt lyfiC t x plalncr !lmiEJ

BaJe o.OfTriangle
$-sqrt
8-s•(s-o}ls-b)-"(s-c)

Type Browser

Button Bar

Explanation
Area

Figure 5.8: Layout for Type Explainer

26

~ Type Explainer

l±lareaOfT ~ngle

it Type Explainer

GareaOfTriangle
$-sqrt
~s*(s-a)"(s-b)"(s-c)

$-*(s-q't._
l!t-s*(s-~(s-b)

~ Type Explainer

GareaOfTriangle
$-sqrt
i!t-s*(s-a)"(s-~·(s-c)

it Type Explainer

ElareaOfTriangle
$-sqrt
~s*(s-a)"(s-b)"(s-c)

$- * r* (s-c)

i!t- s­
s*(s-d~s-b)

Figure 5.9: Browsing through the Type Explainer

27

Chapter 6

Implementation

The prototype of the interface was partially implemented for the language
HUGS[8], chosen because it is an interpreted language having the following
advantages:

• the internal data structures of the type checker become available for in­
spection,

• the type checker is available and can be called during the program exe­
cution,

• the interpreter has some built-in type diagnostics (such as the :type
command) that are available during program execution,

• and HUGS, while being a fully featured implementation of Haskell, is
predominately used as a teaching language and thus is aimed at the level
of users that the interface is designed to help.

A discussion of the internals of the HUGS implementation works is given in
Appendix B.

6.1 Overview of the System

The main component of the system was a graphical shell, xxhugs. tel, writ­
ten in tcl/tk, using the tix package for additional widgets. The second compo­
nent was a modified version of the HUGS interpreter.

To start the system, the user would run the command:

xxhugs.tcl filename

where filename is the name of the HUGS source file. This will start the xxhugs
script. After displaying its own windows, the xxhugs script will start HUGS
with the supplied source file, with its input and output piped to and from
xxhugs. Output from HUGS is captured by xxhugs until the prompt is re­
ceived, then HUGS is blocked, waiting for input. As the user interacts with
xxhugs, commands will be sent to HUGS, and the command results are dis­
played by xxhugs. The execution flow is summarised in Figure 6.1.

28

xxhugs.tcl hugs

Loading
Building Windows

Shell

Loading
Compiling Given File

~nitialisation messages
/ Prompt

.----• .-I W-a-it-in_g_f_o_r _U_s_e_r _:;;_E_v_e-nt-,1

t
..,. __________ I Perform Event I

~o_m_m_an_d----------~
'

Running Command
Displaying Results

/ults
.----------'/:...__, ~ P;r;,ompt

I Translating Results I
t

I Display Results to User I

Figure 6.1: xxhugs Execution Flow

29

-!:! X

Ei le Edit :;earch ~omplle Qlsp lay

HUGS I Files and Names (constant.hs J

I Bug reports : hug~s-:b_u_g~s,@h:'"a~s.,_k_e:-'1 :-"l.~o~r-g-. ~-;:li:'"eb~: 7http :/ /www.haskell.org/hugs. .i

Reading file "/home/honours/bj...,SJ/hugs/install/share/hugs/1 ib/Prelude. hs":

iEg:~~~~~;~~~iys~~.::::::::: .:.: :::.: ::::: ::.:.: . ::::::: •::: ::::::::::::::::::
Hugs session for:
!;home/honours/bjv53/hugs/ insta 11/share/hugs/1 ib/Pl·e lude, hs
(Type :? for help

; Reading file "/home/honours/bjw53/hugs/constant .hs" :

:m:~~~~~~:~~~iy~~~::::: : ::::: : :::: : ::::: :: ::::: : : :: :: : :: : :::: :::: : :::::: : : ::: :
~Compi l ing , ,•.. •

).tugs session for:
!/home/honours/bj v53/hugs/ ins ta 11 /share/hugs/1 ib/Prelude. hs
!/home/honours/bjv53/hugs/ constant. hs
I
I J

I !> 6+ 4
iiO

I I

14 + v.ibble vmere v.ibble ·wobble where wobble- roo 3 X

(a) HUGS Interpreter Panel

-!:)X

I Ell e fdlt .Search ~ompll e Qlsplay

HUGS r Flies and Names 1 constanths I
Files

/homelhonourslbjw53/hugsllnsta1Vshare/hugsllib/Pre1ude.hs
1
fhome/honourslbjw53/hugs/constanths

f!

Names
J

rC"tJIIGb\C"'\-,U""1J"TC1-0 cyGlq.:ro '1Tl' -take (1000) 1216 drop (1005) 1222
splitAt(1010) 1228 takeWhlle (1018) 1234

dropWhile (1028) 1240 span (1038) 1246
break (1043) 1250 lines (1049) 1253
wcrds (1055) 1259 unllnes (1061) 1265
unwords (1069) 1268 reverse (1077) 1272
and (lOBS) 1275 or (1089) 1276 -
any(I092) 1279 all (1096) 1280
elern (1100) 1283 notEiem(1105) 1284

I · -~· .. ·- ,, ~ , -··- ,,,

(b) Files and Names Panel

Figure 6.2: The xxhugs Display

30

I

-0 X

file !;_dit J>earch ~omplle Qlsplay

HUGS j Files and Names I constant.hs

·ravourate, hated:: Char
------------------ --·-- !-'

'tavourate = '4 •
,hated = 'i'

isA :: Char -> Bool
is A x = x == 'a'

crop :: Char -> Char -> Bool
;cmp x y = x < y

ddent x = x

~foo :: Int -> Int
foo x = x + bar

where bar "" x + 5

!multlength x y = (bar x) * (bar y)
· where bar z .. length z

L
(c) Source Panel

Figure 6.2: (cont) The xxhugs Display

Figure 6.2 shows the display of xxhugs. It consists of a single window
which contains various panels selected by clicking on the tab-like buttons along
the top, below the menus.

