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Abstract—The RANSAC framework is often used to estimate
the relative pose of two cameras from outlier-contaminated
point correspondences, via the essential matrix, however this is
computationally expensive due the cost of computing essential
matrices from many sets of five to seven correspondences. The
leading contemporary 5-point solver (Nister, 2004) is slow because
of the expensive linear algebra decompositions and polynomial
solve which are required. To avoid these costs we propose to
use Levenberg-Marquardt optimisation on a manifold to find
a subset of the compatible essential matrices. The proposed
algorithm finds essential matrices at a higher rate than closed-
form approaches, and reduces the time needed to find relative
poses using RANSAC by 25%.

The second contribution of this paper is to apply the optimi-
sations used in 5-point solvers to the classic 7-point algorithm.
RANSAC using the optimised 7-point algorithm is considerably
faster than 5-point RANSAC (unless planar point configurations
are common), despite the increased number of iterations neces-
sary.

I. INTRODUCTION

A common task in computer vision is to compute the
relative pose of two calibrated cameras, so that the scene’s
3D structure can be recovered and the images can be aligned.
Relative pose can be estimated via the essential matrix, E, a
3 × 3 matrix encoding the rotation and translation between
two cameras [1]. E can be computed from matches between
features visible in both images (“correspondences”), however
feature matching algorithms frequently match features incor-
rectly, introducing outlier correspondences. To estimate E
while simultaneously identifying outliers, the robust RANSAC
framework is often used.

RANSAC (Random Sample Consensus [2]) works by re-
peatedly choosing small random subsets of correspondences
(‘hypothesis sets’), fitting an essential matrix to each hypoth-
esis set, then counting the total number of correspondences
compatible with each essential matrix. Eventually an essential
matrix compatible with many correspondences will be found,
usually because the hypothesis set contained only inliers. The
set of compatible correspondences consists mostly of inliers,
and a robust global optimisation can then be applied to refine
the inlier set and to obtain an accurate relative pose estimate.
When outlier rates are high, RANSAC becomes computation-
ally expensive, due to the large number of iterations needed
before an all-inlier hypothesis set is found.

The minimum number of point-correspondences necessary
to determine E is five, but a simpler seven-point algorithm
is frequently used (e.g. by [3], [4], [5]). To minimise the
number of iterations needed by RANSAC to find an all-
inlier hypothesis set, five point hypothesis sets should ideally
be used, as the probability of these being contaminated by
outliers is lower than for seven point sets, however the fastest
contemporary 5-point solver, by Nister [6], is still compu-
tationally expensive, due to large linear algebra operations
and a tenth-order polynomial solver. To avoid these costs we
propose to sample from the space of possible solutions by
repeatedly using the Levenberg-Marquardt (LM) optimisation
algorithm from many different start points. Firstly, a four-
dimensional basis containing up to ten essential matrices
compatible with the five point correspondences is computed by
modified Gram-Schmidt (MGS) orthonormalisation. Secondly,
the LM algorithm is applied repeatedly from random start
points on a manifold of linear combinations of these basis
vectors to find a subset of the compatible essential matrices.
This approach generates RANSAC hypotheses at a higher
rate than an optimised implementation of Nister’s 5-point
algorithm, and reduces the cost of RANSAC by typically 25%.
The MGS orthonormalisation is also applied to the classic 7-
point algorithm for E; RANSAC using this optimised 7-point
algorithm is considerably faster than 5-point RANSAC, despite
the increased number of iterations necessary, however is not
suitable for environments where planar point configurations
are common.

This paper is organised as follows: the following section
introduces the essential matrix and its properties; Section III
introduces the LM algorithm in the context of solving simul-
taneous equations on a manifold; Section IV reviews con-
temporary approaches for estimating essential matrices from
point-correspondences; Section V describes how we propose
to compute essential matrices efficiently using a gradient-
descent procedure; Section VI validates the new approach
against contemporary 5-point algorithms and an optimised 7-
point algorithm; and Section VII presents our conclusions.