The main display for the HUGS interpreter is shown in a panel (Figure
6.2(a)), with a text-input box below it. The user can enter commands to the
HUGS interpreter in the bottom text entry box. This will send it to the in­
terpreter which processes the command. The command is printed, with the
results, in the scrollable text-output box in the centre of the panel.

Other panels would be used to display the source files (Figure 6.2(c)). The
files are opened by xxhugs and displayed to the user in a large scrollable text
area. These files can be edited and various menu commands would be able to
rerun the HUGS interpreter with the new versions of the files. Each file would
be displayed in its own panel, as the prototype can make and remove panels
dynamically.

6.2 Extracting Information for HUGS

The HUGS interpreter has several built-in commands related to its internal
state, the most important of which is the : type command. An example of
its use is shown in Figure 6.3 (with the user's input in bold text). Note that
HUGS has a concept of type classes, which is a method of grouping similar data
types that share a desired property. Num is a type class, whereas Int and Real
are types which are members of the Num class. HUGS uses the lower case letters
for type variables. The type of Num a => a means that a is any type that is a
member of the Num type class.

31

Prelude> :type (+)

(+) :: Num a=> a-> a-> a
Prelude> :type 4 + 7
4 + 7 :: Num a=> a
Prelude> :type until
until :: (a -> Bool) -> (a -> a) -> a -> a

Figure 6.3: Hues Session

Prelude> :type three + 4 where three = 3
let { ... } in three+ 3 :: Num a=> a

(a) With DEBUG_CODE Undefined

Prelude> :type three + 4 where three = 3
\d1455 -> let {three($0 (0 (fromlnt d1455
3)) $0) $0$0}in (#Od1455+three)
(fromlnt (#0 (#0 d1455)) 4) : : Num a => a

(b) With DEBUG_CODE Defined

Figure 6.4: Types of Let Expressions

Other commands were added to Hues to extract information for the proto­
type. For example, the commands : bjw_files and : bjw_names displayed
the internals of the scriptName and tabName structures. This produced the
required information that was shown in the "Files and Names Panel" shown
in Figure 6.2(b).

In order to implement the error explainers, the system needs to extract the
information required from each sub-expression. The built-in : type command
can extract this information. Furthermore, if Hues is compiled with the DE­

BUG_CODE hash-defined to 1, then additional information will be defined. The
resulting difference between the output of : type is shown in Figure 6.4.

The main problem with using the just :type command is that it only works
when a source file has been compiled successfully. If the file fails to compile
then all the declarations in the source file are forgotten, even the correctly typed
ones. Consequently, the system ,if left unchanged, could only explain type
definitions that are correct, and not why type inference failed, thus failing to
fulfil one of the main purposes of the project.

The internal type information is stored in Hues in large arrays (as dis­
cussed in Appendix B) as it is being compiled. When an error is detected,
the links into these arrays are not updated, hence causing the data to be 'for­
gotten', however the data in the arrays are not overwritten. Extracting this
'unsaved' information for the type explainer was the first step. The : type
command checked that the information stored was valid (which it was not, as
it was 'forgotten'), but it also parses its argument, a process that could over­
write the required, but forgotten, table entries. This was further complicated
by the garbage collector of Hues that could completely rearrange the contents
of the array storing the pairs.

This problem is solved by forcing Hues not to forget the file information,
by making it pretend that the source file has compiled correctly. However, do-

32

foo : : Int -> Int
foo x = x + bar

where bar = x + 5

(a) Source of file

Tracing foo
3170 is a name 945

tabName[945] .type -79694
tabName[945].defn = 0
tabName[945].code = 21118

-79694 is a pair (-79693,1438)
-79693 is a pair (1426,1438)
1426 is typecon 1

typecon[1] .kind = -13
typecon[1].what = 130
typecon[1] .defn = 0
typecon [1]. text = 228 " (->)"

1438 is typecon 13
typecon[13] .kind = 102
typecon[13] .what 130
typecon[13] .defn = 0
typecon [13). text = 1900 "Int"

1438 is typecon 13
typecon[13] .kind = 102
typecon[13] .what = 130
typecon[13].defn = 0
typecon [13) . text ::::: 1900 n Int n

(b) Output from trace

Figure 6.5: Tracing foo

ing this introduced inconsistencies into HUGS causing it to become unreliable.
The compiler also immediately discards the temporary information gener­

ated when it is compiling sub-expressions. This information would normally
no longer be required once compilation was successful, but it is important for
a type explainer. This information is primarily stored in the arrays for pairs,
which are only de-allocated by the garbage collector. Disabling the garbage
collector will, therefore, stop this information from being overwritten. This is
not an ideal solution as large files will cause the entire Hues interpreter to run
out of memory. However, increasing the number of pairs initially allocated is
a simple if inefficient solution. Since the internal 32-bit cell value indexed
pairs by a negative integer, this causes no problem with pair addressing.

While some routines were able to extract information about global variables
(Figure 6.5 shows the result of the : bjw_trace command tracing the type of
the foo identifier), a system-wide type examiner was not completed. Types of
sub-expressions within let style expressions, as expected, are the most difficult
to extract. Due to this difficulty, the prototype type explainers were never fully
implemented. We believe that this still can be done, with some rewriting of the
HUGS internals and further work in the implementation.

33

Chapter 7

Conclusions

As discussed in Chapter 4, what a compiler considers to be a type error can
differ from a user's perspective, particularly if the user is a novice. General
editing mistakes can produce errors that will not be detected until the type
checking stage. We divide type errors into two categories. Attributed type er­
rors are errors detected by the type checker but are due to editing and other
kinds of mistakes. Explicit type errors are errors where the user has genuinely
made a mistake in the type inference of their expressions. The error reporting
mechanism of the compiler should display only the relevant information to the
user. However the compiler is not capable of differentiating between the two
different categories of type error. Therefore different non-conflicting methods
for displaying each category should be available to the user in the editing en­
vironment.

Often for attributed type errors the most important aspect of the error is its
location. Unfortunately, due to the nature of the type inference and unification
algorithms, the source of the error can be different from where its symptoms
are first detected. Consequently a method for displaying information about
the entire file may be necessary for the error to be traced. Chapter 5 illustrated
how this can be done through source highlighting, either by syntax or type.

For explicit type errors, a more detailed break-down of how the types have
been inferred is necessary. We show how a tree-browsing interface is more
suited for exploring the types of expressions. This would have to be done in a
separate display window to the source code, and would need to display to the
unification results.

Both of the proposed displays, for attributes and explicit error, require the
types of all sub-expressions to be inferred. Consequently, we conclude that
a type-explainer which follows the syntax tree is needed to provided all the
required information. We present such a system by Beaven and Stansifer.

A partial implementation of a type debugger for the language Hues was
presented and some of the problems with extracting the required information
was discussed. Information about global identifiers is particular easy to ex­
tract, while information about internal statements, such as the inner let state­
ments, are difficult to obtain as the information generated is thrown away im­
mediately afterwards. We believe that such debuggers are still possible, but re­
quire significant changes to existing parser and type checking sections of code.

34

Appendix A

Lambda Calculus

Lambda calculus forms the theoretical basis of functional programming.

A.l Lambda Expressions

Lambda calculus is a system designed to manipulate lambda expressions[13].
While lambda expressions are simple in content, they are extremely power­
ful in application and form the building blocks of functional languages. Two
concepts which make this true are abstraction and beta reduction.

Abstraction allows common functions to be generalized into more powerful
forms. For example, when we want to square the number 4 we would use the
equation 4 x 4. To square the number 6 we use the equation 6 x 6. As the format
to square a number is a general form we abstract the number by giving it a
name. This name can then be applied instead, as shown in the Hues function
below.

square x = x * x

In a pseudo-lambda calculus form this is as follows:

>.x.(square x)

In the function format the formal name is between the >. and the period, while
to the right of the period is the actual expression. Note that in the expression
square is an abbreviation for the squaring function, the definition of which lies
beyond the scope of this document.

A formal definition of a lambda expression follows:

<expression> ::= <name> I <function> I <application>

<function> ::= >.<name> . <body>

<body> ::= <expression>

<application> ::= (<function expression> <argument expression>)

<function expression> ::= <expression>

<argument expression> ::= <expression>

Note that a name can be any sequence of non-blank characters.

35

A.2 Beta Reduction

While abstraction is a technique used by all styles of programming, beta reduc­
tion provides the foundations for functional languages. Beta reduction is the
formal name for the replacement of an application with an expression. This
can be done using the notation:

(<function> <argument>) => <expression>

In lambda expressions the application is used to determine how the reduc­
tion is performed. In the lambda expression:

()..g.g) X

the function expression is >.g.g (which is also known as the identity function)
while the argument expression is x. To reduce this, the bound variable in the
function expression (which is g) is replaced with x. The steps are listed below:

(>.g.g x) =>

X

Consider, however, another lambda expression:

>.j.>.a.f a

This is also known as the apply function, which will apply an argument to
a function resulting in a single expression. Below is an example of it in action,
where it is used to resolve the identity function with the argument g.

(>.j.>.a.(f a) g) >.x.x =>

(>.a.(>.x.x) a) g =>

(>.x.x) g =>

g

While these examples are very simple they do demonstrate the basic defi­
nition of lambda expressions.

36

Appendix B

The Internals of the HUGS

Interpreter

B.l Overview

This appendix describes the internals of the June 1998 version of HUGS, an
interpreted version of Haskell with an emphases on type checking. HUGS is
written in C but, unlike most C programs, some of the . c files include other
. c files. Figure B.1 is a diagram showing which .c files include others.

Only two of the files are relevant to this discussion: storage. c, which
is where the data is actually stored, and type. c, which has the type checker
built into it.

B.2 Basic Data Storage

Internally, all data is represented by an atomic unit, called the Cell, which is
represented by a signed 32 bit integer. Table B.1 shows the correlation between
the Cell's integer value and the data type it represents. For example the charac­
ter 'a' is 12,102 (CHARMIN+97), while the integer value zero has a Cell value
of 1,073,751,453.

Negative Cell values refer to pairs, which the interpreter uses as the basic
building block for storing its internal trees and lists. The values are stored in
two large arrays of cells, typically 100,000 entries long. The values are refer­
enced from the top of each array, the first from heapTopFst and the second
from heapTopSnd, through the fst() and snd() macros respectively.