II. THE ESSENTIAL MATRIX

This section provides an overview of the important proper-
ties of the essential matrix, which is analysed in more detail in
Hartley and Zisserman, Chapter 9 [7]. The essential matrix, E,



is a 3×3 matrix encoding the rotation and translation direction
between two views. If the rotation is expressed as a matrix,
R, and the translation as a vector, t, then E is defined by

E = [t]×R (1)

where [t]× is the matrix-representation of the vector cross-
product, with the property that [t]× x ≡ t × x. As [t]× has
rank 2 in general, E also has rank 2. From two images alone,
the length of t cannot be determined, therefore E is only
determined up to scale.

If a 3D point X is viewed in two images at locations
x and x′ (where x,x′ are calibrated homogeneous image
coordinates), then E has the property that:

x′TEx = 0 (2)

Expanding this equation gives a single linear constraint in
the nine elements of E for every correspondence. From N
correspondences, these equations can be stacked to form a
9×N matrix,the singular value decomposition (SVD) of which
gives a (9 − N)-dimensional basis for the space in which E
lies [7], [8]. The points within this vector space which are
essential matrices are those which can be decomposed into a
rotation and a translation. E can be decomposed in this way
when its SVD has the form:

E = U

 s 0 0
0 s 0
0 0 0

VT (3)

where U,V are orthonormal matrices. Due to the sign and
scale ambiguity in E, U,V can always be chosen to be
rotation matrices, and s can be chosen to be 1.

Equation 3 is equivalent to

EETE− 1

2
trace(EET )E = 0, (4)

which provides an efficient test of whether a matrix is approx-
imately an essential matrix.

E has five degrees of freedom, from the 3D rotation and
2D translation direction, and can be determined from five
or more correspondences. Given five correspondences, up to
ten (although typically about four) different essential matrices
are possible [6]. Given seven correspondences, up to 3 are
possible.

In summary, a basis containing E can be computed from
point correspondences via SVD, and any linear combination of
these basis vectors satisfying Equation 3 is an essential matrix.

III. PRELIMINARIES

This section describes the Levenberg-Marquardt algorithm
for nonlinear least-squares optimisation, then outlines how it
can be applied on a manifold to solve a system of nonlinear
equations.

A. The Levenberg-Marquardt gradient descent algorithm
The Levenberg-Marquardt (LM) algorithm, described in de-

tail in Appendix 6 of Hartley and Zisserman [7], is a gradient-
descent optimisation algorithm for minimising functions which
are a sum of squared terms, i.e. to find x minimising ‖f(x)‖.
The LM algorithm is based on the Gauss-Newton algorithm,
but uses an adaptive damping parameter which prevents in-
stability away from minima, while allowing fast convergence
close to minima.

When the system of equations being solved has an exact
solution (i.e. when there are N equations in N unknowns,
and we seek solutions x∗ where f(x∗) = 0 ), Newton-
Raphson optimisation can be used. Newton-Raphson is closely
related to Gauss-Newton optimisation of ‖f‖2; both use a
combination of f and the Jacobian of f to compute a step
taking x to where the minimum is predicted to be. Newton-
Raphson is notoriously unstable away from roots [9], so many
damped Newton-Raphson approaches have been proposed.
One suitable approach is to apply the LM algorithm, which is
stable away from minima, and which converges at a similar
rate near to minima. LM iterations have approximately the
same cost as Newton-Raphson iterations: f and the Jacobian
of f are required and an N × N linear system is solved on
each iteration.

B. E as a point on a manifold
Gradient descent optimisation algorithms like LM operate in

Rn, however it is often convenient to constrain the parameter
sets to a manifold embedded in Rn. Manifolds which can be
locally approximated by a subspace of Rm are differential
manifolds. To use the LM algorithm to solve an equation
where the solution x∗ lies on a manifold, the objective function
f(x) is reparametrised on each iteration in terms of a basis of
vectors tangent to the manifold at x.

One convenient parametrisation of E is in terms of its
corresponding rotation and translation direction (Equation 1).
Both the space of 3D rotations and the space of translation
directions are differential manifolds; this parametrisation was
used by Ma et al. [10], who represent rotations as rotation
matrices (a Lie group), which are projected to and from the
vector space of skew-symmetric matrices (their corresponding
Lie algebra) on each iteration. These projection operations can
considerably increase the cost of each LM iteration however.

IV. ALGORITHMS FOR COMPUTING E

This section reviews contemporary approaches for esti-
mating E. Firstly, “closed form” algorithms for estimating
all essential matrices compatible with sets of five to eight
points are reviewed, then previous optimisation algorithms,
which aim to estimate the most likely E from many noisy
correspondences, are described.

A. Computing E from 7 or 8 correspondences
Given eight or more correspondences, a matrix F minimis-

ing the sum ∑
i

(x′Ti Fxi)
2 (5)



can be found by SVD LonguetHiggins-1981. If the correspon-
dences are inliers then F is usually approximately equal to E
(and is a suitable starting point for subsequent optimisation)
however F is often a poor estimate of E [4], as Equation 5 is
a biased measure of errors due to point localisation.

From seven correspondences, a basis of two vectors for
F can be computed. A set of either one or three linear
combinations of these two basis vectors satisfy detF = 0;
these linear combinations can be found by solving a cubic
equation in the basis elements. The subset of these matrices
which are also approximately essential matrices can be found
efficiently by applying Equation 4. Chum [4] reports than the
7-point algorithm produces more accurate hypotheses than the
8-point algorithm.

B. Computing E from 5 correspondences

The seven- and eight-point algorithms for E are relatively
fast, however ideally for RANSAC minimal subsets should be
used, which for essential matrices is five correspondences.

Given five correspondences, four basis vectors satisfying
Equation 2 can be computed by SVD. All linear combinations
of these basis vectors satisfying Equation 4 are essential
matrices. Equation 4 provides nine cubic constraints in the
elements of E; the methods of Nister [6], and Stewenius et
al. [11] both work by solving these nine equations.

Stewenius et al. solves these equations by constructing a
Gröbner basis, after which the solutions are derived from the
real eigenvectors of a 10 × 10 matrix. Nister converts the
cubic equations to a single tenth-order equation, each real root
of which corresponds to an essential matrix. Both methods
first compute the coefficients of the system of polynomials to
be solved by setting up and solving a 10-dimensional linear
system.

C. Gradient-descent methods for computing E

When outlier rates are low, or once most outliers have been
removed by RANSAC, remaining errors in correspondences
are from errors in image feature localisation, and can be as-
sumed Gaussian and independent [7]. A variety of optimisation
procedures have been proposed for fitting an accurate relative
pose to these correspondences.

The “Gold-standard” for relative pose computation is to find
R, t, and the corresponding 3D structure which minimises
the total squared reprojection error (the distance between the
location of points projected into the image, and their measured
locations). Hartley and Zisserman [7] recommend minimising
this sum-of-squared errors using the LM algorithm, and several
formulations of this minimisation have been proposed.

Ma et al. [10] refine E by using a Newton-based method
on the product of manifolds for the space of 3D rotations,
and the space of unit translation vectors (equivalent to the
manifolds described in Section III-B), however in general the
method only converges locally due to the Newton method’s
instability away from minima. Helmke et al. [12] propose a
different manifold, in which E is parametrised in terms of the

two rotation matrices in its SVD (Equation 3). Each Gauss-
Newton iteration is computationally less expensive (having
lower renormalisation costs) than Ma et al.’s approach, how-
ever again the method only converges locally in general. Both
methods use the 8-point algorithm to initialise the optimisa-
tion.

Batra et al. [13] avoid working on a manifold explicitly and
instead use a constrained optimisation toolbox to solve a set
of polynomials similar to Equation 4, subject to a nonlinear
constraint on the parameters. The method is demonstrated to
find solutions to the 5-point problem from random starting
points, but is not computationally efficient.

[14] find E by first finding the fundamental matrix which
minimises a more complex robust error function. As the error
function is only piecewise differentiable, the Gauss-Newton
Hessian estimate is not suitable, so the Downhill Simplex
method is used: a gradient descent method which does not
require second-derivatives.