An example of how values are stored is shown below. The following HUGS
code is compiled from a file called constant . hs.

favourite, hated :: Char
favourite = '4' hated = 'i'

The favourite constant becomes internally represented by the Cell value of
3165 and the hated constant by 3166. These Cell values are used as offsets (once
NAMEMIN is subtracted) into an array which contains all the name informa­
tion. The tabName[] structure gives the following information:

37

HUGS

-[
machdep.c

hugs.c
timer.c

storage.c

input.c ---parser.c

static.c ---scc.c

---E
subst.c

type.c kind.c

preds.c

compiler.c

plugin.c

builtin.c

machine.c
output.c

array.c

bignums.c

printer.c

iomonad.c

intems.c

stmonad.c

Figure B.1: HUGS Source File Tree

Starting Value Range Size
Negatives < 0
1 200
TUPMIN 200 NUM_TUPLES 100
OFFMIN 300 NUMDFF 1024
MODMIN 1325 NUM.MODULE 100
TYCMIN 1425 NUM_TYPCON 800
NAMEMIN 2225 NUM.NAME 16000
SELMIN 18225 NUM..SELECTS 100
INSTMIN 18325 NUM_.INSTS 600
CLASSMIN 18925 NUM_CLASS 80
CHARMIN 19005 NUM_CHARS 256
INTMIN 19261 >= INT.MIN

(INTMIN + MAXPOSINT) /2

General
Pointers to pairs
Special values
Tuples
Generic types I stack offsets
Modules
Type constructor names

Dictionary selectors
Instances
Class
The characters
The integers
INTZERO

Table B.1: The Basic Cell Ranges

38

tabName[3165-NAMEMIN) .text
tabName[3165-NAMEMIN) .line
tabName[3165-NAMEMIN) .mod
tabName[3165-NAMEMIN) .parent
tabName[3165-NAMEMIN) .arity
tabName[3165-NAMEMIN) .number
tabName[3165-NAMEMIN) .type
tabName[3165-NAMEMIN) .defn
tabName[3165-NAMEMIN) .code
tabName[3165-NAMEMIN) .primDef
tabName[3165-NAMEMIN) .nextNameHash

5620
3
1326
0
0
0
1433
0 --> 19057
21084
0
0

The . text field is the offset into the text array where all textual items are
stored. The .line and . mod fields are references to the module and the line
number where the name is defined. The . type field is set to the Cell value
which represents the Char type. The code field points to the section of code
which will evaluate the expression. The first time it is evaluated, the . defn
field is changed to 19,057, which is the Cell representation of the character '4'.

B.3 Type Representation

Types are represented internally by the command Cell within the range from
TYCMIN (1425) to TYCMIN + NUM_TYPCON- 1 (2224). The Cell value (mi­
nus TYCMIN) is used as an offset into an array which contains the type infor­
mation. The entry for characters looks like this:

tabTycon[1433-TYCMIN) .text 1888
tabTycon[1433-TYCMIN) .line 456
tabTycon[1433-TYCMIN) .mod 1325
tabTycon[1433-TYCMIN) .arity 0
tabTycon[1433-TYCMIN) .kind 102
tabTycon[1433-TYCMIN) .what 130
tabTycon[1433-TYCMIN) .defn 0
tabTycon[1433-TYCMIN) .nextTyconHash 0

The . kind and . what combination specifies that it is a basic type con­
struction that was declared in . mod 1325 which is the 'prelude.hs' library file
defined at line 456. Note that kind is usually set to the value 102, which repre­
sents the basic types.

Classes are stored by a similar method. The Cell value (minus CLASSMIN)
is used as an offset to the tabClass array which contains the class details. For
example, the 'Num' class is defined as follows:

tabClass[18928-CLASSMIN) .text
tabClass[18928-CLASSMIN) .line
tabClass[l8928-CLASSMIN) .mod
tabClass[18928-CLASSMIN) .level
tabClass[18928-CLASSMIN) .sig
tabClass[18928-CLASSMIN) .supers
tabClass[18928-CLASSMIN) .numSupers

39

154
152
1325
2
102
-1356
3

tabClass[18928-CLASSMIN] .members
tabClass[18928-CLASSMIN] .numMembers
tabClass[18928-CLASSMIN] .defaults
tabClass[18928-CLASSMIN] .instances

-17706
8
-17722

== -18437

The Cell pairs from the . super field form a linked list showing the classes
('Eval', 'Show', and 'Eq'). The linked list from the .members field shows a
linked list of the names('+','-','*', 'negate', 'abs', 'signum', 'frominteger', and
'fromint').

&text[154] == "Num"

heapTopFst[-1356] 18943 heapTopSnd[-1356] -1352
heapTopFst[-1352] 18938 heapTopSnd[-1352] -1351
heapTopFst[-1351] 18925 heapTopSnd[-1351] 0

heapTopFst[-17706] 2418 heapTopSnd[-17706] -17708
heapTopFst[-17708] 2419 heapTopSnd[-17708] -17710
heapTopFst[-17710] 2420 heapTopSnd[-17710] -17711
heapTopFst[-17711] 2255 heapTopSnd[-17711] -17713
heapTopFst[-17713] - 2421 heapTopSnd[-17713] -17715
heapTopFst[-17715] 2422 heapTopSnd[-17715] -17717
heapTopFst[-17717] 2423 heapTopSnd[-17717] -17719
heapTopFst[-17719] 2424 heapTopSnd[-17719] 0

B.4 Resolving Types of Expression

When HUGS is given an expression it is broken into a binary tree and stored in
the Cell pairs. Before it is evaluated, its type is determined.