These gradient descent methods estimate essential matrices
from many noisy point correspondences. Minimising an error
function related to point localisation error is important to give
an accurate solution, but convergence from distant start points
is less important. In this paper, LM optimisation is applied
to the problem of estimating E from minimal sets of five
correspondences for RANSAC hypothesis generation, as an
alternative to contemporary ‘closed form’ 5-point solvers. It
is important that each LM iteration is computationally cheap,
and that solutions can be found without initial estimates being
available, but unlike other gradient-descent based algorithms,
the essential matrices found are exact solutions, so the function
which is minimised does not have to relate to reprojection
error. The following section describes a parametrisation of E
meeting these requirements.

V. FINDING E IN TERMS OF BASIS VECTORS USING LM

To estimate E efficiently from sets of five correspondences,
we first compute the 4D basis in which essential matrices
compatible with the five point correspondences lie, then apply
the LM algorithm on a 3D manifold within the vector space
to solve a minimal set of three equations satisfied by E.

In Section II, we described how a four-dimensional basis
B = {b1, ...,b4} in which E lies can be computed from
five point correspondences. All linear combinations of this
basis which satisfy Equation 4, and which have determinant
zero, are essential matrices compatible with these five point
correspondences. To find these essential matrices we use LM
optimisation to find 4D vectors of coefficients, p, so that
E(p) =

∑4
i=1 pibi satisfies Equation 4 and has determinant

zero.
As E is only defined up to scale, the optimisation is

constrained so that p has length 1. The set of 4D parameter
vectors with ‖p‖ ≡ 1 is the unit sphere in 4D, S3, which is a
differential manifold.

As B is orthonormal, E(p) =
∑4

i=1 pibi also has Frobenius
norm 1 (i.e. trace(EET ) ≡ 1). By constraining the search to
this manifold, the constraint that the determinant is zero is



unnecessary: if detE 6= 0 then EETE− 1
2 trace(EET )E = 0

only when EET = 1
2I, which is false because trace(EET ) ≡

1.
We find E(p) minimising ‖f(E(p))‖2, where

f(E) = vec
(
EETE− 1

2
trace(EET )E

)
, (6)

where vec denotes the nine elements of the 3 × 3 matrix
interpreted as a 9D vector.

At each iteration, a basis of three vectors tangent to S3
at p, {a1,a2,a3} is computed. Each 4D tangent vector aj
corresponds to a 3 × 3 matrix Aj , which is the linear
combination of the basis elements B with coefficients aj .
When the parameter set p is adjusted by a small amount δ
in the direction aj , E(p+ δa) ≈ E(p) + δAj . The vector of
derivatives of the components of f in the direction of tangent
vector aj is given by

Jcolj =
∂

∂aj
f = vec[(AjE

T +EAT
j − trace(EAT

j )I)E

+ (EET − 1

2
trace(EET )I)Aj ] (7)

LM is now applied, with {aj},p renormalised, and {Aj}
recomputed at each iteration.
r has nine elements, defining nine constraints on E. The

manifold S3 has only three degrees of freedom however, and
any three equations from r are zero at only a finite set of
points on the manifold, some of which correspond to essential
matrices. For efficiency, the LM optimisation uses just the
first three elements of r. These three equations have additional
solutions, which are eliminated by checking Equation 4. In
simulated data, 80% of minima where r1..3 = 0 correspond
to essential matrices; others are rejected.

A. Important optimisations

This parametrisation of E has many false minima, and the
same solutions are often found multiple times. Optimisation is
stopped if the solution approaches one which has already been
found, or if the rate of descent is so low that the residuals are
unlikely to converge to zero.

When optimising on a manifold, parameter and basis vectors
are renormalised after each update, e.g. q ← p

‖p‖ . This normal-
isation is relatively expensive if the norm is computed using
a square root, however after the first iteration or two, updates
are small and the binomial approximation 1

‖p‖ ≈ ( 32−
1
2‖p‖

2)
is sufficiently accurate that the square root and division can
be eliminated.