If the following example is entered:

if True then 'r' else 't'

the entire expression is represented by a single Cell-78654. The Cell pairs
look like this:

heapTopFst[-78654]
heapTopFst[-78653]
heapTopFst[-78652]

21 heapTopSnd[-78654]
2317 heapTopSnd[-78653]
19119 heapTopSnd[-78652]

-78653
-78652
19121

The value 21 is the reserved value code for conditionals. 2317 is the name
'True' which has a type of Bool. 19119 and 19121 are the respective Char val­
ues 'r' and 't'. In the above expression all types can be identified simply by
checking the range of the Cell values.

When this code is type checked, the following code is run:

#define check(l,e,in,where,t,o) \
e==typeExpr(l,e);shouldBe(l,e,in,where,to,o)

Int beta== newTyvars(1);

40

check(l, fst3(snd(e)), e, cond, typeBool, O)i
check(l, snd3(snd(e)), e, cond, var, beta)i
check(l, thd3(snd(e)), e, cond, var, beta)i
tyvarType (beta) i

The first line of the code, after 'define', creates a new type variable and
assigns its offset to beta. The next line then gets the conditional text expression
(in this case 'True'), determines its type and then attempts to unify the type to
Bool using the should Be() function. The third line gets the then-expression and
attempts to unify its type (unifying it to the new initialised type variable will
always work). The fourth line then gets the else-expression and attempts to
unify it to the type given by the then-expression. The last line then sets the
resulting type into various global variables.

The heart of the unification is in the unify() function from subst. c, which
the ShouldBe() macro calls. The unify sorts through various Tyvar structures
that it allocates as required, checking each one for the least binding value.

B.5 Type Checking A Simple Application

Another example of the type unification at work would be the following code,
which is an example of an application.

isA : : Char -> Bool
isA X = X == 'a'

When this is compiled the name 'isA' becomes represented by the Cell value
of 3167. In the name structure the . ari ty field is set to 1, as it has one argu­
ment. Its . type field is set to -70533. Examination of these Cell pairs shows
the following:

heapTopFst[-79533]
heapTopFst[-79532]

-79532 heapTopSnd[-79533]
1426 heapTopSnd[-79532]

1432
1433

The Cell values 1426,1432, and 1433 are all offsets to type constructs which
refer to' (->) ', Bool, and Char. Thus the type checker knows that isA has the
type 'Bool ->Char'.

When asked to evaluate isA 'r' the debugging output looks like this.

17) to check: isA 'r'
new type variable: 0
new type variable: _1
new type variable: _2
binding type variable
18) to check: isA

:

:

:

:

0

18) result: Char -> Bool

: *
: *

*
to 1 -> _2

tt unifying types: Char->Bool with 1->_2
vt binding type variable: _2 to Bool
vt binding type variable: _1 to Char
19) to check: 'r'
19) result: Char

41

tt unifying types: Char with Char
17) result: Bool
tt unifying types: IO () with Bool
False

Unify()' s first step allocates three blank structures to store type constructor
information that will be generated by the expression. One constructor is used
to store the resulting type of the expression, while the other two are used to
form the (type)->(type) that is directly implied from the two inputs. It then
binds the _Q result value to the other two.

The type check then determines what the isA type is, which it then binds
to the constructors. Note that when .2 is bound with Bool so is _Q, due to the
first binding. It then determines the type of 'r' which is bound trivially, then
the expression is evaluated, and the result is bound to IO () which prints it.

In the binding notes above, the t's refer to constant types while the v's refer
to variable types, so vt binding type variable: _1 to Char means
that the type variable _1 is being bound to the constant type Char.

B.6 Another Example

Consider the identity function ident x = x. When examining the internals
of the name structure we get a more complicated pair list.

ident = 3169

tabName[3169-TYCONMIN] .type = -79624

heapTopFst[-79624] 50 heapTopSnd[-79624] -79623
heapTopFst[-79623] -79622 heapTopSnd[-79623] -79618
heapTopFst[-79622] 102 heapTopSnd[-79622] 102

heapTopFst[-79618] -79617 heapTopSnd[-79618] 301
heapTopFst[-79617] 1426 heapTopSnd[-79617] 301

The value 50 is a special value reserved for POLYTYPE. The second value of
the first pair refers to a pair which contains its kind and type. The kind of both
is set to 102, which is a special value meaning that the kind is a normal type.
The type values map to 301, 1426, and 301. Note that 1426 is the' (->)'type
constructor. 301 are cells that are offsets. An offsets is a special kind of type
constructor variable which is a pointer to the stack of the machine when it is
running. It allows HUGS to refer to types in its stack while reducing the need to
keep allocating type constructors for some of its immediate values. Obviously
the identity function returns the same type as its argument.

When this command is evaluated with the command ident 't' the fol­
lowing output is produced:

18) to check: ident 't'
new type variable: 0 *
new type variable: 1 * ...
new type variable: 2 * ...

42

binding type variable 0 to 1 -> 2
19) to check: ident
new type variable: _3 · · · *
tt unifying types: _3-> _3 with 1 -> _2
vt binding type variable: 3 to _2
vt binding type variable: 2 to _1
20) to check: 't'
20) result: Char
vt binding type variable: 1 to Char
18) result: Char
tt unifying types: IO () with Char
't'

The function starts off as before, allocating three type constructors and
binding them. However, as the type of iden t is polymorphic, it creates an
extra type constructor which is bound to the other variables. When the type
of 't' is determined it is bound directly to _1. When ident is run on other
constants of differing types the debugging output is the same.

43

Bibliography

[1] Mike Beaven and Ryan Stansifer. Explaining type errors in polymorphic
languages. ACM Letters on Programming Languages and Systems, 2(1):17-30,
March 1993.

[2] Luca Cardelli. Basic polymorphic type checking. Science of Computer Pro­
gramming, 8(2):147-172, April1987.

[3] Guy Cousineau and Michel Mauny. A Functional Approach to Programming.
Cambridge University Press, 1998.

[4] Dominic Duggan. SML/E: A type explanation facility for standard
ML.http://guinness.cs.stevens-tech.edu/-dduggan/smle/,
26th January 1999.

[5] Dominic Duggan and Frederick Bent. Explaining type inference. Science
of Computer Programming, 27:37-83, 1996.

[6] Anthony J Field and Peter G Harrison. Functional Programming. Interna­
tional Computer Science Series. Addison-Wesley, 1989.

[7] R Hindley. The principle type-scheme of an object in combinatory logic.
Transactions of the American Mathematics Society, 146:29-60, 1969.

[8] M Jones. An Introduction to Hugs vlO.Ol. University of Nottingham, 1994.

[9] J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation.
Artificial Intelligence. Springer-Verlag, second edition, 1987.

[10] Zohar Manna and Richard Waldinger. The Logical Basis for Computer Pro­
gramming, volume 2. Deductive Systems. Addison Wesley, 1990.

[11] Bruce J McAdam. On the unification of substitutions in type inference.
Lecture Notes in Computer Science 1595, Implementation of Functional Lan­
guages, IFL'98:137-152, 1998.

[12] Bruce J McAdam. On the unification of substitutions in type inference.
Technical Report ECS-LFCS-98-384, Laboratory for Foundations of Com­
puter Science, The University of Edinburgh, UK, March 1998.

[13] Greg Michaelson. An Introduction to Functional Programming through
Lambda Calculus. International Computer Science Series. Addison-Wesley,
1989.

44

[14] Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348-375, 1978.

[15] Chris Reade. Elements of Functional Languages. Addison Wesley, 1989.

[16] J. A. Robinson. A machine-orientated logic based on the resolution prin­
ciple. Journal or the, 12:23-49, 1965.

45

	Abstract
	Contents
	1. Introduction
	2. The Milner Type Inference Algorithm
	2.1 Robinson's Unification Algorithm
	2.2 Cardelli Type Inference System
	2.3 Milner's W Algorithm

	3. Previous Work
	3.1 McAdam's Unification of Substitutions
	3.2 Beaven and Stansifer's Type Explainer
	3.3 Duggan and Bent's Type Explainer

	4. The User's Perspective
	4.1 Attributed and Explicit Type Errors
	4.2 Explaining Each Category

	5. Displaying the Error
	5.1 Attributed Type Errors
	5.2 Explicit Type Errors
	5.3 Required Type Information

	6. Implementation
	6.1 Overview of the System
	6.2 Extracting Information for HUGS

	Conclusions
	Appendices
	Appendix A
	Appendix B

	Bibliography

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -6.66, -3.81 Width 63.74 Height 848.58 points
 Mask co-ordinates: Horizontal, vertical offset 542.26, -3.81 Width 63.74 Height 848.58 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 -6.6593 -3.8102 63.739 848.5842 542.2567 -3.8102 63.7389 848.5842

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 50
 49
 50

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -10.46, 566.03 Width 610.75 Height -367.21 points
 Mask co-ordinates: Horizontal, vertical offset 548.92, 840.02 Width 66.59 Height -843.83 points
 Mask co-ordinates: Horizontal, vertical offset -27.59, 840.02 Width 86.57 Height -841.92 points
 Mask co-ordinates: Horizontal, vertical offset -12.37, 845.73 Width 621.22 Height -101.79 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -10.4646 566.035 610.7523 -367.2124 548.916 840.0173 66.5929 -843.8276 -27.5885 840.0173 86.5708 -841.9249 -12.3673 845.7253 621.2169 -101.7921

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 49
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 524.18, 840.02 Width 92.28 Height -843.83 points
 Mask co-ordinates: Horizontal, vertical offset 1.90, 371.96 Width 644.05 Height -375.77 points
 Mask co-ordinates: Horizontal, vertical offset -7.61, 839.07 Width 553.67 Height -265.42 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 524.1815 840.0173 92.2788 -843.8276 1.9026 371.9642 644.0488 -375.7744 -7.6106 839.066 553.6726 -265.4204

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 1
 49
 1
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -8.56, 841.92 Width 87.52 Height -845.73 points
 Mask co-ordinates: Horizontal, vertical offset 71.35, 841.92 Width 534.65 Height -182.65 points
 Mask co-ordinates: Horizontal, vertical offset 466.15, 716.34 Width 130.33 Height -714.45 points
 Mask co-ordinates: Horizontal, vertical offset 60.88, 86.57 Width 507.06 Height -90.38 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -8.562 841.92 87.5221 -845.7302 71.3496 841.92 534.6461 -182.6549 466.1505 716.3447 130.3318 -714.447 60.885 86.5659 507.0576 -90.3762

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 2
 49
 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -18.08, 840.97 Width 146.50 Height -844.78 points
 Mask co-ordinates: Horizontal, vertical offset 513.72, 842.87 Width 92.28 Height -846.68 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -18.0752 840.9687 146.5044 -844.7789 513.7169 842.8713 92.2788 -846.6815