B. Implementation details

Our proposed algorithm (labelled LM Basis) together with
the contemporary 5-point solvers by Nister et al. [6] and
Stewenius et al. [11] are each implemented in C++ using the
Eigen 3 matrix library [15] and compiled using gcc. Eigen is
designed to generate efficient code for the small fixed-size
matrix expressions common to all 5-point algorithms, and
includes efficient implementations of popular linear algebra
routines.
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Fig. 1. Time per-hypothesis for different 5-point solvers. *The time for
Sevenpoint is per hypothesis set, as the average number of solutions depends
on the inlier rate.

Our C++ implementations of Nister’s and Stewenius’ 5-
point solvers are based on the MATLAB code available
from [16]. Significant costs common to both approaches
are an LU decomposition to rearrange basis vectors into a
system of polynomials, and matrix setup costs. Stewenius’
approach (labelled Fivepoint Gröbner Basis) computes the
eigendecomposition of a 10× 10 action matrix, for which we
use Eigen’s Francis-QR implementation [9]. Nister’s approach
(labelled Fivepoint Polynomial) solves a 10th order polynomial
instead. For this we use the Jenkins-Traub [9] implementation
from [17]; for the 10th order polynomials encountered this is
considerably faster than the QR-based polynomial solver in
Eigen.

To find bases for E, a SVD is often used, e.g. by [8], [7]. For
problems this small (9× 9) however, a faster Modified Gram-
Schmidt (MGS) orthonormalisation is considerably faster, and
has comparable numerical accuracy [18].

All times given refer to code running on a single core of a
2.93GHz Intel i7 processor. Source code for all implementa-
tions is available on the author’s web page [19].

C. Discussion

An LM-based scheme for finding essential matrices from
sets of five correspondences has been described. Unlike con-
temporary 5-point solvers, which solve a small number of large
(10D) linear or polynomial systems, the proposed scheme use
a large number of comparatively cheap LM iterations, where
systems sized 3 × 3 are solved on each iteration. The LM
algorithm is used so that optimisation can start far away from
minima, and E is parametrised in terms of a linear combination
of basis vectors, so that each LM iteration is computationally
inexpensive.

The authors also investigated 5-point solvers operating on
the 5D manifold of 3D rotations and translation directions;
this approach was found to be considerably more expensive
due to the 5D system which was set up and solved on each
iteration. Alternatively, when E was parametrised directly in
terms of R5, convergence was considerably slower.
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Fig. 2. Time taken to find E in RANSAC with different inlier rates: LM
Basis is up to 25% faster than the Fivepoint Polynomial, but an optimised
7-point solver is generally faster.

D. Optimised 7-point algorithm

The MGS orthonormalisation used to compute a 4D basis
from five points is also ideal for the 7-point algorithm, where
a 2D basis is computed from 7 point correspondences. A cubic
equation is then solved directly to find linear combinations of
these basis vectors with determinant zero. In the presence of
outliers these matrices are often not essential matrices, and
even with all-inlier hypothesis sets point localisation errors
result in matrices which are not exactly essential matrices.
Equation 4 is used to identify which of these matrices are
approximately essential matrices, and Equation 3 is then
applied to find the closest (by L2 norm [7]) essential matrix.

VI. RESULTS

Firstly, we compare the relative speeds of the different
approaches at hypothesis generation. Each 5-point solver is
evaluated on sets of five randomly generated correspondences.
The mean time per-hypothesis for each algorithm is shown
in Figure 1. The LM Basis approach outperforms all other
5-point algorithms in terms of the rate at which hypotheses
are generated. Table I shows that while LM Basis often finds
the same solutions multiple times, and also finds many false
minima, these can be detected in typically just one or two
iterations. Secondly, Nister’s 5-point algorithm and the LM

Algorithm Solutions False minima Repeated solutions
LM Basis 2.4 (5.7) 3.8 (3.7) 3.9 (1.3)
Fivepoint Polynomial 3.9 - -

TABLE I
AVERAGE NUMBERS OF SOLUTIONS FOUND (AND ITERATIONS REQUIRED)

PER FIVE-POINT SET. LM BASIS IS STARTED FROM 10 RANDOM POINTS.

Basis 5-point algorithm are tested in RANSAC, to verify that
LM Basis solutions are as good as those from a contemporary
5-point solver. In addition, these 5-point algorithms are com-
pared to the optimised 7-point solver. The probability of a 7-
point hypothesis set being outlier-contaminated is considerably
higher than for 5-point hypothesis sets, and the 7-point algo-
rithm also fails when point sets are approximately planar (so
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Fig. 3. The number of hypotheses generated per RANSAC run is the same for
LM Basis and Fivepoint Polynomial. Sevenpoint generates fewer hypotheses
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should not be used when environments contain many planar
point configurations), however the 7-point algorithm has the
advantage of being considerably faster.

In our first simulated RANSAC setup, 200 3D points are
generated randomly, projected into two 640 pixel-wide images
with a FOV of 1 radian, then simulated localisation errors
with mean 1 pixel are added. To simulate outliers, points are
mismatched at random. The classic RANSAC algorithm is
used, terminating only when an inlier set containing 20% of
correspondences is found (this termination condition ensures
every run is successful, and that RANSAC is stopped as soon
as a large inlier set is found). Figure 2 shows that the average
time taken to find an inlier set is consistently lower with LM
Basis than the contemporary 5-point algorithm. Figure 3 shows
that on average the same number of hypotheses are generated
by the two 5-point solvers on each RANSAC run, indicating
that the subset of hypotheses found by LM Basis are just as
good as the complete sets of hypotheses found by a closed-
form 5-point solver. In this experiment rotations of up to 0.75
radians, and translations of up to half the mean point depth
are generated at random. Similar results are obtained for the
cases of pure rotation, forwards and sideways motion, a narrow
FOV, and planar scenes.

Figure 2 also shows that the 7-point algorithm outperforms
the 5-point algorithms except where outlier rates are high.
Each run of the 7-point algorithm takes just one microsecond,
compared with about 10 microseconds for the LM Basis
algorithm (or 14 microseconds for OpenCV’s SVD-based 7-
point implementation), so many more iterations are possible in
the same time. The 7-point algorithm has the added advantage
of generating fewer candidate hypotheses (often none when
a hypothesis set is outlier-contaminated; Figure 3), greatly
reducing the time needed to test whether points are compatible.

Numerous variations and optimisations have been proposed
for every stage of RANSAC (some are reviewed by [20], [4]),
however in most of these, the primary cost is the cost of
hypothesis generation, and it is likely that these schemes can
also operate efficiently with the subsets of hypotheses found
using LM Basis.
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A. Analysis of errors

Firstly numerical errors are compared (Figure 4). Errors are
measured as the RMS difference between the essential matrix
used to simulate noise-free data, and the essential matrix
found. LM Basis can be parametrised to iterate until errors are
as low as with Fivepoint Polynomial, however this level of ac-
curacy is not necessary for RANSAC hypothesis generation—
as shown by Figure 5, numerical errors for all methods are
insignificant compared to errors from point localisation.

Secondly, errors arising from point localisation errors are
evaluated (Figure 5) for a planar and non-planar scene. There
is no detectable difference in errors between the different 5-
point solvers, as the same equations are being solved exactly.
Significant errors in orientation are observed when point
localisation is poor, and errors are higher for a planar scene.
Errors are lower for the 7-point solver, as this problem is
overdetermined (although the extra information is not used
optimally), but the 7-point solver fails for planar scenes.

VII. CONCLUSIONS

This paper described a novel scheme for computing essential
matrices for RANSAC hypothesis generation. The new scheme
uses multiple randomly-initialised runs of the Levenberg-
Marquardt algorithm to sample from the set of essential
matrices compatible with sets of five correspondences. The
new scheme can generate hypotheses at a rate comparable
with the fastest contemporary 5-point solver, and the subsets
of hypotheses found are just as suitable for RANSAC.

5-point solvers are also compared to an optimised 7-point al-
gorithm based on modified Gram-Schmidt orthonormalisation.
For scenes without planar point configurations, the 7-point
algorithm is so much faster then any 5-point algorithm that
RANSAC finds an inlier set sooner, despite the increased like-
lihood of 7-point hypothesis sets being outlier-contaminated.
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