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 3
 49
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 81.81, 839.07 Width 503.25 Height -100.84 points
 Mask co-ordinates: Horizontal, vertical offset 57.08, 691.61 Width 501.35 Height -572.70 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 81.8142 839.066 503.2523 -100.8407 57.0797 691.6102 501.3496 -572.6992

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 3
 49
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 493.74, 845.73 Width 106.55 Height -841.92 points
 Mask co-ordinates: Horizontal, vertical offset -4.76, 841.92 Width 545.11 Height -177.90 points
 Mask co-ordinates: Horizontal, vertical offset 8.56, 74.20 Width 565.09 Height -78.01 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 493.739 845.7253 106.5487 -841.9249 -4.7566 841.92 545.1107 -177.8983 8.562 74.1987 565.0886 -78.0089

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 4
 49
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 62.79, 472.80 Width 545.11 Height -348.19 points
 Mask co-ordinates: Horizontal, vertical offset 234.03, 488.03 Width 385.29 Height -79.91 points
 Mask co-ordinates: Horizontal, vertical offset -1.90, 840.97 Width 606.00 Height -103.69 points
 Mask co-ordinates: Horizontal, vertical offset 534.65, 760.11 Width 84.67 Height -763.92 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 62.7876 472.8049 545.1107 -348.1859 234.0266 488.0261 385.2877 -79.9115 -1.9026 840.9687 605.9957 -103.6947 534.6461 760.1058 84.6682 -763.916

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 5
 49
 5
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 517.52, 844.77 Width 113.21 Height -848.58 points
 Mask co-ordinates: Horizontal, vertical offset -11.42, 845.73 Width 562.23 Height -177.90 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 517.5222 844.774 113.2079 -848.5842 -11.4159 845.7253 562.2346 -177.8983

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 6
 49
 6
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -13.32, 842.87 Width 106.55 Height -844.78 points
 Mask co-ordinates: Horizontal, vertical offset 513.72, 845.73 Width 94.18 Height -839.07 points
 Mask co-ordinates: Horizontal, vertical offset 49.47, 89.42 Width 602.19 Height -93.23 points
 Mask co-ordinates: Horizontal, vertical offset 80.86, 845.73 Width 471.86 Height -91.33 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -13.3186 842.8713 106.5487 -844.7789 513.7169 845.7253 94.1815 -839.0709 49.469 89.4199 602.1903 -93.2301 80.8629 845.7253 471.8585 -91.3275

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 7
 49
 7
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 539.40, 844.77 Width 64.69 Height -848.58 points
 Mask co-ordinates: Horizontal, vertical offset -2.85, 845.73 Width 576.50 Height -84.67 points
 Mask co-ordinates: Horizontal, vertical offset 7.61, 42.80 Width 584.12 Height -46.62 points
 Mask co-ordinates: Horizontal, vertical offset -18.08, 777.23 Width 63.74 Height -775.33 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 539.4027 844.774 64.6903 -848.5842 -2.854 845.7253 576.5045 -84.6682 7.6106 42.8048 584.1151 -46.6151 -18.0752 777.2297 63.739 -775.3319

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 8
 49
 8
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 540.35, 840.97 Width 87.52 Height -844.78 points
 Mask co-ordinates: Horizontal, vertical offset -7.61, 843.82 Width 568.89 Height -72.30 points
 Mask co-ordinates: Horizontal, vertical offset -42.81, 776.28 Width 105.60 Height -777.23 points
 Mask co-ordinates: Horizontal, vertical offset 36.15, 61.83 Width 529.89 Height -65.64 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 540.3541 840.9687 87.5222 -844.7789 -7.6106 843.8226 568.8939 -72.3009 -42.8097 776.2784 105.5974 -777.2346 36.1505 61.8314 529.8895 -65.6416

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 9
 49
 9
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -16.17, 840.02 Width 91.33 Height -842.88 points
 Mask co-ordinates: Horizontal, vertical offset 488.03, 845.73 Width 114.16 Height -842.88 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -16.1726 840.0173 91.3275 -842.8762 488.031 845.7253 114.1593 -842.8762

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 10
 49
 10
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 518.47, 845.73 Width 87.52 Height -843.83 points
 Mask co-ordinates: Horizontal, vertical offset -22.83, 840.02 Width 605.04 Height -101.79 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 518.4735 845.7253 87.5222 -843.8275 -22.8319 840.0173 605.0443 -101.7921

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 11
 49
 11
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 485.18, 845.73 Width 163.63 Height -849.54 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 485.1771 845.7253 163.6284 -849.5355

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 12
 49
 12
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 526.08, 845.73 Width 99.89 Height -848.58 points
 Mask co-ordinates: Horizontal, vertical offset -21.88, 840.02 Width 92.28 Height -843.83 points
 Mask co-ordinates: Horizontal, vertical offset 0.00, 844.77 Width 585.07 Height -69.45 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 526.0842 845.7253 99.8893 -848.5842 -21.8805 840.0173 92.2788 -843.8276 0 844.774 585.0665 -69.4469

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 13
 49
 13
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 485.18, 845.73 Width 119.87 Height -840.97 points
 Mask co-ordinates: Horizontal, vertical offset -12.37, 832.41 Width 554.62 Height -165.53 points
 Mask co-ordinates: Horizontal, vertical offset -5.71, 74.20 Width 616.46 Height -78.01 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 485.1771 845.7253 119.8672 -840.9736 -12.3673 832.4067 554.624 -165.531 -5.708 74.1987 616.4603 -78.0089

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 14
 49
 14
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 528.94, 845.73 Width 90.38 Height -837.17 points
 Mask co-ordinates: Horizontal, vertical offset -16.17, 845.73 Width 558.43 Height -104.65 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 528.9381 845.7253 90.3762 -837.1682 -16.1726 845.7253 558.4293 -104.646

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 15
 49
 15
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 513.72, 845.73 Width 89.42 Height -847.63 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 513.7169 845.7253 89.4248 -847.6329

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 16
 49
 16
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 512.77, 845.73 Width 78.01 Height -843.83 points
 Mask co-ordinates: Horizontal, vertical offset -1.90, 840.02 Width 98.94 Height -842.88 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 512.7656 845.7253 78.0089 -843.8275 -1.9026 840.0173 98.9381 -842.8762

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 17
 49
 17
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 494.69, 845.73 Width 101.79 Height -844.78 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 494.6903 845.7253 101.792 -844.7789

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 18
 49
 18
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -22.83, 840.02 Width 631.68 Height -270.18 points
 Mask co-ordinates: Horizontal, vertical offset 512.77, 598.38 Width 111.31 Height -602.19 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -22.8319 840.0173 631.6815 -270.177 512.7656 598.3801 111.3053 -602.1904

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 19
 49
 19
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -15.22, 842.87 Width 625.97 Height -144.60 points
 Mask co-ordinates: Horizontal, vertical offset 479.47, 794.35 Width 129.38 Height -791.50 points
 Mask co-ordinates: Horizontal, vertical offset -47.57, 724.91 Width 130.33 Height -726.81 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -15.2212 842.8713 625.9736 -144.6018 479.4691 794.3536 129.3805 -791.5045 -47.5664 724.9067 130.3319 -726.8143

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 20
 49
 20
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -14.27, 842.87 Width 85.62 Height -846.68 points
 Mask co-ordinates: Horizontal, vertical offset 527.99, 845.73 Width 79.91 Height -847.63 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -14.2699 842.8713 85.6195 -846.6815 527.9868 845.7253 79.9115 -847.6329

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 21
 49
 21
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 480.42, 845.73 Width 140.80 Height -842.88 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 480.4204 845.7253 140.7965 -842.8762

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 48
 49
 48
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 19.84 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 19.8425
 0.0000

 Both
 CurrentPage

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 49
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 5.6693
 0.0000

 Both
 CurrentPage

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 1
 49
 1
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page, only if odd numbered
 Trim: none
 Shift: move right by 21.26 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 21.2598
 0.0000

 Odd
 CurrentPage

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 4
 49
 4
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page, only if odd numbered
 Trim: none
 Shift: move right by 14.17 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 14.1732
 0.0000

 Odd
 3
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 49
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page, only if odd numbered
 Trim: none
 Shift: move right by 28.35 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 28.3465
 0.0000

 Odd
 3
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 2
 49
 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move left by 14.17 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Left
 14.1732
 0.0000

 Both
 3
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 3
 49
 3
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 14.17 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 14.1732
 0.0000

 Both
 3
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 6
 49
 6
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 5.6693
 0.0000

 Both
 3
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 6
 49
 6
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 2.83 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 2.8346
 0.0000

 Both
 3
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 6
 49
 6
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 14.17 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 14.1732
 0.0000

 Both
 3
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 8
 49
 8
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 5.6693
 0.0000

 Both
 3
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 8
 49
 8
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 19.84 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 19.8425
 0.0000

 Both
 3
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 10
 49
 10
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 2.83 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 2.8346
 0.0000

 Both
 3
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 10
 49
 10
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 13 to page 56; only odd numbered pages
 Trim: none
 Shift: move right by 22.68 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 22.6772
 0.0000

 Odd
 13
 SubDoc
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 12
 49
 48
 19

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 5.6693
 0.0000

 Both
 13
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 22
 49
 22
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 14.17 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 14.1732
 0.0000

 Both
 13
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 24
 49
 24
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 5.6693
 0.0000

 Both
 13
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 26
 49
 26
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 5.6693
 0.0000

 Both
 13
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 28
 49
 28
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 5.6693
 0.0000

 Both
 13
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 34
 49
 34
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 5.6693
 0.0000

 Both
 13
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 36
 49
 36
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 5.6693
 0.0000

 Both
 13
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 38
 49
 38
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 5.6693
 0.0000

 Both
 13
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 40
 49
 40
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 5.6693
 0.0000

 Both
 13
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 44
 49
 44
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 5.6693
 0.0000

 Both
 13
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 46
 49
 46
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1113
 186
 Fixed
 Right
 5.6693
 0.0000

 Both
 13
 CurrentPage
 56

 CurrentAVDoc

 None
 2.8346
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 48
 49
 48
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 143.55, 788.57 Width 49.47 Height -32.01 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 140

 CurrentAVDoc

 143.5534 788.5724 49.4677 -32.0085

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 34
 49
 34
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 160.04, 765.29 Width 75.66 Height -27.16 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 140

 CurrentAVDoc

 160.0426 765.2935 75.6565 -27.1588

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 27
 49
 27
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 516.02, 550.93 Width 60.14 Height 153.25 points
 Origin: bottom left

 1
 0
 BL

 Both
 2
 CurrentPage
 140

 CurrentAVDoc

 516.0162 550.9334 60.1373 153.2529

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 5
 49
 5
 1

 1

 HistoryList_V1
 qi2base

